1.2.2_基本初等函数的导数公式与导数的运算法则
数学:1.2.2《基本初等函数的导数公式及导数的运算法则》课件(新人教A版选修2—2)
'
2x 3
'
3
'
3x 2.
所以,函数 y x 2x 3的导数是 y 3x 2.
' 2
2
例3
日常生活中的饮用水 经过 净化的 . 随着水 , 所需净化费 .已知将 1吨水净 x % 时所需费
通常是
纯净度的提高 用不断增加 化到纯净度为 用 单位 : 元 为 cx 5284 100 x
可以看作函数
和u
0 . 05 x 1 的复合函数
y y u
' x
.由复合函数求导法则有
'
e
0 . 05 x 1
u '
0 .0 5 x 1
0 . 05 e
u
0 . 05 e
.
3 函数
y sin π x φ 可以看作函数 .
'
f x f 3. g x
'
'
x g x f x g x g x 2 g x
0 .
例2
根据基本初等函 的导数公式 数
3
和导数运算法则求函数 y x 2x , 3 的导数.
解 x
因为y x 2x 3
一般地 , 对于两个函数 变量 u , y 可以表示成
y f u 和 u g x , 如果通过 x 的函数 , 那么称这个函数为函 fun
数 y f u 和 u g x 的 复合函数 ( composite ction ), 记作 y f g x .
1.2.2 基本初等函数的导数公式及导数的运算法则
第一章 导数及其应用
[解] ∵p0=1,∴p(t)=(1+5%)t=1.05t.
根据基本初等函数的导数公式表,有p′(t)=(1.05t)′=
1.05t·ln1.05. ∴p′(10)=1.0510·ln1.05≈0.08(元/年). 因此,在第10个年头,这种商品的价格约以0.08元/ 年的速度上涨.
[点拨] 在第10个年头,商品的价格上涨的速度,即
(2)若f(x)=xn,则f′(x)=②________. (3)若f(x)=sin x,则f′(x)=③________. (4)若f(x)=cos x,则f′(x)=④________. (5)若f(x)=ax,则f′(x)=⑤________.
(6)若f(x)=ex,则f′(x)=⑥________.
第一章 导数及其应用
[分析] 求函数的导数主要有直接求导和先变形然后 再求导两种方法,要注意正确区分.
[解]
(1)y′=(tanx)′=(
sinx cosx
)′=
(sinx)′cosx-sinx(cosx)′ cos2x+sin2x 1 = (cosx)2 =cos2x. (cosx)2 (2)y′=(3x2+x· cosx)′=(3x2)′+(x· cosx)′=6x+ x′· cosx+x· (cosx)′=6x+cosx-xsinx. x x 1 2 (3)y′=[( x-2) -sin 2 · 2 ]′=[( x-2) ]′-( 2 cos
基本初等函数的导数公式及导数的运算法则
基本初等函数的导数公式及导数的运算法则导数是微积分中一个重要的概念,它描述了函数在给定点处的变化率。
在微积分中有许多基本的初等函数,它们都有对应的导数公式和导数的运算法则。
下面,我将介绍一些常见的基本初等函数的导数公式及导数的运算法则。
1.常数函数导数公式:如果f(x)=C,其中C为常数,则其导数为f'(x)=0。
2.幂函数导数公式:如果f(x) = x^n,其中n为常数,则其导数为f'(x) = nx^(n-1)。
例如:f(x)=x^3,则f'(x)=3x^23.指数函数导数公式:如果f(x)=e^x,则其导数为f'(x)=e^x。
例如:f(x)=e^2,则f'(x)=e^24.对数函数导数公式:如果f(x) = ln(x),则其导数为f'(x) = 1/x。
例如:f(x) = ln(2),则f'(x) = 1/25.三角函数导数公式:(1) 如果f(x) = sin(x),则其导数为f'(x) = cos(x)。
(2) 如果f(x) = cos(x),则其导数为f'(x) = -sin(x)。
(3) 如果f(x) = tan(x),则其导数为f'(x) = sec^2(x)。
6.反三角函数导数公式:(1) 如果f(x) = arcsin(x),则其导数为f'(x) = 1/√(1-x^2)。
(2) 如果f(x) = arccos(x),则其导数为f'(x) = -1/√(1-x^2)。
(3) 如果f(x) = arctan(x),则其导数为f'(x) = 1/(1+x^2)。
导数的运算法则:1.常数乘法法则:设c为常数,f(x)为可导函数,则(cf(x))' = c*f'(x)。
例如:如果f(x)=2x,则f'(x)=2*1=22.求和差法则:设f(x),g(x)为可导函数,则(f(x)±g(x))'=f'(x)±g'(x)。
学案10:1.2.2 基本初等函数的导数公式及导数的运算法则
1.2.2 基本初等函数的导数公式及导数的运算法则新知初探1.导数的四则运算法则(1)条件:f (x ),g (x )是可导的.(2)结论:①[f (x )±g (x )]′= .②[f (x )g (x )]′= .③⎣⎡⎦⎤f (x )g (x )′=______________________________.点睛 应用导数公式的注意事项(1)两个导数的和差运算只可推广到有限个函数的和差的导数运算.(2)两个函数可导,则它们的和、差、积、商(商的分母不为零)必可导.(3)若两个函数不可导,则它们的和、差、积、商不一定不可导.(4)对于较复杂的函数式,应先进行适当的化简变形,化为较简单的函数式后再求导,可简化求导过程.2.复合函数的求导公式(1)复合函数的定义:①一般形式是 .②可分解为 与 ,其中u 称为 .(2)求导法则:复合函数y =f (g (x ))的导数和函数y =f (u ),u =g (x )的导数间的关系为:y x ′= .小试身手1.判断(正确的打“√”,错误的打“×”)(1)f ′(x )=2x ,则f (x )=x 2. ( )(2)函数f (x )=x e x 的导数是f ′(x )=e x (x +1). ( )(3)函数f (x )=sin(-x )的导数为f ′(x )=cos x . ( )2.函数y =sin x ·cos x 的导数是 ( )A .y ′=cos 2x +sin 2xB .y ′=cos 2xC .y ′=2cos x ·sin xD .y ′=cos x ·sin x3.函数y =x cos x -sin x 的导数为 .4.若f (x )=(2x +a )2,且f ′(2)=20,则a = .课堂讲练题型一 利用导数四则运算法则求导典例 求下列函数的导数:(1)y =x 2+log 3x ;(2)y =x 3·e x ;(3)y =cos x x.类题通法求函数的导数的策略(1)先区分函数的运算特点,即函数的和、差、积、商,再根据导数的运算法则求导数.(2)对于三个以上函数的积、商的导数,依次转化为“两个”函数的积、商的导数计算. 活学活用 求下列函数的导数:(1)y =sin x -2x 2;(2)y =cos x ·ln x ;(3)y =e x sin x.题型二 复合函数的导数运算典例 求下列函数的导数:(1)y =11-2x 2;(2)y =e sin(ax +b ); (3)y =sin 2⎝⎛⎭⎫2x +π3;(4)y =5log 2(2x +1).类题通法1.求复合函数的导数的步骤2.求复合函数的导数的注意点(1)内、外层函数通常为基本初等函数.(2)求每层函数的导数时注意分清是对哪个变量求导,这是求复合函数导数时的易错点. 活学活用求下列函数的导数:(1)y =(3x -2)2; (2)y =ln(6x +4);(3)y =e 2x +1; (4)y =2x -1;(5)y =sin ⎝⎛⎭⎫3x -π4;(6)y =cos 2x .题型三 与切线有关的综合问题典例 (1)函数y =2cos 2x 在x =π12处的切线斜率为 .(2)已知函数f (x )=ax 2+ln x 的导数为f ′(x ),①求f (1)+f ′(1).②若曲线y =f (x )存在垂直于y 轴的切线,求实数a 的取值范围.类题通法关于函数导数的应用及其解决方法(1)应用:导数应用主要有:求在某点处的切线方程,已知切线的方程或斜率求切点,以及涉及切线问题的综合应用.(2)方法:先求出函数的导数,若已知切点则求出切线斜率、切线方程﹔若切点未知,则先设出切点,用切点表示切线斜率,再根据条件求切点坐标.总之,切点在解决此类问题时起着至关重要的作用.活学活用若存在过点(1,0)的直线与曲线y =x 3和y =ax 2+154x -9都相切,则a 的值为 ( )A .-1或-2564B .-1或214C .-74或-2564D .-74或7 参考答案新知初探1.(2) f ′(x )±g ′(x )②f ′(x )g (x )+f (x )g ′(x )③f ′(x )g (x )-f (x )g ′(x )[g (x )]2(g (x )≠0) 2.(1)①y =f (g (x ))②y =f (u ) u =g (x ) 中间变量(2)y u ′·u x ′小试身手1.(1)× (2)√ (3)×2.【答案】B3.【答案】-x sin x4.【答案】1课堂讲练题型一 利用导数四则运算法则求导典例 解:(1)y ′=(x 2+log 3x )′=(x 2)′+(log 3x )′=2x +1x ln 3. (2)y ′=(x 3·e x )′=(x 3)′·e x +x 3·(e x )′=3x 2·e x +x 3·e x =e x (x 3+3x 2).(3)y ′=⎝⎛⎭⎫cos x x ′=(cos x )′·x -cos x ·(x )′x 2=-x ·sin x -cos x x 2=-x sin x +cos x x 2. 活学活用 解:(1)y ′=(sin x -2x 2)′=(sin x )′-(2x 2)′=cos x -4x .(2)y ′=(cos x ·ln x )′=(cos x )′·ln x +cos x ·(ln x )′=-sin x ·ln x +cos x x. (3)y ′=⎝⎛⎭⎫e x sin x ′=(e x )′·sin x -e x ·(sin x )′sin 2x=e x ·sin x -e x ·cos x sin 2x=e x (sin x -cos x )sin 2x题型二 复合函数的导数运算典例 解:(1)设y =u −12,u =1-2x 2,则y ′=(u −12)′(1-2x 2)′=(-12u −32)·(-4x )=-12(1-2x 2)−32(-4x )=2x (1-2x 2)−32. (2)设y =e u ,u =sin v ,v =ax +b ,则y x ′=y u ′·u v ′·v x ′=e u ·cos v ·a=a cos(ax +b )·e sin(ax +b ).(3)设y =u 2,u =sin v ,v =2x +π3, 则y x ′=y u ′·u v ′·v x ′=2u ·cos v ·2=4sin v cos v =2sin 2v =2sin ⎝⎛⎭⎫4x +2π3. (4)设y =5log 2u ,u =2x +1,则y ′=5(log 2u )′·(2x +1)′=10u ln 2=10(2x +1)ln 2. 活学活用解:(1)y ′=2(3x -2)·(3x -2)′=18x -12;(2)y ′=16x +4·(6x +4)′=33x +2; (3)y ′=e 2x +1·(2x +1)′=2e 2x +1;(4)y ′=122x -1·(2x -1)′=12x -1. (5)y ′=cos ⎝⎛⎭⎫3x -π4·⎝⎛⎭⎫3x -π4′=3cos ⎝⎛⎭⎫3x -π4. (6)y ′=2cos x ·(cos x )′=-2cos x ·sin x =-sin 2x .题型三 与切线有关的综合问题典例 (1)【答案】-1【解析】由函数y =2cos 2x =1+cos 2x ,得y ′=(1+cos 2x )′=-2sin 2x ,所以函数在x =π12处的切线斜率为 -2sin ⎝⎛⎭⎫2×π12=-1. (2)解:①由题意,函数的定义域为(0,+∞),由f (x )=ax 2+ln x ,得f ′(x )=2ax +1x,所以f (1)+f ′(1)=3a +1.②因为曲线y =f (x )存在垂直于y 轴的切线,故此时切线斜率为0,问题转化为在x ∈(0,+∞)内导函数f ′(x )=2ax +1x存在零点, 即f ′(x )=0⇒2ax +1x=0有正实数解, 即2ax 2=-1有正实数解,故有a <0,所以实数a 的取值范围是(-∞,0).活学活用【答案】A【解析】设过点(1,0)的直线与曲线y =x 3相切于点(x 0,x 30), 则切线方程为y -x 30=3x 20(x -x 0),即y =3x 20x -2x 30.又点(1,0)在切线上,代入以上方程得x 0=0或x 0=32. 当x 0=0时,直线方程为y =0.由y =0与y =ax 2+154x -9相切可得a =-2564. 当x 0=32时,直线方程为y =274x -274. 由y =274x -274与y =ax 2+154x -9相切可得a =-1.。
基本初等函数导数公式附导数运算法则
1.2.2基本初等函数的导数公式及导数的运算法则(一)教学目的:1熟练掌握基本初等函数的导数公式。
2掌握导数的四则运算法则;3能利用给出的公式和法则求解函数的导数。
教学重点难点重点:基本初等函数的导数公式、导数的四则运算法则难点:基本初等函数的导数公式和导数的四则运算法则的应用教学安排:两课时教学过程:引入:复习巩固导数的基本公式,及其基本运算规律。
且知识讲解:一:基本初等函数的导数公式为了方便我们将可以直接使用的基本初等函数的导数公式表如下:关于表特别说明:1 常数函数的导数是0;2幂函数导数是以对应幂函数的指数为系数3余弦函数的导数是正弦函数的相反数。
从图像上来看,正弦函数在区间上单调递增,瞬时变化率为正,和余弦函数在该区间的正负是一致的,余弦函数在区间上是单调递减,瞬时变化率为负,和正弦函数在该区间的正负是相反的,故有一个负号。
4的导数是它自身。
5例1计算下列函数的导数强调:1幂函数和指数函数是两种不同的函数,关键是看变量所处的位置是在底数上还是在指数上。
2 导函数的定义域决定于原函数的定义域。
练习:求下列函数的导数。
例2.(课本P14例1)假设某国家在20年期间的年均通货膨胀率为那么在第10个年头,这种商品的价格上涨的速度大约是多少(精确到0.01)?/年)在第10个年头,这种商品的价格约为0.08元/年的速度上涨.提出问题:10个年头,这种0.01)?二导数的计算法则推论1导数不变)2(常数与函数的积的导数,等于常数乘函数的导数)3解决问题:公式和求导法则,有/年)0.4元/年的速度上涨.例3 根据基本初等函数的导数公式和导数运算法则,求下列函数的导数,并注明定义域。
(1(2(3强调: 1 求导数是在定义域内实行的.2 求较复杂的函数积、商的导数,必须细心、耐心.例4(P15例3)日常生活中的饮水通常是经过净化的.随着水纯净度的提高,所需净化费用不断增加.已知将1吨水净化到纯净所需净化费用的瞬时变化率:(1(24538y x x =+-练习:()()32454338x y xx -+'=+-解:净化费用的瞬时变化率就是净化费用函数的导数.(1)用的瞬时变化率是52.84元/吨.(2)所以,费用的瞬时变化率是1321元/吨.强调:费用的瞬时变化率的25倍.这说明,水的纯净度越高,需要的净化费用就越多,而且净化费用增加的速度也越快. 五.课堂练习六.课堂小结(1)基本初等函数的导数公式表 (2)导数的运算法则 七.布置作业 八.教学后记。
1.2.2_基本初等函数的导数公式及导数的运算法则ppt
• y′=2(3x-2)·(3x-2)′=6(3x-2)=18x-12.
PPT
• (6)y′ = 2cosx·(cosx)′ = - 2cosx·sinx = - sin2x
• [点评] 法则可简单叙述成:复合函数对 自变量的导数,等于已知函数对中间变量 的导数,乘以中间变量对自变量的导数.
PPT
求下列函数的导数:
(1)y=lnsinx2x;
(2)y=
x 1-x.
PPT
PPT
• [例3] 某日中午12时整,甲船自A处以 16km/h的速度向正东行驶,乙船自A的正 北18km处以24km/h的速度向正南行驶,则 当日12时30分时两船之间的距离对时间的 瞬时变化率是________km/h.
=24sin2x(sinx)′=24sin2xcosx,
∴曲线在点 P6π,1处的切线的斜率
k=
=24sin26π·cos6π=3 3.
∴适合题意的曲线的切线方程为
y-1=3
3x-π6,即
6 3x-2y-
PPT
3π+2=0.
练习
一、选择题
1.y=12(ex+e-x)的导数是
A.12(ex-e-x)
[答案] -6 [解析] ∵f′(x)=2cos3x+4π·3x+4π′ =6cos3x+π4, ∴f′π4=6cos34π+π4=-6.
PPT
5.曲线 y=3 3x2+1在点(1,3 4)处的切线方程为 ________________.
[答案] x-3 2y+1=0
PPT
PPT
三、解答题 6.求下列函数的导数: (1)y=(1-3x)3; (2)y=ln1x; (3)y=sin2x1-2cos24x.
1.2.2导数运算法则2
语言表示:y对x的导数等于y对u的导数与 u对x的导数的乘积
例1 求下列函数的导数
(1) y=ln(x+2)
解:( 1 )函数y ln(x 2)可以看作y ln u和 u x 2的复合函数,根据复合 函数求导法则有
y u yxx '' y yuu '' u u x''' x x (x x 2) 2)'' (ln (lnu u) )'' ( 1 11 1 1 1 u xx 22 u
三、复合函数的求导法则: 思考:怎样求y=ln(x+2)的导数?
1.复合函数的定义: 对于两个函数y=f(u)和u=g(x),如果通过变量 u,y可以表示成x的函数,那么称这个函数为函 数y=f(u)和u=g(x)的复合函数,记作y=f(g(x)).
如下函数由多少个函数复合而成:
1. y sin 2 x 2. y ( 2 x 3)
二、导数的运算法则:
f ( x ) g ( x ) f ( x) g ( x)
f ( x) g ( x) f ( x) g ( x) f ( x) g ( x)
f ( x) f ( x) g ( x) f ( x) g ( x) ( g ( x) 0) g ( x) 2 g ( x)
u yxx '' y yuu '' u y u '' ' x xx
x x ))'' sin (sinu u) )'' (( cos cosu u
1.2.2基本初等函数的导数公式及导数的运算法则(2)
x
() g(
x
)
0)
复习引入
(二)导数的运算法则
导数运算法则
(1)[ f ( x) g( x)]' f'( x) g'( x)
(2)[ f ( x) g( x)]' f'( x)g( x) f ( x)g'( x)
(3) [
f
(x) ]'
g( x)
f'(
x
)
g(
x) g2(
f( x)
x
1.2.2 基本初等函数的导数公式 及导数的运算法则(二)
复习引入
(一)基本初等函数的导数公式表
函数
y=c
y xn(nQ) y sin x
导数
y cos x y ax y ex
复习引入
(一)基本初等函数的导数公式表
函数
y=c
y xn(nQ) y sin x
导数
y=0
y nxn1
y cos x
(3) y sin(x ) (其中,均为常数).
例题讲解
例2.求y=sin(tanx2)的导数.
例题讲解
例2.求y=sin(tanx2)的导数.
例3.求 y x a 的导数. x2 2ax
例题讲解
例4.求y=sin4x +cos4x的导数.
例题讲解
例4.求y=sin4x +cos4x的导数.
y cos x y ax y ex
y sin x y a x ln a(a 0) y ex
复习引入
(一)基本初等函数的导数公式表
函数
导数
y loga x
y ln x
复习引入
1.2.2导数的计算(复合函数的导数)
法则3:两个函数的积的导数 等于第一个函数的导数乘第二个 法则 两个函数的积的导数,等于第一个函数的导数乘第二个 两个函数的积的导数 函数,减去第一个函数乘第二个函数的导数 再除以第二个函 函数 减去第一个函数乘第二个函数的导数 ,再除以第二个函 数的平方.即 数的平方 即:
f (x)′ f ′(x)g(x) − f (x)g′(x) (g(x) ≠ 0) g(x) = 2 [ g(x)]
'
y = y ⋅u
= e
( ) ⋅ (− 0.05x + 1)
u '
'
= −0.05eu = −0.05e −0.05 x +1.
(3)函数y = sin (πx + φ )可以看作函数y = sin u和
u = πx + φ的复合函数.
由复合函数求导法则有
' ' ' y x = yu ⋅ u x
例 3 日常生活中的饮用水 通常是 经过 净化的 .随着水 纯净度的提高 , 所需净化费 用不断增加.已知将1吨水净 用(单位 : 元 )为 化到纯净度为x%时所需费
5284 (80 < x < 100).求净化到下纯度 c( x ) = 100 − x 时, 所需净化费用的瞬时变化率 : (1) 90% ; (2)98% .
3
4). y = x 1 + x
2
( +2x2) 1+ x2 1 ' 4).y = 1+ x2
又y x = y u y u v x
' ' '
∴ yx =
'
1
ex + 2 ex = x 3((e x + 2 )2
1.2.2基本初等函数的导数公式及导数的运算法则
1 .
x
例1
假设某国家在20年期间的年通货膨胀 率为5﹪,物价p(单位:元)与时间t(单
位:年)有函数关系 pt p0 1 5%t ,其
中 p0 为t=0时的物价.假定某商品的 p0 1
那么在第10个年头,这种商品的价格上涨 的速度的大约是多少(精确到0.01)?
解:根据基本初等函数的导数公式表,有
3. 若 fx sin x,则 f ' x cos x; 4. 若 fx cos x,则f ' x sin x; 5. 若 fx ax,则f ' x ax lna;
6. 若 fx ex,则f ' x ex ;
7.
若fx loga x,则f ' x
1 ;
x ln a
8.
若fx ln x,则f 'x
名词解释
一般地,对于两个函数y=f(u)和 u=g(x),如果通过变量u,y可以表示成 x的函数,那么称这个函数为函数 y=f(u)和u=g(x)的复合函数.记做 y=f(g(x)).
复合函数y=f(g(x))的导数和函数 y=f(u),u=g(x)的导数间的关系为
yx′= yu′ ux′.
即y对x的导数等于y对u的导数与 u对x的导数的乘积.
关于t的导数可以看成函数f(t)=5与g(t)= 1.05t
乘积得到导数.下面的“导数运算法则”
可以帮助我们解决两个函数加﹑减﹑乘﹑
除的求导问题.
根据导数的定义,可以推出可导 函数四则运算的求导法则
若u=u(x),v=v(x)在x处可导,则
1.和(或差)的导数
法则1 两个函数的和(或差)的导数,等于这两 个函数的导数的和(或差),即
导数公式及导数的运算法则
导数公式及导数的运算法则一、导数公式1.基本导数公式:(1) 常数函数的导数为0,即d/dx(c) = 0,其中c为常数。
(2) 幂函数的导数为其指数与常数的乘积,即d/dx(x^n) = n*x^(n-1),其中n为实数。
(3) 自然对数函数的导数为1/x,即d/dx(ln(x)) = 1/x。
(4) 正弦函数的导数为余弦函数,即d/dx(sin(x)) = cos(x)。
(5) 余弦函数的导数为负的正弦函数,即d/dx(cos(x)) = -sin(x)。
2.基本初等函数的导数公式:(1) 常数乘以函数的导数等于函数的导数乘以这个常数,即d/dx(c*f(x)) = c*f'(x),其中f(x)为可导函数,c为常数。
(2) 函数相加(减)的导数等于函数导数的相加(减),即d/dx(f(x)±g(x)) = f'(x)±g'(x),其中f(x)和g(x)为可导函数。
(3) 乘积法则:两个函数相乘的导数等于第一个函数的导数乘以第二个函数,再加上第一个函数乘以第二个函数的导数,即d/dx(f(x)*g(x)) = f'(x)*g(x) + f(x)*g'(x)。
(4) 商法则:函数的导数等于分子的导数乘以分母减去分子乘以分母的导数再除以分母的平方,即d/dx(f(x)/g(x)) = (f'(x)*g(x) -f(x)*g'(x))/[g(x)]^23.复合函数的导数:(1) 基本链式法则:若y=f(u)和u=g(x)都是可导函数,则y=f(g(x))也是可导函数,且它的导数等于f'(u)*g'(x),即dy/dx = dy/du *du/dx = f'(u) * g'(x)。
1.反函数的导数:若函数y=f(x)在区间I上具有连续的导数f'(x),且在区间I上f'(x)≠0,则它的反函数x=g(y)在对应的区间J上也有连续的导数,且g'(y)=1/f'(x)。
基本初等函数的导数公式及导数的运算法则
公式3.若f (x) sin x,则f '(x) cos x;
公式4.若f (x) cos x,则f '(x) sin x;
公式5.若f (x) ax ,则f '(x) ax ln a(a 0);
公式6.若f (x) ex ,则f '(x) ex;
公式7.若f
(2)求 y=1x+x22+x33的导数.
[解析] (1)①y′=(x2sinx)′=(x2)′sinx+x2(sinx)′ =2xsinx+x2cosx. ②y′=[x2(x2-1)]′=(x2)′(x2-1)+x2(x2-1)′ =2x(x2-1)+x2·2x=4x3-2x. (2)y′=1x+x22+x33′=1x+2x-2+3x-3′ =-x12-4x-3-9x-4=-x12-x43-x94.
法则1:两个函数的和(差)的导数,等于这两
个函数的导数的和(差),即:
[f(x) ±g(x)] ′= f'(x) ± g'(x);
应用1: 求下列函数的导数
(1)y=yx'3+s3inxx2 cos x
(2)y=x3-2x+3.
y ' 3x2 2
法则2:两个函数的积的导数,等于第一个函
练一练:
(1)下列各式正确的是( C )
A.(sin )' cos(为常数)
B(. cos x)' sin x C.(sin x)' cos x D.( x5 )' 1 x6
5
(2)下列各式正确的是( D )
A.(log
x a
)'
1 x
B.(log
1.2.2基本初等函数的导数公式及导数的运算法则二
3.
f g
x x
′
f′ x
g
x f x g x2
g′ x
g
x
0
.
如何求函数y=㏑(3x+2)的导数呢?
若设u=我3x们+无2,法则用y=现ln有u的.即方y=法㏑求(函3x数+2) 可以y=看㏑成(是x由+2y)=l的n 导u和数u.=下3x面+,2经我过们“先复合” 得到分的析,这即个y函可数以的通结过构中特间点变.量u表示为自 变量x的函数.
练习 1:指出下列函数的复合关系:
(1)y=(a+bxn)m; (2)y=ln3 ex+2;
(3)y=3log2(x2-2x+3);(4)y=sin3(x+1x).
解:函数的复合关系分别是:
(1)y=um,u=a+bxn;
(2)y=lnu,u=3 v,v=ex+2; (3)y=3 u,u=log2v,v=x2-2x+3;
7.
若 fx loga x,则 f ' x
1 ;
x lna
8.
若 fx lnx,则f ' x
1 .
x
三角函数 指数函数 对数函数
2.导数的运算法则 1. [f(x) ±g(x)] ′=f′(x) ±g(x) ′; 2. [f(x) .g(x)] ′=f′(x) g(x)+ f(x) g(x) ′;
类似的结论是:若奇函数f(x)是可导函数, 则f′(x)是偶函数.
练习 3:
若函数 f(x)是可导函数,求函数 y =f(1x)的导数.
[答案] y′=-x12 f′(1x)
随堂练习
1.函数y=(3x-4)2的导数是( )
A.4(3x-2)
最新人教版高中数学选修1.2.2-基本初等函数的导数公式及导数的运算法则ppt课件
推论:常数与函数的积的导数,等于常数乘函数的导 数. 即[cf(x)]′=cf′(x). (3)两个函数商的函数的求导法则
f(x) 设函数f(x),g(x)是可导的,且g(x)≠0,则[ g(x) ]′= f′(x)g(x)-f(x)g′(x) 1 ,特别地,当f(x)=1时,有[ g(x) ]′ [g(x)]2 g′(x) =- . [g(x)]2
2.曲线y=xn在x=2处的导数为12,则n等于( A.1 B.2 C .3 D.4 解析:y′|x=2=n·2n-1=12,解得n=3. 答案:C
)
3.若曲线y=f(x)在点(x0,f(x0))处的切线方程为2x+y -1=0,则 ( ) A.f′(x0)>0 B.f′(x0)<0 C.f′(x0)=0 D.f′(x0)不存在 答案:B
2
1 2 1 sinx)′=(x-4 x+4)′-2cosx=1- - cosx. x 2
[点拨] 理解和掌握求导法则和公式的结构是灵活进 行求导运算的前提条件,当函数解析式较为复杂时,应 先变形,然后求导,当函数解析式不能直接用公式时, 也要先变形,使其符合公式形式.
练 1 (1)y= 6
求下列函数的导数: x;
sinx =(sinx)′+(cosx)′ (sinx)′cosx-sinx(cosx)′ =cosx+ cos2x cosx· cosx+sinx· sinx =cosx+ cos2x 1 =cosx+cos2x.
基本初等函数的导数公式及导数的运算法 则 第一课时 基本公式及四则运算法则
1.2.2
1.能利用给出的基本初等函数的导数公式求函数的导 数. 2 .能利用初等函数的导数公式和导数的运算法则求 简单函数的导数.
1.基本初等函数的导数公式 (1)若f(x)=c,则f′(x)=①________. (2)若f(x)=xn,则f′(x)=②________. (3)若f(x)=sin x,则f′(x)=③________. (4)若f(x)=cos x,则f′(x)=④________. (5)若f(x)=ax,则f′(x)=⑤________. (6)若f(x)=ex,则f′(x)=⑥________. (7)若f(x)=logax则f′(x)=⑦________. (8)若f(x)=ln x,则f′(x)=⑧________.
1.2.2基本初等函数的导数公式及导数的运算法则%5B二%5D(教师版)
1.2.2 基本初等函数的导数公式及导数的运算法则(二) 知识点一 导数运算法则思考 (1)函数g (x )=c ·f (x )(c 为常数)的导数是什么?(2)若两个函数可导,则它们的和、差、积、商(商的情况下分母不为0)可导吗?反之如何?(3)导数的和(差)运算法则对三个或三个以上的函数求导成立吗?答案 (1)g ′(x )=cf ′(x ).(2)若两个函数可导,则它们的和、差、积、商(商的情况下分母不为0)必可导.若两个函数均不可导,则它们的和、差、积、商不一定不可导.例如,设f (x )=sin x +1x ,g (x )=cos x -1x,则f (x ),g (x )在x =0处均不可导,但它们的和f (x )+g (x )=sin x +cos x 在x =0处可导.(3)导数的和(差)运算法则对三个或三个以上的函数求导仍然成立.两个函数和(差)的导数运算法则可以推广到有限个函数的情况,即[f 1(x )±f 2(x )±f 3(x )±…±f n(x )]′=f ′1(x )±f ′2(x )±f ′3(x )±…±f ′n (x ).知识点二 复合函数的导数思考 设函数y =f (u ),u =g (v ),v =φ(x ),如何求函数y =f (g (φ(x )))的导数? 答案 y ′x =y ′u ·u ′v ·v ′x .题型一 导数运算法则的应用例1 求下列函数的导数:(1)y =15x 5+23x 3;(2)y =lg x -e x ;(3)y =1x·cos x ;(4)y =x -sin x 2·cos x 2. 解 (1)y ′=⎝⎛⎭⎫15x 5+23x 3′=⎝⎛⎭⎫15x 5′+⎝⎛⎭⎫23x 3′ =x 4+2x 2.(2)y ′=(lg x -e x )′=(lg x )′-(e x )′=1x ln 10-e x . (3)方法一 y ′=⎝⎛⎭⎫1x ·cos x ′=⎝⎛⎭⎫1x ′cos x +1x (cos x )′ =12()x -'cos x -1x sin x =-1232x -cos x -1xsin x =-cos x 2x 3-1x sin x =-cos x 2x x -1xsin x =-cos x +2x sin x 2x x. 方法二 y ′=⎝⎛⎭⎫1x ·cos x ′=⎝⎛⎭⎫cos x x ′=(cos x )′x -cos x (x )′(x )2=121sin cos 2x x x x--⋅=-x sin x +cos x 2x x =-cos x +2x sin x 2x x . (4)∵y =x -sin x 2·cos x 2=x -12sin x , ∴y ′=⎝⎛⎭⎫x -12sin x ′=1-12cos x . 反思与感悟 在对较复杂函数求导时,应利用代数或三角恒等变形对已知函数解析式进行化简变形,如:把乘积的形式展开,分式形式变为和或差的形式,根式化为分数指数幂等,化简后再求导,这样可以减少计算量.跟踪训练1 求下列函数的导数:(1)y =x 4-3x 2-5x +6;(2)y =x ·tan x ;(3)y =(x +1)(x +2)(x +3);(4)y =x -1x +1. 解 (1)y ′=(x 4-3x 2-5x +6)′=(x 4)′-(3x 2)′-(5x )′+6′=4x 3-6x -5.(2)y ′=(x ·tan x )′=⎝⎛⎭⎫x sin x cos x ′=(x sin x )′cos x -x sin x (cos x )′cos 2 x=(sin x +x cos x )cos x +x sin 2 x cos 2 x=sin x cos x +x cos 2 x. (3)方法一 y ′=[(x +1)(x +2)(x +3)]′=[(x +1)(x +2)]′(x +3)+(x +1)(x +2)(x +3)′=[(x +1)′(x +2)+(x +1)(x +2)′](x +3)+(x +1)(x +2)=(x +2+x +1)(x +3)+(x +1)(x +2)=(2x +3)(x +3)+x 2+3x +2=3x 2+12x +11.方法二 ∵(x +1)(x +2)(x +3)=(x 2+3x +2)(x +3)=x 3+6x 2+11x +6,∴y ′=[(x +1)(x +2)(x +3)]′=(x 3+6x 2+11x +6)′=3x 2+12x +11.(4)方法一 y ′=⎝⎛⎭⎪⎫x -1x +1′ =(x -1)′(x +1)-(x -1)(x +1)′(x +1)2 =x +1-(x -1)(x +1)2=2(x +1)2. 方法二 ∵y =x -1x +1=x +1-2x +1=1-2x +1, ∴y ′=⎝⎛⎭⎫1-2x +1′=⎝⎛⎭⎫-2x +1′=-2′(x +1)-2(x +1)′(x +1)2=2(x +1)2. 题型二 复合函数求导法则的应用例2 求下列函数的导数:(1)y =(1+cos 2x )3;(2)y =sin 2 1x; (3)y =11-2x2;(4)y =(2x 2-3)1+x 2. 解 (1)y =(1+cos 2x )3=(2cos 2x )3=8cos 6xy ′=48cos 5x ·(cos x )′=48cos 5x ·(-sin x ),=-48sin x cos 5x .(2)令y =u 2,u =sin 1x ,再令u =sin v ,v =1x,∴y ′x =y ′u ·u ′v ·v ′x =(u 2)′·(sin v )′·⎝⎛⎭⎫1x ′=2u ·cos v ·0-1x 2=2sin 1x ·cos 1x ·-1x 2=-1x 2·sin 2x. (3)设y =12u -,u =1-2x 2,则y ′=12()u -' (1-2x 2)′ =321()2u --·(-4x )=3221(12)2x --- (-4x ) =3222(12)x x --.(4)令y =u v ,u =2x 2-3,v =1+x 2,令v =w ,w =1+x 2.v ′x =v ′w ·w ′x =(w )′(1+x 2)′=12122x -⋅w =2x 21+x 2=x 1+x 2, ∴y ′=(u v )′=u ′v +u v ′=(2x 2-3)′·1+x 2+(2x 2-3)·x 1+x 2=4x 1+x 2+2x 3-3x 1+x 2=6x 3+x 1+x 2. 反思与感悟 求复合函数的导数的步骤跟踪训练2 求下列函数的导数:(1)y =(2x +1)5;(2)y =1(1-3x )4; (3)y =31-3x ;(4)y =x ·2x -1;(5)y =lg(2x 2+3x +1);(6)y =sin 2⎝⎛⎭⎫2x +π3. 解 (1)设u =2x +1,则y =u 5,∴y ′x =y ′u ·u ′x =(u 5)′·(2x +1)′=5u 4·2=10u 4=10(2x +1)4.(2)设u =1-3x ,则y =u -4,∴y ′x =y ′u ·u ′x =(u -4)′·(1-3x )′=-4u -5·(-3)=12u -5=12(1-3x )-5=12(1-3x )5. (3)设u =1-3x ,则y =13u ,∴y ′x =y ′u ·u ′x =13·23u -·(1-3x )′ =13·13(1-3x )2·(-3)=-13(1-3x )2. (4)y ′=x ′·2x -1+x ·(2x -1)′.设t =2x -1,u =2x -1,则t =12u ,t ′x =t ′u ·u ′x =12·12u -·(2x -1)′ =12×12x -1×2=12x -1. ∴y ′=2x -1+x 2x -1=3x -12x -1. (5)设u =2x 2+3x +1,则y =lg u ,∴y ′x =y ′u ·u ′x =1u ln 10×(2x 2+3x +1)′ =4x +3(2x 2+3x +1)ln 10. (6)设u =sin ⎝⎛⎭⎫2x +π3,v =2x +π3, 则y =u 2,u =sin v ,∴y ′x =y ′u ·u ′v ·v ′x =2u ·cos v ·⎝⎛⎭⎫2x +π3′ =2sin ⎝⎛⎭⎫2x +π3·cos ⎝⎛⎭⎫2x +π3·2 =4sin ⎝⎛⎭⎫2x +π3cos ⎝⎛⎭⎫2x +π3=2sin ⎝⎛⎭⎫4x +2π3. 题型三 导数几何意义的应用例3 (1)曲线y =x (3ln x +1)在点(1,1)处的切线方程是 .(2)已知函数f (x )=k +ln x e x(k 为常数,e =2.718 28…是自然对数的底数),曲线y =f (x )在点(1,f (1))处的切线与x 轴平行,则k 的值为 .答案 (1)4x -y -3=0 (2)1解析 (1)利用求导法则与求导公式可得y ′=(3ln x +1)+x ×3x=3ln x +4. ∴k 切=y ′|x =1=4,∴切线方程为y -1=4(x -1),即4x -y -3=0.(2)由f (x )=ln x +k e x, 得f ′(x )=1-kx -x ln x x e x,x ∈(0,+∞). 由于曲线y =f (x )在点(1,f (1))处的切线与x 轴平行,所以f ′(1)=0,因此k =1.反思与感悟 涉及导数几何意义的问题,可根据导数公式和运算法则,快速求得函数的导数,代入曲线切点处横坐标即可求得曲线在该点处的切线斜率,这样比利用导数定义要快捷得多. 跟踪训练3 (1)若曲线y =x 3+ax 在(0,0)处的切线方程为2x -y =0,则实数a 的值为 .(2)若函数f (x )=e x x在x =a 处的导数值与函数值互为相反数,则a 的值为 . 答案 (1)2 (2)12解析 (1)曲线y =x 3+ax 的切线斜率k =y ′=3x 2+a ,又曲线在坐标原点处的切线方程为2x -y =0,∴3×02+a =2,故a =2.(2)∵f (x )=e x x ,∴f (a )=e a a. 又∵f ′(x )=⎝⎛⎭⎫e x x ′=e x ·x -e x x 2,∴f ′(a )=e a ·a -e aa 2. 由题意知f (a )+f ′(a )=0,∴e a a +e a ·a -e a a 2=0,∴2a -1=0,∴a =12.因对复合函数的层次划分不清导致求导时出现错误例4 求函数y =sin n x cos nx 的导数.错解 y ′=(sin n x )′cos nx +sin n x (cos nx )′=n sin n -1x ·cos nx +sin n x ·(-sin nx )=n sin n -1x ·cos nx -sin n x sin nx .错因分析 在第二步中,忽略了对中间变量sin x 和nx 进行求导.正解 y ′=(sin n x )′cos nx +sin n x (cos nx )′=n sin n -1x ·(sin x )′·cos nx +sin n x ·(-sin nx )·(nx )′=n sin n -1x ·cos x ·cos nx -sin n x ·(sin nx )·n=n sin n -1x (cos x cos nx -sin x sin nx )=n sin n -1 x cos [(n +1)x ].防范措施 在求解复合函数的导数时,不能机械地套用公式,应理清层次,逐层正确使用求导法则求解.1.已知f (x )=ax 3+3x 2+2,若f ′(-1)=4,则a 的值为( )A.193B.103C.133D.163答案 B解析 因f ′(x )=3ax 2+6x ,且f ′(-1)=3a -6=4,解得a =103,故选B. 2.函数y =12(e x +e -x )的导数是( ) A.12(e x -e -x ) B.12(e x +e -x ) C.e x -e -xD.e x +e -x 答案 A解析 y ′=⎣⎡⎦⎤12(e x +e -x )′=12(e x -e -x ),故选A. 3.f ⎝⎛⎭⎫1x =x 1+x ,则f ′(x )等于( )A.11+xB.-11+xC.1(1+x )2D.-1(1+x )2 答案 D解析 由f ⎝⎛⎭⎫1x =x 1+x =11x+1,得f (x )=1x +1, 从而f ′(x )=-1(1+x )2,故选D. 4.已知函数f (x )=a sin x +bx 3+4(a ∈R ,b ∈R ),f ′(x )为f (x )的导函数,则f (2 014)+f (-2 014)+f ′(2 015)-f ′(-2 015)的值为 .答案 8解析 f ′(x )=a cos x +3bx 2,∴f ′(-x )=a cos (-x )+3b (-x )2=f ′(x ).∴f ′(x )为偶函数.∴f ′(2 015)-f ′(-2 015)=0.f (2 014)+f (-2 014)=a sin 2 014+b ·2 0143+4+a sin(-2 014)+b ·(-2 014)3+4=8. ∴f (2 014)+f (-2 014)+f ′(2 015)-f ′(-2 015)=8.5.已知曲线y =x +ln x 在点(1,1)处的切线与曲线y =ax 2+(a +2)x +1相切,则a = . 答案 8解析 因y =x +ln x ,故y ′=1+1x,y ′|x =1=2. ∴曲线y =x +ln x 在点(1,1)处的切线方程为y -1=2(x -1),即y =2x -1.∵直线y =2x -1与曲线y =ax 2+(a +2)x +1相切,∴a ≠0(当a =0时,曲线变为直线y =2x +1,与已知直线平行).由⎩⎪⎨⎪⎧y =2x -1,y =ax 2+(a +2)x +1,消去y 得ax 2+ax +2=0. 由Δ=a 2-8a =0,解得a =8.求函数的导数要准确把函数分割为基本函数的和、差、积、商,再利用运算法则求导数.在求导过程中,要仔细分析出函数解析式的结构特征,根据导数运算法则,联系基本函数的导数公式,对于不具备导数运算法则结构形式的要进行适当恒等变形,转化为较易求导的结构形式,再求导数,进而解决一些切线斜率、瞬时速度等问题.。
1.2.2 基本初等函数的导数公式和运算法则
3.商的导数
法则3 两个函数的商的导数,等于分子的导数与分母的
积,减去分母的导数与分子的积,再除以分母的平方,即
( f (x)) f (x)g(x) f (x)g(x) (g(x) 0)
g(x)
g 2 ( x)
例5. y x2 的导数 sin x
故在t=0,t=4和t=8秒时物体运动的速度为零.
例6.已知曲线S1:y=x2与S2:y=-(x-2)2,若直线l与S1,S2均 相切,求l的方程.
解:设l与S1相切于P(x1,x12),l与S2相切于Q(x2,-(x2-2)2). 对于S1, y 2x, 则与S1相切于P点的切线方程为y-x12 =2x1(x-x1),即y=2x1x-x12.①
[ f (x) g(x)] f (x)g(x) f (x)g(x)
推论: (Cu) Cu
例3.求 y 2x3 3x2 5x 4的导数
例4. 求 y (2x2 3)(3x 2) 的导数
小结:
可导函数四则运算的求导法则 1.和(或差)的导数
法则1 两个函数的和(或差)的导数,等于这两个函数的 导数的和(或差),即
函数求导的基本步骤: 1,分析函数的结构和特征 2,选择恰当的求导法则和导数公式 3,整理得到结果
公式1.若f (x) c,则f '(x) 0;
公式2.若f (x) xn , 则f '(x) nxn1;
公式3.若f (x) sin x,则f '(x) cos x;
公式4.若f (x) cos x,则f '(x) sin x;
yx ' yu '•ux ' (eu )'•(0.05x 1)' 0.05eu 0.05e0.05x1
高中数学 1.2.2基本初等函数的导数公式及导数的运算法
1.2.2 基本初等函数的导数公式及导数的运算法则(二) 课时目标 1.能利用导数的四则运算法则求解导函数.2.能运用复合函数的求导法则进行复合函数的求导.1.导数的运算法则(1)[f (x )±g (x )]′=__________;(2)[cf (x )]′=__________ (c 为常数);(3)[f (x )·g (x )]′=______________; (4)⎣⎢⎡⎦⎥⎤f (x )g (x )′=____________ (g (x )≠0). 2.复合函数复合函数 的概念 一般地,对于两个函数y =f (u )和u =g (x ),如果通过变量u ,y 可以表示成__________,那么称这个函数为y =f (u )和u =g (x )的复合函数,记作________. 复合函数 的求导法 则 复合函数y =f (g (x ))的导数和函数y =f (u ),u =g (x )的导数间的关系为y x ′=__________.即y 对x 的导数等于________________________________________.一、选择题1.已知f (x )=x 3+3x +ln 3,则f ′(x )为( )A .3x 2+3xB .3x 2+3x ·ln 3+13C .3x 2+3x ·ln 3 D.x 3+3x ·ln 32.曲线y =x e x +1在点(0,1)处的切线方程是( )A .x -y +1=0B .2x -y +1=0C .x -y -1=0D .x -2y +2=03.已知函数f (x )=x 4+ax 2-bx ,且f ′(0)=-13,f ′(-1)=-27,则a +b 等于( )A .18B .-18C .8D .-84.函数y =(2 010-8x )8的导数为( )A .8(2 010-8x )7B .-64xC .64(8x -2 010)7D .64(2 010-8x )75.曲线y =e x 在点(2,e 2)处的切线与坐标轴所围成的三角形的面积为( )A.12e 2B.94e 2 C .2e 2 D .e 26.曲线y =x 3-2x +1在点(1,0)处的切线方程为( )A .y =x -1B .y =-x +1C .y =2x -2D .y =-2x +2题 号 1 2 3 4 5 6 答 案二、填空题7.曲线C :f (x )=sin x +e x +2在x =0处的切线方程为________.8.某物体作直线运动,其运动规律是s =t 2+3t(t 的单位:s ,s 的单位:m),则它在第4 s 末的瞬时速度应该为________ m/s.9.已知函数f (x )=x 2·f ′(2)+5x ,则f ′(2)=______.三、解答题10.求下列函数的导数.(1)y =x +cos x x -cos x; (2)y =2x cos x -3x log 2 009x ;(3)y =x ·tan x ;(4)y =cos 2⎝⎛⎭⎪⎫2x +π3.11.求过点(1,-1)与曲线y =x 3-2x 相切的直线方程.能力提升12.已知点P 在曲线y =4e x +1上,α为曲线在点P 处的切线的倾斜角,则α的取值范围是( ) A .[0,π4) B .[π4,π2) C .(π2,3π4] D .[3π4,π) 13.求抛物线y =x 2上的点到直线x -y -2=0的最短距离.1.理解和掌握求导法则和公式的结构规律是灵活进行求导运算的前提条件.2.复合函数求导时,一定要注意求导是从外层到内层,层层求导的法则来进行的.同时要注意导数的运算法则,计算时首先观察函数的形式,对其化简,然后再求导,这样可以减少运算量,提高运算速度、避免差错.答案知识梳理1.(1)f ′(x )±g ′(x ) (2)c ·f ′(x ) (3)f ′(x )g (x )+f (x )g ′(x ) (4)f ′(x )g (x )-f (x )g ′(x )[g (x )]22.复合函数 的概念 一般地,对于两个函数y =f (u )和u =g (x ),如果通过变量u ,y 可以表示成x 的函数,那么称这个函数为y =f (u )和u =g (x )的复合函数,记作y =f (g (x )).复合函数 的求导法 则 复合函数y =f (g (x ))的导数和函数y =f (u ),u =g (x )的导数间的关系为y x ′=y ′u ·u x ′.即y 对x 的导数等于y 对u 的导数与u 对x 的导数的乘积.作业设计1.C [(ln 3)′=0,注意避免出现(ln 3)′=13的错误.] 2.A [y ′=e x +x e x ,当x =0时,导数值为1,故所求的切线方程是y =x +1,即x -y+1=0.]3.A [∵f ′(x )=4x 3+2ax -b ,由⎩⎪⎨⎪⎧ f ′(0)=-13f ′(-1)=-27⇒⎩⎪⎨⎪⎧ -b =-13,-4-2a -b =-27. ∴⎩⎪⎨⎪⎧ a =5,b =13.∴a +b =5+13=18.]4.C [y ′=[(2 010-8x )8]′=8(2 010-8x )7·(2 010-8x )′=-64(2 010-8x )7=64(8x -2 010)7.]5.A [∵y ′=(e x )′=e x ,∴k =y ′|x =2=e 2.∴曲线在点(2,e 2)处的切线方程为y -e 2=e 2(x -2),即y =e 2x -e 2.当x =0时,y =-e 2,当y =0时,x =1.∴S △=12×1×|-e 2|=12e 2,故选A.] 6.A [y ′=3x 2-2,∴k =y ′|x =1=3-2=1,∴切线方程为y =x -1.]7.y =2x +3解析 由f (x )=sin x +e x +2得f ′(x )=cos x +e x ,从而f ′(0)=2,又f (0)=3,所以切线方程为y =2x +3.8.12516解析 ∵s ′=2t -3t 2,∴v =s ′|t =4=8-316=12516(m/s).9.-53解析 ∵f ′(x )=f ′(2)·2x +5,∴f ′(2)=f ′(2)×2×2+5,∴3f ′(2)=-5,∴f ′(2)=-53.10.解 (1)y ′=(x +cos x )′(x -cos x )-(x +cos x )(x -cos x )′(x -cos x )2=(1-sin x )(x -cos x )-(x +cos x )(1+sin x )(x -cos x )2=-2(cos x +x sin x )(x -cos x )2.(2)y ′=(2x )′cos x +(cos x )′2x -3[x ′log 2 009 x +(log 2 009x )′x ]=2x ln 2·cos x -sin x ·2x -3[log 2 009 x +⎝ ⎛⎭⎪⎫1x log 2 009 e x ]=2x ln 2·cos x -2x sin x -3log 2 009 x -3log 2 009 e.(3)y ′=(x tan x )′=⎝ ⎛⎭⎪⎫x sin xcos x ′=(x sin x )′cos x -x sin x (cos x )′(cos x )2=(sin x +x cos x )cos x +x sin 2x(cos x )2=sin x cos x +x (cos 2x +sin 2x )(cos x )2=12sin 2x +x (cos x )2=sin 2x +2x2cos 2x .(4)函数y =cos 2⎝ ⎛⎭⎪⎫2x +π3=1+cos ⎝ ⎛⎭⎪⎫4x +2π32可以看作函数y =12+12cos u 和函数u =4x +23π的复合函数,y ′x =y ′u ·u ′x =⎝ ⎛⎭⎪⎫12+12cos u ′·⎝ ⎛⎭⎪⎫4x +2π3′=-12sin u ·4=-2sin ⎝ ⎛⎭⎪⎫4x +2π3.11.解 设P (x 0,y 0)为切点,则切线斜率为k =y ′|x =x 0=3x 20-2.故切线方程为y -y 0=(3x 20-2)(x -x 0).①∵(x 0,y 0)在曲线上,∴y 0=x 30-2x 0.②又∵(1,-1)在切线上,∴将②式和(1,-1)代入①式得-1-(x 30-2x 0)=(3x 20-2)(1-x 0).解得x 0=1或x 0=-12. 故所求的切线方程为y +1=x -1或y +1=-54(x -1). 即x -y -2=0或5x +4y -1=0.12.D [y ′=-4e x e 2x +2e x +1=-4e x +2+1e x , ∵e x +1e x ≥2,∴-1≤y ′<0, 即-1≤tan α<0,∴α∈⎣⎢⎡⎭⎪⎫3π4,π.] 13.解 依题意知与直线x -y -2=0平行的抛物线y =x 2的切线的切点到直线x -y -2=0的距离最短,设切点坐标为(x 0,x 20).∵y ′=(x 2)′=2x ,∴2x 0=1,∴x 0=12. 切点坐标为⎝ ⎛⎭⎪⎫12,14. ∴所求的最短距离d =⎪⎪⎪⎪⎪⎪12-14-22=728.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.2.2 基本初等函数的导数及导数的运算法则备课人:王宏伟年级组:高二教材分析本节容是导数的计算这一节的关键部分,对后面更深刻地研究导数起着至关重要的作用.在导数的定义中,我们不仅阐明了导数概念的实质,也给出了利用定义求导数的方法.但是,如果对每一个函数都直接按定义去求它的导数,往往是极为复杂和困难的,甚至是不可能的.因此,我们希望找到一些简单函数的导数(作为我们的基本公式)与运算法则,借助它们来简化导数的计算过程.因此教材直接给出了基本初等函数的导数公式和导数的四则运算法则,使得用定义求导数比较麻烦问题得以解决,为以后导数的研究带来了方便,同时也将所学的导数和实际应用问题结合起来,使得导数的优越性发挥得淋漓尽致.复合函数的求导法则是导数的计算这一节的最后一小节容.教材在基本初等函数的导数公式和导数的四则运算法则的基础上将导数的计算研究得更深入,虽然基本初等函数的导数公式和导数的四则运算法则解决了不少导数问题,但对于由函数和函数复合而成的函数还没有涉及,我们平时研究的函数不会仅限于基本初等函数,因此我们要想将问题研究得更加透彻,就得继续研究导数.教材层层深入,给我们展示了什么是复合函数,同时将复合函数的构成和复合函数的求导法则也展示给了学生.因此,使很多较难的问题层层分解以后显得简单易懂.课时分配2课时.第1课时(基本初等函数的导数公式及导数的运算法则);第2课时(复合函数的求导法则)第1课时教学目标1.知识与技能目标(1)熟练掌握基本初等函数的导数公式;(2)掌握导数的四则运算法则.2.过程与方法目标能利用给出的基本初等函数的导数公式和导数的四则运算法则求简单函数的导数.3.情感、态度与价值观通过学习本节课,培养学生对问题的认知能力.由于利用定义求函数的导数非常复杂,本节课直接给出了八个基本初等函数的导数公式表和导数的运算法则.学生不用推导而直接去求一些简单函数的导数,认识事物之间的普遍联系,达到学有所用.在训练中也加深了学生对学习数学的兴趣,激发学生将所学知识应用于实际的求知欲,培养浓厚的学习兴趣. 教学重点:应用八个函数导数求复杂函数的导数.. 教学难点:商求导法则的理解与应用.教学过程: 一、复习回顾复习五种常见函数y c =、y x =、2y x =、1y x=、y =二、提出问题,展示目标我们知道,函数*()()ny f x x n Q ==∈的导数为'1n y nx-=,以后看见这种函数就可以直接按公式去做,而不必用导数的定义了。
那么其它基本初等函数的导数怎么呢?又如何解决两个函数加。
减。
乘。
除的导数呢?这一节我们就来解决这个问题。
三、合作探究1.(1)分四组对比记忆基本初等函数的导数公式表(2)根据基本初等函数的导数公式,求下列函数的导数. (1)2y x =与2xy = (2)3xy =与3log y x = 2.导数运算法则: (1)和(或差)的导数法则1 两个函数的和(或差)的导数,等于这两个函数的导数的和(或差),即(u ±v )'=u '±v '.例1 求y =x 3+sin x 的导数.解:y '=(x 3) '+(sin x ) '=3x 2+cos x . 例2 求y =x 4-x 2-x +3的导数.解:y '=4x 3 -2x -1. (2)积的导数法则2 两个函数的积的导数,等于第一个函数的导数乘第二个函数,加上第一个函数乘第二个函数的导数,即 (uv )'=u 'v +uv '. 由此可以得出 (Cu )'=C 'u +Cu '=0+Cu '=Cu ' .也就是说,常数与函数的积的导数,等于常数乘函数的导数,即 (Cu )'=Cu ' . 例3 求y =2x 3-3x 2+5x -4的导数. 解:y '=6x 2-6x +5.例4 求y =(2x 2+3) (3x -2) 的导数.解:y '=(2x 2+3) ' (3x -2)+(2x 2+3)(3x -2) '=4x (3x -2)+(2x 2+3)·3=18x 2-8x +9.或:692623-+-=x x x y ,94182+-='x x y(3)商的导数例5.求下列函数的导数 (1)x x y tan =(2)xxy cos 1sin +=(3)x x y 2log sin =提示:积法则,商法则, 都是前导后不导, 前不导后导, 但积法则中间是加号, 商法则中间是减号. 四、当堂检测 1.填空:⑴ [(3x 2+1)(4x 2-3)] '=( )(4x 2-3)+ (3x 2+1)( ); ⑵ (x 3sin x ) '=( )x 2·sin x +x 3· ( ). 2.判断下列求导是否正确,如果不正确,加以改正: [(3+x 2)(2-x 3)] '=2x (2-x 3)+3x 2(3+x 2). [(3+x 2)(2-x 3)] '=2x (2-x 3)-3x 2(3+x 2). 3.求下列函数的导数:(1)y =2x 3+3x 2-5x +4; (2) y =ax 3-bx +c ; (3) y =sin x -x +1; (4)y =(3x 2+1)(2-x ); 4.求函数x x x y cos sin =的导数5.思考:设 f (x )=x (x +1) (x +2) … (x +n ),求f ' (0).6.函数f (x )=x (x -1) (x -2)(x -3) …(x -100)在x =0处的导数值为( ) A. 0 B. 1002C. 200D. 100! 五、课堂总结(1)分四组写出基本初等函数的导数公式表: (2)导数的运算法则:1.和(或差)的导数 (u ±v )'=u '±v '. 2.积的导数 (uv )'=u 'v +uv '.3.商的导数六.课后作业1.课本第18页习题1.1A 组:4 2.求下列函数的导数:(1) y =(1+x 2)cos x ; (2)x x y x2log 3cos 2-=(3)32521xxxy +-=(4)x x x y cos tan -=七、板书设计1.2.2 基本初等函数的导数及导数的运算法则(1) 一、复习回顾复习五种常见函数y c =、y x =、2y x =、、y x =的导数公式二、提出问题,展示目标三、合作探究1.分四组对比记忆基本初等函数的导数公式表 2.导数运算法则: (1)和(或差)的导数 (2)积的导数(3)商的导数四、当堂检测五.课堂总结六.课后作业八.课后反思第2课时课程容:复合函数的导数 容分析:复合函数的导数是导数的重点,也是导数的难点. 要弄清每一步的求导是哪个变量对哪个变量的求导.求导时对哪个变量求导要写明,可以通过具体的例子,让学生对求导法则有一个直观的了解. 教学目标: 1.知识与技能(1)理解复合函数的概念(2)能正确分解简单的复合函数,记住复合函数的求导公式(3)理解并掌握复合函数的求导法则 2.过程与方法(1)记基本初等函数求导公式,会利用基本初等函数求导公式求函数的导数 (2)通过分析复合层次确定函数的复合顺序,为正确求导奠定基础 3.情感态度与价值观通过正确分解复合函数的复合过程,做到不漏,不重,熟练,正确.培养学生严谨的治 学态度,做事的条理性和处理问题大局观,进而影响到学生的一生。
教学目的:理解 ,善于发现规律,认识规律,掌握规律,利用规律 教学重点:复合函数的求导法则的概念与应用 教学难点:复合函数的求导法则的导入与理解 授课类型:新授课 课时安排:1课时 教学过程: 一、复习引入1.常见函数的导数公式:0'=C ;1)'(-=n n nx x ;x x cos )'(sin =;x x sin )'(cos -=2.法则1 )()()]()(['''x v x u x v x u ±=±.法则2 [()()]'()()()'()u x v x u x v x u x v x '=+, [()]'(Cu x Cu x '=法则3 '2''(0)u u v uv v v v -⎛⎫=≠ ⎪⎝⎭二、讲解新课1.举出例子2(32)y x =-、2sin x y =,让学生感觉到这既不是基本初等函数,也不是初等函数,然后引入如何函数的概念。
2.复合函数: 由几个函数复合而成的函数,叫复合函数.由函数)(u f y =与)(x u ϕ=复合而成的函数一般形式是)]([x f y ϕ=,其中u 称为中间变量.3.求函数2(32)y x =-的导数的两种方法与思路:方法一:22[(32)](9124)1812x y x x x x '''=-=-+=-;方法二:将函数2(32)y x =-看作是函数2y u =和函数32u x =-复合函数,并分别求对应变量的导数如下:2()2u y u u ''==,(32)3x u x ''=-=两个导数相乘,得232(32)31812u x y u u x x ''==-=-gg , 从而有 x u x u y y '''⋅=对于一般的复合函数,结论也成立,以后我们求y ′x 时,就可以转化为求y u ′和u ′x 的乘积,关键是找中间变量,随着中间变量的不同,难易程度不同.4.复合函数的导数:设函数u =ϕ(x )在点x 处有导数u ′x =ϕ′(x ),函数y =f (u )在点x 的对应点u 处有导数y ′u =f ′(u ),则复合函数y =f (ϕ (x ))在点x 处也有导数,且x u x u y y '''⋅= 或f ′x (ϕ (x ))=f ′(u ) ϕ′(x ).证明:(教师参考不需要给学生讲)设x 有增量Δx ,则对应的u ,y 分别有增量Δu ,Δy ,因为u =φ(x )在点x 可导,所以u =ϕ (x )在点x 处连续.因此当Δx →0时,Δu →0.当Δu ≠0时,由xu u y x y ∆∆⋅∆∆=∆∆. 且x yu y u x ∆∆=∆∆→∆→∆00lim lim .∴xuu y x u u y x u u y x y x u x x x x ∆∆⋅∆∆=∆∆⋅∆∆=∆∆⋅∆∆=∆∆→∆→∆→∆→∆→∆→∆000000lim lim lim lim lim lim即x u x u y y '''⋅= (当Δu =0时,也成立) 5.复合函数的求导法则复合函数对自变量的导数,等于已知函数对中间变量的导数,乘以中间变量对自变量的导数.6.复合函数求导的基本步骤是:分解——求导——相乘——回代.注意:① 间变量的选择应是基本初等函数结构 ② 键是正确分清函数的复合层次③ 般是从最外层开始,由外及里,一层一层地求导 ④ 善于把一部分表达式作为一个整体⑤最后要把中间变量换成自变量的函数(即代回) 三、讲解例例1 试说明下列函数是怎样复合而成的? (1)32)2(x y -=; (2)2sin x y =; (3))4cos(x y -=π; (4))13sin(ln -=x y .解:(1)函数32)2(x y -=由函数3u y =和22x u -=复合而成;(2)函数2sin x y =由函数u y sin =和2x u =复合而成; (3)函数)4cos(x y -=π由函数u y cos =和x u -=4π复合而成;(4)函数)13sin(ln -=x y 由函数u y ln =、v u sin =和13-=x v 复合而成. 说明:讨论复合函数的构成时,“层”、“外层”函数一般应是基本初等函数,如一次函数、二次函数、指数函数、对数函数、三角函数等.例2 写出由下列函数复合而成的函数:(1)u y cos =,21x u +=; (2)u y ln =,x u ln =. 解:(1))1cos(2x y +=; (2))ln(ln x y =. 例3 求5)12(+=x y 的导数. 解: 设5u y =,12+=x u ,则 x u x u y y '''⋅=)'12()'(5+⋅=x u x2)12(52534⋅+=⋅=x u 4)12(10+=x .注意:在利用复合函数的求导法则求导数后,要把中间变量换成自变量的函数.有时复合函数可以由几个基本初等函数组成,所以在求复合函数的导数时,先要弄清复合函数是由哪些基本初等函数复合而成的,特别要注意将哪一部分看作一个整体,然后按照复合次序从外向逐层求导.例4 求f (x )=sin x 2的导数. 解:令y =f (x )=sin u ; u =x 2∴x u x u y y '''⋅==(sin u )′u ·(x 2)x ′=cos u ·2x =cos x 2·2x =2x cos x 2∴f ′(x )=2x cos x 2例5 求y =sin 2(2x +3π)的导数.分析: 设u =sin(2x +3π)时,求u ′x ,但此时u 仍是复合函数,所以可再设v =2x +3π.解:令y =u 2,u =sin(2x +3π),再令u =sin v ,v =2x +3π∴x u x u y y '''⋅==y ′u (u ′v ·v ′x )∴y ′x =y ′u ·u ′v ·v ′x =(u 2)′u ·(sin v )′v ·(2x +3π)′x=2u ·cos v ·2=2sin(2x +3π)cos(2x +3π)·2=4sin(2x +3π)cos(2x +3π)=2sin(4x +32π)即y ′x =2sin(4x +32π)例6 求函数y =(2x 2-3)21x +的导数.分析: y 可看成两个函数的乘积,2x 2-3可求导,21x +是复合函数,可以先算出21x +对x 的导数.解:令y =uv ,u =2x 2-3,v =21x +, 令v =ω,ω=1+x 2x x v v ωω'''=⋅=ω' (1+x 2)′x=22211122)2(21xx x x x +=+=-ω ∴y ′x =(uv )′x =u ′x v +uv ′x =(2x 2-3)′x ·21x ++(2x 2-3)·21xx +=4x23232161321xx x xx x x ++=+-++即y ′x =2316xx x ++四、课堂练习1.求下列函数的导数(先设中间变量,再求导).(1)y =(5x -3)4(2)y =(2+3x )5(3)y =(2-x 2)3(4)y =(2x 3+x )22.求下列函数的导数(先设中间变量,再求导)(n ∈N *) (1)y =sin nx (2)y =cos nx (3)y =tan nx (4)y =cot nx 解:(1)令y =sin u ,u =nxx u x u y y '''⋅==(sin u )′u ·(nx )′x =cos u ·n =n cos nx(2)令y =cos u ,u =nxx u x u y y '''⋅==(cos u )′u ·(nx )′x =-sin u ·n =-n sin nx(3)令y =tan u ,u =nxx u x u y y '''⋅==(tan u )′u ·(nx )′x =(uucos sin )′u ·n =2)(cos )sin (sin cos cos u u u u u --⋅·n =nxn n u 22cos cos 1==n ·sec 2nx (4)令y =cot u ,u =nxx u x u y y '''⋅==(cot u )′u ·(nx )′x =(uusin cos )′u ·n =2)(sin cos cos sin sin u u u u u ⋅-⋅-·n =-u 2sin 1·n =-nxn 2sin =-n csc 2nx . 五、课堂小结这节课你学到了什么?把它写下来! (1)明确了什么是复合函数 (2)学会了分解复合函数 (3)复合函数的求导法则:(4)开阔思路,恰当选用求导数方法. (5)计算要认真,要学会循序渐进。