2016年全国高考全国丙卷(理科数学)解析版
2016全国1高考数学(理)真题及答案解析精编版
2016年普通高等学校招生全国统一考试理科数学及答案注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷1至3页,第Ⅱ卷3至5页.2.答题前,考生务必将自己的姓名、准考证号填写在本试题相应的位置.3.全部答案在答题卡上完成,答在本试题上无效.4.考试结束后,将本试题和答题卡一并交回.第Ⅰ卷一. 选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.(1)设集合2{|430}A x x x =-+<,{|230}B x x =->,则A B = (A )3(3,)2--(B )3(3,)2-(C )3(1,)2(D )3(,3)2(2)设(1i)1i x y +=+,其中x ,y 是实数,则i =x y +(A )1(B (C D )2(3)已知等差数列{}n a 前9项的和为27,10=8a ,则100=a (A )100(B )99(C )98(D )97(4)某公司的班车在7:00,8:00,8:30发车,小明在7:50至8:30之间到达发车站乘坐班车,且到达发车站的时刻是随机的,则他等车时间不超过10分钟的概率是(A )(B )(C )(D )(5)已知方程–=1表示双曲线,且该双曲线两焦点间的距离为4,则n 的取值范围是(A )(–1,3) (B )(–1,3) (C )(0,3) (D )(0,3)(6)如图,某几何体的三视图是三个半径相等的圆及每个圆中两条相互垂直的半径.若该几何体的体积是,则它的表面积是 (A )17π(B )18π(C )20π(D )28π (7)函数y =2x 2–e |x |在[–2,2]的图像大致为(A )(B )(C )(D )(8)若101a b c >><<,,则(A )c c a b <(B )c c ab ba <(C )log log b a a c b c <(D )log log a b c c <(9)执行右面的程序图,如果输入的011x y n ===,,,则输出x ,y 的值满足(A )2y x =(B )3y x =(C )4y x =(D )5y x =(10)以抛物线C 的顶点为圆心的圆交C 于A 、B 两点,交C 的标准线于D 、E 两点.已知|AB |=|DE|=C 的焦点到准线的距离为 (A)2 (B)4 (C)6 (D)8(11)平面a 过正方体ABCD -A 1B 1C 1D 1的顶点A ,a //平面CB 1D 1,a ⋂平面ABCD =m ,a ⋂平面ABA 1B 1=n ,则m 、n 所成角的正弦值为B 1312.已知函数()sin()(0),24f x x+x ππωϕωϕ=>≤=-,为()f x 的零点,4x π=为()y f x =图像的对称轴,且()f x 在51836ππ⎛⎫⎪⎝⎭,单调,则ω的最大值为(A )11 (B )9 (C )7 (D )5第II 卷本卷包括必考题和选考题两部分.第(13)题~第(21)题为必考题,每个试题考生都必须作答.第(22)题~第(24)题为选考题,考生根据要求作答.二、填空题:本大题共3小题,每小题5分(13)设向量a =(m ,1),b =(1,2),且|a +b |2=|a |2+|b |2,则m =.(14)5(2)x x+的展开式中,x3的系数是.(用数字填写答案)(15)设等比数列满足a1+a3=10,a2+a4=5,则a1a2…a n的最大值为。
(完整word版)2016全国三卷理科数学高考真题及答案.docx
2016 年普通高等学校招生全国统一考试理科数学一.选择题:本大题共 12 小题,每小题 5 分,在每小题给出的四个选项中,只有一项是符合题目要求的 .(1)设集合 S= S x P(x2)(x3)0 ,T x x 0,则 S I T=(A) [2 ,3](B) (-, 2]U [3,+)(C) [3,+ )(D) (0, 2] U[3,+ )(2)若 z=1+2i ,则4izz1(A)1(B)-1(C) i(D)-iuuv( 1uuuv(3,1),(3)已知向量BA, 2 ) , BC则 ABC=2222(A)30 0(B)450(C) 60 0(D)120 0(4)某旅游城市为向游客介绍本地的气温情况,绘制了一年中月平均最高气温和平均最低气温的雷达图。
图中A 点表示十月的平均最高气温约为150C, B 点表示四月的平均最低气温约为50C。
下面叙述不正确的是(A) 各月的平均最低气温都在00C 以上(B)七月的平均温差比一月的平均温差大(C)三月和十一月的平均最高气温基本相同(D)平均气温高于 200C 的月份有 5 个(5)若tan3,则 cos22sin 26444816(B)(C) 1(A)25(D)2525 431(6)已知a23, b44, c253,则(A )b a c( B)a b c (C) b c a (D) c a b(7)执行下图的程序框图,如果输入的a=4, b=6,那么输出的n=(A ) 3(B ) 4(C) 5(D ) 6(8)在 △ABC 中,B = πBC1cos A =,边上的高等于则43 BC ,( A )3 10( B )101010( C ) -10 ( D ) - 3 1010 10 (9) 如图,网格纸上小正方形的边长为1,粗实现画出的是某多面体的三视图,则该多面体的表面积为(A ) 18 36 5(B ) 54 18 5(C ) 90 (D ) 81(10) 在封闭的直三棱柱 ABC-A 1B 1C 1 内有一个体积为 V 的球,若AB BC , AB=6 ,BC=8, AA 1 =3,则 V 的最大值是(A ) 4π ( B )9( C ) 6π(D )3223x 2 y 2 1(a b 0) 的左焦点, A , B 分别为 C 的左,右顶点 .P 为(11)已知 O 为坐标原点, F 是椭圆 C :b 2 a 2C 上一点,且 PF ⊥ x 轴 .过点 A 的直线 l 与线段 PF 交于点 M ,与 y 轴交于点 E.若直线 BM 经过 OE 的中点,则C 的离心率为(A )1( B )1( C )2( D )33 2 3 4(12)定义 “规范 01 数列 ”{a n } 如下: { a n } 共有 2m 项,其中 m 项为 0,m 项为 1,且对任意 k 2m , a 1 , a 2, L , a k 中 0 的个数不少于 1 的个数 .若 m=4,则不同的“规范 01 数列”共有 (A ) 18 个( B ) 16 个(C ) 14 个(D ) 12 个二、填空题:本大题共 3 小题,每小题 5 分(13)若 x , y 满足约束条件 错误 ! 未找到引用源。
2016高考全国3卷理科数学解析版
0 0
(A) 各月的平均最低气温都在 0 C 以上 (C) 三月和十一月的平均最高气温基本相同 4.答案:D
4i z z 1
(B) -1 (C) i (D)-i
4i 4i i z z 1 (1 2i )(1 2i ) 1
评析:本题主要考查复数的基本概念和加减乘除基本运算. (3)已知向量 BA ( , ), BC ( (A)300 3.答案:A (B) 450
0
(B) 七月的平均温差比一月的平均温差大 (D)平均气温高于 20 C 的月份有 5 个
0
解析:由图可知平均气温高于 20 C 的月份至多有 3 个,故 D 不正确. 评析:本题考查学生识别统计图形,分析图形的能力. (5)若 tan (A)
0
3 2 ,则 cos 2 sin 2 4
4 3 2 3 2 5 1 3 2 3 2 3
(B) a b c
(C) b c a
(D) c a b
(A)3 7.答案:B
(B)4
(C)5
(D)6
解析:第一次循环,得 a 2, b 4, a 6, s 6, n 1; 第二次循环,得 a 2, b 6, a 4, s 10, n 2; 第三次循环,得 a 2, b 4, a 6, s 16, n 3; 第四次循环,得 a 2, b 6, a 4, s 20 16, n 4 ,退出循环,输出 n 4. 评析:本题主要考查了程序框图的基础知识. (8)在 △ABC 中, B = (A) 8.答案:C 解析:设 BC 边上的高线为 AD ,则 BC 3 AD ,将三角形三边都用 AD 表示,得
2016年高考理科数学试题全国卷1及解析word完美版
2016年普通高等学校招生全国统一考试理科数学一、选择题:本大题共 12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1、设集合 A={X |X 2T X +3<0}, B={x|2x £>0},则 A A B=()3D . (2,3) )D . 2】】更换的易损專件對D 、E 两点.已知 |AB|=4 . 2, |DE|=2 5,则 C 的焦点到准线的距离为() A . 2 B . 4 C. 6 D . 811、平面a 过正方体 ABCDS 1B 1C 1D 1的顶点 A , a//平面CB1D 1, a A 平面 ABCD=m, a A 平面 ABB 1A 1= n ,贝U m 、n 所 成角的正弦值为() .3 ,2A . ~B . 2n n n n 5 n12、 已知函数f(x)=sin( 3X+$)(3>0, |创 勺,x= p 为f(x)的零点,x=4为y=f(x)图像的对称轴,且f(x)在聒品)单调, 则3的最大值为() A . 11 B. 9 C. 7D. 5二、 填空题:本大题共 4小题,每小题5分13、 _____________________________________________________________________ 设向量 a=(m,1), b=(1,2),且 |a+b|2=|a| 2+| b|2,贝V m= ______________________________________________________ .3A . (3~2) 2、 设(1+i )x=1+yi ,33B . (£,2)C.(1,2)其中x , y 是实数,则|x+yi|=(B . ,'2C . ‘33、 已知等差数列{a n }前9项的和为27, a 10=8,贝U a 100=() A .100 B . 994、 某公司的班车在 7:00, 8:00,是随机的,1A . 3 C . 98 D . 97 8:30发车,小明在7:50至8:30之间到达发车站乘坐班车,且到达发车站的时刻10分钟的概率是() 2 3 C. 3 D . 4 5、已知方程 则他等车时间不超过 1 B . 2 y 2—=1表示双曲线,且该双曲线两焦点间的距离为 4,则n 的取值范围是() B . (-1^3)C. (0,3) D . (0,迈)2m 2+n 3m 2-n A . (-1,3)6、 如图,某几何体的三视图是三个半径相等的圆及每个圆中两条相互垂直的半径. 它的表面积是() A . 17 nB . 18 nC. 20 n7、 函数y=2x 2-e |x|在[-,2]的图像大致为(28 n 口 r若该几何体的体积是"y ,则1.L■Z-n J7a)B . ab c <ba c C. alog b c<blog a cx=0, y=1, n=1,则输出 D . x , y 的值满足()Iog a c<log b c D . 28 nA .8、 若 a>b>1, 0<c<1,则( A . a c <b c9、 执行下左1图的程序图,如果输入的B. C.D .40 2014、(2x+&)5的展开式中,x3的系数是____________ (用数字填写答案).15、设等比数列满足{a n}满足a1+a3=10, a2+a4=5,贝U a1a2・・・an的最大值为_______ .16、某高科技企业生产产品A和产品B需要甲、乙两种新型材料.生产一件产品A需要甲材料1.5kg,乙材料1kg,用5个工时;生产一件产品B需要甲材料0.5kg,乙材料0.3kg,用3个工时,生产一件产品A的利润为2100元, 生产一件产品B的利润为900元.该企业现有甲材料150kg,乙材料90kg,则在不超过600个工时的条件下,生产产品A、产品B 的利润之和的最大值为______________________________ 元.三、解答题:解答应写出文字说明,证明过程或演算步骤.(必考题)17、(本题满分为12分)△ ABC的内角A, B, C的对边分别别为a, b, c,已知2cosC(acosB+bcosA)=c(1) 求c;⑵若c= 7, △ ABC的面积为求△ ABC的周长.18、(本题满分为12分)如上左2图,在已A, B, C, D, E, F为顶点的五面体中,面ABEF为正方形,AF=2FD, /AFD=90 ,°且二面角D-KF-E 与二面角C-BE-F 都是60 °(1) 证明;平面ABEF丄平面EFDC;(2) 求二面角E-BC-K的余弦值.19、(本小题满分12 分)某公司计划购买2 台机器,该种机器使用三年后即被淘汰.机器有一易损零件,在购进机器时,可以额外购买这种零件作为备件,每个200 元.在机器使用期间,如果备件不足再购买,则每个500 元.现需决策在购买机器时应同时购买几个易损零件,为此搜集并整理了100 台这种机器在三年使用期内更换的易损零件数,得如上左3图柱状图.以这100 台机器更换的易损零件数的频率代替1台机器更换的易损零件数发生的概率,记X表示2台机器三年内共需更换的易损零件数,n表示购买2台机器的同时购买的易损零件数.(1) 求X的分布列;(2) 若要求P(X < n) >,0确定n的最小值;(3) 以购买易损零件所需费用的期望值为决策依据,在n=19与n=20之中选其一,应选用哪个?20、(本小题满分12分)设圆x2+y2+2x-5=0的圆心为A,直线I过点B(1,0)且与x轴不重合,I交圆A于C, D两点, 过B作AC的平行线交AD于点E.(1) 证明|EA|+|EB| 为定值,并写出点E 的轨迹方程;(2) 设点E的轨迹为曲线C i,直线I交C i于M , N两点,过B且与I垂直的直线与圆A交于PQ两点,求四边形MPNQ 面积的取值范围.21、(本小题满分12分)已知函数f(x)=(x -)e x+a(x-)2有两个零点.(1)求a 的取值范围;⑵设X1, x2是的两个零点,证明:X什x2<2.22、(本小题满分10分)[选修4-:几何证明选讲]如图,△ OAB 是等腰三角形,/ AOB=120°.以0为圆心,^OA 为半径作圆.(1)证明:直线AB 与O 0相切x=acost23、(本小题满分10分)[选修4 -:坐标系与参数方程]在直线坐标系xoy 中,曲线C i 的参数方程为y=1+as i nt (t 为参数,a>0).在以坐标原点为极点,x 轴正半轴为极轴的极坐标系中,曲线 Q : p =4cos. 0 (1)说明C 1是哪种曲线,并将 G 的方程化为极坐标方程;⑵直线Q 的极坐标方程为 0 =a ,其中a o 满足tan=2,若曲线C 1与C 2的公共点都在 C 3上,求a .24、(本小题满分10分)[选修4-5:不等式选讲]已知函数f(x)=|x+1| -2x 詡. (1) 在答题卡第(24)题图中画出y= f(x)的图像; (2) 求不等式|f(x)|>1的解集.B, GD 四点共圆,证明:AB// CD.⑵点C, D 在O 0上,且A ,理科数学参考答案一、选择题:1、D2、B3、C4、B5、A6、A7、D 8、C二、填空题:13、—14、1015、6416、2160009、C 10、B 11、A 12、B三、解答题:17、解:⑴由已知及正弦定理得,2cosC(sinAcosB+sinBcosA)=sinC 即2cosCsin(A+B)=sinC 故2sinCcosC=sinC可得cosC弓,所以C=3.2 3(2)由已知,*absinC=323•又C=n,所以ab=6.由已知及余弦定理得,a2+b2 ^2abcosC=7,故a2+b2=13,从而(a+b)2=25.所以△ ABC的周长为5+ ■'7.18、解:⑴由已知可得AF丄DF, AF丄FE所以AF丄平面EFDC 又F 平面ABEF故平面ABEF丄平面EFDC⑵过D作DG丄EF,垂足为G,由⑴知DG丄平面ABEF.以G为坐标原点,向量GF的方向为x轴正方向,|GF|为单位长度,建立如图所示的空间直角坐标系G -cy z.由(1)知/DFE为二面角D-AF-E 的平面角,故/DFE=60 ,则|DF|=2 , |DG|=3 ,可得A(1,4,0), B(43,4,0), E(43,0,0),D(0,0,V3).由已知,AB// EF,所以AB// 平面EFDC 又平面ABCDH 平面EFDC=DA 故AB// CD, CD// EF. 由BE// AF,可得BE丄平面EFDC所以/ CEF为二面角CHBE-F的平面角,/ CEF=60 .从而可得C(H2,0^3).所以向量EC=(1,0,⑶,EB=(0,4,0), AC=(43,T, :3), AB=(T,0,0).设n=(x,y,z)是平面BCE的法向量,则n三二,即x+ - 3z=0,所以可取n EB=04y=0设m是平面ABCD的法向量,则m AB=0,同理可取m=(0,Q3,4).则故二面角E-BC-K的余弦值为-[9.9、解:(1)由柱状图并以频率代替概率可得,一台机器在三年内需更换的易损零件数为8, 9, 10, 11的概率分别为0.2, 0.4, 0.2, 0.2,从而:P(X=16)=0.2 X 0.2=0.04 P(X=17)=2 X 0.2 X 0.4=0.16 P(X=18)=2 X 0.2 X 0.2+0.4 X Q.4=0.24 P(X=19)=2 X 0.2 X 0.2+2 X 0.4 X;.2=X=40)=2 X 0.2 X 0.4+0.2 X;0.2=0E2X=21)=2 X 0.2 X 0.2=0.08X 16 17 18 19 20 21 22P 0.04 0.16 0.24 0.24 0.2 0.08 0.04⑵由(1)知P(X < 18)=0.44 P(X w 19)=0.68 故n 的最小值为19.(3) 记Y表示2台机器在购买易损零件上所需的费用(单位:元). 当n=19 时,EY=19< 200X 0.68+(19 X 200+500) X 0.2+(19 X 200+2X 500) X 0.08+(19 X 200+3X 500) X.0.04=4040当n=20 时,EY=2(X 200X 0.88+(20 X 200+500) X 0.08+(20 X 200+2X 500) X 0.04=4080 可知当n=19时所需费用的期望值小于n=20时所需费用的期望值,故应选n=19 .20、解:(1):|AD|=|AC| , EB// AC,故/ EBD=/ ACD=Z ADC, /• |EB|=|ED|,故|EA|+|EB|=|EA|+|ED|=|AD| 又圆A的标准方程为(x+1)2+y2=16,从而|AD|=4,所以|EA|+|EB|=4 .2 2由题设得A(-1,0), B(1,0), |AB|=2,由椭圆定义可得点E的轨迹方程为:X4+y3=1(y工°)n=(3,0, —3).cos <n,m>=—⑵当l 与x 轴不垂直时,设l 的方程为y=k(x - 1)(k £M(x i ,y i ), N(X 2,y 2). 出尸丁1)® c c c c 8k 2 4k 2-2 由x 2 y 2 d … —+—=i4 3四边形 MPNQ 的面积 S=2|MN||PQ|=121+4k 1+3.可得当I 与x 轴不垂直时,四边形 MPNQ 面积的取值范围为[12,8 .3).当I 与x 轴垂直时,其方程为 x=1, |MN|=3 , |PQ|=8,四边形 MPNQ 的面积为12 . 综上,四边形MPNQ 面积的取值范围为[12,8 3).21、解:(1)f(x)=(x -1)e x +2a(x-1)=(x -)(e x +2a).① 设a=0,则f(x)=(x 2)e x , f(x)只有一个零点.② 设a>0,则当x € (-a )时,f(x)<0 ;当x € (1,+s )时,f(x)>0 .所以f(x)在(-^ )上单调递减,在(1,+〜上单调递 增. a a 3又 f(1)= -e , f(2)=a ,取 b 满足 b<0 且 b<lng ,则 f(b)>q(b ~2)+a(b -)2=a(b 2—b)>0,故 f(x)存在两个零点. ③ 设 a<0,由 f(x)=O 得 x=1 或 x=ln( -2a).若a >-,则ln( - 2a)§1故当x € (1,+〜时,f(x)>0,因此f(x)在(1,+〜上单调递增.又当 xwi 时,f(x)<0,所以f(x)不存在两个零点.若 a<-|,贝U ln( -2a)>1,故当 x € (1,ln( -2a))时,f(x)<0;当 x € (ln( -2a),+ 〜时,f(x)>0 .因此 f(x)在(1,ln( -2a))单调递 减,在(ln(£a),+a )单调递增.又当x wi 时,f(x)<0,所以f(x)不存在两个零点. 综上,a 的取值范围为(0,+^).(2)不妨设X 1<x 2,由(1)知x € ( - a )1 x 2 € (1,+a ), 2 -x ? € (-呵),f(x)在(- a )上单调递减,所以 x 什X 2<2等价于f(x 1)>f(2 %),即 f(2 伙2)<0.由于 f(2 -2)=-ee 2-2+a(x 2-)2,而 f(x 2)=(x 2 72)e x2+a(x 2 -1)2=0,所以 f(2 -2)=-2e 2-2-X 2 ^e^.设 g(x)= ^xe 2- -x-2)e x ,则 g'(x)=(x -)(e 2^.所以当 x>1 时,g'(x)<0,而 g(1)=0,故当 x>1 时,g(x)<0.从而 g(X 2)=f (2 -Q )<0,故 x 1+x 2<2.22、解:(1)设E 是AB 的中点,连结 OE , 因为 OA=OB, / AOB=120,所以 OE 丄 AB , / AOE=60 .1在Rt A AOE 中,OE^AO,即O 到直线AB 的距离等于圆 O 的半径,所以直线⑵因为OA=2OD,所以O 不是A , B , C , D 四点所在圆的圆心,设 O'是A , B , C, D 四点所在圆的圆心,作直线 OO'.由已知得O 在线段AB 的垂直平分线上,又 O'在线段AB 的垂直平分线上,所以 OO'丄AB .同理可证,OO'丄CD.所以AB // CD.x=acosto o o00 o23、解:⑴ y =1+asint (t 为参数),二 x 2+(y-1)2=a 2® • C 1 为以(0,1)为圆心,a 为半径的圆,方程为 x 2+y 2 42y+1 -a 2=0. ••• x 2+y 2 + p 2, y= p sin , • p 2- 2 p sin 9a 2=10-P 为 G 的极坐标方程.⑵C 2: p =4cos,(两边同乘 p 得 p =4 p cos, 0•- p =x 2+y 2, p cos 0 亍x • x 2+y 2=4x ,即(x~2)2+y 2=4②C 3:化为普通方程为 y=2x .由题意:G 和C 2的公共方程所在直线即为Q,8k 2 4k 2 -2 __ 12(k 2+1) 得(4k 2+3)x 2 -8k 2x+4k 2 -2=0. /• x 什血*2+3,X i x 2= 4R 2+3 • |MN|= 1+k 2|x1 -<2|= 4^^+^ • 过点B(1,0)且与I 垂直的直线 m : y= -k (x -1), A 到m 的距离为,所以|PQ|=2 % j AB 与O O 相切. 2-;+1.故EBx>5或 x<3, /• x < -. 1 13-1<x<2, |3x -2|>1,解得 x>1 或 x<3.••• -1<x<3或 1<x<2.3 3当 x 亏 |4 -x|>1,解得 x>5 或 x<3, •x<3或 x>5.1 综上,x<3或 1<x<3 或 x>5.1•|f(x)|>1,解集为(-«3)0(1,3)u (5,+m ).①-② 得:4x42y+1 -a 2=0,即为 C 3. /• 1 -a 2=0, /• a=1. 24、解:⑴如图: 3⑵f(x)= 3x -2( -1<x<2)又•- |f(x)|>134 —x 多 x < -,|x —|>13。
2016年全国高考理科数学及答案
2016年普通高等学校招生全国统一考试理科数学注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷1至3页,第Ⅱ卷3至5页.2.答题前,考生务必将自己的姓名、准考证号填写在本试题相应的位置.3.全部答案在答题卡上完成,答在本试题上无效.4.考试结束后,将本试题和答题卡一并交回.第Ⅰ卷一. 选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的. 1.设集合2{|430}A x x x =-+<,{|230}B x x =->,则A B =( ).A .3(3,)2--B .3(3,)2-C .3(1,)2D .3(,3)22.设(1i)1i x y +=+,其中x ,y 是实数,则i =x y +( ).A .1BC D .23.已知等差数列{}n a 前9项的和为27,10=8a ,则100=a ( ).A .100B .99C .98D .974.某公司的班车在7:00,8:00,8:30发车,小明在7:50至8:30之间到达发车站乘坐班车,且到达发车站的时刻是随机的,则他等车时间不超过10分钟的概率是( ). A .13B .12C .23D .345.已知方程222213x y m n m n-=+-表示双曲线,且该双曲线两焦点间的距离为4,则n 的取值范围是( ).A .(1,3)-B -1(C .0,3()D .0( 6.如图,某几何体的三视图是三个半径相等的圆及每个圆中两条相互垂直的半径.若该几何体的体积是,则它的表面积是( ). A .17πB .18πC .20πD .28π7.函数2||-=2x y x e 在[]-2,2的图像大致为( ).A .B .C .D .8.若1a b >>,01c <<,则( ). A .c c a b <B .c c ab ba <C .log log b a a c b c <D .log log a b c c <9.执行右面的程序图,如果输入的0x =,1y =,1n =则输出x ,y 的值满足( ).A .2y x =B .3y x =C .4y x =D .5y x =10.以抛物线C 的顶点为圆心的圆交C 于A 、B 两点,交C 的标准线于D 、E 两点.已知AB =,DE =C 的焦点到准线的距离为( ).A .2B .4C .6D .811.平面α过正方体1111ABCD A B C D -的顶点A ,α∥平面11CB D ,αI 平面ABCD m =,αI平面11ABA B n =,则m ,n 所成角的正弦值为( ).A B C D .1312.已知函数()sin()(0f x x+ωϕω=>,)2πϕ≤,4x π=-为()f x 的零点,4x π=为()y f x =图像的对称轴,且()f x 在5,1836ππ⎛⎫⎪⎝⎭单调,则ω的最大值为( ). A .11B .9C .7D .5第II 卷本卷包括必考题和选考题两部分.第(13)题~第(21)题为必考题,每个试题考生都必须作答.第(22)题~第(24)题为选考题,考生根据要求作答.二、填空题:本大题共3小题,每小题5分13.设向量)=(1a m ,,=2(1)b ,,且222=a b a b++,则m =__________.14.5(2x +的展开式中,3x 的系数是__________.(用数字填写答案) 15.设等比数列满足1310a a +=,245a a +=,则12n a a a ⋯的最大值为__________.16.某高科技企业生产产品A 和产品B ,需要甲、乙两种新型材料。
2016高考真题数学丙卷理科正文
秘密★启用前2016年普通高等学校招生全国统一考试全国丙卷理科数学本试卷分第Ⅰ卷(选择题)和第II 卷(非选择题)两部分,共22小题,共150分,考试时间120分钟.第Ⅰ卷(选择题共60分)一、选择题(本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一个选项是符合题目要求的).1.设集合{}{}(2)(3)0,0S x x x T x x =--=> ,则ST =( )A .[]2,3B .(][),23,-∞+∞C .[)3,+∞D .(][)0,23,+∞2.若12i z =+,则4i1zz =-( ) A .1 B .1- C .i D .i -3.已知向量132BA ⎛= ⎝⎭,31,22BC ⎛⎫= ⎪ ⎪⎝⎭则ABC ∠=( )A .30B . 45C . 60D . 1204.某旅游城市为向游客介绍本地的气温情况,绘制了一年中月平均最高气温和平均最低气温的雷达图。
图中A 点表示十月的平均最高气温约为15C ,B 点表示四月的平均最低气温约为5C 。
下面叙述不正确的是( )A .各月的平均最低气温都在0C 以上B .七月的平均温差比一月的平均温差大C .三月和十一月的平均最高气温基本相同D .平均气温高于20C 的月份有5个平均最高温度平均最低温度t = 205.若3tan 4α=,则2cos 2sin 2αα+=( ) A .6425 B . 4825 C . 1 D .16256.已知432a =,233b =,1325c =,则( )A . b a c <<B .a b c <<C .b c a <<D .c a b << 7.执行右图的程序框图,如果输入的4,6a b ==,那么输出的n =( ) A .3 B .4 C .5 D .68.在ABC △中,π4B ,BC 边上的高等于13BC ,则cos A ( )A .310 B . 10 C .1010D .310109.如图,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体的表面积为( )A .18365+B .54185+C .90D .8110.在封闭的直三棱柱111ABC A B C -内有一个体积为V 的球,若AB BC ⊥,6AB =,8BC =,13AA =,则V 的最大值是( )是停止输出n s>16s=s+a,n=n+1a=b+a b=b-a a=b-a n=0,s=0输入a,b 开始否A .4πB .9π2 C .6π D .32π311.已知O 为坐标原点,F 是椭圆:C 22221(0)x y a b a b+=>>的左焦点,A ,B 分别为C的左,右顶点.P 为C 上一点,且PF x ⊥轴.过点A 的直线l 与线段PF 交于点M ,与y 轴交于点E .若直线BM 经过OE 的中点,则C 的离心率为( ) A .13B .12C .23D .3412. 买《全归纳》即赠完整word 版高考真题定义“规范01数列”{}n a 如下:{}n a 共有2m 项,其中m 项为0,m 项为1,且对任意2km ,12,,,k a a a 中0的个数不少于1的个数.若4m =,则不同的“规范01数列”共有( ) A .18个 B .16个 C .14个D .12个第II 卷(非选择题 共90分)本试卷包括必考题和选考题两部分.第13题~第21题为必考题,每个试题考生都必须作答.第22题~第24题为选考题,考生根据要求作答.二、填空题(本大题共4小题,每小题5分,共20分)13.若x ,y 满足约束条件1020220x y x y x y -+⎧⎪-⎨⎪+-⎩则z x y =+的最大值为_____________.14.函数sin 3y x x =的图像可由函数sin 3y x x =的图像至少向右平移_____________个单位长度得到.15.已知()f x 为偶函数,当0x <时,()ln()3f x x x =-+,则曲线()y f x =在点()13-,处的切线方程是_______________.16. 买《全归纳》即赠完整word 版高考真题已知直线:330l mx y m ++-=与圆2212x y +=交于A ,B 两点,过A ,B 分别做l 的垂线与x 轴交于C ,D 两点,若23AB =CD =__________________.三、解答题(本大题共6小题,共70分,解答应写出文字说明、证明过程或演算步骤.) 17.(本小题满分12分)已知数列{}n a 的前n 项和1,1n n n S a S a λ=+=+,其中0λ≠.(1)证明{}n a 是等比数列,并求其通项公式; (2)若53132S =,求λ.18.(本小题满分12分)下图是我国2008年至2014年生活垃圾无害化处理量(单位:亿吨)的折线图(1)由折线图看出,可用线性回归模型拟合y 与t 的关系,请用相关系数加以说明 (2)建立y 关于t 的回归方程(系数精确到0.01),预测2016年我国生活垃圾无害化处理量. 参考数据:719.32ii y==∑,7140.17i i i t y ==∑721()0.55ii y y =-=∑7 2.646≈.参考公式:相关系数12211()()()(y y)niii nni i i i t t y y r t t ===--=--∑∑∑ 回归方程y a bt =+中斜率和截距的最小二乘估计公式分别为:y年生活垃圾无害化处理量年份代码t76523411.401.801.60121()()()nii i nii tt y y b tt ==--=-∑∑,=.a y bt -19.(本小题满分12分)如图,四棱锥P ABCD -中,PA ⊥地面ABCD ,BC AD ∥,3AB AD AC ===,4PA BC ==,M 为线段AD 上一点,2AM MD =,N 为PC 的中点.(1)证明MN ∥平面PAB ;(2)求直线AN 与平面PMN 所成角的正弦值.20.(本小题满分12分)买《全归纳》即赠完整word 版高考真题已知抛物线的焦点为F ,平行于x 轴的两条直线分别交C 于A ,B 两点,交C 的准线于P ,Q 两点. (1)若F 在线段AB 上,R 是PQ 的中点,证明FQ AR ∥;(2)若△PQF 的面积是△ABF 的面积的两倍,求AB 中点的轨迹方程.PN MDCBA21.(本小题满分12分)买《全归纳》即赠完整word 版高考真题设函数()cos 2(1)(cos +1)f x a x a x =+-,其中0a >,记()f x 的最大值为A .(1)求()f x '; (2)求A ;(3)证明2.f x A '()请考生在第22,23,24三题中任选一题作答.注意:只能做所选定的题目.如果多做,则按所做的第一个题目计分.满分10分.22.(本小题满分10分)选修4-1:几何证明选讲如图,O 中AB 的中点为P ,弦PC ,PD 分别交AB 于E ,F 两点.(1)若2PFB PCD ∠=∠,求PCD ∠的大小;(2)若EC 的垂直平分线与FD 的垂直平分线交于点G ,证明OG CD ⊥.O GFE CBAD23.(本小题满分10分)选修4-4:坐标系与参数方程在直角坐标系xOy 中,曲线1C 的参数方程为3()sin x y θθθ⎧=⎪⎨=⎪⎩为参数,以坐标原点为极点,以x 轴的正半轴为极轴,,建立极坐标系,曲线2C 的极坐标方程为sin 224ρθπ⎛⎫+= ⎪⎝⎭.(1)写出1C 的普通方程和2C 的直角坐标方程;(2)设点P 在1C 上,点Q 在2C 上,求PQ 的最小值及此时P 的直角坐标.24.(本小题满分10分)选修4-5:不等式选讲已知函数()|2|f x x a a =-+ (1)当2a =时,求不等式()6f x 的解集;(2)设函数()|21|,g x x =-当x ∈R 时,()()3f x g x +,求a 的取值范围.组合教育 《洞穿高考数学辅导丛书》编委会供稿。
2016年全国高考全国丙卷(理科数学)解析版
试题类型:新课标Ⅲ2016年普通高等学校招生全国统一考试理科数学注意事项: 1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
第Ⅰ卷1至3页,第Ⅱ卷3至5页。
2.答题前,考生务必将自己的姓名、准考证号填写在本试题相应的位置。
3.全部答案在答题卡上完成,答在本试题上无效。
4. 考试结束后,将本试题和答题卡一并交回。
第Ⅰ卷一. 选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合 题目要求的。
(1)设集合S ={}{}|(2)(3)0,|0S x x x T x x =--≥=> ,则ST =(A) [2,3] (B)(-∞ ,2] [3,+∞)(C) [3,+∞) (D)(0,2] [3,+∞)【答案】D考点:1、不等式的解法;2、集合的交集运算. (2)若12z i =+,则41izz =- (A)1 (B) -1 (C) i (D)-i 【答案】C 【解析】 试题分析:44(12)(12)11i ii i i zz ==+---,故选C . 考点:1、复数的运算;2、共轭复数.(3)已知向量13()2BA =,31(),22BC = 则∠ABC= (A)300(B) 450(C) 600(D)1200【答案】A 【解析】试题分析:由题意,得133132222cos112||||BA BCABCBA BC⨯+⨯⋅∠===⨯,所以30ABC∠=︒,故选A.考点:向量夹角公式.(4)某旅游城市为向游客介绍本地的气温情况,绘制了一年中月平均最高气温和平均最低气温的雷达图。
图中A点表示十月的平均最高气温约为150C,B点表示四月的平均最低气温约为50C。
下面叙述不正确的是(A) 各月的平均最低气温都在00C以上 (B) 七月的平均温差比一月的平均温差大(C) 三月和十一月的平均最高气温基本相同 (D)平均气温高于200C的月份有5个【答案】D考点:1、平均数;2、统计图(5)若3tan4α=,则2cos2sin2αα+=(A)6425(B)4825(C) 1 (D)1625【答案】A 【解析】试题分析:由3tan4α=,得34sin,cos55αα==或34sin,cos55αα=-=-,所以2161264cos 2sin 24252525αα+=+⨯=,故选A . 考点:1、同角三角函数间的基本关系;2、倍角公式. (6)已知432a =,254b =,1325c =,则(A )b a c << (B )a b c << (C )b c a << (D )c a b << 【答案】A 【解析】试题分析:因为422335244a b ==>=,1223332554c a ==>=,所以b a c <<,故选A . 考点:幂函数的图象与性质.(7)执行下图的程序框图,如果输入的46a b ==,,那么输出的n =(A )3 (B )4 (C )5 (D )6 【答案】B考点:程序框图.(8)在ABC △中,π4B,BC 边上的高等于13BC ,则cos A(A 310 (B 10(C )1010(D )31010【答案】C【解析】试题分析:设BC 边上的高线为AD ,则3BC AD =,所以225AC AD DC AD =+=,2AB AD =.由余弦定理,知22222225910cos 210225AB AC BC AD AD AD A AB AC AD AD+-+-===-⋅⨯⨯,故选C . 考点:余弦定理.(9)如图,网格纸上小正方形的边长为1,粗实现画出的是某多面体的三视图,则该多面体的表面积为(A )18365+ (B )54185+ (C )90 (D )81 【答案】B(10) 在封闭的直三棱柱111ABC A B C -内有一个体积为V 的球,若AB BC ⊥,6AB =,8BC =,13AA =,则V 的最大值是(A )4π (B )92π(C )6π (D )323π【答案】B 【解析】试题分析:要使球的体积V 最大,必须球的半径R 最大.由题意知球的与直三棱柱的上下底面都相切时,球的半径取得最大值32,此时球的体积为334439()3322R πππ==,故选B . 考点:1、三棱柱的内切球;2、球的体积.(11)已知O 为坐标原点,F 是椭圆C :22221(0)x y a b a b+=>>的左焦点,A ,B 分别为C 的左,右顶点.P为C 上一点,且PF x ⊥轴.过点A 的直线l 与线段PF 交于点M ,与y 轴交于点E .若直线BM 经过OE 的中点,则C 的离心率为(A )13(B )12(C )23(D )34【答案】A考点:椭圆方程与几何性质.(12)定义“规范01数列”{a n }如下:{a n }共有2m 项,其中m 项为0,m 项为1,且对任意2k m ≤,12,,,ka a a中0的个数不少于1的个数.若m =4,则不同的“规范01数列”共有(A )18个 (B )16个(C )14个(D )12个【答案】C【解析】试题分析:由题意,得必有10a =,81a =,则具体的排法列表如下:0 1 1 1 110 1 1 1 0 1 1 0 10 0 1 1 10 1 1 0 10 0 1 1 0 10 1 1 1 0 1 1 0 10 1 1考点:计数原理的应用.第II 卷二、填空题:本大题共3小题,每小题5分(13)若,x y 满足约束条件1020220x y x y x y -+≥⎧⎪-≤⎨⎪+-≤⎩则z x y =+的最大值为___________.【答案】32考点:简单的线性规划问题.(14)函数sin 3y x x =的图像可由函数sin 3y x x =+的图像至少向右平移_____________个 单位长度得到. 【答案】32π【解析】试题分析:因为sin 32sin()3y x x x π==+,sin 32sin()3y x x x π=-=-=2sin[()]33x π2π+-,所以函数sin 3y x x =的图像可由函数sin 3y x x =+的图像至少向右平移32π个单位长度得到. 考点:1、三角函数图象的平移变换;2、两角和与差的正弦函数.(15)已知()f x 为偶函数,当0x <时,()ln()3f x x x =-+,则曲线()y f x =在点(1,3)-处的切线方程是_______________。
(完整word版)2016年全国高考理科数学试题及答案,推荐文档
2016年普通高等学校招生全国统一考试理科数学本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共24题,共150分,共4页。
考试结束后,将本试卷和答题卡一并交回。
注意事项:1.答题前,考生务必将自己的姓名、准考证号填写清楚,将条形码准确粘贴在条形码区域内。
2. 选择题必须使用2B 铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。
3. 请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。
4. 作图可先使用铅笔画出,确定后必须用墨色笔迹的签字笔描黑。
5. 保持卡面清洁,不要折叠、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
第Ⅰ卷一. 选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.(1)已知在复平面内对应的点在第四象限,则实数m 的取值范围是(A ))1,3(-(B ))3,1(-(C )),1(+∞(D )(2)已知集合,,则(A )(B )(C )(D )(3)已知向量,且,则m =(A )-8 (B )-6 (C )6 (D )8 (4)圆的圆心到直线的距离为1,则a=(A )34-(B )43- (C )3 (D )2(5)如图,小明从街道的E 处出发,先到F 处与小红会合,再一起到位于G 处的老年公寓参加志愿者活动,则小明到老年公寓可以选择的最短路径条数为(A )24 (B )18 (C )12 (D )9(6)右图是由圆柱与圆锥组合而成的几何体的三视图,则该几何体的表面积为(A )20π (B )24π (C )28π (D )32π (7)若将函数y =2sin 2x 的图像向左平移12π个单位长度,则平移后图象的对称轴为 (A )x =62k ππ- (k ∈Z ) (B )x=62ππ+k (k ∈Z ) (C )x=122k ππ- (k ∈Z ) (D )x =122k ππ+ (k ∈Z ) (8)中国古代有计算多项式值的秦九韶算法,右图是实现该算法的程序框图,执行该程序框图,若输入的x =2,n =2,依次输入的a 为2,2,5,则输出的s =(A )7 (B )12 (C )17 (D )34 (9)若cos(4π–α)= 53,则sin 2α= (A )257(B )51(C )51- (D )257- (10)从区间随机抽取2n 个数,,…,,,,…,,构成n 个数对,,…,,其中两数的平方和小于1的数对共有m 个,则用随机模拟的方法得到的圆周率 的近似值为(A ) (B ) (C ) (D )(11)已知F 1,F 2是双曲线E 的左,右焦点,点M 在E 上,M F 1与 轴垂直,sin,则E 的离心率为(A ) (B ) (C ) (D )2(12)已知函数))((R x x f ∈满足)(2)(x f x f -=-,若函数xx y 1+=与)(x f y =图像的交点为)(1,1y x ,),(22y x ···,(m m y x ,),则=+∑=mi i iy x1)((A )0 (B )m (C )2m (D )4m第II 卷本卷包括必考题和选考题两部分。
2016全国1高考数学(理)真题及答案解析精编版.doc
2016 年普通高等学校招生全国统一考试理科数学及答案注意事项:1. 本试卷分第Ⅰ卷 ( 选择题 ) 和第Ⅱ卷 ( 非选择题 ) 两部分 . 第Ⅰ卷 1 至 3 页,第Ⅱ卷 3至5页.2. 答题前,考生务必将自己的姓名、准考证号填写在本试题相应的位置.3. 全部答案在答题卡上完成,答在本试题上无效 .4. 考试结束后,将本试题和答题卡一并交回 .第Ⅰ卷一 . 选择题:本大题共 12 小题,每小题 5 分,在每小题给出的四个选项中,只有一项是符合题目要求的.(1)设集合A { x | x 24x 3 0} , B { x | 2x 3 0} ,则 A I B( 3, 3)( 3,3)(1,3)( 3,3)(A )2(B )2(C )2(D )2(2)设(1 i) x1yi,其中 x ,y 是实数,则x yi =(A )1(B )2(C ) 3(D )2(3)已知等差数列{ an}前9项的和为27,a10=8,则a100=(A)100(B)99(C)98(D)97(4)某公司的班车在 7:00 ,8:00 ,8:30 发车,小明在 7:50 至 8:30 之间到达发车站乘坐班车,且到达发车站的时刻是随机的,则他等车时间不超过10 分钟的概率是(A)( B)( C)( D)(5)已知方程– =1 表示双曲线,且该双曲线两焦点间的距离为4,则n的取值范围是(A)( –1,3)(B)(–1,3)(C)(0,3)(D)(0,3)(6)如图,某几何体的三视图是三个半径相等的圆及每个圆中两条相互垂直的半径 . 若该几何体的体积是,则它的表面积是(A)17π( B)18π( C)20π( D)28π(7)函数y=2x2–e|x|在[ –2,2] 的图像大致为(A)(B)(C)(D)(8)若a b 10, c 1,则(A)a c b c() ab c ba c()()B C a log b c b log a c D log a c log b c(9)执行右面的程序图,如果输入的x 0, y 1, n 1,则输出x,y的值满足(A)y2x (B) y 3x (C) y 4x (D) y 5x(10)以抛物线 C的顶点为圆心的圆交 C于 A、B两点,交 C的标准线于 D、E两点. 已知 | AB|= 4 2,| DE|=2 5,则C的焦点到准线的距离为(A)2(B)4(C)6(D)8(11) 平面a过正方体ABCD-A B CD的顶点A,a// 平面CBD,平面 ABCD=m,1111 1 1a a平面 ABA1B1=n,则 m、n 所成角的正弦值为(A) 3(B)2(C)3(D) 1 223 312. 已知函数 f xsin(x+)(0,), x 为 f (x) 的零点, x为 y f ( x) 图( )442像的对称轴,且 f ( x) 在5单调,则的最大值为18 ,36(A )11(B )9(C )7 (D )5第II 卷本卷包括必考题和选考题两部分 . 第(13) 题~第 (21) 题为必考题, 每个试题考生都必须作答 . 第(22) 题~第(24) 题为选考题,考生根据要求作答 .二、填空题:本大题共3 小题,每小题 5 分(13) 设向量 a =( m ,1) ,b =(1 ,2) ,且 | a +b | 2=| a | 2+| b | 2,则 m =.(14) (2 x x )5 的展开式中, x 3 的系数是 . (用数字填写答案)( 15)设等比数列满足 a 1+a 3=10,a 2+a 4=5,则 a 1a 2 a n 的最大值为。
(完整版),2016全国三卷理科数学高考真题及答案,推荐文档
2016 年普通高等学校招生全国统一考试理科数学一. 选择题:本大题共12 小题,每小题5 分,在每小题给出的四个选项中,只有一项是符合题目要求的.(1)设集合S= S ={x P(x- 2)(x- 3) ≥ 0}, T ={x I x > 0},则S I T=(A) [2,3] (B)(- ∞,2] U [3,+ ∞)(C) [3,+ ∞)(D)(0,2] U [3,+ ∞)4i(2)若z=1+2i ,则=zz -1(A)1 (B) -1 (C) i (D)-iu u v12u u u v31(3)已知向量BA = ( , ) , BC = ( , ), 则∠ABC=2 2 2 2(A)300 (B) 450 (C) 600 (D)1200(4)某旅游城市为向游客介绍本地的气温情况,绘制了一年中月平均最高气温和平均最低气温的雷达图。
图中A 点表示十月的平均最高气温约为150C,B 点表示四月的平均最低气温约为50C。
下面叙述不正确的是(A)各月的平均最低气温都在00C 以上(B)七月的平均温差比一月的平均温差大(C)三月和十一月的平均最高气温基本相同(D)平均气温高于200C 的月份有5 个(5)若tan=3 4(A)64254,则cos2 + 2 sin 2=(B)48253 1(C) 1 (D)1625(6)已知a = 23 ,b = 44 ,c = 253 ,则(A) b <a <c (B)a <b <c (C)b <c <a (D)c <a <b (7)执行下图的程序框图,如果输入的a=4,b=6,那么输出的n=(A)3(B)4(C)5(D)6{(8) 在△ABC 中, B = π ,BC 边上的高等于 1BC ,则cos A =4 3(A )3 1010(C ) - 10 (B ) 1010(D )- 3 1010(9) 如图,网格纸上小正方形的边长为 1,粗实现画出的是某多面体的三视图,则该多面体的表面积为(A )18 +36(B ) 54 +18 (C )90 (D )81(10) 在封闭的直三棱柱 ABC -A 1B 1C 1 内有一个体积为 V 的球,若AB ⊥ BC ,AB =6,BC =8,AA 1=3,则 V 的最大值是 9(A )4π(B )(C )6π2(D )32 3x 2 + y 2=> >(11) 已知 O 为坐标原点,F 是椭圆 C :a 2b 21(a b0) 的左焦点,A ,B 分别为 C 的左,右顶点.P为 C 上一点,且 PF ⊥x 轴.过点 A 的直线 l 与线段 PF 交于点 M ,与 y 轴交于点 E .若直线 BM 经过 OE 的中点, 则 C 的离心率为 112 3 (A )(B )(C )(D )3 234(12) 定义“规范 01 数列”{a n }如下:{a n }共有 2m 项,其中 m 项为 0,m 项为 1,且对任意 k ≤ 2m ,a 1 , a 2 , , a k 中 0 的个数不少于 1 的个数.若 m =4,则不同的“规范 01 数列”共有(A )18 个(B )16 个(C )14 个(D )12 个二、填空题:本大题共 3 小题,每小题 5 分x ‒ y + 1 ≥ 0 x ‒ 2y ≪ 0(13) 若 x ,y 满足约束条件 x + 2y ‒ 2 ≪ 0 则 z=x+y 的最大值为 . (14)函数y = sin x ‒ 3cos x 的图像可由函数y = sin x + 3cos x 的图像至少向右平移 个单位长度得到。
2016年普通高等学校招生全国统一考试理科数学试题解析版
绝密★启封并使用完毕前试题类型:A2016年普通高等学校招生全国统一考试理科数学本试题卷共5页,24题(含选考题)。
全卷满分150分。
考试用时120分钟。
注意事项:1、答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。
用2B 铅笔将答题卡上试卷类型A 后的方框涂黑。
2、选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。
写在试题卷、草稿纸和答题卡上的非答题区域均无效。
3、填空题和解答题的作答:用签字笔直接答在答题卡上对应的答题区域内。
写在试题卷、草稿纸和答题卡上的非答题区域均无效。
4、选考题的作答:先把所选题目的题号在答题卡上指定的位置用2B 铅笔涂黑。
答案写在答题卡上对应的答题区域内,写在试题卷、草稿纸和答题卡上的非答题区域均无效。
5、考试结束后,请将本试题卷和答题卡一并上交。
第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.(1)设集合2{|430}A x x x =-+< ,{|230}B x x =->,则A B =I(A )3(3,)2-- (B )3(3,)2- (C )3(1,)2 (D )3(,3)2【答案】D考点:集合运算(2)设(1i)1i x y +=+,其中x ,y 是实数,则i =x y + (A)1 (B )2 (C )3 (D )2 【答案】B 【解析】试题分析:因为(1)=1+,i x yi +所以=1+,=1,1,||=|1+|2,x xi yi x y x x yi i +==+=所以故故选B. 考点:复数运算(3)已知等差数列{}n a 前9项的和为27,10=8a ,则100=a (A )100 (B )99 (C )98 (D )97 【答案】C 【解析】试题分析:由已知,1193627,98a d a d +=⎧⎨+=⎩所以110011,1,9919998,a d a a d =-==+=-+= 故选C.考点:等差数列及其运算(4)某公司的班车在7:30,8:00,8:30发车,小明在7:50至8:30之间到达发车站乘坐班车,且到达发车站的时刻是随机的,则他等车时间不超过10分钟的概率是 (A )13 (B )12 (C )23 (D )34【答案】B考点:几何概型(5)已知方程x 2m 2+n –y 23m 2–n =1表示双曲线,且该双曲线两焦点间的距离为4,则n 的取值范围是(A )(–1,3) (B )(–1,3) (C )(0,3) (D )(0,3) 【答案】A【解析】由题意知:双曲线的焦点在x 轴上,所以2234m n m n ++-=,解得:21m =,因为方程22113x y n n -=+-表示双曲线,所以1030n n +>⎧⎨->⎩,解得13n n >-⎧⎨<⎩,所以n 的取值范围是()1,3-,故选A . 考点:双曲线的性质(6)如图,某几何体的三视图是三个半径相等的圆及每个圆中两条互相垂直的半径.若该几何体的体积是28π3,则它的表面积是(A )17π (B )18π (C )20π (D )28π【答案】A【解析】试题分析:由三视图知:该几何体是78个球,设球的半径为R ,则37428V R 833ππ=⨯=,解得R 2=,所以它的表面积是22734221784πππ⨯⨯+⨯⨯=,故选A .考点:三视图及球的表面积与体积(7)函数y =2x 2–e |x |在[–2,2]的图像大致为(A ) (B )(C )(D )【答案】D考点:函数图像与性质(8)若101a b c >><<,,则(A )c c a b < (B )c c ab ba < (C )log log b a a c b c < (D )log log a b c c < 【答案】C考点:指数函数与对数函数的性质(9)执行右面的程序框图,如果输入的011x y n ===,,,则输出x ,y 的值满足(A )2y x = (B )3y x = (C )4y x = (D )5y x = 【答案】C 【解析】试题分析:当0,1,1x y n ===时,110,1112x y -=+=⨯=,不满足2236x y +≥;2112,0,21222n x y -==+==⨯=,不满足2236x y +≥;13133,,236222n x y -==+==⨯=,满足2236x y +≥;输出3,62x y ==,则输出的,x y 的值满足4y x =,故选C. 考点:程序框图与算法案例(10)以抛物线C 的顶点为圆心的圆交C 于A ,B 两点,交C 的准线于D ,E 两点.已知|AB |=42,|DE|=25,则C 的焦点到准线的距离为(A )2 (B )4 (C )6 (D )8 【答案】B 【解析】试题分析:如图,设抛物线方程为22y px =,圆的半径为r ,,AB DE 交x 轴于,C F 点,则22AC =,即A 点纵坐标为22,则A 点横坐标为4p ,即4OC p=,由勾股定理知2222DF OF DO r +==,2222AC OC AO r +==,即22224(5)()(22)()2p p+=+,解得4p =,即C 的焦点到准线的距离为4,故选B. 考点:抛物线的性质(11)平面α过正方体ABCD -A 1B 1C 1D 1的顶点A ,ααI αI322313ππ()sin()(0),24f x x+x ,ωϕωϕ=>≤=-()f x π4x =()y f x =()f x π5π()1836,ω(13)~(21)题为必考题,每个试题考生都必须作答.第(22)~(24)题为选考题,考生根据要求作答.二、填空题:本题共4小题,每小题5分.(13)设向量a =(m ,1),b =(1,2),且|a +b |2=|a |2+|b |2,则m = . 【答案】2- 【解析】试题分析:由222||||||+=+a b a b ,得⊥a b ,所以1120m ⨯+⨯=,解得2m =-. 考点:向量的数量积及坐标运算(14)5(2)x x +的展开式中,x 3的系数是 .(用数字填写答案)【答案】10 【解析】 试题分析:5(2)x x +的展开式的通项为555255C (2)()2C r r rr rr x x x---=(0r =,1,2,…,5),令532r -=得4r =,所以3x 的系数是452C 10=. 考点:二项式定理(15)设等比数列{}n a 满足a 1+a 3=10,a 2+a 4=5,则a 1a 2鬃?a n 的最大值为 . 【答案】64考点:等比数列及其应用(16)某高科技企业生产产品A 和产品B 需要甲、乙两种新型材料.生产一件产品A 需要甲材料 kg ,乙材料1 kg ,用5个工时;生产一件产品B 需要甲材料 kg ,乙材料 kg ,用3个工时,生产一件产品A 的利润为2100元,生产一件产品B 的利润为900元.该企业现有甲材料150 kg ,乙材料90 kg ,则在不超过600个工时的条件下,生产产品A 、产品B 的利润之和的最大值为 元.【答案】216000 【解析】试题分析:设生产产品A 、产品B 分别为x 、y 件,利润之和为z 元,那么由题意得约束条件 1.50.5150,0.390,53600,0,0.x y x y x y x y +⎧⎪+⎪⎪+⎨⎪⎪⎪⎩„„„……目标函数2100900z x y =+.约束条件等价于3300,103900,53600,0,0.x y x y x y x y +⎧⎪+⎪⎪+⎨⎪⎪⎪⎩?„„……①作出二元一次不等式组①表示的平面区域,即可行域,如图中阴影部分所示.将2100900z x y =+变形,得73900z y x =-+,作直线:73y x =-并平移,当直线73900zy x =-+经过点M 时,z 取得最大值.解方程组10390053600x y x y +=⎧⎨+=⎩,得M 的坐标为(60,100).所以当60x =,100y =时,max 210060900100216000z =⨯+⨯=. 故生产产品A 、产品B 的利润之和的最大值为216000元. 考点:线性规划的应用三、解答题:解答应写出文字说明、证明过程或演算步骤. (17)(本小题满分12分)ABC △的内角A ,B ,C 的对边分别为a ,b ,c ,已知2cos (cos cos ).C a B+b A c =(I )求C ; (II )若7,c ABC △=33ABC △的周长. 【答案】(I )C 3π=(II )57【解析】试题解析:(I )由已知及正弦定理得,()2cosC sin cos sin cos sinC A B+B A =,()2cosCsin sinC A+B =.故2sinCcosC sinC =. 可得1cosC 2=,所以C 3π=.考点:正弦定理、余弦定理及三角形面积公式 (18)(本小题满分12分)如图,在以A ,B ,C ,D ,E ,F 为顶点的五面体中,面ABEF 为正方形,AF =2FD ,90AFD ∠=o ,且二面角D -AF -E 与二面角C -BE -F 都是60o .(I )证明:平面ABEF ⊥平面EFDC ; (II )求二面角E -BC -A 的余弦值. 【答案】(I )见解析(II )219【解析】试题分析:(I )证明F A ⊥平面FDC E ,结合F A ⊂平面F ABE ,可得平面F ABE ⊥平面FDC E .(II )建立空间坐标系,利用向量求解.试题解析:(I )由已知可得F DF A ⊥,F F A ⊥E ,所以F A ⊥平面FDC E . 又F A ⊂平面F ABE ,故平面F ABE ⊥平面FDC E .(II )过D 作DG F ⊥E ,垂足为G ,由(I )知DG ⊥平面F ABE .以G 为坐标原点,GF u u u r 的方向为x 轴正方向,GF u u u r为单位长,建立如图所示的空间直角坐标系G xyz -.由(I )知DF ∠E 为二面角D F -A -E 的平面角,故DF 60∠E =o,则DF 2=,DG 3=,可得()1,4,0A ,()3,4,0B -,()3,0,0E -,()D 0,0,3.考点:垂直问题的证明及空间向量的应用(19)(本小题满分12分)某公司计划购买2台机器,该种机器使用三年后即被淘汰.机器有一易损零件,在购进机器时,可以额外购买这种零件作为备件,每个200元.在机器使用期间,如果备件不足再购买,则每个500元.现需决策在购买机器时应同时购买几个易损零件,为此搜集并整理了100台这种机器在三年使用期内更换的易损零件数,得下面柱状图:以这100台机器更换的易损零件数的频率代替1台机器更换的易损零件数发生的概率,记X 表示2台机器三年内共需更换的易损零件数,n 表示购买2台机器的同时购买的易损零件数.(I )求X 的分布列;(II )若要求()0.5P X n ≤≥,确定n 的最小值;(III )以购买易损零件所需费用的期望值为决策依据,在19n =与20n =之中选其一,应选用哪个?【答案】(I )见解析(II )19(III )19n =考点:概率与统计、随机变量的分布列(20)(本小题满分12分)设圆222150x y x ++-=的圆心为A ,直线l 过点B (1,0)且与x 轴不重合,l 交圆A 于C ,D 两点,过B 作AC 的平行线交AD 于点E .(I )证明EA EB +为定值,并写出点E 的轨迹方程;(II )设点E 的轨迹为曲线C 1,直线l 交C 1于M ,N 两点,过B 且与l 垂直的直线与圆A 交于P ,Q 两点,求四边形MPNQ 面积的取值范围.【答案】(Ⅰ)13422=+y x (0≠y )(II ))38,12[ 【解析】试题分析:利用椭圆定义求方程;(II )把面积表示为关于斜率k 的函数,再求最值。
2016高考理科数学答案解析(新课标全国卷
绝密*启用前2016年普通高等学校招生全国统一考试理科数学注息事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
答卷前,考生务必将自己的姓名、准考证号填写在本试卷和答题卡相应位置上。
2.问答第Ⅰ卷时。
选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动.用橡皮擦干净后,再选涂其它答案标号。
写在本试卷上无效.3.回答第Ⅱ卷时。
将答案写在答题卡上.写在本试卷上无效·4.考试结束后.将本试卷和答且卡一并交回。
第一卷一. 选择题:本大题共12小题,每小题5分,在每小题给同的四个选项中,只有一项是符合题目要求的。
(1)已知集合{1,2,3,4,5}A =,{(,),,}B x y x A y A x y A =∈∈-∈;,则B 中所含元素的个数为( )()A 3 ()B 6 ()C 8 ()D 10【解析】选D5,1,2,3,4x y ==,4,1,2,3x y ==,3,1,2x y ==,2,1x y ==共10个 (2)将2名教师,4名学生分成2个小组,分别安排到甲、乙两地参加社会实践活动,每个小组由1名教师和2名学生组成,不同的安排方案共有( )()A 12种 ()B 10种 ()C 9种 ()D 8种【解析】选A甲地由1名教师和2名学生:122412C C =种(3)下面是关于复数21z i=-+的四个命题:其中的真命题为( ) 1:2p z = 22:2p z i = 3:p z 的共轭复数为1i + 4:p z 的虚部为1-()A 23,p p ()B 12,p p ()C ,p p 24 ()D ,p p 34【解析】选C 22(1)11(1)(1)i z i i i i --===---+-+--1:p z =22:2p z i =,3:p z 的共轭复数为1i -+,4:p z 的虚部为1-(4)设12F F 是椭圆2222:1(0)x y E a b a b +=>>的左、右焦点,P 为直线32ax =上一点,∆21F PF 是底角为30的等腰三角形,则E 的离心率为( )()A 12 ()B 23 ()C 34()D 45【解析】选C∆21F PF 是底角为30的等腰三角形221332()224cPF F F a c c e a ⇒==-=⇔==(5)已知{}n a 为等比数列,472a a +=,568a a =-,则110a a +=( )()A 7 ()B 5()C -5 ()D -7【解析】选D472a a +=,56474784,2a a a a a a ==-⇒==-或472,4a a =-=471101104,28,17a a a a a a ==-⇒=-=⇔+=- 471011102,48,17a a a a a a =-=⇒=-=⇔+=-(6)如果执行右边的程序框图,输入正整数(2)N N ≥和实数12,,...,n a a a ,输出,A B ,则( )()A A B +为12,,...,n a a a 的和 ()B 2A B+为12,,...,n a a a 的算术平均数 ()C A 和B 分别是12,,...,n a a a 中最大的数和最小的数 ()D A 和B 分别是12,,...,n a a a 中最小的数和最大的数【解析】选C(7)如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则此几何体的体积为( )()A 6 ()B 9 ()C 12 ()D 18【解析】选B该几何体是三棱锥,底面是俯视图,高为3 此几何体的体积为11633932V =⨯⨯⨯⨯=(8)等轴双曲线C 的中心在原点,焦点在x 轴上,C 与抛物线x y 162=的准线交于,A B两点,AB =C 的实轴长为( )()A ()B ()C 4 ()D 8【解析】选C设222:(0)C x y a a -=>交x y 162=的准线:4l x =-于(4,A -(4,B --得:222(4)4224a a a =--=⇔=⇔=(9)已知0ω>,函数()sin()4f x x πω=+在(,)2ππ上单调递减。
2016年高考真题——理科数学(新课标Ⅲ卷)解析
注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
第Ⅰ卷1至3页,第Ⅱ卷3至5页。
2.答题前,考生务必将自己的姓名、准考证号填写在本试题相应的位置。
3.全部答案在答题卡上完成,答在本试题上无效。
4. 考试结束后,将本试题和答题卡一并交回。
第Ⅰ卷一. 选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合 题目要求的。
(1)设集合S ={}{}|(2)(3)0,|0S x x x T x x =--≥=> ,则S I T =(A) [2,3] (B)(-∞ ,2]U [3,+∞) (C) [3,+∞) (D)(0,2]U [3,+∞) 【答案】D考点:1、不等式的解法;2、集合的交集运算. (2)若12z i =+,则41izz =- (A)1 (B) -1 (C) i (D)-i 【答案】C 【解析】 试题分析:44(12)(12)11i ii i i zz ==+---,故选C . 考点:1、复数的运算;2、共轭复数.(3)已知向量1(2BA =uu v ,1),2BC =uu u v 则∠ABC=(A)300(B) 450(C) 600(D)1200【解析】试题分析:由题意,得112222cos11||||BA BCABCBA BC⨯⋅∠===⨯,所以30ABC∠=︒,故选A.考点:向量夹角公式.(4)某旅游城市为向游客介绍本地的气温情况,绘制了一年中月平均最高气温和平均最低气温的雷达图。
图中A点表示十月的平均最高气温约为150C,B点表示四月的平均最低气温约为50C。
下面叙述不正确的是(A) 各月的平均最低气温都在00C以上 (B) 七月的平均温差比一月的平均温差大(C) 三月和十一月的平均最高气温基本相同 (D)平均气温高于200C的月份有5个【答案】D考点:1、平均数;2、统计图(5)若3tan4α=,则2cos2sin2αα+=(A)6425(B)4825(C) 1 (D)1625【答案】A试题分析:由3tan 4α=,得34sin ,cos 55αα==或34sin ,cos 55αα=-=-,所以2161264cos 2sin 24252525αα+=+⨯=,故选A . 考点:1、同角三角函数间的基本关系;2、倍角公式. (6)已知432a =,254b =,1325c =,则(A )b a c << (B )a b c << (C )b c a << (D )c a b << 【答案】A 【解析】试题分析:因为422335244a b ==>=,1223332554c a ==>=,所以b a c <<,故选A . 考点:幂函数的图象与性质.(7)执行下图的程序框图,如果输入的46a b ==,,那么输出的n =(A )3 (B )4 (C )5 (D )6 【答案】B考点:程序框图.(8)在ABC △中,π4B =,BC 边上的高等于13BC ,则cos A =(A (B (C )- (D )-【答案】C 【解析】试题分析:设BC 边上的高线为AD ,则3BC AD =,所以AC ==,AB =.由余弦定理,知222222cos2AB AC BC A AB AC +-===⋅,故选C . 考点:余弦定理.(9)如图,网格纸上小正方形的边长为1,粗实现画出的是某多面体的三视图,则该多面体的表面积为(A )18+(B )54+(C )90 (D )81 【答案】B考点:空间几何体的三视图及表面积.(10) 在封闭的直三棱柱111ABC A B C -内有一个体积为V 的球,若AB BC ⊥,6AB =,8BC =,13AA =,则V 的最大值是(A )4π (B )92π(C )6π (D )323π【答案】B 【解析】试题分析:要使球的体积V 最大,必须球的半径R 最大.由题意知球的与直三棱柱的上下底面都相切时,球的半径取得最大值32,此时球的体积为334439()3322R πππ==,故选B . 考点:1、三棱柱的内切球;2、球的体积.(11)已知O 为坐标原点,F 是椭圆C :22221(0)x y a b a b+=>>的左焦点,A ,B 分别为C 的左,右顶点.P为C 上一点,且PF x ⊥轴.过点A 的直线l 与线段PF 交于点M ,与y 轴交于点E .若直线BM经过OE 的中 点,则C 的离心率为(A )13(B )12(C )23(D )34【答案】A考点:椭圆方程与几何性质.(12)定义“规范01数列”{a n }如下:{a n }共有2m 项,其中m 项为0,m 项为1,且对任意2k m ≤,12,,,k a a a中0的个数不少于1的个数.若m =4,则不同的“规范01数列”共有(A )18个 (B )16个(C )14个(D )12个【答案】C 【解析】试题分析:由题意,得必有10a =,81a =,则具体的排法列表如下:第II 卷本卷包括必考题和选考题两部分。
丙卷理科答案.docx
2016年普通高等学校招生全国统一考试全国丙卷参考答案理科数学1.D 解析 由{}{}32,0,S x x x T x x ==或>得??S T =I {}0<23.x x x 或剠故D. 2.C 解析 因为25,z z z ⋅==所以4i 4ii 14zz ==-.故选C. 3.A 解析由cos 2BA BC ABC BA BC⋅∠==u u u r u u u ru uu r u u u r 又0πABC <∠<,所以π6ABC ∠=. 故选A. 4.D 解析 观察一年中月平均最高气温和平均最低气温的雷达图,不难得知各月的平均最低气温都在0℃以上,故选A 正确.七月的平均温差比一月的平均温差大,故选项B 正确.三月和十一月的平均最高气温基本相同,都在10℃,故选项C 正确.故选D.5.A 解析 22222cos 4sin cos cos 2sin 2cos 4sin cos sin cos αααααααααα++=+=+ 2231414tan 644.tan 124314αα+⨯+==+⎛⎫+ ⎪⎝⎭=故选A . 评注 本题考查三角恒等变换,齐次化切. 6.A 解析 由423324a ==,233b =,得a b >, 由1223332554c ==>,则c a >因此c a b >>.故选A.7.B 解析 根据程序框图,程序运行过程中各字母的值依次为开始4,6,0,0a b n s ====,执行循环:第一次:2,4,6,6,1a b a s n =====; 第二次:2,6,4,10,2a b a s n =-====; 第三次:2,4,6,16,3a b a s n =====; 第四次:2,6,4,20,4a b a s n =-====;此时满足判断条件16s >,退出循环,输4n =.故选B . 8.C 解析 如图所示.依题意,3AB BC =,AC =,在ABC △中,由余弦定理得2222222252cos210BC BC BC BCAB AC BCAAB AC+--+-====-⋅故选C.9.B解析如图所示为其几何体直观图,该几何体为四棱柱1111AEFD A E F D-,所以表面积为(33363254⨯+⨯+⨯⨯=+故选B.10.B解析如图所示,假设在直三棱柱111ABC A B C-中,有一个球与平面11ABB A,平面11BCC B,平11AAC C面相切,其俯视图如图所示.设其球的半径为1r则16822,11(6810)22ABCABCSrC⨯⨯===⨯++△△且123r AA=…,得32r….因此,直三棱柱内球的半径最大值为32,则33max4439πππ3322V r⎛⎫===⎪⎝⎭.故选B.11.A 解析根据题意,作出图像,如图所示.因为点N为OE的中点,所以12OEON aMF a c MF==+,又OEMFaa c=-,所以12a aa c a c⋅=-+,得3a c=,即1=3cea=.F1E1FED1DB1A1C1A BCBACC1B1A1CBAD CBA故选A.12.C 解析 依题意,由“规范01数列”,得第一项为0,第2m 项为1,当4m =时,只需确定中间的6个元素即可,且知中间的6个元素有3个“0”和3个“1”. 分类讨论:①若0后接00,如图所示.后面四个空位可以随意安排3个1和1个0,则有34C 种排法; ②若0后接01如图所示.后面四个空位可以排的数字为2个“0”和2个“1”,只有一种情形不符合题意,即01后面紧接11,除此外其它的情形故满足要求,因此排法有24C 15-=种排法; ③若0后接10,如图所示.在10后若接0,则后面有13C 种排法,在10后若接1,即0 1 0 1 0 1,第五个数字一定接0,另外两个位置0,1可以随意排,有22A 中排法,则满足题意的排法有312432C 5C A 14+++=种.故选C.13.32 解析 可行域如图所示.当直线z x y =+经过11,2C ⎛⎫ ⎪⎝⎭时z 取最大值为32.1000100101114.2π3 解析由πsin 2sin ,3y x x x ⎛⎫==- ⎪⎝⎭πsin 2sin ,3y x x x ⎛⎫=+=+ ⎪⎝⎭显然函数π2sin 3y x ⎛⎫=- ⎪⎝⎭的图像可由π2sin 3y x ⎛⎫=+ ⎪⎝⎭的图像至少向右平移2π3个单位得到.故填2π3.15.210x y ++= 解析 解法一:先求函数()f x 在0x >上的解析式,再求切线方程. 设0x >,则0x -<,又()ln 3()f x x x f x -=-=,所以()ln 3(0)f x x x x =->,1()3,(1)2f x f x''=-=-,所以()y f x =在点3(1,-)处的切线方程为32(1)y x +=--, 即210x y ++=.解法二:由函数性质来求切线方程.因为()f x 为偶函数,所以若()f x 在点()()00,x f x 处的切线方程为y kx b =+,则()f x 在点()()00,x f x --处的切线方程为y kx b =-+.因此,先求出()y f x =在点()1,3--处的切线方程.又()()'130fx x x=+<,得()'12f -=,所以()f x 在点()1,3--处的切线方程为21y x =-,所以()f x 在点3(1,-)处的切线方程为21y x =--,即210x y ++=.16.4 解析 解法一:根据直线与圆相交弦长公式有AB ==得223r d -=,又212r =,得3d =.因此圆心()0,0O 到直线l:30mx y m ++-=的距离3d==,解得m =因此直线l的方程为y x =+ .所以直线l 的倾斜角为30o .如图所示,过点C 作CE BD ⊥于点E ,则4cos30cos30CE AB CD ====o o .解法二:直线l:30mx y m ++=,知直线l过定点(A ,又AB r ==,所以OAB △为等边三角形,因为(A ,所以30AOC ∠=o ,又知60AOB ∠=o ,所以点B 在y 轴上(直线l 的斜率存在).所以得直线l 的倾斜角为30o ,则4cos30cos30CE AB CD ====o o. 17.解析 (1)由题意得1111a S a λ==+,故1λ≠,111a λ=-,10a ≠. 由1n n S a λ=+,111n n S a λ++=+得11n n n a a a λλ++=-,即()11n n a a λλ+-=.由10a ≠,0λ≠,得0n a ≠,所以11n n a a λλ+=-.因此{}n a 是首项为11λ-,公比为1λλ-的等比数列,于是1111n n a λλλ-⎛⎫= ⎪--⎝⎭.(2)由(1)得11nn S λλ⎛⎫=- ⎪-⎝⎭.由53132S =得,5311132λλ⎛⎫-= ⎪-⎝⎭,即51132λλ⎛⎫= ⎪-⎝⎭. 解得1λ=-.18.解析 (1)由折线图中数据和附注中参考数据得4t =,()27128ii tt=-=∑,0.55=,()()77711140.1749.32 2.89iii ii i i i t t y y t y t y===--=-=-⨯=∑∑∑,2.890.990.552 2.646r ≈≈⨯⨯.因为y 与t 的相关系数近似为0.99,说明y 与t 的线性相关程度相当高,从而可以用线性回归模型拟合y 与t 的关系.(1)变量y 与t 的相关系数7777()()7iii i i it t y y t y t y r ---⋅==∑∑∑∑,又7128i i t ==∑,719.32i i y ==∑,7140.17i i i t y ==∑5.292==,0.55=,所以740.17289.320.997 5.2920.55r ⨯-⨯=≈⨯⨯ ,故可用线性回归模型拟合变量y 与t 的关系.(2)4t =,y =7117i i y =∑,所以7172211740.17749.327ˆ0.10287i ii ii t yt y b tt ==-⋅-⨯⨯⨯===-∑∑, 1ˆˆ9.320.1040.937ay bx =-=⨯-⨯≈,所以线性回归方程为ˆ0.10.93y t =+. 当9t =时,ˆ0.190.93 1.83y=⨯+=.因此,我们可以预测2016年我国生活垃圾无害化处理1.83亿吨.19.解析 (1)取PB 中点Q ,连接AQ 、NQ ,因为N 是PC 中点,//NQ BC ,且12NQ BC =,又22313342AM AD BC BC ==⨯=,且//AM BC ,所以//QN AM ,且QN AM =.所以四边形AQNM 是平行四边形.所以//MN AQ .又MN ⊄平面PAB ,AQ ⊂平面PAB ,所以//MN 平面PAB .(2)取BC 的中点E ,联结AE .由AB AC =得AE BC ⊥,从而AE AD ⊥,且AE===以A为坐标原点,AEu u u r的方向为x轴正方向,建立如图所示的空间直角坐标系A xyz-.由题意知,()0,0,4P,()0,2,0M,)C,2N⎛⎫⎪⎪⎝⎭,设(),,x y z=n为平面PMN的法向量,则PMPN⎧⋅=⎪⎨⋅=⎪⎩uuu u ruuu rnn,即24020y zx y z-=⎧+-=.可取()0,2,1=n.于是cos,ANANAN⋅==u u u ru u u ru u u rnnn所以直线AN与平面PMN所成角的正弦值为25.20.解析 (1)连接RF,PF,由AP AF=,BQ BF=及//AP BQ,得AFP BFQ PFQ∠+∠=∠,所以90PFQ∠=o.因为R是PQ中点,RF RP RQ==,所以PAR FAR≅△△,所以PAR FAR∠=∠,PRA FRA∠=∠,又1802BQF BFQ QBF PAF PAR∠+∠=-∠=∠=∠o,所以PQB PAR∠=∠,所以PRA PRF∠=∠(等角的余角相等),所以//AR FQ.PQ NMDCBA(2)设1122(,),(,)A x y B x y ,1(,0)2F ,准线为12x =-,121122PQF S PQ y y ==-△,设直线AB 与x 轴交点为N ,1212ABF S FN y y =-△,因为2PQF ABF S S ∆∆=,所以21FN =,得1N x =,即(1,0)N .设AB 中点为(,)M x y ,由21122222y x y x ⎧=⎪⎨=⎪⎩,得2212122()y y x x -=-,即12121212y y y y x x -=+-.又12121y y y x x x -=--,所以11y x y=-,即21y x =-.易知当直线AB 不存在时,点M 也满足此方程,所以AB 中点轨迹方程为21y x =-.21.解析 (1)()()'2sin21sin fx a x a x =---.(2)当1a …时,()()()()()cos21cos 121320f x a x a x a a a f =+-++-=-=≤. 因此32A α=-. 当01a <<时,将()f x 变形为()()22cos 1cos 1f x a x a x =+--.令()()2211gt at a t =+--,则A 是()g t 在[]1,1-上的最大值,()1g a -=,()132g a =-,且当14at a-=时,()g t 取得极小值, 极小值为()2211611488a a a a g a a a --++⎛⎫=--=- ⎪⎝⎭. 令1114a a --<<,解得13a >-且15a >,所以15a >. (i )当105a <…时,()g t 在()1,1-内无极值点,()1g a -=,()123g a =-,()()11g g -<,所以23A a =-.(ii )当115a <<时,在同一坐标中画出函数y x =,32y x =-,2618x x y x ++=在1,5⎡⎫+∞⎪⎢⎣⎭上的图像.由上图,我们得到如下结论当115a <<时,2618a a A a ++=.综上,2123,05611,18532,1a a a a a a a a ⎧-<⎪⎪++⎪<<⎨⎪->⎪⎪⎩….(3)由(1)得()()2sin 21sin 21f x a x x a a α'=---+-….当105a <…时,()()1242232f x a a a A '+-<-=??; 当115α<<时,131884a A a =++…,所以()12f x a A '+<?; 当1a ≥时,()31642f x a a A '--=??.所以()2f x A '…; 综上所述有()2f x A '….22.分析 (1)根据条件可证明PFB ∠与PCD ∠是互补的,然后结合2PFB PCD ∠=∠与三角形内角和定理,不难求解PCD ∠的大小;(2)由(1)的证明可知C ,E ,F ,D 四点共圆,然后根据用线段的垂直平分线知G 为四边形CEFD 的外接圆圆心,则可知G 在线段CD 的垂直平分线上,由此可证明结果. 解析 (1)联结PB ,BC ,则BFD PBA BPD ∠=∠+∠,PCD PCB BCD ∠=∠+∠.因为»»AP BP =,所以PBA PCB ∠=∠,又BPD BCD ∠=∠,所以BFD PCD ∠=∠. 又180PFB BFD ∠+∠=o ,2PFB PCD ∠=∠,所以3180PCD ∠=o ,因此60PCD ∠=o . (2)因为PCD BFD ∠=∠,所以180PCD EFD ∠+∠=o ,由此知C ,D ,F ,E 四点共圆,其圆心既在CE 的垂直平分线上,又在DF 的垂直平分线上,故G 就是过C ,D ,F ,E 四点的圆的圆心,所以G 在CD 的垂直平分线,又因为OC OD =,因此所以O 在CD 的垂直平分线上,所以OG CD ⊥.23.分析 (1)利用同角三角函数基本关系中的平方关系曲线1C 的参数方程普通方程,利用公式cos x ρθ=与sin y ρθ=代入曲线1C 的极坐标方程即可;(2)利用参数方程表示出点P 的坐标,然后利用点到直线的距离公式建立()PQ d α=的三角函数表达式,然后求出最值与相应的点P 坐标即可.解析 (1)1C 的普通方程为2213x y +=,2C 的直角坐标方程为40x y +-=.(2)由题意,可设点P 的直角坐标为),sin αα,因为2C 是直线,所以PQ 的最小值,即为P 到2C 的距离()dα的最小值,()π23d αα⎛⎫==+- ⎪⎝⎭.当且仅当()π2π6k k α=+∈Z 时,()d α,此时P 的直角坐标为31,22⎛⎫ ⎪⎝⎭. 24.解析 (1)当2a =时,()222f x x =-+.解不等式2226x -+≤,得13x -≤≤. 因此, ()6f x ≤的解集为{}13x x -≤≤.(2)当R x ∈时,()()212f x g x x a a x +=-++-212x a x a -+-+≥1a a =-+,所以当R x ∈时,()()3f x g x +≥等价于13a a -+≥. ①当1a ≤时,①等价于13a a -+≥,无解; 当1a >时,①等价于13a a -+≥,解得2a ≥. 所以a 的取值范围是[)2,+∞.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2016年高考理科数学
第Ⅰ卷
一. 选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合 题目要求的。
(1)
(A) [2,3] (B)(-∞ ,2]U [3,+∞)
(C) [3,+∞) (D)(0,2]U [3,+∞) (2)若12z i =+,则
41
i z z =-
(A)1 (B) -1 (C) i (D)-i
(3)
(A)300 (B) 450 (C) 600 (D)1200
(4)某旅游城市为向游客介绍本地的气温情况,绘制了一年 中月平均最高气温和平均最低气温的雷达图。
图中A 点表示 十月的平均最高气温约为150
C ,B 点表示四月的平均最低气 温约为50
C 。
下面叙述不正确的是
(A) 各月的平均最低气温都在00
C 以上 (B) 七月的平均温差比一月的平均温差大 (C) 三月和十一月的平均最高气温基本相同 (D)平均气温高于200
C 的月份有5个 (5)若3ta n 4
α=
,则2c o s 2sin 2αα+=
(A)
6425
(B) 4825
(C) 1 (D)
1625
(6)已知4
3
2a =,2
5
4
b =,1
325c =,则
(A )b a c << (B )a b c << (C )b c a << (D )c a b << (7)执行下图的程序框图,如果输入的46a b ==,,那么输出的n =
(A )3 (B )4 (C )5 (D )6 (8)在A B C △中,π4
B
=,BC 边上的高等于
13
B C
,则cos A =
(A 10
(B 10
(C )10
-
(D )10
-
(9) 如下图,网格纸上小正方形的边长为1,粗实现画出的是某多面体的三视 图,则该多面体的表面积为
(A )183+(B )541+(C )90 (D )81
(11)已知O 为坐标原点,F 是椭圆C :
222
2
1(0)x y a b a
b
+
=>>的
左焦点,A ,B 分别为C 的左,右顶点.P 为C 上一点,且P F x ⊥轴. 过点A 的直线l 与线段P F 交于点M ,与y 轴交于点E .若直线BM 经 过OE 的中点,则C 的离心率为
(A )
13
(B )12
(C )
23
(D )
34
第(9题图)
(12)定义“规范01数列”{a n }如下:{a n }共有2m 项,其中m 项为0,m 项为1,且对任意2k m ≤,
12,,,k a a a 中0的个数不少于1的个数.若m =4,则不同的“规范01数列”共有
(A )18个
(B )16个
(C )14个
(D )12个
二、填空题:本大题共3小题,每小题5分
(13)若,x y 满足约束条件10
20220x y x y x y -+≥⎧⎪
-≤⎨⎪+-≤⎩
则z x y =+的最大值为___________.
(14
)函数s in o s y x x
=-
的图像可由函数s in o s y x x
=+
的图像至少向右平移_____________个
单位长度得到.
(15)已知()f x 为偶函数,当0x <时,()ln ()3f x x x =-+,则曲线()y f x =在点(1,3)-处的切线方程 是_______________。
(16)已知直线l
:30
m x y m ++-
=与圆22
12x y +=交于,A B 两点,过,A B 分别做l 的垂线与x 轴交
于,C D
两点,若A B =||C D =__________________.
三、解答题:解答应写出文字说明,证明过程或演算步骤.
(17)(本小题满分12分)已知数列{}n a 的前n 项和1n n S a λ=+,其中0λ≠.
(I )证明{}n a 是等比数列,并求其通项公式; (II )若53132
S = ,求λ.
(18)(本小题满分12分)下图是我国2008年至2014年生活垃圾无害化处理量(单位:亿吨)的折线图
(I)由折线图看出,可用线性回归模型拟合y与t的关系,请用相关系数加以说明;
(II)建立y关于t的回归方程(系数精确到0.01),预测2016年我国生活垃圾无害化处理量。
回归方程y a b t
=+中斜率和截距的最小二乘估计公式分别为:
-
=.
a y
b t
(19)(本小题满分12分)如图,四棱锥P A B C
===,
A B A D A C
-中,P A⊥地面A B C D,,3 ==,M为线段A D上一点,2
P A B C
4
=,N为P C的中点.
A M M D
(Ι);(II)求直线A N与平面P M N所成角的正弦值.
(20)(本小题满分12分) 已知抛物线C :2
2y x =的焦点为F ,平行于x 轴的两条直线12,l l 分别交C 于
A B ,两点,交C 的准线于P Q ,两点.
(I )若F 在线段AB 上,R 是PQ 的中点,证明: ; (II )若P Q F ∆的面积是A B F ∆的面积的两倍,求A B 中点的轨迹方程.
(21)(本小题满分12分)设函数()c o s 2(1)(c o s 1)f x a x a x =+-+,其中0a >,记|()|f x 的最大值为A .
(Ⅰ)求()f x '; (Ⅱ)求A ; (Ⅲ)证明|()|2f x A '≤.
请考生在[22]、[23]、[24]题中任选一题作答。
作答时用2B 铅笔在答题卡上把所选题目题号后的方框涂黑。
如果多做,则按所做的第一题计分。
22.(本小题满分10分)选修4-1:几何证明选讲. 如图,⊙O 中A B 的中点为P ,弦P C P D ,分别交A B 于E F ,两点.(I )若2P F B P C D ∠=∠,求P C D ∠的大小;
(II )若E C 的垂直平分线与F D 的垂直平分线交于点G ,证明O G C D ⊥.
23.(本小题满分10分)选修4-4:坐标系与参数方程
在直角坐标系x O y 中,曲线1C 的参数方程为s ()
sin x y θ
θθ⎧=
⎪⎨
=⎪⎩
为参数,以坐标原点为极点,以x 轴的正半
轴为极轴,,建立极坐标系,曲线2C 的极坐标方程为sin ()4
ρθπ+
= .
(I )写出1C 的普通方程和2C 的直角坐标方程;
(II )设点P 在1C 上,点Q 在2C 上,求|PQ |的最小值及此时P 的直角坐标.
24.(本小题满分10分)选修4-5:不等式选讲
已知函数
()|2|f x x a a
=-+
(I )当a =2时,求不等式()6
f x ≤的解集;
(II )设函数()
|21|,g x x =-当x ∈R
时,()()3f x g x +≥,求a 的取值范围.。