§1.4 信号与系统分析方法
信号与系统的分析方法有时域,变换域两种
§2-3 Z反变换
一.定义:
已知X(z)及其收敛域,反过来求序列x(n) 的变换称作Z反变换。
记作:x(n) Z [ X ( z )]
1
z变换公式:
正:X ( z )
n
x ( n) z n ,
R x z Rx
1 反:x(n) X ( z ) z n 1dz, c ( Rx , Rx ) 2j c
j Im[ z ]
z 收敛域: a
0
a
z
Re[ z ]
*收敛域一定在模最大的极点所在的圆外。
[例2-3]求序列 x(n) b u(n 1) 变换及收敛域。
n
x ( n)
n
b nu (n 1) z n
b 1 z (b 1 z ) 2 (b 1 z ) n
§2-1 引言
信号与系统的分析方法有时域、变换域两种。 一.时域分析法 1.连续时间信号与系统: 信号的时域运算,时域分解,经典时域 分析法,近代时域分析法,卷积积分。 2.离散时间信号与系统: 序列的变换与运算,卷积和,差分方程 的求解。
二.变换域分析法
1.连续时间信号与系统: 信号与系统的频域分析、复频域 分析。
2.离散时间信号与系统: Z变换,DFT(FFT)。 Z变换可将差分方程转化为代数方程。
§2-2 Z变换的定义及收敛域
一.Z变换定义: 序列的Z变换定义如下:
X ( z ) Z [ x(n)]
n
x ( n) z
n
*实际上,将x(n)展为z-1的幂级数。
ze ze
jT ST
[例2-5]利用部分分式法,求X ( z) 1 (1 2 z 1 ) (1 0.5z 1 ) , 的z反变换。 解:
信号的函数表示与系统分析方法
其他函数只要用门函数处理(乘以 门函数),就只剩下门内的部分。
f t
1
Gτ t
O
2
t
2
符号函数:(Signum)
sgnt
sgn(t
)
1
1
t 0 t0
O
t
sgn(t) u(t) u(t) 2u(t) 1 u(t) 1 [sgn(t) 1] 2
三.单位冲激(重点和难点)
定义1:狄拉克(Dirac)函数
t1 0 t2 t
非时限信号:存在于无限时间范围内的信号
f3 (t)
f2 (t)
f1(t)
0
无始无终信号
t
0
t1 t
0
t
无始有终信号
有始无终信号
连续时间信号
f (t)
2
1
-2 -1 0 1 2 3 4
t
v(t)
0
t
-2
幅值不连续时间连续的信号
幅值连续时间连续的信号
离散时间信号
4 f (n)
3 2
1
(1)抽样性
f (t) (t) f (0) (t)
f (t) (t)d t f (0)
(4)卷积性质
f t t f t
(2)奇偶性
(t) (t)
(3)微积分性
质 (t
)
d
u(t
)
dt
t
( )d u(t)
§1.4 信号的分解
为了便于研究信号的传输和处理问题,往往将信 号分解为一些简单(基本)的信号之和,分解角度不 同,可以分解为不同的分量
f t
连续信号
t
离散信号
O 12345678
电子信息工程专业公开课信号与系统分析
电子信息工程专业公开课信号与系统分析电子信息工程专业公开课信号与系统分析是该专业的一门重要课程,主要讲解信号与系统的基本概念、理论和应用。
本文将从信号与系统的基本概念、信号与系统的数学表示以及信号与系统的应用等方面进行探讨。
一、信号与系统的基本概念在电子信息工程中,信号是指携带有用信息和数据的电波或电流,它可以是数字信号或模拟信号。
系统是指处理信号的一种装置或方法。
信号与系统的基本概念涉及信号的分类、信号的特性、系统的分类以及系统的特性等。
在信号的分类中,常见的包括连续时间信号和离散时间信号。
连续时间信号是指信号在时间上是连续的,而离散时间信号是指信号在时间上是离散的。
在信号的特性中,常见的包括能量信号和功率信号。
能量信号是指信号在有限时间内的总能量有界,而功率信号是指信号的功率在无限时间内是有限的。
系统的分类主要包括线性系统和非线性系统。
线性系统是指系统的输出与输入之间存在线性关系,而非线性系统则没有线性关系。
在系统的特性中,常见的包括时不变系统和时变系统。
时不变系统是指系统的输出与输入之间不随时间变化,而时变系统则随时间变化。
二、信号与系统的数学表示为了方便分析和处理信号与系统,我们需要利用数学方法对其进行表示。
连续时间信号可以用函数表示,离散时间信号可以用数列表示。
连续时间信号的数学表示主要包括信号的幅度、相位和频率等。
离散时间信号的数学表示主要包括信号的取样、量化和编码等。
在系统的数学表示中,常见的包括系统的冲激响应、传递函数和频率响应等。
系统的冲激响应是指系统在输入为冲激函数时的输出响应,传递函数是指系统的输出与输入之间的关系,频率响应是指系统对输入信号频率的响应情况。
三、信号与系统的应用信号与系统在电子信息工程中有着广泛的应用。
在通信系统中,信号与系统分析可以用于信号的调制和解调、信号的传输和接收等方面。
在控制系统中,信号与系统分析可以用于系统的建模与仿真、系统的控制和稳定性分析等方面。
信号与系统和自动控制原理的关系
信号与系统和自动控制原理的关系引言:信号与系统以及自动控制原理是电子工程领域中重要的两门学科,它们在电子技术的发展和应用中起着关键作用。
本文将探讨信号与系统与自动控制原理之间的关系,从两个学科的基本概念、方法论和应用角度进行分析,以便更好地理解它们的联系和相互作用。
一、信号与系统的基本概念和方法论1. 信号的定义和分类:信号是物理量随时间、空间或其他独立变量变化的描述。
根据信号的性质和特点,可以将信号分为连续信号和离散信号。
连续信号是在连续时间和连续值域上变化的,如模拟电路中的电压信号;离散信号是在离散时间和离散值域上变化的,如数字电路中的脉冲信号。
2. 系统的定义和分类:系统是对信号进行处理或转换的装置或方法。
系统可以是线性系统或非线性系统,可以是时不变系统或时变系统。
线性系统的输出与输入之间存在线性关系,时不变系统的性质不随时间变化。
3. 信号与系统的分析方法:信号与系统的分析方法主要有时域分析和频域分析。
时域分析关注信号随时间的变化规律,常用的方法包括泰勒展开、傅里叶级数和拉普拉斯变换等;频域分析关注信号在频率域上的特性,常用的方法包括傅里叶变换、频谱分析和滤波器设计等。
二、自动控制原理的基本概念和方法论1. 控制系统的定义和分类:自动控制原理研究如何设计和分析控制系统,控制系统由输入、输出和反馈组成。
根据系统的特点和结构,可以将控制系统分为开环控制系统和闭环控制系统。
开环控制系统只有输入和输出,没有反馈;闭环控制系统通过比较输出和参考输入的差异来调整系统的行为。
2. 控制系统的基本要素:控制系统的基本要素包括传感器、执行器、控制器和比较器。
传感器用于测量系统的状态或输出,执行器用于控制系统的行为,控制器基于传感器的反馈信号做出决策,比较器用于比较输出和参考输入。
3. 自动控制原理的分析方法:自动控制原理的分析方法主要有传递函数法和状态空间法。
传递函数法将控制系统表示为输入和输出之间的传递函数关系,通过分析传递函数的特性来设计和分析控制系统;状态空间法将控制系统表示为状态变量和输入之间的微分方程组,通过分析状态变量的变化来设计和分析控制系统。
信号与系统分析方法
1主要内容信号分析与信号处理1系统分析与系统综合2两种系统描述方法3两类分析方法4信号与系统一.信号分析与信号处理信号分析是把信号分解成它的各个组成部分或成分的概念、理论和方法,例如,信号空间表示法或其各种线性组合表示法、信号谱分析、信号的时域分析和多尺度分析等。
信号处理:信号处理则指按某种需要或目的,对信号进行特定的加工、操作或修改。
信号与系统二.系统分析与系统综合系统分析就是在给定系统的情况下,研究系统对输入信号所产生的响应,并由此获得对系统功能和特性的认识。
一般来说,系统分析包括以下三个步骤:系统建模,求解系统,结果解释。
系统综合:系统综合又可叫做系统的设计或实现,它指在给定了系统功能或特性的情况下,或者已知系统在什么样的输入时有什么样的输出,设计并实现该系统 。
信号与系统三.两种系统描述方法•着眼于激励与响应的关系,而不考虑系统内部变量情况;•单输入/单输出系统;•列写一元 n 阶微分方程。
状态变量分析法:•不仅可以给出系统的响应,还可以描述内部变量,如电容电压或电感电流的变化情况;•研究多输入/多输出系统;•列写多个一阶微分方程。
信号与系统四. 两类分析方法1.时域分析2.变换域分析•傅里叶变换——FT• 拉普拉斯变换——LT• Z变换——ZT• 离散傅里叶变换——DFT卷积积分(或卷积和)法经典求解法:连续系统:微分方程离散系统:差分方程信号与系统教学重点教学难点两种系统描述方法输入 输出描述法状态变量分析法两类分析方法时域分析变换域分析小 结。
信号与系统 面试题
信号与系统面试题一、信号与系统的基本概念和性质信号与系统是电子与通信工程领域中重要的基础课程,涉及到信号的表示、处理与传输以及系统的分析与设计等方面。
下面将从信号与系统的基本概念和性质进行论述。
1. 信号的定义和分类信号是指随时间、空间或其他独立变量的变化而变化的物理量,用于携带信息。
信号可以分为连续信号和离散信号两类。
连续信号在时间和幅度上都是连续变化的,例如音频信号、视频信号等;离散信号在时间和幅度上都是离散的,例如数字音频、数字图像等。
2. 基本信号的表示与表示方法常见的基本信号包括冲激信号、阶跃信号、正弦信号等。
冲激信号是一种时间间隔极短、幅度无穷大的信号;阶跃信号在时间t=0时突变,从0瞬间跳变到某个确定值;正弦信号是一种周期为T的、幅度恒定的信号。
这些基本信号可以通过数学函数进行表示,如单位阶跃函数、单位冲激函数、正弦函数等。
3. 系统的定义和分类系统是指对信号进行处理的一种设备或方法。
根据处理方式的不同,系统可以分为线性系统和非线性系统。
线性系统具备叠加性和齐次性的特点,即输入和输出之间满足叠加原理和比例原理;非线性系统则不满足这两个性质。
4. 信号与系统的性质信号与系统具有多种性质,包括可加性、时移性、幅度缩放性、时域抽样性、频域抽样性等。
可加性表示系统对两个输入信号的响应等于单独输入两个信号的响应之和;时移性表示信号的延迟或提前不会影响系统的响应;幅度缩放性表示输入信号按照一定比例进行放大或缩小,输出信号也会按照相同的比例进行放大或缩小。
二、常见的信号与系统分析方法信号与系统的分析方法是研究信号与系统行为与性质的关键。
下面将介绍一些常见的信号与系统分析方法。
1. 时域分析方法时域分析方法主要通过观察信号在时间域上的变化进行分析。
其中,时域响应表示系统对输入信号的响应在时间上的变化情况;卷积表示两个信号之间的运算关系,描述了输入信号经过系统处理后得到的输出信号;相关性分析用于衡量两个信号之间的相似度和相关性。
信号与系统的基本概念与原理
2015-12-4
大连理工大学
17
• (6)时限信号与频限信号 –时限信号:在有限区域 t1 ,t2 内有定义,在其外恒为0。 –频限信号:在频域内占据一定带宽 f1 ,f 2 ,在其外恒为0。
• (7)物理可实现信号与物理不可实现信号
–物理可实现信号:即单边信号,因果信号。当 t < 0 时, x(t)=0 。
确定性信号 1 0.5
随机信号 4
2
幅度 幅度
0
0
-0.5 -1
2015-12-4
-2
50
100
150
200
-4
20
40
60
80
100
时间 t
大连理工大学
时间 t
13
–(2)连续时间信号与离散时间信号
• 在给定的时间间隔内,除若干不连续点之外,对于任 意时间值都可给出确定性的函数值,称为连续时间信
• 一般形式: x(t) Cet 其中, C, 为复数:
C = C e j , =r+j
2015-12-4
大连理工大学
20
• 连续时间复指数信号的两个特例: x(t) Cet
① 实指数信号:C, 为实数。 波形如下: C = C e j , =r+j
2015-12-4
大连理工大学
21
x(t) Cet
号(continuous-time signal),记为 x(t) 。
• 离散时间信号(discerete-time signal)仅定义在离散 的时间点上,即其时间变量仅在一个离散集上取值, 记为 x(n) 。
2015-12-4
大连理工大学
14
–(3)周期信号与非周期信号
信号与系统全套课件
解答
f (t)
f (t 5)
1
时移
1
1 O 1 t 尺度 变换
f (3t)
6 5 4
t 尺度 O 变换
f (3t 5)
1 t
1O 1
33
时移
1 t
2 4 3
1.4.2 信号的变换
平移、展缩、反折相结合举例
例 已知f (t)如图所示,画出 f(-2t-4)。 解答
右移4,得f (t–4)
反转,得f (-2t–4)
1.4.2 信号的变换
2.信号的平移
将 f (t) → f (t–t0) ,称为对信号f (t)的右移
f (t) → f
其中,t0 >0
如
(t +t0), 称为对信号f t → t–1右移
(t)的左移
f (t-1)
1
f (t) 1
o1 2 t
o1 t
t → t+1左移
雷达接收到的目标回波信号就是平移信号。
1.2.2 信号的分类
1. 确定信号和随机信号
•确定性信号 可用确定的时间函数表示的信号。
对于指定的某一时刻t,有确定的函数值f(t)。
•随机信号
取值具有不确定性的信号。 如:电子系统中的起伏热噪声、雷电干扰信号。
•伪随机信号 貌似随机而遵循严格规律产生的信号(伪随机码)。
1.2.2 信号的分类
f (t)
2
1
4
- 4 - 3 - 2- 1 0 1 2 3
t
-1
-2
f (t) 2 1 - 4 - 3 - 2- 1 0 1 2 3 4 t
(a)
(b)
图5 确定性信号与随机信号
信号及系统的谱分析
信号及系统的谱分析谱分析是信号及系统领域中一种重要的分析方法,用于研究信号的频谱特性。
频谱描述了信号在不同频率上的能量分布情况,揭示了信号的频率成分、频率幅度、相位关系等重要信息,对于进一步了解信号的特性、处理信号、设计滤波器等具有重要意义。
在信号及系统分析中,信号可以分为连续时间信号和离散时间信号两种。
连续时间信号是在连续时间上变化的信号,可表示为函数形式,如x(t)表示连续时间信号的函数表达式。
而离散时间信号是在离散时间点上取值的信号,通常用序列表示,如x[n]表示离散时间信号的序列。
首先,我们来介绍连续时间信号的频谱分析方法。
对于连续时间信号x(t),其频谱可以通过傅里叶变换进行分析。
傅里叶变换将信号从时域转换到频域,得到的结果是信号在不同频率上的复振幅谱。
具体地,对于连续时间信号x(t),其傅里叶变换可以表示为:X(ω) = ∫[from -∞ to +∞] x(t)e^(-jωt) dt其中X(ω)表示信号x(t)的频谱,在频率ω处的复振幅。
频谱的实部表示信号的幅度,虚部表示信号的相位。
对于离散时间信号x[n],其频谱可以通过离散时间傅里叶变换(DTFT)进行分析。
离散时间傅里叶变换将离散时间序列转换到连续频率上的变换,得到信号在不同频率上的复振幅谱。
具体地,对于离散时间信号x[n],其离散时间傅里叶变换可以表示为:X(ω) = ∑[from -∞ to +∞] x[n]e^(-jωn)类似于连续时间信号,离散时间信号的频谱的实部表示信号的幅度,虚部表示信号的相位。
除了傅里叶变换,还有其他一些方法可用于信号的频谱分析,如快速傅里叶变换(FFT)和功率谱密度分析(PSD)。
FFT是一种高效的计算傅里叶变换的算法,可以快速地计算离散时间信号的频谱。
PSD是对信号功率谱的估计,可以用于研究信号的能量分布特性。
通过PSD分析,可以了解信号在不同频率上的功率贡献,找到频域上的主要成分。
总之,谱分析是信号及系统中重要的分析方法,可以帮助我们了解信号的频谱特性。
信号与系统的频域分析
信号与系统的频域分析信号与系统是电子、通信、自动控制、计算机等领域的重要基础课程,频域分析是其中的重要内容之一。
频域分析是指将信号在频域上进行分析和处理,通过分析信号的频谱特性和频率分量来了解信号的频率成分和频率响应。
一、频域分析的基本概念和原理频域分析是将时域信号转换为频域信号的过程,可以通过傅里叶变换来实现。
傅里叶变换是一种将非周期信号或有限时长的周期信号分解为一系列基础频率分量的技术,可以将信号在频域上进行表达和处理。
在频域中,信号的频率成分和相对能量分布可以清晰地呈现出来,方便人们对信号进行分析和理解。
二、傅里叶级数和傅里叶变换傅里叶级数是用来分解周期信号为一系列余弦和正弦函数的技术,适用于周期信号的频域分析。
傅里叶级数展开后,通过求解各个频率分量的振幅和相位,可以得到该周期信号在频域中的频率成分和能量分布。
傅里叶变换是对非周期信号或有限时长的周期信号进行频域分析的方法。
傅里叶变换将信号从时域转换到频域,得到信号的频谱特性。
通过傅里叶变换,可以将时域中的信号分解为一系列基础频率分量,同时还可以得到每个频率分量的相位和振幅信息。
三、频域分析的应用频域分析在信号处理和系统分析中广泛应用。
在通信系统中,频域分析可以用于信号调制、解调和信道估计等方面。
在音频和视频信号处理中,频域分析可以用于音频和视频编码、去噪和增强等技术。
在自动控制系统中,频域分析可以用于系统的稳定性和响应特性分析。
四、常见的频域分析方法除了傅里叶变换外,还有一些常见的频域分析方法,如离散傅里叶变换(DFT)、快速傅里叶变换(FFT)、功率谱密度分析(PSD)等。
这些方法在不同的领域和应用中有着各自的优缺点和适用范围。
熟练掌握这些方法的原理和使用技巧,可以更好地进行频域分析和信号处理。
五、总结频域分析是信号与系统领域中重要的理论和实践内容,通过分析信号在频域上的频率成分和能量分布,可以深入理解信号的特性和系统的行为。
傅里叶变换作为频域分析的核心工具,能够将信号在时域和频域之间进行转换,为信号处理和系统分析提供了强有力的工具。
信号与系统 总结
解: (1) yzs(t) = 2 f (t) +1, yzi(t) = 3 x(0) + 1
显然, y (t) ≠ yzs(t) + yzi(t) 不满足可分解性,故为非线性
(2) yzs(t) = | f (t)|, yzi(t) = 2 x(0)
y (t) = yzs(t) + yzi(t) 满足可分解性;
两个周期信号x(t),y(t)的周期分别为T1和T2,若其 周期之比T1/T2为有理数,则其和信号x(t)+y(t)仍然是周 期信号,其周期为T1和T2的最小公倍数。
例: 判断下列序列是否为周期信号,若是,确定其周期。 (1)f1(k) = sin (3πk/4) + cos (0.5πk) (2)f2(k) = sin (2k)
δ(5t)(t 2)2 dt ? 4
5
f(5-2t)
f(t) (4)
例: 已知信号f (5 2t)的波形,
(2)
请画出f (t)的波形。
t 0 123
-1 0 1 2 3
第 11 页
1.5 系统的特性与分类
连续系统与离散系统:分别用微分方程与差分方程来描述 动态系统与即时系统:动态系统也称为记忆系统 线性系统与非线性系统:齐次性和可加性
求导
(2) -1
f '(t)
1t 0 (-2)
第8 页
1.4 阶跃函数和冲激函数
冲激函数的性质(习题1.10)
取样性
δ(t) f (t) f (0) δ(t)
δ(t) f (t) d t f (0)
f (t) δ(t t 0) f (t0 ) δ(t t 0)
电子工程优质课信号与系统分析
电子工程优质课信号与系统分析信号与系统是电子工程专业中非常重要的一门课程,它涉及到信号的产生、传输、处理和分析等方面内容,是电子工程师必须掌握的基础知识之一。
本文将对电子工程中的信号与系统分析进行详细介绍和阐述。
一、信号与系统的概念及基本特性信号是一种事物的特征或变化规律在一定时间内的表现,比如声音、图像等。
系统是指将输入信号转换为输出信号的过程,它可以是物理系统、电子系统或者其他形式的系统。
信号与系统分析就是研究信号在系统中传递、处理和改变的过程。
信号与系统分析的基本特性有时域特性和频域特性两个方面。
时域特性是指信号与系统在时间上的表现,包括信号的幅度、相位、波形等;频域特性是指信号与系统在频率上的表现,包括频谱分析、频率响应等。
二、信号与系统的数学表示信号与系统可以用数学模型进行描述和表示。
常见的信号有连续时间信号和离散时间信号两种形式。
连续时间信号是在连续时间域上变化的信号,可以用函数表示;离散时间信号是在离散时间点上变化的信号,可以用数列表示。
系统也可以用数学模型进行描述,常见的有线性时不变系统(LTI系统)。
LTI系统具有线性性质和时不变性质,可以用差分方程或者传递函数表示。
通过对信号与系统的数学表示,可以进行信号与系统的分析和理论推导。
三、信号的频谱分析频谱分析是信号与系统分析中非常重要的一个环节。
信号的频谱分析可以得到信号在频率上的分布情况,从而了解信号中包含的不同频率成分。
常见的频谱分析方法有傅里叶变换、快速傅里叶变换、功率谱密度分析等。
傅里叶变换可以将信号从时域转换到频域,得到信号的频谱图。
功率谱密度分析可以得到信号的能量在不同频率上的分布情况,用于描述信号的频率特性。
四、系统的频率响应系统的频率响应描述了系统对不同频率信号的传递特性。
常见的系统频率响应有幅频响应和相频响应两种形式。
幅频响应是指系统对输入信号幅度的变化情况,描述了系统对不同频率信号的衰减或放大程度。
相频响应是指系统对输入信号相位的变化情况,描述了系统对不同频率信号的相位差异。
信号与系统第一章§1.4 阶跃信号和冲激信号
第 8 页
p(t )
1
面积1;脉宽↓; 脉冲高度↑;
0 窄脉冲集中于 t=0 处。 ★面积为1
三个特点: ★宽度为0
★ 幅度无 0 穷
t 0 t 0
O 2
t
2
X
描述
第 9
页
(t)l i0p m (t)l i01 m u t2 u t2
(t)
(1 )
(t t0 )
时移的冲激函数
t0
2
O
t
2. 延迟的单位阶跃信号
u(t t0 )
0 u(tt0) 1
0 u(tt0) 1
tt0, tt0
t00
tt0, tt0
t00
1
O
t0
t
u(t t0 ) 1
由宗量 t t0 0 可 t 知 t0,即 时 t0 O
间为,t0时 函数有断点,跳变点 宗量>0 函数值为1 宗量<0 函数值为0
(1 )
o
t
o
t0
t
若面积为k,则强度为k。
三角形脉冲、双边指数脉冲、钟形脉冲、抽样函数
取0极限,都可以认为是冲激函数。
X
冲激函数的性质
第 10
页
t 函数是人们为了信号分析的需要而构造的,它是一
个广义函数,有一些特殊的性质。
1.抽样性 2.奇偶性 3.冲激偶 4.标度变换
X
1. 抽样性(筛选性)
§1.4 阶跃信号和冲激信号
北京邮电大学电子工程学院 2008.9
本节介绍
第 2
页
函数本身有不连续点(跳变点)或其导数与积分 有不连续点的一类函数统称为奇异信号或奇异函 数。
信号与系统分析
信号与系统分析信号与系统是电子信息学科中的重要内容,它主要涉及信号的提取、传输、处理和储存,以及系统对信号的加工、控制、转换和传递。
信号与系统分析的重要性在于它能够帮助我们更好地理解和运用数字信号处理技术,有效地解决各种信号处理问题,同时也促进了现代工业生产、科学研究和社会发展。
一、信号的分类及特性信号是指物理量的变化随时间的变化轨迹,常见的信号包括连续信号和离散信号。
其中,连续信号是指信号量在任何时间点都可以得到,曲线是连续的;离散信号则是只有在离散时间点可以得到信号量,曲线是断断续续的。
而在信号的特性方面,则有以下几点:1. 带宽:是指信号频谱中的最高频率,它决定了信号中所包含的信息量的多寡。
2. 幅度:是指信号量的大小,这通常反映了信号本身所包含的能量大小。
3. 相位:是指信号值的相对时间偏移量,这对于信号的传输和处理非常重要。
4. 周期:是指信号重复一个完整的波形所需要的时间。
二、信号处理的基本方法信号的处理可以归为两类,即时域处理和频域处理。
时域处理主要用于分析信号在时间轴上的波动形态,比如:控制系统、神经网络、图像处理等。
而频域处理则可通过傅里叶变换将信号从时间域转换到频域,以实现不同的信号处理需求,比如:滤波、调制、解调、压缩、噪声消除等。
三、系统分析的基本方法系统是指将输入信号处理成输出信号的器件或机构。
它可以是线性系统,也可以是非线性系统。
系统分析的基本方法包括时域分析和频域分析。
时域分析可以通过微分方程、差分方程、微分方程等方法,建立系统的数学模型,并进行定量分析。
频域分析可以通过傅里叶变换、拉普拉斯变换、Z变换等方法,将系统的响应特性转换到频域,以实现信号处理和系统诊断的目的。
四、信号与系统在实际应用中的重要性信号与系统的应用非常广泛,特别是在信息科学技术、采矿、控制工程、医疗、通信等领域。
在电子信息学科中,信号与系统的研究成果已广泛应用于实际生产和社会生活之中,比如数字音频和视频、通讯系统、噪声控制、医疗成像、自动化控制、雷达和导航、人工智能等。
信号与系统概论第一章
2)冲激函数定义 (多种方式演变) ①单位冲激函数(狄拉克函数)
( ※ 0时刻取不定值,面积为1。为广义函数)
1.5 奇异信号及其基本特性(续)
◆ t=t0时刻的单位冲激函数:
②矩形脉冲定义的单位冲激函数
( ※ 面积为冲激强度,强度为1时为单位冲激)
1.5 奇异信号及其基本特性(续)
※ 对于冲激偶函数可继续二次求导。(如双边指数脉冲等)
冲激函数
冲激偶函数
强度无穷大
(单向面积:1/τ)
1.5 奇异信号及其基本特性(续)
2)冲激偶函数的性质 ①
推导:
0
性质
1.5 奇异信号及其基本特性(续)
②面积为零:
③冲激偶函数与普通函数乘积的性质: (证:两边取积分)
-f’(0)
0
-f’(0)
1.4 信号的基本运算及波形变换(续)
② 若以变量 at+b 代替 t,可得沿时间轴伸缩平移的 新信号 f(at+b)。 a>0时:信号沿时间轴伸缩、平移。
(a>1, a<1)
a<0时:信号沿时间轴伸缩、平移、反褶。(a>-1,a<-1) ◆特点:
所有运算都是自变量t的变换,且变换前后端点函数值不变。
③其他函数形式定义的单位冲激函数
1.5 奇异信号及其基本特性(续)
1.5 奇异信号及其基本特性(续)
3)冲激函数的性质 ①抽样性质(筛选特性)
1.5 奇异信号及其基本特性(续)
冲激函数与普通函数乘积的积分可将普通 函数在冲激出现时刻的函数值抽取出来!
1.5 奇异信号及其基本特性(续)
②偶函数性质: ③与阶跃函数的关系: ◆冲激函数的积分是阶跃函数: δ(t) = δ(-t)
信号与系统教材要点
第一章 信号与系统§ 信号因果系统:响应(零状态响应)不出现于激励之前的系统为因果系统。
更确切的说,因果系统:对任意时刻0t 或0k (一般可选00t =或00k =)和任意输入()f •,如果0()0f t t •=<,(或0k k <),若其零状态响应{}0()[0,()]0,zs y T f t t •=•=<(或0k k <)就称该系统为因果系统。
因果信号:借用“因果”一词,常把0t =时接入的信号(即在0,()0t f t <=的信号)称为因果信号或有始信号。
连续时间信号的周期求解例 判断下列信号是否为周期信号,若是,确定其周期。
(1)1()sin 2cos3f t t t =+ (2)2()cos 2sin f t t t π=+分析:两个周期信号()x t ,()y t 的周期分别为1T 和2T ,若其周期之比12/T T 为有理数,则其和信号()()x t y t +仍然是周期信号,其周期为1T 和2T 的最小公倍数。
解:(1)sin 2t 是周期信号,其角频率和周期分别为 12/rad s ω=,112/T s πωπ==cos3t 是周期信号,其角频率和周期分别为23/rad s ω=,222/(2/3)T s πωπ==由于 12/3/2T T =为有理数,故1()f t 为周期信号,其周期为1T 和2T 的最小公倍数2π。
(2)cos2t 和sin t π的周期分别为1T s π=,22T s =,由于12/T T 为无理数,故2()f t 为非周期信号。
离散周期信号举例例 判断正弦序列f (k ) = sin(βk )是否为周期信号,若是,确定其周期。
解:2()sin()sin(2)sin[()]f k k k m k mπββπββ==+=+sin[()]k mN β=+ 0,1,2,m =±±•••式中β称为数字角频率,单位:rad 。
信号与系统——连续时间系统的分析方法
信号与系统——连续时间系统的分析方法1、根据KCL,KVL及UI关系列出回路方程2、化简方程得出响应与激厉间的关系式(原方程)一、经典法:1、求齐次解:特征方程——特征根——含参齐次解,t>=0+。
2、求特解:将激励方程代入得自由项。
根据自由项高特解形式。
将所设特解代入原方程待系数得特解。
3、含参全解:含参齐次解+特解。
4、待定系数:法1:(时域法)根据电路基础知识得出响应及导数初始值代入含参全解得出参数值。
法2、(冲激函数匹配法)设激励为KU(t),并求其导数,根据原方程右端形式依次从高向低求响应及各阶导数,从而得出响应及各阶导数的初始值,代入含参全解待定系数求参数。
法3、(奇异函数平衡法)对含参全解求各阶导数并代入原方程,待定系数求参数。
5、完全解:齐次解+特解。
二、双零法:1、零输入:令激励为0,求齐次方程。
<将初始储能看成激励源>特征方程—特征根—含参齐次解—待定系数—零输入zi。
2、零状态:初始值为0,求完全解。
(1)含参齐次解:特征方程—特征根—含参齐次解。
(2)特解:(3)含参全解:含参齐次解+特解。
(4)待定系数:法1、(时域法)法2、(冲激函数匹配法)法3、(奇异函数平衡法)法4、(卷积法)————————————————————————————————————————————————————三、变换域法:法1:写出时域方程,经LT变换得出S域方程,从而得出S域响应,再经LT逆变换得出时域响应。
法2:S域模型,S域方程,S域响应,经LT逆变换得出时域响应。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
信号与系统
二.系统分析与系统综合
系统分析: 系统分析: 系统分析就是在给定系统的情况下, 系统分析就是在给定系统的情况下,研究系统对输入信号 所产生的响应,并由此获得对系统功能和特性的认识. 所产生的响应,并由此获得对系统功能和特性的认识.一般 来说,系统分析包括以下三个步骤:系统建模,求解系统, 来说, 系统分析包括以下三个步骤: 系统建模, 求解系统, 结果解释 系统综合: 系统综合: 系统综合又可叫做系统的设计或实现, 系统综合又可叫做系统的设计或实现,它指在给定了系统功能 或特性的情况下, 或特性的情况下,或者已知系统在什么样的输入时有什么样的输 出,设计并实现该系统
信号与系统
§1.4 信号与系统分析方法
信号与系统
一.信号分析与信号处理
信号分析: 信号分析: 信号分析是把信号分解成它的各个组成部分或成分的概 理论和方法,例如, 念,理论和方法,例如,信号空间表示法或其各种线性组合 表示法,信号谱分析, 表示法,信号谱分析,信号的时域分析和多尺度分析等 信号处理: 信号处理: 信号处理则指按某种需要或目的, 信号处理则指按某种需要或目的,对信号进行特定的加 操作或修改. 工,操作或修改.
�
信号与系统
三.两种系统描述方法
输入输出描述法: 输入输出描述法: 输出描述法 着眼于激励与响应的关系,而不考虑系统内部变量情况; 着眼于激励与响应的关系,而不考虑系统内部变量情况; 着眼于激励与响应的关系 单输入 单输出系统; 单输入/单输出系统 单输入 单输出系统; 列写一元 n 阶微分方程. 列写一元 阶微分方程. 状态变量分析法: 状态变量分析法: 不仅可以给出系统的响应,还可以描述内部变量,如电容电 或电 不仅可以给出系统的响应,还可以描述内部变量, 不仅可以给出系统的响应 感电流的变化情况. 感电流的变化情况. 研究多输入 多输出系统; 研究多输入/多输出系统 研究多输入 多输出系统; 列写多个一阶微分方程. 列写多个一阶微分方程. 列写多个一阶微分方程
信号与系统
பைடு நூலகம்
四. 两类分析方法
1.时域分析 时域分析 经典求解法: 经典求解法: 离散系统: 离散系统:差分方程 卷积积分(或卷积和)法 卷积积分(或卷积和) 2.变换域分析 变换域分析 傅里叶变换 傅里叶变换——FT 拉普拉斯变换 拉普拉斯变换——LT z 变换 变换——ZT 离散傅里叶变换 离散傅里叶变换——DFT 连续系统: 连续系统:微分方程