机械原理机械设计(油田抽油机)
机械原理机械设计(油田抽油机)
设计题目——油田抽油机1. 机器的用途及功能要求抽油机是一种采油机械,主要用于当油井不能自喷或自喷能力不能满足采油需要时,从地下抽取石油。
图1是游梁式抽油机的工作原理图。
工作时,抽油机的执行机构通过钢丝绳牵引抽油杆,带动活塞上、下往复运动。
当活塞上移(上冲程)时,抽油泵泵体下部形成负压,使得排出阀关闭,吸入阀打开,油液被吸入泵体内;当活塞下移(下冲程)时,泵体下部压力增大,使得吸入阀关闭,排出阀打开,泵体内的石油被压入活塞体内。
在活塞不断往复运动的过程中,油液从活塞体内进入抽油泵上部的油管,最后从井口排入集油管线(图1a)。
抽油机在一个运动循环中所受的生产阻力变化很大。
在上冲程中,生产阻力不仅包括抽油杆和活塞以上环形液柱的重量,而且还包括抽油杆和环形液柱的惯性动载荷(悬点E承受了最大载荷);而在下冲程时,抽油杆在其自重作用下克服浮力下行,生产阻力为零。
此外,执行机构的总惯性力和总惯性力矩也不平衡。
这些因素使抽油机在工作过程中产生有害振动,同时造成其速度波动,影响抽油杆和抽油泵的正常工作,影响抽油机的工作寿命。
因此,必须对抽油机进行动平衡。
2. 设计要求和原始数据设计以电动机为原动机的抽油机。
⑴ 抽油机结构简单,加工容易,便于维护,受力好,效率高,执行机构的许用压力角[α]≤40°;⑵ 执行机构具有急回性能,行程速比系数1<k≤1.15;⑶ 抽油杆的冲程长度可调;⑷ 采用曲柄平衡方式对抽油机进行动平衡,平衡重G 作用于B点(图1b);3. 设计内容⑴ 确定总体设计方案,包括传动系统中各传动的类型、传动路线、总传动比和传动比分配;⑵ 选择执行机构的型式,确定各构件尺寸,计算机构自由度;⑶ 用电算法作执行机构的运动分析,求出在一个运动循环中,步长为π/36弧度的抽油杆的位置、速度和加速度,以及抽油杆在一个运动循环中的平均速度Vm、最大速度Vmax、最小速度Vmin和速度不均匀系数δv(此处所说速度均指速度的大小);⑷ 求出原动机所需工作功率Pd,选择电动机;⑸ 对传动系统中各级传动进行工作能力计算;⑹ 进行减速器的结构设计。
简述抽油机的结构工作原理
简述抽油机的结构工作原理抽油机是一种用于从井筒或油井中抽取液态石油或其他液体的机械设备。
它在能源开发和石油生产中具有重要的作用。
下面将对抽油机的结构和工作原理进行详细介绍。
抽油机的结构主要包括发动机、泵体、柱塞、阀门和其他连接部件。
发动机负责提供动力,泵体和柱塞负责抽油,阀门则用于控制液体的流动。
抽油机可以根据泵体的形式分为柱塞抽油机和旋转抽油机两种。
柱塞抽油机是抽油机的一种常见形式。
它的泵体内部有多个平行排列的柱塞,其中一端与曲轴相连,另一端与输油管道相连。
当曲轴转动时,柱塞也会跟随转动,从而产生泵吸油腔的变化,实现抽油的效果。
在抽油过程中,柱塞会周期性地上下运动,排出液体。
旋转抽油机是另一种常见的抽油机形式。
它的泵体内部有一个旋转的螺杆或齿轮,当螺杆或齿轮转动时,液体会随之被离心力和吸力带动,从而形成抽油的效果。
旋转抽油机的结构简单,可以适应不同类型的油井。
抽油机的工作原理主要包括吸油和排油两个过程。
当抽油机开始工作时,柱塞或旋转机构开始运动。
在吸油过程中,泵体内部产生低压区域,使得液体从井筒或油井中被吸入泵体内部。
同时,阀门打开,液体通过管道进入泵体。
在排油过程中,柱塞或旋转机构的运动方向发生改变,形成高压区域。
这样,液体被压入输油管道中,并通过管道传送到下游设备或储油区。
在抽油机运行的整个过程中,阀门会根据需要进行打开和关闭,以控制液体的流动速度和方向。
抽油机在油田开发中有着广泛的应用。
它可以根据油井类型和产量要求进行选择和安装。
抽油机具有结构紧凑、性能稳定、抽油效率高等特点,可以适应不同条件下的抽油作业。
总之,抽油机是一种关键的石油开采设备,具有复杂的结构和工作原理。
通过发动机提供动力,泵体和阀门控制液体的流动,抽油机可以有效地从井筒或油井中抽取液态石油。
抽油机在石油生产中的应用非常广泛,对于提高油田产量和资源利用率具有重要作用。
抽油机工作原理资料
典型示功图分析
5. 深井泵受气体影响及供液不足时的实测示功图
深井泵受气体影响与供液不足图十分相似,区别是: 减载线呈现为圆弧线,受气体影响越大,圆弧曲线特征更 明显。
油井供液不足时的示功图
深井泵气体影响的示功图
典型示功图分析
7、正常抽油、有振动影响时的实测示功图
对于抽油杆柱有 明显振动的井 , 要注 意 避 免“共 振 ” 造成 经常断脱。
套管头
井口装置
油管头:安装于采油 树和套管头之间。 作用:悬挂井内油管 柱,密封油管和油层 套管间的环形空间, 通过油管头四通上的 两个侧口完成注平衡 液及洗井等作业.
抽油 三通 光杆密 封器 油管头
套管头
井口装置
光杆密封器:主要由上部的 密封盒和下部的胶皮闸门组 成. 正常抽油时,起密封井口和 防喷的作用;更换密封垫圈 时,起临时密封井口的作用.
60 KN 45 30 15
0.7
1.5
2.2
3.0
抽油杆断脱时的实测示功图
典型示功图分析
4.油井结蜡时的实测示功图
结蜡严重的井,不论 是深井或浅井 , 只要结蜡 就有增载的特征 , 发现示 功图有“结蜡”的宽度 , 示功图有此类特征时 , 热 洗一般无效 , 应尽快检泵 清蜡。
油井结蜡时的实测示功图
抽油机主要部件的作用
(8)电机 动力的来源,一般采用感应式三相交流电动机,由皮带传送动 力至减速器大皮带轮。 (9)刹车装置 刹车也叫制动器,它是由手柄、刹车轮、刹车片等部件组成。 刹车片与刹车轮接触时发生摩擦而起到制动作用,所以也叫制 动器。 (10) 皮带轮 电动机把旋转的动力传给皮 带,再由皮带传给皮带轮, 由皮带轮带动输入轴,它是 减速器做功的桥梁。
抽油机机械设计课程设计
抽油机机械设计课程设计一、课程目标知识目标:1. 让学生理解抽油机的基本工作原理及其机械结构设计的重要性;2. 掌握抽油机主要部件的设计方法,包括齿轮、曲柄连杆、泵筒等关键部件的参数计算与选型;3. 了解抽油机机械设计中的材料选择、强度计算和动力学分析的基本原则。
技能目标:1. 培养学生运用CAD软件进行抽油机零部件的二维和三维设计能力;2. 培养学生利用工程手册和资料进行机械设计参数查询和计算的能力;3. 提高学生分析机械结构问题、提出改进方案并进行论证的能力。
情感态度价值观目标:1. 培养学生对机械设计的兴趣,激发创新意识和探索精神;2. 增强学生的团队合作意识,培养在团队中沟通、协作解决问题的能力;3. 引导学生关注工程技术在实际生产中的应用,提高学生的社会责任感和工程伦理观念。
分析课程性质、学生特点和教学要求,将目标分解为以下具体学习成果:1. 学生能够准确描述抽油机的工作原理及主要部件功能;2. 学生能够独立完成抽油机关键部件的参数计算与设计;3. 学生能够运用CAD软件完成抽油机的三维模型设计;4. 学生能够通过小组合作,提出并论证抽油机结构优化方案;5. 学生能够树立正确的工程观念,认识到机械设计在国民经济发展中的重要作用。
二、教学内容1. 抽油机工作原理及结构特点:讲解抽油机的基本工作原理,分析其主要结构及功能,使学生了解抽油机各部件之间的关系。
- 教材章节:第一章 抽油机概述2. 抽油机主要部件设计方法:详细介绍齿轮、曲柄连杆、泵筒等关键部件的设计方法,包括参数计算和选型。
- 教材章节:第二章 抽油机主要部件设计3. 材料选择与强度计算:讲解抽油机设计中材料的选择原则,以及强度计算的基本方法。
- 教材章节:第三章 材料选择与强度计算4. 抽油机动力学分析:分析抽油机在运行过程中的动力学问题,介绍动力学分析方法。
- 教材章节:第四章 抽油机动力学分析5. CAD软件应用:教授学生如何运用CAD软件进行抽油机零部件的二维和三维设计。
机械课程设计---油田抽油机
机械原理机械设计课程设计计算说明书设计题目油田抽油机目录一、设计题目 (1)二、系统总体方案的确 (1)三、设计原始数据 (2)四、电动机的选择 (3)五、传动比的分配 (4)六、执行机构尺寸计算 (5)七、机构运动分析 (6)八、V带设计 (15)九、传动装置的运动和动力参数 (17)十、齿轮的传动计算 (18)十一、减速器机体的尺寸设计 (31)十二、轴的设计 (32)十三、键的选择及强度较核 (33)十四、轴承寿命计算及静强度 (35)十五、轴的强度较核 (37)十六、参考文献 (41)计算及说明主要结果一、设计题目:油田抽油机二、系统总体方案的确定:系统总体方案:电动机→传动系统→执行机构;初选三种传动方案,如下:(a)二级圆柱齿轮传动(b)为涡轮涡杆减速器(c)为二级圆柱圆锥减速器系统方案总体评价:(b)方案为整体布局最小,传动平稳,而且可以实现m c R 35604.1)2sin(sin ==ψθ,其中m c 5.1=; θsin 221R L C C =R L C AC L C C AC 2sin sin 21121==∠θR C AC L AC 2sin 222=∠其中,由于032][=α,则:02133775.242][=-=∠ψαA C C002173917.148)2][(180=-+-=∠ψαθC AC⎩⎨⎧==+==-1052667.11176882.121AC AC L a b L a b 解得:m a 1437893.0=,m b 2614775.1=;m b a c c b a d 410937.1]sin[)(2)(22=+-++=α七、 机构运动分析:1.数学模型 如图所示,取以A 点为原点、x 轴与AD 线一致的直角坐标系,标出向量和转角,由封闭向量多边形ABCD 可得1.35604R m =01224.33775C C A ∠=012148.73917AC C ∠=m a 1437893.0= m b 2614775.1=1.410937d m =122()()(/2)22122''"i i i AB BC BC l e l e l e ϕπϕπϕπϕϕϕ+++++33()(/2)233'"i i DC DC l e l e ϕπϕπϕϕ++=+实部和虚部分别相等可得22112222'cos 'cos "sin AB BC BC l l l ϕϕϕϕϕϕ++ 23333'cos "sin DC DC l l ϕϕϕϕ=+22112222'sin 'sin "cos AB BC BC l l l ϕϕϕϕϕϕ--+ 23333'sin "cos DC DC l l ϕϕϕϕ=-+解得2221122332332'cos()''cos()"sin AB BC DC DC l l l l ϕϕϕϕϕϕϕϕϕϕ-+--=-()222113232332'cos()'cos()'2"sin()AB BC DC BC l l l l ϕϕϕϕϕϕϕϕϕϕ-+--=-2.框图设计3.程序和计算结果Visual C++ 程序#include "stdio.h"332.3697410231.481.044P d C mm n ≥==Ⅱ332.264171.06 1.069843.421.894P d C mm n ≥=⨯=Ⅲ 中间轴各轴段设计:1.各段轴的直径轴段1为轴承径,其直径应符合轴承内径标准,且31.4d mm ≥Ⅱ,由此选定35d mm =1。
抽油机工作原理
• 当活塞上行时 游动阀受油管内活塞以上液柱 的压力作用而关闭,并排出活塞冲 程一段液体 固定阀由于泵筒内压力下降, 被油套环形空间液柱压力顶开,井 内液体进入泵筒内,充满活塞上行 所让出的空间。
当活塞下行时 由于泵筒内液柱受压,压力增 高,而使固定阀关闭。 在活塞继续下行中,泵内压力 继续升高,当泵筒内压力超过油管 内液柱压力时,游动阀被顶开,液 体从泵筒内经过空心活塞上行进入 油管.
抽油机主要部件的作用
(1)驴头 它的作用是保证抽油时光杆始终对准井口中心位置。驴头的弧 线是以支架轴承为圆心,游粱前臂长为半径画弧而得到的.
(2)游梁 游梁固定在支架上,前端安装驴头承受井下负荷,后端 连接横梁、连杆、曲柄、减速箱传递电动机的动力. (3)曲柄连杆机构 曲柄连杆机构的作用是将电动 机的旋转运动变成驴头的往复 运动.在曲柄上有4-8个孔, 是调节冲程时用的。 (4)减速箱 将电动机的高速转动,通过三轴 二级减速变成曲柄轴(输出轴) 的低速转动,同时支撑平衡块。
C—驴头上死点,活塞运行到最高点
D—固定阀关闭,游动阀打开,活塞开始下行程 S—光杆冲程 , m S活—活塞冲程, m P—光杆负荷, KN P’杆—抽油杆在液体中质量, KN P’液—柱塞以上液柱质量, KN P静—光杆承受最大静负荷, KN λ —冲程损失,m λ = λ 1+ λ 2 λ 1—抽油杆伸缩长度,m λ 2—油管伸缩长度,m
抽油井工作原理及示功图
机械采油,分有杆泵采油和无 杆泵采油。 有杆泵采油是通过地面动力设 备带动抽油机,并借助抽油杆 带动深井泵采油的一种方法。 三抽设备:抽油机 泵 杆 抽油泵
抽 油 杆
抽油机
抽油机是抽 油井地面机械传动 装置,它和抽油杆、 抽油泵配合使用, 能将井下原油抽到 地面。
抽油机的原理
抽油机的原理第一篇:抽油机的原理目前,游梁式抽油机是应用最普遍的石油开采机械装置之一,也是油田耗电大户,其用电量约占油田总用电量的40%,总体效率很低。
由于起动时,要重新挂吊绳,电机需通过连竿将配重支起,故初始状态要求拖动电机的起动转矩是抽油机运行时负载的3~4倍,甚至更大,起动转矩是游梁式抽油机选配电机的第一要素。
起动转矩适用,则负载功率必然匹配不佳,即产生所谓“大马拉小车”现象。
在轻载工况下,电机效率和功率因数都很低,造成原油开采的电费成本居高不下,能源浪费十分严重[1]。
针对抽油机“大马拉小车”的能源浪费问题,人们从起动转矩和高效率方面研制了各种特种电机。
如:双定子电动机、水磁同步电动机、超高转差率电动机等,但普遍存在工艺复杂、制造成本高、效率较低等缺陷[2],游梁式抽油机能源浪费问题并未根本解决。
由于盘式电动机具有功率密度大,铁心利用率高,定、转子平行放置,易实现高起动转矩等特点,因此较适合作为游梁式抽油机的配套电机。
目前盘式异步电动机的应用还停留在小功率范围。
1盘式电动机设计1.1盘式电动机的结构盘式电动机气隙磁通为轴向,载流导体沿径向放置。
定、转子铁心呈圆盘状,由铁心冲卷机冲制,卷绕而成[3]。
两者在空间上呈平面相对放置,有利机于散热,因而可选较高的线负荷,从而获得高功率度;盘式电机的铁心由自动冲卷机卷制,铁心利用率高,可达95%以上,而传统电机的硅钢片由于要冲掉四角余料,利用率只能达到70%~75%”[4]。
而且,盘式电机转子不受定子的束缚,转子容易实现深税槽,提高起动转矩。
基于以上特点,盘式电动机十分适合设计成高起动转矩游梁式抽油机专用电动机,解决游梁式抽油机配套电机“大马拉小车”的能源浪费问题。
为了降低成本,本文选用了铸铝笼型转子的单定子、单转子的盘式电动机结构,以简化工艺,增加电机的可靠性。
1.2高功率密度设计盘式电动机的视在功率:式中:αδ为计算极弧系数;KB为气隙磁场波形系数;Kdp为绕组系数;Dav为铁心平均直径;La为铁心径向高度;n为同步转速;Aav为平均直径处线负载;Bδ气隙磁通密度幅值。
抽油机
抽油机(俗称“磕头机”)1、概述抽油机是开采石油的一种机器设备,俗称“磕头机”,通过加压的办法使石油出井。
2、工作原理当抽油机上冲程时,油管弹性收缩向上运动,带动机械解堵采油器向上运动,撞击滑套产生振动;同时,正向单流阀关闭,变径活塞总成封堵油当抽油机下冲程时,油管弹性伸长向下运动,带动机械解堵采油器向下运动,撞击滑套产生振动;同时,反向单流阀部分关闭,变径活塞总成仍然封堵油套环形油道,使反向单流阀下方区域形成高压区,这一运动又对地层内的油流通道产生一种反向的冲击力。
油井内的机械解堵采油器就是利用油管柱周期性的弹性变形来产生周期性的上下往复运动,从而对地层产生抽吸挤压频繁交替变换的活塞作用。
油层内“粘连”的液滴和堵塞颗粒物受到这种频繁地抽吸力和挤压力扰动后,被迫脱离原位,最终,使不易移动的液滴开始流动,使“粘连”的堵塞颗粒物脱离油道,实现疏通油道、扩大油流增加原油产量的目的。
套环形油道,使正向单流阀下方区域形成负压区,相当于对地层产生了一个强大的抽吸力。
磕头机即游梁式抽油机是油田广泛应用的传统抽油设备,通常由普通交流异步电动机直接拖动。
其曲柄带以配重平衡块带动抽油杆,驱动井下抽油泵做固定周期的上下往复运动,把井下的油送到地面。
在一个冲次内,随着抽油杆的上升/下降,而使电机工作在电动/发电状态。
上升过程电机从电网吸收能量电动运行;下降过程电机的负载性质为位势负载,加之井下负压等使电动机处于发电状态,把机械能量转换成电能回馈到电网。
然而,井下油层的情况特别复杂,有富油井、贫油井之分,有稀油井、稠油井之别。
恒速应用问题显而易见。
如抛却这些不谈,就抽油机油泵本身而言,磨损后的活塞与衬套的间隙漏失等都是很难解决的问题,况且变化的地层因素如油中含砂、蜡、水、气等复杂情况也对每冲次抽出的油量有很大的影响。
看来,只有调速驱动才能达到最佳控制。
引进调速传动后,可根据井下状态调节抽油机冲程频次及分别调节上、下行程的速度,在提高泵的充满系数的同时减少泵的漏失,以获得最大出油量。
抽油机机械系统设计(常规型)毕业设计说明书
:目录:1.设计任务***************************************************(1) 2.设计内容***************************************************(2) 3.方案分析***************************************************(2) 4.设计目标***************************************************(3) 5.设计分析***************************************************(3) 6.电机选择***************************************************(7) 7.V带传动设计*********************************************(10) 8.齿轮传动设计********************************************(11) 9.轴的结构设计********************************************(19) 10.轴承寿命校核********************************************(21) 11.心得与总结***********************************************(25) 12.附录**********************************************************(26)设计任务:抽油机机械系统设计抽油机是将原油从井下举升到地面的主要采油设备之一。
常用的有杆抽油设备由三部分组成:一是地面驱动设备即抽油机;二是井下的抽油泵,它悬挂在油井油管的下端;三是抽油杆,它将地面设备的运动和动力传递给井下抽油泵。
JY02机械原理课程设计-抽油烟机系统设计
机械原理课程设计说明书设计题目:抽油机机械系统设计设计者:指导教师:2010年5月24日目录1、设计任务 (1)2、执行机构的选择与比较 (2)3、主要机构设计 (4)4、机构运动分析 (8)5、原动机的选择 (9)6、传动机构的选择与比较 (9)7、机构循环图 (10)8、设计心得与体会 (10)9、参考文献 (11)10、机构简图 (11)一、设计任务抽油机是将原油从井下举升到地面的主要采油设备之一。
常用的有杆抽油设备由三部分组成:一是地面驱动设备即抽油机;二是井下的抽油泵,它悬挂在油井油管的下端;三是抽油杆,它将地面设备的运动和动力传递给井下抽油泵。
抽油机由电动机驱动,经减速传动系统和执行系统(将转动变换为往复移动)带动抽油杆及抽油泵柱塞作上下往复移动,从而实现将原油从井下举升到地面的目的。
整体工作原理见图1:图1悬点—执行系统与抽油杆的联结点悬点载荷P(kN)—抽油机工作过程中作用于悬点的载荷抽油杆冲程S(m)—抽油杆上下往复运动的最大位移冲次n(次/min)—单位时间内柱塞往复运动的次数图2悬点载荷P的静力示功图(图2)——在柱塞上冲程过程中,由于举升原油,作用于悬点的载荷为P1,它等于原油的重量加上抽油杆和柱塞自身的重量;在柱塞下冲程过程中,原油已释放,此时作用于悬点的载荷为P2,它就等于抽油杆和柱塞自身的重量。
假设电动机作匀速转动,抽油杆(或执行系统)的运动周期为T。
选择油井工况为:1. 根据任务要求,进行抽油机机械系统总体方案设计,确定减速传动系统、执行系统的组成,绘制系统方案示意图;2. 根据设计参数和设计要求,采用优化算法进行执行系统(执行机构)的运动尺寸设计,优化目标为抽油杆上冲程悬点加速度为最小,并应使执行系统具有较好的传力性能;3. 建立执行系统输入、输出(悬点)之间的位移、速度和加速度关系,并编程进行数值计算,绘制一个周期内悬点位移、速度和加速度线图(取抽油杆最低位置作为机构零位);4. 机构静态分析,通过建立机构仿真模型,并给系统加力。
机械原理机械设计(油田抽油机)
机械原理机械设计(油田抽油机)油田抽油机是石油工业中的重要设备之一,它主要用于将地下油井中的原油抽到地面。
油田抽油机的工作原理和机械设计非常复杂,需要考虑许多因素,如水平距离、井深、液压、机械运转速度等。
以下是对油田抽油机机械原理及设计的详细介绍。
一、机械原理油田抽油机主要由电机传动部分、减速箱、抽油杆、地面动力头、泵套管和井下泵抽组成。
电机传动部分即电机将动力传输给减速箱,减速箱使抽油杆做正向和反向的往复运动,以推动泵套管和井下泵抽油。
地面动力头与抽油杆相连接,它具有双向液压缸,可以改变抽油杆的运动方向和速度。
泵套管则是将抽出来的原油从井底输送到地面。
抽油杆是油田抽油机中最为关键的部分,它的设计必须满足以下要求:1.能够承受高强度往复运动的疲劳载荷;2.具有良好的非常规持久性能,能够适应不同的油井环境;3.具有足够的刚性和强度,以防止抽油杆变形;4.具有良好的耐腐蚀性能,以适应油井环境。
抽油杆的设计需要考虑许多因素,如长度、径向尺寸、剖面形状、材料等。
通常情况下,抽油杆的材料一般为高强度和高韧性的合金钢,直径则根据井深和具体的井型确定。
二、机械设计1.电机传动部分的设计电机传动部分是油田抽油机的核心部分,它需要满足以下要求:1.具有足够的动力,确保油井中的原油能够被顺利提取;2.具有良好的调速性能,以满足不同油井环境的需求;3.具有较高的传动效率,以减少能源消耗。
传动部分包括电机、减速机和联轴器等部分。
电机的功率和转速需要根据抽油杆的长度和井深等因素进行计算,而减速机则需要根据对原油提取的要求和选用的电机型号选用。
联轴器是连接电机和减速机的部分,它的设计需要考虑以下因素:1.承受足够的负载,使得工作时不容易发生毁坏;2.具有良好的安全性,防止突发事故的发生;3.具有良好的防抖性能,可以减少工作过程中的震动和噪音。
2.地面动力头的设计地面动力头是油田抽油机中关键的部分,它必须满足以下要求:1.具有良好的控制性能,可以随时调整泵套管和井下泵的运动情况;2.具有较高的工作效率,可以顺利地将原油提取到地面;3.具有良好的耐腐蚀性能,以适应油井环境的要求和工作环境的不同。
抽油机工作原理课件
•21
典型示功图分析
3.抽油杆断脱时的实测示功图
抽油杆断脱时,光杆只承受断裂上部抽油杆在液体中的重力, 因而示功图形成长条,长条图形越向上,表示断脱位置越向 下。抽油杆断脱时,油井产液量为零。
60 KN
45
30
15
0.7
1.5
2.2
3.0
抽油杆断脱时的实测示功图
•抽油机工作原理
•22
典型示功图分析
•10
抽油泵的工作原理
• 在一个冲程中,深井 泵应完成一次进油和一 次排油.活塞不断运动, 游动阀与固定阀不断交 替关闭和顶开,井内液 体不断进入工作筒,从 而上行进入油管,最后 达到地面。
•抽油机工作原理
•11
井口装置
抽油
组成:
三通
1)套管头
2)油管头
3)抽油三通
4)光杆密封器(盘根盒)
光杆密 封器
抽油机主要是由四大部分组成的:
(1)游梁部分:驴头、游梁、横梁、尾梁、连杆、平衡板(复合平 衡抽油机)
(2)支架部分:中央轴承座、工作梯、护圈、操作台、支架。
(3)减速器部分:底船、减速器筒座、减速器、曲柄、配重块、 刹车等部件。
(4)配电部分:电机座、电机、配电箱等。
•抽油机工作原理
•3
抽油机工作原理
油井供液不足时的示功图
深井泵气体影响的示功图
•抽油机工作原理
•24
典型示功图分析
7、正常抽油、有振动影响时的实测示功图
对于抽油杆柱有明 显振动的井,有振动影响的示功图
•抽油机工作原理
•25
典型示功图分析
8.正常抽油、抽油机平衡重没有调整好的实测示功图
机的旋转运动变成驴头的往复
抽油机工作原理
三、抽油机主要部件的作用
(5) 平衡块 平衡块装在抽油机游粱尾部或曲柄轴上。它的作用是:当抽油 机上冲程时,平衡块向下运动,帮助克服驴头上的负荷;在下 冲程时,电机使平衡块向上运动,储存能量,在平衡块的作用 下,可以减小抽油机上下冲程的负荷差别。
(6) 悬绳器 是连接光杆和驴头的柔性连接件,还可以供动力仪测示功图用。 (7) 底座 是担负起抽油机全部重量的惟 一基础。下部与水泥混凝土的 基础由螺栓连接成一体。上部 与支架、减速器由螺栓连接成 一体。由型钢焊接而成,是抽 油机机身的基础.
三、抽油机主要部件的作用
(8)电机 动力的来源,一般采用感应式三相交流电动机,由皮带传送动 力至减速器大皮带轮。 (9)刹车装置 刹车也叫制动器,它是由手柄、刹车轮、刹车片等部件组成。 刹车片与刹车轮接触时发生摩擦而起到制动作用,所以也叫制 动器。 (10) 皮带轮 电动机把旋转的动力传给皮 带,再由皮带传给皮带轮, 由皮带轮带动输入轴,它是 减速器做功的桥梁。
Байду номын сангаас
三、抽油机主要部件的作用
(11)支架 支架支撑着游梁全部重量和它所承担的重量,而且是游梁的 可靠支柱。
(12)工作梯及护圈 工作梯是安装游梁、处理 驴头偏斜、给中轴加注黄 油、平时的检查以及上下 游梁等方便工作的扶梯。 护圈叫安全圈,在我们高 空作业时起到安全保护作 用。
Thanks!
二、抽油机工作原理
电动机将其高速旋转运动传递给减速箱的输入轴,经 中间轴后带动输出轴,输出轴带动曲柄作低速旋转运动.
曲柄通过连杆经横梁拉着游梁后臂(或前臂)摆动(或者 是连杆直接拉着游梁后臂),游粱的前端装有驴头,活塞以 上液柱及抽油杆柱等载荷均通过悬绳器悬挂在驴头上. 驴头随同游梁一 起上下摆动,游梁驴 头便带动活塞作上下 的、垂直的往复运动, 就将油抽出井筒.
抽油机工作原理00119PPT课件
最新课件
1
一、抽油机结构
(1)游梁部分:驴头、游梁、横梁、尾梁、连杆、平衡板(复合 平衡抽油机) (2)支架部分:中央轴承座、工作梯、护圈、操作台、支架。 (3)减速器部分:底船、减速器筒座、减速器、曲柄、配重块、 刹车等部件。
(4)配电部分:电机座、电机、配电箱等。
最新课件
(3)曲柄连杆机构
曲柄连杆机构的作用是将电动
机的旋转运动变成驴头的往复 运动.在曲柄上有4-8个孔, 是调节冲程时用的。
(4)减速箱
将电动机的高速转动,通过三轴
二级减速变成曲柄轴(输出轴)
的低速转动,同时支撑平衡块最。新课件
5
三、抽油机主要部件的作用
(5) 平衡块 平衡块装在抽油机游粱尾部或曲柄轴上。它的作用是:当抽油 机上冲程时,平衡块向下运动,帮助克服驴头上的负荷;在下 冲程时,电机使平衡块向上运动,储存能量,在平衡块的作用 下,可以减小抽油机上下冲程的负荷差别。
(9)刹车装置 刹车也叫制动器,它是由手柄、刹车轮、刹车片等部件组成。 刹车片与刹车轮接触时发生摩擦而起到制动作用,所以也叫制 动器。
(10) 皮带轮 电动机把旋转的动力传给皮 带,再由皮带传给皮带轮, 由皮带轮带动输入轴,它是 减速器做功的桥梁。
最新课件
7
三、抽油机主要部件的作用
(11)支架 支架支撑着游梁全部重量和它所承担的重量,而且是游梁的 可靠支柱。
(12)工作梯及护圈 工作梯是安装游梁、处理 驴头偏斜、给中轴加注黄 油、平时的检查以及上下 游梁等方便工作的扶梯。 护圈叫安全圈,在我们高 空作业时起到安全保护作 用。
最新课件
8
Thanks!
最新课件
9
抽油机机械设计课程设计报告
机械设计课程设计报告——抽油机机械系统设计作者:毛燕目录第一节设计任务------(1) 第二节方案设计分析----(2) 第三节轴承的选择及寿命计算--(17) 第四节设计结果----(22) 第五节心得体会--(23) 第六节附录----(25) 第一节设计任务抽油机是将原油从井下举升到地面的主要采油设备之一,常用的有杆抽油设备有三部分组成:一是地面驱动设备即抽油机;二是井下的抽油泵,它悬挂在油井油管的下端;三是抽油杆,它将地面设备的运动和动力传递给井下抽油泵。
抽油机由电动机驱动,经减速传动系统和执行系统(将转动变转为往复移动)带动抽油杆及抽油泵柱塞作上下往复移动,从而实现将原油从井下举升到地面的目的。
图1- 1 假设电动机做匀速转动,抽油机的运动周期为T,抽油杆的上冲程时间与下冲程时间相等。
冲程S=1.4m,冲次n=11次/min,上冲程由于举升原油,作用于悬点的载荷等于原油的重量加上抽油杆和柱塞自身的重量为40kN,下冲程原油已释放,作用于悬点的载荷就等于抽油杆和柱塞自身的重量为15kN。
要求:①根据任务要求,进行抽油机机械系统总体方案设计,确定减速传动系统、执行系统的组成,绘制系统方案示意图。
②根据设计参数和设计要求,采用优化算法进行执行系统(执行机构)的运动尺寸设计,优化目标为抽油杆上冲程悬点加速度为最小,并应使执行系统具有较好的传力性能。
③建立执行系统输入、输出(悬点)之间的位移、速度和加速度关系,并编程进行数值计算,绘制一个周期内悬点位移、速度和加速度线图(取抽油杆最低位置作为机构零位)。
④选择电机型号,分配减速传动系统中各级传动的传动比,并进行传动机构的工作能力设计计算。
⑤对抽油机机械系统进行结构设计,绘制装配图及关键零件工作图。
第二节方案设计分析一.抽油机机械系统总体方案设计根据抽油机功率大,冲次小,传动比大等特点,初步决定采用以下总体方案,如框图所示:图2- 1 1. 执行系统方案设计图2- 2 图2- 3 由于执行机构是将连续的单向转动转化为往复移动,所以采用四连杆式执行机构,简单示意如图2-2所示P点表示悬点位置;AB杆表示输入端,与减速器输出端相连,逆时针方向旋转;CD表示输出端;AD 表示机架;e 为悬臂长度,通常取e/c=1.35。
抽油机课程设计报告
机械原理课程设计报告——抽油机方案设计专业:机械电子工程姓名:黄志雄学号:020841105指导老师:曾老师湖北民族学院2011-05-27目录:1.设计任务 (3)2.设计内容 (4)3.方案分析 (4)4.设计目标 (5)5.设计分析 (6)6.电机选择 (9)7.心得与总结 (11)8.附录 (12)一、设计任务:抽油机机械系统设计抽油机是将原油从井下举升到地面的主要采油设备之一。
常用的有杆抽油设备主要由三部分组成:一是地面驱动设备即抽油机;二是井下的抽油泵,它悬挂在油井油管的下端;三是抽油杆,它将地面设备的运动和动力传递给井下抽油泵。
三部分之间的相互位置关系如图1所示。
抽油机由电动机驱动,经减速传动系统和执行系统带动抽油杆及抽油泵柱塞作上下往复移动,从而实现将原油从井下举升到地面的目的。
悬点载荷P、抽油杆冲程S和冲次n是抽油机工作的三个重要参数。
悬点指执行系统与抽油杆的联结点,悬点载荷P(kN)指抽油机工作过程中作用于悬点的载荷;抽油杆冲程S(m)指抽油杆上下往复运动的最大位移;冲次n(次/min)指单位时间内柱塞往复运动的次数。
假设悬点载荷P的静力示功图如图2所示。
在柱塞上冲程过程中,由于举升原油,作用于悬点的载荷为P1,它等于原油的重量加上抽油杆和柱塞自身的重量;在柱塞下冲程过程中,原油已释放,此时作用于悬点的载荷为P2,它就等于抽油杆和柱塞自身的重量。
图1 抽油机系统示意图图2 静力示功图悬点——执行系统与抽油杆的联结点悬点载荷P(kN)——抽油机工作过程中作用于悬点的载荷抽油杆冲程S(m)——抽油杆上下往复运动的最大位移冲次n(次/min)——单位时间内柱塞往复运动的次数假设电动机作匀速转动,抽油杆(或执行系统)的运动周期为T。
油井工况为:上冲程时间下冲程时间冲程S(M) 冲次N(次/MIN) 悬点载荷P(N) 8T/15 7T/15 1.6 12二、设计内容:1. 根据任务要求,进行抽油机机械系统总体方案设计,确定减速传动系统、执行系统的组成,绘制系统方案示意图。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
设计题目——油田抽油机1. 机器的用途及功能要求抽油机是一种采油机械,主要用于当油井不能自喷或自喷能力不能满足采油需要时,从地下抽取石油。
图1是游梁式抽油机的工作原理图。
工作时,抽油机的执行机构通过钢丝绳牵引抽油杆,带动活塞上、下往复运动。
当活塞上移(上冲程)时,抽油泵泵体下部形成负压,使得排出阀关闭,吸入阀打开,油液被吸入泵体内;当活塞下移(下冲程)时,泵体下部压力增大,使得吸入阀关闭,排出阀打开,泵体内的石油被压入活塞体内。
在活塞不断往复运动的过程中,油液从活塞体内进入抽油泵上部的油管,最后从井口排入集油管线(图1a)。
抽油机在一个运动循环中所受的生产阻力变化很大。
在上冲程中,生产阻力不仅包括抽油杆和活塞以上环形液柱的重量,而且还包括抽油杆和环形液柱的惯性动载荷(悬点E承受了最大载荷);而在下冲程时,抽油杆在其自重作用下克服浮力下行,生产阻力为零。
此外,执行机构的总惯性力和总惯性力矩也不平衡。
这些因素使抽油机在工作过程中产生有害振动,同时造成其速度波动,影响抽油杆和抽油泵的正常工作,影响抽油机的工作寿命。
因此,必须对抽油机进行动平衡。
2. 设计要求和原始数据设计以电动机为原动机的抽油机。
⑴ 抽油机结构简单,加工容易,便于维护,受力好,效率高,执行机构的许用压力角[α]≤40°;⑵ 执行机构具有急回性能,行程速比系数1<k≤1.15;⑶ 抽油杆的冲程长度可调;⑷ 采用曲柄平衡方式对抽油机进行动平衡,平衡重G 作用于B点(图1b);3. 设计内容⑴ 确定总体设计方案,包括传动系统中各传动的类型、传动路线、总传动比和传动比分配;⑵ 选择执行机构的型式,确定各构件尺寸,计算机构自由度;⑶ 用电算法作执行机构的运动分析,求出在一个运动循环中,步长为π/36弧度的抽油杆的位置、速度和加速度,以及抽油杆在一个运动循环中的平均速度Vm、最大速度Vmax、最小速度Vmin和速度不均匀系数δv(此处所说速度均指速度的大小);⑷ 求出原动机所需工作功率Pd,选择电动机;⑸ 对传动系统中各级传动进行工作能力计算;⑹ 进行减速器的结构设计。
4. 提交的设计结果⑴ 抽油机的总体设计方案,包括完整的传动路线图和按比例绘制的总体方案布局图,要表达清楚原动机、传动装置及执行机构的空间位置关系,并注出总体方案长、宽、高的尺寸;(2号图纸)⑵ 按比例绘制的执行机构(铰链四杆机构)的极限位置图(注明极位夹角θ),抽油杆的位置、速度和加速度线图(三者均从下极限位置开始,并标明比例尺);(2号图纸)⑶ 减速器装配图一张;(1:1,0号图纸)⑷ 减速器零件工作图若干张;(1:1)⑸ 设计计算说明书,内容包括:* 设计题目、要求和原始数据;* 分析执行机构和传动系统的优缺点;* 执行机构的运动设计(运动分析和求最大驱动力矩Mmax),包括数学模型、程序框图及文本、计算过程和结果(步长取π/6,结果以表格形式给出);* 原动机的选择和传动比的分配过程,各轴的运动和动力参数的计算过程和结果;* 各级传动工作能力计算过程;机械原理机械设计课程设计计算说明书设计题目油田抽油机天津大学机械工程学院机械设计制造及自动化专业 1 班级设计人李廷江指导教师陈树昌、王多2006年01月08日目录一、设计题目 (1)二、系统总体方案的确定 (1)三、设计原始数据 (2)四、电动机的选择 (3)五、传动比的分配 (4)六、执行机构尺寸计算 (5)七、机构运动分析 (6)八、V带设计 (15)九、传动装置的运动和动力参数 (17)十、齿轮的传动计算 (18)十一、减速器机体的尺寸设计 (31)十二、轴的设计 (32)十三、键的选择及强度较核 (33)十四、轴承寿命计算及静强度 (35)十五、轴的强度较核 (37)十六、参考文献 (41)一、设计题目:油田抽油机二、系统总体方案的确定:系统总体方案:电动机→传动系统→执行机构;初选三种传动方案,如下:(a)二级圆柱齿轮传动(b)为涡轮涡杆减速器(c)为二级圆柱圆锥减速器系统方案总体评价:⎩⎨⎧==+==-1052667.11176882.121AC AC L a b L a b 解得:m a 1437893.0=,m b 2614775.1=;m b a c c b a d 410937.1]sin[)(2)(22=+-++=α七、 机构运动分析:1.数学模型如图所示,取以A 点为原点、x 轴与AD 线一致的直角坐标系,标出向量和转角,由封闭向量多边形ABCD 可得AB BC AD DC +=+即0321ABi i i i e e e BC AD DC e l l l l ϕϕϕ+=+ ()A摆角分析:由式()A 的实部和虚部分别相等可得123cos cos cos AB BC AD DC l l l l ϕϕϕ+=+123sin sin sin AB BC DC l l l ϕϕϕ+=经计算解得1.35604R m =01224.33775C C A ∠=012148.73917AC C ∠=m a 1437893.0= m b 2614775.1=1.410937d m =22112222'sin 'sin "cos AB BC BC l l l ϕϕϕϕϕϕ--+ 23333'sin "cos DC DC l l ϕϕϕϕ=-+解得2221122332332'cos()''cos()"sin AB BC DC DC l l l l ϕϕϕϕϕϕϕϕϕϕ-+--=-()222113232332'cos()'cos()'2"sin()AB BC DC BC l l l l ϕϕϕϕϕϕϕϕϕϕ-+--=-2.框图设计3.程序和计算结果Visual C++ 程序#include "stdio.h"#include "math.h"void main(){floatab=0.1437893,bc=1.2614775,cd=1.5,ad=1.41093,pi=3.141593,w1=21.894, w2,w3,e1,e2,e3,r,k,a,b,c,p1,p2,p3,t,t1,t2,t3;r=(bc*bc-cd*cd-(ad-ab)*(ad-ab))/(2*cd*(ad-ab));20.6)(0.50.6)16810.6;10f d d mm =⨯==取2d 间距:150200l mm = 轴承端盖螺钉直径:30.5) 6.48;8f d mm d mm ==取40.4) 4.86.4;f d mm d =取定位销直径:2(0.70.8)78;d d mm d ===取2至外壁距离:122,18,16;c = 2至凸缘边缘距离:220,16,14;c =216c mm == 12)52=110mm ∆=取210mm = 35.5);(d 3(1 1.2)89.6;t d mm t ===取≈2: s D40mm查表20-3,对于40Cr 材料的轴C=106-98。
轴上有键槽时,会削弱轴的强度。
对于直径100d mm ≤的轴,单键时轴径增大5%-7%,双键时增大10%-15%,故332.48023681.06 1.0610223.5240P d C mm n ≥=⨯=Ⅰ 332.3697410231.481.044P d C mm n ≥==Ⅱ 332.264171.06 1.069843.421.894P d C mm n ≥=⨯=Ⅲ 中间轴各轴段设计:1.各段轴的直径轴段1为轴承径,其直径应符合轴承内径标准,且31.4d mm ≥Ⅱ,由此选定35d mm =1。
因此,轴承代号为32007。
轴段2与齿轮配合,且便于安装d d >21,取其标准系列40d mm =2轴段3为定位轴肩,轴肩高度取 2.5h mm =,则32240545d d h mm =+=+= 轴段4与齿轮配合,440d mm =0.988Z β=1063[]1140H H σσ=<=疲劳强度足够1.3HS '= 12 1.6NN Z Z ''==max []1403.1H σ=max max 1227.45[]H H MPa σσ=<12 3 452.轴水平面支反力31.3910AH F N =⨯31.2110BH F N =⨯3.两轴承所受的径向载荷即合成后的支反力2222331 6.69 1.3910 6.8310R AV AH F F F N =+=+⨯=⨯ 22223327.69 1.21107.8710R BV BH F F F N =+=+⨯=⨯(二)计算轴承所受的轴向载荷 1.计算内部轴向力轴承型号32009,为圆锥滚子轴承,由标准查得性能参数为 0058.8,81.5, 1.5,0.8C kN C kN Y Y ====由表21-11,圆锥滚子轴承的内部轴向力2RS F F Y=,则 3311 6.8310 2.281022 1.5R S F F N Y ⨯===⨯⨯33227.8710 2.621022 1.5R S F F N Y ⨯===⨯⨯2.计算轴承所受的轴向载荷 轴上个轴向力的方向→ → ← ←1S F 2X F 1X F 2S F由式(21-8),(21-9)可列出取两者中较大者23.5d mm ≥Ⅰ 31.4d mm ≥Ⅱ43.4d mm ≥Ⅲ。