多孔闸水力学计算
项目七 闸孔出流水力分析与计算
H
v02 2g
hc
c vc2 2g
hw
式中 :hw —水流从 0-0 断面到 c-c 断面的水头损失,由于 0-0 到 c-c 断面的距离很
短水流为急变流,因而只计局部水头损失,即 hw
vc2 2g
。
令: H 0
Hale Waihona Puke Hv02 2g,H0
称为包括流速水头在内的闸前总水头,将 hw
vc2 2g
及
闸孔出流水力计算的目的是:恒定闸孔出流时,研究分析过闸泄流量与闸门的开启 高度、闸孔尺寸、闸门类型、闸底坎型式、上下游水位及闸孔出流情况等的关系,并给 出相应的水力计算公式。下面分别进行讨论。 2.1 底坎为宽顶堰型的闸孔出流
图 7-2
如图 7-2 为闸孔恒定出流,闸底坎为无坎宽顶堰,闸门为平板闸门,e 为闸门开启高 度,H 为闸前水头。水流由闸门底缘流出时,由于受闸门的约束,流线发生急剧弯曲收 缩,出闸后由于惯性的作用流线继续收缩,大约在距闸门(0.5~1)e 处为水深最小的收 缩断面 c-c。收缩断面 c-c 处的水深 hc 一般小于临界水深 hk,水流为急流状态。而闸孔下 游渠槽中的水深 ht 一般大于临界水深 hk,水流呈缓流状态,因此闸后水流从急流到缓流 要发生水跃。水跃位置随下游水深 ht 变化而变化,下游水深增大水跃向上游移动,下游 水深减小水跃向下游移动,水跃发生的位置不同对闸孔出流泄流能力的影响不一样,从 而使闸孔出流可分为自由出流和淹没出流。设收缩断面水深 hc 所对应的共轭水深为 hc”, 当 hc”>ht 时水跃发生在收缩断面下游,称为远驱水跃(如图 7-2a),当 hc”=ht 时水跃发生 在收缩断面处,称为临界式水跃(如图 7-2b),这两种情况下水跃对应的下游水位都不影 响闸孔的过流能力称为闸孔的自由出流; 当 hc”<ht 时水跃发生在收缩断面上游,称为淹 没水跃(图 7-2c)。此时下游水位使闸孔的过流能力减小,称为闸孔淹没出流。
闸门水力计算说明
水闸水力计算说明一、过流能力计算1.1外海进水外海进水时,外海水面高程取5.11m ,如意湖内水面高程取1.0m 。
中间三孔放空闸,底板高程为-4.0m ,两侧八孔防潮闸底板高程为2.0m ,每孔闸净宽度为10m 。
表2 内海排水时计算参数特性表1.1.1中间三孔放空闸段 a.判定堰流类型27.511.948==Hδ式中δ为堰壁厚度,H 为堰上水头。
2.5<5.27<10,为宽顶堰流。
b.堰流及闸孔出流判定11.95=H e =0.549≤0.65,为闸孔出流。
式中,e 为闸门开启高度,H 为堰、闸前水头。
c.自由出流及淹没出流判定闸孔出流收缩断面水深h c=ε1e=5.0×0.650=3.25m 。
式中,e 为闸门开启高度,为5.0m ;ε1为垂向收缩系数,查《水利计算手册》(2006年第二版)中表3-4-1得0.650。
收缩断面处水流速为υc=)(20c h H g -ϕ=)(25.311.981.9295.0-⨯⨯⨯=10.19m/s 。
式中,ψ为闸孔流速系数,查《水利计算手册》(2006年第二版)中表3-4-3,取0.95;H 0为闸前总水头,为9.11m ; hc 为收缩断面水深。
收缩断面水深hc 的共轭水深hc”=)181(22-+c c c gh h ν=)125.381.919.1081(225.32-⨯⨯+=6.83m ;下游水深ht=5.0m <hc”=6.83m ,故为自由出流。
d.过流量计算根据闸孔自由出流流量计算公式Q 1=002gH be μ=11.981.92530503.0⨯⨯⨯⨯⨯=1008.71m³/s 。
式中,μ0为流量系数,平板闸门流量系数可按经验公式 μ0=0.60-0.176He=0.60-0.176×0.549=0.503; b 为闸孔宽度,为3×10=30m 。
1.1.2两侧八孔防潮闸段 a.判定堰流类型43.1511.348==Hδ>10,过渡为明渠流。
多孔闸水力学计算
09m3/S H0=1.96m 1b0=3.00m bs=4.94m
引水闸过闸流量Q=上游设计水深:设计闸孔单孔宽度:上游河道一半水深处的宽度:εz -中闸孔侧收缩系数,dz-中闸墩厚度(m);εb -边闸孔侧收缩系数,
b b -边闸墩顺水流向边缘线至上游河道水边线之间的距离(m)
H 0-计入行近流速水头的堰上水深(m);g-重力加速度,可采用9.81(m/s 2
);m-堰流流量系数;设计闸孔数量N=ε-堰流侧收缩系数;b 0-闸孔净宽(m);
b s -上游河道一半水深处的宽度(m);N-闸孔数;
σ-堰流淹没系数,可按公式(A.0.1-6)计算球的或按表A.0.1-2查得;h s -由堰顶算起的下游水深(m)。
式中:B 0-闸孔总净宽(m);
Q-过闸流量(m³/s);
夏塔河引水干渠分水闸水力学计算
计算依据:水闸设计规范(SL265-2001)多孔闸水利学计算内容可按下式进行计算:
当为多孔闸且闸墩为圆弧形时:
2
/30
02H g m Q
B σε=
N
N b
z εεε+-=
)1(400
00)
1(171.01z
z z d b b d b b ++--=ε400
002
)21(171.01b
z b z b b d
b b b d b b ++++-
-=ε4
.00
0)
1(31.2H h H h s s -=σ
dz=0.00m
bb=3.00m
hs=1.22m
中敦厚度:边闸墩顺水流向边缘线至上游河道水边线之间的距离由堰顶算起的下游水深计算中墩侧收缩系数如下:
计算侧收缩系数。
8堰流、闸孔出流和桥、涵过流的水力计算
式中:e为闸孔开度;H为从堰顶算起的闸前水深。
8-1 堰流的分类及水力计算基本公式
一、堰流的分类
水利工程中 常根据不同 的建筑材料 和使用要求 作成不同的 堰。 堰坎外形及 厚度不同其 能量损失及 过水能力也 会不同。
工程上通常按照堰坎厚度δ与堰上水头H的比值 大小及水流的特征将堰流分作:
1.薄壁堰流:即 2.实用堰:即 3.宽顶堰流:即
(
y Hd
)
k(
x Hd
)n
式中:系数
k
Hd
4 cos2 u 2
;指数 n =2。
2g
我国采用的剖面有: 1.克里格-奥菲采洛夫(过去常用) 2.渥奇 3.美国水道试验站WES型(现在常用)
WES剖面如图
二、WES剖面型实用堰的流量系数m
实验研 究表明,曲 线型适用堰 的流量系数 主要决定于 上游堰高与 设计水头之 比 P1 / Hd ,堰 顶全水头与 设计水头之 比H0 / Hd 以及上游面 的坡度。
C0
1.354
0.004 H
0.14
0.2 P1
H B
2
0.09
其中, Q为流量,以米3/秒(m3/s)计; H为堰顶水头;
P1为上游堰高; B为堰上游引渠宽均以米(m)计。
在下述范围内,上式的误差<(±1.4%)
0.5m≤B≤1.2m 0.07m≤H≤0.26m
0.1m≤P1≤0.75m H≤B/3
,从表8-10查得 s
0.953
4.侧收缩系数 1
1
(n
1)
' 1
n
1
对闸、边墩头部为圆弧形,堰顶入口边缘为圆弧的
宽顶堰,(8-17)式中a0=0.1。则中孔侧收缩系数
D-2水闸水力学计算程序
D-2 水闸水力学计算程序作者 陈靖齐(水电部天津勘测设计院) 校核 潘东海(水电部天津勘测设计院)一、概述:(一)水闸过水能力计算的难题是流量系数μ,经验方式很多,各家不同,甚至一本参考书,列出几种公式,几种算例,深入研究流量系数不是本程序范围,本程序仅对现有公式择优选一。
(二)一般计算流量时,不计行进流速V 0=Q/BH ,本程序用迭代法,考虑了V 0,即Q →V 0→H 0,再算Q ,较符合实际过程,精度│△Q │< 0.001m 3/s 。
(三)求e 用迭代法。
二.功能:本程序能计算平底平板闸门、平底弧形闸门、实用堰平板闸门、实用堰弧形闸门四种情况下的流量,闸门开启度e 。
三.公式和算法: (一)流量公式(平底平板闸门可求淹没系数σ) 或(其他三种情况)式中:μ0—流量系数,因闸门形式,底坎形式,相对开度e/H 而异; e —闸门开度(m ); B —闸门宽(m ); H 0—闸前水深(m ); H S —下游水深(m );g —重力加速度(9.8m/s 2)。
(二)流量系数:本程序取武水的一套较完整的流量系数公式。
1,平底、平板闸门μ0=0.6-0.176e/H [清华、武水](华水多—尾项)2,平底、弧形闸门μ0=0.97-0.56e/H-(1-e/H )×0.258θ[武水]式中:θ--弧形闸门下缘入流角(弧度值)。
25°≤θ≤90°,0.1≤e/H ≤0.65 R —弧形闸门半径; C —转轴高;02gH eB Q σμ=)(s h h g eB Q -=002μRe c COS -=-1θ3,实用堰上平板闸门4,实用堰上弧形闸门(三)淹没出流问题1,平板平底闸门,淹没系数σ=σ[(hs-hc ″)/(H-hc )],其关系为一条曲线,本程序已使其离散和数据化存数据库中,可自动插值。
式中: hs —下游水深(m );hc ″—水跃后水深(m ); hc —收缩断面宽度:hc=ε eFrc=Uc 2/ghc 收缩断面Frude 数e —平板闸门侧收缩系数表,本程序已存数据库中。
水闸水力计算.
ε—侧收缩系数
—堰顶全水头(m)
m—流量系数
Q—过闸流量(m3/s)
v0—上游行近流速
H—上游水深
h/H=(3.99-1.2) / (4.3-1.2) =2.79/3.1=0.9
查表得淹没系数为σ=0.83
侧收缩系数ε定为1
流量系数m一般取0.385
宽顶堰流量公式简化为:
H0和V0都是未知,须进行试算:
满足精度要求,
得设计流量:Q=211.91m3/s
2、最大流量计算
根据表1-1,当外江为平均低潮位时将为自由出流,σ=1.0,水闸四孔全开时将有最大流量Qmax,Qmax也要经过试算求得。
第一次试算:
不计行近流速,H0=H=4.3-1.2=3.1m
第二次试算:
第三次试算:
第四次试算:
第五次试算:
满足精度要求,
εz—中间闸孔侧收缩系数
εb—边闸孔侧收缩系数
dz—中间闸墩厚度
bb—边闸墩顺水流向边向边缘线至上游河道水边线之间的距离
根据初步设计三视图,dz=1m;bb=0m
H0和V0都是未知,须进行试算确定设计流量:
第一次试算:
不计行近流速,H0=H=4.3-1.2=3.1m
第二次试算:
第三次试算:
第四次试算:
外六工段
外四工段
盐官ห้องสมุดไป่ตู้
备注
历史最高潮位
7.83
7.92
8.03
平均高潮位
3.99
4.11
3.92
平均低潮位
1.19
1.84
0.66
历史最低潮位
-1.65
-0.77
-2.32
3、多孔介质水力学
3.1 固定床流动的水头损失
清洁滤层: 层流条件下(0.5mm~1.0mm,4.9~12.2m/h) 采用Kozeny方程(量纲一致)
比表面积a/v=Sv=6/d(球体);=6/ψdeq(不规则) 多孔介质中层流条件的判别指标
Re = d eqVρ
µ
< 6.0
Camp(1964)
3.3 初始流态化点
最小流态化速度Vmf:流态化启动时的流体空塔速度,可 以根据固定床和流化床水头损失曲线的交点定义(见前 图)。 Ergun方程可用来计算Vmf。(△h= △p ) 经验式:
Vmf =
µ ρd eq
(33.7 2 + 0.0408Ga ) 0.5 −
33.7 µ ρd eq
无量纲Galileo数
1/ 2
③ Mackrle-Ives模型 : s = 1 + σ V ⋅ 1 − σ V 1− ε s0 ε0 0
y
z
1.5 1.2
比表面积s/s0
0.9 0.6 0.3 0.0 0.0
式 (14) 式 (16) 式 (15)
Kozeny方程的推导 Darcy-Weisbach方程: 基于多束毛细管模型
LU 2 h= f ⋅ D(2 g )
水力半径 ≈ 单位体积滤床的空隙水体积 单位体积滤床的颗粒表面积
推导中的代换关系有:
r=
ε ⋅v (1 − ε )a
D = 4r
U=
V
ε
f =
64 (层流) ' Re
v 4 r ⋅ ρ ε (基于空隙流速) Re ' =
滤层的空隙率ε与体积比沉积量σV有以下关系:
闸孔出流计算
第八章 堰流及闸孔出流第一节概 述水利工程中为了宣泄洪水以及引水灌溉、发电、给水等目的,常需要修建堰闸等泄水建筑物,以控制水库或渠道中的水位和流量。
堰、闸等泄水建筑物水力设计的主要任务是研究其水流状态和过流能力。
一.堰流及闸孔出流的概念既能壅高上游水位,又能从自身溢水的建筑物称为堰。
水流由于受到堰坎或两侧边墙的束窄阻碍,上游水位壅高,水流经过溢流堰顶下泄,其溢流水面上缘不受任何约束,而成为光滑连续的自由降落水面,这种水流现象称为堰流。
水流受到闸门或胸墙的控制,闸前水位壅高,水流由闸门底缘与闸底板之间孔口流出,过水断面受闸门开启尺寸的限制,其水面是不连续的,这种水流现象称为闸孔出流。
二.堰流与闸孔出流的水流状态比较堰流与闸孔出流是两种不同的水流现象:堰流时,水流不受闸门或胸墙控制,水面曲线是一条光滑连续的降落曲线。
而闸孔出流时,水流要受到闸门的控制,闸孔上下游水面是不连续的。
对明渠中具有闸门控制的同一过流建筑物而言,在一定边界条件下,堰流与闸孔出流是可以相互转化的,即在某一条件下为堰流,而在另一条件下可能是闸孔出流。
堰流与闸孔出流两种流态相互转化的条件除与闸门相对开度H e有关外,还与闸底坎形式或闸门(或胸墙)的形式有关,另外,还与上游来水是涨水还是落水有关。
经过大量的试验研究,一般可采用如下关系式来判别堰流及闸孔出流。
闸底坎为平顶堰 65.0≤H e 为闸孔出流,65.0>H e 为堰流。
闸底坎为曲线堰 75.0≤H e 为闸孔出流,75.0>H e 为堰流。
式中,H 为从堰顶或闸底坎算起的闸前水深,e 为闸门开度。
堰流与闸孔出流又有许多共同点:①堰流及闸孔出流都是由于堰或闸壅高了上游水位,形成了一定的作用水头,即水流具有了一定的势能。
泄水过程中,都是在重力作用下将势能转化为动能的过程。
②堰和闸都是局部控制性建筑物,其控制水位和流量的作用。
③堰流及闸孔出流都属于明渠急变流,在较短距离内流线发生急剧弯曲,离心惯性力对建筑物表面的动水压强分布及过流能力均有一定的影响;④流动过程中的水头损失也主要是局部水头损失。
水闸设计步骤计算书(多表)范本
力矩(KNm)
设计情况
正向挡水
上游水重
下游水重
反向挡水
上游水重
下游水重
校核情况
正向挡水
上游水重
下游水重
(
1、浮托力的计算
表5-3:浮托力和弯矩计算表(以底板中点为矩心)
计算情况
算式
浮托力(KN)
力臂(m)
力矩(KNm)
设计情况
正向挡水
反向挡水
校核情况
正向挡水
2、渗透压力的计算
计算简图如图所示
止水以上
止水以下
下游
止水以上
止水以下
设计情况
反向挡水
上游
止水以上
止水以下
下游
止水以上
止水以下
校核情况
正向挡水
上游
止水以上
止水以下
下游
止水以上
止水以下
二、闸室结构荷载汇总
将各种荷载分完建、设计情况和校核情况分别进行汇总,如表所示
(
表5-6:设计情况正向挡水闸室结构荷载计算汇总表
荷载名称
垂直力(KN)
水平力(KN)
——作用在闸室上的全部竖向和水平向的荷载对于基础底面垂直水流方向的形心轴的力矩;
——闸室基底面的面积A=BL=;
——闸室基底面对于该底面垂直水流方向的形心轴的截面矩
现根据上式列表5-10计算基底压力如下:
表5-10基底压力计算表
计算参数
完建期
设计正向
设计反向
校核正向
(KN)
(kN•m)
(kPa)
(kPa)
(3)验算闸基及地基的稳定性,包括地基土的抗渗稳定性。
(4)根据稳定和经济合理的要求,对初拟的底下轮廓线进行修改。在修改底下轮廓线的形状和尺寸时,应结合总体布置和闸室的结构布置与设计进行综合考虑。
Excel水力计算展示——闸孔出流水力计算 设计
Excel 水力计算展示之 专题9. 闸孔出流过流能力计算实际工程的水闸,闸底坎一般为宽顶堰和曲线型实用堰,闸门类型主要有平板闸门和弧形闸门。
闸孔出流的形式有自由出流和淹没出流两种。
如下图所示图9-1 ''ct h h > 闸孔自由出流 9-2 ''c t h h = 闸孔自由出流9-3 ''ct h h < 闸孔淹没出流判别标准分别为:当''c t h h ≥时,下游发生远离式水跃或临界式水跃,此时闸孔出流为自由出流;当''c t h h <时,下游发生淹没式水跃,此时的闸孔出流为淹没出流。
其中,''c h 为收缩断面水深c h 的共轭水深,t h 为下游水深。
1.自由出流对于自由出流,其计算公式如下02Q be gH μ= (9-1)式中:Q 为过堰流量,m 3/s ;μ为闸孔出流的流量系数;b 为闸孔净宽,m ;e 为闸门开度,m ; 0H 为闸前总水头,m 。
对于平板闸门,流量系数可用下式计算0.600.176eHμ=- (9-2) 应用范围: 0.10.65eH<<。
对于弧形闸门,流量系数可用下式计算(0.970.81)(0.560.81)180180eHθθμ︒︒=--- (9-3) θ为闸门下缘切线与水平线的夹角,适用于: 002590θ<<, 0.10.65eH<<。
2.淹没出流由上面分析可以看出,闸孔淹没出流的条件为t ch h ''>。
当闸孔为淹没出流时,泄流能力比同样条件下的自由出流小,在实际计算时,是将平底闸孔自由出流的式(9—1)右端乘上一个淹没系数s σ,即:s Q σμ= (9—4)式中 :s σ—淹没系数,可由e H 及zH∆可查图得到,z ∆为闸上、下游水位差。
图9-4闸孔出流的淹没系数【工程任务】矩形渠道中修建一水闸,闸底板与渠底齐平,闸孔宽b 等于渠道宽度b 为3m ,闸门为平板门。
水闸水力计算实例
水闸水力计算实例水闸是一种常见的水利工程设施,用于控制河流或运河的水位,以保证安全和管理水资源。
水闸的水力计算是评估水闸性能并确定其设计参数的重要步骤。
下面将介绍一个水闸的水力计算实例。
假设其中一水闸位于一条宽度为10米,深度为4米的河流中。
设计要求该水闸能够在最大流量为100立方米/秒的情况下保持河流水位在一定范围内变化。
根据这些设计要求,需要进行水闸的水力计算。
首先,我们需要估计水闸的有效面积。
有效面积是指水闸开启时真正控制水流的面积。
假设水闸的开启宽度为6米,根据几何学原理可以计算出水闸的有效面积为24平方米。
接下来,我们需要计算水闸的流量特性。
流量特性是指水闸在不同开启条件下的流量变化规律。
根据流体力学原理,流量与水头差呈线性关系。
当水闸完全关闭时,水头差为最大,流量为0。
当水闸完全开放时,水头差为最小,流量为最大。
假设水闸的流量特性满足一个线性关系,我们可以使用公式Q=KA√2gH来计算在不同开启条件下的流量。
其中,Q为流量,K为系数,A为水闸的有效面积,g为加速度重力常数,H为水头差。
假设水闸完全关闭时,水头差为4米。
代入公式,可以计算出此时的流量为0。
假设水闸完全开放时,水头差为0.5米。
代入公式,可以计算出此时的流量为100立方米/秒。
接下来,我们可以根据流量特性计算水闸在其他开启条件下的流量。
假设水闸开启宽度为3米,根据几何学原理可以计算出此时的有效面积为12平方米。
代入公式,可以计算出此时的流量为50立方米/秒。
根据以上计算,我们可以得到水闸在不同开启条件下的流量。
然后,我们可以根据设计要求评估水闸的性能。
在最大流量为100立方米/秒的情况下,水闸的开启宽度为6米,流量为100立方米/秒,满足设计要求。
在最小流量为0立方米/秒的情况下,水闸的开启宽度为0米,流量为0立方米/秒,满足设计要求。
在其他流量条件下的计算结果也在设计要求范围内。
综上所述,通过水闸的水力计算,我们可以确定水闸的设计参数,以满足设计要求。
水闸水力计算
水闸水力计算海漫及冲刷深计算一、海漫长度计算1、输入参数流量…………………………… Q=2540m3/s上游水位……………………… H上=1299.65消力池末端宽………………… b1=104m 下游水位……………………… H下=1298.09 海漫长度计算系数…………… k s=72、计算过程消力池末端单宽流量q=24.423m3/(s·m)上下游水位差ΔH= 1.560因为sqrt(q s(sqrt(ΔH))= 5.523=1~9故海漫长底Lp=k s sqrt(q(sqrt(ΔH))=38.662m二、海漫末端河床冲刷深度计算1、输入参数流量…………………………… Q=2540m3/s海漫末端河床水深…………… h m=6.49消力池末端宽………………… b1=104m河床土质允许不冲流速………[V0]=2.22、计算过程海漫末端单宽流量q m=24.423m3/(s·m)海漫末端河床冲刷深度d m=1.1q m/[V0]-h m5.722m三、上游护底首端河床冲刷深度计算1、输入参数流量…………………………… Q=2540m3/s上游护底首端河床水深'…… h m'=7.15上游护底首端宽………………… b1=104m河床土质允许不冲流速………[V0]=2.22、计算过程上游护底首端单宽流量q m'=24.423m3/(s·m)上游护底首端河床冲刷深度d m'=0.8q m'/[V0']-h m' 1.731m.四、最终取海漫长度………… t=40m取海漫末端河床冲刷深度dm 6.5m取上游护底首端河床冲刷深度dm'3mA12.79375mmmkN/m3。
水闸计算公式范文
水闸计算公式范文水闸是一种用于调节水流的结构物,它常用于水利工程中的水库、渠道等地方。
水闸的设计与计算是确保水闸正常工作的重要环节。
下面将介绍水闸的计算公式及其相关内容。
1.水闸开度计算公式:水闸的开度是指水闸门相对于水流的开启程度,常用于调节流量的大小。
水闸开度计算公式如下:开度=(Q×L)/(B×H)其中,Q为经过水闸的流量,L为水闸门的长度,B为水闸的宽度,H 为水闸门的高度。
2.过流水头计算公式:过流水头是指水流通过水闸时产生的动能损失,它与流量、水闸的形状和尺寸等参数有关。
过流水头计算公式如下:水头=(V^2)/(2g)其中,V为水流的流速,g为重力加速度。
3.水闸流量计算公式:水闸的流量是指单位时间内通过水闸的水量,它是水利工程设计和管理的关键参数。
水闸流量计算公式如下:流量=(C×B×H×(2g×H)^0.5)其中,C为流量系数,B为水闸的宽度,H为水闸门的高度,g为重力加速度。
4.水闸的阻力计算公式:水闸的阻力是指水流通过水闸时受到的阻碍力,它与水闸的形状和尺寸等因素有关。
水闸的阻力计算公式如下:阻力=(λ×ρ×L×(Q/A)^2)/(2g)其中,λ为摩擦系数,ρ为水的密度,L为水闸的长度,Q为经过水闸的流量,A为水闸门的有效面积,g为重力加速度。
5.水闸的槽底水流速度计算公式:水闸槽底水流速度是指水闸门下游水体的流速,它与水闸的流量和槽底坡度等有关。
水闸槽底水流速度计算公式如下:流速=(Q/(B×H))其中,Q为经过水闸的流量,B为水闸的宽度,H为水闸门的高度。
以上是水闸计算中常用的公式,根据实际情况和需要,可以选择合适的公式进行计算。
在水闸的设计和施工过程中,除了公式的应用外,还需要考虑水闸的材料选择、结构设计等问题,以确保水闸的安全可靠运行。
毕业设计水闸的水力计算
第二章水闸的水力计算2-1孔口设计计算因为该闸即要渲泄米湖洪水,又要排除龙河流域的内涝,所以拟规划为平底宽顶堰型式。
计算条件:以排涝流量设计孔径,以泄洪流量校核孔径。
一、闸孔净宽的确定(一)设计状况(排涝)设计龙河水位为2.85m,米湖水位为2.74m。
水深H为3.35m。
(1)流态的判别:h s=3.24 H=3.35 h s/H=3.24/3.35=0.0.97>0.85故出口水流为淹没流,查水闸设计规范(SD133-84)得淹没系数为0.50。
(2)侧收缩系数(ε)的确定边墩及中墩拟采用园弧型墩头,边墩计算厚度采用b b=13.60m,中墩厚度采用1.0m。
P/H=0.5/3.35=0.15中孔b0/b s=5/6=0.833查得εz=0.978边也b0/b s=5/13.60=0.368查得εb=0.933为了控制运用的方便,初步拟定闸孔数为3孔,因此侧收缩系数ε=(εz(N-1)+εb)/N=0.963(3)流量系数:由P/H=0.5/3.35=0.15查规范(SD133-84)得流量系数m=0.434 因此闸孔总净宽B0=Q/σεm(2g)1/2H03/2=84/(0.5×0.963×0.434×(19.6)1/2×3.353/2)=14.8m取净宽B0=15m,故采用3孔,每孔净宽5.0m。
(二)校核状况(泄洪)米湖水位为5.50m,龙河水位为3.80m,闸门全开时水流型式判断:3.5/6=0.58<0.65故属于孔流。
过流量计算:根据规范(SD133-84)可知:Q=B0σ’μhe(2gH0)1/2B0=15mh e/H=0.58r/h e=0.3/3.5=0.09查表知流量系数:μ=0.555收缩断面水深hc可按下式试算:h c3-T0h c2+αq2/(2gψ2)=0h c——收缩断面水深(m)T0——总势能(m),等于7.1mαc—水流动能校正系数,取1.00q——单宽流量(m3/s.m),等于6 m3/s.mψ——流速系数,采用0.95经试算得h c=0.57m其共厄水深h c”=3.36m(h e- h c”)/(H- h c”)=(3.5-3.36)/(6-3.36)=0.05查表得孔流淹没系数σ’=0.99上游作用水头H0=6.0m因此校核过流能力Q=15×0.99×0.555×3×(19.6×6)1/2=268.1m3/s满足泄洪过流要求。
变孔径多孔集水管的水力设计
变孔径多孔集水管的水力设计
多孔集水管的水力设计,是指在调节集水渠系统的变孔径的同时,找出最佳的放水量,使集水管道的垂直负荷、水头损失、管内流速合理,从而达到减轻排放水量和节省能量消耗的目的。
首先,需要分析集水渠各支管之间的示范条件,消能器之间的衔接条件,以及其他因素,包括集水管初始条件、水深、流速和水头损失等等,分析出可以满足要求的变孔径的最佳配置。
其次,要根据变孔径的参数,计算变孔径多孔集水管的数学模型,以便求出放水量和数值计算结果,进一步确定变孔径集水管的最佳性能和工艺参数。
最后,通过试验反复地确定变孔径多孔集水管最终的性能参数,以便达到节能减排的目的。
闸门水力计算说明汇总
水闸水力计算说明一、过流能力计算1.1外海进水外海进水时,外海水面高程取5.11m ,如意湖内水面高程取1.0m 。
中间三孔放空闸,底板高程为-4.0m ,两侧八孔防潮闸底板高程为2.0m ,每孔闸净宽度为10m 。
表2 内海排水时计算参数特性表1.1.1中间三孔放空闸段 a.判定堰流类型27.511.948==Hδ式中δ为堰壁厚度,H 为堰上水头。
2.5<5.27<10,为宽顶堰流。
b.堰流及闸孔出流判定11.95=H e =0.549≤0.65,为闸孔出流。
式中,e 为闸门开启高度,H 为堰、闸前水头。
c.自由出流及淹没出流判定闸孔出流收缩断面水深h c=ε1e=5.0×0.650=3.25m 。
式中,e 为闸门开启高度,为5.0m ;ε1为垂向收缩系数,查《水利计算手册》(2006年第二版)中表3-4-1得0.650。
收缩断面处水流速为υc=)(20c h H g -ϕ=)(25.311.981.9295.0-⨯⨯⨯=10.19m/s 。
式中,ψ为闸孔流速系数,查《水利计算手册》(2006年第二版)中表3-4-3,取0.95;H 0为闸前总水头,为9.11m ; hc 为收缩断面水深。
收缩断面水深hc 的共轭水深hc”=)181(22-+c c c gh h ν=)125.381.919.1081(225.32-⨯⨯+=6.83m ;下游水深ht=5.0m <hc”=6.83m ,故为自由出流。
d.过流量计算根据闸孔自由出流流量计算公式Q 1=002gH be μ=11.981.92530503.0⨯⨯⨯⨯⨯=1008.71m³/s 。
式中,μ0为流量系数,平板闸门流量系数可按经验公式 μ0=0.60-0.176He=0.60-0.176×0.549=0.503; b 为闸孔宽度,为3×10=30m 。
1.1.2两侧八孔防潮闸段 a.判定堰流类型43.1511.348==Hδ>10,过渡为明渠流。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
09m3/S H0=1.96m 1b0=3.00m bs=4.94m
引水闸过闸流量Q=上游设计水深:设计闸孔单孔宽度:上游河道一半水深处的宽度:εz -中闸孔侧收缩系数,dz-中闸墩厚度(m);εb -边闸孔侧收缩系数,
b b -边闸墩顺水流向边缘线至上游河道水边线之间的距离(m)
H 0-计入行近流速水头的堰上水深(m);g-重力加速度,可采用9.81(m/s 2
);m-堰流流量系数;设计闸孔数量N=ε-堰流侧收缩系数;b 0-闸孔净宽(m);
b s -上游河道一半水深处的宽度(m);N-闸孔数;
σ-堰流淹没系数,可按公式(A.0.1-6)计算球的或按表A.0.1-2查得;h s -由堰顶算起的下游水深(m)。
式中:B 0-闸孔总净宽(m);
Q-过闸流量(m³/s);
夏塔河引水干渠分水闸水力学计算
计算依据:水闸设计规范(SL265-2001)多孔闸水利学计算内容可按下式进行计算:
当为多孔闸且闸墩为圆弧形时:
2
/30
02H g m Q
B σε=
N
N b
z εεε+-=
)1(400
00)
1(171.01z
z z d b b d b b ++--=ε400
002
)21(171.01b
z b z b b d
b b b d b b ++++-
-=ε4
.00
0)
1(31.2H h H h s s -=σ
dz=0.00m
bb=3.00m
hs=1.22m
中敦厚度:边闸墩顺水流向边缘线至上游河道水边线之间的距离由堰顶算起的下游水深计算中墩侧收缩系数如下:
计算侧收缩系数。