不等式组的解集与不等式组的解法习题
完整版)解不等式组计算专项练习60题(有答案)
完整版)解不等式组计算专项练习60题(有答案)1.解不等式组60题参考答案:1.解:由不等式①得2a-3x+1≥0,即x≤(2a+1)/3;由不等式②得3b-2x-16≥0,即x≤(3b-16)/2.又因为a≤4<b,所以2a+1≤9,3b-16≥8,所以x的取值范围为x≤3或x≥-11/2.2.解:由不等式①得x≤-1或x≥3;由不等式②得x≤4/3或x≥2.综合起来,x的取值范围为x≤-1或x≥3,或者4/3≤x≤2.3.解:由不等式①得x>(a+1)/2;由不等式②得x0,所以a/2>(a+1)/2,所以不等式组的解集为a/2<x<(a+1)/2.4.解:由不等式①得x≥1;由不等式②得x<3.所以不等式组的解集为1≤x<3.5.解:由不等式①得x≤-2;由不等式②得x>-3.所以不等式组的解集为-3<x≤-2.6.解:由不等式①得x>-1;由不等式②得x≤2.所以不等式组的解集为-1<x≤2.7.解:由不等式①得x≤-1;由不等式②得x≥-2.所以不等式组的解集为-2≤x≤-1.8.解:由不等式①得x>-3;由不等式②得x≤1.所以不等式组的解集为-3<x≤1.9.解:由不等式①得x>-1;由不等式②得x≤4.所以不等式组的解集为-1<x≤4.10.解:由不等式①得x-3.所以不等式组的解集为-3<x<2.11.解:由不等式①得x≥1;由不等式②得x<3.所以不等式组的解集为1≤x<3.1.由不等式组的①得x≥-1,由不等式组的②得 x<4,因此不等式组的解集为 -1≤x<4.2.由不等式①得x≤3,由不等式②得 x>0,因此不等式组的解集为0<x≤3.3.解不等式①得x≥1,解不等式②得 x<4,因此不等式组的解集为1≤x<4.4.原不等式组可化为:x+45,x<-1.因此不等式组的解集为-3<x≤3.5.解不等式①得 x<5,解不等式②得x≥-2,因此不等式组的解集为 -2≤x<5.6.解不等式①得x≥1,解不等式②得 x<4,因此不等式组的解集为1≤x<4.7.解不等式①得x≥-1,解不等式②得 x<3,因此不等式组的解集为 -1≤x<3.8.解不等式①得 x<1,解不等式②得x≥-2,因此不等式组的解集为 -2≤x<1.9.解不等式①得 x>-1,解不等式②得x≤4,因此不等式组的解集为 -1<x≤4.10.解不等式①得x≥1,解不等式②得 x<4,因此不等式组的解集为1≤x<4.11.解不等式①得 x>-1,解不等式②得x≤4,因此不等式组的解集为 -1<x≤4.12.解不等式组的①得-∞<x<1,因为②中的不等式没有解,所以不等式组的解集为 -∞<x<1.13.解不等式①得x≥1,解不等式②得 x<4,因此不等式组的解集为1≤x<4.14.原不等式组可化为:x>-3,x≤3.因此不等式组的解集为-3<x≤3.15.解不等式组的①得 x<1,因为②中的不等式没有解,所以不等式组的解集为 -∞<x<1.16.解不等式①得 x<2,解不等式②得x≥-1,因此不等式组的解集为 -1≤x<2.17.解不等式①得x≥1,解不等式②得1≤x<4,因此不等式组的解集为1≤x<4.18.解不等式①得x≥-1,解不等式②得 x<3,因此不等式组的解集为 -1≤x<3.19.解不等式①得 x<1,解不等式②得x≥-2,因此不等式组的解集为 -2≤x<1.20.解不等式①得 x>-1,解不等式②得x≤4,因此不等式组的解集为 -1<x≤4.21.不等式①的解集为x≥1,不等式②的解集为 x<4,因此原不等式的解集为1≤x<4.22.解不等式①得 x<0,解不等式②得x≥3,因此原不等式无解。
八年级解不等式组100道
八年级解不等式组100道摘要:一、不等式组简介1.不等式组的定义2.不等式组解集的表示方法二、解不等式组的基本步骤1.分别求解每一个不等式2.确定每个不等式的解集3.根据不等式的关系确定不等式组的解集三、解不等式组的实例分析1.一般不等式组的解法2.含参数不等式组的解法3.带有绝对值不等式组的解法四、解不等式组练习题1.100 道八年级解不等式组练习题正文:一、不等式组简介不等式组是由多个不等式组成的集合,解不等式组就是求出满足所有不等式的实数的集合。
不等式组的解集可以用“∪”和“∩”表示,分别表示“或”和“且”的关系。
例如,对于不等式组:x + 2 > 5x - 3 < 7我们可以先分别求解这两个不等式,得到解集:x > 3x < 10然后用“∪”连接这两个解集,得到不等式组的解集:3 < x < 10二、解不等式组的基本步骤解不等式组通常需要以下三个步骤:1.分别求解每一个不等式,得到每个不等式的解集;2.根据不等式的关系,确定不等式组的解集,可以用“∪”和“∩”表示;3.将不等式组的解集表示出来。
三、解不等式组的实例分析1.一般不等式组的解法对于一般的不等式组,我们可以按照上述基本步骤进行求解。
例如,对于不等式组:x + 2 > 5x - 3 < 7我们先求解每个不等式,得到解集:x > 3x < 10然后根据这两个不等式的关系,确定不等式组的解集:3 < x < 102.含参数不等式组的解法对于含有参数的不等式组,我们通常需要先将参数分离出来,然后再按照一般不等式组的解法进行求解。
例如,对于不等式组:x + a > 5x - a < 7我们可以先将参数a 分离出来,得到:x > 5 - ax < 7 + a然后根据这两个不等式的关系,确定不等式组的解集:5 - a < x < 7 + a3.带有绝对值不等式组的解法对于带有绝对值的不等式组,我们需要先将绝对值不等式转换成两个不等式,然后再按照一般不等式组的解法进行求解。
专题03方程(组)、不等式(组)的解法(解析版)
专题03方程(组)、不等式(组)的解法一、选择题1、一元一次方程20x -=的解是( )A. 2x =B. 2x =-C. 0x =D. 1x =答案:A分析:直接利用一元一次方程的解法得出答案. 解答:20x -=, 解得:2x =. 选A .2、以2和4为根的一元二次方程是( ) A. 2680x x ++= B. 2680x x -+=C. 2680x x +-=D. 2680x x --=答案:B分析:根据已知两根确定出所求方程即可. 解答:以2和4为根的一元二次方程是x 2-6x +8=0, 选B .3、已知点M (2m -1,1-m )在第四象限,则m 的取值范围在数轴上表示正确的是( ) A.B.C.D.答案:A分析:根据第四象限内点的坐标特点列出关于m 的不等式组,求出m 的取值范围,并在数轴上表示出来即可.解答:解:∵点M (2m -1,1-m )在第四象限,∴21010m m ->⎧⎨-<⎩①②由①得,m >0.5; 由②得,m >1, 在数轴上表示为:选A .4、关于x 的分式方程2x a1x 1+=+的解为负数,则a 的取值范围是( )A. a 1>B. a 1<C. a 1<且a 2≠-D. a 1>且a 2≠答案:D分析:分式方程去分母转化为整式方程,表示出整式方程的解,根据分式方程解为负数列出关于a 的不等式,求出不等式的解集即可确定出a 的范围. 解答:分式方程去分母得:x 12x a +=+,即x 1a =-, 因为分式方程解为负数,所以1a 0-<,且1a 1-≠-, 解得:a 1>且a 2≠, 选D.5、已知方程组2325x y x y +=⎧⎨-=⎩,则26x y +的值是( )A. -2B. 2C. -4D. 4答案:C分析:两式相减,得32x y +=﹣,所以234x y +()=﹣,即264x y +=﹣. 解答:解:两式相减,得32x y +=﹣, ∴234x y +()=﹣, 即264x y +=﹣, 选C .6、小刚在解关于x 的方程ax ²+bx +c =0(a ≠0)时,只抄对了a =1,b =4,解出其中一个根是x =-1.他核对时发现所抄的c 比原方程的c 值小2.则原方程的根的情况是( ) A. 不存在实数根 B. 有两个不相等的实数根C. 有一个根是x =-1D. 有两个相等的实数根答案:A分析:直接把已知数据代入进而得出c 的值,再解方程求出答案.解答:解:∵小刚在解关于x 的方程ax 2+bx +c =0(a ≠0)时,只抄对了a =1,b =4,解出其中一个根是x =-1,∴(-1)2-4+c =0, 解得:c =3, 故原方程中c =5,则∆=b 2-4ac =16-4×1×5=-4<0, 则原方程的根的情况是不存在实数根. 选A .7、若不等式组11324x xx m+⎧<-⎪⎨⎪<⎩无解,则m 的取值范围为( )A. 2m ≤B. 2m <C. 2m ≥D. 2m >答案:A分析:求出第一个不等式的解集,根据口诀:大大小小无解了可得关于m 的不等式,解之可得. 解答:解不等式1132x x+<-,得:x >8, ∵不等式组无解, ∴4m ≤8, 解得m ≤2, 选A.8、由方程组43x m y m +=⎧⎨-=⎩,可得出x 与y 的关系是( )A. x y l?+=B. x y 1+=-C. x y 7+=-D.x y 7+= 答案:D分析:先把方程组化为43x m y m +=⎧⎨-=⎩的形式,再把两式相加即可得到关于x 、y 的关系式.解答:原方程可化为43x m y m +=⎧⎨-=⎩①②①+②得,x +y =7. 选D.9、小华在做解方程作业时,不小心将方程中的一个常数弄脏了而看不清楚,被弄脏的方程是11()1323x xx▲---+=-,这该怎么办呢?他想了一想,然后看了一下书后面的答案,知道此方程的解是x=5,于是,他很快便补好了这个常数,并迅速地做完了作业.同学们,你能补出这个常数吗?它应该是()A. 2B. 3C. 4D. 5答案:D分析:设这个数是a,把x=5代入方程得出一个关于a的方程,求出方程的解即可.解答:设这个数是a,把x=5代入得:13(-2+5)=1-5a3-,∴1=1-5a3-,解得:a=5.选D.10、若x1是方程ax2+2x+c=0(a≠0)的一个根,设M=(ax1+1)2,N=2-ac,则M与N的大小关系为()A. M>NB. M=NC. M<ND. 不能确定答案:C分析:把x1代入方程ax2+2x+c=0得ax12+2x1=-c,作差法比较可得.解答:∵x1是方程ax2+2x+c=0(a≠0)的一个根,∴ax12+2x1+c=0,即ax12+2x1=-c,则M-N=(ax1+1)2-(2-ac)=a2x12+2ax1+1-2+ac=a(ax12+2x1)+ac-1=-ac+ac-1=-1,∵-1<0,∴M-N<0,∴M<N.选C.11、如果解关于x 的分式方程2122m xx x-=--时出现增根,那么m 的值为( )A. -2B. 2C. 4D. -4答案:D分析:本题考查了分式方程的增根. 解答:2122m xx x-=--,去分母,方程两边同时乘以(x -2),得: m +2x =x -2,由分母可知,分式方程的增根可能是2. 当x =2时,m +4=2-2,m =-4, 选D . 二、填空题12、方程2x -4=0的解也是关于x 的方程x 2+mx +2=0的一个解,则m 的值为______. 答案:-3分析:先解一元一次方程,再把解代入一元二次方程求出m 的值即可. 解答:2x −4=0, 解得:x =2,把x =2代入方程x 2+mx +2=0得: 4+2m +2=0, 解得:m =−3. 故答案为−3.13、已知x ,y 满足方程组x 2y 5x 2y 3-=⎧⎨+=-⎩,则22x 4y -的值为______.答案:-15分析:观察所求的式子以及所给的方程组,可知利用平方差公式进行求解即可得.解答:∵x 2y 5x 2y 3-=⎧⎨+=-⎩,∴22x 4y -=(x +2y )(x -2y )=-3×5=-15, 故答案为:-15.14、已知一元二次方程2430x x -+=的两根1x ,2x ,则211124x x x x -+=______.答案:0分析:本题考查了一元二次方程的根与系数的关系. 解答:∵12x x 、是方程24+30x x -=的两个根,∴211124303x x x x ,-+=⋅=, ∴21143x x -=-,∴211124330x x x x -+⋅=-+=.15、关于x 的一元二次方程(a -1)x 2-2x +3=0有实数根,则整数a 的最大值是______. 答案:-2分析:本题考查了根的判别式.解答:解:根据题意得:a +1≠0且△=(-2)2-4×(a +1)×3≥0,解得a ≤23-且a ≠-1,所以整数a 的最大值为-2.故答案为-2. 16、关于x 的一元二次方程ax 2-x -14=0有实数根,则a 的取值范围为______. 答案:a ≥-1且a ≠0分析:本题考查了根的判别式:一元二次方程ax 2+bx +c =0(a ≠0)的根与△=b 2-4ac 有如下关系:当△>0时,方程有两个不相等的两个实数根;当△=0时,方程有两个相等的两个实数根;当△<0时,方程无实数根.利用一元二次方程的定义和判别式的意义得到≠0且△=(-1)2-4a •(-14)≥0,然后求出两个不等式的公共部分即可. 解答:根据题意得a ≠0且△=(-1)2-4a •(-14)≥0,解得:a ≥-1且a ≠0.故答案为a ≥-1且a ≠0.17、如果不等式组()2131x x x m ⎧->-⎨<⎩的解集是1x <,那么m 的值是______.答案:1分析:先求出第一个不等式的解集,再根据“同小取小”解答即可.解答:()213x 1x x m ①②⎧->-⎨<⎩,解不等式①,x <2, 解不等式②,x <m ,∵不等式组的解集是x <1, ∴m =1, 故答案为:1.18、设1x 、2x 是方程2320x x -+=的两个根,则1212x x x x +-=______. 答案:1分析:根据一元二次方程根与系数的关系公式,可直接求得12x x +和12x x .解答:如果方程()200++=≠ax bx c a 的两个实数根是12x x 、,那么12=b x x a+-,12=c x x a .可知:1212323,211x x x x -+=-=⋅==,所以1212321x x x x +-=-=. 19、若一元二次方程220x x k -+=有两个不相等的实数根,则k 的取值范围是______. 答案:k <1分析:本题考查了根的判别式.解答:∵一元二次方程220x x k -+=有两个不相等的实数根, ∴△=24b ac -=4-4k >0, 解得:k <1,则k 的取值范围是:k <1. 故答案为k <1. 20、关于x 的分式方程12122a x x-+=--的解为正数,则a 的取值范围是______. 答案:a <5且a ≠3分析:直接解分式方程,进而利用分式方程的解是正数得出a 的取值范围,进而结合分式方程有意义的条件分析得出答案. 解答:去分母得:122a x -+=-, 解得:5x a =-,50a ->,解得:5a <,当52x a =-=时,3a =不合题意, 故5a <且3a ≠. 故答案为:5a <且3a ≠.21、已知α,β是关于x 的一元二次方程x 2+(2m +3)x +m 2=0的两个不相等的实数根,且满足11αβ+=-1,则m 的值是______.答案:3分析:可以先由韦达定理得出两个关于α、β的式子,题目中的式子变形即可得出相应的与韦达定理相关的式子,即可求解. 解答:得α+β=-2m -3,αβ=m 2,又因为211+-2m-3+===-1mαβαβαβ,所以m 2-2m -3=0,得m =3或m =-1,因为一元二次方程()22230x m x m +++=的两个不相等的实数根,所以△>0,得(2m +3)2-4×m 2=12m +9>0,所以m >4-3,所以m =-1舍去,综上m =3. 三、解答题 22、(1)解方程:11322x x x--=---. (2)解不等式组:312215(1)x x x x -⎧<-⎪⎨⎪+≥-⎩答案:(1)无解;(2)-1<x ≤2.分析:(1)分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解;(2)分别求出不等式组中两不等式的解集,找出两解集的公共部分即可. 解答:(1)去分母得:1-x +1=-3x +6, 解得:x =2,经检验x =2是增根,分式方程无解;(2)()3122151x x x x -⎧<-⎪⎨⎪+≥-⎩①②, 由①得:x >-1, 由②得:x ≤2,则不等式组的解集为-1<x ≤2.23、先化简,再求值:22221(1)11a a a a a a --÷---+,其中a 是方程x 2+x =6的一个根.答案:11a -,14-. 分析:原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,求出已知方程的解得到a 的值,代入计算即可求出值.解答:解:原式=()2(2)1211(1)1a a a a a a a ---+÷+-+ =()(2)1•1(1)(2)a a a a a a a -++--=11a -, 方程x 2+x =6,解得:x =-3或x =2(舍去), 当a =x =-3时,原式=-14. 24、解方程(1)2250x x --=(2)1421x x =-+答案:(1)1211x x ==(2)3x =是方程的解. 分析:(1)利用配方法进行求解即可;(2)方程两边同时乘以(x -2)(x +1),化为整式方程,解整式方程后进行检验即可得. 解答:(1)x 2-2x =5, x 2-2x +1=5+1, (x -1)2=6,x ,∴1211x x ==(2)方程两边同时乘以(x -2)(x +1),得 x +1=4(x -2), 解得:x =3,检验:当x =3时,(x -2)(x +1)≠0, 所以x =3是原方程的解. 25、关于x 的方程22210x x m -+-=有实数根,且m 为正整数,求m 的值及此时方程的根.答案:1m =,此时方程的根为121x x ==分析:直接利用根的判别式△≥0得出m 的取值范围进而解方程得出答案. 解答:解:∵关于x 的方程x 2-2x +2m -1=0有实数根, ∴b 2-4ac =4-4(2m -1)≥0, 解得:m ≤1, ∵m 为正整数, ∴m =1,∴此时二次方程为:x 2-2x +1=0,则(x -1)2=0,解得:x 1=x 2=1.26、己知关于x ,y 的二元一次方程组2352x y x y k-=⎧⎨-=⎩的解满足x y >,求k 的取值范围.答案:5k <.分析:先用加减法求得x y -的值(用含k 的式子表示),然后再列不等式求解即可. 解答:2352x y x y k -=⎧⎨-=⎩①②,①-②得:5x y k -=-,∵x y >,∴0x y ->.∴50k ->.解得:5k <.27、已知关于x 的方程22220x mx m m -++-=有两个不相等的实数根.(1)求m 的取值范围;(2)当m 为正整数时,求方程的根.答案:(1)m <2;(2)x 1=0,x 2=2.分析:(1)利用判别式的意义得到=(-2m )2-4(m 2+m -1)>0,,然后解不等式即可;(2)利用m 的范围确定m 的正整数值为1,则方程化为x 2-2x =0,然后利用因式分解法解方程.解答:解:(1)()22442m m m ∆=-+-22444848m m m m =--+=-+∵方程有两个不相等的实数根,480m ∆=-+>.2m <.(2)∵m 为正整数,且2m <,1m =.原方程为220x x -=.∴()20x x -=.∴120,2x x ==.28、(1)解一元二次方程:x 2-4x +1=0(2)解分式方程:11322xx x -+=--答案:(1)1222x x ==(2)无解分析:(1)根据配方法或公式法即可求解一元二次方程;(2)先去分母化为整式方程,即可求解.解答:(1)2443x x -+=2(2)3x -=2x -=12x =22x =或1,4,1a b c ==-=,2416412b ac ∆=-=-=4222b x a -===±±±1222x x ==(2)13(2)(1)x x +-=--1361x x +-=-+24=x2x =检验2x =时,20x -=2x ∴=不是原方程的解∴原方程无解.29、先化简,再求值:231111x x x x -⎛⎫+÷ ⎪+-⎝⎭,其中x 是不等式组11210x x x --⎧->⎪⎨⎪-+<⎩的整数解.答案:原式=44x -;原式=4分析:先化简式子为44x -,再求解不等式的整数解为2x =,最后将2x =代入化简的式子中即可求解. 解答:解:231111x x x x -⎛⎫+÷ ⎪+-⎝⎭ 131(+1)(1)=1x x x x x x ++--⎛⎫⨯ ⎪+⎝⎭ 4(+1)(1)=+1x x x xx -⨯ =44x - 解不等式组11210x x x --⎧->⎪⎨⎪-+<⎩解得31x x ⎧⎨⎩<> ∴1<x <3,∴不等式组的整数解是2x =,∴当2x =时,原式=42-4=4⨯.30、如果方程x 2+px +q =0的两个根是x 1、x 2,那么x 1+x 2=-p ,x 1·x 2=q .请根据以上结论,解决下列问题:(1)已知关于x 的方程x 2+mx +n =0(n ≠0),求出一个一元二次方程,使它的两根分别是已知方程两根的倒数;(2)已知a 、b 满足a 2-15a -5=0,b 2-15b -5=0,求a b b a+的值; (3)已知a 、b 、c 均为实数,且a +b +c =0,abc =16,求正数c 的最小值.答案:(1)nx 2+mx +1=0;(2)-47或2;(3)c 的最小值为4.分析:(1)设x 2+mx +n =0(n ≠0)的两根为x 1、x 2,根据根与系数的关系可得x 1+x 2=-m ,x 1·x 2=n ,将以上两式变形可得1211+x x 和1211x x ⋅,即可求出答案. (2)根据a 、b 满足a 2-15a -5=0,b 2-15b -5=0,得出a ,b 是x 2-15x -5=0的解,求出a +b 和ab 的值,即可求结果;(3)根据a +b +c =0,abc =16,得出a +b =-c ,ab =16c,a 、b 是方程x 2+cx +1211+x x =0的解,再根据c 2-4×1211+x x ≥0,即可求出c 的最小值. 解答:解:(1)设x 2+mx +n =0(n ≠0)的两根为x 1、x 2.∴x 1+x 2=-m ,x 1·x 2=n ∴1211+x x =1212x x x x +=-m n ,1211x x ⋅=1n∴所求一元二次方程为x2+mnx+1n=0,即nx2+mx+1=0;(2)①当a≠b时,由题意知a、b是一元二次方程x2-15x-5=0的两根,∴a+b=15,ab=-5∴ab+ba=22a bab+=2()2a b abab+-=2152(5)5-⨯--=-47②当a=b时,ab+ba=1+1=2综上,ab+ba=-47或2;(3)∵a+b+c=0,abc=16,∴a+b=-c,ab=16 c∴a、b是方程x2+cx+16c=0的两根,∴Δ=c2-416c⨯≥0∵c>0,∴c3≥64,∴c≥4,∴c的最小值为4.。
不等式方程组的解集计算练习题
不等式方程组的解集计算练习题1. 题目描述:解下列不等式方程组,并将其解集用图像表示出来:a) 3x + 2y ≥ 6x - 2y < 4b) 2x - 3y ≤ 123x + 4y > 10c) 5x + 2y > 86x - 3y ≤ 122. 解答:a) 第一步我们要将每个不等式方程写成一般式:3x + 2y ≥ 6 => y ≥ -3/2x + 3x - 2y < 4 => y > 1/2x - 2首先,我们画出第一个不等式的解集图形:以斜率-3/2和截距3为直线,然后在直线上面的区域上色。
由于不等号是大于等于,因此要将直线上的点也算在解集之中。
接下来,我们画出第二个不等式的解集图形:不等号是大于,因此将直线上的点排除在解集之外。
最后,我们将两个解集的交集即为最终的解集。
图片b) 第一步我们要将每个不等式方程写成一般式:2x - 3y ≤ 12 => y ≥ 2/3x - 43x + 4y > 10 => y > -3/4x + 5/2首先,我们画出第一个不等式的解集图形:以斜率2/3和截距-4为直线,然后在直线下面的区域上色。
由于不等号是小于等于,因此要将直线上的点也算在解集之中。
接下来,我们画出第二个不等式的解集图形:以斜率-3/4和截距5/2为直线,然后在直线上面的区域上色。
由于不等号是大于,因此将直线上的点排除在解集之外。
最后,我们将两个解集的交集即为最终的解集。
图片c) 第一步我们要将每个不等式方程写成一般式:5x + 2y > 8 => y > -5/2x + 46x - 3y ≤ 12 => y ≥ 2x - 4首先,我们画出第一个不等式的解集图形:不等号是大于,因此将直线上的点排除在解集之外。
接下来,我们画出第二个不等式的解集图形:以斜率2和截距-4为直线,然后在直线下面的区域上色。
中考数学《不等式组》专题训练(附答案解析)
中考数学《不等式组》专题训练(附答案解析)一、单选题(共10小题 每小题3分 共计30分)1.不等式组23112(2)x x x -≥-⎧⎨-≥-+⎩的解集为( ) A .无解 B .1x ≤ C .1x ≥- D .11x -≤≤【答案】D 分别求出每一个不等式的解集 根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【详解】解:解不等式2−3x≥−1 得:x≤1解不等式x−1≥−2(x +2) 得:x≥−1则不等式组的解集为−1≤x≤1故选:D .【点睛】本题考查的是解一元一次不等式组 正确求出每一个不等式解集是基础 熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.2.不等式组()2222323x x x x ⎧-≤-⎪⎨++>⎪⎩的解集是( )A .0x 2<≤B . 0x 6<≤C . x 0>D .x 2≤【答案】A 分别解不等式组中的两个不等式 再取解集的公共部分即可.【详解】解:()2222323x x x x ⎧-≤-⎪⎨++>⎪⎩①② 由①得:242x x -≤-36,x ∴≤2,x ∴≤由②得:3(2)2(3)x x ++>x ∴>0,∴ 不等式组的解集是0 2.x ≤<故选A .【点睛】本题考查的是解不等式组 掌握解不等式组的方法是解题的关键.3.(贵州贵阳市·)已知a b < 下列式子不一定成立的是( )A .11a b -<-B .22a b ->-C .111122a b +<+D .ma mb > 【答案】D 根据不等式的性质解答.【详解】解:A 、不等式a <b 的两边同时减去1 不等式仍成立 即a−1<b−1 故本选项不符合题意; B 、不等式a <b 的两边同时乘以-2 不等号方向改变 即22a b ->- 故本选项不符合题意; C 、不等式a <b 的两边同时乘以12 不等式仍成立 即:1122a b < 再在两边同时加上1 不等式仍成立 即111122a b +<+ 故本选项不符合题意; D 、不等式a <b 的两边同时乘以m 当m>0 不等式仍成立 即ma mb <;当m<0 不等号方向改变 即ma mb >;当m=0时 ma mb =;故ma mb >不一定成立 故本选项符合题意故选:D .【点睛】本题考查了不等式的性质.应用不等式的性质应注意的问题:在不等式的两边都乘以(或除以)同一个负数时 一定要改变不等号的方向;当不等式的两边要乘以(或除以)含有字母的数时 一定要对字母是否大于0进行分类讨论.4.不等式213x -≤的解集在数轴上表示正确的是( )A .B .C .D .【答案】C 先求出不等式的解集 再在数轴上表示出来即可.【详解】解:移项得 2x ≤3+1合并同类项得 2x ≤4系数化为1得 x ≤2在数轴上表示为:故选:C .【点睛】 本题考查的是在数轴上表示不等式的解集 熟知“小于向左 大于向右 在表示解集时≥ ≤要用实心圆点表示;< >要用空心圆点表示”是解答此题的关键.5.关于x 的不等式0721x m x ->⎧⎨->⎩的整数解只有4个 则m 的取值范围是( ) A .21m -<≤- B .21m -≤≤- C .21m -≤<- D .32m -<≤-【答案】C 不等式组整理后 表示出不等式组的解集 根据整数解共有4个 确定出m 的范围即可.【详解】解:不等式组整理得:3x m x >⎧⎨<⎩ 解集为m <x <3由不等式组的整数解只有4个 得到整数解为2 1 0 -1∴-2≤m<-1故选:C .【点睛】本题主要考查对解一元一次不等式 不等式的性质 解一元一次不等式组 一元一次不等式组的整数解等知识点的理解和掌握 能根据不等式组的解集得到-2≤m<-1是解此题的关键. 6.若关于x 的不等式组35128x x a -⎧⎨-<⎩有且只有3个整数解 则a 的取值范围是( ) A .02a ≤≤ B .02a ≤< C .02a <≤ D .02a <<【答案】C 先求出不等式组的解集(含有字母a ) 利用不等式组有三个整数解 逆推出a 的取值范围即可.【详解】解:解不等式351x -得:2x ≥解不等式28x a -<得:82a x +<∴不等式组的解集为:822a x +≤<∵不等式组35128x x a -⎧⎨-<⎩有三个整数解 ∴三个整数解为:2 3 4 ∴8452a +<≤ 解得:02a <≤故选:C .【点睛】本题考查了解一元一次不等式组 一元一次不等式组的整数解的应用 解此题的关键就是根据整数解的个数得出关于a 的不等式组.7.某单位为响应政府号召 需要购买分类垃圾桶6个 市场上有A 型和B 型两种分类垃圾桶 A 型分类垃圾桶500元/个 B 型分类垃圾桶550元/个 总费用不超过3100元 则不同的购买方式有( ) A .2种 B .3种 C .4种 D .5种【答案】B 设购买A 型分类垃圾桶x 个 则购买B 型垃圾桶(6-x ) 然后根据题意列出不等式组 确定不等式组整数解的个数即可.【详解】解:设购买A 型分类垃圾桶x 个 则购买B 型垃圾桶(6-x )个由题意得:500550631006x x x +-≤⎧⎨≤⎩() 解得4≤x ≤6 则x 可取4、5、6 即有三种不同的购买方式.故答案为B .【点睛】本题考查了一元一次方程组的应用 弄清题意、列出不等式组并确定不等式组的整数解是解答本题的关键.8.不等式组1051x x ->⎧⎨-≥⎩的整数解共有( ) A .1个 B .2个 C .3个 D .4个【答案】C 分别求出每一个不等式的解集 根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集 从而得出答案.【详解】解:解不等式x ﹣1>0 得:x >1解不等式5﹣x ≥1 得:x ≤4则不等式组的解集为1<x ≤4所以不等式组的整数解有2、3、4这3个故选:C .【点睛】此题考查求不等式组的整数解 正确求出每个不等式的解集得到不等式组的解集是解题的关键.9.(山东聊城市·)若不等式组11324x x x m+⎧<-⎪⎨⎪<⎩无解 则m 的取值范围为( )A .2m ≤B .2m <C .2m ≥D .2m >【答案】A 求出第一个不等式的解集 根据口诀:大大小小无解了可得关于m 的不等式 解之可得.【详解】 解不等式1132x x +<- 得:x >8 ∵不等式组无解∴4m≤8解得m≤2故选A .【点睛】本题考查的是解一元一次不等式组 正确求出每一个不等式解集是基础 熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.10.(四川广安市·)若m n > 下列不等式不一定成立的是( )A .33m n ++>B .33m n ﹣<﹣C .33m n >D .22m n >【答案】D 根据不等式的性质:不等式两边加(或减)同一个数(或式子) 不等号的方向不变;不等式两边乘(或除以)同一个正数 不等号的方向不变;不等式两边乘(或除以)同一个负数 不等号的方向改变 即可得到答案.【详解】解:A 、不等式的两边都加3 不等号的方向不变 故A 错误;B 、不等式的两边都乘以﹣3 不等号的方向改变 故B 错误;C 、不等式的两边都除以3 不等号的方向不变 故C 错误;D 、如2223m n m n m n =,=﹣,>,<;故D 正确;故选D .【点睛】主要考查了不等式的基本性质 “0”是很特殊的一个数 因此 解答不等式的问题时 应密切关注“0”存在与否 以防掉进“0”的陷阱.二、填空题(共5小题 每小题4分 共计20分)11.关于x 的不等式组23(3)1324x x x x a <-+⎧⎪⎨+>+⎪⎩有四个整数解 则a 的取值范围是________________. 【答案】-114≤a <-52解不等式组求得不等式组的解集 根据不等式组有四个整数解 进而求出a 的范围.【详解】 ()2331324x x x x a ①②⎧<-+⎪⎨+>+⎪⎩解不等式①得 x >8;解不等式②得 x <2-4a ;∴不等式组的解集为8<x <2-4a.∵不等式组有4个整数解∴12<2-4a ≤13∴-114≤a <-5212.若关于x 的不等式组214322x x x m x--⎧<⎪⎨⎪-≤-⎩有且只有三个整数解 则m 的取值范围是______. 【答案】1≤m <4解不等式组得出其解集为﹣2<x ≤23m + 根据不等式组有且只有三个整数解得出1≤23m +<2 解之可得答案. 【详解】解不等式2143x x--<得:x>﹣2解不等式2x﹣m≤2﹣x得:x≤2 3 m+则不等式组的解集为﹣2<x≤2 3 m+∵不等式组有且只有三个整数解∴1≤23m+<2解得:1≤m<4故答案为:1≤m<4.13.若不等式52x+>﹣x﹣72的解都能使不等式(m﹣6)x<2m+1成立则实数m的取值范围是_______.【答案】236≤m≤6解不等式52x+>﹣x﹣72得x>﹣4据此知x>﹣4都能使不等式(m﹣6)x<2m+1成立再分m﹣6=0和m﹣6≠0两种情况分别求解.【详解】解:解不等式52x+>﹣x﹣72得x>﹣4∵x>﹣4都能使不等式(m﹣6)x<2m+1成立①当m﹣6=0即m=6时则x>﹣4都能使0•x<13恒成立;②当m﹣6≠0则不等式(m﹣6)x<2m+1的解要改变方向∴m﹣6<0即m<6∴不等式(m﹣6)x<2m+1的解集为x>216 mm+-∵x>﹣4都能使x>216mm+-成立∴﹣4≥216 mm+-∴﹣4m+24≤2m+1∴m≥23 6综上所述m的取值范围是236≤m≤6.故答案为:236≤m≤6.14.世纪公园的门票是每人5元一次购门票满40张每张门票可少1元.若少于40人时一个团队至少要有________人进公园买40张门反而合算.【答案】33先求出购买40张票 优惠后需要多少钱 然后再利用5x >160时 求出买到的张数的取值范围再加上1即可.【详解】解:设x 人进公园若购满40张票则需要:40×(5-1)=40×4=160(元) 故5x >160时解得:x >32∴当有32人时 购买32张票和40张票的价格相同则再多1人时买40张票较合算;∴32+1=33(人);则至少要有33人去世纪公园 买40张票反而合算.故答案为:33.15.《西游记》、《三国演义》、《水浒传》和《红楼梦》是中国古典文学瑰宝 并称为中国古典小说四大名著某兴趣小组阅读四大名著的人数 同时满足以下三个条件:(1)阅读过《西游记》的人数多于阅读过《水浒传》的人数;(2)阅读过《水浒传》的人数多于阅读过《三国演义》的人数;(3)阅读过《三国演义》的人数的2倍多于阅读过《西游记》的人数.若阅读过《三国演义》的人数为4 则阅读过《水浒传》的人数的最大值为_____.【答案】6根据题中给出阅读过《三国演义》的人数 则先代入条件(3)可得出阅读过《西游记》的人数的取值范围 然后再根据条件(1)和(2)再列出两个不等式 得出阅读过《水浒传》的人数的取值范围 即可得出答案.【详解】解:设阅读过《西游记》的人数是a 阅读过《水浒传》的人数是b (,a b 均为整数)依题意可得:48a b b a >⎧⎪>⎨⎪<⎩且,a b 均为整数可得:47b <<b ∴最大可以取6;故答案为6.三、解答题(共5小题 每小题10分 共计50分)16.如图 “开心”农场准备用50m 的护栏围成一块靠墙的矩形花园 设矩形花园的长为()a m 宽为()b m .(1)当20a =时 求b 的值;(2)受场地条件的限制 a 的取值范围为1826a ≤≤ 求b 的取值范围.【答案】(1)b=15;(2)1216b ≤≤(1)根据等量关系“围栏的长度为50”可以列出代数式 再将a=20代入所列式子中求出b 的值;(2)由(1)可得a,b 之间的关系式 用含有b 的式子表示a,再结合1826a ≤≤ 列出关于b 的不等式组 接着不等式组即可求出b 的取值范围.【详解】解:(1)由题意 得250a b +=当20a =时 20250b +=.解得15b =.(2)∵1826a ≤≤ 502a b =-∴5021850226b b -≥⎧⎨-≤⎩解这个不等式组 得1216b ≤≤.答:矩形花园宽的取值范围为1216b ≤≤.【点睛】此题主要考查了列代数式 正确理解题意得出关系式是解题关键.还考查了解不等式组 难度不大.17.解不等式组:3512(21)34x x x x -<+⎧⎨--⎩ 并把它的解集在数轴上表示出来.【答案】-2≤x<3 解集在数轴上表示见解析.先求出两个不等式的解集 再求其公共解.【详解】解:3512(21)34x x x x -<+⎧⎨--⎩①② 解不等式① 得x<3.解不等式② 得x ≥-2.所以原不等式组的解集为-2≤x<3.在数轴上表示如下:【点睛】本题主要考查了一元一次不等式组解集的求法 其简便求法就是用口诀求解.求不等式组解集的口诀:同大取大 同小取小 大小小大中间找 大大小小找不到(无解).18.第33个国际禁毒日到来之际 贵阳市策划了以“健康人生绿色无毒”为主题的禁毒宣传月活动 某班开展了此项活动的知识竞赛.学习委员为班级购买奖品后与生活委员对话如下:(1)请用方程的知识帮助学习委员计算一下 为什么说学习委员搞错了;(2)学习委员连忙拿出发票 发现的确错了 因为他还买了一本笔记本 但笔记本的单价已模糊不清 只能辨认出单价是小于10元的整数 那么笔记本的单价可能是多少元?【答案】(1)方程见解析 因为钢笔的数量不可能是小数 所以学习委员搞错了;(2)可能是2元或者6元(1)根据题意列出方程解出答案判断即可;(2)根据题意列出方程得出x 与a 的关系,再由题意中a 的条件即可判断x 的范围,从而得出单价.【详解】解:(1)设单价为6元的钢笔买了x 支 则单价为10元的钢笔买了(100x -)支根据题意 得610(100)1300378x x +-=-解得:19.5x =.因为钢笔的数量不可能是小数 所以学习委员搞错了(2)设笔记本的单价为a 元 根据题意 得610(100)1300378x x a +-+=-整理 得13942x a =+ 因为010a << x 随a 的增大而增大 所以19.522x << ∵x 取整数∴20,21x =.当20x 时 420782a =⨯-=当21x =时 421786a =⨯-=所以笔记本的单价可能是2元或者6元.【点睛】本题考查方程及不等式的列式和计算,关键在于理解题意找到等量关系.19.解不等式31212x x -->. 解:去分母 得2(21)31x x ->-.……(1)请完成上述解不等式的余下步骤:(2)解题回顾:本题“去分母”这一步的变形依据是 (填“A ”或“B ”)A .不等式两边都乘(或除以)同一个正数 不等号的方向不变;B .不等式两边都乘(或除以)同一个负数 不等号的方向改变.【答案】(1)余下步骤见解析;(2)A .(1)按照去括号、移项、合并同类项的步骤进行补充即可; (2)根据不等式的性质即可得.【详解】(1)31212x x --> 去分母 得2(21)31x x ->-去括号 得4231x x ->-移项 得4312x x ->-+合并同类项 得1x >;(2)不等式的性质:不等式两边都乘(或除以)同一个正数 不等号的方向不变31212x x -->两边同乘以正数2 不等号的方向不变 即可得到2(21)31x x ->- 故选:A .【点睛】本题考查了解一元一次不等式、不等式的性质 熟练掌握一元一次不等式的解法是解题关键. 20.某水果店销售苹果和梨 购买1千克苹果和3千克梨共需26元 购买2千克苹果和1千克梨共需22元.(1)求每千克苹果和每千克梨的售价;(2)如果购买苹果和梨共15千克 且总价不超过100元 那么最多购买多少千克苹果?【答案】(1)每千克苹果售价8元 每千克梨6千克;(2)最多购买5千克苹果(1)设每千克苹果售价x 元 每千克梨y 千克 由题意列出x 、y 的方程组 解之即可;(2)设购买苹果a 千克 则购买梨(15-a )千克 由题意列出a 的不等式 解之即可解答.【详解】(1)设每千克苹果售价x 元 每千克梨y 千克 由题意得:326222x y x y +=⎧⎨+=⎩解得:86x y =⎧⎨=⎩ 答:每千克苹果售价8元 每千克梨6千克(2)设购买苹果a 千克 则购买梨(15-a )千克 由题意得:8a+6(15-a)≤100解得:a ≤5∴a 最大值为5答:最多购买5千克苹果.【点睛】本题考查了二元一次方程组的应用、一元一次不等式的应用 解答的关键是认真审题 分析相关信息 正确列出方程组和不等式.。
含详细解析答案初中数学一元一次不等式组解法练习40道.pdf
初中数学一元一次不等式组解法练习1.求不等式组的整数解.解不等式组:.2.求不等式组:的整数解.3.解下列不等式组并将不等式组的解集在数轴上表示出来.(1);(2).4.解不等式组,并将它的解集在数轴上表示出来.5.试确定实数a的取值范围,使不等式组恰有两个整数解.6.求不等式组的正整数解.7.解不等式(组),并把它们的解集在数轴上表示出来(1)2x-1<3x+2;(2).8.解下列不等式(组):(1)2(x+3)>4x-(x-3)(2)9..10.解不等式组:,并在数轴上表示出不等式组的解集.11.若关于x的不等式组恰有三个整数解,求实数a的取值范围.12.解不等式组:.13.解不等式组并把它的解集在数轴上表示出来.14.解不等式组:15.已知关于x、y的方程组a为常数.(1)求方程组的解;(2)若方程组的解x>y>0,求a的取值范围.16.解不等式组.17.解不等式组,并写出该不等式组的整数解.18.解下列不等式(组),并把它们的解集在数轴上表示出来.(1);(2).19.解不等式组:,并把解集在数轴上表示出来.20.已知方程组的解x、y都是正数,且x的值小于y的值,求m的取值范围.21.满足不等式-1≤3-2x<6的所有x的整数的和是多少?22.(1)解方程组:(2)解不等式组:23.已知关于x,y的方程组,其中-3≤a≤1.(1)当a=-2时,求x,y的值;(2)若x≤1,求y的取值范围.24.解不等式组:.25.解下列不等式和不等式组(1)-1(2)26.解不等式组(注:必须通过画数轴求解集)27.解不等式组:并写出它的所有整数解.28.解不等式组,并把解集在数轴上表示出来.29.解不等式组:30.解下面的不等式组,并把它们的解集在数轴上表示出来:(1)(2)31.若不等式组的解集为,求a,b的值.32.(1)解不等式-1(2)解不等式,并将解集在数轴上表示.33.解不等式组:34.解不等式组35.解不等式组:并写出它的所有的整数解.36.解不等式组把它的解集在数轴上表示出来,并写出不等式组的非负整数解.37.(1)解方程组(2)解不等式组并把解集在数轴上表示出来.38.若关于x,y的方程组的解满足x<0且y<0,求m的范围.39.解不等式组:并写出它的所有整数解.40.解不等式组:并写出它的所有整数解.初中数学一元一次不等式组解法练习答案1.求不等式组的整数解.【答案】解:由①,解得:x≥-2;由②,解得:x<3,∴不等式组的解集为-2≤x<3,则不等式组的整数解为-2、-1、0、1、2.【解析】求出不等式组中两不等式的解集,找出解集的公共部分即可.此题考查了一元一次不等式组的整数解,熟练掌握不等式的解法是解本题的关键.2.解不等式组:.【答案】解:,由①得,x>-1,由②得,x≤2,所以,原不等式组的解集是-1<x≤2.【解析】先求出两个不等式的解集,再求其公共解.本题主要考查了一元一次不等式组解集的求法,其简便求法就是用口诀求解.求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解).3.求不等式组:的整数解.【答案】解:由x-3(x-2)≤8得x≥-1由5-x>2x得x<2∴-1≤x<2∴不等式组的整数解是x=-1,0,1.【解析】先求出每个不等式的解集,再确定其公共解,得到不等式组的解集,然后求其整数解.解答此题要先求出不等式组的解集,求不等式组的解集要遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.4.解下列不等式组并将不等式组的解集在数轴上表示出来.(1);(2).【答案】解:(1),解①得x<1,解②得x≤-2,所以不等式组的解集为x≤-2,用数轴表示为:;(2),解①得x>-2,解②得x≤2,所以不等式组的解集为-2<x≤2,用数轴表示为:.【解析】(1)分别解两个不等式得到x<1和x≤-2,然后根据同小取小确定不等式组的解集,再利用数轴表示解集;(2)分别解两个不等式得到x>-2和x≤2,然后根据大于小的小于大的取中间确定不等式组的解集,再利用数轴表示解集.本题考查了解一元一次不等式组:分别求出不等式组各不等式的解集,然后根据“同大取大,同小取小,大于小的小于大的取中间,大于大的小于小的无解”确定不等式组的解集.5.解不等式组,并将它的解集在数轴上表示出来.【答案】解:由①得:-2x≥-2,即x≤1,由②得:4x-2<5x+5,即x>-7,所以-7<x≤1.在数轴上表示为:【解析】先解不等式组中的每一个不等式,再根据大大取较大,小小取较小,大小小大取中间,大大小小无解,把它们的解集用一条数轴表示出来.本题考查不等式组的解法和解集在数轴上的表示法,如果是表示大于或小于号的点要用空心,如果是表示大于等于或小于等于号的点用实心.6.试确定实数a的取值范围,使不等式组恰有两个整数解.【答案】解:由>0,两边同乘以6得3x+2(x+1)>0,解得x>-,由x+>(x+1)+a,两边同乘以3得3x+5a+4>4(x+1)+3a,解得x<2a,∴原不等式组的解集为-<x<2a.又∵原不等式组恰有2个整数解,即x=0,1;则2a的值在1(不含1)到2(含2)之间,∴1<2a≤2,∴0.5<a≤1.【解析】先求出不等式组的解集,再根据x的两个整数解求出a的取值范围即可.此题考查的是一元一次不等式的解法,得出x的整数解,再根据x的取值范围求出a的值即可.求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.7.求不等式组的正整数解.【答案】解:由①得4x+4+3>x解得x>- ,由②得3x-12≤2x-10,解得x≤2,∴不等式组的解集为- <x≤2.∴正整数解是1,2.【解析】本题主要考查了不等式组的解法,并会根据未知数的范围确定它所满足的特殊条件的值.一般方法是先解不等式组,再根据解集求出特殊值.先解每一个不等式,求出不等式组的解集,再求出正整数解即可.8.解不等式(组),并把它们的解集在数轴上表示出来(1)2x-1<3x+2;(2).【答案】解:(1)移项得,2x-3x<2+1,合并同类项得,-x<3,系数化为1得,x>-3 (4分)在数轴上表示出来:(6分)(2),解①得,x<1,解②得,x≥-4.5在数轴上表示出来:不等式组的解集为-4.5≤x<1,【解析】本题考查了不等式与不等式组的解法,是基础知识要熟练掌握.(1)先移项,再合并同类项、系数化为1即可;(2)先求两个不等式的解集,再求公共部分即可.9.解下列不等式(组):(1)2(x+3)>4x-(x-3)(2)【答案】解:(1)去括号,得:2x+6>4x-x+3,移项,得:2x-4x+x>3-6,合并同类项,得:-x>-3,系数化为1,得:x<3;(2),解不等式①,得:x<2,解不等式②,得:x≥-1,则不等式组的解集为-1≤x<2.【解析】本题考查的是解一元一次不等式和解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.(1)根据解一元一次不等式基本步骤:去括号、移项、合并同类项、系数化为1可得;(2)分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解来确定不等式组的解集.10. ..【答案】解:,由①得:x≥1,由②得:x<-7,∴不等式组的解集是空集.【解析】根据不等式性质求出不等式的解集,根据找不等式组解集的规律找出即可.本题主要考查对不等式的性质,解一元一次不等式(组)等知识点的理解和掌握,能根据不等式的解集找出不等式组的解集是解此题的关键.11.解不等式组:,并在数轴上表示出不等式组的解集.【答案】解:解①得:x>3,解②得:x≥1,则不等式组的解集是:x>3;在数轴上表示为:【解析】分别解两个不等式得到x>3和x≥1,然后利用同大取大确定不等式组的解集,再利用数轴表示解集.本题考查了解一元一次不等式组:解一元一次不等式组时,一般先求出其中各不等式的解集,再求出这些解集的公共部分,利用数轴可以直观地表示不等式组的解集.解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.12.若关于x的不等式组恰有三个整数解,求实数a的取值范围.【答案】解:,由①得:x>-,由②得:x<2a,则不等式组的解集为:-<x<2a,∵不等式组只有3个整数解为0、1、2,∴2<2a≤3,∴1<a≤,故答案为:1<a≤.【解析】首先利用a表示出不等式组的解集,根据解集中的整数恰好有3个,即可确定a的值.本题考查不等式组的解法及整数解的确定.求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.13.解不等式组:.【答案】解:由(1)得:x>-2把(2)去分母得:4(x+2)≥5(x-1)去括号整理得:x≤13∴不等式组的解集为-2<x≤13.【解析】先解不等式组中的每一个不等式,再求其公共解集即可.解不等式组应遵循的原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.14.解不等式组并把它的解集在数轴上表示出来.【答案】解:解不等式①得x>-2,解不等式②得x≤3,数轴表示解集为:所以不等式组的解集是-2<x≤3.【解析】分别解两个不等式得到x>-2和x≤3,再利用数轴表示解集,然后根据大小小大中间找确定不等式组的解集.本题考查了一元一次不等式组:解一元一次不等式组时,一般先求出其中各不等式的解集,再求出这些解集的公共部分,利用数轴可以直观地表示不等式组的解集.解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.15.解不等式组:【答案】解:解不等式2x+9<5x+3,得:x>2,解不等式-≤0,得:x≤7,则不等式组的解集为2<x≤7.【解析】首先解每个不等式,两个不等式的解集的公共部分就是不等式组的解集.本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.16.已知关于x、y的方程组a为常数.(1)求方程组的解;(2)若方程组的解x>y>0,求a的取值范围.【答案】解:(1),①+②,得:3x=6a+3,解得:x=2a+1,把x=2a+1代入②,得:y=a-2,所以方程组的解为;(2)∵x>y>0,∴,解得:a>2.【解析】本题主要考查解一元一次不等式组和二元一次方程组,解题的关键是熟练掌握消元法解二元一次方程和解一元一次不等式组的能力.(1)两方程相加求出x、两方程相减可求得y;(2)由(1)中所求x、y结合x>y>0可得关于k的不等式组,解之可得.17.解不等式组.【答案】解:解不等式①得x<1解不等式②得x>-3所以原不等式组的解集为-3<x<1.【解析】把不等式组的不等式在数标轴上表示出来,看两者有无公共部分,从而解出解集.此题考查解不等式的一般方法,移项、合并同类项、系数化为1等求解方法,较为简单.18.解不等式组,并写出该不等式组的整数解.【答案】解:由得x≤1,由1-3(x-1)<8-x得x>-2,所以-2<x≤1,则不等式组的整数解为-1,0,1.【解析】首先把两个不等式的解集分别解出来,再根据大大取大,小小取小,比大的小比小的大取中间,比大的大比小的小无解的原则,求得不等式的解集,再求其整数解.本题主要考查不等式组的解集,以及在这个范围内的整数解.同时,一元一次不等式(组)的解法及不等式(组)的应用是一直是各省市中考的考查重点.19.解下列不等式(组),并把它们的解集在数轴上表示出来.(1);(2).【答案】解:(1)15-3x≥14-2x,-3x+2x≥14-15,-x≥-1,解得:x≤1,数轴表示如下:(2)解不等式①得:x≥-1,解不等式②得:x<3,∴不等式组的解集为-1≤x<3,数轴表示如下:.【解析】这是一道考查一元一次不等式与不等式组的解法的题目,解题关键在于正确解出不等式,并在数轴上表示出解集.(1)先去分母,移项,合并同类项,注意要改变符号;(2)求出每个不等式的解集,再求出公共部分,即可求出答案.20.解不等式组:,并把解集在数轴上表示出来.【答案】解:,解①得x>-3,解②得x≤2,所以不等式组的解集为-3<≤2,用数轴表示为:【解析】先分别解两个不等式得到x>-3和x≤2,再根据大小小大中间找得到不等式组的解集,然后利用数轴表示解集.本题考查了解一元一次不等式组:解一元一次不等式组时,一般先求出其中各不等式的解集,再求出这些解集的公共部分,利用数轴可以直观地表示不等式组的解集.解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.21.已知方程组的解x、y都是正数,且x的值小于y的值,求m的取值范围.【答案】解:方程组解得:,根据题意得:且2m-1<m+8,解得:<m<9.【解析】将m看做已知数,表示出x与y,根据题意列出不等式,求出不等式的解集即可得到m的范围.此题考查了解一元一次不等式组,以及解二元一次方程组,弄清题意是解本题的关键.22.满足不等式-1≤3-2x<6的所有x的整数的和是多少?【答案】解:根据题意得:,解①得:x≤2,解②得:x>-,则不等式组的解:-<x≤2,则整数解是:-1,0,1,2.则整数和是:-1+0+1+2=2.【解析】先求出不等式组中每个不等式的解集,然后求出其公共解集,最后求其整数解,然后求和即可.本题考查不等式组的解法及整数解的确定.求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.23.(1)解方程组:(2)解不等式组:【答案】解:(1),整理得,解得 .(2),解①得:,解②得:.则不等式组的解集为.【解析】本题考查了一元一次不等式的解法及解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.(1)方程组整理后,利用加减消元法求出解即可;(2)分别求出不等式组中两不等式的解集,找出解集的公共部分即可.24.已知关于x,y的方程组,其中-3≤a≤1.(1)当a=-2时,求x,y的值;(2)若x≤1,求y的取值范围.【答案】解:(1),①-②,得:4y=4-4a,解得:y=1-a,将y=1-a代入②,得:x-1+a=3a,解得:x=2a+1,则,∵a=-2,∴x=-4+1=-3,y=1+2=3;(2)∵x=2a+1≤1,即a≤0,∴-3≤a≤0,即1≤1-a≤4,则1≤y≤4.【解析】(1)先解关于x、y的方程组,再将a的值代入即可得;(2)由x≤1得出关于a≤0,结合-3≤a≤1知-3≤a≤0,从而得出1≤1-a≤4,据此可得答案.此题考查了解二元一次方程组与一元一次不等式组,解题的关键是根据题意得出用a表示的x、y.25.解不等式组:.【答案】解:解不等式2x+1≥x-1,得:x≥-2,解不等式<3-x,得:x<2,∴不等式组的解集为-2≤x<2.【解析】分别求出各不等式的解集,再求出其公共解集即可.本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.26.解下列不等式和不等式组(1)-1(2)【答案】解:(1)3(x+3)≤5(2x-5)-15,3x+9≤10x-25-15,3x-10x≤-25-15-9,-7x≤-49,x≥7;(2)解不等式1-2(x-1)≤5,得:x≥-1,解不等式<x+1,得:x<4,则不等式组的解集为-1≤x<4.【解析】(1)依据解一元一次不等式的步骤依次计算可得;(2)分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.此题考查一元一次不等式解集的求法,切记同乘负数时变号;一元一次不等式组的解集求法,其简单的求法就是利用口诀求解,“同大取大,同小取小,大小小大中间找,大大小小找不到(无解)”.27.解不等式组(注:必须通过画数轴求解集)【答案】解:解不等式①,得:x≥2,解不等式②,得:x<4,在数轴上表示两解集如下:所以,原不等式组的解集为2≤x<4.【解析】分别求出不等式组中两不等式的解集,找出解集的公共部分即可.此题考查了解一元一次不等式组,以及在数轴上表示不等式的解集,熟练掌握运算法则是解本题的关键.28.解不等式组:并写出它的所有整数解.【答案】解:,解不等式①,得x<1,解不等式②,得x≥-2,所以不等式组的解集为-2≤x<1,所以它的所有整数解为-2,-1,0.【解析】本题主要考查不等式组的解法及整数解的确定.求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.先求出每个不等式的解集,再确定其公共解,得到不等式组的解集,然后求其整数解.29.解不等式组,并把解集在数轴上表示出来.【答案】解:,解不等式①得,x≤2,解不等式②得,x>-1,∴不等式组的解集是-1<x≤2.用数轴表示如下:【解析】根据一元一次不等式组的解法,求出两个不等式的解集,然后求出公共解集即可.本题主要考查了一元一次不等式组的解法,注意在数轴上表示时,有等号的用实心圆点表示,没有等号的用空心圆圈表示.30.解不等式组:【答案】解:解不等式1-x>3,得:x<-2,解不等式<,得:x>12,所以不等式组无解.【解析】先分别求出各不等式的解集,再求出其公共解集即可.主要考查了一元一次不等式解集的求法,其简便求法就是用口诀求解.求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解).31.解下面的不等式组,并把它们的解集在数轴上表示出来:(1)(2)【答案】解:(1),解不等式①,得x≤4,解不等式②,得x>-1,不等式①②的解集在数轴上表示如下:(2),解不等式①,得,解不等式②,得x>1,不等式①②的解集在数轴上表示如下:【解析】本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.(1)分别求出各不等式的解集,再求出其公共解集,然后在数轴上表示出来即可;(2)别求出各不等式的解集,再求出其公共解集,然后在数轴上表示出来即可.32.若不等式组的解集为,求a,b的值.【答案】解:解第一个不等式,得:,解第二个不等式,得:,∵不等式组的解集为1≤x≤6,∴,2b=1,解得:a=12,b=.【解析】此题考查的是含有待定字母的一元一次不等式的解法,解决此题要先求出每个不等式的解集,再找出它们的公共部分,根据给出的解集转化为关于a和b的方程求解即可.33.(1)解不等式-1(2)解不等式,并将解集在数轴上表示.【答案】解:(1)去分母,得:4(x+1)<5(x-1)-6,去括号,得:4x+4<5x-5-6,移项,得:4x-5x<-5-6-4,合并同类项,得:-x<-15,系数化为1,得:x>15;(2)解不等式2x-1≥x,得:x≥1,解不等式4-5(x-2)>8-2x,得:x<2,∴不等式组的解集为1≤x<2,将解集表示在数轴上如下:【解析】(1)根据解不等式的基本步骤求解可得;(2)分别求出各不等式的解集,再求出其公共解集即可.本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.34.解不等式组:【答案】解:由(1)得,x>3由(2)得,x≤4故原不等式组的解集为3<x≤4.【解析】分别求出各不等式的解集,再求其公共解集即可.求不等式组的解集应遵循以下原则:“同大取较大,同小取较小,小大大小中间找,大大小小解不了”的原则.35.解不等式组【答案】解:解不等式-2x+1>-11,得:x<6,解不等式-1≥x,得:x≥1,则不等式组的解集为1≤x<6.【解析】分别求出各不等式的解集,再求出其公共解集即可.本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.36.解不等式组:并写出它的所有的整数解.【答案】解:,解不等式①得,x≥1,解不等式②得,x<4,所以,不等式组的解集是1≤x<4,所以,不等式组的所有整数解是1、2、3.【解析】本题主要考查了一元一次不等式组解集的求法,其简便求法就是用口诀求解.求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解).先求出两个不等式的解集,再求其公共解,然后写出整数解即可.37.解不等式组把它的解集在数轴上表示出来,并写出不等式组的非负整数解.【答案】解:,由①得:x≥-1,由②得:x<3,∴不等式组的解集为-1≤x<3,在数轴上表示,如图所示,则其非负整数解为0,1,2.【解析】求出不等式组的解集,表示在数轴上,确定出非负整数解即可.此题考查了一元一次不等式组的整数解,以及解一元一次不等式组,熟练掌握运算法则是解本题的关键.38.(1)解方程组(2)解不等式组并把解集在数轴上表示出来.【答案】解:(1),①+②,得:6x=18,解得:x=3,②-①,得:4y=4,解得:y=1,所以方程组的解为;(2)解不等式x-4≤(2x-1),得:x;解不等式2x-<1,得:x<3,则不等式组的解集为-≤x<3,将解集表示在数轴上如下:【解析】(1)利用加减消元法求解可得;(2)分别求出各不等式的解集,再求出其公共解集即可.本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则及加减消元法解二元一次方程组是解答此题的关键.39.若关于x,y的方程组的解满足x<0且y<0,求m的范围.【答案】解:,①+②,得:6x=3m-18,解得:x=,②-①,得:10y=-m-18,解得:y=,∵x<0且y<0,∴,解得:-18<m<6.【解析】先解出方程组,然后根据题意列出不等式组即可求出m的范围.本题考查学生的计算能力,解题的关键是熟练运用方程组与不等式组的解法,本题属于基础题型.40.解不等式组:并写出它的所有整数解.【答案】解:,解不等式①,得,解不等式②,得x<2,∴原不等式组的解集为,它的所有整数解为0,1.【解析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.第21页,共21页。
不等式与不等式组专项训练(含答案详解)
《不等式与不等式组专项训练》一、选择:1.下列不等式一定成立的是()A.a≥﹣a B.3a>a C.a D.a+1>a2.若a>b,则下列不等式仍能成立的是()A.b﹣a<0B.ac<bc C.D.﹣b<﹣a3.解不等式中,出现错误的一步是()A.6x﹣3<4x﹣4B.6x﹣4x<﹣4+3C.2x<﹣1D.4.不等式的正整数解有()A.2个B.3个C.4个D.5个5.在下列不等式组中,解集为﹣1≤x<4的是()A.B.C.D.6.若不等式≥4x+6的解集是x≤﹣4,则a的值是()A.34B.22C.﹣3D.0二、填空:7.用不等式表示“6与x的3倍的和大于15”.8.不等式的最大正整数解是,最小正整数解是.9.一次不等式组的解集是.10.若y=2x+1,当x时,y<x.11.关于x的不等式ax+b<0(a<0)的解集为.12.若方程mx+13=4x+11的解为负数,则m的取值范围是.13.若a>b,则的解集为.14.某次知识竞赛共有20题,每一题答对得10分,答错或不答都扣5分,小明得分要超过90分,他至少答对道.三、解不等式或不等式组:15.解不等式或不等式组:(1)3(x﹣2)﹣4(1﹣x)<1(2)1﹣≥x+2(3)(4).四、解答下列各题:16.x取什么值时,代数式5(x﹣1)﹣2(x﹣2)的值大于x+2的相反数.17.k取什么值时,解方程组得到的x,y的值都大于1.18.某班有住宿生若干人,分住若干间宿舍,若每间住4人,则还余20人无宿舍住;若每间住8人,则有一间宿舍不空也不满,求该班住宿生人数和宿舍间数.19.某工厂现有甲种原料360千克,乙种原料290千克,计划利用这两种原料生产A、B两种产品共50件.已知生产1件A种产品需甲种原料9千克、乙种原料3千克,生产1件B种产品需甲种原料4千克、乙种原料10千克,请你提出安排生产的方案.《不等式与不等式组专项训练》参考答案与试题解析一、选择:1.下列不等式一定成立的是()A.a≥﹣a B.3a>a C.a D.a+1>a【考点】不等式的性质.【分析】根据不等式的两边都加(或减去)同一个整式,不等号的方向不变,可得答案.【解答】解:A、a≤0时,a≤﹣a,故A错误;B、a≤0时,3a≤a,故B错误;C、a<﹣1时,a<,故C错误;D、1>0,1+a>a,故D正确;故选:D.【点评】本题考查了不等式的性质,熟记不等式得性质是解题关键.2.若a>b,则下列不等式仍能成立的是()A.b﹣a<0B.ac<bc C.D.﹣b<﹣a【考点】不等式的性质.【分析】根据不等式的基本性质分别判断,再选择.【解答】解:A、不等式的两边同时减去a,不等号的方向不变,则0<b﹣a,即b﹣a<0成立;B、不等式的两边同时乘以c,因为c的符号不确定,所以不等号的方向也不确定,故ac<bc不成立;C、不等式的两边同时除以b,因为b的符号不确定,所以不等号的方向也不确定,故不成立;D、不等式的两边同时乘以﹣1,不等号的方向改变变,则﹣a<﹣b,则﹣b<﹣a不成立.故选A.【点评】主要考查了不等式的基本性质.不等式的基本性质:(1)不等式两边加(或减)同一个数(或式子),不等号的方向不变.(2)不等式两边乘(或除以)同一个正数,不等号的方向不变.(3)不等式两边乘(或除以)同一个负数,不等号的方向改变.3.解不等式中,出现错误的一步是()A.6x﹣3<4x﹣4B.6x﹣4x<﹣4+3C.2x<﹣1D.【考点】解一元一次不等式.【专题】计算题.【分析】先去分母,移项,合并同类项,化系数为1即可求出x的取值范围,与各选项进行对照即可.【解答】解:去分母得,6x﹣3<4x﹣4,故A选项正确;移项得,6x﹣4x<﹣4+3,故B选项正确;合并同类项得,2x<﹣1,故C选项正确;化系数为1得,x<﹣,故D选项错误.故选D.【点评】本题考查的是解一元一次不等式,熟知解一元一次不等式的基本步骤是解答此题的关键.4.不等式的正整数解有()A.2个B.3个C.4个D.5个【考点】一元一次不等式的整数解.【分析】先求出不等式的解集,再据此求出不等式的整数解.【解答】解:去分母,得4x﹣5<12,移项,得4x<12+5,系数化为1,得x<.于是大于0并小于的整数有1,2,3,4.共4个,故选C.【点评】正确解不等式,求出解集是解答本题的关键.解不等式应根据以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.5.在下列不等式组中,解集为﹣1≤x<4的是()A.B.C.D.【考点】解一元一次不等式组;不等式的解集.【分析】首先分别根据解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到确定出不等式组的解集,即可选出答案.【解答】解:A、不等式组的解集为无解,故此选项错误;B、不等式组的解集为x>4,故此选项错误;C、不等式组的解集为﹣1≤x<4,故此选项正确;D、不等式组的解集为x>4,故此选项错误;故选:C.【点评】此题主要考查了解一元一次不等式组,关键是掌握解集的确定规律.6.若不等式≥4x+6的解集是x≤﹣4,则a的值是()A.34B.22C.﹣3D.0【考点】解一元一次不等式.【分析】先解不等式≥4x+6,得出用a表示出来的x的取值范围,再根据解集是x≤﹣4,列出方程﹣=﹣4,即可求出a的值.【解答】解:∵≥4x+6,∴x≤﹣,∵x≤﹣4,∴﹣=﹣4,解得:a=22.故选B.【点评】本题考查的是解一元一次不等式,根据不等式的解集是x≤﹣4得出关于a的一元一次方程是解答此题的关键.二、填空:7.用不等式表示“6与x的3倍的和大于15”6+3x>15.【考点】由实际问题抽象出一元一次不等式.【分析】首先表示“x的3倍”为3x,再表示“6与x的3倍的和”为6+3x,最后再表示“大于15”为6+3x>15.【解答】解:根据题意,得:6+3x>15,故答案为:6+3x>15.【点评】此题主要考查了由实际问题抽象出一元一次不等式,用不等式表示不等关系时,要抓住题目中的关键词,如“大于(小于)、不超过(不低于)、是正数(负数)”“至少”、“最多”等等,正确选择不等号.8.不等式的最大正整数解是9,最小正整数解是1.【考点】一元一次不等式的整数解.【分析】去分母,解不等式求解集,在解集的范围内求最大正整数解和最小正整数解.【解答】解:去分母,得x+3≤12,解得x≤9,最大正整数解是9,最小正整数解是1,故答案为:9,1.【点评】本题考查了一元一次不等式的整数解.正确解不等式,求出解集是解答本题的关键.解不等式应根据不等式的基本性质.9.一次不等式组的解集是﹣3<x<2.【考点】解一元一次不等式组.【专题】计算题.【分析】分别求出各个不等式的解集,再求出这些解集的公共部分即可.【解答】解:解不等式①,得x<2,解不等式②,得x>﹣3,所以不等式组的解集是﹣3<x<2.【点评】本题主要考查了一元一次不等式组解集的求法,其简便求法就是用口诀求解.求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解).10.若y=2x+1,当x<﹣1时,y<x.【考点】一次函数与一元一次不等式.【分析】根据y<x即可得到一个关于x的不等式,解不等式求解.【解答】解:根据题意得:2x+1<x,解得:x<﹣1.故答案是:<﹣1.【点评】本题考查了一次函数与不等式,正确列出不等式是本题的关键.11.关于x的不等式ax+b<0(a<0)的解集为x>﹣.【考点】解一元一次不等式.【分析】先移项,再把x的系数化为1即可.【解答】解:移项得,ax<﹣b,x的系数化为1得,x>﹣.故答案为:x>﹣.【点评】本题考查的是解一元一次不等式,熟知不等式的基本性质是解答此题的关键.12.若方程mx+13=4x+11的解为负数,则m的取值范围是m>4.【考点】解一元一次不等式.【分析】解关于x的方程得x=,由方程的解为负数得到关于m的不等式,解不等式即可.【解答】解:解方程mx+13=4x+11得:x=,∵方程的解为负数,∴<0,即4﹣m<0,解得:m>4,故答案为:m>4.【点评】本题主要考查解一元一次方程和不等式的能力,根据题意得出关于m的不等式是解题的关键.13.若a>b,则的解集为空集.【考点】不等式的解集.【专题】计算题;一元一次不等式(组)及应用.【分析】利用不等式组取解集的方法判断即可.【解答】解:∵a>b,∴的解集为空集,故答案为:空集【点评】此题考查了不等式的解集,熟练掌握不等式取解集的方法是解本题的关键.14.某次知识竞赛共有20题,每一题答对得10分,答错或不答都扣5分,小明得分要超过90分,他至少答对13道.【考点】一元一次不等式的应用.【专题】应用题.【分析】根据小明得分要超过90分,就可以得到不等关系:小明的得分≤90分,设应答对x道,则根据不等关系就可以列出不等式求解.【解答】解:设应答对x道,则10x﹣5(20﹣x)>90解得x>12∴x=13【点评】解决本题的关键是读懂题意,找到符合题意的不等关系式,正确表示出小明的得分是解决本题的关键.三、解不等式或不等式组:15.(20分)解不等式或不等式组:(1)3(x﹣2)﹣4(1﹣x)<1(2)1﹣≥x+2(3)(4).【考点】解一元一次不等式组;解一元一次不等式.【分析】(1)去括号,移项,合并同类项,系数化成1即可;(2)去分母,去括号,移项,合并同类项,系数化成1即可;(3)先求出每个不等式的解集,再根据找不等式组解集的规律找出不等式组的解集即可;(4)先求出每个不等式的解集,再根据找不等式组解集的规律找出不等式组的解集即可.【解答】解:(1)去括号得:3x﹣6﹣4+4x<1,3x+4x<1+6+4,7x<11,x<;(2)去分母得:6﹣2x+1≥6x+12,﹣2x﹣6x≥12﹣6﹣1,﹣8x≥5,x≤﹣;(3)∵解不等式①得:x≤1,解不等式②得:x>﹣3,∴不等式组的解集为﹣3<x≤1;(4)∵解不等式①得:x≤4,解不等式②得:x>7,∴不等式组无解.【点评】本题考查了解一元一次不等式和解一元一次不等式组的应用,能求出不等式或不等式组的解集是解此题的关键.四、解答下列各题:16.(8分)x取什么值时,代数式5(x﹣1)﹣2(x﹣2)的值大于x+2的相反数.【考点】解一元一次不等式.【分析】根据题意列出不等式,解不等式即可得.【解答】解:根据题意,得:5(x﹣1)﹣2(x﹣2)>﹣(x+2),去括号,得:5x﹣5﹣2x+4>﹣x﹣2,移项、合并,得:4x>﹣1,系数化为1,得:x>﹣,即x>﹣时,代数式5(x﹣1)﹣2(x﹣2)的值大于x+2的相反数.【点评】本题主要考查解一元一次不等式的基本能力,严格遵循解不等式的基本步骤是关键,尤其需要注意不等式两边都乘以或除以同一个负数不等号方向要改变.17.(8分)k取什么值时,解方程组得到的x,y的值都大于1.【考点】解一元一次不等式组;解二元一次方程组.【专题】方程与不等式.【分析】将k看作常数,解关于x、y的二元一次方程组,令其解大于1,就只需解关于k的不等式组即可【解答】解:①+②,得x=k+2①﹣②,得y=k﹣2∵x>1,y>1∴解之得:k>3即:当k>3时,解方程组得到的x,y的值都大于1【点评】本题考查了二元一次方程组解的解法与一元一次不等式组的解法,关键是解方程组时将k看作常数.18.(10分)(2016春•房山区期中)某班有住宿生若干人,分住若干间宿舍,若每间住4人,则还余20人无宿舍住;若每间住8人,则有一间宿舍不空也不满,求该班住宿生人数和宿舍间数.【考点】一元一次不等式组的应用.【专题】比例分配问题.【分析】根据题意设安排住宿的房间为x间,并用含x的代数式表示学生人数,根据“每间住4人,则还余20人无宿舍住和;每间住8人,则有一间宿舍不空也不满”列不等式组解答.【解答】解:设安排住宿的房间为x间,则学生有(4x+20)人,根据题意,得解之得5.25≤x≤6.25又∵x只能取正整数,∴x=6∴当x=6,4x+20=44.(人)答:住宿生有44人,安排住宿的房间6间.【点评】解决本题的关键是读懂题意,找到符合题意的不等关系式组.要根据人数为正整数,推理出具体的人数.19.(12分)(2012春•东城区校级期中)某工厂现有甲种原料360千克,乙种原料290千克,计划利用这两种原料生产A、B两种产品共50件.已知生产1件A种产品需甲种原料9千克、乙种原料3千克,生产1件B种产品需甲种原料4千克、乙种原料10千克,请你提出安排生产的方案.【考点】一元一次不等式组的应用.【分析】本题首先找出题中的不等关系即甲种原料不超过360千克,乙种原料不超过290千克,然后列出不等式组并求出它的解集.由此可确定出具体方案.【解答】解:设安排生产A种产品x件,则安排生产B种产品(50﹣x)件.依题意得解得30≤x≤32∵x为正整数,∴x=30,31,32,∴有三种方案:(1)安排生产A种产品30件,B种产品20件;(2)安排生产A种产品31件,B种产品19件;(3)安排生产A种产品32件,B种产品18件.【点评】考查了一元一次不等式组的应用,解题关键是要读懂题目的意思,找出题中隐藏的不等关系甲种原料不超过360千克,乙种原料不超过290千克,列出不等式组解出即可.。
专题08不等式与不等式组【解析版】
专题08不等式与不等式组一.选择题(共8小题)1.(2022•娄底)不等式组的解集在数轴上表示正确的是( )A.B.C.D。
【分析】先求出不等式组的解集,再确定符合条件的选项.【解析】,解①,得x≤2,解②,得x>﹣1.所以原不等式组的解集为:﹣1<x≤2.故符合条件的选项是C.故选:C.2.(2022•嘉兴)不等式3x+1<2x的解集在数轴上表示正确的是( )A.B.C.D.【分析】根据解不等式的方法可以解答本题.【解析】3x+1<2x,移项,得:3x﹣2x<﹣1,合并同类项,得:x<﹣1,其解集在数轴上表示如下:,故选:B.【点评】本题考查解一元一次不等式、在数轴上表示不等式的解集,解答本题的关键是明确解一元一次不等式的方法.3.(2022•衡阳)不等式组的解集在数轴上表示正确的是( )A.B.C.D.【分析】首先解每个不等式,然后把每个不等式的解集在数轴上表示即可.【解析】,解①得x≥﹣1,解②得x<3.则表示为:故选:A.【点评】本题考查了不等式组的解法以及用数轴表示不等式的解集,要注意“两定”:一是定界点,一般在数轴上只标出原点和界点即可.定边界点时要注意,点是实心还是空心,若边界点含于解集为实心点,不含于解集即为空心点;二是定方向,定方向的原则是:“小于向左,大于向右”.4.(2022•株洲)不等式4x﹣1<0的解集是( )A.x>4B.x<4C.x>D.x<【分析】根据解一元一次不等式的步骤:①去分母;②去括号;③移项;④合并同类项;⑤系数化为1解不等式即可.【解析】∵4x﹣1<0,∴4x<1,∴x<.故选:D.【点评】本题考查了解一元一次不等式,掌握解一元一次不等式的步骤:①去分母;②去括号;③移项;④合并同类项;⑤系数化为1是解题的关键.5.(2022•武威)不等式3x﹣2>4的解集是( )A.x>﹣2B.x<﹣2C.x>2D.x<2【分析】按照解一元一次不等式的步骤:①去分母;②去括号;③移项;④合并同类项;⑤化系数为1即可得出答案.【解析】3x﹣2>4,移项得:3x>4+2,合并同类项得:3x>6,系数化为1得:x>2.故选:C.【点评】本题考查了解一元一次不等式,掌握解一元一次不等式的步骤:①去分母;②去括号;③移项;④合并同类项;⑤化系数为1是解题的关键.6.(2022•宿迁)如果x<y,那么下列不等式正确的是( )A.2x<2y B.﹣2x<﹣2y C.x﹣1>y﹣1D.x+1>y+1【分析】根据不等式的性质逐个判断即可.【解析】A、∵x<y,∴2x<2y,故本选项符合题意;B、∵x<y,∴﹣2x>﹣2y,故本选项不符合题意;C、∵x<y,∴x﹣1<y﹣1,故本选项不符合题意;D、∵x<y,∴x+1<y+1,故本选项不符合题意;故选:A.【点评】本题考查了不等式的性质,能熟记不等式的性质的内容是解此题的关键.7.(2022•滨州)把不等式组中每个不等式的解集在一条数轴上表示出来,正确的为( )A.B.C.D.【分析】先解出不等式组中的每一个不等式的解集,然后即可写出不等式组的解集,再在数轴上表示出每一个不等式的解集即可.【解析】解不等式x﹣3<2x x>﹣3,解不等式,得x≤5,故原不等式组的解集是﹣3<x≤5,其解集在数轴上表示如下:故选:C.【点评】本题考查解一元一次不等式组、在数轴上表示不等式组的解集,解答本题的关键是明确解一元一次不等式组的方法,会在数轴上表示不等式组的解集.8.(2022•邵阳)关于x的不等式组有且只有三个整数解,则a的最大值是( )A.3B.4C.5D.6【分析】分别求出不等式组中两不等式的解集,找出两解集的公共部分表示出不等式组的解集,根据解集有且只有三个整数解,确定出a的范围即可.【解析】,由①得:x>1,由②得:x<a,解得:1<x<a,∵不等式组有且仅有三个整数解,即2,3,4,∴4<a≤5,∴a的最大值是5,故选:C.【点评】此题考查了一元一次不等式组的整数解,熟练掌握不等式组的解法是解本题的关键.二.多选题(共1小题)(多选)9.(2022•湘潭)若a>b,则下列四个选项中一定成立的是( )A.a+2>b+2B.﹣3a>﹣3b C.>D.a﹣1<b﹣1【解析】A.a+2>b+2,∵a>b,∴a+2>b+2,故A选项符合题意;B.﹣3a>﹣3b,∵a>b,∴﹣3a<﹣3b,故B选项不符合题意;C.>,∵a>b,∴>,故C选项符合题意;D.a﹣1<b﹣1,∵a>b,∴a﹣1>b﹣1,故D选项不符合题意;故选:AC.【点评】本题主要考查不等式的性质,熟练掌握不等式的性质是解题的关键.三.填空题(共4小题)10.(2022•绍兴)关于x的不等式3x﹣2>x的解集是 x>1 .【分析】根据解一元一次不等式步骤即可解得答案.【解析】∵3x﹣2>x,∴3x﹣x>2,即2x>2,解得x>1,故答案为:x>1.【点评】本题考查解一元一次不等式,解题的关键是掌握解一元一次不等式的基本步骤.11.(2022•安徽)不等式≥1的解集为 x≥5 .【分析】先去分母、再移项即可.【解析】≥1,x﹣3≥2,x≥3+2,x≥5.故答案为:x≥5.【点评】本题考查的是解一元一次不等式,掌握解一元一次不等式是解答本题的关键.12.(2022•丽水)不等式3x>2x+4的解集是 x>4 .【分析】先移项,再合并同类项即可.【解析】3x>2x+4,3x﹣2x>4,x>4,故答案为:x>4.【点评】本题考查的是解一元一次不等式,熟知解一元一次不等式的基本步骤是解答此题的关键.13.(2022•达州)关于x的不等式组恰有3个整数解,则a的取值范围是 2≤a<3 .【分析】首先确定不等式组的解集,先利用含a的式子表示,根据整数解的个数就可以确定有哪些整数解,根据解的情况可以得到关于a的不等式,从而求出a的范围.【解析】,解不等式①得:x>a﹣2,解不等式②得:x≤3,∴不等式组的解集为:a﹣2<x≤3,∵恰有3个整数解,∴0≤a﹣2<1,∴2≤a<3,故答案为:2≤a<3.【点评】考查不等式组的解法及整数解的确定.求不等式组的解集,应遵循以下原则:同大取较大,同理的答案.四.解答题(共19小题)14.(2022•武汉)解不等式组请按下列步骤完成解答.(1)解不等式①,得 x≥﹣3 ;(2)解不等式②,得 x<1 ;(3)把不等式①和②的解集在数轴上表示出来;(4)原不等式组的解集是 ﹣3≤x<1 .【分析】分别解这两个不等式,把不等式①和②的解集在数轴上表示出来,找到解集的公共部分即可得到原不等式组的解集.【解析】(1)解不等式①,得:x≥﹣3;(2)解不等式②,得:x<1;(3)把不等式①和②的解集在数轴上表示出来为:(4)原不等式组的解集为:﹣3≤x<1.故答案为:(1)x≥﹣3;(2)x<1;(4)﹣3≤x<1.【点评】本题考查了解一元一次不等式组,在数轴上表示不等式的解集,体现了数形结合的思想,在数轴上找到解集的公共部分是解题的关键.15.(2022•常德)解不等式组.【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小找不到确定不等式组的解集.【解析】由5x﹣1>3x﹣4,得:x>﹣,由﹣≤﹣x,得:x≤1,则不等式组的解集为﹣<x≤1.【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.16.(2022•乐山)解不等式组.请结合题意完成本题的解答(每空只需填出最后结果).解:解不等式①,得 x>﹣2 .解不等式②,得 x≤3 .把不等式①和②的解集在数轴上表示出来:所以原不等式组解集为 ﹣2<x≤3 .【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小找不到确定不等式组的解集.【解析】解不等式①,得x>﹣2.解不等式②,得x≤3.把不等式①和②的解集在数轴上表示出来:所以原不等式组解集为﹣2<x≤3,故答案为:x>﹣2,x≤3,﹣2<x≤3.【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.17.(2022•陕西)解不等式组:.【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小找不到确定不等式组的解集.【解析】由x+2>﹣1,得:x>﹣3,由x﹣5≤3(x﹣1),得:x≥﹣则不等式组的解集为x≥﹣1.【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.18.(2022•天津)解不等式组请结合题意填空,完成本题的解答.(Ⅰ)解不等式①,得 x≥﹣1 ;(Ⅱ)解不等式②,得 x≤2 ;(Ⅲ)把不等式①和②的解集在数轴上表示出来:(Ⅳ)原不等式组的解集为 ﹣1≤x≤2 .【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小找不到确定不等式组的解集.【解析】(Ⅰ)解不等式①,得x≥﹣1;(Ⅱ)解不等式②,得x≤2;(Ⅲ)把不等式①和②的解集在数轴上表示出来:(Ⅳ)原不等式组的解集为﹣1≤x≤2,故答案为:x≥﹣1,x≤2,﹣1≤x≤2.【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.19.(2022•宁波)(1)计算:(x+1)(x﹣1)+x(2﹣x).(2)解不等式组:.【分析】(1)根据平方差公式和单项式乘多项式展开,合并同类项即可得出答案;(2)分别解这两个不等式,根据不等式解集的规律即可得出答案.【解析】(1)原式=x2﹣1+2x﹣x2=2x﹣1;(2),解不等式①得:x>3,解不等式②得:x≥﹣2,∴原不等式组的解集为:x>3.【点评】本题考查了整式的混合运算,解一元一次不等式组,掌握同大取大;同小取小;大小小大中间找;大大小小找不到是解题的关键.20.(2022•怀化)解不等式组,并把解集在数轴上表示出来.【分析】先解出每个不等式的解集,即可得到不等式组的解集,然后在数轴上表示出其解集即可.【解析】,解不等式①,得:x>2,解不等式②,得:x≤3,∴原不等式组的解集是2<x≤3,其解集在数轴上表示如下:.【点评】本题考查解一元一次不等式组、在数轴上表示不等式的解集,解答本题的关键是明确解一元一次不等式的方法.21.(2022•湖州)解一元一次不等式组.【分析】分别解这两个一元一次不等式,然后根据求不等式组解集的规律即可得出答案.【解析】解不等式①得:x<2,解不等式②得:x<1,∴原不等式组的解集为x<1.【点评】本题考查了解一元一次不等式组,掌握同大取大;同小取小;大小小大中间找;大大小小找不到是解题的关键.22.(2022•扬州)解不等式组并求出它的所有整数解的和.【分析】先解出每个不等式的解集,即可得到不等式组的解集,然后即可求得该不等式组所有整数解的和.【解析】,解不等式①,得:x≥﹣2,解不等式②,得:x<4,∴原不等式组的解集是﹣2≤x<4,∴该不等式组的整数解是﹣2,﹣1,0,1,2,3,∵﹣2+(﹣1)+0+1+2+3=3,∴该不等式组所有整数解的和是3.【点评】本题考查一元一次不等式组的整数解、解一元一次不等式组,解答本题的关键是明确解一元一次不等式的方法.23.(2022•温州)(1)计算:+(﹣3)2+3﹣2﹣|﹣|.(2)解不等式9x﹣2≤7x+3,并把解集表示在数轴上.【分析】(1)根据算术平方根、有理数的乘方、负整数指数幂和绝对值可以解答本题;(2)先解出不等式的解集,再在数轴上表示出其解集即可.【解析】(1)+(﹣3)2+3﹣2﹣|﹣|=3+9+﹣=12;(2)9x﹣2≤7x+3,移项,得:9x﹣7x≤3+2,合并同类项,得:2x≤5,系数化为1,得:x≤2.5,其解集在数轴上表示如下:.【点评】本题考查实数的运算、解一元一次不等式,解答本题的关键是明确实数运算的运算法则和解一元一次不等式的方法.24.(2022•江西)(1)计算:|﹣2|+﹣20;(2)解不等式组:.【分析】(1)根据绝对值的性质,算术平方根的意义,零指数幂的意义解答即可;(2)分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小找不到确定不等式组的解集.【解析】(1)原式=2+2﹣1,=3.(2)解不等式①得:x<3,解不等式②得:x>1,∴不等式组的解集为:1<x<3.【点评】本题考查的是实数的运算和解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.25.(2022•连云港)解不等式2x﹣1>,并把它的解集在数轴上表示出来.【分析】去分母、移项、合并同类项可得其解集.【解析】去分母,得:4x﹣2>3x﹣1,移项,得:4x﹣3x>﹣1+2,合并同类项,得:x>1,将不等式解集表示在数轴上如下:.【点评】此题考查了解一元一次不等式的基本能力,熟练掌握解一元一次不等式的步骤是解题的关键.26.(2022•舟山)(1)计算:﹣(﹣1)0.(2)解不等式:x+8<4x﹣1.【分析】(1)根据立方根和零指数幂可以解答本题;(2)根据解一元一次不等式的方法可以解答本题.【解析】(1)﹣(﹣1)0=2﹣1=1;(2)x+8<4x﹣1移项及合并同类项,得:﹣3x<﹣9,系数化为1,得:x>3.【点评】本题考查解一元一次不等式、实数的运算,熟练掌握运算法则和解一元一次不等式的方法是解答本题的关键.27.(2022•金华)解不等式:2(3x﹣2)>x+1.【分析】利用解不等式的方法解答即可.【解析】去括号得:6x﹣4>x+1,移项得:6x﹣x>4+1,合并同类项得:5x>5,∴x>1.【点评】本题主要考查了解一元一次不等式,熟练掌握解一元一次不等式的方法是解题的关键.28.(2022•自贡)解不等式组:,并在数轴上表示其解集.【分析】先求出不等式的解集,求出不等式组的解集即可.【解析】由不等式3x<6,解得:x<2,由不等式5x+4>3x+2,解得:1,∴不等式组的解集为:﹣1<x<2,∴在数轴上表示不等式组的解集为:【点评】本题考查了解一元一次不等式组和在数轴上表示不等式组的解集,能根据不等式的解集求出不等式组的解集是解此题的关键.29.某中学为落实《教育部办公厅关于进一步加强中小学生体质管理的通知》文件要求,决定增设篮球、足球两门选修课程,需要购进一批篮球和足球.已知购买2个篮球和3个足球共需费用510元;购买3个篮球和5个足球共需费用810元.(1)求篮球和足球的单价分别是多少元;(2)学校计划采购篮球、足球共50个,并要求篮球不少于30个,且总费用不超过5500元.那么有哪几种购买方案?【分析】(1)根据购买2个篮球和3个足球共需费用510元;购买3个篮球和5个足球共需费用810元,可以列出相应的二元一次方程组,然后求解即可;(2)根据要求篮球不少于30个,且总费用不超过5500元,可以列出相应的不等式组,从而可以求得篮球数量的取值范围,然后即可写出相应的购买方案.【解析】(1)设篮球的单价为a元,足球的单价为b元,由题意可得:,解得,答:篮球的单价为120元,足球的单价为90元;(2)设采购篮球x个,则采购足球为(50﹣x)个,∵要求篮球不少于30个,且总费用不超过5500元,∴,解得30≤x≤33,∵x为整数,∴x的值可为30,31,32,33,∴共有四种购买方案,方案一:采购篮球3020个;方案二:采购篮球31个,采购足球19个;方案三:采购篮球32个,采购足球18个;方案四:采购篮球33个,采购足球17个.【点评】本题考查二元一次方程组的应用、一元一次不等式组的应用,解答本题的关键是明确题意,列出相应的方程组和不等式组.30.(2022•泸州)某经销商计划购进A,B两种农产品.已知购进A种农产品2件,B种农产品3件,共需690元;购进A种农产品1件,B种农产品4件,共需720元.(1)A,B两种农产品每件的价格分别是多少元?(2)该经销商计划用不超过5400元购进A,B两种农产品共40件,且A种农产品的件数不超过B种农产品件数的3倍.如果该经销商将购进的农产品按照A种每件160元,B种每件200元的价格全部售出,那么购进A,B两种农产品各多少件时获利最多?【分析】(1)设每件A种农产品的价格是x元,每件B种农产品的价格是y元,根据“购进A种农产品2件,B种农产品3件,共需690元;购进A种农产品1件,B种农产品4件,共需720元”,即可得出关于x,y的二元一次方程组,解之即可得出结论;(2)设该经销商购进m件A种农产品,则购进(40﹣m)件B种农产品,利用总价=单价×数量,结合购进A种农产品的件数不超过B种农产品件数的3倍且总价不超过5400元,即可得出关于m的一元一次不等式组,解之即可得出m的取值范围,设两种农产品全部售出后获得的总利润为w元,利用总利润=每件的销售利润×销售数量,即可得出w关于m的函数关系式,再利用一次函数的性质,即可解决最值问题.【解析】(1)设每件A种农产品的价格是x元,每件B种农产品的价格是y元,依题意得:,解得:.答:每件A种农产品的价格是120元,每件B种农产品的价格是150元.(2)设该经销商购进m件A种农产品,则购进(40﹣m)件B种农产品,依题意得:,解得:20≤m≤30.设两种农产品全部售出后获得的总利润为w元,则w=(160﹣120)m+(200﹣150)(40﹣m)=﹣10m+2000.∵﹣10<0,∴w随m的增大而减小,∴当m=20时,w取得最大值,此时40﹣m=40﹣20=20.答:当购进20件A种农产品,20件B种农产品时获利最多.【点评】本题考查了二元一次方程组的应用、一元一次不等式组的应用以及一次函数的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)根据各数量之间的关系,找出w关于m的函数关系式.31.(2022•邵阳)2022年2月4日至20日冬季奥运会在北京举行.某商店特购进冬奥会纪念品“冰墩墩”摆件和挂件共180个进行销售.已知“冰墩墩”摆件的进价为80元/个,“冰墩墩”挂件的进价为50元/个.(1)若购进“冰墩墩”摆件和挂件共花费了11400元,请分别求出购进“冰墩墩”摆件和挂件的数量.(2)该商店计划将“冰墩墩”摆件售价定为100元/个,“冰墩墩”挂件售价定为60元/个,若购进的180个“冰墩墩”摆件和挂件全部售完,且至少盈利2900元,求购进的“冰墩墩”挂件不能超过多少个?【分析】(1)设购进“冰墩墩”摆件x个,“冰墩墩”挂件y个,利用进货总价=进货单价×进货数量,结合购进“冰墩墩”摆件和挂件共100个且共花费了11400元,即可得出关于x,y的二元一次方程组,解之即可得出结论;(2)设购进“冰墩墩”挂件m个,则购进“冰墩墩”摆件(180﹣m)个,利用总利润=每个的销售利润×销售数量(购进数量),即可得出关于m的一元一次不等式,解之取其中的最大值即可得出结论.【解析】(1)设购进“冰墩墩”摆件x个,“冰墩墩”挂件y个,依题意得:,解得:.答:购进“冰墩墩”摆件80个,“冰墩墩”挂件100个.(2)设购进“冰墩墩”挂件m个,则购进“冰墩墩”摆件(180﹣m)个,依题意得:(60﹣50)m+(100﹣80)(180﹣m)≥2900,解得:m≤70.答:购进的“冰墩墩”挂件不能超过70个.【点评】本题考查了二元一次方程组的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)根据各数量之间的关系,正确列出一元一次不等式.32.(2022•宿迁)某单位准备购买文化用品,现有甲、乙两家超市进行促销活动,该文化用品两家超市的标价均为10元/件,甲超市一次性购买金额不超过400元的不优惠,超过400元的部分按标价的6折售卖;乙超市全部按标价的8折售卖.(1)若该单位需要购买30件这种文化用品,则在甲超市的购物金额为 300 元;乙超市的购物金额为 240 元;(2)假如你是该单位的采购员,你认为选择哪家超市支付的费用较少?【分析】(1)利用总价=单价×数量,可求出购买30件这种文化用品所需原价,再结合两超市给出的优惠方案,即可求出在两家超市的购物金额;(2)设购买x件这种文化用品,当0<x≤40时,在甲超市的购物金额为10x元,在乙超市的购物金额为8x元,显然在乙超市支付的费用较少;当x>40时,在甲超市的购物金额为(6x+160)元,在乙超市的购物金额为8x元,分6x+160>8x,6x+160=8x及6x+160<8x三种情况,可求出x的取值范围或x的值,综上,即可得出结论.【解析】(1)∵10×30=300(元),300<400,∴在甲超市的购物金额为300元,在乙超市的购物金额为300×0.8=240(元).故答案为:300;240.(2)设购买x件这种文化用品.当0<x≤40时,在甲超市的购物金额为10x元,在乙超市的购物金额为0.8×10x=8x(元),∵10x>8x,∴选择乙超市支付的费用较少;当x>40时,在甲超市的购物金额为400+0.6(10x﹣400)=(6x+160)(元),在乙超市的购物金额为0.8×10x=8x(元),若6x+160>8x,则x<80;若6x+160=8x,则x=80;若6x+160<8x,则x>80.综上,当购买数量不足80件时,选择乙超市支付的费用较少;当购买数量为80件时,选择两超市支付的费用相同;当购买数量超过80件时,选择甲超市支付的费用较少.【点评】本题考查了一元一次不等式的应用以及一元一次方程的应用,根据两超市给出的优惠方案,用含x的代数式表示出在两家超市的购物金额是解题的关键.。
不等式组的练习题及答案
不等式组的练习题及答案不等式组是数学中的一个重要概念,它涉及到多个不等式的组合和求解。
以下是一些不等式组的练习题及其答案,供学生练习和教师参考。
练习题1:解不等式组:\[ \begin{cases}x + 2 > 0 \\3 - x \geq 0\end{cases} \]答案:首先解第一个不等式 \( x + 2 > 0 \),得到 \( x > -2 \)。
接着解第二个不等式 \( 3 - x \geq 0 \),得到 \( x \leq 3 \)。
综合两个不等式的解,不等式组的解集是 \( -2 < x \leq 3 \)。
练习题2:若不等式组:\[ \begin{cases}x - 5 \leq 7 \\2x + 1 > 10\end{cases} \]求 \( x \) 的取值范围。
答案:解第一个不等式 \( x - 5 \leq 7 \),得到 \( x \leq 12 \)。
解第二个不等式 \( 2x + 1 > 10 \),得到 \( x > 4.5 \)。
不等式组的解集是 \( 4.5 < x \leq 12 \)。
练习题3:解不等式组:\[ \begin{cases}3x - 1 \geq 5 \\x + 4 < 7\end{cases} \]答案:解第一个不等式 \( 3x - 1 \geq 5 \),得到 \( x \geq 2 \)。
解第二个不等式 \( x + 4 < 7 \),得到 \( x < 3 \)。
不等式组的解集是 \( 2 \leq x < 3 \)。
练习题4:若不等式组:\[ \begin{cases}-3x + 2 \leq 4 \\5 - 2x > 3x - 5\end{cases} \]求 \( x \) 的解集。
答案:解第一个不等式 \( -3x + 2 \leq 4 \),得到 \( x \geq -\frac{2}{3} \)。
(易错题精选)初中数学方程与不等式之不等式与不等式组技巧及练习题附答案解析(1)
(易错题精选)初中数学方程与不等式之不等式与不等式组技巧及练习题附答案解析(1)一、选择题1.不等式组14112x x -≤⎧⎪⎨+<⎪⎩解集在数轴上表示正确的是( )A .B .C .D .【答案】C 【解析】 【分析】分别解出两个一元一次不等式,再把得到的解根据原则(大于向右,小于向左,包括端点用实心,不包括端点用空心)分别在数轴上表示出来,再取两个解相交部分即可得到这个不等式组的解集. 【详解】解:对不等式14x -≤移项,即可得到不等式14x -≤的解集为3x ≥-,对不等式112x +<,先去分母得到12x +<,即解集为1x <, 把这两个解集在数轴上画出来,再取公共部分,即:31x -≤<, 解集在数轴上表示应为C. 故选C. 【点睛】本题主要考查了数轴和一元一次不等组及其解法,先求出不等式组的解集,然后根据“大于向右,小于向左,包括端点用实心,不包括端点用空心”的原则将不等式组的解集在数轴上表示出来,再比较即得到答案.2.若关于x 的不等式mx ﹣n >0的解集是x <13,则关于x 的不等式(m+n )x >n ﹣m 的解集是( )A .x <﹣12B .x >﹣12C .x <12D .x >12【答案】A【分析】根据不等式mx ﹣n >0的解集是x <13,则0m <,0n <,3m n =,即可求出不等式的解集. 【详解】解:∵关于x 的不等式mx ﹣n >0的解集是x <13, ∴0m <,0n <,3m n =, ∴0m n +<,解不等式()m n x n m >-+, ∴n mx m n-<+, ∴3132n m n n x m n n n --<==-++; 故选:A. 【点睛】本题考查了解一元一次不等式,以及不等式的性质,解题的关键是熟练掌握解不等式的方法和步骤.3.不等式组2201x x +>⎧⎨-≥-⎩的解在数轴上表示为( )A .B .C .D .【答案】D 【解析】 【分析】解不等式组求得不等式组的解集,再把其表示在数轴上即可解答. 【详解】2201x x ①②+>⎧⎨-≥-⎩, 解不等式①得,x >-1; 解不等式②得,x ≤1; ∴不等式组的解集是﹣1<x ≤1. 不等式组的解集在数轴上表示为:【点睛】本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解决问题的关键.4.不等式组13x x -≤⎧⎨<⎩的解集在数轴上可以表示为( )A .B .C .D .【答案】B 【解析】 【分析】分别解不等式组中的每一个不等式,再求解集的公共部分. 【详解】 由-x≤1,得x≥-1,则不等式组的解集为-1≤x <3. 故选:B . 【点睛】此题考查在数轴上表示不等式的解集.解题关键是求不等式组的解集,判断数轴的表示方法,注意数轴的空心、实心的区别.5.若x y >,则下列各式正确的是( ) A .0x y -< B .11x y -<- C .34x y +>+ D .xm ym >【答案】B 【解析】 【分析】根据不等式的基本性质解答即可. 【详解】由x >y 可得:x-y >0,1-x <1-y ,x+3>y+3, 故选:B . 【点睛】此题考查不等式的性质,熟练运用不等式的性质是解题的关键.6.不等式组21512x x ①②->⎧⎪⎨+≥⎪⎩中,不等式①和②的解集在数轴上表示正确的是( )A .B .C .D .【答案】C【解析】分析:根据解一元一次不等式组的一般步骤解答,并把解集表示在数轴上,再作判断即可.详解:解不等式①,得:x1<;解不等式②,得:x3≥-;∴原不等式组的解集为:3x1-≤<,将解集表示在数轴上为:故选C.点睛:掌握“解一元一次不等式组的解法和将不等式的解集表示在数轴上的方法”是解答本题的关键.7.不等式组213,1510 520x xx x-<⎧⎪++⎨-≥⎪⎩的解集在数轴上表示为()A.B.C.D.【答案】D【解析】【分析】分别解不等式求出不等式组的解集,由此得到答案.【详解】解213x x-<得x>-1,解151520x x++-≥得3x≤,∴不等式组的解集是13x -<≤, 故选:D. 【点睛】此题考查解不等式组,在数轴上表示不等式组的解集,正确解每个不等式是解题的关键.8.不等式组222x x >⎧⎨-≥-⎩的解集在数轴上表示为( )A .B .C .D .【答案】C 【解析】 【分析】先解不等式组,然后根据不等式组的解集判断即可. 【详解】222x x ①②>⎧⎨-≥-⎩由①,得x >1, 由②,得x ≤2,∴不等式组的解集为1<x ≤2, 故选C . 【点睛】本题考查了不等式的解集,熟练掌握解不等式组是解题的关键.9.如果不等式(2)25a x a ->-的解集是4x <,则不等式251a y ->的解集是( ).A .52y <B .25y <C .52y >D .25y >【答案】B 【解析】 【分析】根据不等式的性质得出20a -<,2542a a -=-,解得32a =,则2a=3,再解不等式251a y ->即可.【详解】解:∵不等式(a-2)x >2a-5的解集是x <4, ∴20a -<, ∴2542a a -=-,解得32a =, ∴2a=3,∴不等式2a-5y >1整理为351y ->, 解得:25y <. 故选:B . 【点睛】本题考查了含字母系数的不等式的解法,有一定难度,注意不等式两边同乘以(或除以)同一个负数,不等号的方向改变.10.根据不等式的性质,下列变形正确的是( ) A .由a >b 得ac 2>bc 2B .由ac 2>bc 2得a >bC .由–12a >2得a<2 D .由2x+1>x 得x<–1【答案】B 【解析】 【分析】根据不等式的性质,逐一判定即可得出答案. 【详解】解:A 、a >b ,c=0时,ac 2=bc 2,故A 错误;B 、不等式两边同时乘以或除以同一个正数,不等号的方向不变,故B 正确;C 、不等式两边同时乘以或除以同一个负数,不等号的方向改变,而且式子右边没乘以﹣2,故C 错误;D 、不等式两边同时加或减同一个整式,不等号的方向不变,故D 错误. 故选:B. 【点睛】本题主要考查了不等式的性质,熟练应用不等式的性质进行推断是解题的关键.11.不等式组10235x x +≤⎧⎨+<⎩的解集在数轴上表示为( )A .B .C .D .【答案】C 【解析】 【分析】先分别解不等式,得到不等式组的解集,再在数轴上表示解集. 【详解】因为,不等式组10235x x +≤⎧⎨+<⎩的解集是:x≤-1,所以,不等式组的解集在数轴上表示为故选C 【点睛】本题考核知识点:解不等式组.解题关键点:解不等式.12.关于x 的不等式组1132x a x -⎧≤⎪⎨⎪-<⎩恰好只有四个整数解,则a 的取值范围是( )A .3a <B .23a <≤C .23a ≤<D .23a <<【答案】C 【解析】 【分析】此题可先根据一元一次不等式组解出x 的取值范围,再根据不等式组1132x a x -⎧≤⎪⎨⎪-<⎩恰好只有四个整数解,求出实数a 的取值范围. 【详解】解:由不等式113x -≤,可得:x ≤4, 由不等式a ﹣x <2,可得:x >a ﹣2,由以上可得不等式组的解集为:a ﹣2<x ≤4,因为不等式组1132x a x -⎧≤⎪⎨⎪-<⎩恰好只有四个整数解,所以可得:0≤a ﹣2<1, 解得:2≤a <3, 故选C . 【点睛】本题考查了不等式组的解法,先分别解两个不等式,求出它们的解集,再求两个不等式解集的公共部分.不等式组解集的确定方法是:同大取大,同小取小,大小小大取中间,大大小小无解.根据原不等式组恰有4个整数解列出关于a 的不等式是解答本题的关键.13.不等式组2131xx+≥-⎧⎨<⎩的解集在数轴上表示正确的是()A .B .C .D .【答案】D【解析】【分析】分别求出各不等式的解集,并在数轴上表示出来,找出符合条件的选项即可.【详解】解不等式2x+1≥﹣3得:x≥﹣2,不等式组的解集为﹣2≤x<1,不等式组的解集在数轴上表示如图:故选:D.【点睛】本题考查了在数轴上表示一元一次不等式组的解集及解一元一次不等式组,熟知“同大取较大,同小取较小,小大大小中间找,大大小小解不了”的原则是解答本题的关键.14.不等式组26020xx+>⎧⎨-≥⎩的解集在数轴上表示为()A .B .C .D .【答案】C【解析】【分析】分别求出不等式组中两不等式的解集,找出解集的公共部分确定出不等式组的解集,表示在数轴上即可.【详解】解:26020xx+>⎧⎨-≥⎩①②,由①得:3x>-;由②得:2x ≤,∴不等式组的解集为32x -<≤, 表示在数轴上,如图所示:故选:C . 【点睛】考核知识点:解不等式组.解不等式是关键.15.如果关于x 的分式方程有负数解,且关于y 的不等式组无解,则符合条件的所有整数a 的和为( )A .﹣2B .0C .1D .3【答案】B 【解析】 【分析】解关于y 的不等式组,结合解集无解,确定a 的范围,再由分式方程有负数解,且a 为整数,即可确定符合条件的所有整数a 的值,最后求所有符合条件的值之和即可. 【详解】由关于y 的不等式组,可整理得∵该不等式组解集无解, ∴2a +4≥﹣2 即a ≥﹣3 又∵得x =而关于x 的分式方程有负数解∴a ﹣4<0 ∴a <4于是﹣3≤a <4,且a 为整数 ∴a =﹣3、﹣2、﹣1、0、1、2、3 则符合条件的所有整数a 的和为0. 故选B .【点睛】本题考查的是解分式方程与解不等式组,求各种特殊解的前提都是先求出整个解集,再在解集中求特殊解,了解求特殊解的方法是解决本题的关键.16.如果,0a b c ><,那么下列不等式成立的是( ) A .a c b +> B .a c b c +>- C .11ac bc ->- D .()()11a c b c -<-【答案】D 【解析】 【分析】根据不等式的性质即可求出答案. 【详解】 解:∵0c <, ∴11c -<-, ∵a b >,∴()()11a c b c -<-, 故选:D . 【点睛】本题考查不等式的性质,解题的关键是熟练运用不等式的性质,本题属于中等题型.17.如果不等式组26x x x m -+<-⎧⎨>⎩的解集为x >4,m 的取值范围为( )A .m <4B .m ≥4C .m ≤4D .无法确定【答案】C 【解析】 【分析】表示出不等式组中第一个不等式的解集,根据不等式组的解集确定出m 的范围即可. 【详解】解不等式﹣x+2<x ﹣6得:x >4, 由不等式组26x x x m -+<-⎧⎨>⎩的解集为x >4,得到m≤4,故选:C . 【点睛】此题考查了解一元一次不等式组,熟练掌握不等式组的解法是解本题的关键.18.若m >n ,则下列不等式正确的是( ) A .m ﹣2<n ﹣2B .44m n> C .6m <6n D .﹣8m >﹣8n【答案】B【解析】【分析】将原不等式两边分别都减2、都除以4、都乘以6、都乘以﹣8,根据不等式得基本性质逐一判断即可得.【详解】A 、将m >n 两边都减2得:m ﹣2>n ﹣2,此选项错误;B 、将m >n 两边都除以4得:m n 44> ,此选项正确; C 、将m >n 两边都乘以6得:6m >6n ,此选项错误; D 、将m >n 两边都乘以﹣8,得:﹣8m <﹣8n ,此选项错误,故选B .【点睛】本题考查了不等式的性质,解题的关键是熟练掌握握不等式的基本性质,尤其是性质不等式的两边同时乘以(或除以)同一个负数,不等号的方向改变.19.一元一次不等式组2(3)40113x x x +-⎧⎪+⎨>-⎪⎩…的最大整数解是( ) A .1-B .0C .1D .2【答案】C【解析】【分析】解出两个不等式的解,再求出两个不等式的解集,即可求出最大整数解;【详解】 ()2340113x x x ⎧+-⎪⎨+>-⎪⎩①②… 由①得到:2x+6-4≥0,∴x ≥-1,由②得到:x+1>3x-3,∴x <2,∴-1≤x <2,∴最大整数解是1,故选C .【点睛】本题考查一元一次不等式组的整数解,解题的关键是熟练掌握解不等式组的方法,属于中考常考题型.20.a 的一半与b 的差是负数,用不等式表示为( )A .102a b -< B .102a b -≤ C .()102a b -< D .102a b -< 【答案】D【解析】【分析】列代数式表示a 的一半与b 的差,是负数即小于0. 【详解】 解:根据题意得102a b -< 故选D .【点睛】 本题考查了列不等式,首先要列出表示题中数量关系的代数式,再由不等关系列不等式.。
中考数学专题练习不等式的解及解集(含解析)
中考数学专题练习-不等式的解及解集(含解析)一、单选题1.某日我市最高气温是26℃,最低气温是12℃,则当天气温t(℃)的变化范围是()A. t>26B. t≥12C. 12<t<26D. 12≤t≤262.下列说法正确的是( )A. x=1是不等式-2x<1的解集B. x=3不是不等式-x<1的解集C. x>-2是不等式-2x<1的解集D. 不等式-x<1的解集是x<-13.不等式组的解集是x>a,则a的取值范围是()A. a<﹣2B. a=﹣2C. a>﹣2D. a≥﹣24.从下列不等式中选择一个与x+1≥2组成不等式组,如果要使该不等式组的解集为x≥1,那么可以选择的不等式可以是()A. x>﹣1B. x>2C. x<﹣1D. x<25.若关于x的一元一次不等式组无解,则a的取值范围是()A. a≥1B. a>1C. a≤﹣1D. a<﹣16.下列式子中,是不等式的有()①2x=7;②3x+4y;③﹣3<2;④2a﹣3≥0;⑤x>1;⑥a﹣b>1.A. 5个B. 4个C. 3个D. 1个7.若不等式组有解,则a的取值范围是()A. a≤3B. a<3C. a<2D. a≤28.某种品牌奶粉合上标明“蛋白质≥20%”,它所表达的意思是()A. 蛋白质的含量是20%B. 蛋白质的含量不能是20%C. 蛋白质的含量高于20%D. 蛋白质的含量不低于20%9.对于不等式x﹣3<0,下列说法中不正确的是()A.x=2是它的一个解B.x=2不是它的解C.有无数个解D.x<3是它的解集10.若不等式组无解,则a的取值范围是( )A. a≥﹣3B. a>﹣3C. a≤﹣3D. a<﹣311.某市最高气温是33℃,最低气温是24℃,则该市气温t(℃)的变化范围是()A. t>33B. t≤24C. 24<t<33D. 24≤t≤3312.已知不等式组的解集是x>2,则a的取值范围是()A. a≤2B. a<2C. a=2D. a>213.若a<0,则不等式组的解集是()A.x>﹣B.x>﹣C.x>D.x>二、填空题14.若不等式的解集为x>3,则a的取值范围是________.15.写出一个解为x≤1的不等式________16.已知不等式2x+★>2的解集是x>﹣4,则“★”表示的数是________17.某药品说明书上标明药品保存的温度是(10±4)℃,设该药品合适的保存温度为t,则温度t的范围是________18.若不等式组的解集是﹣3<x<2,则a+b=________19.已知不等式组有解,则实数m的取值范围是________20.若关于x的不等式组的解集是x>m,则m的取值范围是________三、解答题21.在数轴上有A,B两点,其中点A所对应的数是a,点B所对应的数是1.已知A,B两点的距离小于3,请你利用数轴.(1)写出a所满足的不等式;(2)数﹣3,0,4所对应的点到点B的距离小于3吗?22.在数轴上画出下列解集:x≥1且x≠2.23.已知方程组的解满足不等式4x﹣5y<9.求a的取值范围.四、综合题24.已知关于x的不等式(2a﹣b)x+a﹣5b>0的解集为x<,(1)求的值(2)求关于x的不等式ax>b的解集.25.关于x的两个不等式① <1与②1﹣3x>0(1)若两个不等式的解集相同,求a的值;(2)若不等式①的解都是②的解,求a的取值范围.答案解析部分一、单选题1.某日我市最高气温是26℃,最低气温是12℃,则当天气温t(℃)的变化范围是()A. t>26B. t≥12C. 12<t<26D. 12≤t≤26【答案】D【考点】不等式的解集【解析】【解答】解:当天气温t(℃)的变化范围是12≤t≤26,故选D.【分析】最高气温与最低气温之间的气温即为当天气温t(℃)的变化范围.2.下列说法正确的是( )A. x=1是不等式-2x<1的解集B. x=3不是不等式-x<1的解集C. x>-2是不等式-2x<1的解集D. 不等式-x<1的解集是x<-1【答案】A【考点】不等式的解集【解析】【分析】根据不等式的解集的定义及不等式的基本性质依次分析各项即可。
不等式组的解集与解法——辅导资料(3)
一、一元一次不等式巩固练习1.若20x -<,x________2.2.不等式1330x ->的正整数解是_____ _____.3.代数式635x -的值不大于零,则x______ ____.4.不等式3(x +2)≥4+2x 的负整数解为____ ____.5.不等式2375x >+的正整数解的个数是( ). (A) 1个 (B)无数个 (C)3个 (D)4个.6.满足不等式32x +≥312-x 的所有整数的积等于___ _____.7.关于x 的方程2x =1-3a 的解为负数,则a 的取值范围是__ ______. 8.x 时,代数式152x -的值不小于代数式323x -的值.9.解下列不等式⑴3(x -2)≤x +4 (2)()11132x x --≥ (3) 21232x x x +-->+;二、教学新课:(一)确定简单不等式(组)的解集,把解集在数轴上表示出来1.(2007福建福州)解集在数轴上表示为如图1所示的不等式组是( ) A .32x x >-⎧⎨⎩≥B .32x x <-⎧⎨⎩≤C .32x x <-⎧⎨⎩≥D .32x x >-⎧⎨⎩≤2.(2007广东河池)若不等式组的解集在数轴上表示如图,则这个不等式组是( )A.21x x >⎧⎨-⎩≤ B.21x x <⎧⎨>-⎩ C.21x x <⎧⎨-⎩≥ D.21x x <⎧⎨-⎩≤3.(2007湖北武汉课改,3分)如图,在数轴上表示某不等式组中的两个不等式的解集,则该不等式组的解集为( ) A.4x < B.2x < C.24x << D.2x >4.(2007四川德阳)把一个不等式组的解集表示在数轴上,如图所示,则该不等式组的解集为( ) A.102x <≤B.12x ≤C.102x <≤ D.0x >5.(2007湖南岳阳课改,3分)在图1中不等式12x -<≤在数轴上表示正确的是( )A. B. C. D.6.(2007湖南张家界)数轴上阴影部分表示的是某不等式组的解集,它的具体范围是( ) A .2x >- B .21x -<≤ C .21x -≤≤ D .1x ≤(二)不等式组的解法 例1.解不等式组:方法:1.分别解出每一个不等式;2.合并解集:①借助数轴合并;②记住四种解集情况,并据此快速求出解集(1)⎪⎩⎪⎨⎧≥-->+0521372x x x (2)()⎪⎩⎪⎨⎧-<-->+43141321x x x x巩固练习:(1)⎩⎨⎧+≤-->+-94754)1(2x x x ⑵⎪⎩⎪⎨⎧-<-+≥+23423521x x x x二、解集的特性:(一)解集的同一性例2. 若不等式组⎩⎨⎧><a x x 2的解集为a <x <2,则a 的取值范围为 .(二)解集的界限性例3.如果关于x 的不等式-k -x +6>0的正整数解为1,2,3,正整数k 应取怎样的值?巩固练习:一、填空:1.(2006 陕西非课改)不等式组210x x >-⎧⎨-⎩≤的解集为 .2.(2006天津非课改)不等式组211841x x x x ->+⎧⎨+<-⎩,的解集是 .3.如果三角形的三边长分别是3 cm 、(1-2a ) cm 、8 cm ,那么a 的取值范围是________.4.(2006 贺州课改)已知不等式组3210x x a +⎧⎨-<⎩,≥无解,则a 的取值范围是 .5.不等式组⎩⎨⎧-<+<212m x m x 的解集是x <m -2,则m 的取值应为________.6.如果关于x 的不等式组⎩⎨⎧-<+>232a x a x 无解,则常数a 的取值范围是________.7.(2006 潍坊课改)不等式组2425x a x b +>⎧⎨-<⎩的解是02x <<,那么a b +的值等于 .二、选择:1.下列不等式组中,解集是2<x <3的不等式组是( )A.⎩⎨⎧>>23x xB.⎩⎨⎧<>23x xC.⎩⎨⎧><23x xD.⎩⎨⎧<<23x x2.不等式组⎩⎨⎧+≤-+<24722x x x x 的解集在数轴上表示正确的是( )3.(2006深圳课改)下列不等式组的解集,在数轴上表示为如图所示的是( ) A.1020x x ->⎧⎨+⎩≤B.1020x x -⎧⎨+<⎩≤C.1020x x +⎧⎨-<⎩≥D.1020x x +>⎧⎨-⎩≤4.若a >b ,则不等式⎩⎨⎧≤<ax a x 的解集为( )A.x ≤bB.x <aC.b ≤x <aD.无解5.(2006滨州非课改)不等式组2132(21)3(1)6x x x --<⎧⎨+--⎩≤的解集为( )0 21-1A.2x <- B.21x -<≤ C.227x -<<D.2x <-或1x ≥6.如果不等式组⎩⎨⎧<+>-00b x a x 的解集是3<x <5,那么a 、b 的值分别为( )A.a =3,b =5B.a =-3,b =-5C.a =-3,b =5D.a =3,b =-57.不等式组⎩⎨⎧>-<+mx x x 148的解集是x >3,则m 的取值范围是( )A.m =3B.m ≥3C.m ≤3D.m <3三、解不等式组 ⑴315260.x x -<⎧⎨+>⎩, ⑵212(1)1x x x -⎧⎨+-⎩≤≥,.⑶53(4)223 1.x x >-+⎧⎨-⎩,≥⑷()40321x x x ->⎧⎪⎨>-⎪⎩ ① ② ⑸523(1)1317.22x x x x ->+⎧⎪⎨--⎪⎩, ①≤②四、解答题:1.已知方程3(x -2a )+2=x -a +1的解适合不等式2(x -5)≥8a ,求a 的取值范围。
中考《不等式与不等式组》经典例题及解析
不等式与不等式组一、不等式的概念、性质及解集表示1.不等式:一般地,用符号“<”(或“≤”)、“>”(或“≥”)连接的式子叫做不等式.能使不等式成立的未知数的值,叫做不等式的解.2.不等式的基本性质注意:不等式的性质是解不等式的重要依据,在解不等式时,应注意:在不等式的两边同时乘以(或除以)一个负数时,不等号的方向一定要改变.3.不等式的解集及表示方法(1)不等式的解集:一般地,一个含有未知数的不等式有无数个解,其解是一个范围,这个范围就是不等式的解集.(2)不等式的解集的表示方法:①用不等式表示;②用数轴表示:不等式的解集可以在数轴上直观地表示出来,形象地表明不等式有无限个解.二、一元一次不等式及其解法1.一元一次不等式:不等式的左右两边都是整式,只含有一个未知数,并且未知数的最高次数是1,这样的不等式叫一元一次不等式.2.解一元一次不等式的一般步骤:①去分母;②去括号;③移项;④合并同类项;⑤系数化为1(注意不等号方向是否改变).三、一元一次不等式组及其解法1.一元一次不等式组:一般地,关于同一未知数的几个一元一次不等式合在一起,组成一元一次不等式组.2.一元一次不等式组的解集:一元一次不等式组中各个不等式的解集的公共部分,叫做这个一元一次不等式组的解集,求不等式组解集的过程,叫做解不等式组.3.一元一次不等式组的解法:先分别求出每个不等式的解集,再利用数轴求出这些一元一次不等式的的解集的公共部分即可,如果没有公共部分,则该不等式组无解.<,a,b是常数,关于x的不等式组的解集的四种情况如下表所示(等号4.几种常见的不等式组的解集:设a b取不到时在数轴上用空心圆点表示):不等式组 (其中a b <)数轴表示解集口诀x ax b ≥⎧⎨≥⎩ x b ≥同大取大x ax b ≤⎧⎨≤⎩ x a ≤同小取小x ax b ≥⎧⎨≤⎩ a x b ≤≤大小、小大中间找x ax b≤⎧⎨≥⎩ 无解 大大、小小取不了考情总结:一元一次不等式(组)的解法及其解集表示的考查形式如下: (1)一元一次不等式(组)的解法及其解集在数轴上的表示; (2)利用一次函数图象解一元一次不等式; (3)求一元一次不等式组的最小整数解; (4)求一元一次不等式组的所有整数解的和. 四、列不等式(组)解决实际问题 列不等式(组)解应用题的基本步骤如下:①审题;②设未知数;③列不等式(组);④解不等式(组);⑤检验并写出答案.考情总结:列不等式(组)解决实际问题常与一元一次方程、一次函数等综合考查,涉及的题型常与方案设计型问题相联系,如最大利润、最优方案等.列不等式时,要抓住关键词,如不大于、不超过、至多用“≤”连接,不少于、不低于、至少用“≥”连接.经典例题 不等式的定义及性质1.语句“x 的18与x 的和不超过5”可以表示为( ) A .58x x +≤ B .58x x +≥ C .855x ≤+ D .58xx += 【答案】A【分析】x 的18即18x ,不超过5是小于或等于5的数,由此列出式子即可. 【解析】 “x 的18与x 的和不超过5”用不等式表示为18x +x ≤5.故选A .【点睛】本题考查了由实际问题抽象出一元一次不等式,读懂题意,抓住关键词语,弄清运算的先后顺序和不等关系,才能把文字语言的不等关系转化为用数学符号表示的不等式. 2.若a >b ,则下列等式一定成立的是( ) A .a >b +2B .a +1>b +1C .﹣a >﹣bD .|a |>|b |【答案】B【分析】利用不等式的基本性质判断即可.【解析】A 、由a >b 不一定能得出a >b +2,故本选项不合题意; B 、若a >b ,则a +1>b +1,故本选项符合题意; C 、若a >b ,则﹣a <﹣b ,故本选项不合题意;D 、由a >b 不一定能得出|a |>|b |,故本选项不合题意.故选:B .【点睛】本题考查了不等式的性质,熟练掌握不等式的基本性质是解本题的关键.1.若a >b ,则( ) A .a ﹣1≥b B .b +1≥aC .a +1>b ﹣1D .a ﹣1>b +1【答案】C【分析】举出反例即可判断A 、B 、D ,根据不等式的传递性即可判断C . 【解析】解:A 、a =0.5,b =0.4,a >b ,但是a ﹣1<b ,不符合题意; B 、a =3,b =1,a >b ,但是b +1<a ,不符合题意;C 、∵a >b ,∴a +1>b +1,∵b +1>b ﹣1,∴a +1>b ﹣1,符合题意;D 、a =0.5,b =0.4,a >b ,但是a ﹣1<b +1,不符合题意.故选:C . 【点睛】此题考查不等式的性质,对性质的理解是关键.2.用一组a ,b ,c 的值说明命题“若a b <,则ac bc <”是错误的,这组值可以是a =_____,b =______,c =_______.【答案】2 3 -1分析:根据不等式的性质3,举出例子即可.【解析】根据不等式的性质3:不等式两边乘(或除以)同一个负数,不等号的方向改变. 满足a b <,0c ≤即可,例如:2,3,1-.故答案为:2,3,1-. 点睛:考查不等式的基本性质,熟练掌握不等式的基本性质是解题的关键.经典例题 一元一次不等式的解集及数轴表示1.解不等式31212x x -->. 解:去分母,得2(21)31x x ->-. ……(1)请完成上述解不等式的余下步骤:(2)解题回顾:本题“去分母”这一步的变形依据是 (填“A ”或“B ”) A .不等式两边都乘(或除以)同一个正数,不等号的方向不变;B .不等式两边都乘(或除以)同一个负数【答案】(1)余下步骤见解析;(2)A .【分析】(1)按照去括号、移项、合并同类【解析】(1)31212x x -->去分母,得移项,得4312x x ->-+ 合并同类项(2)不等式的性质:不等式两边都乘(31212x x -->两边同乘以正数2,不等号【点睛】本题考查了解一元一次不等式、2.不等式3(1﹣x )>2﹣4x 的解在数轴上A . C .【答案】A【分析】根据解一元一次不等式基本步骤【解析】解:去括号,得:3﹣3x >2﹣【点睛】本题考查了解一元一次不等式及用“<”向左,带等号用实心,不带等号用空1.不等式5131x x +>-的解集是______【答案】1x >-【分析】根据不等式的性质移项,合并同类【解析】解:5131x x +>-n 5x x 【点睛】本题主要考查了解一元一次不等式2.不等式417x x +>+的解集在数轴上表A .C .【答案】A【分析】先将不等式移项、合并同类项、不包括端点用空心”的原则即可判断答案个负数,不等号的方向改变. . 并同类项的步骤进行补充即可;(2)根据不等式的性得2(21)31x x ->-去括号,得4231x x ->- 类项,得1x >;(或除以)同一个正数,不等号的方向不变不等号的方向不变,即可得到2(21)31x x ->-故选、不等式的性质,熟练掌握一元一次不等式的解法数轴上表示正确的是( ) B . D .步骤:去括号、移项、合并同类项可得不等式的解集4x ,移项,得:﹣3x +4x >2﹣3,合并,得:x >﹣式及用数轴表示不等式的解集,正确解不等式是解题号用空心._____. 并同类项,系数化为一即可.311->-- 22x >- 1x >- 故答案为1x >- 不等式,熟练运用不等式的性质运算是解题的关键轴上表示正确的是( )B .D .、系数化为1求得其解集,再根据“大于向右,小于答案.式的性质即可得. 故选:A . 的解法是解题关键. 的解集,继而可得答案. 1,故选:A .是解题关键,注意“>”向右,关键.小于向左,包括端点用实心,【解析】解:解不等式:41x x +>系数化为1得:2x >,数轴上表示如图所【点睛】本题主要考查解一元一次不等式及点用实心,不包括端点用空心”的原则是解经典例题1.解不等式组:212541x x x x -+⎧⎨+<-⎩….【答案】x ≥3【分析】根据解不等式组的解法步骤解出即【解析】212541x x x x -+⎧⎨+<-⎩①②…由①可得x 【点睛】本题考查解不等式组,关键在于熟2.不等式组()12256x x +≥⎧⎨-<-⎩的解集在数轴A . B .【答案】D【分析】直接求解一元一次不等式组即可排【解析】解:不等式组()12256x x +≥⎧⎪⎨-<⎪⎩①∴不等式组的解集为1≤x <2.数轴上表示【点睛】本题主要考查一元一次不等式组关键.1.不等式组13293x x -<-⎧⎨+≥⎩的解集是(A .33x -≤< B .2x >-【答案】C【分析】分别求出每个不等式的解集,再求【解析】解13293x x -<-⎧⎨+≥⎩①②由①得, x7+,移项得:471x x ->- 合并同类项得:3x 如图所示,故选等式及再数轴上表示不等式解集的能力,掌握“大于则是解题的关键.一元一次不等式组的解集及数轴表示解出即可.≥3,由②可得x>2,∴不等式的解集为:x ≥3.在于熟练掌握解法步骤.在数轴上表示为( )C .D .即可排除选项.-②,由①得:x ≥1,由②得:x <2,上表示如图:,故选:D .式组,熟练掌握求解不等式组的方法及在数轴上表示 )C .32x -≤<-D .3x ≤-再求其公共部分即可. <−2;由②得,x ≥−3,6> 故选:A .大于向右,小于向左,包括端表示上表示出不等式组解集是解题的所以不等式组的解集为32x -≤<-.故选【点睛】本题的实质是求不等式的公共解大大小小解不了.2.不等式组1031212x x x +>⎧⎪⎨+-⎪⎩…,的解集在以A .C .【答案】B【分析】先求出每个不等式的解集,再求出【解析】解:10(1)3121(2)2x x x +>⎧⎪⎨+-⎪⎩…,∵解不等式①得:x >﹣1,解不等式②得在数轴上表示为:【点睛】本题考查了解一元一次不等式组和经典例题1.解不等式组4(1)713843x x x x +≤+⎧⎪-⎨-<⎪⎩,并求【答案】−3⩽x<2,-5【分析】先求出两个不等式的解集,再求其【解析】解不等式4(1)713x x ++…,得所以,不等式组的解集为32x -<….该不所以,该不等式组的所有整数解的和为【点睛】本题考查了解一元一次不等式组然后根据限制条件求出不等式的整数解.2.不等式12x -≤的非负整数解有( A .1个B .2个故选:C .共解,解答时要遵循以下原则:同大取较大,同小取集在以下数轴表示中正确的是( )B .D .再求出不等式组的解集,最后在数轴上表示出来即可得:x ≤3,∴不等式组的解集是﹣1<x ≤3, ,故选:B .式组和在数轴上表示不等式组的解集,能求出不等式组 一元一次不等式(组)的整数解问题并求它的所有整数解的和. 再求其公共部分,然后找出整数解,即可求解. 得3x -…; 解不等式843x x --<,得2x <该不等式组的所有整数解为-3,-2,-1,0,1. (3)(2)(1)015-+-+-++=-.式组、一元一次不等式组的整数解,解决的关键是正确. ) C .3个D .4个同小取较小,小大大小中间找,来即可.等式组的解集是解此题的关键. 解问题. 是正确解出每个不等式的解集,【答案】D【分析】直接解不等式,进而利用非负整数的定义分析得出答案.【解析】解:12x -≤,解得:3x ≤,则不等式12x -≤的非负整数解有:0,1,2,3共4个.故选D . 【点睛】此题主要考查了一元一次不等式的整数解,正确把握非负整数的定义是解题关键.1.不等式组1051x x ->⎧⎨-≥⎩的整数解共有( )A .1个B .2个C .3个D .4个【答案】C【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集,从而得出答案.【解析】解:解不等式x ﹣1>0,得:x >1,解不等式5﹣x ≥1,得:x ≤4, 则不等式组的解集为1<x ≤4,所以不等式组的整数解有2、3、4这3个,故选:C .【点睛】此题考查求不等式组的整数解,正确求出每个不等式的解集得到不等式组的解集是解题的关键.2.不等式组523(1)131722x x x x +>-⎧⎪⎨-≤-⎪⎩的所有非负整数解的和是( )A .10B .7C .6D .0【答案】A【分析】分别求出每一个不等式的解集,即可确定不等式组的解集,继而可得知不等式组的非负整数解.【解析】523(1)131722x x x x +>-⎧⎪⎨-≤-⎪⎩①②,解不等式①得: 2.5x >-,解不等式②得:4x ≤, ∴不等式组的解集为: 2.54x -<≤,∴不等式组的所有非负整数解是:0,1,2,3,4, ∴不等式组的所有非负整数解的和是0123410++++=,故选A .【点睛】本题主要考查解一元一次不等式组的基本技能,准确求出每个不等式的解集是解题的根本,确定不等式组得解集及其非负整数解是关键.经典例题 求参数的值或取值范围1.若关于x 的一元一次不等式组1020x x a ->⎧⎨-<⎩有2个整数解,则a 的取值范围是______.【答案】68a <≤【分析】先求出每个不等式的解集,根据找不等式组解集的规律找出不等式组的解集,根据已知得出答案即可.【解析】解:1020x x a ->⎧⎨-<⎩①②解不等式①得:x>1,解不等式②得:x<2a ,∴不等式组的解集是1<x <2a,∵x 的一元一次不等式组有2个整数解,∴x 只能取2和3,∴342a<≤,解得:68a <≤故答案为:68a <≤. 【点睛】本题考查了解一元一次不等式,解一元一次不等式组的应用,解此题的关键是能得出关于a 的取值范围.2.若关于x 的不等式组2242332x x x x a--⎧>⎪⎨⎪->--⎩的解集是2x <,则a 的取值范围是( )A .2a ≥B .2a <-C .2a >D .2a ≤【答案】A【分析】分别求出每个不等式的解集,根据不等式组的解集为2x <可得关于a 的不等式,解之可得. 【解析】解:解不等式22x ->243x -,得:2x <,解不等式-3x >-2x-a ,得:x <a ,∵不等式组的解集为2x <,∴2a ≥,故选:A .【点睛】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.3.若关于x 的不等式组35128x x a -⎧⎨-<⎩…有且只有3个整数解,则a 的取值范围是( )A .02a ≤≤B .02a ≤<C .02a <≤D .02a <<【答案】C【分析】先求出不等式组的解集(含有字母a ),利用不等式组有三个整数解,逆推出a 的取值范围即可.【解析】解:解不等式351x -…得:2x ≥,解不等式28x a -<得:82ax +<, ∴不等式组的解集为:822ax +≤<, ∵不等式组35128x x a -⎧⎨-<⎩…有三个整数解,∴三个整数解为:2,3,4,∴8452a+<≤,解得:02a <≤,故选:C . 【点睛】本题考查了解一元一次不等式组,一元一次不等式组的整数解的应用,解此题的关键就是根据整数解的个数得出关于a 的不等式组.4.若数a 使关于x 的分式方程2311x a x x ++=--的解为非负数,且使关于y 的不等式组()3113431220y y y a -+⎧-≥-⎪⎨⎪-<⎩的解集为0y ≤,则符合条件的所有整数a 的积为_____________ 【答案】40【分析】根据分式方程的解为正数即可得出a ≤5且a≠3,根据不等式组的解集为0y ≤,即可得出a>0,找出0<a ≤5且a≠3中所有的整数,将其相乘即可得出结论. 【解析】解:分式方程2311x a x x ++=--的解为x=52a-且x≠1, ∵分式方程2311x a x x ++=--的解为非负数,∴502a -≥且52a -≠1.∴a ≤5且a≠3. ()3113431220y y y a -+⎧-≥-⎪⎨⎪-<⎩①②解不等式①,得0y ≤.解不等式②,得y<a. ∵关于y 的不等式组()3113431220y y y a -+⎧-≥-⎪⎨⎪-<⎩的解集为0y ≤,∴a>0.∴0<a ≤5且a≠3. 又a 为整数,则a 的值为1,2,4,5.符合条件的所有整数a 的积为124540⨯⨯⨯=.故答案为:40.【点睛】本题考查了分式方程的解以及解一元一次不等式,根据分式方程的解为正数结合不等式组的解集为0y ≤,找出a 的取值范围是解题的关键. 5.若关于x 的不等式组26040x m x m -+⎧⎨-⎩<>有解,则在其解集中,整数的个数不可能是( )A .1B .2C .3D .4【答案】C【分析】先分别求出每一个不等式的解集,再根据不等式组有解,求出m <4,然后分别取m=2,0,-1,得出整数解的个数,即可求解.【解析】解不等式2x ﹣6+m <0,得:x 62m -<,解不等式4x ﹣m >0,得:x 4m>, ∵不等式组有解,∴642m m-<,解得m <4, 如果m =2,则不等式组的解集为12<x <2,整数解为x =1,有1个;如果m =0,则不等式组的解集为0<x <3,整数解为x =1,2,有2个; 如果m =﹣1,则不等式组的解集为14-<x 72<,整数解为x =0,1,2,3,有4个;故选C . 【点睛】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.6.若关于x 的不等式组12420x a x ⎧->⎪⎨⎪-≥⎩无解,则a 的取值范围为________.【答案】1a ≥【分析】先解不等式组中的两个不等式,【解析】解:对不等式组1242x a x ⎧->⎪⎨⎪-≥⎩∵原不等式组无解,∴22a ≥,解得:【点睛】本题考查了一元一次不等式组的解法是关键.1.若不等式组2120x xx m ->-⎧⎨+≤⎩有解,则A .1m >- B .1m ≥-【答案】D【分析】本题考查不等式解集的表示方法再确定n 的范围.【解析】由2120x xx m ->-⎧⎨+≤⎩得1,x m >因为不等式组2120x xx m ->-⎧⎨+≤⎩有解,则【点睛】本题考查不等式组解集的表示方法2.关于的不等式组无解A .B .【答案】A【解析】解不等式x ﹣m <0,得x <m ,由不等式组无解,可得m≤﹣1,故选A.考点:解一元一次不等式组.经典例题1.阅读下面的材料:对于实数,我们,如:(2)当时,a b min{,}a b b =min{4,2}mi -=2322min ,233x x x -++⎧⎫=⎨⎬⎩⎭,然后根据不等式组无解可得关于a 的不等式,00①②,解不等式①,得2x a >,解不等式②,得x :1a ≥.故答案为:1a ≥.组的解法,属于常考题型,正确理解题意、熟练掌握则m 的取值范围是( )C .1m ≤-D .1m <-方法,根据比大的小比小的大取中间,因为有解,也就x ≤-m 的取值范围是-m>1,即m<-1故选:D示方法,也可以画数轴出来再求解,比较简单. 无解,那么的取值范围为( )C .D .,解不等式3x ﹣1>2(x ﹣1),得x >﹣1, A. 例题 一元一次不等式(组)的应用我们定义符号的意义为:当时,.根据上面的材料回答下列问题:(时,求x的取值范围. min{,}a b a b <2,min{5,5}5-=,解不等式即得答案.2≤,练掌握解一元一次不等式组的方也就是有中间(公共部分),,;当时,:1)______;min{,}a b a =a b …min{1,3}-=【答案】(1)﹣1 ;(2)x≥【分析】(1)比较大小,即得出答案;(2)根据题意判断出解不等式即可判断x 的取值范围. 【解析】解:(1)由题意得﹣1故答案为:﹣1;(2)由题意得:3(2x -3)≥2(x+2) 6x -9≥2x+4 4x≥13 x ≥ ∴x 的取值范围为x≥.【点睛】本题考查的是一元一次不等式的应用,根据题意理解新定义的计算公式是解题的关键.2.某品牌衬衫进价为120元,标价为240元,商家规定可以打折销售,但其利润率不能低于20%,则这种品牌衬衫最多可以打几折?( ) A .8 B .6C .7D .9【答案】B【分析】根据售价-进价=利润,利润=进价⨯利润率可得不等式,解之即可. 【解析】设可以打x 折出售此商品, 由题意得:24012012020%10x⨯-≥⨯,解得x ≥6,故选:B 【点睛】此题考查了销售问题,注意销售问题中量之间的数量关系是列不等式的关键.3.某农谷生态园响应国家发展有机农业政策,大力种植有机蔬菜,某超市看好甲、乙两种有机蔬菜的市场价值,经调查甲种蔬菜进价每千克m 元,售价每千克16元;乙种蔬菜进价每千克n 元,售价每千克18元.(1)该超市购进甲种蔬菜10千克和乙种蔬菜5千克需要170元;购进甲种蔬菜6千克和乙种蔬菜10千克需要200元.求m ,n 的值.(2)该超市决定每天购进甲、乙两种蔬菜共100千克,且投入资金不少于1160元又不多于1168元,设购买甲种蔬菜x 千克,求有哪几种购买方案.(3)在(2)的条件下,超市在获得的利润取得最大值时,决定售出的甲种蔬菜每千克捐出2a 元,乙种蔬菜每千克捐出a 元给当地福利院,若要保证捐款后的利润率不低于20%,求a 的最大值.【答案】(1)m 的值为10,n 的值为14;(2)有3种购买方案,方案1:购买甲种蔬菜58千克,乙种蔬菜42千克;方案2:购买甲种蔬菜59千克,乙种蔬菜41千克;方案3:购买甲种蔬菜60千克,乙种蔬菜40千克;(3)a 的最大值为1.8.【分析】(1)根据“购进甲种蔬菜15千克和乙种蔬菜20千克需要430元;购进甲种蔬菜10千克和乙种蔬菜8千克需要212元”,即可得出关于m ,n 的二元一次方程组,解之即可得出结论;(2)根据总价=单价×数量结合投入资金不少于1160元又不多于1168元,即可得出关于x 的一元一次不等式组,解之即可得出x 的取值范围,再结合x 为正整数即可得出各购买方案;(3)求出(2)中各购买方案的总利润,比较后可得出获得最大利润时售出甲、乙两种蔬菜的重量,再根据总利润=每千克利润×销售数量结合捐款后的利润率不低于20%,即可得出关于a 的一元一次不等式,解之取其中的最大值即可得出结论.1342x 3x+223-min{1,3}-=2x 3x+223-≥134134【解析】(1)依题意,得:105170610200m n m n +=⎧⎨+=⎩,解得:1014m n =⎧⎨=⎩.答:m 的值为10,n 的值为14. (2)设购买甲种蔬菜x 千克,则购买乙种蔬菜(100)x -千克,依题意,得:1014(100)11601014(100)1168x x x x +-≥⎧⎨+-≤⎩,解得:5860x ≤≤.∵x 为正整数,∴58,59,60x =,∴有3种购买方案, 方案1:购买甲种蔬菜58千克,乙种蔬菜42千克; 方案2:购买甲种蔬菜59千克,乙种蔬菜41千克; 方案3:购买甲种蔬菜60千克,乙种蔬菜40千克.(3)设超市获得的利润为y 元,则(1610)(1814)(100)2400y x x x =-+--=+. ∵20k =>,∴y 随x 的增大而增大,∴当60x =时,y 取得最大值,最大值为260400520⨯+=.依题意,得:(16102)60(1814)40(10601440)20%a a --⨯+--⨯≥⨯+⨯⨯, 解得: 1.8a ≤.答:a 的最大值为1.8.【点睛】本题考查了二元一次方程组的应用、一元一次不等式组的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)根据各数量之间的关系,正确列出一元一次不等式组;(3)根据各数量之间的关系,正确列出一元一次不等式.1.某单位为响应政府号召,需要购买分类垃圾桶6个,市场上有A 型和B 型两种分类垃圾桶,A 型分类垃圾桶500元/个,B 型分类垃圾桶550元/个,总费用不超过3100元,则不同的购买方式有( ) A .2种 B .3种C .4种D .5种【答案】B【分析】设购买A 型分类垃圾桶x 个,则购买B 型垃圾桶(6-x ),然后根据题意列出不等式组,确定不等式组整数解的个数即可.【解析】解:设购买A 型分类垃圾桶x 个,则购买B 型垃圾桶(6-x )个 由题意得:500550631006x x x +-≤⎧⎨≤⎩(),解得4≤x ≤6则x 可取4、5、6,即有三种不同的购买方式.故答案为B .【点睛】本题考查了一元一次方程组的应用,弄清题意、列出不等式组并确定不等式组的整数解是解答本题的关键. 2.某水果店销售苹果和梨,购买1千克苹果和3千克梨共需26元,购买2千克苹果和1千克梨共需22元.(1)求每千克苹果和每千克梨的售价;(2)如果购买苹果和梨共15千克,且总价不超过100元,那么最多购买多少千克苹果?【答案】(1)每千克苹果售价8元,每千克梨6千克;(2)最多购买5千克苹果【分析】(1)设每千克苹果售价x 元,每千克梨y 千克,由题意列出x 、y 的方程组,解之即可; (2)设购买苹果a 千克,则购买梨(15-a )千克,由题意列出a 的不等式,解之即可解答. 【解析】(1)设每千克苹果售价x 元,每千克梨y 千克,由题意, 得:326222x y x y +=⎧⎨+=⎩,解得:86x y =⎧⎨=⎩,答:每千克苹果售价8元,每千克梨6千克,(2)设购买苹果a 千克,则购买梨(15-a )千克,由题意,得:8a+6(15-a)≤100,解得:a ≤5,∴a 最大值为5,答:最多购买5千克苹果.【点睛】本题考查了二元一次方程组的应用、一元一次不等式的应用,解答的关键是认真审题,分析相关信息,正确列出方程组和不等式.3.小云想用7天的时间背诵若干首诗词,背诵计划如下: ①将诗词分成4组,第i 组有首,i =1,2,3,4;②对于第i 组诗词,第i 天背诵第一遍,第()天背诵第二遍,第()天背诵第三遍,三遍后完成背诵,其它天无需背诵,1,2,3,4;—— 第1天第2天第3天 第4天第5天 第6天 第7天 第1组第2组第3组第4组③每天最多背诵14首,最少背诵4首.解答下列问题:(1)填入补全上表;(2)若,,,则的所有可能取值为______;(3)7天后,小云背诵的诗词最多为______首. 【答案】(1)如表所示,见解析;(2)4,5,6;(3)23.【分析】(1)根据表中的规律即可得到结论;(2)根据题意列不等式即可得到结论;(3)根据题意列不等式,即可得到结论. 【解析】解:(1)—— 第1天 第2天 第3天 第4天 第5天 第6天 第7天 第1组x 1x 1x 1i x 1i +3i +i =1x 1x 1x 2x 2x 2x 4x 4x 4x 3x 14x =23x =34x =4x第2组 x 2 x 2 x 2 第3组 x 3 x 3 x 3 第4组x 4x 4x 4(2)∵每天最多背诵14首,最少背诵4首,∴x 1≥4,x 3≥4,x 4≥4,∴x 1+x 3≥8①,∵x 1+x 3+x 4≤14②,把①代入②得,x 4≤6,∴4≤x 4≤6,∴x 4的所有可能取值为4,5,6,故答案为:4,5,6; (3)∵每天最多背诵14首,最少背诵4首,∴由第2天,第3天,第4天,第5天得, x 1+x 2≤14①,x 2+x 3≤14②,x 1+x 3+x 4≤14③,x 2+x 4≤14④,①+②+④-③得,3x 2≤28,, , ∴7天后,小云背诵的诗词最多为23首,故答案为:23.【点睛】本题考查了规律型:数字的变化类,不等式的应用,正确的理解题意是解题的关键.2283∴x …123428701433∴++++=x x x x …12341233∴+++x x x x …。
最新初中数学方程与不等式之不等式与不等式组技巧及练习题附答案解析(1)
最新初中数学方程与不等式之不等式与不等式组技巧及练习题附答案解析(1)一、选择题1.若关于x 的分式方程11144ax x x -+=--有整数解,其中a 为整数,且关于x 的不等式组2(1)43,50x x x a +≤+⎧⎨-<⎩有且只有3个整数解,则满足条件的所有a 的和为( ) A .8B .9C .10D .12 【答案】C【解析】【分析】分别解分式方程和不等式组,根据题目要求分别求出a 的取值范围,再综合分析即可得出a 的值,最后求和即可.【详解】 解:解分式方程11144ax x x -+=--, 得4x 1a=-. 又∵4x ≠,解得0a ≠.又∵方程有整数解,∴11a -=±,2±,4±,解得:2,3a =,1-,5,3-.解不等式组2(1)43,50x x x a +≤+⎧⎨-<⎩, 得,25a x -<…. 又不等式组有且只有3个整数解,可求得:05a <≤.综上所述,a 的值为2,3,5,其和为10.故选:C .【点睛】本题主要考查分式方程与不等式组的综合运用,掌握解分式方程的方法,会求不等式组的整数解是解此题的关键.2.某商品的标价比成本价高%a ,根据市场需要,该商品需降价%b .为了不亏本,b 应满足( )A .b a ≤B .100100a b a ≤+C .100a b a ≤+D .100100a b a≤- 【答案】B【分析】根据最大的降价率即是保证售价大于等于成本价,进而得出不等式即可.【详解】解:设成本为x 元,由题意可得:()()1%1%x a b x +-?,整理得:100100b ab a +?, ∴100100a b a≤+, 故选:B .【点睛】 此题主要考查了一元一次不等式的应用,得出正确的不等关系是解题关键.3.若关于x ,y 的方程组3,25x y m x y m -=+⎧⎨+=⎩的解满足x >y >0,则m 的取值范围是( ). A .m >2 B .m >-3 C .-3<m <2 D .m <3或m >2【答案】A【解析】【分析】先解方程组用含m 的代数式表示出x 、y 的值,再根据x >y >0列不等式组求解即可.【详解】解325x y m x y m-=+⎧⎨+=⎩,得 212x m y m =+⎧⎨=-⎩. ∵x >y >0,∴21220m m m +>-⎧⎨->⎩, 解之得m >2.故选A.【点睛】本题考查了二元一次方程组及一元一次不等式组的应用,用含m 的代数式表示出x 、y 的值是解答本题的关键.4.若不等式24x <的解都能使关于x 的一次不等式2(1)x x a ++<成立,则a 的取值范围是( )A .8a ≥B .8a ≤C .8a >D .8a <【解析】【分析】先求出不等式24x <的解集,再求出不等式2(1)x x a ++<的解集,即可得出关于a 的不等式并求解即可.【详解】解:由24x <可得:x <2;由2(1)x x a ++<可得:x <23a -; 由题意得:23a -≥2,解得:a≥8; 故答案为A .【点睛】本题主要对解一元一次不等式组、不等式的解集等知识,根据题意得到关于a 的不等式是解答本题的关键.5.若m n >,则下列不等式中成立的是( )A .m+a<n+bB .ma>nbC .ma 2>na 2D .a-m<a-n【答案】D【解析】【分析】根据不等式的性质判断.【详解】A. 不等式两边加的数不同,错误;B. 不等式两边乘的数不同,错误;C. 当a =0时,错误;D. 不等式两边都乘−1,不等号的方向改变,都加a ,不等号的方向不变,正确; 故选D.点睛:不等式的性质:(1)不等式两边加(或减)同一个数(或式子),不等号的方向不变;(2)不等式两边乘(或除以)同一个正数,不等号的方向不变;(3)不等式的两边乘(或除以)同一个负数,不等号的方向改变.6.关于x 的不等式组()02332x m x x ->⎧⎨-≥-⎩恰有五个整数解,那么m 的取值范围为( ) A .21m -≤<-B .21m -<<C .1m <-D .2m ≥-【答案】A【解析】【分析】先求出不等式组的解集,然后结合有五个整数解,即可求出m 的取值范围.【详解】解:()02332x m x x ->⎧⎨-≥-⎩解不等式①,得:x m >,解不等式②,得:3x ≤,∴不等式组的解集为:3m x <≤,∵不等式组恰有五个整数解,∴整数解分别为:3、2、1、0、1-;∴m 的取值范围为21m -≤<-;故选:A .【点睛】本题考查了解不等式组,根据不等式组的整数解求参数的取值范围,解题的关键是正确求出不等式组的解集,从而求出m 的取值范围.7.从4-,1-,0,2,5,8这六个数中,随机抽一个数,记为a ,若数a 使关于x 的不等式组0331016x a x -⎧<⎪⎨⎪+≥⎩无解,且关于y 的分式方程2233y a y y -+=--有非负数解,则符合条件的a 的值的个数是( )A .1个B .2个C .3个D .4个【答案】C【解析】【分析】由不等式组无解确定出a 的一个取值范围、由分式方程其解为非负数确定a 的一个取值范围,综上可确定a 的最终取值范围,根据其取值范围即可判定出满足题意的值.【详解】 解:0331016x a x -⎧<⎪⎨⎪+≥⎩①②解①得,x a <解②得,2x ≥∵不等式组无解∴2a ≤ ∵2233y a y y-+=-- ∴83a y -=∵关于y 的分式方程2233y a y y -+=--有非负数解 ∴803a y -=≥且833a -≠ ∴8a ≤且a≠-1∴综上所述,2a ≤且1a ≠-∴符合条件的a 的值有4-、0、2共三个.故选:C【点睛】本题考查了不等式(组)的解法、分式方程的解法,能根据已知条件确定a 的取值范围是解决问题的关键.8.如图,用长为40米的铁丝一边靠墙围成两个长方形,墙的长度为30米,要使靠墙的一边不小于25米,那么与墙垂直的一边的长度x 的取值范围为( )A .0米5x <≤米B .103x ≥米C .0米103x <≤米 D .103米5x ≤≤米 【答案】D【解析】【分析】 设与墙垂直的一边的长为x 米,根据铁丝长40米,墙的长度30米,靠墙的一边不小于25米,列出不等式组,求出x 的取值范围即可.【详解】解:设与墙垂直的一边的长为x 米,根据题意得:4032540330x x -≥⎧⎨-≤⎩, 解得:103≤x≤5; 故选:D .【点睛】此题考查了一元一次不等式组的应用,解题的关键是读懂题意,找出之间的数量关系,列出不等式组,注意本题要用数形结合思想.9.如果不等式(2)25a x a ->-的解集是4x <,则不等式251a y ->的解集是( ).A .52y < B .25y < C .52y > D .25y > 【答案】B【分析】根据不等式的性质得出20a -<,2542a a -=-,解得32a =,则2a=3,再解不等式251a y ->即可.【详解】解:∵不等式(a-2)x >2a-5的解集是x <4,∴20a -<, ∴2542a a -=-, 解得32a =, ∴2a=3, ∴不等式2a-5y >1整理为351y ->, 解得:25y <. 故选:B .【点睛】本题考查了含字母系数的不等式的解法,有一定难度,注意不等式两边同乘以(或除以)同一个负数,不等号的方向改变.10.若3x >﹣3y ,则下列不等式中一定成立的是 ( )A .0x y +>B .0x y ->C .0x y +<D .0x y -<【答案】A【解析】两边都除以3,得x >﹣y ,两边都加y ,得:x +y >0,故选A .11.在直角坐标系中,若点P(2x -6,x -5)在第四象限,则x 的取值范围是( )A .3<x <5B .-5<x <3C .-3<x <5D .-5<x <-3【答案】A【解析】【分析】点在第四象限的条件是:横坐标是正数,纵坐标是负数.【详解】解:∵点P (2x-6,x-5)在第四象限, ∴260{50x x ->-<, 解得:3<x <5.【点睛】主要考查了平面直角坐标系中第四象限的点的坐标的符号特点.12.把不等式组的解集表示在数轴上,下列选项正确的是( ) A .B .C .D .【答案】B【解析】由(1)得x >-1,由(2)得x≤1,所以-1<x≤1.故选B .13.不等式组222x x >⎧⎨-≥-⎩的解集在数轴上表示为( ) A .B .C .D .【答案】C【解析】【分析】先解不等式组,然后根据不等式组的解集判断即可.【详解】 222x x ①②>⎧⎨-≥-⎩由①,得x >1,由②,得x ≤2,∴不等式组的解集为1<x ≤2,故选C .【点睛】本题考查了不等式的解集,熟练掌握解不等式组是解题的关键.14.根据不等式的性质,下列变形正确的是( )A .由a >b 得ac 2>bc 2B .由ac 2>bc 2得a >bC .由–12a >2得a<2 D .由2x+1>x 得x<–1 【答案】B【解析】根据不等式的性质,逐一判定即可得出答案.【详解】解:A、a>b,c=0时,ac2=bc2,故A错误;B、不等式两边同时乘以或除以同一个正数,不等号的方向不变,故B正确;C、不等式两边同时乘以或除以同一个负数,不等号的方向改变,而且式子右边没乘以﹣2,故C错误;D、不等式两边同时加或减同一个整式,不等号的方向不变,故D错误.故选:B.【点睛】本题主要考查了不等式的性质,熟练应用不等式的性质进行推断是解题的关键.15.不等式组3433122xx x-≥⎧⎪⎨-<+⎪⎩的解集在数轴上表示正确的是()A.B.C.D.【答案】A【解析】【分析】解一元一次不等式组,先求出不等式组中每一个不等式的解集,再利用口诀求出这些解集的公共部分:同大取大,同小取小,大小小大中间找,大大小小解不了(无解).【详解】3433122xx x-≥⎧⎪⎨-<+⎪⎩①②解①,得1x≤-解②,得5x>-所以不等式组的解集是51x-<≤-在数轴表示为故选:A【点睛】不等式组的解集在数轴上表示的方法:把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.16.不等式组2131xx+≥-⎧⎨<⎩的解集在数轴上表示正确的是()A.B.C.D.【答案】D【解析】【分析】分别求出各不等式的解集,并在数轴上表示出来,找出符合条件的选项即可.【详解】解不等式2x+1≥﹣3得:x≥﹣2,不等式组的解集为﹣2≤x<1,不等式组的解集在数轴上表示如图:故选:D.【点睛】本题考查了在数轴上表示一元一次不等式组的解集及解一元一次不等式组,熟知“同大取较大,同小取较小,小大大小中间找,大大小小解不了”的原则是解答本题的关键.17.不等式x﹣2>的解集是()A.x<﹣5 B.x>﹣5 C.x>5 D.x<5【答案】A【解析】【分析】根据解一元一次不等式基本步骤:去括号、移项、合并同类项、系数化为1可得.【详解】去分母得:4x﹣8>6x+2,移项、合并同类项,得:﹣2x>10,系数化为1,得:x<﹣5.故选A.【点睛】本题主要考查解一元一次不等式的基本能力,严格遵循解不等式的基本步骤是关键,尤其需要注意不等式两边都乘以或除以同一个负数不等号方向要改变.18.如图,不等式组315215xx--⎧⎨-<⎩„的解集在数轴上表示为()A .B .C .D .【答案】C【解析】【分析】根据解一元一次不等式组的步骤:先解第一个不等式,再解第二个不等式,然后在数轴上表示出两个解集找公共部分即可.【详解】由题意可知:不等式组315215xx①②--⎧⎨-<⎩„,不等式①的解集为2x≥-,不等式②的解集为3x<,不等式组的解集为23x-≤<,在数轴上表示应为.故选C.【点睛】本题主要考查了一元一次不等式组的解法,熟知和掌握不等式组解法的步骤和在数轴上表示解集是解题关键.19.若关于x的不等式x<a恰有2个正整数解,则a的取值范围为()A.2<a≤3B.2≤a<3 C.0<a<3 D.0<a≤2【答案】A【解析】【分析】结合题意,可确定这两个正整数解应为1和2,至此即可求出a的取值范围【详解】由于x<a恰有2个正整数解,即为1和2,故2<a≤3故正确答案为A【点睛】此题考查了不等式的整数解,列出关于a的不等式是解题的关键20.已知关于x 的不等式组3211230x x x a --⎧≤-⎪⎨⎪-<⎩恰有3个整数解,则a 的取值范围为( ) A .12a <≤B .12a <<C .12a ≤<D .12a ≤≤【答案】A【解析】【分析】先根据一元一次不等式组解出x 的取值范围,再根据不等式组只有三个整数解,求出实数a 的取值范围即可.【详解】 3211230x x x a --⎧≤-⎪⎨⎪-<⎩①②, 解不等式①得:x≥-1,解不等式②得:x<a , ∵不等式组3211230x x x a --⎧≤-⎪⎨⎪-<⎩有解, ∴-1≤x<a ,∵不等式组只有三个整数解,∴不等式的整数解为:-1、0、1,∴1<a≤2,故选:A【点睛】本题考查一元一次不等式组的整数解,解答此题要先求出不等式组的解集,求不等式组的解集要遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.。
16.第九章《不等式与不等式组》50题含答案
第九章《不等式与不等式组》50题提要:本章的考查重点是掌握一元一次不等式组的解法步骤并准确地求出解集.难点是正确应用不等式的基本性质对不等式进行变形、求不等式组中各个不等式解集的公共部分.不等式在中学代数中是研究问题的重要工具.在处理解不等式的问题中,一元一次不等式组的解法,具有特别重要的意义.这是因为,解各类不等式的问题都可以归结为解一些由简单不等式所组成的不等式组.一、填空题1.用恰当的不等号表示下列关系:①x 的3倍与8的和比y 的2倍小: ; ②老师的年龄a 不小于你的年龄b 小: . 2.若x <y ,则x -2 y -2.(填“<、>或=”号)3.若39a b-<-,则b 3a .(填“<、>或=”号) 4.不等式7-x >1的正整数解为: .5.当y _______时,代数式423y-的值至少为1. 6.不等式6-12x <0的解集是_________. 7.若一次函数y =2x -6,当x _____时,y >0. 8.当x ________时,代数式523--x 的值是非正数. 9.当m ________时,不等式(2-m )x <8的解集为x >m-28. 10.若方程m x x -=+33 的解是正数,则m 的取值范围是_________. 11.x 的53与12的差不小于6,用不等式表示为__________________. 12.从小明家到学校的路程是2400米,如果小明早上7点离家,要在7点30分到40分之间到达学校,设步行速度为x 米/分,则可列不等式组为__________________,小明步行的速度范围是_________. 13.若x =23+a ,y =32+a ,且x >2>y ,则a 的取值范围是________.14.已知三角形的两边为3和4,则第三边a 的取值范围是________. 15.如图9-1,在数轴上表示某不等式组中的两个不等式的解集,则该不等式组的解集为 . 16.若11|1|-=--x x ,则x 的取值范围是 .2 4-2图9-117.不等式组110210x x ⎧+>⎪⎨⎪->⎩,.的解为 .18.当0<<a x 时,2x 与ax 的大小关系是_______________.19.若点P (1-m ,m )在第二象限,则(m -1)x >1-m 的解集为_______________. 20.已知x =3是方程2a x -—2=x —1的解,那么不等式(2—5a )x <31的解集是 . 21.若不等式组841x x x m+-⎧⎨⎩p f 的解集是x >3,则m 的取值范围是 .22.已知关于x 的不等式组0321x a x -≥⎧⎨-≥-⎩的整数解共有5个,则a 的取值范围是 .23.小明用100元钱购得笔记本和钢笔共30件,已知每本笔记本2元,每只钢笔5元.那么小明最多能买 只钢笔.24.某种商品的进价为800元,出售时标价为1200元,后来由于该商品积压,商店准备打折销售,但要保证利润率不低于5%,则至多可打 . 二、选择题25.不等式260x ->的解集在数轴上表示正确的是( )26.在下图中不等式-1<x ≤2在数轴上表示正确的是( )DCBA2-12-12-12-127.解集在数轴上表示为如图9-2所示的不等式组是( )A .32x x >-⎧⎨⎩≥B .32x x <-⎧⎨⎩≤C .32x x <-⎧⎨⎩≥D .32x x >-⎧⎨⎩≤28.关于x 的不等式2x -a ≤-1的解集如图9-3所示,则a 的取值是( ).A .0B .-3C .-2D .-129.将不等式84113822x x x x +<-⎧⎪⎨≤-⎪⎩的解集在数轴上表示出来,正确的是( )3- 0 3A . 3- 0 3B . 3- 0 3C .3- 03D .23-图9-21-1 -2 图9-330.不等式组2110x x >-⎧⎨-⎩,≤的解集是( )A.12x >-B.12x <-C.1x ≤ D.112x -<≤ 31.已知a <b ,则下列不等式中不正确的是( ).A.4a <4bB.a +4<b +4 C.-4a <-4bD.a -4<b -432.不等式1132x +<的正整数解有( ).A.1个B.2个 C.3个D.4个33.满足-1<x ≤2的数在数轴上表示为( ).34.如果|x -2|=x -2,那么x 的取值范围是( ).A.x ≤2B.x ≥2 C.x <2D.x >235.从甲地到乙地有16千米,某人以4千米/时~8千米/时的速度由甲地到乙地,则他用的时间大约为( ).A.1小时~2小时 B.2小时~3小时 C.3小时~4小时 D.2小时~4小时 36.不等式组102(1)x x x +<⎧⎨-⎩,≤的解集是( ).A.x <-1 B.x ≤2 C.x >1 D.x ≥237.不等式2+x <6的非负整数解有( )A .2个B .3个C .4个D .5个 38.下图所表示的不等式组的解集为( )-234210-1A .x 3φB .32ππx -C .2-φxD .32φφx - 39.若方程3m (x +1)+1=m (3-x )-5x 的解是负数,则m 的取值范围是( ).A.m >-1.25B.m <-1.25 C.m >1.25D.m <1.251-2 1-2 1-2 1-2A .B.C.D.40.某种出租车的收费标准:起步价7元(即行驶距离不超过3千米都需付7元车费),超过3千米后,每增加1千米,加收2.4元(不足1千米按1千米计).某人乘这种出租车从甲地到乙地共付车费19元,那么甲地到乙地路程的最大值是( ). A.5千米 B.7千米C.8千米D.15千米三、解答题 41.解不等式:112x x >+42.解不等式组,并把它的解集表示在数轴上:3(1)7251.3x x xx --⎧⎪⎨--<⎪⎩≤,① ②43.解不等式组331213(1)8x x x x -⎧++⎪⎨⎪--<-⎩,,≥并写出该不等式组的整数解.44.x 为何值时,代数式5123--+x x 的值是非负数?45.已知:关于x 的方程m x m x =--+2123的解的非正数,求m 的取值范围.46.北京奥运会期间,某旅行社组团去北京观看某场足球比赛,入住某宾馆.已知该宾馆一楼房间比二楼房间少5间,该旅游团有48人,若全部安排在一楼,每间住4人,房间不够,每间住5人,有房间没住满.若全部安排在二楼,每间住3人,房间不够,每间住4人,则有房间没住满.你能根据以上信息确定宾馆一楼有多少房间吗?47.国庆节期间,电器市场火爆.某商店需要购进一批电视机和洗衣机,根据市场调查,决定电视机进货量不少于洗衣机的进货量的一半.电视机与洗衣机的进价和售价如下表:类别电视机洗衣机为进价(元/台)1800 1500售价(元/台)2000 1600计划购进电视机和洗衣机共100台,商店最多可筹集资金161 800元.(1)请你帮助商店算一算有多少种进货方案?(不考虑除进价之外的其它费用)(2)哪种进货方案待商店销售购进的电视机与洗衣机完毕后获得利润最多?并求出最多利润.(利润=售价-进价)48.今秋,某市白玉村水果喜获丰收,果农王灿收获枇杷20吨,桃子12吨.现计划租用甲、乙两种货车共8辆将这批水果全部运往外地销售,已知一辆甲种货车可装枇杷4吨和桃子1吨,一辆乙种货车可装枇杷和桃子各2吨.(1)王灿如何安排甲、乙两种货车可一次性地运到销售地?有几种方案?(2)若甲种货车每辆要付运输费300元,乙种货车每辆要付运输费240元,则果农王灿应选择哪种方案,使运输费最少?最少运费是多少?49.2009年我市某县筹备20周年县庆,园林部门决定利用现有的3490盆甲种花卉和2950盆乙种花卉,两种园艺造型共50个摆放在迎宾大道两侧,已知搭配一个A种造型需甲种花卉80盆,搭配A B乙种花卉40盆,搭配一个B种造型需甲种花卉50盆,乙种花卉90盆.(1)某校九年级(1)班课外活动小组承接了这个园艺造型搭配方案的设计,问符合题意的搭配方案有几种?请你帮助设计出来.(2)若搭配一个A种造型的成本是800元,搭配一个B种造型的成本是960元,试说明(1)中哪种方案成本最低?最低成本是多少元?50.一手机经销商计划购进某品牌的A型、B型、C型三款手机共60部,每款手机至少要购进8部,且恰好用完购机款61000元.设购进A型手机x部,B型手机y部.三款手机的进价和预售价如下表:(1)用含x ,y 的式子表示购进C 型手机的部数; (2)求出y 与x 之间的函数关系式;(3)假设所购进手机全部售出,综合考虑各种因素,该手机经销商在购销这批手机过程中需另外支出各种费用共1500元.①求出预估利润P (元)与x (部)的函数关系式;(注:预估利润P =预售总额-购机款-各种费用)②求出预估利润的最大值,并写出此时购进三款手机各多少部.参考解析一、填空题1.①3x +8<2y ;②a ≥b手机型号A 型B 型C 型 进 价(单位:元/部) 900 1200 1100 预售价(单位:元/部)1200160013002.<(点拨:根据不等式的基本性质,不等式两边同时加上或减去同一个数,不等号方向不变) 3.>(点拨:根据不等式的基本性质,不等式两边同时乘或除以同一个负数,不等号方向改变) 4.1、2、3、4、5 5.≤12(点拨:由题意可列出不等式423y -≥1)6.x >12 7.x >3(点拨:由题意可得不等式2x -6>0) 8.23x ≥(点拨:代数式523--x 的值是非正数,所以可得不等式3205x -≤-)9.m >2(点拨:根据不等式的性质,不等号方向发生改变,所以x 的系数小于0)10.m >-3(点拨:解关于x 的方程可得32m x +=,因为解为正数,所以得到不等式32m +>0,解不等式即可) 11.31265x -≥ 12.302400402400x x ≤⎧⎨≥⎩,60米-80米/分.(点拨:7点出发,要在7点30分到40分之间到达学校,意味着小明在30分钟之内的路程不能超过2400米,而40分钟时的路程至少达到2400米.由此可列出不等式组)13.1<a <4(点拨:根据题意,可得到不等式组3222 2 3a a +⎧⎪⎪⎨+⎪⎪⎩f p ,解不等式组即可)14.1<a <7 15.x <2 16.x <1(点拨:由题意可知,x -1的绝对值等于它的相反数,则x -1<0,所以x <1. 17.21x -<<18.2x >ax (点拨:在不等式x a <两边同时乘以负数x ,则不等式的方向改变) 19.x >-1(点拨:由P (1-m ,m )在第二象限可知,1-m <0且m >0,所以m >1) 20.x <19(点拨:先将x =3代入方程,可解得a =-5,再将a =-5代入不等式解不等式得出结果) 21.m <3(点拨:解不等式组可得结果3x x m⎧⎨⎩f f ,因为不等式组的解集是x >3,所以结合数轴,根据“同大取大”原则,不难看出结果为m <3)22.-3<a ≤-2(解不等式组可得结果a ≤x ≤2,因此五个整数解为2、1、0、-1、-2,所以-3<a ≤-2) 23.13支(点拨:设小明一共买了x 本笔记本,y 支钢笔,根据题意,可得混合组2510030x y x y +≤⎧⎨+=⎩,可求得y ≤403,因为y 为正整数,所以最多可以买钢笔13支) 24.7折(点拨:设最低打x 折,由题意可得12008008005%10x⨯-≥⨯,解之得x ≥7)二、选择题25.A 26.A 27.D 28.B (点拨:x ≤12a +,又不等式解为:x ≤-1,所以12a +=-1,解得:a =-3) 29.C 30.D 31.C(点拨:根据不等式的基本性质,不等式两边同时加上或减去同一个数,不等号的方向不变;不等式两边同时乘或除以同一个正数,不等号的方向不变,同时乘或除以同一个负数,不等号的方向要改变)32.C(点拨:先求出不等式的解集,从中找出相应的正整数解即可) 33.B(点拨:注意解集表示时的方向及点的空心与实心区别)34.B(点拨:因为|x -2|=x -2,根据一个正数的绝对值等于它的本身,可以知道x -2的值大于或等于0,从而得到相关不等式求解)35.D(点拨:路程一定,速度的范围直接决定所用时间的范围) 36.A 37.C (点拨:非负整数解包括0) 38.A 39.A(点拨:先通过解方程求出用m 表示的x 的式子,然后根据方程解是负数,得到关于m 的不等式,求解不等式即可) 40.C 三、解答题 41.解析:(1)112x x ->,112x >,所以2x >. 42.解析:解不等式①,得2x -≥; 解不等式②,得12x <-. 在同一条数轴上表示不等式①②的解集,如答图9-1:所以,原不等式组的解集是122x -<-≤. 43.解析:解不等式3312x x -++≥,得1x ≤.解不等式13(1)8x x --<-,得2x >-.∴原不等式组的解集是21x -<≤.∴原不等式组的整数解是101-,,.44.解析:由题意可得31025x x +--≥,解不等式x ≥173-.45.解析:解关于x 的方程m x m x =--+2123,得344m x -=,因为方程解为非正数,所以有344m-≤0,解之得,m ≥34.46.解析:设该宾馆一楼有x 间房,则二楼有(x +5)间房,由题意可得不等式组2- 1-1答图9-14485483(5)484(5)48x x x x ⎧⎪⎪⎨+⎪⎪+⎩p f p f ,解这个不等式组可得9.6<x <11,因为x 为正整数,所以x =10 即该宾馆一楼有10间房间.47.解析:(1)设商店购进电视机x 台,则购进洗衣机(100-x )台,根据题意,得1(100),218001500(100)161800.x x x x ⎧≥-⎪⎨⎪+-≤⎩,解不等式组,得 1333≤x ≤1393.即购进电视机最少34台,最多39台,商店有6种进货方案.(2)设商店销售完毕后获利为y 元,根据题意,得y =(2000-1800)x +(1600-1500)(100-x )=100x +10000. ∵ 100>0,∴ 当x 最大时,y 的值最大.即 当x =39时,商店获利最多为13900元. 48.解析:(1)设安排甲种货车x 辆,则安排乙种货车(8-x )辆,依题意,得 4x + 2(8-x )≥20,且x + 2(8-x )≥12,解此不等式组,得 x ≥2,且 x ≤4, 即 2≤x ≤4. ∵ x 是正整数,∴ x 可取的值为2,3,4.因此安排甲、乙两种货车有三种方案:甲种货车 乙种货车 方案一 2辆 6辆 方案二 3辆 5辆 方案三4辆4辆(2)方案一所需运费 300×2 + 240×6 = 2040元;方案二所需运费 300×3 + 240×5 = 2100元;方案三所需运费 300×4 + 240×4 = 2160元.所以王灿应选择方案一运费最少,最少运费是2040元. 49.解析:设搭配A 种造型x 个,则B 种造型为(50)x -个,依题意,得:8050(50)34904090(50)2950x x x x +-⎧⎨+-⎩≤≤ ,解这个不等式组,得:3331x x ⎧⎨⎩≤≥,3133x ∴≤≤ x Q 是整数,x ∴可取313233,,,∴可设计三种搭配方案:①A 种园艺造型31个 B 种园艺造型19个;②A 种园艺造型32个 B 种园艺造型18个;③A 种园艺造型33个 B 种园艺造型17个.(2)由于B 种造型的造价成本高于A 种造型成本.所以B 种造型越少,成本越低,故应选择方案③,成本最低,最低成本为:338001796042720⨯+⨯=(元) 50.解析:(1)60-x -y ;(2)由题意,得 900x +1200y +1100(60-x -y )= 61000,整理得 y =2x -50. (3)①由题意,得 P = 1200x +1600y +1300(60-x -y )- 61000-1500,第 11 页 共 11 页 整理得 P =500x +500.②购进C 型手机部数为:60-x -y =110-3x .根据题意列不等式组,得 8,2508,11038.x x x ≥⎧⎪-≥⎨⎪-≥⎩解得 29≤x ≤34.∴ x 范围为29≤x ≤34,且x 为整数.∵P 是x 的一次函数,k =500>0,∴P 随x 的增大而增大. ∴当x 取最大值34时,P 有最大值,最大值为17500元. 此时购进A 型手机34部,B 型手机18部,C 型手机8部.。
不等式组的解法试题(有答案)
滚动小专题(二)方程(组)、不等式(组)的解法类型1 解方程(组)1.(2014·滨州)解方程:2-2x +13=1+x 2.2.(2016·安徽)解方程:x 2-2x =4.3.(2016·钦州)解方程:3x =5x -2.4.解方程组:⎩⎨⎧5x +10=10y ,①15x =20y +10.②5.(2013·山西)解方程:(2x -1)2=x (3x +2)-7.类型2 解不等式(组)6.(2016·舟山)解不等式:3x >2(x +1)-1.7.(2016·北京)解不等式组:⎩⎨⎧2x +5>3(x -1),①4x>x +72.②8.(2016·苏州)解不等式2x -1>3x -12,并把它的解集在数轴上表示出来.9.(2016·广州)解不等式组:⎩⎨⎧2x<5,①3(x +2)≥x+4,②并在数轴上表示解集.10.(2016·南京)解不等式组:⎩⎨⎧3x +1≤2(x +1),-x <5x +12,并写出它的整数解.答案类型1 解方程(组)1.(2014·滨州)解方程:2-2x +13=1+x 2. 解:去分母,得12-2(2x +1)=3(1+x ).去括号,得12-4x -2=3+3x .移项、合并同类项,得-7x =-7.系数化为1,得x =1.2.(2016·安徽)解方程:x 2-2x =4. 解:两边都加上1,得x 2-2x +1=5,即(x -1)2=5.∴x -1=± 5. ∴原方程的解是x 1=1+5,x 2=1- 5.3.(2016·钦州)解方程:3x =5x -2. 解:方程两边同乘x (x -2),得3(x -2)=5x .去括号,得3x -6=5x .移项、合并同类项,得2x =-6.系数化为1,得x =-3.检验:当x =-3时,x (x -2)≠0,∴x =-3是原分式方程的解.4.解方程组:⎩⎨⎧5x +10=10y ,①15x =20y +10.②解:由①,得x -2y =-2.由②,得3x -4y =2.①×2-②,得x =6.所以原方程的解为⎩⎨⎧x =6,y =4.5.(2013·山西)解方程:(2x -1)2=x (3x +2)-7.解:原方程可化为x 2-6x +8=0.∴(x -3)2=1.∴x -3=±1.∴x 1=2,x 2=4.类型2 解不等式(组)6.(2016·舟山)解不等式:3x >2(x +1)-1. 解:去括号,得3x >2x +2-1.移项,得3x -2x >2-1. 合并同类项,得x >1.∴不等式的解为x >1.7.(2016·北京)解不等式组:⎩⎨⎧2x +5>3(x -1),①4x>x +72.②解:解不等式①,得x <8.解不等式②,得x >1. ∴不等式组的解集为1<x <8.8.(2016·苏州)解不等式2x -1>3x -12,并把它的解集在数轴上表示出来.解:去分母,得4x -2>3x -1.解得x >1. ∴解集在数轴上表示为:9.(2016·广州)解不等式组:⎩⎨⎧2x<5,①3(x +2)≥x+4,② 并在数轴上表示解集. 解:解不等式①,得x <52. 解不等式②,得x ≥-1.解集在数轴上表示为:∴不等式组的解集为-1≤x <52.10.(2016·南京)解不等式组:⎩⎨⎧3x +1≤2(x +1),-x <5x +12,并写出它的整数解. 解:解不等式①,得x ≤1.解不等式②,得x >-2.∴不等式组的解集是-2<x ≤1.该不等式组的整数解是-1,0,1.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一 确定简单不等式组的解集,把解集在数轴上表示出来
1.(2007福建福州)解集在数轴上表示为如图1所示的不等式组是( )
A .32x x >-⎧⎨⎩≥
B .32x x <-⎧⎨⎩≤
C .32x x <-⎧⎨⎩≥
D .32x x >-⎧⎨⎩
≤ 2.(2007广东河池)若不等式组的解集在数轴上表示如图,则这个不等式组是( )
A.21x x >⎧⎨-⎩≤ B.21x x <⎧⎨>-⎩ C.21x x <⎧⎨-⎩≥ D.21x x <⎧⎨-⎩≤ 3.(2007湖北武汉课改,3分)如图,在数轴上表示某不等式组中的两个不等式的解集,则该不等式组的解集为( )
A.4x < B.2x < C.24x << D.2x >
4.(2007四川德阳)把一个不等式组的解集表示在数轴上,如图所示,则该不等式组的解集为( ) A.102x <≤ B.12
x ≤ C.102
x <
≤ D.0x > 5.(2007湖南岳阳课改,3分)在图1中不等式12x -<≤在数轴上表示正确的是( )
6.(2007湖南张家界)数轴上阴影部分表示的是某不等式组的解集,它的具体范围是( )
A .2x >-
B .21x -<≤
C .21x -≤≤
D .1x ≤
二、解集的特性:
解集的同一性
例 若不等式组⎩
⎨⎧><a x x 2的解集为a <x <2,则a 的取值范围为 . 巩固练习:
一、填空:
1.(2006天津非课改)不等式组211841
x x x x ->+⎧⎨+<-⎩,的解集是 .
2.如果三角形的三边长分别是3 cm 、(1-2a ) cm 、8 cm ,那么a 的取值范围是________.
3.(2006 贺州课改)已知不等式组3210x x a +⎧⎨-<⎩
,≥无解,则a 的取值范围是 . 4.不等式组⎩⎨⎧-<+<2
12m x m x 的解集是x <m -2,则m 的取值应为________.
A. B. C. D.
6.如果关于x 的不等式组⎩⎨⎧-<+>2
32a x a x 无解,则常数a 的取值范围是________.
7.(2006 潍坊课改)不等式组2425x a x b +>⎧⎨
-<⎩的解是02x <<,那么a b +的值等于 . 四、解答题:
1.已知方程3(x -2a )+2=x -a +1的解适合不等式2(x -5)≥8a ,求a 的取值范围。
2.如果关于x 的方程x +2m -3=3x +7的解为不大于2的非负数,求m 的范围.
解一元二次不等式
求解 c bx ax ++2>0或 c bx ax ++2<0 (其中a 不等于0)
若c bx ax ++2=0 的两个解是x=1x 或x=2x
{x|x<1x 或x>2x }
{x|1x <x <2x }。