2019-2020学年辽宁省实验中学高一(上)第一次月考数学试卷及答案
高一上学期第一次月考数学试卷(新题型:19题)(基础篇)(原卷版)
2024-2025学年高一上学期第一次月考数学试卷(基础篇)【人教A版(2019)】(考试时间:120分钟试卷满分:150分)注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上;2.回答第Ⅰ卷时,选出每小题答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号。
写在本试卷上无效;3.回答第Ⅱ卷时,将答案写在答题卡上。
写在本试卷上无效;4.测试范围:必修第一册第一章、第二章;5.考试结束后,将本试卷和答题卡一并交回.第I卷(选择题)一、单项选择题:本题共8小题,每小题5分,共40分,在每小题给出的四个选项中,只有一项是符合要求的。
1.(5分)(24-25高一上·河北廊坊·开学考试)下列各组对象能构成集合的是()A.2023年参加“两会”的代表B.北京冬奥会上受欢迎的运动项目C.π的近似值D.我校跑步速度快的学生2.(5分)(23-24高一上·北京·期中)命题pp:∀xx>2,xx2−1>0,则¬pp是()A.∀xx>2,xx2−1≤0B.∀xx≤2,xx2−1>0C.∃xx>2,xx2−1≤0D.∃xx≤2,xx2−1≤03.(5分)(23-24高二下·福建龙岩·阶段练习)下列不等式中,可以作为xx<2的一个必要不充分条件的是()A.1<xx<3B.xx<3C.xx<1D.0<xx<14.(5分)(24-25高三上·山西晋中·阶段练习)下列关系中:①0∈{0},②∅ {0},③{0,1}⊆{(0,1)},④{(aa,bb)}= {(bb,aa)}正确的个数为()A.1 B.2 C.3 D.45.(5分)(24-25高三上·江苏南通·阶段练习)若变量x,y满足约束条件3≤2xx+yy≤9,6≤xx−yy≤9,则zz=xx+2yy的最小值为()A.-7 B.-6 C.-5 D.-46.(5分)(23-24高二下·云南曲靖·期末)已知全集UU={1,3,5,7,9},MM=�xx|xx>4且xx∈UU},NN={3,7,9},则MM∩(∁UU NN)=()A.{1,5}B.{5}C.{1,3,5}D.{3,5}7.(5分)(23-24高一上·陕西渭南·期末)已知不等式aaxx2+bbxx+2>0的解集为{xx∣xx<−2或xx>−1},则不等式2xx2+bbxx+aa<0的解集为()A.�xx�−1<xx<12�B.{xx∣xx<−1或xx>12}C.�xx�−1<xx<−12�D.{xx∣xx<−2或xx>1}8.(5分)(24-25高三上·江苏徐州·开学考试)已知aa>bb≥0且6aa+bb+2aa−bb=1,则2aa+bb的最小值为()A.12 B.8√3C.16 D.8√6二、多项选择题:本题共3小题,每小题6分,共18分,在每小题给出的四个选项中,有多项符合题目的要求,全部选对的得6分,部分选对的得部分分,有选错的得0分。
2019-2020学年辽宁省实验中学高一上学期12月月考数学试题(解析版)
2019-2020学年辽宁省实验中学高一上学期12月月考数学试题一、单选题1.已知集合{}21|A x log x =<,集合{|B y y ==,则A B =U ( )A .(),2-∞B .(],2-∞C .()0,2D .[)0,+∞【答案】D【解析】可求出集合A ,B ,然后进行并集的运算即可. 【详解】解:{}|02A x x =<<,{}|0B y y =≥;∴[)0,A B =+∞U .故选D . 【点睛】考查描述法、区间的定义,对数函数的单调性,以及并集的运算. 2.已知a R ∈,则“1a >”是“11a<”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .即不充分也不必要条件【答案】A【解析】先求得不等式11a<的解集为0a <或1a >,再结合充分条件和必要条件的判定,即可求解. 【详解】由题意,不等式11a<,等价与1110a a a --=<,即10a a ->,解得0a <或1a >, 所以“1a >”是“11a<”的充分不必要条件.故选:A . 【点睛】本题主要考查了充分条件、必要条件的判定,以及分式不等式的求解,其中解答中正确求解不等式的解集,合理利用充分、必要条件的判定方法是解答的关键,着重考查了推理与运算能力,属于基础题.3.下列各式中,表示y 是x 的函数的有( )①(3)y x x =--;②y =;③1,01,0x x y x x -<⎧=⎨+≥⎩;④0,1,x y x ⎧=⎨⎩为有理数为实数.A .4个B .3个C .2个D .1个【答案】C【解析】根据构成函数的两要素分析定义域是否为空集及对应法则是否对定义域内每一个元素都有唯一实数值与之对应,即可求解. 【详解】①(3)y x x =--,定义域为R ,化简解析式为3y =,定义域内每个值按对应法则都有唯一实数3与之对应,是函数;②y =,定义域为2010x x -≥⎧⎨-≥⎩,解得x ∈∅,所以不是函数;③1,01,0x x y x x -<⎧=⎨+≥⎩,定义域为R ,对应法则对于定义域内每一个值都有唯一实数与之对应,所以是函数;④0,1,x y x ⎧=⎨⎩为有理数为实数,定义域为R ,当1x =时,y 有两个值0,1与之对应,所以不是函数.故选C. 【点睛】本题主要考查了函数的概念,构成函数的两个要素,属于中档题.4.已知图像连续不断的函数()f x 在区间()(),0.1a b b a -=上有唯一零点,如果用“二分法”求这个零点(精确度0.0001)的近似值,那么将区间(),a b 等分的次数至少是( ) A .4 B .6 C .7 D .10【答案】D【解析】根据计算精确度与区间长度和计算次数的关系满足0.00012nb a-<精确度确定. 【详解】设需计算n 次,则n 满足0.10.000122nn b a -=<,即21000n >. 由于92512,=1021024=,故计算10次就可满足要求,所以将区间(,)a b 等分的次数至少是10次. 故选:D . 【点睛】本题主要考查二分法和指数不等式的解法,意在考查学生对这些知识的理解掌握水平. 5.已知正实数a ,b ,c 满足236log a log b log c ==,则( ) A .a bc = B .2b ac =C .c ab =D .2c ab =【答案】C【解析】设236log log log a b c k ===,则2k a =,3k b =,6k c =,由此能推导出c ab =. 【详解】解:∵ 正实数a ,b ,c 满足236log log log a b c ==, ∴ 设236log log log a b c k ===, 则2k a =,3k b =,6k c =, ∴ c ab =. 故选C . 【点睛】本题考查命题真假的判断,考查对数性质、运算法则等基础知识,考查运算求解能力,是基础题.6.某工厂利用随机数表对生产的600个零件进行抽样测试,先将600个零件进行编号,编号分别为( )001,002,…,599,600从中抽取60个样本,如下提供随机数表的第4行到第6行: 32 21 18 34 29 78 64 54 07 32 52 42 06 44 38 12 23 43 56 77 35 78 90 56 4284 42 12 53 31 34 57 86 07 36 25 30 07 32 86 23 45 78 89 07 23 68 96 08 0432 56 78 08 43 67 89 53 55 77 34 89 94 83 75 22 53 55 78 32 45 77 89 23 45若从表中第6行第6列开始向右依次读取数据,则得到的第2个样本编号( ) A .436 B .578C .535D .522【答案】C【解析】根据随机数表法抽样的定义进行抽取即可.【详解】第6行第6列的数开始的数为808,不合适,436合适,789不合适,535合适, 则第2个编号为535, 故选:C . 【点睛】本题考查了简单随机抽样中的随机数表法,主要考查随机抽样的应用,根据定义选择满足条件的数据是解决本题的关键.本题属于基础题.7.某企业2018年全年投入研发资金150万元,为激励创新,该企业计划今后每年投入的研发资金比上年增长8%,则该企业全年投入的研发资金开始超过200万元的年份是( )(参考数据:lg1.080.033≈,lg20.301≈,lg30.477)≈A .2020B .2021C .2022D .2023【答案】C【解析】设该企业全年投入的研发资金开始超过200万元的年份是第n 年,则n 2018150(18%)200-⨯+≥,进而得出.【详解】设该企业全年投入的研发资金开始超过200万元的年份为n ,则n 2018150(18%)200-⨯+≥,则2lg2lg30.6020.477n 201820182021.8lg1.080.033--≥+≈+≈,取n 2022=. 故选:C . 【点睛】本题考查了对数的运算性质、对数函数的单调性、不等式的解法,考查了推理能力与计算能力,属于基础题.8.如图是某赛季甲、乙两名篮球运动员9场比赛所得分数的茎叶图,则下列说法错误的是( )A .甲所得分数的极差为22B .乙所得分数的中位数为18C .两人所得分数的众数相等D .甲所得分数的平均数低于乙所得分数的平均数 【答案】D【解析】根据茎叶图,逐一分析选项,得到正确结果. 【详解】甲的最高分为33,最低分为11,极差为22,A 正确;乙所得分数的中位数为18,B 正确;甲、乙所得分数的众数都为22,C 正确;甲的平均分为11151720222224323319699x ++++++++==甲,乙的平均分为8111216182022223116099x ++++++++==乙 ,甲所得分数的平均数高于乙所得分数的平均数,D 错误,故选D. 【点睛】本题考查了根据茎叶图,求平均数,众数,中位数,考查基本概念,基本计算的,属于基础题型. 9.函数()()212ln 12f x x x =-+的图象大致是( ) A .B .C .D .【答案】A【解析】函数有意义,则:10,1x x +>∴>-, 由函数的解析式可得:()()21002ln 0102f =⨯-+=,则选项BD 错误; 且211111112ln 1ln ln 402222848f ⎛⎫⎛⎫⎛⎫-=⨯--⨯-+=-=+> ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,则选项C 错误;本题选择A 选项.点睛:函数图象的识辨可从以下方面入手:(1)从函数的定义域,判断图象的左右位置;从函数的值域,判断图象的上下位置.(2)从函数的单调性,判断图象的变化趋势.(3)从函数的奇偶性,判断图象的对称性.(4)从函数的特征点,排除不合要求的图象.利用上述方法排除、筛选选项. 10.设()1fx -是函数()()12x x f x a a -=-(1a >)的反函数,则使()11f x ->成立的x 的取值范围为( )A .21,2a a ⎛⎫-+∞ ⎪⎝⎭B .21,2a a ⎛⎫--∞ ⎪⎝⎭C .21,2a a a ⎛⎫- ⎪⎝⎭D .[),a +∞【答案】A【解析】首先由函数()f x 求其反函数,要用到解指数方程,整体换元的思想,将x a 看作整体解出,然后由1()1f x ->构建不等式解出即可.【详解】由题意设1()2x xy a a -=-整理化简得2210x x a ya --=,解得x a y =0x a >Q ,x a y ∴=log (a x y ∴=1()log (a f x x -∴=+由使1()1fx ->得log (1a x +>1a >Q ,x a ∴>,a x -所以0a x -≤①或0a x ->且221()x a x +>-②所以x a ≥或212a x a a-<< 由此解得:212a x a ->.故选:A . 【点睛】本题考查反函数的概念、求反函数的方法、解指数方程、解不等式等知识点,有一定的综合性.11.定义在R 上的函数()f x 满足:对任意12,x x R ∈有()()()12121f x x f x f x +=+-,则A .()f x 是偶函数B .()f x 是奇函数C .()1f x -是偶函数D .()1f x -是奇函数【答案】D【解析】设()()1F x f x =-,由()()()12121f x x f x f x +=+-,()()()1212F x x F x F x +=+,由特值法求得()00F =,令12,x x x x ==-,可得结果.【详解】设()()1F x f x =-,由()()()12121f x x f x f x +=+-, 可得()()()1212111f x x f x f x +-=-+- 则()()()1212F x x F x F x +=+, 令120x x ==,得()00F =, 令12,x x x x ==-,()()()00F F x F x =+-=, ()()1F x f x ∴=-是奇函数,故选D.【点睛】判断函数的奇偶性,其中包括两个必备条件:(1)定义域关于原点对称,这是函数具有奇偶性的必要不充分条件,所以首先考虑定义域; (2)判断()f x 与()f x -是否具有等量关系.在判断奇偶性的运算中,可以转化为判断奇偶性的等价关系式()()0f x f x +-= (奇函数)或()()0f x f x --= (偶函数)是否成立.12.近代世界三大数学家之一高斯发明了取整函数,设x ∈R ,用[]x 表示不超过x 的最大整数,则[]y x =称为取整函数,例如:[]3.54-=-,[]2.12=,已知函数()131133x xf x +=-+,则()y f x ⎡⎤=⎣⎦的值域是( ) A .{}0,1 B .{}1,1-C .{}1,0,1-D .{}1,0,1,2-【答案】D【解析】分离常数法化简()f x ,根据新定义即可求得函数[()]y f x =的值域. 【详解】1313(31)3131831()3(1331331333133x x x x x x f x ++-=-=-=--=-∈-++++,8)3.∴当1(3x ∈-,0)时,[()]1y f x ==-;当[0x ∈,1)时,[()]0y f x ==; 当[1x ∈,2)时,[()]1y f x ==; 当[2x ∈,8)3时,[()]2y f x ==.∴函数[()]y f x =的值域是{}1,0,1,2-.故选:D . 【点睛】本题考查了新定义的理解和应用,考查了分离常数法求函数的值域,意在考查学生对这些知识的理解掌握水平.二、填空题13.函数y =的定义域为______. 【答案】1(,1]2.【解析】由函数的解析式利用偶次根式被开方数大于等于0,真数大于0,列出不等式,解得x 的范围,可得函数的定义域. 【详解】由函数的解析式可得2x ﹣1>0,且()0.5log 210x -≥,即0211x <-≤解得112x <≤,故函数的定义域为1(,1]2, 故答案为:1(,1]2.【点睛】本题主要考查求对数函数型的定义域,属于基础题.14.若()()1133132a a --+<-,则实数a 的取值范围是______.【答案】23(,)(,1)32-∞-U【解析】由题得113311()(),132a a<+-即11132a a <+-,解分式不等式得解. 【详解】由题得11331111()(),132132a a a a<∴<+-+-, 所以110132a a-<+-, 所以321320,0(1)(32)(1)(23)a a a a a a a ----<∴<+-+-, 所以(1)(23)(32)0a a a +--<,所以2332a <<或1a <-, 所以a 的取值范围为23(,)(,1)32-∞-U .故答案为:23(,)(,1)32-∞-U【点睛】本题主要考查幂函数的图象和性质,考查分式不等式的解法,意在考查学生对这些知识的理解掌握水平.15.已知0x >,0y >,且280x y xy +-=,若不等式a x y ≤+恒成立,则实数a 的范围是______. 【答案】18a „【解析】利用消元法,消去其中一个参数后,利用基本不等式求解最小值. 【详解】 280x y xy +-=Q28xy x ∴=- 又0x Q >,0y >,80x ∴->那么2226(8)10(8)1616(8)1010188888x x x x x x y x x x x x x --+-++=+===-++=----…当且仅当12x =,6y =时取等号. 不等式a x y +„恒成立, 所以18a „. 故答案为:18a „. 【点睛】本题考查了基本不等式的灵活运用能力,意在考查学生对这些知识的理解掌握水平,属于基础题.16.已知()f x 为定义在R 上的偶函数,2()()g x f x x =+,且当(,0]x ∈-∞时,()g x 单调递增,则不等式(1)(2)23f x f x x +-+>+的解集为__________. 【答案】3(,)2-+∞【解析】根据题意,分析可得f (x +1)﹣f (x +2)>2x +3⇒f (x +1)+(x +1)2>f (x +2)+(x +2)2⇒g (x +1)>g (x +2),由函数奇偶性的定义分析可得g (x )为偶函数,结合函数的单调性分析可得g (x +1)>g (x +2)⇒|x +1|>|x +2|,解可得x 的取值范围,即可得答案. 【详解】根据题意,g (x )=f (x )+x 2,则f (x +1)﹣f (x +2)>2x +3⇒f (x +1)+(x +1)2>f (x +2)+(x +2)2⇒g (x +1)>g (x +2),若f (x )为偶函数,则g (﹣x )=f (﹣x )+(﹣x )2=f (x )+x 2=g (x ),即可得函数g (x )为偶函数,又由当x ∈(﹣∞,0]时,g (x )单调递增,则g (x )在[0,+∞)上递减, 则g (x +1)>g (x +2)⇒|x +1|<|x +2|⇒(x +1)2<(x +2)2,解可得x 32->, 即不等式的解集为(32-,+∞); 故答案为:(32-,+∞). 【点睛】本题考查函数奇偶性与单调性的综合应用,注意分析g (x )的奇偶性与单调性,属于中档题.三、解答题17.已知函数()22()log log 28x f x x ⎛⎫=⋅⎡⎤ ⎪⎣⎦⎝⎭,函数()1423x x g x +=--. (1)判断并求函数()f x 的值域;(2)若不等式()()0f x g a -≤对任意实数[]1,2a ∈恒成立,试求实数x 的取值范围.【答案】(1)[4-,)+∞;(2)[1,4].【解析】(1)根据对数的运算性质即可得到22()(log 1)4f x x =--,即可求出函数的值域;(2)先求出g (a )的最小值,再得到222(log 1)1)x -„,解得即可【详解】(1)22()(log )[log (2)]8x f x x =⋅, 2222(log log 8)(log 2log )x x =-+,22(log 3)(1log )x x =-+,22222log 2log 3(log 1)44x x x =--=---…,即()f x 的值域为[4-,)+∞.(2)Q 不等式()f x g -(a )0„对任意实数[]1,2a ∈恒成立,()f x g ∴„(a )min ,122()423(2)223(21)4x x x x g x x +=--=-⋅-=--Q , Q 实数[1,2]a ∈g ∴(a )2(21)4a =--,g ∴(a )在[1,2]上为增函数,g ∴(a )(1)3min g ==-,22()(log 1)43f x x =---Q „,222(log 1)1x ∴-„,21log 11x ∴--剟,20log 2x ∴剟,解得14x ≤≤,故x 的取值范围为[1,4]【点睛】本题考查了指数函数和对数函数的图象和性质以及函数恒成立的问题,意在考查学生对这些知识的理解掌握水平和分析推理能力.18.智能手机的出现,改变了我们的生活,同时也占用了我们大量的学习时间.某市教育机构从500名手机使用者中随机抽取100名,得到每天使用手机时间(单位:分钟)的频率分布直方图(如图所示),其分组是: [](]0,20,20,40,(]]]40,60,(60,80,(80,100.(1)根据频率分布直方图,估计这500名手机使用者中使用时间的中位数是多少分钟? (精确到整数)(2)估计手机使用者平均每天使用手机多少分钟? (同一组中的数据以这组数据所在区间中点的值作代表)(3)在抽取的100名手机使用者中在(]20,40和(]40,60中按比例分别抽取2人和3人组成研究小组,然后再从研究小组中选出2名组长.求这2名组长分别选自(]20,40和(]40,60的概率是多少?【答案】(1) 57分钟. (2)58分钟;(3) 35【解析】(1)根据中位数将频率二等分可直接求得结果;(2)每组数据中间值与对应小矩形的面积乘积的总和即为平均数;(3)采用列举法分别列出所有基本事件和符合题意的基本事件,根据古典概型概率公式求得结果.【详解】(1)设中位数为x ,则()0.0023200.01200.015400.5x ⨯+⨯+⨯-= 解得:170573x =≈(分钟) ∴这500名手机使用者中使用时间的中位数是57分钟(2)平均每天使用手机时间为:0.05100.230+0.350+0.270+0.259058⨯+⨯⨯⨯⨯=(分钟)即手机使用者平均每天使用手机时间为58分钟(3)设在(]20,40内抽取的两人分别为,a b ,在(]40,60内抽取的三人分别为,,x y z , 则从五人中选出两人共有以下10种情况:()()()()()()()()()(),,,,,,,,,,,,,,,,,,,a b a x a y a z b x b y b z x y x z y z两名组长分别选自(]20,40和(]40,60的共有以下6种情况:()()()()()(),,,,,,,,,,,a x a y a z b x b y b z∴所求概率63105p == 【点睛】本题考查根据频率分布直方图计算平均数和中位数、古典概型概率问题的求解;关键是能够明确平均数和中位数的估算原理,从而计算得到结果;解决古典概型的常用方法为列举法,属于常考题型.19.已知函数()21x f x a e =-+( 2.71828e =⋅⋅⋅). (1)证明()f x 的单调性;(2)若函数()f x 为奇函数,当()0,x ∈+∞时,()xmf x e ≤恒成立,求实数m 的取值范围.【答案】(1)单调递增,证明见解析;(2)3m ≤+【解析】(1)用定义证明函数在定义域内单调递增;(2)先根据函数的奇偶性求出a=1,从而得到2131x x m e e ≤-++-,再利用基本不等式求最值得解. 【详解】(1)()f x 是R 上的单调递增函数.证明:因()f x 的定义域为R ,任取1x ,2x R ∈且12x x <. 则12121221222()()()11(1)(1)x x x x x x e e f x f x e e e e --=-=++++. x y e =Q 为增函数,∴120x x e e >>,∴110x e +>,210x e +>.21()()0f x f x ∴->,21()()f x f x ∴>,故()f x 是R 上的递增函数.(2)()f x Q 为奇函数,()()f x f x ∴-=-,2211x x a a e e -∴-=-+++,22a ∴=,1a \=, 21()1=011x x x e f x e e -∴=->++, 因为()xmf x e ≤, 所以22()(1)3(1)2213111x x x x x x x x e e e e m e e e e +-+-+≤==-++---, 因为x>0,所以10x e ->,所以213331x x e e -++≥=+-,当且仅当211x x e e -=-即ln(1x =+时取最小值.所以3m ≤+【点睛】本题主要考查函数单调性的判定和奇偶性的应用,考查不等式的恒成立问题和基本不等式求最值,意在考查学生对这些知识的理解掌握水平和分析推理能力.20.定义域为R 的函数()f x 满足:对于任意的实数x ,y 都有()()()f x y f x f y +=+成立,且当0x <时,()0f x >恒成立,且()()nf x f nx =(n 是一个给定的正整数).(1)判断函数()f x 的奇偶性,并证明你的结论;(2)0a <时,解关于x 的不等式()()()()2211f ax nf x f a x nf a n n->-. 【答案】(1)()f x 为奇函数,证明见解析;(2)①当a n <- 时,原不等式的解集为2{|n x x a>或}x a <;②当a n =- 时,原不等式的解集为{|}x x n ≠-;③当0n a -<< 时,原不等式的解集为{|x x a >或2}n x a<. 【解析】(1)利用函数奇偶性的定义,结合抽象函数关系,利用赋值法进行证明;(2)先证明函数的单调性,再利用抽象函数关系,结合函数奇偶性和单调性定义转化为一元二次不等式,讨论参数的范围进行求解即可【详解】(1)()f x 为奇函数,证明如下;由已知对于任意 实数x ,y 都有()()()f x y f x f y +=+ 恒成立.令0x y ==,得(00)(0)(0)f f f +=+所以(0)0f =.令y x =-,得()()()0f x x f x f x -=+-=.所以对于任意x ,都有()()f x f x -=-.所以()f x 是奇函数.(2)设任意1x ,2x 且12x x <,则210x x ->,由已知21()0f x x -<,又212121()()()()()0f x x f x f x f x f x -=+-=-<得21()()f x f x <,根据函数单调性的定义知()f x 在(,)-∞+∞ 上是减函数. Q 2211()()()()f ax nf x f a x nf a n n->-., 222()()[()f ax f a x n f x f ∴->-(a )].所以222()()f ax a x n f x a ->-,所以 222()[()]f ax a x f n x a ->-,因为 ()f x 在(,)-∞+∞ 上是减函数,所以222()ax a x n x a -<-.即2()()0x a ax n --<,因为0a <,所以2()()0n x a x a-->. 讨论:①当20n a a <<,即a n <- 时,原不等式的解集为2{|n x x a>或}x a <; ②当2n a a=,即a n =- 时,原不等式的解集为{|}x x n ≠-; ③当20n a a <<,即0n a -<< 时,原不等式的解集为{|x x a >或2}n x a<. 故①当a n <- 时,原不等式的解集为2{|n x x a>或}x a <;②当a n =- 时,原不等式的解集为{|}x x n ≠-;③当0n a -<< 时,原不等式的解集为{|x x a >或2}n x a<. 【点睛】本题主要考查抽象函数的应用,利用函数奇偶性和单调性的定义,利用赋值法是解决本题的关键.考查学生的转化能力,综合性较强,有一定的难度.。
2019-2020学年辽宁省沈阳东北育才学校高部高一上学期第一次月考数学试题(解析版)
高中数学资料大全尊敬的读者朋友们:本文档内容是我们精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为资料分析笔记整理的全部内容。
注:资料封面,下载即可删除2019-2020学年辽宁省沈阳东北育才学校高部高一上学期第一次月考数学试题一、单选题1.设集合{}1,2,4A =,{}240B x x x m =-+=.若{}1A B ⋂=,则B =( ) A .{}1,3- B .{}1,0C .{}1,3D .{}1,5【答案】C【解析】∵ 集合{}124A =,,,{}2|40B x x x m =-+=,{}1A B =∴1x =是方程240x x m -+=的解,即140m -+= ∴3m =∴{}{}{}22|40|43013B x x x m x x x =-+==-+==,,故选C2.如果集合{}2|410A x ax x =++=中只有一个元素,则a 的值是( ) A .0 B .4 C .0或4 D .不能确定【答案】C【解析】利用0a =与0a ≠,结合集合元素个数,求解即可. 【详解】解:当0a =时,集合21{|410}{}4A x ax x =++==-,只有一个元素,满足题意;当0a ≠时,集合2{|410}A x ax x =++=中只有一个元素,可得2440a ∆=-=,解得4a =. 则a 的值是0或4. 故选:C . 【点睛】本题考查了集合中元素的个数问题及方程的解集有且仅有一个元素的判断,属于基础题.3.已知集合{}25A x x =-≤≤,{}121B x m x m =+≤≤-,若AB B =,则实数m 的取值范围是( )【解析】由A B B =可得B A ⊆,再对集合B 分类讨论,即可得答案;【详解】A B B B A ⋂=⇒⊂①若B =∅,则121m m +>-,解得2m <;②若B ≠∅,则m 应满足:12112215m m m m +≤-⎧⎪+≥-⎨⎪-≤⎩,解得23m ≤≤;综上得3m ≤. 故选:B . 【点睛】本题考查根据集合间的基本关系求参数的取值,考查运算求解能力,求解时注意等号能否取到.4.设U 为全集,A ,B 是集合,则“存在集合C 使得A C ⊆,UB C ⊆”是“A B =∅”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充要条件 D .既不充分也不必要条件【答案】C【解析】通过集合的包含关系,以及充分条件和必要条件的判断,推出结果. 【详解】由题意A C ⊆,则U UC A ⊆,当UB C ⊆,可得“A B =∅”;若“AB =∅”能推出存在集合C 使得A C ⊆,UB C ⊆,U ∴为全集,A ,B 是集合,则“存在集合C 使得A C ⊆,U B C ⊆”是“A B =∅”的充分必要的条件. 故选C . 【点睛】本题考查集合与集合的关系,充分条件与必要条件的判断,是基础题. 5.下列说法中,正确的是( ) A .若a b >,c d >,则ac bd > B .若22a bc c <,则a b <【解析】利用不等式的性质以及举反例逐一判断即可. 【详解】对于A ,若a b >,c d >,当2,1a b ==,2,3c d =-=-时,则ac bd <,故A 不正确; 对于B ,若22a bc c<,则20c >,两边同时乘以2c ,可得a b <,故B 正确; 对于C ,若ac bc >,当0c <时,则a b <,故C 错误;对于D ,a b >,c d >,当0,2a b ==-,4,1c d ==,则a c b d -<-,故D 错误. 故选:B 【点睛】本题考查了不等式的性质,掌握性质是解题的关键,属于基础题. 6.设a ,b ,c 为正数,则“a b c +>”是“222a b c +>”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不修要条件【答案】B【解析】根据不等式的性质,结合充分条件和必要条件的定义进行判断即可. 【详解】 解:a ,b ,c 为正数,∴当2a =,2b =,3c =时,满足a b c +>,但222a b c +>不成立,即充分性不成立,若222a b c +>,则22()2a b ab c +->,即222()2a b c ab c +>+>,a b c +>,成立,即必要性成立, 则“a b c +>”是“222a b c +>”的必要不充分条件, 故选:B . 【点睛】本题主要考查充分条件和必要条件的判断,结合不等式的性质是解决本题的关键. 7.“|x+1|+|x﹣2|≤5”是“﹣2≤x ≤3”的( ) A .充分不必要条件 B .必要不充分条件【解析】【详解】 由|x +1|+|x −2|≤5,x ≥2时,化为2x −1≤5,解得2≤x ≤3:−1≤x <2时,化为x +1−(x −2)≤5,化为:3≤5,因此−1≤x <2;x <−1时,化为−x −1−x +2≤5,解得−2≤x <−1. 综上可得:−2≤x ≤3.∴“|x +1|+|x −2|≤5”是“−2≤x ≤3”的充要条件. 本题选择C 选项.点睛:绝对值不等式的解法:法一:利用绝对值不等式的几何意义求解,体现了数形结合的思想; 法二:利用“零点分段法”求解,体现了分类讨论的思想;法三:通过构造函数,利用函数的图象求解,体现了函数与方程的思想.8.已知集合21M x x ⎧⎫=<⎨⎬⎩⎭,{N y y ==,则()M N =R ( ) A .(]0,2 B .[]0,2C .∅D .[]1,2【答案】B【解析】解出集合M 、N ,利用补集和交集的定义可求得集合()M N R .【详解】21x<,即210x -<,即20xx -<,等价于()20x x ->,解得2x >或0x <, 则()(),02,M =-∞+∞,[]0,2M ∴=R ,{[)0,N y y ===+∞,()[]0,2N M =R ,故选:B . 【点睛】本题考查补集和交集的混合运算,同时也考查了分式不等式和函数值域的求解,考查计算能力,属于基础题. 9.已知1:1p m>,q :对于任意的2R,210x mx mx ∈++>恒成立,p 成立是q 成立的( ) A .充分不必要条件 B .必要不充分条件【解析】对于p ,111001mm m m--=>⇔<<;对于q ,当0m =时,成立.当0m ≠时,2440m m m >⎧⎨∆=-<⎩,解得01m <<.故01m ≤<.所以p 是q 的充分不必要条件. 10.若“122x ⎡⎤∃∈⎢⎥⎣⎦,使得2210x x λ-+<成立”是假命题,则实数λ的取值范围为( )A .(-∞ B .⎡⎤⎣⎦C .⎡⎤-⎣⎦D .3λ=【答案】A【解析】因为命题“1[,2]2x ∃∈,使得2210x x λ-+<成立”为假命题,所以该命题的否定“1[,2]2x ∀∈,使得2210x x λ-+≥恒成立成立”,即221x x λ+≤对于1[,2]2x ∀∈恒成立,而22112x x x x +=+≥=12x x =,即x =时取等号),即λ≤ A. 11.已知不等式222xy ax y ≤+,若对任意[]1,2x ∈及[]2,3y ∈,该不等式恒成立,则实数a 的范围是( ) A .3519a -≤≤- B .31a -≤≤- C .1a ≥- D .3a ≥-【答案】C【解析】利用换元法令yt x=,将不等式问题转化为一元二次函数的恒成立问题,即可得答案; 【详解】由题意可知:不等式222xy ax y ≤+对于[]1,2x ∈,[]2,3y ∈恒成立, 即:22y y a x x ⎛⎫≥- ⎪⎝⎭,对于[]1,2x ∈,[]2,3y ∈恒成立,y∵22112248y t t t ⎛⎫=-+=--+ ⎪⎝⎭,∴max 1y =-, ∴1a ≥-. 故选:C . 【点睛】本题考查换元法及一元二次函数恒成立问题,考查函数与方程思想、转化与化归思想,考查逻辑推理能力、运算求解能力,求解时注意新元的取值范围的确定. 12.若正数a 、b 满足:121a b +=则2112a b +--的最小值为( ) A .2 BC.D .1【答案】A【解析】由已知条件得出21a b a =-,由0b >可得出1a >,将21ab a =-代入所求代数式并化简得出21211212a ab a -+=+---,利用基本不等式可求得所求代数式的最小值. 【详解】 正数a 、b 满足121a b +=,则2111a b a a -=-=,21a b a ∴=-, 0a >,201ab a =>-,可得1a >,所以,21212121222121112211a a a b a a a a a -+=+=+=+≥=--------, 当且仅当2112a a -=-时,即当3a b ==时取等号. 因此,2112a b +--的最小值为2. 故选:A . 【点睛】本题考查利用基本不等式求代数式的最小值,考查计算能力,属于中等题.二、填空题13.若集合{}260M x x x =+-=,{}20,N x ax a =+=∈R ,且N M ⊆,则a 的取值的集合为______.【答案】21,0,3⎧⎫-⎨⎬⎩⎭【解析】求出集合M ,由N M ⊆可分N =∅、{}3N =-、{}2N =三种情况讨论,可求得实数a 的值. 【详解】依题意得{}{}2603,2M x x x =+-==-,{}20,N x ax a =+=∈R .N M ⊆所以集合N 可为{}3-、{}2或∅.①当N =∅时,即方程20ax +=无实根,所以0a =,符合题意; ②当{}3N =-时,则3-是方程20ax +=的根,所以23a =,符合题意; ③当{}2N =时,则2是方程20ax +=的根,所以1a =-,符合题意; 综上所得,0a =或23a =或1a =-,所以a 的取值的集合为21,0,3⎧⎫-⎨⎬⎩⎭.故答案为:21,0,3⎧⎫-⎨⎬⎩⎭.【点睛】本题考查利用集合的包含关系求参数值,解题时不要忽略对空集的讨论,考查计算能力,属于基础题.14.若关于x 的不等式220ax x a -+<的解集为∅,则实数a 的取值范围为______.【答案】4⎫+∞⎪⎪⎣⎭【解析】分0a =和0a ≠两种情况讨论,在0a =时检验即可,在0a ≠时,结合题意可得出关于实数a 的不等式组,由此可解得实数a 的取值范围. 【详解】由题意可知,关于x 的不等式220ax x a -+≥的解集为R . 当0a =时,可得0x -≥,解得0x ≤,不合乎题意;当0a ≠时,则20180a a >⎧⎨∆=-≤⎩,解得a ≥.综上所述,实数a 的取值范围是4⎫+∞⎪⎪.故答案为:4⎫+∞⎪⎪⎣⎭. 【点睛】本题考查利用二次不等式在实数集上恒成立求参数,考查分类讨论思想的应用以及运算求解能力,属于中等题. 15.给出下列四个命题:(1)若,a b c d >>,则a d b c ->-;(2)若22a x a y >,则x y >;(3)a b >,则11a b a>-; (4)若110a b<<,则2ab b <. 其中正确命题的是 .(填所有正确命题的序号) 【答案】(1)(2)(4) 【解析】【详解】(1)若,a b c d >>,d c ->-,则a d b c ->-,正确;(2)若22a x a y >,可得210a>,则x y >,正确; (3)中0a =时不等式不成立; (4)若110a b<<,a b >,则2ab b <,正确. 故正确的只有(1)(2)(4).16.设集合X 是实数集R 的子集,如果点0x ∈R 满足:对任意0a >,都存在x X ∈,使得00x x a <-<,称0x 为集合X 的聚点,则在下列集合中: ①{}0x x ∈≠Z ;②{},0x x x ∈≠R ;③1,x x n n *⎧⎫=∈⎨⎬⎩⎭N ;④,1nx x n n *⎧⎫=∈⎨⎬+⎩⎭N 以0为聚点的集合有______. 【答案】②③【解析】根据集合聚点的新定义,结合集合的表示及集合中元素的性质,逐项判定,即可求解. 【详解】由题意,集合X 是实数集R 的子集,如果点x ∈R 满足:对任意0a >,都存在x X ∈,使得00x x a <-<,称0x 为集合X 的聚点, ①对于某个0a >,比如0.5a =,此时对任意的{}0x x x ∈∈≠Z ,都有00x x -=或者01x x -≥, 也就是说不可能000.5x x <-<,从而0不是{}0x x ∈≠Z 的聚点; ②集合{}0x x ∈≠R ,对任意的a ,都存在2ax =(实际上任意比a 小得数都可以), 使得02ax a <=<,∴0是集合{}0x x ∈≠R 的聚点; ③集合1,x x n n *⎧⎫=∈⎨⎬⎩⎭N 中的元素是极限为0的数列, 对于任意的0a >,存在1n a >,使10x a n<=<, ∴0是集合1,x x n n *⎧⎫=∈⎨⎬⎩⎭N 的聚点; ④中,集合,1nx x n n *⎧⎫=∈⎨⎬+⎩⎭N 中的元素是极限为1的数列,除了第一项0之外,其余的都至少比0大12,∴在12a <的时候,不存在满足得0x a <<的x , ∴0不是集合,1nx x n n *⎧⎫=∈⎨⎬+⎩⎭N 的聚点. 故答案为:②③. 【点睛】本题主要考查了集合新定义的应用,其中解答中认真审题,正确理解集合的新定义——集合中聚点的含义,结合集合的表示及集合中元素的性质,逐项判定是解答的关键,着重考查推理与论证能力,属于难题.三、解答题17.设全集U=R ,集合A={x|1≤x <4},B={x|2a≤x <3-a}.(1)若a=-2,求B∩A ,B∩(∁U A);(2)若A∪B=A ,求实数a 的取值范围. 【答案】(1)B ∩A =[1,4),B ∩(∁U A )= [-4,1)∪[4,5);(2)1[,)2+∞ .【解析】(1)利用补集的定义求出A 的补集,然后根据交集的定义求解即可直接求解即可;(2 )分类讨论B 是否是空集,列出不等式组求解即可. 【详解】∵B ={x |2a ≤x <3-a },∴a =-2时,B ={-4≤x <5},所以B ∩A =[1,4),B ∩(∁U A )={x |-4≤x <1或4≤x <5}=[-4,1)∪[4,5).(2)A ∪B =A ⇔B ⊆A ,①B =∅时,则有2a ≥3-a ,∴a ≥1,②B ≠∅时,则有,∴,综上所述,所求a 的取值范围为.【点睛】 本题主要考查集合的交集、集合的补集以及空集的应用,属于简答题.要解答本题,首先必须熟练应用数学的转化与划归思想及分类讨论思想,将并集问题转化为子集问题,其次分类讨论进行解答,解答集合子集过程中,一定要注意空集的讨论,这是同学们在解题过程中容易疏忽的地方,一定不等掉以轻心.18.已知集合{}232A x y x x==--,{}22210B x x x m =-+-≤. (1)若3m =,求A B ;(2)若0m >,A B ⊆,求m 的取值范围.【答案】(1){}21x x -≤≤;(2)4m ≥.【解析】(1)由集合描述分别求得{}31A x x =-≤≤,{}24B x x =-≤≤,利用集合的交运算求A B 即可;(2)根据A B ⊆有1311m m -≤-⎧⎨+≥⎩解集为m 的取值范围. 【详解】 (1)由2320x x --≥,解得31x -≤≤,即{}31A x x =-≤≤;当3m =时,22210x x m -+-≤可化为2280x x --≤,即()()420x x -+≤,解得24x -≤≤,即{}24B x x =-≤≤, ∴{}21A B x x ⋂=-≤≤;(2)0m >,{}{}22210|11B x x x m x m x m =-+-≤=-≤≤+. ∵A B ⊆,∴1311m m -≤-⎧⎨+≥⎩,解得4m ≥, 所以m 的取值范围是4m ≥.【点睛】本题考查了集合,由集合描述求出集合,利用集合的基本运算求交集,根据包含关系求参数范围.19.设命题p :2101x x -<-,命题q :()()22110x a x a a -+++≤, (1)若1a =,求不等式()22110x a x a -+++≤的解集;(2)若p 是q 的充分不必要条件,求实数a 的取值范围.【答案】(1)[]1,2;2)1[0,]2.【解析】(1)当1a =时,不等式转化为232(1)(2)0x x x x -+=--≤,结合一元二次不等式的解法,即可求解.(2)分别求得命题,p q 的解集,结合p 是q 的充分不必要条件,得到p 是q 的真子集,列出不等式组,即可求解.【详解】(1)由题意,当1a =时,不等式()()22110x a x a a -+++≤, 即不等式232(1)(2)0x x x x -+=--≤,解得12x ≤≤,不等式的解集[]1,2.(2)由命题21:01x p x -<-,即()()2110x x --<,解得112x <<, 即不等式2101x x -<-解集为1,12⎛⎫ ⎪⎝⎭, 命题2:2110q x a x a a ,即()()10x a x a --+≤⎡⎤⎣⎦,解得1a x a ≤≤+, 所以不等式()22110x a x a -+++≤的解集为[],1a a +, 因为p 是q 的充分不必要条件,即p 是q 的真子集,所以1211a a ⎧≤⎪⎨⎪≤+⎩,解得102a ≤≤, 所以实数a 的取值范围是1[0,]2.【点睛】本题主要考查了一元二次不等式的求解,以及利用充分条件、必要条件求解参数问题,其中解答中熟记一元二次不等式的解法,以及充分、必要的条件的转化是解答的关键,着重考查推理与运算能力.20.已知集合{}220A x x x =-->,(){}222550B x x k x k =+++<.(1)若k 0<,求B ;(2)若A B 中有且仅有一个整数2-,求实数k 的取值范围.【答案】(1)52B x x k ⎧⎫=-<<-⎨⎬⎩⎭;(2)[)3,2-. 【解析】(1)当k 0<时,通过解不等式()222550x k x k +++<可求得集合B ;(2)解出集合A ,对k 与52的大小进行分类讨论,结合题意可得出关于实数a 的不等式,进而可求得实数a 的取值范围.【详解】(1)0k <,由()222550x k x k +++<得()()250x x k ++<,解得52x k -<<-, 因此,52B x x k ⎧⎫=-<<-⎨⎬⎩⎭; (2){}{2201A x x x x x =-->=<-或}2x >, (){}()(){}222550250B x x k x k x x x k =+++<=++<.当52k ->-时,即当52k >时,52B x k x ⎧⎫=-<<-⎨⎬⎩⎭, 此时A B 中没有整数2-,不满足条件; 当52k =时,B =∅,不满足条件; 当52k <时,52k -<-,52B x x k ⎧⎫=-<<-⎨⎬⎩⎭, 要使得AB 中有且仅有一个整数2-,则23k -<-≤,解得32k -≤<. 因此,实数k 的取值范围是[)3,2-.【点睛】本题考查集合的求解,同时也考查了利用交集中的元素求参数的取值范围,考查计算能力,属于中等题.21.已知函数()222f x x ax a =+-+.(1)若对于任意x ∈R ,()0f x ≥恒成立,求实数a 的取值范围;(2)若对于任意[]1,1x ∈-,()0f x ≥恒成立,求实数a 的取值范围;(3)若对于任意[]1,1a ∈-,2220x ax a +-+>恒成立,求实数x 的取值范围.【答案】(1)21a -≤≤;(2)[]31-,;(3){}1x x ≠-.【解析】(1)由题意利用二次函数的性质可得0∆,由此求得求得a 的范围. (2)由于对于任意[1x ∈-,1],()0f x 恒成立,故()0min f x .利用二次函数的性质,分类讨论求得a 的范围.(3)问题等价于()2(21)20g a x a x =-++>,再由(1)g -、g (1)都大于零,求得x 的范围.【详解】(1)若对于任意x ∈R ,()2220f x x ax a =+-+≥恒成立,则有()24420a a ∆=--+≤,解得21a -≤≤.(2)由于对于任意[]1,1x ∈-,()0f x ≥恒成立,故()min 0f x ≥.又函数()f x 的图象的对称轴方程为x a =-,当1a -<-时,()()min 1330f x f a =-=-≥,求得a 无解;当1a ->时,()()min 130f x f a ==+≥,求得31a -≤<-;当[]1,1a -∈-时,()()2min 2f x f a a a =-=--+,求得11a -≤≤.综上可得,a 的范围为[]3,1-.(3)若对于任意[]1,1a ∈-,2220x ax a +-+>恒成立,等价于()()22120g a x a x =-++>,∴()()2212301210g x x g x x ⎧-=-+>⎪⎨=++>⎪⎩,求得1x ≠-,即x 的范围为{}1x x ≠-. 【点睛】本题主要考查求二次函数在闭区间上的最值,函数的恒成立问题,二次函数的性质的应用,体现了分类讨论、转化的数学思想,属于中档题.22.已知函数()2f x x a a =--++,()124g x x x =-++.(1)解不等式()6g x <;(2)若存在12,x x R ∈,使得()()12f x g x =成立,求实数a 的取值范围.【答案】(1)()3,1-;(2)[)1,+∞.【解析】(1)分三种情况讨论即可(2)条件“存在12,x x R ∈,使得()()12f x g x =成立”等价于()f x 与()g x 的值域有交集,然后分别求出它们的值域即可.【详解】(1)因为()33,11245,2133,2x x g x x x x x x x +≥⎧⎪=-++=+-≤<⎨⎪--<-⎩,故由()6g x <得:3361x x +<⎧⎨≥⎩或5621x x +<⎧⎨-≤<⎩或3362x x --<⎧⎨<-⎩, 解得原不等式解集为:()3,1-.(2)由(1)可知()g x 的值域为[)3,+∞,显然()f x 的值域为(],2a -∞+. 依题意得:[)(]3,,2a +∞-∞+≠∅,所以实数a 的取值范围为[)1,+∞.【点睛】1.解含有绝对值的不等式时一般要分类讨论.2. “存在12,x x R ∈,使得()()12f x g x =成立”等价于()f x 与()g x 的值域有交集.。
辽宁省实验中学2019-2020学年高一上学期期中考试英语试卷
辽宁省实验中学2019-2020学年高一上学期期中考试英语试卷第二部分阅读理解(共两节,满分35分)第一节(共10小题, 每小题2.5分, 满分25分)ALike many, I felt pressure from my parents and teachers to go to university and study something academic. With top grades I received at the end of high school, I was almost able to enter any course of my pick. Yet the thought of spending the next few years facing the four walls of a classroom caused a lump (肿块) in my throat.After a year majoring in photography at university, which was not just what I expected, I made the decision to take a break and go on a gap year. In fact, I gained more knowledge in the real world in four months than I did from my entire schooling, but most importantly, I learnt so much about myself.One day, my posted photos were noticed by Topdeck Travel, and they asked if they could use some of my travel pictures for their posters. This really was the beginning of my career. I began developing my relationship with Topdeck Travel, and before long, I got my first pay travel overseas to take photographs.Soon I reached the point where I had to make a decision— either to play it safe, go back to university and settle down like everyone else, or to follow my heart and go my own way— a path with an uncertain future. I chose the latter, and it was the scariest and best decision I have ever made.Five years after leaving school, I might not have a university degree, a well-paid job, a husband or a house with a white fence. Instead, I’m sitting at my office, with a cafe by a beach at Goa, India. As I stare past my laptop screen at the sun setting beyond the waves, a salty breeze touches my face.To me, success is about pursuing my dreams and creating my own path instead of trying to follow someone else’s. Somehow, I feel like my life is exactly where it is meant to be.21. What did the author think of going to university?A. She took it seriously.B. She showed little interest.C. She looked forward to it.D. She thought it was a must.22. What benefit did the author gain from her gap year?A. The knowledge about the real world.B. Her paid overseas travel experience.C. Realizing what she really wanted in her life.D. Knowing what really mattered at university.23. What can we infer about the author from the passage?A. She regrets not going back to university.B. She gets less knowledge in the real world.C. She feels quite satisfied with her present life.D. She misses the days working for Topdeck Travel.BIn Britain, business leaders are becoming increasingly concerned that growing numbers of new employees are unable to divide a real pie into eight equal slices.There are so many examples of the shortage of basic literacy and numeration(读写和计算) skills among many school and university leavers.A report from the Confederation of British Industry says the problem is so bad that one in three employers has to send staff for training to learn the English and maths they did not learn at school.“Employers’ views on numeration and literacy are clear — people must read and write fluently and must be able to carry out basic mental arithmetic (算术).” Richard Lambert, director general of the CBI, said.The CBI report, Working on the Three R’s,which was sponsored by the Department for Education, found that poor literacy was a problem in all fields, while poor numeration was of particular concern in the manufacturing and construction field.One company manager complained of a “total lack of knowledge of timetables” among staff, which meant many were unable to carry out simple calculations.A personnel manager for a construction firm said that many applicants were unable to construct a sentence and that grammar, and their handwriting and spelling were often “awful”. He also mentioned the case of an employee who became very expert at hiding his lack of literacy by getting his wife to write his reports for him. The problems are not limited to school leavers, but extend to higher levels of the education system, the CBI said.24. What would be the best title for the text?A. How to Divide a Pie into Eight PartsB. How to Grasp Basic Literacy and Numeration SkillsC. British School Leavers Lack Basic Literacy and Numeration SkillsD. Train School Leavers to Learn English and Maths25. According to the last paragraph, we can know that ________.A. literacy problems go beyond the education system.B. an employee asked his mother to write reports for himC. the schools were to blame for the lack of literacy skillsD. the applicants were poor students in school26. The purpose of writing this passage is to _________.A. offer ways to improve the school leavers’ basic skillB. criticize the existing education systemC. present some information about school leaversD. make comments on employmentCFruit farmers in Okayama, Japan, have managed to make peeling (去皮) a banana optional by developing a special variety with eatable skin. The peel of their “Mongee bananas” isn’t particularly tasty, but it’s much thinner and far less bitter than that of regular bananas, making it 100% eatable.Scientists at D&T Farm in the country’s Okayama Prefecture released the social media-ready news following months of experimenting with a freezing-and-thawing (解冻) method, which keeps the banana tree at extremely cold temperatures followed by a dramatic heat increase. The result is soft and thin skin that hasn’t fully developed. They froze young banana trees to -60 degrees Celsius, planting them again as they began to thaw. This apparently activated an ancient part of their DNA, which not only allows the plant to grow in Japan’s cool climate, but also speeds up its development. While tropical varieties of bananas require two years to grow large enough for consumption (消费), the Mongee banana needs just four months.The first bunch of Mongee bananas hit department stores’ shelves in the November of last year, but getting your hand on one of these incredible fruits remains a huge challenge. D&T Farm only produces 10 bananas per week, and they only deliver them to the Fruit Corner of Tenmanya Okayama, a local department store. But even if you happen to find one available, you’d probably be a bit put off by the price – 648 yen ($5.70) per fruit.Banana peel is an excellent ingredient that can contain vitamin B6 and magnesium related to the production of serotonin (血清素). At the same time, it has a positive effect on both brain and sleep. Research results that ripe fruit peels have a good effect on treating prostatic hypertrophy (前列腺肥大) have also been published.John Guterman, a botanist, says, “And what about shipping? For most of the fruit’s history, the peel has provided protection, allowing it to travel long distances. A softer, more bruise-prone banana would be a step back from hardy banana varieties that travel thousands of miles. In this sense, the day we all stop peeling bananas and instead bite straight through their skin may still bea long way away.27. Compared with regular bananas, Mongee bananas ________.A. are far easier to peelB. have much sweeter fleshC. are much more thin-skinnedD. have a longer growth period28. Why is it hard to buy a Mongee banana now?A. It isn’t affordable at all.B. It hasn’t come into the market yet.C. It is made for certain people.D. Its production ability is still limited.29. What does Paragraph 4 mainly talk about?A. The medical value of banana peel.B. The nutrition (营养) of banana peel.C. The way of making banana peel sweeter.D. The studies about how to make banana peel eatable.30. What does John think of the Mongee banana?A. It should not be widely grown.B. It won’t be spread widely soon.C. It indicates the future of fruits with skin.D. It has no advantage over regular bananas.第二节(共5小题;每小题2分,满分10分)根据短文内容,从短文后的选项中选出能填入空白处的最佳选项。
辽宁省沈阳市实验中学2019-2020学年七年级(上)第一次月考数学试卷(含解析)
2019-2020学年七年级(上)第一次月考数学试卷一.选择题(共10小题)1.将图中的三角形绕虚线旋转一周,所得的几何体是()A.B.C.D.2.如图,用水平的平面截几何体,所得几何体的截面图形标号是()A.B.C.D.3.绝对值小于5的所有整数的和为()A.0 B.﹣8 C.10 D.204.妈妈为今年参加中考的女儿小红制作了一个正方体礼品盒(如图),六个面上各有一个字,连起来就是“预祝中考成功”,其中“祝”的对面是“考”,“成”的对面是“功”,则它的平面展开图可能是()A.B.C.D.5.下列说法正确的是()A.有理数包括正整数、零和负分数B.﹣a不一定是整数C.﹣5和+(﹣5)互为相反数D.两个有理数的和一定大于每一个加数6.下列各组数中,不相等的一组是()A.﹣(+7),﹣|﹣7| B.﹣(+7),﹣|+7|C.+(﹣7),﹣(+7)D.+(+7),﹣|﹣7|7.若|a|=8,|b|=5,a+b>0,那么a﹣b的值是()A.3或13 B.13或﹣13 C.3或﹣3 D.﹣3或13 8.一个数和它的倒数相等,则这个数是()A.1 B.﹣1 C.±1 D.±1和0 9.如果|a|=﹣a,下列成立的是()A.a>0 B.a<0 C.a≥0 D.a≤0 10.下列等式成立的是()A.|±3|=±3 B.|﹣2|=﹣(﹣2) C.(±2)2=±22D.二.填空题(共6小题)11.某个立体图形的三视图的形状都相同,请你写出一种这样的几何体.12.数轴上与﹣1的距离等于3个单位长度的点所表示的数为.13.﹣8的相反数是.如果﹣a=2,则a=.14.若a<0,b>0,且|a|<|b|,则a+b0.15.若|a﹣6|+|b+5|=0,则a+b的值为.16.若规定a*b=5a+2b﹣1,则(﹣4)*6的值为.三.解答题(共11小题)17.(1)画出下列几何体的三种视图(图1).(2)如图2,这是一个由小立方体搭成的几何体的俯视图,小正方体中的数字表示该位置的小立方体的个数,请你画出它的主视图和左视图.18.计算:(1)45+(﹣20)(2)(﹣8)﹣(﹣1)(3)|﹣10|+|+8|(4)(﹣+)×(﹣36)(5)0.47﹣4﹣(﹣1.53)﹣1(6)99×(﹣3)(7)0.25+(﹣)+(﹣)﹣(+)(8)1÷(﹣)×(9)﹣9﹣(﹣3)×2﹣(﹣16)÷4(10)(﹣0.6)﹣(﹣3)﹣(+7)+2﹣|﹣2|(11)﹣5×(﹣3)+(﹣9)×(+3)+17×(﹣3)(12)(+1.75)+(﹣)+(+)+(+1.05)+(﹣)+(+2.2)19.把下列各数在数轴上表示出来,并比较大小.﹣4,3,﹣,0,3,﹣220.若|a|=2,b=﹣3,c是最大的负整数,求a+b﹣c的值.21.已知a、b互为相反数,c、d互为倒数,m的倒数等于它本身,则的值是多少?22.小明学习了“面动成体”之后,他用一个边长为3cm、4cm和5cm的直角三角形,其中一条直角边旋转一周,得到了一个几何体,请计算出几何体的体积.(锥体体积=底面积×高)23.已知有理数a、b、c在数轴上的位置如图所示,求|b﹣a|﹣|a﹣c|+|b﹣c|的值.24.若a,b都是非零的有理数,那么+的值是多少?25.某一出租车一天下午以鼓楼为出发地在东西方向营运,向东走为正,向西走为负,行车里程(单位:km)依先后次序记录如下:+9,﹣3,﹣5,+4,﹣8,+6,﹣3,﹣6,﹣4,+10.(1)将最后一名乘客送到目的地,出租车离鼓楼出发点多远?在鼓楼的什么方向?(2)若每千米的价格为2.4元,司机一个下午的营业额是多少?26.如图,点A、B在数轴上分别表示有理数a、b,在数轴上A、B两点之间的距离AB=|a ﹣b|.回答下列问题:(1)数轴上表示1和﹣3的两点之间的距离是;(2)数轴上表示x和﹣3的两点之间的距离表示为;(3)若x表示一个有理数,请你结合数轴求|x﹣1|+|x+3|的最小值.27.已知:b是最小的正整数,且a、b满足|c﹣5|+|a+b|=0.(1)请求出a、b、c的值;(2)a、b、c所对应的点分别为A、B、C,点P为动点,其对应的数为x,点P在﹣1到1之间运动时(即﹣1≤x≤1),请化简式子:|x+1|﹣|x﹣1|﹣2|x+3|(写出化简过程);(3)在(1)、(2)的条件下,点A、B、C开始在数轴上运动,若点A以每秒一个单位长度的速度向左运动,同时点B以每秒2个单位长度,点C以每秒5个单位长度的速度向右运动3秒钟后,若点B与点C之间的距离表示为BC,点A与点B之间的距离表示为AB,请求BC﹣AB的值.参考答案与试题解析一.选择题(共10小题)1.将图中的三角形绕虚线旋转一周,所得的几何体是()A.B.C.D.【分析】上面的直角三角形旋转一周后是一个圆锥,下面的直角三角形旋转一周后也是一个圆锥.所以应是圆锥和圆锥的组合体.【解答】解:由题意可知,该图应是圆锥和圆锥的组合体.故选:C.2.如图,用水平的平面截几何体,所得几何体的截面图形标号是()A.B.C.D.【分析】当截面的角度和方向不同时,圆锥的截面不相同,当截面与底面平行时,截面是圆,当截面与底面垂直时,截面是三角形,还有其他形状的截面图形.【解答】解:当截面与圆锥的底面平行时,所得几何体的截面图形是圆,故选:A.3.绝对值小于5的所有整数的和为()A.0 B.﹣8 C.10 D.20【分析】找出绝对值小于5的所有整数,求出之和即可.【解答】解:绝对值小于5的所有整数为:0,±1,±2,±3,±4,之和为0.故选:A.4.妈妈为今年参加中考的女儿小红制作了一个正方体礼品盒(如图),六个面上各有一个字,连起来就是“预祝中考成功”,其中“祝”的对面是“考”,“成”的对面是“功”,则它的平面展开图可能是()A.B.C.D.【分析】正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答.【解答】解:A、“祝”的对面是“成”,故本选项错误;B、“祝”的对面是“成”,故本选项错误;C、三个汉字的位置不对应,故本选项错误;D、符合,故本选项正确.故选:D.5.下列说法正确的是()A.有理数包括正整数、零和负分数B.﹣a不一定是整数C.﹣5和+(﹣5)互为相反数D.两个有理数的和一定大于每一个加数【分析】各项利用有理数的加法法则,相反数、有理数的定义判断即可.【解答】解:A、有理数包括整数与分数,错误;B、﹣a不一定是整数,正确;C、﹣5和+(﹣5)相等,错误;D、两个有理数的和不一定大于每一个加数,错误,故选:B.6.下列各组数中,不相等的一组是()A.﹣(+7),﹣|﹣7| B.﹣(+7),﹣|+7|C.+(﹣7),﹣(+7)D.+(+7),﹣|﹣7|【分析】根据绝对值,可得绝对值表示的数,根据去括号,可得答案.【解答】解:+(+7)=7,﹣=﹣7,故D正确,故选:D.7.若|a|=8,|b|=5,a+b>0,那么a﹣b的值是()A.3或13 B.13或﹣13 C.3或﹣3 D.﹣3或13【分析】绝对值的性质:正数的绝对值是它本身,负数的绝对值是它的相反数,0的绝对值是0.有理数的减法运算法则:减去一个数,等于加这个数的相反数.【解答】解:∵|a|=8,|b|=5,∴a=±8,b=±5,又∵a+b>0,∴a=8,b=±5.∴a﹣b=3或13.故选A.8.一个数和它的倒数相等,则这个数是()A.1 B.﹣1 C.±1 D.±1和0【分析】根据倒数的定义进行解答即可.【解答】解:∵1×1=1,(﹣1)×(﹣1)=1,∴一个数和它的倒数相等的数是±1.故选:C.9.如果|a|=﹣a,下列成立的是()A.a>0 B.a<0 C.a≥0 D.a≤0【分析】绝对值的性质:正数的绝对值等于它本身,负数的绝对值等于它的相反数,0的绝对值是0.【解答】解:如果|a|=﹣a,即一个数的绝对值等于它的相反数,则a≤0.故选:D.10.下列等式成立的是()A.|±3|=±3 B.|﹣2|=﹣(﹣2) C.(±2)2=±22D.【分析】根据绝对值、相反数的定义及平方的性质作答.【解答】解:A、|±3|=3,错误;B、|﹣2|=﹣(﹣2)=2,正确;C、(±2)2=22,错误;D、﹣|﹣|=﹣2,错误.故选:B.二.填空题(共6小题)11.某个立体图形的三视图的形状都相同,请你写出一种这样的几何体球(答案不唯一)..【分析】主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.【解答】解:球的3个视图都为圆;正方体的3个视图都为正方形;所以主视图、左视图和俯视图都一样的几何体为球、正方体等.故答案为:球(答案不唯一).12.数轴上与﹣1的距离等于3个单位长度的点所表示的数为﹣4或2 .【分析】根据数轴上与一点距离相等的点有两个,可得答案.【解答】解:数轴上与﹣1的距离等于3个单位长度的点所表示的数为﹣4或2.故答案为:﹣4或2.13.﹣8的相反数是8 .如果﹣a=2,则a=﹣2 .【分析】根据相反数定义解答即可.【解答】解:﹣8的相反数是8.如果﹣a=2,则a=﹣2.故答案为:8,﹣2.14.若a<0,b>0,且|a|<|b|,则a+b>0.【分析】由已知a<0,b>0,且|a|<|b|,可得﹣a<b即可求解.【解答】解:∵a<0,b>0,且|a|<|b|,∴﹣a<b,∴a+b>0,故答案为>.15.若|a﹣6|+|b+5|=0,则a+b的值为 1 .【分析】由非负数的性质可知a=6,b=﹣5,然后利用有理数的加法法则求得a+b的值即可.【解答】解:∵|a﹣6|+|b+5|=0,∴a=6,b=﹣5.∴a+b=6+(﹣5)=1.故答案为:1.16.若规定a*b=5a+2b﹣1,则(﹣4)*6的值为﹣9 .【分析】根据a*b=5a+2b﹣1,可以求得题目中所求式子的值,本题得以解决.【解答】解:∵a*b=5a+2b﹣1,∴(﹣4)*6=5×(﹣4)+2×6﹣1=(﹣20)+12﹣1=﹣9,故答案为:﹣9.三.解答题(共11小题)17.(1)画出下列几何体的三种视图(图1).(2)如图2,这是一个由小立方体搭成的几何体的俯视图,小正方体中的数字表示该位置的小立方体的个数,请你画出它的主视图和左视图.【分析】(1)根据简单几何体的三视图的画法画出相应的图形即可;(2)由俯视图上的小立方体的个数和位置,确定主视图、左视图的形状,并画出来即可.【解答】解:(1)图1所示的几何体的三种视图如图所示:(2)图2是由小立方体搭成的几何体的俯视图,那么它的主视图、左视图如图所示:18.计算:(1)45+(﹣20)(2)(﹣8)﹣(﹣1)(3)|﹣10|+|+8|(4)(﹣+)×(﹣36)(5)0.47﹣4﹣(﹣1.53)﹣1(6)99×(﹣3)(7)0.25+(﹣)+(﹣)﹣(+)(8)1÷(﹣)×(9)﹣9﹣(﹣3)×2﹣(﹣16)÷4(10)(﹣0.6)﹣(﹣3)﹣(+7)+2﹣|﹣2|(11)﹣5×(﹣3)+(﹣9)×(+3)+17×(﹣3)(12)(+1.75)+(﹣)+(+)+(+1.05)+(﹣)+(+2.2)【分析】(1)根据有理数的加法法则计算即可求解;(2)根据有理数的减法法则计算即可求解;(3)先算绝对值,再算加法;(4)(6)(11)根据乘法分配律简便计算;(5)先算同分母分数,再相加即可求解;(7)(12)先算同分母分数,再相加即可求解;(8)先算小括号里面的减法,再算括号外面的乘除法;同级运算,应按从左到右的顺序进行计算;(9)先算乘除,后算减法;同级运算,应按从左到右的顺序进行计算;(10)先算绝对值,再算同分母分数,再相加即可求解.【解答】解:(1)45+(﹣20)=25;(2)(﹣8)﹣(﹣1)=﹣7;(3)|﹣10|+|+8|=10+8=18;(4)(﹣+)×(﹣36)=×(﹣36)﹣×(﹣36)+×(﹣36)=﹣18+20﹣21=﹣19;(5)0.47﹣4﹣(﹣1.53)﹣1=(0.47+1.53)+(﹣4﹣1)=2﹣6=﹣4;(6)99×(﹣3)=(100﹣)×(﹣3)=100×(﹣3)﹣×(﹣3)=﹣300+=﹣299;(7)0.25+(﹣)+(﹣)﹣(+)=(﹣﹣)+(0.25﹣)=﹣1﹣0.5=﹣1.5;(8)1÷(﹣)×=1÷(﹣)×=﹣6×=﹣1;(9)﹣9﹣(﹣3)×2﹣(﹣16)÷4=﹣9+6+4=1;(10)(﹣0.6)﹣(﹣3)﹣(+7)+2﹣|﹣2|=(﹣0.6﹣7)+(3+2)﹣2=﹣8+6﹣2=﹣4;(11)﹣5×(﹣3)+(﹣9)×(+3)+17×(﹣3)=(5﹣9﹣17)×3=﹣21×3=﹣75;(12)(+1.75)+(﹣)+(+)+(+1.05)+(﹣)+(+2.2)=(1.75+1.05)+(﹣﹣)+(+2.2)=2.8﹣1+3=4.8.19.把下列各数在数轴上表示出来,并比较大小.﹣4,3,﹣,0,3,﹣2【分析】画出数轴,数轴右边的数大于左边的数,即可比较大小.【解答】解:如图:﹣4<﹣<﹣2<0<3<3.20.若|a|=2,b=﹣3,c是最大的负整数,求a+b﹣c的值.【分析】由|a|=2可以得到a=±2,又由c是最大的负整数可以推出c=﹣1,然后就可以求a+b﹣c的值.【解答】解:∵|a|=2,∴a=±2;∵c是最大的负整数,∴c=﹣1.当a=2时,a+b﹣c=2﹣3﹣(﹣1)=0;当a=﹣2时,a+b﹣c=﹣2﹣3﹣(﹣1)=﹣4.21.已知a、b互为相反数,c、d互为倒数,m的倒数等于它本身,则的值是多少?【分析】根据题意得a+b=0,cd=1,m=±1,以整体的形式代入所求的代数式即可.【解答】解:∵a、b互为相反数,∴a+b=0,∵c、d互为倒数,∴cd=1,∵m的倒数等于它本身,∴m=±1,①当a+b=0;cd=1;m=1时,∴=+0×1﹣|1|=1﹣1=0;②当a+b=0;cd=1;m=﹣1时,原式=+0×(﹣1)﹣|﹣1|=﹣1﹣1=﹣2.故原式的值有两个0或﹣2.22.小明学习了“面动成体”之后,他用一个边长为3cm、4cm和5cm的直角三角形,其中一条直角边旋转一周,得到了一个几何体,请计算出几何体的体积.(锥体体积=底面积×高)【分析】根据三角形旋转是圆锥,分旋转轴是3cm和4cm两种情况可得几何体体积.【解答】解:以4cm为轴体积为×π×32×4=12π,以3cm为轴的体积为×π×42×3=16π.23.已知有理数a、b、c在数轴上的位置如图所示,求|b﹣a|﹣|a﹣c|+|b﹣c|的值.【分析】根据数轴得出c<b<0<a,去掉绝对值符号,再合并即可.【解答】解:∵从数轴可知:c<b<0<a,∴|b﹣a|﹣|a﹣c|+|b﹣c|=a﹣b﹣(a﹣c)+b﹣c=a﹣b﹣a+c+b﹣c=0.24.若a,b都是非零的有理数,那么+的值是多少?【分析】根据a、b的符号进行分类计算即可.【解答】解:当a>0,b>0时,+=2;当a、b异号时,+=0;当a<0,b<0时,+=﹣2.综上所述,+的值是±2或0.25.某一出租车一天下午以鼓楼为出发地在东西方向营运,向东走为正,向西走为负,行车里程(单位:km)依先后次序记录如下:+9,﹣3,﹣5,+4,﹣8,+6,﹣3,﹣6,﹣4,+10.(1)将最后一名乘客送到目的地,出租车离鼓楼出发点多远?在鼓楼的什么方向?(2)若每千米的价格为2.4元,司机一个下午的营业额是多少?【分析】(1)根据有理数的加法运算,可的计算结果,根据正数和负数,可得方向;(2)根据行车就交费,可得营业额.【解答】解:(1)9﹣3﹣5+4﹣8+6﹣3﹣6﹣4+10=0(千米)答:将最后一名乘客送到目的地,出租车离鼓楼出发点0千米,在鼓楼处;(2)(9+|﹣3|+|﹣5|+4+|﹣8|+6+|﹣3|+|﹣6|+|﹣4|+10)×2.4=139.2(元),答:若每千米的价格为2.4元,司机一个下午的营业额是139.2元.26.如图,点A、B在数轴上分别表示有理数a、b,在数轴上A、B两点之间的距离AB=|a ﹣b|.回答下列问题:(1)数轴上表示1和﹣3的两点之间的距离是 4 ;(2)数轴上表示x和﹣3的两点之间的距离表示为|x+3| ;(3)若x表示一个有理数,请你结合数轴求|x﹣1|+|x+3|的最小值.【分析】(1)(2)在数轴上A、B两点之间的距离AB=|a﹣b|,依此即可求解;(3)根据绝对值的性质去掉绝对值号,然后计算即可得解.【解答】解:(1)|1﹣(﹣3)|=4;故答案为:4;(2)|x﹣(﹣3)|=|x+3|;故答案为:|x+3|;(3)当x<﹣3时,|x﹣1|+|x+3|=1﹣x﹣x﹣3=﹣2x﹣2,当﹣3≤x≤1时,|x﹣1|+|x+3|=1﹣x+x+3=4,当x>1时,|x﹣1|+|x+3|=x﹣1+x+3=2x+2,在数轴上|x﹣1|+|x+3|的几何意义是:表示有理数x的点到﹣3及到1的距离之和,所以当﹣3≤x≤1时,它的最小值为4.27.已知:b是最小的正整数,且a、b满足|c﹣5|+|a+b|=0.(1)请求出a、b、c的值;(2)a、b、c所对应的点分别为A、B、C,点P为动点,其对应的数为x,点P在﹣1到1之间运动时(即﹣1≤x≤1),请化简式子:|x+1|﹣|x﹣1|﹣2|x+3|(写出化简过程);(3)在(1)、(2)的条件下,点A、B、C开始在数轴上运动,若点A以每秒一个单位长度的速度向左运动,同时点B以每秒2个单位长度,点C以每秒5个单位长度的速度向右运动3秒钟后,若点B与点C之间的距离表示为BC,点A与点B之间的距离表示为AB,请求BC﹣AB的值.【分析】(1)根据非负数的性质即可得到结论;(2)根据绝对值的定义即可得到结论;(3)根据题意即可得到结论.【解答】解:(1)∵(c﹣5)2+|a+b|=0,∴c﹣5=0,a+b=0,b是最小的正整数,∴a=﹣1,b=1,c=5;(2)|x+1|﹣|x﹣1|﹣2|x+3|=(x+1)﹣(﹣x+1)﹣2(x+3)=x+1+x﹣1﹣2x﹣6=﹣6;(3)3秒钟后,A在﹣4,B在7,C在20,∴BC=13,AB=11,∴BC﹣AB=2.。
2020-2021学年辽宁省实验中学高三(上)月考数学试卷(10月份)(附答案详解)
2020-2021学年辽宁省实验中学高三(上)月考数学试卷(10月份)一、单选题(本大题共10小题,共50.0分)1. 集合A ={x|y =√2x −1},B ={x|x 2−5x −6<0},则∁R (A ∩B)=( )A. {x|x <2或x >3}B. {x|x ≤2或x ≥3}C. {x|x <12或x ≥6}D. {x|x ≤12或x >6}2. 下列命题正确的是( )A. 若a <b ,则ac 2<bc 2B. 若a >b ,则1a <1b C. 若a >b ,c >d ,则ac >bdD. 若1ab 2<1a 2b ,则a <b3. 已知q :∀x ∈[−2,3),x 2<9,则¬q 为( )A. ∃x ∈[−2,3),x 2<9B. ∃x ∉[−2,3),x 2<9C. ∃x ∈[−2,3),x 2≥9D. ∃x ∉[−2,3),x 2≥94. 已知函数f(x)={(13)x ,x ≥3f(x +1),x <3,则f(2+log 32)的值为( )A. −227B. 154C. 227D. −545. 函数y =f(x +1)为偶函数且满足f(x)+f(−x)=0,x ∈[0,1]时,f(x)=x 3,则f(985)=( )A. 1B. −1C. 9853D. −98536. 甲、乙、丙三位同学被调查是否去过A 、B 、C 三个城市,甲说:我去过的城市比乙多,但没去过B 城市;乙说:我没去过C 城市;丙说:我们三人去过同一城市;由此可判断乙去过的城市为( )A. AB. BC. CD. A 和B7. 已知函数f(x)=ln(e x +1)−12x ,下列选项正确的是( )A. 奇函数,在(−1,1)上有零点B. 奇函数,在(−1,1)上无零点C. 偶函数,在(−1,1)上有零点D. 偶函数,在(−1,1)上无零点8. 如图,《九章算术》中记载了一个“折竹抵地”问题:今有竹高一丈,末折抵地,去本三尺,问折者高几何?意思是:有一根竹子,原高一丈(1丈=10尺),现被风折断,尖端落在地上,竹尖与竹根的距离三尺,问折断处离地面的高为( )尺.A. 5.45B. 4.55C. 4.2D. 5.89.下列命题正确的是()A. x+1x≥2恒成立B. √a2+4+1√a2+4的最小值为2C. m,n都是正数时,(m+1m )(n+1n)最小值为4D. a>0,b>0是b3a +3ab≥2的充要条件10.函数y=lncosx(−π2<x<π2)的图象是()A. B.C. D.二、多选题(本大题共2小题,共10.0分)11.为了了解市民对各种垃圾进行分类的情况,加强垃圾分类宣传的针对性,指导市民尽快掌握垃圾分类的方法,某市垃圾处理厂连续8周对有害垃圾错误分类情况进行了调查.经整理绘制了有害垃圾错误分类重量累积统计图,图中横轴表示时间(单位:周),纵轴表示有害垃圾错误分类的累积重量(单位:吨).根据图形分析,下列结论正确的是()A. 第1周和第2周有害垃圾错误分类的重量加速增长B. 第3周和第4周有害垃圾错误分类的重量匀速增长C. 第5周和第6周有害垃圾错误分类的重量相对第3周和第4周增长了30%D. 第7周和第8周有害垃圾错误分类的重量相对第1周和第2周减少了1.8吨12.已知当x>0时,f(x)=−2x2+4x,x≤0时,y=f(x+2),以下结论正确的是()A. f(x)在区间[−6,−4]上是增函数B. f(−2)+f(−2021)=2C. 函数y=f(x)周期函数,且最小正周期为2<k<4−2√2或k=2√2−4D. 若方程f(x)=kx+1恰有3个实根,则12三、单空题(本大题共4小题,共20.0分)13.命题“∃x∈R,2x2−3ax+9<0”为假命题,则实数a的取值范围为______.14.函数f(x)=x2sinx−2,则f(2021)+f(−2021)=______ .15.有一支队伍长L米,以一定的速度匀速前进,排尾的传令兵因传达命令赶赴排头,到达排头后立即返回,且往返速度不变,如果传令兵回到排尾后,整个队伍正好前进了L米,则传令兵所走的路程为______ .16.若集合A1,A2满足A1∪A2=A,则称(A1,A2)为集合A的一个分拆,并规定:当且仅当A1=A2时,(A1,A2)与(A2,A1)为集合A的同一种分拆,则集合A={−1,0,2}的不同分拆种数是______ .四、解答题(本大题共6小题,共70.0分)+a,x>−1}.17.已知集合A={x|y=log2(4−2x)+1},B={y|y=x+1x+1(1)求集合A和集合B;(2)若“x∈∁R B”是“x∈A”的必要不充分条件,求a的取值范围.18.已知函数f(x)=2(m+1)x2+4mx+2m−1.(Ⅰ)若m=0,求f(x)在[−3,0]上的最大值和最小值;(Ⅱ)若关于x的方程f(x)在[0,1]上有一个零点,求实数m的取值范围.19.已知函数f(x)为偶函数,x≥0时,f(x)=x2+4x.(1)求f(x)解析式;(2)若f(2a)<f(1−a),求a的取值范围.20.新冠肺炎疫情造成医用防护服短缺,某地政府决定为防护服生产企业A公司扩大生产提供x(x∈[0,10])(万元)的专项补贴,并以每套80元的价格收购其生产的全部防)(万护服.A公司在收到政府x(万元)补贴后,防护服产量将增加到t=k⋅(6−12x+4件),其中k为工厂工人的复工率(k∈[0.5,1]).A公司生产t万件防护服还需投入成本(20+9x+50t)(万元).(1)将A公司生产防护服的利润y(万元)表示为补贴x(万元)的函数(政府补贴x万元计入公司收入);(2)在复工率为k时,政府补贴多少万元才能使A公司的防护服利润达到最大?(3)对任意的x∈[0,10](万元),当复工率k达到多少时,A公司才能不产生亏损?(精确到0.01).21.已知函数f(x)=−x|x−2a|+1(x∈R).(1)当a=1时,求函数y=f(x)的零点;),求函数y=f(x)在x∈[1,2]上的最大值.(2)当a∈(0,3222.若存在常数k(k>0),使得对定义域D内的任意x1,x2(x1≠x2),都有|f(x1)−f(x2)|≤k|x1−x2|成立,则称函数f(x)在其定义域D上是“k−利普希兹条件函数”﹒(1)举例说明函数f(x)=log2x不是“2−利普希兹条件函数”;(2)若函数f(x)=√x(1≤x≤4)是“k−利普希兹条件函数”,求常数k的最小值;(3)若存在常数k(k>0),使得对定义域D内的任意x1,x2(x1≠x2),都有|f(x1)−f(x2)|>k|x1−x2|成立,则称函数f(x)在其定义域D上是“非k−利普希兹条件函数”.若函数f(x)=log2(2x−a)为[1,2]上的“非1−利普希兹条件函数”,求实数a的取值范围.答案和解析1.【答案】C【解析】解:集合A={x|y=√2x−1}={x|x≥12},B={x|x2−5x−6<0}={x|−1< x<6},所以A∩B={x|12≤x<6},则∁R(A∩B)={x|x<12或x≥6}.故选:C.先求出集合A,B,然后利用集合交集与补集的定义求解即可.本题考查了集合的运算,主要考查了集合交集与补集定义的运用,涉及了函数定义域的求解以及一元二次不等式的解法,属于基础题.2.【答案】D【解析】解:对于A,若c=0,则ac2=bc2,故A错误;对于B,若a>0>b,则1a >1b,故B错误;对于C,若a>b,c>d,取a=2,b=1,c=−1,d=−2,此时ac=bd,故C错误;对于D,若1ab2<1a2b,则a2b2>0,所以a2b2⋅1ab2<a2b2⋅1a2b,即a<b,故D正确.故选:D.由不等式的性质逐一判断即可.本题主要考查不等式的基本性质,考查逻辑推理能力,属于基础题.3.【答案】C【解析】解:命题q:∀x∈[−2,3),x2<9,则¬q:∃x∈[−2,3),x2≥9.故选:C.根据全称命题的否定是存在量词命题,写出对应的命题即可.本题考查了全称命题的否定是存在量词命题应用问题,是基础题.4.【答案】B【解析】解:∵2+log 31<2+log 32<2+log 33,即2<2+log 32<3 ∴f(2+log 32)=f(2+log 32+1)=f(3+log 32) 又3<3+log 32<4∴f(3+log 32)=(13)3+log 32=(13)3×(13)log 32=127×(3−1)log 32=127×3−log 32=127×3log 312=127×12=154∴f(2+log 32)=154故选B先确定2+log 32的范围,从而确定f(2+log 32)的值本题考查指数运算和对数运算,要求能熟练应用指数运算法则和对数运算法则.属简单题5.【答案】A【解析】解:根据题意,函数y =f(x +1)为偶函数,则f(x)的图象关于直线x =1对称,则有f(−x)=f(x +2),又由f(x)满足f(x)+f(−x)=0,即f(−x)=f(x +2), 则有f(x +2)=−f(x),综合可得:f(x +4)=−f(x +2)=f(x),f(x)是周期为4的函数, 则f(985)=f(1+4×246)=f(1)=1, 故选:A .根据题意,分析可得f(x +4)=f(x),则f(x)是周期为4的函数,据此可得f(985)=f(1),结合函数的解析式计算可得答案.本题考查函数的奇偶性的性质以及应用,涉及函数的周期性,属于基础题.6.【答案】A【解析】解:由乙说:我没去过C 城市,则乙可能去过A 城市或B 城市,但甲说:我去过的城市比乙多,但没去过B 城市,则乙只能是去过A ,B 中的任一个, 再由丙说:我们三人去过同一城市, 则由此可判断乙去过的城市为A . 故选:A .可先由乙推出,可能去过A 城市或B 城市,再由甲推出只能是A ,B 中的一个,再由丙即可推出结论.本题主要考查简单的合情推理,要抓住关键,逐步推断,是一道基础题.7.【答案】D【解析】解:根据题意,函数f(x)=ln(e x +1)−12x =ln(√e x+1√ex),其定义域为R ,有f(−x)=ln(√e x+1√ex)=f(x),即函数f(x)为偶函数,设t =√e x+1√ex ,在区间[0,1)上,t =√e x+1√ex>2且是增函数,而y =lnt ,在(2,+∞)上为增函数,则f(x)在区间[0,1)上为增函数,又由f(0)=ln2>0,则在区间[0,1)上,f(x)≥f(0)>0恒成立,故f(x)在区间[0,1)上没有零点,又由f(x)为偶函数,则f(x)在(−1,1)上无零点; 故选:D .根据题意,先分析函数的奇偶性,再设t =√e x+1√ex,则y =lnt ,利用复合函数的单调性判断方法可得f(x)在区间[0,1)上为减函数,求出f(1)的值,分析可得区间[0,1)上没有零点,结合函数的奇偶性分析可得答案.本题考查函数奇偶性的性质以及应用,涉及函数零点的判断,属于基础题、8.【答案】B【解析】解:如图,已知AC +AB =10(尺),BC =3(尺),AB 2−AC 2=BC 2=9,所以(AB +AC)(AB −AC)=9,解得AB −AC =0.9, 因此{AB +AC =10AB −AC =0.9,解得{AB =5.45AC =4.55,故折断后的竹干高为4.55尺,故选:B.由题意可得AC+AB=10(尺),BC=3(尺),运用勾股定理和解方程可得AB,AC,即可得到所求值.本题考查三角形的勾股定理的运用,考查方程思想和运算能力,属于基础题.9.【答案】C【解析】解:x+1x≥2恒成立,不成立,因为x可以小于0,所以A不正确;√a2+4√a2+4的最小值大于2,所以B不正确;m,n都是正数时,(m+1m )(n+1n)≥2√m⋅1m⋅2⋅√n⋅1n=4,当且仅当m=n=1,表达式取得最小值为4,所以C正确;a>0,b>0是b3a +3ab≥2的充分不必要条件,所以D不正确;故选:C.利用基本不等式,判断选项的正误即可.本题考查命题的真假的判断与应用,基本不等式的应用,是基础题.10.【答案】A【解析】【分析】本题主要考查复合函数的图象识别.属于基础题.利用函数y=lncosx(−π2<x<π2)的奇偶性可排除一些选项,利用函数值与0的关系可排除一些选项.从而得以解决.【解答】解:∵cos(−x)=cosx,∴y=lncosx(−π2<x<π2)是偶函数,可排除B、D,由cosx≤1⇒lncosx≤0排除C,故选:A.11.【答案】ABD【解析】对于A ,第1周和第2周有害垃圾错误分类的重量明显增多,是加速增长,故A 正确;对于B ,第3周和第4周有害垃圾错误分类的重量图象是线段,是匀速增长,故B 正确; 对于C ,第5周和第6周有害垃圾错误分类的重量相对第3周和第4周是减少,故C 错误;对于D ,第7周和第8周有害垃圾错误分类的重量增长0.6吨, 第1周和第2周有害垃圾错误分类的重量增长2.4吨,∴第7周和第8周有害垃圾错误分类的重量相对第1周和第2周减少了1.8吨,故D 正确. 故选:ABD .由分段函数图象,能够读出各段上y 对于x 变化状态,由此能求出结果.本题考查命题真假的判断,考查折线图等基础知识,考查运算求解能力、数据分析能力等数学核心素养,是基础题.12.【答案】BD【解析】解:x ≤0时,y =f(x +2),∴f(x)在x ≤0时的图象以2为周期进行循环,如下图所示,由图象可知,f(x)在区间[−6,−4]上先增后减,所以A 错误; f(−2)+f(−2021)=f(0)+f(1)=0+2=2,所以B 正确;当x >0时,f(x)=−2x 2+4x ,f(3)≠f(1),所以y =f(x)不是以2为周期的周期函数,所以C 错误;y =kx +1恒过(0,1),由图象可知,直线与f(x)交点只可能在x ∈(−2,0)或x ∈(0,+∞)处取到,x ∈(−2,0)时,f(x)=−2x 2−4x ,∴{−k =2x +1x +4,−2<x <0−k =2x +1x −4,x >0,即y =−k 和g(x)={2x +1x +4,−2<x <02x +1x−4,x >0交点个数为3,画出g(x)图象,如下图所示,x ∈(−2,0)时,g(x)最大值为4−2√2,g(−2)=−12,x ∈(0,2)时,g(x)最小值为2√2−4, ∴y =−k 和y =g(x)要有3个交点,满足−k =4−2√2或2√2−4<−k <−12, 解得12<k <4−2√2或k =2√2−4,所以D 正确. 故选:BD .画出图象,即可判断A ;由x >0时,f(x)=−2x 2+4x ,x ≤0时,y =f(x +2),即可判断BC ;参变分离得{−k =2x +1x +4,−2<x <0−k =2x +1x −4,x >0,即可判断D . 本题考查了函数的图象与性质,函数零点问题,D 选项较难下手,属于难题.13.【答案】[−2√2,2√2]【解析】解:原命题的否定为“∀x ∈R ,2x 2−3ax +9≥0”,且为真命题, 则开口向上的二次函数值要想大于等于0恒成立, 只需△=9a 2−4×2×9≤0,解得:−2√2≤a ≤2√2. 故答案为:[−2√2,2√2]根据题意,原命题的否定“∀x ∈R ,2x 2−3ax +9≥0”为真命题,也就是常见的“恒成立”问题,只需△≤0.存在性问题在解决问题时一般不好掌握,若考虑不周全、或稍有不慎就会出错.所以,可以采用数学上正难则反的思想,去从它的反面即否命题去判定.注意“恒成立”条件的使用.14.【答案】−4【解析】解:根据题意,函数f(x)=x2sinx−2,则f(−x)=−x2sinx−2,则f(x)+f(−x)=−4,则有f(2021)+f(−2021)=−4,故答案为:−4.根据题意,求出f(−x)的解析式,分析可得f(x)+f(−x)=−4,据此分析可得答案.本题考查函数值的计算,涉及函数奇偶性的性质以及应用,属于基础题.15.【答案】(√2+1)L.【解析】解:设传令兵的速度为V1,队伍的速度为V2,传令兵从队尾到队头的时间为t1,从队头到队尾的时间为t2,队伍前进用时间为t.由传令兵往返总时间与队伍运动时间相等可得如下方程:t=t1+t2,即:LV2=LV1−V2+LV1+V2整理上式得:V12−2V1V2−V22=0解得:V1=(√2+1)V2;将上式等号两边同乘总时间t,即V1t=(√2+1)v2tV1t即为传令兵走过的路程S1,V2t即为队伍前进距离S2,则有S1=(√2+1)S2=(√2+1)L.故答案为:(√2+1)L.以队伍为参照物,可求传令兵从队尾往队头的速度,从队头往队尾的速度,利用速度公式求传令兵从队尾到队头的时间t1,传令兵从队头到队尾的时间为t2,队伍前进100用的时间t,而t=t1+t2,据此列方程求出V1、V2的关系,进而求出在t时间内通讯员行走的路程.本题考查路程的计算,关键是计算向前的距离和向后的距离,难点是知道向前的时候人和队伍前进方向相同,向后的时候人和队伍前进方向相反,解决此类问题常常用到相对运动的知识.16.【答案】27【解析】解:因为集合A中有三个元素,当A1=⌀时,必须A2=A,分拆种数为1;当A1有一个元素时,分拆种数为C31⋅2=6;当A1有2个元素时,分拆种数为C32⋅22=12;当A1=A时,分拆种数为C33⋅23=8.所以总的不同分拆种数为1+6+12+8=27种.故答案为:27.由题意中的定义,分A1=⌀,A1有一个元素,A1有2个元素,A1=A四种情况,分别求出分拆种数,即可得到答案.本题考查了新定义问题,解决此类问题,关键是读懂题意,理解新定义的本质,把新情境下的概念、法则、运算化归到常规的数学背景中,运用相关的数学公式、定理、性质进行解答即可,属于中档题.17.【答案】解:(1)集合A={x|y=log2(4−2x)+1}={x|4−2x>0}={x|x<2},B={y|y=x+1x+1+a,x>−1}={x|x+1+1x+1+a−1≥2√(x+1)⋅1x+1+a−1=a+1}={x|x≥a+1}.(2)∵集合A={x|x<2},B={x|x≥a+1}.∴∁U B={x|x<a+1},∵“x∈∁R B”是“x∈A“的必要不充分条件,∴x<2⇒x<a+1,∴a+1>2,解得a>1.∴a的取值范围是(1,+∞).【解析】(1)利用对数函数的定义域能求出集合A,利用均值定理能求出集合B.(2)推导出x<2⇒x<a+1,由此能求出a的取值范围.本题考查集合、实数的取值范围的求法,对数函数的定义域、均值定理、必要不充分条件等基础知识,考查运算求解能力,是基础题.18.【答案】解:(1)当m =0时,f(x)=2x 2−1,可知函数f(x)图象在[−3,0]上单调递减,∴f(x)min =f(0)=−1,f(x)max =f(−3)=17;(2)由f(0)=0得m =12.由f(1)=0得m =−18≠12,∴m =12或−18成立; 由f(0)f(1)<0得(2m −1)(8m +1)<0,解得:−18<m <12; 综上:满足条件的m 的取值范围是:[−18,12].【解析】(1)结合函数f(x)图象可求f(x)在[−3,0]上的最大值和最小值; (2)根据f(0)f(1)<0,再验证f(0)=0及f(1)=0,可求得m 范围. 本题考查二次函数图象性质,考查数学运算能力,属于中档题.19.【答案】解:(1)根据题意,设x <0,则−x >0,则有f(−x)=x 2−4x ,又由f(x)为偶函数,则f(x)=f(−x)=x 2−4x , 则f(x)={x 2+4x,x ≥0x 2−4x,x <0;(2)由函数f(x)为偶函数可知f(2a)<f(1−a)⇔f(|2a|)<f(|1−a|),由(1)知函数f(x)在[0,+∞)上是增函数,∴|2a|<|1−a|,得(2a)2<(1−a)2,解得:a ∈(−1,13).【解析】(1)令x >0,则−x <0,再根据函数为偶函数可求得解析式;(2)由函数f(x)为偶函数可知f(2a)<f(1−a)⇔f(|2a|)<f(|1−a|),可求得a 的取值范围.本题考查函数奇偶性的性质以及应用、函数解析式求法、考查数学运算能力及数学抽象能力,属于中档题.20.【答案】解:(1)y =x +80t −(20+9x +50t)=30t −20−8x =30k ⋅(6−12x+4)−20−8x =180k −360k x+4−8x −20,x ∈[0,10];(2)y=180k−360kx+4−8x−20=180k+12−8[(x+4)+45kx+4],因为x∈[0,10],所以4≤x+4≤14,则(x+4)+45kx+4≥6√5√k,当且仅当x+4=45kx+4,即x=3√5√k−4时取“=”,因为k∈[0.5,1],则3√102−4≤3√5√k−4≤3√5−4,即有3√5√k−4∈[0,10],所以y≤180k+12−48√5√k,即当政府补贴为3√5√k−4万元才能使A公司的防护服利润达到最大,最大为180k+ 12−48√5√k;(3)若对任意的x∈[0,10],公司都不产生亏损,则180k−360kx+4−8x−20≥0在x∈[0,10]恒成立,即180k≥(8x+20)(x+4)x+2,记m=x+2,则m∈[2,12],此时(8x+20)(x+4)x+2=(8m+4)(m+2)m=8m2+20m+8m=8m+8m+20,由于函数f(m)=8m+8m+20在[2,12]单调递增,所以当m∈[2,12]时,f max(m)=f(12)=11623,∴k≥1162 3180≈0.65即k≥0.65,即当工厂工人的复工率达到0.65时,对任意的x∈[0,10],公司都不产生亏损.【解析】(1)利用已知条件列出函数的解析式,写出定义域即可.(2)由y的解析式得到y=180k+12−8[(x+4)+45kx+4],根据x的范围得到(x+4)+45k x+4≥6√5√k,结合k的范围可得3√102−4≤3√5√k−4≤3√5−4,即可求得答案(3)若对任意的x∈[0,10],公司都不产生亏损,得到180k−360kx+4−8x−20≥0在x∈[0,10]恒成立,利用换元法,结合函数的单调性求解函数的最值即可得到结果.本题考查实际问题的处理方法,函数的单调性以及函数的解析式的求法,考查转化思想以及计算能力,是中档题.21.【答案】解:(1)当a=1时,令−x|x−2|+1=0.当x≥2时,−x(x−2)+1=0,解得:x=1+√2;当x<2时,−x(x−2)+1=0,解得:x=1.故函数零点为:1+√2和1;(2)f(x)={−x 2+2ax +1,x ≥2ax 2−2ax +!,x <2a ,其中f(0)=f(2a)=1,于是最大值在f(1),f(2),f(2a)中取.得0<2a ≤1,即0<a ≤12时,f(x)在[1,2]上单调递减.∴f(x)max =f(1)=2a ; 当a <1<2a <2,即12<a <1时,f(x)在[1,2a]上单调递增,在[2a,2]上单调递减,故f(x)max =f(2a)=1;当1≤a <2<2a ,即1≤a <2时,f(x)在[1,a]上单调递减,在[a,2]上单调递增,故f(x)max =max{f(1),f(2)},∵f(1)−f(2)2a −3<0,故f(x)max =f(2)=5−4a .综上:f(x)max={2a,0<a ≤12,1,12<a <1,5−4a,1≤a <32..【解析】(1)求函数零点转化为解方程可解决此问题; (2)根据a 讨论函数图象,根据图象特点可求函数最大值. 本题考查函数零点与最值,考查数学运算能力,属于难题.22.【答案】解:(1)f(x)=log 2x 的定义域为(0,+∞),令x 1=12,x 2=14,则f(12)−f(14)=log 212−log 214=−1−(−2)=1, 而2|x 1−x 2|=12,∴f(x 1)−f(x 2)>2|x 1−x 2|,∴函数f(x)=log 2x 不是“2−利普希兹条件函数”;(2)若函数f(x)=√x(1≤x ≤4)是“k −利普希兹条件函数”,则对于定义域[1,4]上任意两个x 1,x 2(x 1≠x 2),均有|f(x 1)−f(x 2)|≤k|x 1−x 2|成立,不妨设x 1>x 2,则k ≥√x 1−√x 2x 1−x2=√x +√x 恒成立,∵1≤x 2<x 1≤4, ∴14<√x +√x <12,∴k 的最小值为12;(3)∵|f(x 1)−f(x 2)|>k|x 1−x 2|,f(x)=log 2(2x −a)为[1,2]上的“非1−利普希兹条件函数”,∴设x 1>x 2,则|log 2(2x 1−a)−log 2(2x 2−a)|>|x 1−x 2|,∵2x1−a>0,2x2−a>0,且2x1−a2x2−a>1,∴2x1−a2x2−a >2x1−x2=2x12x2,∴2x1+x2−a⋅2x2>2x1+x2−a⋅2x1,∴a⋅2x1>a⋅2x2,∵x1>x2,∴a>0,∵2x−a>0,∴a<2x,∵x∈[1,2],∴a<2,综上,实数a的取值范围为(0,2).【解析】(1)令x1=12,x2=14,即可说明f(x)=log2x不是“2−利普希兹条件函数”;(2)依题意,k≥√x1−√x2x1−x2=√x+√x恒成立,而14<√x+√x<12,由此可得k的最小值;(3)由题意可得,a⋅2x1>a⋅2x2,结合x1>x2,可得a>0,由2x−a>0,x∈[1,2],可得a<2,综合即得答案.本题以新定义为背景,考查函数性质的运用,考查不等式的恒成立问题,考查分离变量法以及运算求解能力,属于中档题.。
辽宁省实验中学2019-2020学年高一数学上学期期中试题
辽宁省实验中学2019-2020学年高一数学上学期期中试题考试时间:120分钟 试题满分:150分一、选择题(本大题共12个小题,每小题5分,共60分.第10题和第11题为多选题,漏选得2分,错选不得分.其余小题每道题只有一个选项).1、已知{}{}{}3,2,1,2,1,0,7==≤∈=B A x N x U ,则()=B A C U I ( ) {}7,6,5,4,3.A {}7,6,5,4,0.B {}7,6,5,4,3,0.C {}7,6,5,3,0.D 2、命题“0,≥+∈∃x x Q x ”的否定是( ) 0,.<+∈∃x x Q x A ()0,.<+∈∀x x Q C x B R0,.<+∈∀x x Q x C 0,.≥+∈∀x x Q x D3、下列函数是奇函数,且在()+∞,0上为增函数的是( )()2412.x x x f A -= ()2.x x x f B = ()x x f C =. ()31.x x x f D -=4、已知函数(),0,10,122⎪⎩⎪⎨⎧≤+->+=x x x x x f 则=⎪⎪⎭⎫⎝⎛⎪⎭⎫ ⎝⎛-21f f ( )1625.A 167.B 169.-C 169.D 5、已知区间[]1,+=a a M ,则下列可作为“01,>+∈∀x M x ”是真命题的充分不必要条件的是( )1.->a A 0.>a B 1.-≥a C 0.≤a D6、已知正实数b a ,满足⎩⎨⎧=+-=+022124322b a b a ,21,x x 为方程012=++bx ax 的根,则=+221221x x x x ( ) 23.A 23.-B 1.C 1.-D 7、已知函数(),5432+=+x x f 且()3=a f ,则=a ( ) 2.A 2.-B 1.C 1.-D8、已知定义在R 上的偶函数()x f ,且()x f 对任意的[)()2121,,0,x x x x ≠+∞∈,都有()()01212<--x x x f x f ,若()()13+≤a f a f ,则实数a 的取值范围为( ) ⎥⎦⎤⎢⎣⎡--41,21.A []1,2.--B ⎥⎦⎤ ⎝⎛-∞-21,.C ⎪⎭⎫⎝⎛+∞-,41.D9、若正数y x ,满足022=-+xy x ,则y x +3的最小值是( ) 4.A 22.B 2.C 24.D10、(多选)已知函数()2211xx x f +-=,则下列对于()x f 的性质表述正确的是( ) .A ()x f 为偶函数 ()x f x f B -=⎪⎭⎫⎝⎛1. ()x f C .在[]3,2上的最大值为53-.D ()()x x f x g +=在区间()0,1-上至少有一个零点 11、(多选)下列命题中为真命题的是( ) .A 不等式()1112>-+x x 的解集为[]3,0 .B 若()x f y =在I 上具有单调性,且I x x ∈21,,那么当()()21x f x f =时,21x x =.C 函数()()1,11224-=+-=x x g x x x f 为同一个函数 .D 已知0,,>c b a ,则ac bc ab c b a ++≥++12、 已知函数()x f 的定义域为R ,满足()()22+=x f x f ,且当[)0,2-∈x 时,()491++=x x x f ,若对任意的[)+∞∈,m x ,都有()31≤x f ,则m 的取值范围为( ) ⎪⎭⎫⎢⎣⎡+∞-,511.A ⎪⎭⎫⎢⎣⎡+∞-,310.B ⎪⎭⎫⎢⎣⎡+∞-,25.C ⎪⎭⎫⎢⎣⎡+∞-,411.D 二、填空题(本大题共4个小题,每小题5分,共20分) 13、已知正数b a ,,121=+ba ,则ab 3的最小值为_______ 14、已知函数()1-x f 的定义域为[]2,1,则()12+x f 的定义域为____ 15、已知不等式012<--t x 的解集为A ,且A ⊆⎪⎭⎫⎝⎛-31,21,则_______∈t16、已知函数()()212++-=ax x x f 在[]2,1上存在零点,则实数a 的取值范围为__________三、解答题(本大题共6个小题,共70分,解答应写出必要的文字说明、证明过程或演算步骤)17、(本小题满分10分)(1)已知集合{}01452>++-=x x x A ,{}0512>-+=x x B ,求B A Y ; (2)已知函数()()132-+-=x m x x f 在区间()4,2上仅有一个零点,求实数m 的取值范围.18、(本小题满分12分)已知函数 ()xx x f 322+=(1)判断并证明函数()x f 的奇偶性 ;(2)判断并证明函数()x f 在[]4,2∈x 上的单调性.19、(本小题满分12分)已知定义在[]1,1-上的奇函数()x f ,当10≤≤x 时,()a x x x f +--=22(1)求实数a 的值及在[]1,1-上的解析式;(2)判断函数()x f 在[]1,1-上的单调性(不用证明); (3)解不等式()()0112>-+-x f x f .20、(本小题满分12分)(1)已知1,1≥≥y x ,证明:y x y x xy y x ++≤++22221; (2)已知正数c b a ,,,且满足3=++c b a ,证明:12941≥++c b a .21、(本小题满分12分)经济学中,函数()x f 的边际函数()x M 定义为()()()x f x f x M -+=1,利润函数()x P 的边际利润函数定义为()()()x P x P x M -+=11。
辽宁省实验中学2023-2024学年高一上学期12月月考数学试题及答案
辽宁省实验中学2023—2024学年度上学期12月阶段测试高一数学试卷一.选择题:本题共8小题,每小题5分,共40分。
在每小题给出的四个选项中,只有一项是考试时间:120分钟试题满分:150分符合题目要求的。
1.已知集合(){}2{14,},,,A x x x B x y y x x A =<<∈==∈Z ,则A B = ( )A .{}2B .{}2,3C .{}4,9D .∅2.已知函数()()2231mm f x m m x −−=+−是幂函数,且()0,x ∈+∞时,()f x 单调递增,则m 的值为( )A .1B .1−C .2−D .2−或13.若,a b 是方程230x x +−=的两个实数根,则22a a b ++=( ) A .1B .2C .3D .44.一种药在病人血液中的量保持在500mg 以上时才有疗效,而低于100mg 时病人就有危险.现给某病人的静脉注射了这种药2500mg ,如果药在血液中以每小时20%的比例衰减,以保证疗效,那么下次给病人注射这种药的时间最迟大约是(参考数据:lg20.3010≈)( ) A .5小时后B .7小时后C .9小时后D .11小时后5.已知31log 2833log 3,log 4,3a b c−===,则,,a b c 的大小关系为( )A .a b c >>B .c a b >>C .a c b >>D .c b a >>6.设函数()y f x =存在反函数()1y f x −=,且函数()2y x f x =−的图象过点()2,3,则函数()1yf x −=−的图象一定过点( )A .()1,1−B .()3,2C .()1,0D .()2,17.函数()f x 和()g x 的定义域均为R ,已知()13yf x =+为偶函数,()11yg x =++为奇函数,对于x ∀∈R ,均有()()23f x g x x +=+,则()()44f g =( ) A .66B .70C .124D .1448.已知函数()24,0e 1,0xx x x f x x − −+≥= −< ,若关于x 的不等式()()22[]0f x mf x n −−<恰有两个整数解,则实数m 的最小值是( )A .21−B .14−C .7−D .6−二.选择题:本题共4小题,每小题5分,共20分。
2021-2022学年辽宁省实验中学高一上学期12月月考数学试题(解析版)
2021-2022学年辽宁省实验中学高一上学期12月月考数学试题一、单选题1.设集合{1,2,3,4,5}U =,{}1,3A =,{}2,3,4B =,则()()U UA B =( )A .{}1B .{}5C .{}2,4D .{}1,2,3,4【答案】B【分析】先求,A B 的补集,然后求两个集合的交集,即可得答案. 【详解】依题意,{}{}2,4,5,1,5UU A B ==,所以()(){}5U U A B ⋂=. 故选:B.2.设集合(){}A x I p x =∈,(){}B x I q x =∈,若A B ,则()p x 是()q x 的( ) A .充分必要条件 B .充分非必要条件C .必要非充分条件D .既非充分也非必要条件【答案】B【分析】根据集合的关系及充分条件,必要条件的概念即得. 【详解】因为A B ,(){}A x I p x =∈,(){}B x I q x =∈, 所以()p x 是()q x 的充分非必要条件. 故选:B.3.设命题p :x ∀∈R ,4221x x +>.则p ⌝为( ) A .x ∃∈R ,4221x x +≤. B .x ∀∈R ,4221x x +≤. C .x ∃∈R ,4221x x+<. D .x ∀∈R ,4221x x+<. 【答案】A【分析】根据全称命题的否定是特称命题可得答案. 【详解】根据全称命题的否定是特称命题可得p ⌝为x ∃∈R ,4221x x +≤. 故选:A.4.小明同学在课外阅读中看到一个趣味数学问题“在64个方格上放米粒:第1个方格放1粒米,第2个方格放2粒米,第3个方格放4粒米,第4个方格放8粒米,第5个方格放16粒米,……,第64个方格放632粒米.那么64个方格上一共有多少粒米?”小明想:第1个方格有1粒米,前2个方格共有3粒米,前3个方格共有7粒米,前4个方格共有15粒米,前5个方格共有31粒米,…….小明又发现,1121=-,2321=-,3721=-,41521=-,53121=-,…….小明又查到一个数据:710粒米的体积大约是1立方米,全球的耕地面积大约是131.510⨯平方米,lg 20.3010=,lg1.8360.2640=.依据以上信息,请你帮小明估算,64个方格上所有的米粒覆盖在全球的耕地上厚度约为( ) A .0.0012米 B .0.012米 C .0.12米 D .1.2米【答案】C【分析】由题意知格子上的米粒数是以1为首项,2为公比的等比数列,利用等比数列求和公式可得64个方格上一共有6421-粒米,设米粒覆盖在全球的耕地上厚度约为h ,可得71364210 1.51110=⨯⨯-h ,两边取对数计算可得答案.【详解】第1个方格放1粒米,第2个方格放2粒米,第3个方格放4粒米,第4个方格放8粒米,第5个方格放16粒米,……,可知格子上的米粒数是以1为首项,2为公比的等比数列, 那么64个方格上一共有6464112212-=--粒米, 设米粒覆盖在全球的耕地上厚度约为h ,因为710粒米的体积大约是1立方米,全球的耕地面积大约是131.510⨯平方米, 所以71364210 1.51110=⨯⨯-h , 可得()64641371372112lg lg lg lg 1.51010 1.51010h ⎛⎫-=⨯≈-⨯ ⎪⨯⎝⎭, 用lg1.8360.2640=近似替代lg1.5,所以()641372lg lg 1.51064lg 27lg1.51364lg 2lg1.52010-⨯=---=--0.30100.264020164⨯--=-≈,即lg 1=-h ,可得0.1h =,又0.10.12≈,故64个方格上所有的米粒覆盖在全球的耕地上厚度约为0.12(米). 故选:C.5.下列四组函数中,同组两个函数的值域相同的是( )A .()2xf x =与()2log g x x =B .()12f x x =与()32g x x -=C .()12f x x -=与()13log g x x =D .()2f x x -=与()13xg x ⎛⎫= ⎪⎝⎭【答案】D【分析】根据指数函数,对数函数及幂函数的性质逐项分析即得.【详解】因为函数()2xf x =的值域为()0,∞+,函数()2log g x x =的值域为R ,故A 不合题意; 因为函数()12f x x =的值域为[)0,∞+,函数()32g x x -=的值域为()0,∞+,故B 不合题意;因为函数()12f x x -=的值域为()0,∞+,函数()13log g x x =的值域为R ,故C 不合题意;因为函数()2f x x -=的值域为()0,∞+,函数()13xg x ⎛⎫= ⎪⎝⎭的值域为()0,∞+,故D 正确.故选:D.6.已知函数()f x 是定义域为R 的奇函数,且当0x ≥时,()2f x x x =-,则当0x <时,( )A .()2f x x x =- B .()2f x x x =+C .()2f x x x =-- D .()2f x x x =-+【答案】C【分析】根据函数的奇偶性求解0x <的解析式. 【详解】因为函数()f x 是定义域为R 的奇函数, 当0x <时,0x ->,所以()()()()22f x f x x x x x ⎡⎤=--=----=--⎣⎦, 故选:C7.函数()22221x x f x x -+=的图像简图可能是( )A .B .C .D .【答案】D【分析】由题可得()21111f x x ⎛⎫=+-> ⎪⎝⎭可排除AB ,然后根据0x <时函数值的范围可排除C.【详解】因为()()2222221221111x x x x f x x x x --+⎛⎫===+- ⎪⎝⎭+, 所以()21111f x x ⎛⎫=+-> ⎪⎝⎭,故排除AB ;当0x <时,()2111112f x x ⎛⎫=+->+= ⎪⎝⎭,故排除C.故选:D.8.已知函数()231x x k f x x +=--有4个零点,则k 的取值范围是( )A .1,13⎛⎫- ⎪⎝⎭B .11,3⎛⎫- ⎪⎝⎭C .1,12⎛⎫- ⎪⎝⎭D .11,2⎛⎫- ⎪⎝⎭【答案】B【分析】将函数零点问题转化为曲线23y x x =+与直线1y kx =+的交点问题,如图分析临界直线,可得k 的取值范围.【详解】2310x x kx +--=,即231x x kx +=+,函数1y kx =+表示恒过点()0,1的直线,如图画出函数23y x x =+,以及1y kx =+的图象,如图,有两个临界值,一个是直线过点()3,0-,此时直线的斜率()101033k -==--,另一个临界值是直线与23y x x =--相切时,联立方程得()2310x k x +++=,()2340k ∆=+-=,解得:1k =-,或5k =-,当1k =-时,切点是1,2如图,满足条件,当5k =-时,切点是()1,4-不成立,所以1k =-,如图,曲线23y x x =+与直线1y kx =+有4个交点时,k 的取值范围是11,3⎛⎫- ⎪⎝⎭.故选:B二、多选题9.函数()12xf x ⎛⎫= ⎪⎝⎭,()12log g x x =,()12h x x -=,在区间()0,+∞上( )A .()f x 递减速度越来越慢B .()g x 递减速度越来越慢C .()h x 递减速度越来越慢D .()g x 的递减速度慢于()h x 递减速度【答案】ABC【分析】根据指数函数,对数函数及幂函数的性质即得.【详解】根据指数函数,对数函数及幂函数的性质结合图象可知在区间()0,+∞上,()12xf x ⎛⎫= ⎪⎝⎭递减速度越来越慢,故A 正确;()12log g x x =递减速度越来越慢,故B 正确;()12h x x -=递减速度越来越慢,故C 正确;()h x 的递减速度慢于()g x 递减速度,故D 错误.故选:ABC.10.已知12a <<且53b -<<,则( ) A .a b +的取值范围是()4,5- B .a b -的取值范围是()2,7- C .ab 的取值范围是()10,6- D .b a 的取值范围是35,2⎛⎫- ⎪⎝⎭【答案】ABC【分析】根据不等式的性质逐项分析即得. 【详解】因为12a <<且53b -<<,35b -<-<, 所以45a b -<+<,27a b -<-<,故AB 正确;当50b -<<时,05b <-<,又12a <<,所以010ab <-<,故100ab -<<; 当03b <<时,又12a <<,所以06ab <<;当0b =时,0ab =; 综上,12a <<且53b -<<,可得106ab -<<,故C 正确;当50b -<<时,05b <-<,又1112a <<,所以05ba <-<,故50b a -<<;当03b <<时,又1112a<<,所以03ba <<;当0b =时,0b a =;综上,12a <<且53b -<<,可得53b a-<<,故D 错误. 故选:ABC.11.函数()()2ln e 1xf x x =+-,则( )A .()f x 的定义域为RB .()f x 的值域为RC .()f x 是偶函数D .()f x 在区间[)0,+∞上是增函数【答案】ACD【分析】由题可得函数的定义域判断A ,根据基本不等式及对数函数的性质可得函数的值域判断B ,根据奇偶性的定义可判断C ,根据指数函数,对勾函数及对数函数的性质可判断D.【详解】因为函数()()2ln e 1xf x x =+-,所以函数()f x 的定义域为R ,故A 正确;因为()()()()222e 1ln e 1ln e 1ln e ln ln e e ex xxxx x x f x x -+=+-=+-==+,又e e 2-+≥x x ,当且仅当e e x x -=,即0x =取等号,所以()ln 2f x ≥,故B 错误;因为()()()ln e e x xf x f x --=+=,所以()f x 是偶函数,故C 正确;因为函数e x t =在[)0,+∞上单调递增,且e 1x t =≥,根据对勾函数的性质可知1u t t=+在1t ≥上单调递增,又函数ln y u =为增函数,故函数()f x 在区间[)0,+∞上是增函数,故D 正确. 故选:ACD.12.若定义在R 上的函数()f x 满足: (ⅰ)存在R a +∈,使得()0f a =; (ⅱ)存在R b ∈,使得()0f b ≠;(ⅲ)任意12,R x x ∈恒有()()()()1212122f x x f x x f x f x ++-=. 则下列关于函数()f x 的叙述中正确的是( ) A .任意x ∈R 恒有()()4f x a f x += B .函数()f x 是偶函数C .函数()f x 在区间[]0,a 上是减函数D .函数()f x 最大值是1,最小值是-1【答案】ABD【分析】A 选项,赋值法得到()()f x a f x a +=--,从而得到()()4f x a f x +=; B 选项,令20x =得到()01f =,再令120,x x x ==-得到()()=f x f x -,B 正确; C 选项,可举出反例; D 选项,令12x x t 得到()()20212f f t t +=≥⎡⎤⎣⎦,令2t x =,则()1f x ≥-,由()()f x a f x a +=--,得到()()2f x a f x +=-,故可得()()21f x a f x +=-≤,求出函数()f x 最大值是1,最小值是-1. 【详解】令12,x x x a ==得()()()()20f x a f x a f x f a ++-==,故()()f x a f x a +=--, 上式中,用2x a -代替x 得:()()22f x a a f x a a -+=---,即()()3f x a f x a -=--, 从而()()3f x a f x a +=-,故()()4f x a f x +=,A 正确;()()()()1212122f x x f x x f x f x ++-=,令20x =得:()()()()11120f x f x f x f +=,即()()()11022f x f x f =,∵1R x ∈,()1f x 不恒为0, ∴()01f =,令120,x x x ==-,得()()()()20x f f x x f f +=--,即()()=f x f x -, 又()f x 的定义域为R ,定义域关于原点对称, 所以()f x 为偶函数,B 正确;不妨令()cos f x x =,满足()()()()12121212cos cos f x x f x x x x x x ++-=++- 1212121212cos sin sin c 2cos s co os in sin co s co s s x x x x x x x x x x =-++=,故()()()()1212122f x x f x x f x f x ++-=,此时存在3π2a =,使得3π02f ⎛⎫= ⎪⎝⎭,且存在π3b =,使得()0f b ≠;但函数()f x 在区间0,3π2⎡⎤⎢⎥⎣⎦上不单调,C 错误;令12x x t 得:()()()2220f f f t t +=⎡⎤⎣⎦,即()()20212f f t t +=≥⎡⎤⎣⎦,所以()12f t ≥-,令2t x =,则()1f x ≥-,因为()()f x a f x a +=--,所以()()2f x a f x +=-, 因为()1f x ≥-,所以()()21f x a f x +=-≤, 故函数()f x 最大值是1,最小值是-1. 故选:ABD三、填空题13.51log 25+=______. 【答案】10【分析】根据对数运算求解即可. 【详解】解:551log 2log 215055521+==⨯=⨯ 故答案为:1014.设2log 3a =,3log 5b =,则5log 6=______. 【答案】1a ab+【分析】利用换底公式,结合对数的运算性质进行求解即可. 【详解】∵2lg3log 3lg 2a ==,3lg 5log 5lg 3b ==, ∴lg 3lg 2=a,lg5lg3=b , ∴5lg31lg31lg 6lg 2lg3l 1lg5lg3l o 3g g 6++++=====a a a b b b ab . 故答案为:1a ab+. 15.设方程1502xx ⎛⎫+-= ⎪⎝⎭的解为1x ,2x ,方程12log 50x x +-=的解为3x ,4x ,则1234x x x x +++=______.【答案】10【分析】在同一坐标系下做出函数()12xf x ⎛⎫= ⎪⎝⎭、()12log g x x =,y x =的图象,设1324x x x x <<<,根据函数()12xf x ⎛⎫= ⎪⎝⎭与()12log g x x =的图象关于y x =对称得点111,2⎛⎫⎪⎝⎭x x 与点1244,log ⎛⎫ ⎪⎝⎭x x 、点2122,log x x ⎛⎫ ⎪⎝⎭与点331,2⎛⎫ ⎪⎝⎭x x 都关于y x =对称,求出5、==-y x y x 的交点坐标再根据中点坐标公式计算可得答案.【详解】由方程1502x x ⎛⎫+-= ⎪⎝⎭得152⎛⎫=- ⎪⎝⎭xx ,由方程12log 50x x +-=得12log 5=-x x ,在同一坐标系下做出函数()12xf x ⎛⎫= ⎪⎝⎭、()12log g x x =,y x =的图象,不妨设1324x x x x <<<,如下图,因为函数()12xf x ⎛⎫= ⎪⎝⎭与()12log g x x =的图象关于y x =对称,即点111,2⎛⎫⎪⎝⎭x x 与点1244,log ⎛⎫ ⎪⎝⎭x x 、点2122,log x x ⎛⎫ ⎪⎝⎭与点331,2⎛⎫ ⎪⎝⎭x x 都关于y x =对称, 由5y x y x =⎧⎨=-⎩解得5252x y ⎧=⎪⎪⎨⎪=⎪⎩,即两直线的交点为55,22⎛⎫ ⎪⎝⎭,则231455,2222x x x x ++==,则123410x x x x +++=. 故答案为:10.16.如果函数()()2log 3log 1log a a a f x x a x-=+>在区间[]2,3上是减函数,那么实数a 的取值范围是______. 【答案】[)3,+∞【分析】根据2log 3a -的正负,考虑13a <≤3a >log 32log 3a a -.【详解】()()2log 3log 0,1log a a a f x x a a x-=+>≠,设log a t x =,当13a <≤2log 30a -≤,()2log 3a f t t t-=+单调递增,log a t x =单调递增,故函数()f x 单调递增,不成立;当3a >2log 30a ->,log a t x =单调递增, 故()2log 3a f t t t-=+在[]log 2,log 3a a t ∈上单调递减,故log 32log 3a a - 解得2log 31a -≤≤,故3a ≥.综上所述:3a ≥. 故答案为:[)3,+∞四、解答题17.设a ,b ∈R ,集合{1,,}0,,b a b a b a ⎧⎫+=⎨⎬⎩⎭,求b a -.【答案】2b a -=【分析】根据题意,集合{1,,}{0,,}ba b a b a+=,注意到后面集合中有元素0,由集合相等的意义,结合集合中元素的特征,可得0a b +=,进而分析可得a 、b 的值,计算可得答案. 【详解】解:根据题意,集合{1,,}{0,,}ba b a b a+=,又0a ≠,0a b ∴+=,即a b =-,∴1ba=-, 1b =;故1a =-,1b =, 则2b a -=, 故答案为:2【点睛】本题考查集合元素的特征与集合相等的含义,注意从特殊元素下手,有利于找到解题切入点.18.(1)设()xf x a =(0a >且1a ≠),证明:()()121222f x f x x x f ++⎛⎫≥ ⎪⎝⎭;(2)设()212xx g x -+=,证明:()()121222g x g x x x g ++⎛⎫≥ ⎪⎝⎭.【答案】(1)证明见解析;(2)证明见解析 【分析】(1)结合均值不等式及幂运算即可证明;(2)结合(1)中121222x x x x a a a ++≥得()()()()1222211112222x x x x g x g x -++-++≥,结合均值不等式可得()()22221121221111222xx x x x xx x -++-+++⎛⎫≥-+ ⎪⎝⎭,即可证.【详解】(1)证明:()()121212122222x x x x f x f x x x a a a f ++++⎛⎫=≥== ⎪⎝⎭;(2)证明:由(1)得:()()()()222221111222111112222222x x x x x x x x g x g x -++-+-+-+++=≥,因为()()222211221212111222xx x x x x x x -++-+++=-+22212121212122114222x x x x x x x x x x +++++⎛⎫≥-+=-+ ⎪⎝⎭, 所以()()2222121212221111222x x x x x x x x ++⎛⎫-+ ⎪⎝⎭-++-+≥, 故()()121222g x g x x x g ++⎛⎫≥ ⎪⎝⎭. 19.用水清洗一堆蔬菜上残留的农药,已知用水越多洗掉的农药量也越多,但总还有农药残留在蔬菜上.设用x 个单位量的水清洗一次以后,蔬菜上残留的农药量与本次清洗前残留的农药量之比为()f x .(1)试确定()0f 的值,并解释其实际意义; (2)设()f x cc x=+,其中c 是正的常数.现有A (A >0)个单位量的水,计划把水分成2份后清洗两次,设第一次清洗用水m (0m A <<)个单位量,第二次清洗用水A m -个单位量,试问m 为何值时清洗后蔬菜上残留的农药量最少,说明理由. 【答案】(1)()01f =,答案见解析; (2)当2Am =时清洗后蔬菜上残留的农药量最少,理由见解析.【分析】(1)根据实际意义结合条件即得;(2)由题可得两次清洗后蔬菜上残留的农药量与清洗前残留的农药量之比,然后利用基本不等式即得.【详解】(1)由题意可规定()01f =,表示的是未用清水冲洗蔬菜时,蔬菜上残留的农药量没有变化: (2)两次清洗后蔬菜上残留的农药量与清洗前残留的农药量之比为:()()()()()2c c c y f m f A m c m c A m c m c A m =⋅-=⋅=++-++-⎡⎤⎣⎦,其中0m A <<,因为()()()()222=2c m c A m A c m c A m c +++-⎡⎤⎛⎫++-≤+⎡⎤⎢⎥ ⎪⎣⎦⎝⎭⎣⎦, 当且仅当()c m c A m +=+-时,即2Am =时等号成立,所以()()222c y f m f A m A c =⋅-≥⎛⎫+ ⎪⎝⎭,当且仅当2A m =时等号成立. 所以,当2Am =时清洗后蔬菜上残留的农药量最少. 20.某工厂产生的废气经过过滤后排放,过滤过程中废气的污染物含量P (单位:mg/L )与时间t(单位:h )间的关系为:0e ktP P -=,其中0P ,k 是正的常数.(1)如果过滤5h 消除了废气中20%的污染物,求:过滤15h 后,废气中还剩百分之几的污染物; (2)如果过滤5h 消除了废气中%M 的污染物,那么需要过滤多少时间,废气中的污染物减少50%?(用M 表示)【答案】(1)还剩51.2%的污染物; (2)()5ln 0.5ln 1%t M =-.(或()5ln 2ln 1%t M =--)【分析】(1)由题可得5e 120%k -=-,然后可得15t =时污染物含量,即得; (2)根据条件表示出k ,然后利用函数关系式进而即得. 【详解】(1)因为过滤5h 消除了废气中20%的污染物,所以()500120%ek P P --=,即5e 120%k -=-, 所以当15t =时,()31500e 120%t P P P -==-00.512P =,即过滤15h 后,废气中还剩51.2%的污染物:(2)由题意得()()500001%e 150%e kkt M P P P P --⎧-=⎪⎨-=⎪⎩,即()()00ln 1%5150%e kt M k P P -⎧-=-⎪⎨⎪-=⎩, 所以,()()ln 1% 500150%eM t P P --=,从而,()ln 1%ln 0.55M t -=, 即,()5ln 0.5ln 1%t M =-.(或()5ln 2ln 1%t M =--) 21.已知函数()f x 是函数x y a =(0a >且0a ≠)的反函数,且()21f =. (1)求函数()f x 的解析式; (2)设()()1g x f x =-.(i )写出函数()g x 的单调区间,并指明单调性;(无需证明)(ⅱ)求()g x 在区间[],1t t +(其中R t ∈且0t >)上的的最小值()h t 和最大值()H t . 【答案】(1)()2log f x x =(2)(i )函数()g x 在区间(]0,2上是减函数,在区间[)2,+∞上是增函数;(ⅱ)()()221log 1,01,0,12log 1,2t t h t t t t ⎧-+<≤⎪=<≤⎨⎪->⎩,()()221log ,0log 11,t t H t t t ⎧-<≤⎪⎪=⎨⎪+->⎪⎩【分析】(1)首先设函数()log a f x x =,代入()21f =,即可求解;(2)(ⅰ)首先去绝对值,写成分段函数形式,再根据函数的解析式,直接判断函数的单调区间; (ⅱ)根据函数的单调性,讨论t 的取值,分别求函数的最值.【详解】(1)由题意得()log a f x x =,且log 21a =,所以2a =,从而()2log f x x =.(2)()2221log ,02log 1log 1,2x x g x x x x -<<⎧=-=⎨-≥⎩(i )函数()g x 在区间(]0,2上是减函数,在区间[)2,+∞上是增函数. (ⅱ)当012t t <<+≤时,即1t ≤时,()()()211log 1h t g t t =+=-+,()()21log H t g t t ==-.当2t >时,()()2log 1h t g t t ==-,()()()21log 11H t g t t =+=+-. 当21t t ≤<+时,即12t <≤时,()()20h x g ==,()()()()()22221log 111log log 1log 2g t g t t t t t +-=+---=++-⎡⎤⎣⎦当1t <≤()()21log H t g t t ==-;2t <≤时,()()()21log 11H t g t t =+=+-; 综上,()()221log 1,01,0,12log 1,2t t h t t t t ⎧-+<≤⎪=<≤⎨⎪->⎩,()()221log ,0log 11,t t H t t t ⎧-<≤⎪⎪=⎨⎪+->⎪⎩22.已知函数()232log 1x ax bf x x cx ++=++同时满足下列三个条件:(i )函数()f x 的定义域是R :(ⅱ)函数()f x 是奇函数; (ⅲ)函数()f x 的最大值是1. 求()f x 的解析式.【答案】()2321log 1x x f x x x -+=++或()2321log 1x x f x x x ++=-+.【分析】由题可知()30log 0f b ==,然后根据奇函数可得22a c =,结合条件可得22420x cx ++≥恒成立,且等号成立,进而即得.【详解】由题意可知函数()f x 是定义在R 上的奇函数, 所以()30log 0f b ==,即1b =, 又()()f x f x -=-,所以223322log log 11x ax b x ax b x cx x cx -+++=--+++,所以222211111x ax x ax x cx x cx -+++⋅=-+++, 即()()2222222211x a x x c x +-=+-恒成立;所以22a c =,可得a c =或a c =-, 当a c =时,()0f x =,不合题意, 所以a c =-,()2321log 1x cx f x x cx -+=++, 由题知当x ∈R 时,()232log 11x ax bf x x cx ++=≤++,即22131x cx x cx -+≤++恒成立,且等号成立, 即当x ∈R 时,22420x cx ++≥恒成立,且等号成立; 所以,()244220c ∆=-⨯⨯=, 解得:1c =或1c =-,从而,()2321log 1x x f x x x -+=++或()2321log 1x x f x x x ++=-+,经检验,符合题意;故()2321log 1x x f x x x -+=++或()2321log 1x x f x x x ++=-+.。
辽宁省实验中学2019-2020高一上学期期中试题
辽宁省实验中学 2019—2020 学年高一历史上学期期中试题考试时间: 60 分钟 试题满分: 100 分一、选择题 (本大题共 35小题,每小题 2分,共计 70 分)1。
考古学家在北京人遗址发现四层面积较大且较厚的灰烬层 .这一发现, 说明当时北京人的生产生活状况是A. 种植水稻B.会使用火C.烧制彩陶D.铸造青铜器2。
我国水稻栽培历史悠久 , 水稻作为重要的粮食作物被列为五谷之首。
袁隆平先生成功培育出优质杂交水稻 为人类解决“温饱”问题作出重大贡献。
目前已知水稻种植最早出现于下列哪一地区A .黄河中游B .长江下游C.珠江三角洲D.辽河流域 3。
《三字经》中有云: “始春秋,终战国,五霸强,七雄出。
”其中“五霸”中最早出现的霸主和“七雄 " 中 最后胜出的诸侯国分别是A. 秦穆公 楚国B. 晋文公 齐国 C 。
齐桓公 秦国 D. 楚庄王 秦国4。
周的政治体制中实权下放、虚权保留的模式,在彼此矛盾激化、亲情疏远的情况下, 自然不再温情脉脉, 春秋时代也便有且只有僭越频发的可能。
材料中评价的政治体制为A .分封制B .宗法制 C.郡县制 D .礼乐制度5。
春秋战国时期,我国正处于由奴隶社会向封建社会过渡的历史转折时期。
决定这一历史转折的根本因素 是.土地私有制的出现C.铁农具的使用 D •“初税亩”的出现与推广6. 秦始皇在全国范围内推行郡县制度,郡守和县令的产生方式是A .世代相袭B .考试选拔C .皇帝任命D .地方推举7. 某思想家曰 :“天地无人推而自行 , 日月无人燃而自明,星辰无人列而自序,禽兽无人造而自生,此乃自然 为之也,何劳人为乎?人之所以生、所以无、所以荣、所以辱,皆有自然之理、自然之道也。
”这主要反 映了B .庄子“齐物”的自由精神 D .墨子“节用” “兼爱”的主张了儒、墨、道、法诸家言论。
这种现象表明当时国结构取代了周朝的制度……所有这些使中国得到了世界上最稳定、最持久的统治。
2019-2020学年辽宁省实验中学实验班高一(上)期中数学试卷 (含答案解析)
2019-2020学年辽宁省实验中学实验班高一(上)期中数学试卷一、选择题(本大题共12小题,共60.0分)1. 若U ={1,2,3,4,5,6,7,8},A ={1,2,3},B ={5,6,7},则(∁U A)∩(∁U B)=( )A. {4,8}B. {2,4,6,8}C. {1,3,5,7}D. {1,2,3,5,6,7} 2. 已知f(x)为定义在R 上的奇函数,且满足f(1+x)=f(1−x),则f(10)的值为( )A. 0B. 2C. 5D. 103. 函数y =log (x−2)(5−x)的定义域是( )A. (3,4)B. (2,5)C. (2,3)∪(3,5)D. (−∞,2)∪(5,+∞) 4. 幂函数的图象过点(2,8),则它的单调递增区间是( )A. (0,+∞)B. [0,+∞)C. (−∞,0)D. (−∞,+∞) 5. 有甲、乙两个盒子,甲盒子里有1个红球,乙盒子里有3个红球和3个黑球,现从乙盒子里随机取出n (1≤n ≤6,n ∈N ∗)个球放入甲盒子后,再从甲盒子里随机取一球,记取到的红球个数为ξ个,则随着n (1≤n ≤6,n ∈N ∗)的增加,下列说法正确的是( )A. Eξ增加,Dξ增加B. Eξ增加,Dξ减小C. Eξ减小,Dξ增加D. Eξ减小,Dξ减小6. 设袋中有80个红球,20个白球,若从袋中任取10个球,则其中恰有6个红球的概率为( )A. C 804⋅C 106C 10010B.C 806⋅C 104C 10010C.C 804⋅C 206C 10010D.C 806⋅C 204C 100107. 已知某批零件的长度误差(单位:毫米)服从正态分布N(1,22),从中随机取一件,其长度误差落在区间(3,5]内的概率为( )A. 45.6%B. 13.59%C. 27.18%D. 31.74%8. 设,则( )A. a <c <bB. c <a <bC. b <c <aD. c <b <a9. 函数f(x)=2x−log 12x 的零点所在区间为( ) A. (0,14) B. (14,12) C. (12,0) D. (1,2)10. 已知随机变量X 满足D (X )=2,则D (3X +3)的值等于( )A. 20B. 18C. 8D. 611. 把编号分别为1,2,3,4,5五张电影票全部分给甲、乙、丙三个人,每人至少一张,若分得的电影票超过一张,则必须是连号,那么不同分法的种数为( )A. 36B. 40C. 42D. 4812.设函数f(x)=e x+x−2,g(x)=lnx+x2−3.若实数a,b满足f(a)=0,g(b)=0,则()A. g(a)<0<f(b)B. f(b)<0<g(a)C. 0<g(a)<f(b)D. f(b)<g(a)<0二、填空题(本大题共4小题,共20.0分)13.满足{1,3}∪A={1,3,5}的集合A的个数是____.14.(x2−ax+2y)5的展开式中x5y2的系数为240,则实数a的值为______15.某停车场有6个停车位,现停进了4辆不同的轿车,考虑到进出方便,要求任何三辆车不能连续停放在一起,共有______种停法.(用数字作答).16.已知函数f(x)满足:f(1)=1,8f(x)f(y)=f(x+y)+f(x−y),(x,y∈R),则8f(10)=__________.三、解答题(本大题共6小题,共70.0分)17.化简求值:(1)已知a12+a−12=3,求a+a−1;(2)(lg5)2+lg2×lg50.18.已知集合A={x|2<x<6},B={x|3<x<9},C={x|x>a},全集为实数集R.(1)求∁R A和(∁R A)∩B;(2)如果A∩C≠⌀,求a的取值范围.)n的展开式中各项的二项式系数之和为32.19.已知(2x+√x(1)求n的值;)n的展开式中x2项的系数;(2)求(2x+√x(3)求(x√x )(2x+√x)n展开式中的常数项.20.由中央电视台综合频道(CCTV−1)和唯众传媒联合制作的《开讲啦》是中国首档青年电视公开课,每期节目由一位知名人士讲述自己的故事,分享他们对于生活和生命的感悟,给予中国青年现实的讨论和心灵的滋养,讨论青年们的人生问题,同时也在讨论青春中国的社会问题,受到青年观众的喜爱,为了了解观众对节目的喜爱程度,电视台随机调查了A、B两个地区的100名观众,得到如表的2×2列联表,已知在被调查的100名观众中随机抽取1名,该观众是B地区当中“非常满意”的观众的概率为0.35.(1)完成上述表格并根据表格判断是否有95%的把握认为观众的满意程度与所在地区有关系;(2)若以抽样调查的频率为概率,从A地区随机抽取3人,设抽到的观众“非常满意”的人数为X,求X的分布列和期望.附:参考公式:K2=n(ad−bc)2(a+b)(c+d)(a+c)(b+d).21. 已知f(x)=xx +21是定义在[−1,1]上的函数.判断并证明f(x)的单调性;22. 已知f(x)是定义在R 上的奇函数,且当x ≥0时,f(x)=m −3x(1)求函数f(x)的解析式;(2)当x ∈[2,8]时,不等式f ((log 2x )2)+f (5−alog 2x )≥0恒成立,求实数a 的取值范围.-------- 答案与解析 --------1.答案:A解析:解:∵U={1,2,3,4,5,6,7,8},A={1,2,3},B={5,6,7},∴(∁U A)∩(∁U B)={4,5,6,7,8}∩{1,2,3,4,8}={4,8},故选:A.根据集合的基本运算即可得到结论.本题主要考查集合的基本运算,比较基础.2.答案:A解析:【分析】本题考查奇函数的性质以及函数周期性.属基础题.利用奇函数的性质f(0)=0及条件f(1+x)=f(1−x)得f(x+4)=f(x),函数周期为4,即可求出f(10).【解答】解:因为f(1+x)=f(1−x),所以f(2+x)=f(−x),因为f(x)为定义在R上的奇函数,所以f(−x)=−f(x),f(0)=0,所以f(2+x)=−f(x),所以f(x+4)=f(x),函数周期为4,所以f(10)=f(2)=f(1+1)=f(1−1)=f(0)=0.故选A.3.答案:C解析:解:由{5−x>0 x−2>0 x−2≠1,解得2<x<5且x≠3.∴函数y=log(x−2)(5−x)的定义域是:(2,3)∪(3,5).故选:C.直接由对数的运算性质列出不等式组,求解即可得答案.本题考查了函数的定义域及其求法,考查了不等式的解法,是基础题.4.答案:D解析: 【分析】本题考查幂函数的单调递增区间的求法,是基础题,解题时要注意幂函数的性质的合理运用.由幂函数y =x a 的图象过点(2,8),求出y =x 3,由此能求出它的单调递增区间. 【解答】解:∵幂函数y =x a 的图象过点(2,8), ∴2a =8,解得a =3, ∴y =x 3,它的单调递增区间是(−∞,+∞). 故选:D .5.答案:C解析: 【分析】本题考查了超几何分布、两点分布,分布列与数学期望,考查了推理能力计算能力,属于难题. 依题意,从乙盒子里随机取出n 个球,含有红球个数X 服从超几何分布,即X ~H(6,3,n),故EX =n2,再从乙盒子里随机取出n 个球,含有红球个数X 服从超几何分布,即X ~H(6,3,n),ξ服从两点分布,所以Eξ=P(ξ=1)=12+12n+2 ,随着n 的增大,Eξ减小;Dξ=1−P(ξ=1)=12−12n+2, 随着n 的增大,Dξ增大; 【解答】解:依题意,从乙盒子里随机取出n 个球,含有红球个数X 服从超几何分布,即X ~H(6,3,n), 其中P (x =k )=C 3k C 3n−kC 6n ,其中k ∈N ,k ≤3且k ≤n ,EX =3n 6=n2.故从甲盒中取球,相当于从含有n2+1 个红球的n +1个球中取一球,取到红球个数为ξ个,故P(ξ=1)=n2+1n+1=12++12n+2,随着n 的增大,Eξ减小; Dξ=1−P(ξ=1)=12−12n+2 ,随着n 的增大,Dξ增大; 故选C .6.答案:D解析:解:本题是一个古典概型, ∵袋中有80个红球20个白球,若从袋中任取10个球共有C 10010种不同取法,而满足条件的事件是其中恰有6个红球,共有C 806C 204种取法,由古典概型公式得到P =C 806C 204C 10010,故选:D .本题是一个古典概型,试验包含的总事件是袋中有80个红球20个白球,从袋中任取10个球共有C 10010种不同取法,而满足条件的事件是其中恰有6个红球,共有C 806C 204种取法,根据古典概型公式得到结果.本题非常具有代表性,本题考查古典概型,这样的问题可以变形一系列题目,其中恰有6个红球的概率把6变为0、1、2、3、4、5、6、7、8、9、10个红球,也可以变化球的颜色来构造题目.7.答案:B解析: 【分析】本题考查正态分布的概率的计算,属于较容易题. 利用正态分布的对称性直接得出结果. 【解答】解:某批零件的长度误差(单位:毫米)服从正态分布N(1,22),所以其长度误差落在区间(3,5]内的概率P =(3<ξ≤5)=P(μ+σ<ξ≤μ+2σ) = 12[P(μ−2σ<ξ≤μ+2σ)−P(μ−σ<ξ≤μ+σ)]=12×(0.9544−0.6826)=13.59% 故选B .8.答案:D解析: 【分析】本题主要考查对数函数的性质,属于基础题. 【解答】解:因为a =log 23,b =log 2√3, ,所以,∴c <b <a. 故选D .9.答案:B解析:解:∵函数f(x)=2x−log 12x , ∴f(14)=√24−2<0,f(12)=√2−1>0,可得f(14)f(12)<0.根据函数的零点的判定定理,可得函数f(x)=2x−log 12x 的零点所在区间为(14 ,12), 故选:B .由函数的解析式求得f(14)f(12)<0,再根据函数的零点的判定定理,可得函数f(x)=2x −log 12x 的零点所在区间.本题主要考查函数的零点的判定定理的应用,根据函数的解析式求函数的值,判断函数的零点所在的区间的方法,属于基础题.10.答案:B解析: 【分析】本题考查离散型随机变量的方差的求法,是基础题,解题时要认真审题,注意方差性质的合理运用. 由随机变量X 满足D(X)=2及D(3X +3)=32D(X),能求出结果. 【解答】解:∵随机变量X 满足D(X)=2, ∴D(3X +3)=32D(X)=9D(X)=18. 故选B .11.答案:A解析: 【分析】本题考查了排列组合,属于中档题,将情况分为两类可以简化运算.将情况分为113和122两种情况,相加得到答案. 【解答】解:当分的票数为1,1,3这种情况时:C 31×3×A 22=18种,当分的票数为1,2,2这种情况时:一张票数的人可以选择1,3,5,即有C 31×A 22×3=18种,∴不同分法的种数为36,故答案选A.12.答案:A解析:由于y=e x及y=2−x关于x是单调递增函数,∴函数f(x)=e x+x−2在R上单调递增.分别作出y=e x,y=2−x的图象,∵f(0)=1+0−2<0,f(1)=e−1>0,f(a)=0,∴0<a<1.同理g(x)=lnx+x2−3在R+上单调递增,g(1)=ln1+1−3=−2<0,由于g(√3)=ln3>0,故由g(b)=0,可得1<b<ln√3+(√3)2−3=12√3.∴g(a)=lna+a2−3<g(1)=ln1+1−3=−2<0,f(b)=e b+b−2>f(1)=e+1−2=e−1>0.∴g(a)<0<f(b).故答案为:g(a)<0<f(b).故选A.13.答案:4解析:【分析】本题考查并集及其运算,属于基础题型,利用并集的性质可得集合A中至少含有元素5是本题的关键;【解答】解:由{1,3}∪A={1,3,5}知,集合A中至少含有元素5,故A可为{5},{1,5},{3,5},{1,3,5}.14.答案:−2解析:【分析】本题考查了二项式定理的应用,是中档题.化(x2−ax+2y)5=[(x2−ax)+2y]5,利用二项展开式的通项公式求得展开式中x5y2的系数,列方程求出a的值.【解答】解:(x2−ax+2y)5=[(x2−ax)+2y]5,其展开式的通项公式为T r+1=C5r⋅(x2−ax)5−r⋅(2y)r,令r=2,得T3=C52⋅(x2−ax)3⋅4y2=40x3⋅(x−a)3⋅y2=40x3y2(x3−3ax2+3a2x−a3),∴展开式中x5y2的系数为40⋅(−3a)=240,解得a=−2.故答案为−2.15.答案:360解析:解:第一步:先将4辆车停好,有A44=24种,形成了不包含两端的3个间隔,第二步:再将其中一个空停车位插入其中一个有3种,这时又形成了5个间隔,包含两端,其中与空停车相邻的按一个计算,第三步:最后将剩余的一个空停车位插入其中一个有5种,根据分步计数原理可得,共有24×3×5=360种,故要求任何三辆车不能连续停放在一起,共有360种,故答案为:360分三步,采取插空法,根据分步计数原理可得.本题考查了分步计数原理,关键采取插空法,属于中档题.16.答案:18解析:令y=1,则8f(x)f(1)=f(x+1)+f(x−1),所以f(x)=f(x+1)+f(x−1),所以f(x+ 1)=f(x+2)+f(x),所以f(x+2)+f(x−1)=0,即f(x)+f(x+3)=0,所以f(13)=−f(10)= f(7)=−f(4)=f(1)=1.817.答案:解:(1)由a12+a−12=3,得:(a12+a−12)2=9,所以(a12)2+2a12⋅a−12+(a−12)2=9,即a+2+a−1=9,所以a+a−1=7;(2)(lg5)2+lg2×lg50=(lg5)2+lg2(lg5+1)=lg5(lg5+lg2)+lg2=lg5+lg2=1.解析:(1)把已知的等式两边平方即可求出a+a−1;(2)把lg50展成对数的和,然后提取公因式lg5可得结果.本题考查了指数式和对数式的运算,解答的关键就是熟记运算性质,属基础题.18.答案:解:(1)因为A={x|2<x<6},B={x|3<x<9},所以求∁R A={x|x≤2或x≥6},(∁R A)∩B={x|6≤x<9};(2)A ={x|2<x <6},C ={x|x >a}, 如果A ∩C ≠⌀,则a 的取值范围是a <6.解析:(1)根据补集与交集的定义,计算即可; (2)根据交集与空集的定义,写出a 的取值范围. 本题考查了集合的定义与运算问题,是基础题.19.答案:解:(1)由题意结合二项式系数的性质可得2n =32,解得n =5.(2)由题意得(2x √x )n 的展开式的通项公式为T r+1=C 5r ⋅25−r ⋅x 5−3r 2,令5−3r 2=2,解得r =2,所以展开式中x 2项的系数为23×C 52=80.(3)由(2)知,(2x +x )n 的展开式的通项公式为T r+1=C 5r ⋅25−r ⋅x 5−3r2,令5−3r 2=−1,解得r =4;令5−3r 2=12,解得r =3,故(x −√x )(2x +√x )n 展开式中的常数项为 21⋅C 54−22⋅C 53=−30.解析:本题主要考查二项式定理的应用,二项展开式的通项公式,二项式系数的性质,属于基础题. (1)利用二项式系数的性质求得n 的值.(2)利用二项展开式的通项公式,求得展开式中x 2项的系数. (2)利用二项展开式的通项公式,求得展开式中的常数项.20.答案:解:(1)完成2×2列联表如下:则K 2=(a+b)(c+d)(a+c)(b+d)=65×35×45×55=1001≈0.1<3.841,∴没有95%的把握认为观众的满意程度与所在地区有关系.(2)从A 地区随机抽取1人,抽到的观众“非常满意”的概率为P =23, 随机抽取3人,X 的可能取值为0,1,2,3, P(X =0)=(13)3=127,P(X =1)=C 31(23)(13)2=627=29,P(X =2)=C 32(23)2(13)=49,P(X =3)=(23)3=827, ∴X 的分布列为:∴EX =0×27+1×9+2×9+3×27=2.解析:(1)完成2×2列联表,求出K 2=1001001≈0.1<3.841,从而没有95%的把握认为观众的满意程度与所在地区有关系.(2)从A 地区随机抽取1人,抽到的观众“非常满意”的概率为P =23,随机抽取3人,X 的可能取值为0,1,2,3,由此能求出X 的分布列和EX .本题考查独立性检验的应用,考查离散型随机变量的分布列、数学期望的求法,考查二项分布等基础知识,考查学生的逻辑分析能力、运算求解能力,是中档题.21.答案:解:函数f(x)在[−1,1]上为增函数.证明如下,任取−1≤x 1<x 2≤1,f(x 1)−f(x 2)=x 1x 12+1−x2x 22+1,=(x 1−x 2)(1−x 1x 2)(x 12+1)(x 22+1)<0,∴−1≤x 1<x 2≤1,−1<x 1x 2<1, ∴1−x 1x 2>0. ∴f(x 1)<f(x 2),∴f(x)为[−1,1]上的增函数.解析:本题主要考查利用定义法求函数的单调性,属于基础题. 任取−1≤x 1<x 2≤1,再比较f(x 1) 与 f(x 2)的大小即可.22.答案:解:当x =0时,f(0)=0.得m =1.(1)当x <0时,−x >0,f(−x)=1−3−x , 又f(x)是奇函数,f(−x)=−f(x), 故f(x)=−1+3−x ,故f(x)={1−3x ,x ≥0−1+3−x ,x <0;(2)f(log 22x)+f(5−alog 2x)≥0得f(log 22x)≥−f(5−alog 2x).∵f(x)是奇函数,∴得f(log 22x)≥f(alog 2x −5). 又f(x)是减函数,所以log 22x −alog 2x +5≤0.x ∈[2,8]恒成立. 令t =log 2x ,x ∈[2,8],则t ∈[1,3], 得t 2−at +5≤0对∀t ∈[1,3]恒成立. 令g(t)=t 2−at +5,t ∈[1,3],g max (t)=max{g(1),g(3)}≤0∴{g(1)≤0g(3)≤0, 解得a ≥6.解析:本题考查函数的奇偶性,涉及函数恒成立和二次函数区间的最值,属中档题. (1)根据奇函数的性质即可求出;(2)根据函数的单调性和奇函数的性质可得不等式f(log 22x)+f(5−alog 2x)≥0恒成立,t =log 2x ,问题转化为得t 2−at +5≤0对∀t ∈[1,3]恒成立,根据二次函数的性质即可求出.。
2021-2022学年辽宁省实验中学高一上学期第一次月考数学试卷
辽宁省实验中学2021-2022学年度上学期月考试卷高一数学(B)考试时间:120分钟 满分:150分范围:必修一:第一章,第二章一.选择题(本大题共8小题,每小题5分,共40分。
每小题只有一个正确答案) 1.已知集合M ={x|x<1或x>4},N =[-1,+∞),则M ∩N 等于A.(-∞,+∞)B.(-1,1)∪(4,+∞)C.∅D.[-1,1)∪(4,+∞)2.若x ,y 满足-4π<x<y<4π,则x -y 的取值范围是 A.(2π-,0) B.(2π-,2π) C.(4π-,0) D.(4π-,4π)3.已知集合A ={(x ,y)|y =x 2},B ={(x ,y)|y =x},则集合A ∩B 中元素的个数为 A.3 B.2 C.1 D.04.设x ∈R ,则x>2的一个必要而不充分条件是 A.x>1 B.x<1 C.x>3 D.x<35.“x<1”是“x 2-2x -3<0”的A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分又不必要条件 6.已知x ∈R ,M =2x 2-1,N =4x -6,则M ,N 的大小关系是 A.M>N B.M<N C.M =N D.不能确定7关于x 的不等式(ax -b)(x +3)<0的解集为(-∞,-3)∪(1,+∞),则关于x 的不等式ax +b>0的解集为A.(-0,-1)B.(-1,+∞)C.(-∞,1)D.(1,+∞)8.《九章算术》记载了一个方程的问题,译为:今有上禾6束,减损其中之“实”十八升,与下禾10束之“实”相当;下禾15束,减损其中之“实”五升,与上禾5束之“实”相当。
问上、下禾每束之实各为多少升?设上下禾每束之实各为x 升和y 升,则可列方程组为 A.6x 1810y 15y 55x +=⎧⎨+=⎩ B.6x 1810y 15y 55x -=⎧⎨-=⎩ C.6x 1815y 15y 55x -=⎧⎨-=⎩ D.6x 1815y15y 55x +=⎧⎨+=⎩二、多项选择题(本大题共4小题,共20分:全选对5分,有选错的0分,部分答对2分) 9.已知a ,b ,c ,d 均为实数,下列不等关系推导不成立的是 A.若a>b ,c<d ,则a +c>b +d B.若a>b ,c>d ,则ac>bdC.若bc -ad>0,c da b->0,则ab<0 D.若a>b>0,c>d>0a b d c >10.当两个集合有公共元素,且互不为对方的子集时,我们称这两个集合“相交”。
辽宁省实验中学东戴河分校2019-2020学年高一实验班10月月考数学试题
辽宁省实验中学东戴河校区 2019~2020学年上学期高一年级10月份月考数学试卷 命题人:张岩 校对人:许正保说明:1、本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,第Ⅰ卷第(1)页至第(2)页,第Ⅱ卷第(3)页至第(4)页。
2、本试卷共150分,考试时间120分钟。
第Ⅰ卷(选择题,共60分)注意事项:1、答第Ⅰ卷前,考生务必将自己的姓名、班级填涂在答题卡上,贴好条形码。
答题卡不要折叠2、每小题选出答案后,用2B 铅笔把答题卡上对应的题目标号涂黑。
答在试卷上无效。
3、考试结束后,监考人员将试卷答题卡收回。
一选择题(每小题5分)1.已知集合{}0,2A =, {}2,1,0,1,2B =--,则A B ⋂=( ) A .{}0,2 B .{}1,2 C .{}0 D .{}2,1,0,1,2-- 2.已知集合{}220A x x x =-->,则C A =R ( ) A .{}12x x -<<B .{}12x x -≤≤C .}{}{|12x x x x <-⋃> D .}{}{|1|2x x x x ≤-⋃≥3.用反证法证明命题“已知,*∈a b N ,如果ab 可被5整除,那么,a b 中至少有一个能被5整除”时,假设的内容应为( ) A.,a b 都能被5整除B.,a b 都不能被5整除C.,a b 不都能被5整除D.不能被5整除4.已知集合{}|1A x x =≤,{}|B x x a =≥,且A B R =U ,则实数a 的取值范围是( ) A.1a ≤ B. 1a < C. 1a > D. 1a ≥5集合26{|}A x x y x N y N -∈∈==+,,的,真子集的个数为( ) A.9B.8C.7D.66.设x R ∈,则“250x x -<”是“|1|1x -<”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充要条件D .既不充分也不必要条件7.已知集合,集合,则( )A.B.C. D.8.若011<<b a ,则下列不等式:①ab b a <+;②||||b a >;③b a <;④2>+baa b 中,正确的不等式是( )A .①④B .②③C .①②D .③④9.手机屏幕面积与整机面积的比值叫手机的“屏占比”,它是手机外观设计中一个重要参数,其值通常在(0,1)间,设计师将某手机的屏幕面积和整机面积同时增加相同的数量,升级为一款新手机的外观,则该手机“屏占比”和升级前比有什么变化?( ) A .“屏占比”不变 B .“屏占比”变小 C .“屏占比”变大D .变化不确定10.下列选项正确的个数为( )31),4(),(①==x AB B x A ,则且已知数轴上,②已知{}{}{}22(,)5(,)1(1,2),(2,1)x y x y x y y x +=⋂=+=--.③命题“()20,10x x x ∀∈-<,” 的否定形式为“()20,10x x x ∃∉-≥,” .④已知多项式3225x x x k --+有一个因式为()21x +,则2k =-. A . 1个B .2个C .3个D . 4个11.已知集合的元素个数为()*3n n N∈个且元素为正整数,将集合分成元素个数相同且两两没有公共元素的三个集合,,A B C ,即P A B C =⋃⋃,A B φ⋂=,A C φ⋂=,B C φ⋂=,其中{}12,,,n A a a a =⋯,{}12,,n B b b b =⋯,{}12,,...n C c c c =,若集合,,A B C 中的元素满足12,n c c c <<⋅⋅⋅<,k k k a b c +=,1,2,,k n =⋅⋅⋅,则称集合为“完美集合”例如: “完美集合”{}11,2,3,p =此时{}{}{}1,2,3A B C ===.若集合{}21,,3,4,5,6p x =,为“完美集合”,则不可能为( )A . 7B .11C .13D .912.若命题“22,421x R ax x a x ∀∈++≥-+”是假命题,则实数的取值范围是( ) A .() ,2-∞ B .(],2-∞ C .[)2,2- D .() ,2-∞-第Ⅱ卷(非选择题,共90分)二填空题(每小题5分)13.学校运动会上,某班有10人参加了篮球比赛,有12人参加排球比赛,两项都参加的有4人,则该班参加比赛的学生人数是 人.14.求(12)y x x =-的最大值 .15.对于x R ∈,不等式233x x --≥的解集为 .16.已知,,a b c 均为实数,且0,16a b c abc ++==,求正数c 的最小值 . 三解答题(共70分)17.(10分)求关于x 的方程2210ax x ++=至少有一个负根的充要条件.18.(12分)设集合222{|320}{|150}A x x x B x x a x a =-+==+-+-=,(). (1)若{}2A B ⋂=,求实数的值; (2)若A B A ⋃=,求实数的取值范围.19(12分)(1)设a b 0≥>,证明:3322a b a b ab +≥+;(2)已知实数,a b 满足13a b ≤+≤,11a b -≤-≤,求42a b +的取值范围。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2019-2020学年辽宁省实验中学高一(上)第一次月考数学试卷一、选择题(本大题共12小题,每小题5分,共60分)1.(5分)设集合A={x||x﹣2|<2},B={x|x2﹣3x+2<0},若U=R,则A∩∁U B=()A.{x|0<x≤1或2≤x<4}B.{x|1<x<2}C.∅D.{x|x<0或x>4}2.(5分)命题p:∀x>0,>0,则命题p的否定是()A.∃x>0,≤0B.∃x≤0,≤0C.∃x>0,<0D.∃x>0,0≤x≤23.(5分)下列不等式中,正确的是()A.若a﹣c>b﹣d且c>d,则a>bB.若a>0,b>0,a3﹣b3=1,则a﹣b>1C.若a>b>0,c>d,则ac>bdD.若a>b,则ac2>bc24.(5分)集合A={x|≤0},B={x|x2﹣4x+3≤0},则A∩B=()A.[2,3]B.[3,4]C.[1,2]D.(2,3]5.(5分)已知x1,x2是关于x的一元二次方程x2﹣(2m+3)x+m2=0的两个不相等的实数根,并且满足+=1,则实数m的值是()A.﹣1B.3C.﹣1或3D.﹣3或16.(5分)已知:a,b均为正数,,则使a+b≥c恒成立的c的取值范围是()A.(﹣∞,]B.(0,1]C.(﹣∞,9]D.(﹣∞,8] 7.(5分)已知命题p:0<a<4,命题q:∀x∈R,ax2+ax+1>0,则命题p是命题q为真命题的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件8.(5分)已知实数a>0,b>0,且+=1,则+的最小值为()A.8B.10C.10D.169.(5分)设x,y均为正数,且x+4y+5=x•y,则x+y的最小值为()A.B.25C.11D.5+310.(5分)已知x,y满足的解集为集合A,则下列命题为真命题的是()A.∀(x,y)∈A,4x+2y<2B.∃(x,y)∈A,4x+2y<2C.∀(x,y)∈A,4x+2y<10D.∃(x,y)∈A,4x+2y>1011.(5分)已知x+y=++8(x,y>0),则x+y的最小值为()A.5B.9C.4+D.1012.(5分)关于x的不等式x2﹣ax+a+3≥0在区间[﹣2,0]上恒成立,则实数a的取值范围是()A.[﹣,+∞)B.[6,+∞)C.(﹣∞,6]D.[﹣2,+∞)二、填空题(本大题共4小题,每小题5分,共20分)13.(5分)设集合A={0,1},B={1,2},C={x|x=a+b,a∈A,b∈B},则集合C的真子集个数为.14.(5分)已知命题p:﹣2≤x≤4,命题q:实数x满足|x﹣2|≤m(m>0),若¬p是¬q 的必要不充分条件,则实数m的取值范围是.15.(5分)已知m是方程x2﹣5x+1=0的一个根,则m3﹣24m+2019=.16.(5分)已知正数x,y满足xy++4y2=2,则y的最大值为.三、解答题(本大题共4小题,每题10分,共40分)17.(10分)已知a,b,c∈R+,证明:(1)若a,b,c∈R,证明:a2+b2+c2≥(a+b+c)2;(2)设a,b,c∈R+,且a+b+c=1,证明:++≥1.18.(10分)已知集合A={x|x2﹣4x=0},B={x|ax2﹣2x+8=0}.(1)是否存在实数a,使A∪B={0,2,4}?若存在,求出a的值;若不存在,请说明理由;(2)若A∩B=B,求实数a的取值范围.19.(10分)解关于x的不等式>0(a∈R).20.(10分)为了加强“平安校园”建设,有效遏制涉校案件的发生,保障师生安全,某校决定在学校门口利用一侧原有墙体,建造一间墙高为3米,底面为24平方米,且背面靠墙的长方体形状的校园警务室,由于此警务室的后背靠墙,无需建造费用,甲工程队给出的报价为:屋子前面新建墙体的报价为每平方米400元,左右两面新建墙体报价为每平方米300元,屋顶和地面以及其他报价共计14400元,设屋子的左右两面墙的长度均为x米(1≤x≤5).(1)当左右两面墙的长度为多少时,甲工程队报价最低?并求出最低报价;(2)现有乙工程队也要参与此警务室的建造竞标,其给出的整体报价为元(a>0),若无论左右两面墙的长度为多少米,乙工程队都能竞标成功,试求a的取值范围.2019-2020学年辽宁省实验中学高一(上)第一次月考数学试卷参考答案与试题解析一、选择题(本大题共12小题,每小题5分,共60分)1.(5分)设集合A={x||x﹣2|<2},B={x|x2﹣3x+2<0},若U=R,则A∩∁U B=()A.{x|0<x≤1或2≤x<4}B.{x|1<x<2}C.∅D.{x|x<0或x>4}【分析】可以求出集合A,B,然后进行交集和补集的运算即可.【解答】解:∵A={x|0<x<4},B={x|1<x<2},U=R,∴∁U B={x|x≤1或x≥2},A∩∁U B={x|0<x≤1或2≤x<4}.故选:A.【点评】本题考查了描述法的定义,绝对值不等式和一元二次不等式的解法,交集和补集的运算,考查了计算能力,属于基础题.2.(5分)命题p:∀x>0,>0,则命题p的否定是()A.∃x>0,≤0B.∃x≤0,≤0C.∃x>0,<0D.∃x>0,0≤x≤2【分析】根据全称命题的否定是存在量词命题,结合命题与它的否定命题之间的关系,判断即可.【解答】解:命题p:∀x>0,>0,由于命题p中x取不到2,其命题的否定中应能取到,所以选项D正确.故选:D.【点评】本题考查了命题与它的否定命题之间关系应用问题,解题时要注意“含定义域限制切记不要直接变号”,是基础题.3.(5分)下列不等式中,正确的是()A.若a﹣c>b﹣d且c>d,则a>bB.若a>0,b>0,a3﹣b3=1,则a﹣b>1C.若a>b>0,c>d,则ac>bdD.若a>b,则ac2>bc2【分析】根据不等式的性质分别判断即可.【解答】解:对于A:若a﹣c>b﹣d且c>d,则a>b,故A正确;对于B:若a>0,b>0,a3﹣b3=1,则a﹣b<1,故B错误;对于C:令a=2,b=1,c=﹣2,d=﹣3,则ac<bd,故C错误;对于D:c=0时,错误;故选:A.【点评】本题考查了不等式问题,是一道基础题.4.(5分)集合A={x|≤0},B={x|x2﹣4x+3≤0},则A∩B=()A.[2,3]B.[3,4]C.[1,2]D.(2,3]【分析】直接解分式是不等式以及二次不等式求出A,B,进而求出结论.【解答】解:∵集合A={x|≤0}={x|2<x≤4},B={x|x2﹣4x+3≤0}={x|1≤x≤3},∴A∩B=(2,3].故选:D.【点评】本题考查集合间的交集的运算,应注意不等式的正确求解,属于基础题.5.(5分)已知x1,x2是关于x的一元二次方程x2﹣(2m+3)x+m2=0的两个不相等的实数根,并且满足+=1,则实数m的值是()A.﹣1B.3C.﹣1或3D.﹣3或1【分析】由根与系数的关系,可得x1+x2=2m+3,x1•x2=m2,又由+=1,即可求得m的值.【解答】解:∵关于x的一元二次方程x2﹣(2m+3)x+m2=0的两个不相等的实数根,∴△=(2m+3)2﹣4m2=12m+9>0,∴m>﹣,∵x1+x2=2m+3,x1•x2=m2,又∵+=1,∴x1+x2=x1•x2,∴2m+3=m2,解得:m=﹣1或m=3,∵m>﹣,∴m=3,故选:B.【点评】此题考查了一元二次方程根与系数的关系与判别式的应用.此题难度适中,注意掌握如果x1,x2是一元二次方程ax2+bx+c=0的两根,那么有x1+x2=﹣,x1x2=的应用.6.(5分)已知:a,b均为正数,,则使a+b≥c恒成立的c的取值范围是()A.(﹣∞,]B.(0,1]C.(﹣∞,9]D.(﹣∞,8]【分析】由题意知,要使a+b≥c恒成立,即a+b的最小值≥c,利用均值不等式求解即可.【解答】解:∵a,b均为正数,,∴a+b=(a+b)×=(5+)≥(5+2)=,当且仅当,即b=2a时,取等号;∴a+b的最小值是,由题意可知c,故选:A.【点评】本题通过恒成立问题的形式,考查了均值不等式,灵活运用了“2”的代换,是高考考查的重点内容.7.(5分)已知命题p:0<a<4,命题q:∀x∈R,ax2+ax+1>0,则命题p是命题q为真命题的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【分析】对于命题q:讨论当a=0的情况和a≠0时,根据一元二次函数图象与不等式的关系求得a的取值范围;再根据充分必要条件的定义判断即可.【解答】解:命题q:∀x∈R,ax2+ax+1>0,当a=0时,1>0成立,因此a=0满足题意当a≠0时,可得,解得0<a<4.综上可得:q:0≤a<4.∵命题p:0<a<4⇒命题q:0≤a<4,反之,命题q:0≤a<4推不出命题p:0<a<4.∴命题p是命题q为真命题的充分不必要条件.故选:A.【点评】本题考查了一元二次不等式及其方程与判别式的关系、充分必要条件的判定方法,考查了计算能力,属于基础题8.(5分)已知实数a>0,b>0,且+=1,则+的最小值为()A.8B.10C.10D.16【分析】利用“乘1法”与基本不等式的性质即可得出【解答】解:因为a>0,b>0,且+=1,所以a+b=ab,即(a﹣1)(b﹣1)=1,则+==,=8a+2b﹣10,=(8a+2b)()﹣10,==8,当且仅当且+=1,即a=,b=3时取等号,此时取得最小值8.故选:A.【点评】本题考查了基本不等式在求最值中的应用,属于中档题.9.(5分)设x,y均为正数,且x+4y+5=x•y,则x+y的最小值为()A.B.25C.11D.5+3【分析】由已知变形可得9=(x﹣4)(y﹣1),然后结合基本不等式即可求解.【解答】解:∵x,y均为正数,且x+4y+5=x•y,∴xy﹣x﹣4y=5即x(y﹣1)﹣4y=5,∴x(y﹣1)﹣4(y﹣1)=9,∴9=(x﹣4)(y﹣1)≤,∵x>0,y>0,∴x+y﹣5≥6即x+y≥11,当且仅当x=7,y=4时取等号.故选:C.【点评】本题主要考查了基本不等式在求解最值中的应用,属于基础试题.10.(5分)已知x,y满足的解集为集合A,则下列命题为真命题的是()A.∀(x,y)∈A,4x+2y<2B.∃(x,y)∈A,4x+2y<2C.∀(x,y)∈A,4x+2y<10D.∃(x,y)∈A,4x+2y>10【分析】令4x+2y=μ(x+y)+λ(x﹣y),根据对应关系求出μ,λ的值,结合x+y,x﹣y 的范围,求出4x+2y的范围即可.【解答】解:令4x+2y=μ(x+y)+λ(x﹣y),则,解得:μ=3,λ=1,故4x+2y=3(x+y)+(x﹣y),而1<x+y<3,故3<3(x+y)<9,﹣1<x﹣y<1,则4x+2y∈(2,10),故选:C.【点评】本题考查了不等式的性质,考查转化思想,是一道常规题.11.(5分)已知x+y=++8(x,y>0),则x+y的最小值为()A.5B.9C.4+D.10【分析】根据题意,将x+y=++8变形可得(x+y)2=(++8)(x+y)=5+8(x+y)++,即有(x+y)2﹣8(x+y)﹣5=+,结合基本不等式的性质可得(x+y)2﹣8(x+y)﹣9≥0,设t=x+y,则有t2﹣8t﹣9≥0,解可得t的取值范围,分析可得答案.【解答】解:根据题意,x+y=++8,则(x+y)2=(++8)(x+y)=5+8(x+y)++,变形可得:(x+y)2﹣8(x+y)﹣5=+,又由+≥2=4,则有:(x+y)2﹣8(x+y)﹣9≥0,设t=x+y,又由x,y>0,则t>0,则有t2﹣8t﹣9≥0,解可得t≥9或t≤﹣1,又由t>0,则t≥9,则x+y的最小值为9;故选:B.【点评】本题考查基本不等式的性质以及应用,关键是对x+y=++8的变形.12.(5分)关于x的不等式x2﹣ax+a+3≥0在区间[﹣2,0]上恒成立,则实数a的取值范围是()A.[﹣,+∞)B.[6,+∞)C.(﹣∞,6]D.[﹣2,+∞)【分析】由题意可得a≥在﹣2≤x≤0恒成立,即a≥在﹣2≤x≤0的最大值,由基本不等式求得最大值,可得a的范围.【解答】解:由﹣2≤x≤0,可得x﹣1∈[﹣3,﹣1],x的不等式x2﹣ax+a+3≥0在区间[﹣2,0]上恒成立,等价为a≥在﹣2≤x≤0恒成立,由==(x﹣1)++2=﹣[(1﹣x)+]+2≤﹣2+2=2﹣4=﹣2,当且仅当x=﹣1时取得等号,所以a≥﹣2,故选:D.【点评】本题考查二次不等式恒成立问题解法,注意运用参数分离和基本不等式求最值,考查转化思想和运算能力,属于中档题.二、填空题(本大题共4小题,每小题5分,共20分)13.(5分)设集合A={0,1},B={1,2},C={x|x=a+b,a∈A,b∈B},则集合C的真子集个数为7.【分析】求出集合M,从而求出M的真子集的个数即可.【解答】解:a=1,b=1时,x=2,a=1,b=2时,x=3,a=0,b=2时,x=2,a=0,b=1时,x=1,故M={1,2,3},故M的真子集的个数是:23﹣1=7个,故答案为:7.【点评】本题主要考察了集合的定义及性质,属常考题型,解题的关键是要根据集合M 的定义求出集合M.14.(5分)已知命题p:﹣2≤x≤4,命题q:实数x满足|x﹣2|≤m(m>0),若¬p是¬q 的必要不充分条件,则实数m的取值范围是[4,+∞).【分析】由命题p得到¬p:{x|x<﹣2或x>4},设为集合A,同理得到¬q:{x|x<2﹣m 或x>2+m},设为集合B.根据¬p是¬q的必要不充分条件,可得集合B是集合A的真子集,利用数轴建立关于m的不等式并解之,即可得到实数m的取值范围.【解答】解:∵p:{x|﹣2≤x≤4},∴¬p:{x|x<﹣2或x>4},设为集合A又∵q:{x||x﹣2|≤m,m>0}.∴¬q:{x|x<2﹣m或x>2+m},设为集合B∵¬p是¬q的必要不充分条件,∴集合B是集合A的真子集,∴(两个等号不同时成立)解之得:m≥4,即实数m的取值范围是[4,+∞).故答案为:[4,+∞).【点评】本题给出关于x的不等式的两个条件,在已知¬p是¬q的必要不充分条件的情况下求m的取值范围.着重考查了充分必要条件的判断和集合的包含关系等知识,属于基础题.15.(5分)已知m是方程x2﹣5x+1=0的一个根,则m3﹣24m+2019=2014.【分析】根据m是方程x2﹣5x+1=0的一个根,得到m2﹣5m+1=0,再把所求等式转化为用m2﹣5m+1来表示即可求解结论.【解答】解:根据题意,m是方程x2﹣5x+1=0的一个根,即m2﹣5m+1=0,则m3﹣24m+2019=m(m2﹣5m+1)+5(m2﹣5m+1)+2014=2014.故答案为:2014.【点评】本题考查了函数的零点与方程的根的关系应用以及整体代换思想的应用,属于基础题.16.(5分)已知正数x,y满足xy++4y2=2,则y的最大值为.【分析】由已知结合基本不等式x+≥2可建立关于y的不等式,解不等式可求.【解答】解:由题意可得,,=2,当且仅当x=即x=1时取等号,所以4y2+2y﹣2≤0,解可得,﹣1,因为y>0,故0<y即y的最大值.故答案为:【点评】本题主要考查了利用基本不等式求解最值及二次不等式的求解,属于基础试题.三、解答题(本大题共4小题,每题10分,共40分)17.(10分)已知a,b,c∈R+,证明:(1)若a,b,c∈R,证明:a2+b2+c2≥(a+b+c)2;(2)设a,b,c∈R+,且a+b+c=1,证明:++≥1.【分析】(1)把(a+b+c)2展开,然后利用基本不等式放缩即可证明结论;(2)由,,,作和后结合a+b+c=1证得结论.【解答】证明:(1)∵(a+b+c)2=a2+b2+c2+2ab+2bc+2ac≤a2+b2+c2+(a2+b2)+(b2+c2)+(a2+c2)=3(a2+b2+c2),∴a2+b2+c2≥(a+b+c)2,当且仅当a=b=c时等号成立;(2)∵a,b,c∈R+,∴,,,则,∴,即++≥1,当且仅当a=b=c时等号成立.【点评】本题考查不等式的证明,考查基本不等式的应用,是中档题.18.(10分)已知集合A={x|x2﹣4x=0},B={x|ax2﹣2x+8=0}.(1)是否存在实数a,使A∪B={0,2,4}?若存在,求出a的值;若不存在,请说明理由;(2)若A∩B=B,求实数a的取值范围.【分析】(1)由题意可得a×22﹣2×2+8=0,解得a=﹣1,可求此时B={2,4},即可得解.(2)由题意可得B只可能∅,{0},{4},{0,4},分类讨论即可求解.【解答】解:(1)因为A={x|x2﹣4x=0}={0,4},所以2∈B且B中不含除0,2,4以外的实数,即a×22﹣2×2+8=0,解得a=﹣1,验证:此时B={2,4},所以不存在实数a,使A∪B={0,2,4}.(2)题干A∩B=B可转化为B⊆A,即B只可能∅,{0},{4},{0,4},①B=∅,即△<0,解得a>,②B={0,4},即,a无解,③B中只有一根时,i,a=0,解得B={4}成立;ii,a≠0,即△=0,解得a=,此时B={8}不符合题意,综上所述,a∈{0}∪(,+∞).【点评】本题主要考查了交集,并集及其运算,考查了分类讨论思想的应用,属于基础题.19.(10分)解关于x的不等式>0(a∈R).【分析】不等式即(x2﹣x﹣2)(ax﹣1)>0,分类讨论,求出它的解集.【解答】解:关于x的不等式>0,即(x2﹣x﹣2)(ax﹣1)>0,(1)当a=0时,不等式即x2﹣x﹣2=(x+1)(x﹣2)<0,求得它的解集为(﹣1,2).(2)当a≠0时,不等式即(ax﹣1)(x+1)(x﹣2)>0,它的根为﹣1,2,.若<﹣1,即﹣1<a<0,不等式即(﹣ax+1)(x+1)(x﹣2)<0,求得它的解集为(﹣∞,)∪(﹣1,2).若=﹣1,即a=﹣1,不等式即(x+1)(x+1)(x﹣2)<0,求得它的解集为(﹣∞,﹣1)∪(﹣1,2).若﹣1<<0,即a<﹣1,不等式即(﹣ax+1)(x+1)(x﹣2)<0,求得它的解集为(﹣∞,﹣1)∪(,2).若0<<2,即a>2,不等式即(ax﹣1)(x+1)(x﹣2)>0,求得它的解集为(﹣1,)∪(2,+∞).若=2,即a=2,不等式即(x﹣2)(x+1)(x﹣2)>0,求得它的解集为(﹣1,2)∪(2,+∞).若>2,即0<a<,不等式即(ax﹣1)(x+1)(x﹣2)>0,求得它的解集为(﹣1,2)∪(,+∞).【点评】本题主要考查分式不等式、高次不等式的解法,体现了等价转化、分类讨论的数学思想,属于中档题.20.(10分)为了加强“平安校园”建设,有效遏制涉校案件的发生,保障师生安全,某校决定在学校门口利用一侧原有墙体,建造一间墙高为3米,底面为24平方米,且背面靠墙的长方体形状的校园警务室,由于此警务室的后背靠墙,无需建造费用,甲工程队给出的报价为:屋子前面新建墙体的报价为每平方米400元,左右两面新建墙体报价为每平方米300元,屋顶和地面以及其他报价共计14400元,设屋子的左右两面墙的长度均为x米(1≤x≤5).(1)当左右两面墙的长度为多少时,甲工程队报价最低?并求出最低报价;(2)现有乙工程队也要参与此警务室的建造竞标,其给出的整体报价为元(a>0),若无论左右两面墙的长度为多少米,乙工程队都能竞标成功,试求a的取值范围.【分析】(1)设甲工程队的报价为y元,则y=3(300×2x+400×)+14400,化简后,利用均值不等式即可求得最小值;(2)由题意知,1800(x+)+14400>对任意的x∈[1,5]恒成立,参变分离后,得>a恒成立,再令x+1=t∈[2,6],结合均值不等式求出y=的最小值即可得解.【解答】解:(1)设甲工程队的报价为y元,而1≤x≤5,y=3(300×2x+400×)+14400=1800(x+)+14400≥1800×2×+14400=28800,当且仅当x=,即x=4时,等号成立,所以当左右两侧墙的长度为4米时,甲工程队的报价最低,为28800元.(2)由题意知,1800(x+)+14400>对任意的x∈[1,5]恒成立,即>,从而>a恒成立,令x+1=t∈[2,6],则==t++6≥2+6=12,当且仅当t=,即t=3时,等号成立,所以0<a<12.【点评】本题考查函数的实际应用,主要利用了均值不等式求函数的最值,还涉及参变分离法和换元法,考查学生的逻辑推理能力和运算能力,属于中档题.。