吉林省东北师范大学附属实验学校高中数学 1.3.1函数的单调性教案 新人教B版必修1

合集下载

高中新课程数学(新课标人教B版)必修一《213函数的单调性》教案

高中新课程数学(新课标人教B版)必修一《213函数的单调性》教案

2.1.3函数的单调性教学目标:理解函数的单调性教学重点:函数单调性的概念和判定教学过程:1、过对函数x y 2=、x y 3-=、xy 1=及2x y =的观察提出有关函数单调性的问题. 2、阅读教材明确单调递增、单调递减和单调区间的概念3、例1、如图是定义在闭区间[-5,5]上的函数)(x f y =的图象,根据图象说出)(x f y =的单调区间,及在每一单调区间上,)(x f y =是增函数还是减函数。

解:函数)(x f y =的单调区间有[)[)[)[3,3,1,1,2,2,5---其中)(x f y =在区间[)2,5-, [)3,1上是减函数,在区间[)[]5,3,1,2-上是增函数。

注意:1 单调区间的书写2 各单调区间之间的关系以上是通过观察图象的方法来说明函数在某一区间的单调性,是一种比较粗略的方法,那么,对于任给函数,我们怎样根据增减函数的定义来证明它的单调性呢?例2、证明函数23)(+=x x f 在R 上是增函数。

证明:设21,x x 是R 上的任意两个实数,且21x x <,则021<-=∆x x x ,03)(3)23()23()()(212121<∆=-=+-+=-=∆x x x x x x f x f y所以,23)(+=x x f 在R 上是增函数。

例3、证明函数xx f 1)(=在),0(+∞上是减函数。

证明:设21,x x 是),0(+∞上的任意两个实数,且21x x <,则021<-=∆x x x2112212111)()(x x x x x x x f x f y -=-=-=∆ 由),0(,21+∞∈x x ,得021>x x ,且012>∆-=-x x x于是0>∆y 所以,xx f 1)(=在),0(+∞上是减函数。

利用定义证明函数单调性的步骤:(1) 取值(2) 计算x ∆、y ∆(3) 对比符号(4) 结论课堂练习:教材第50页 练习A 、B小结:本节课学习了单调递增、单调递减和单调区间的概念及判定方法 课后作业:第57页 习题2-1A 第5题。

必修一:1.3.1函数的单调性-教案

必修一:1.3.1函数的单调性-教案

函数的单调性【教学目标】知识与技能:1.通过生活中的例子帮助学生理解增函数、减函数及其几何意义。

2.学会应用函数的图象理解和研究函数的单调性及其几何意义。

过程与方法:1.通过本节课的教学,渗透数形结合的数学思想,对学生进行辨证唯物主义的教育。

2.通过探究与活动,使学生明白考虑问题要细致,说理要明情感态度与价值观:1.通过本节课的教学,使学生能理性的描述生活中的增长、递减的现象。

2.通过生活实例感受函数单调性的意义,培养学生的识图能力和数形语言转化的能力。

【重点难点】教学重点:函数单调性概念的理解及应用。

教学难点:函数单调性的判定及证明。

【教法分析】为了实现本节课的教学目标,在教法上我采取了:1.通过学生熟悉的实际生活问题引入课题,为概念学习创设情境,拉近数学与现实的距离,激发学生求知欲,调动学生主体参与的积极性。

2.在形成概念的过程中,紧扣概念中的关键语句,通过学生的主体参与,正确地形成概念。

3.在鼓励学生主体参与的同时,不可忽视教师的主导作用,要教会学生清晰的思维、严谨的推理,并顺利地完成书面表达。

【教学过程】(一)问题情境教师和学生一起举出生活中描述上升或下降的变化规律的成语:蒸蒸日上、每况愈下、此起彼伏。

如何用学过的函数图象来描绘这些成语?设计意图:创设成语→图象的问题情境,让学生用朴素的生活语言描述他们对变化规律的理解,并请学生将文字语言转化为图形语言,这样做可使教学过程富有情趣,可激发学生的学习热情,教学起点的设定也比较恰当,学生的参与度较高。

(二)温故知新1.问题1:观察学生绘制的函数的图象(实际教学中可根据学生回答的情况而定),指出图象的变化的趋势。

观察得到:随着x值的增大,函数图象有的呈上升趋势,有的呈下降趋势,有的在一个区间内呈上升趋势,在另一区间内呈下降趋势。

2.问题2:对“图象呈逐渐上升趋势”这句话初中是怎样描述的?例如:初中研究2=时,我们知道,当x<0时,函数值y随x的增大而减小,当y xx>0时,函数值y随x的增大而增大。

人教B版高中数学必修一函数的单调性教案(1)

人教B版高中数学必修一函数的单调性教案(1)

(高三复习课第一课时)课题:函数的单调性教学目标: 1.知识目标①理解函数的单调性的概念,掌握判断或证明函数单调性的方法和步骤; ②会求函数的单调区间. 2.能力目标①通过对函数单调性的证明及单调区间的求法的复习,培养学生应用化归转化和分类讨论的数学思想解决问题的能力.②通过本节课的复习,使学生体验和理解从特殊到一般的归纳推理的能力. ③通过课堂的练习,提高学生分析问题和解决问题的能力. 3.情感目标培养学生的逻辑推理能力和创新意识,同时,培养学生对数学美的艺术体验. 教学重点:证明函数的单调性以及求函数的单调区间. 教学难点:函数单调区间的求法. 教学方法:启发诱导式、讨论式. 教学手段:多媒体辅助教学. 教学过程: 【知识回顾】首先请同学们回忆函数单调性的定义.1. 函数单调性的定义:一般地,设函数()f x 的定义域为I ,如果对于属于定义域I 内某个区间上的任意两个自变量的值1x , 2x ,当12x x <时,都有12()()f x f x <(12()()f x f x >),那么就说()f x 在这个区间上是增函数(减函数).理解函数单调性时,应注意以下问题:(1) 函数的单调区间是定义域的子集,确定函数单调区间时,应首先确定其定义域,定义域中的1x , 2x 相对于单调区间具有任意性,不能用特殊值替代.(2) ()f x 在区间D 1 、D 2上是增函数,但()f x 不一定在区间D 1∪D 2上是增函数;同样()f x 在区间D 1 、D 2上是减函数,但()f x 在区间D 1∪D 2上不一定是减函数.例如:1y x =在区间(0,)+∞上为减函数,在(,0)-∞上也是减函数,但1y x=在(0,)(,0)+∞-∞U 上就不能说成是减函数.在正确理解和掌握了函数单调性的概念之后,我们要着重解决两个问题:①证明函数的单调性;②求函数的单调区间.下面我们通过具体的实例来说明这两个问题的解决方法.【例题精讲】例1. 证明函数()(0)af x x a x=+>在区间(0)上是减函数.证法一:(定义法)任取1x 、2x ∈(0),且1x <2x , 则1212121212()()()()()()a a a af x f x x x x x x x x x -=+-+=-+-, 1212121212()(1)()()x x a ax x x x x x x x -=--=-, ∵12x x < , ∴120x x -<,又∵120x x <<<120x x a << ,∴1210ax x -<, ∴1212()(1)0ax x x x -->即12()()0f x f x ->,∴12()()f x f x >,∴函数()af x x x=+在区间(0上是减函数. 证法二:(导数法)∵()(0)af x x a x=+>, ∴'2()1af x x =-,又0x <<, ∴在上20x a <<,∴210a x-<即'2()10a f x x =-< ,∴()(0)af x x a x=+>在上是减函数. 总结用定义法证明函数()f x 单调性的一般步骤是:(1) 取值:对任意1x ,2x M ∈,且12x x <; (2) 作差变形:12()()f x f x -; (3) 定号得出结论.导数法是我们判断或证明函数单调性的又一重要手段,那么请同学们思考利用导数证明函数单调性的方法是什么.如果函数()f x 在定义域I 的某个区间M 上'()0f x >,则函数()f x 在区间M 上是增函数;如果函数()f x 在定义域I 的某个区间M 上'()0f x <,则函数()f x 在区间M 上是减函数.点评:通过例1要求同学们掌握证明函数单调性的基本方法:定义法和导数法.变式. 求函数()(0)af x x a x=+>的单调区间. 解:∵'2()1a f x x =-,令'()0f x >,可解得x >x <∴()f x 在区间)+∞和(,-∞上是增函数.令'()0f x <,可解得0x <<或0x <<∴()f x 在区间(和上是减函数.点评:在求函数的单调区间时,我们通常采用导数的方法,把问题转化成解不等式的问题,体现了化归转化的数学思想. 例2.求函数3211()(1)32f x x a x ax =-++的单调区间. 解:∵3211()(1)32f x x a x ax =-++,∴'2()(1)(1)()f x x a x a x x a =-++=--, 当 1a >时,若'()0f x >,解得x a >或1x <, 若'()0f x <,解得1x a <<,∴()f x 在(,)a +∞,(,1)-∞上单调递增,在(1,)a 上单调递减; 当1a =时,'()f x ≥0恒成立,∴()f x 在R 上单调递增; 当1a <时,若'()0f x >,解得1x >或x a <, 若'()0f x <,解得1a x <<,∴()f x 在(1,)+∞,(,)a -∞上单调递增,在(,1)a 上单调递减.点评:本题和例1的变式题形上相同,但在处理本题时我们除了要把它转化成求解不等式的问题之外,还要采用分类讨论的数学思想,注意思想方法的应用. 【课堂练习】1. 设函数323()632f x x x x =--+,则函数()f x 的单调增区间是 ,; 单调减区间是 .2.证明函数21x y x +=+在(1)-+∞,上是减函数.3. 判断函数()(0)af x x a x=+>在区间(0,4)上的单调性. 【课堂小结】本节课我们从函数单调性的概念入手,着重复习了: 1. 证明函数单调性的方法; 2. 函数单调区间的求法.附:【。

高中数学2.1.3函数的单调性教学设计新人教B版必修1

高中数学2.1.3函数的单调性教学设计新人教B版必修1

函数的单调性(教学设计)一、教材分析:《函数的单调性》系人教版高中数学必修一的内容,该内容包括函数的单调性的定义与判断及其证明。

在初中学习函数时,借助图像的直观性研究了一些函数的增减性.这节通过对具体函数图像的归纳和抽象,概括出函数在某个区间上是增函数或减函数的准确含义,明确指出函数的增减性是相对于某个区间来说的.教材中判断函数的增减性,既有从图像上进行观察的直观方法,又有根据其定义进行逻辑推理的严格方法,最后将两种方法统一起来,形成根据观察图像得出猜想结论,进而用推理证明猜想的体系.函数的单调性是函数众多性质中的重要性质之一,函数的单调性一节中的知识是前一节内容函数的概念和图像知识的延续,它和后面的函数奇偶性,合称为函数的简单性质,是今后研究指数函数、对数函数、幂函数及其他函数单调性的理论基础;在解决函数值域、定义域、不等式、比较两数大小等具体问题中均需用到函数的单调性;同时在这一节中利用函数图象来研究函数性质的数形结合思想将贯穿于我们整个高中数学教学。

二、学情分析:按现行新教材结构体系,学生只学过一次函数、二次函数、反比例函数,所以对函数的单调性研究也只能限于这几种函数。

依据现有认知结构,学生只能根据函数的图象观察出“随着自变量的增大,函数值增大”的变化趋势,而不能用符号语言进行严密的代数证明,只能依据形的直观性进行感性判断而不能进行“思辩”的理性认识。

所以在教学中要找准学生学习思维的“最近发展区”进行有意义的建构教学。

在教学过程中,要注意学生第一次接触代数形式的证明,为使学生能迅速掌握代数证明的格式,要注意让学生在内容上紧扣定义贯穿整个学习过程,在形式上要从有意识的模仿逐渐过渡到独立的证明。

三、教学目标依据课程标准的具体要求以及基于教材内容的具体分析,制定本节课的教学目标为:1.通过函数单调性的学习,让学生通过自主探究活动,体会数学概念的形成过程的真谛,学会运用函数图像理解和研究函数的性质。

最新人教版高中数学必修一函数的单调性优质教案

最新人教版高中数学必修一函数的单调性优质教案

1.3.1(1)函数的单调性(教学设计)教学目标(一)知识与技能目标学生通过经历观察、归纳、总结、证明等数学活动能够:1、理解增函数、减函数的概念及函数单调性的定义2、会根据函数的图像判断函数的单调性3、能根据单调性的定义证明函数在某一区间上是增函数还是减函数(二)过程目标1、培养学生利用数学语言对概念进行概括的能力2、学生利用定义证明单调性,进一步加强逻辑推理能力及判断推理能力的培养(三)情感、态度和价值观1、通过本节课的教学,启发学生养成细心观察,认真分析,严谨论证的良好习惯2、通过问题链的引入,激发学生学习数学的兴趣,学生通过积极参与教学活动,获得成功的体验,锻炼克服困难的意志,建立学习数学的自信心教学重点:函数单调性的定义及单调性判断和证明一、复习回顾,新课引入1、函数与映射的定义。

2、函数的常用表示方法3、观察下列各个函数的图象,并说说它们分别反映了相应函数的哪些变化规律:①随x的增大,y的值有什么变化?②能否看出函数的最大(小)值?③函数图象是否具有某种对称性?4、作出下列函数的图象:(1)y=x ; (2)y=x 2;二、师生互动,新课讲解:观察函数y=x 与y=x 2的图象,当x 逐渐增大时,y 的变化情况如何?可观察到的图象特征:(1)函数x x f =)(的图象由左至右是上升的;(2)函数2)(x x f =的图象在y 轴左侧是下降的,在y 轴右侧是上升的;也就是图象在区间]0,(-∞上,随着x 的增大,相应的)(x f 随着减小,在区间),0(+∞上,随着x 的增大,相应的)(x f 也随着增大.归纳:从上面的观察分析可以看出:不同的函数,其图象的变化趋势不同,同一函数在不同区间上的变化趋势也不同.函数图象的这种变化规律就是函数性质的反映.1.如何用函数解析式2)(x x f =描述“随着x 的增大,相应的)(x f 随着减小”,“随着x 的增大,相应的)(x f 也随着增大”?在区间),0(+∞上任取x 1,x 2,函数值的大小变化与自变量的大小变化有何关系?如何用数学符号语言来描述这种关系呢?对于函数2)(x x f =,经过师生讨论得出:在区间),0(+∞上,任取两个21,x x ,当21x x <时,有)()(21x f x f <.这时,我们就说函数2)(x x f =在区间),0(+∞上是增函数.课堂练习请你仿照刚才的描述,说明函数2)(x x f =在区间]0,(-∞上是减函数.2.增函数和减函数的定义设函数)(x f 的定义域为I :(1)如果对于定义域I 内某个区间D 上的任意两个自变量的值21,x x ,当21x x <时,都有)()(21x f x f <,那么就说函数)(x f 在区间D 上是增函数(increasing function ).区间D 叫做函数的增区间。

函数的单调性 教案-高一上学期数学人教B版(2019)必修第一册

函数的单调性 教案-高一上学期数学人教B版(2019)必修第一册

函数的单调性【第1课时】【教学目标】【核心素养】1.理解函数的单调性及其几何意义,能运用函数图像理解和研究函数的单调性.(重点)2.会用函数单调性的定义判断(或证明)一些函数的单调性,会求一些具体函数的单调区间.(重点、难点)3.理解函数的最大值和最小值的概念,能借助函数的图像和单调性,求一些简单函数的最值.(重点、难点)1.借助单调性判断与证明,培养数学抽象、逻辑推理、直观想象素养.2.利用求单调区间、最值、培养数学运算素养.3.利用函数的最值解决实际问题,培养数学建模素养.【教学过程】一、新知初探条件一般地,设函数y=f(x)的定义域为A,且M⊆A:如果对任意x1,x2∈M,当x1>x2时都有f(x1)>f(x2)都有f(x1)<f(x2)结论y=f(x)在M上是增函数(也称在M上单调递增)y=f(x)在M上是减函数(也称在M上单调递减)图示思考1:增(减)函数定义中的x1,x2有什么特征?提示:定义中的x1,x2有以下3个特征(1)任意性,即“任意取x1,x2”中“任意”二字绝不能去掉,证明时不能以特殊代替一般;(2)有大小,通常规定x1>x2;(3)属于同一个单调区间.2.函数的单调性与单调区间如果函数y=f(x)在M上单调递增或单调递减,那么就说函数y=f(x)在M上具有单调性(当M为区间时,称M为函数的单调区间,也可分别称为单调递增区间或单调递减区间).思考2:函数y=1x在定义域上是减函数吗?提示:不是.y=1x在(-∞,0)上递减,在(0,+∞)上也递减,但不能说y=1x在(-∞,0)∪(0,+∞)上递减.最大值最小值条件一般地,设函数f(x)的定义域为D:且x0∈D,如果对任意x∈D 都有f(x)≤f(x0)都有f(x)≥f(x0)结论称f(x)的最大值为f(x0),记作f max =f(x0),而x0称为f(x)的最大值点称f(x)的最小值为f(x0),记作f min=f(x0),而x0称为f(x)的最小值点统称最大值和最小值统称为最值最大值点和最小值点统称为最值点二、初试身手1.函数y=f(x)的图像如图所示,其增区间是()A.[-4,4]B.[-4,-3]∪[1,4]C.[-3,1]D.[-3,4]答案:C解析:由题图可知,函数y=f(x)的单调递增区间为[-3,1],选C.2.下列函数中,在区间(0,+∞)上是减函数的是()A.y=-1x B.y=xC.y=x2D.y=1-x答案:D解析:函数y =1-x 在区间(0,+∞)上是减函数,其余函数在(0,+∞)上均为增函数,故选D .3.函数y =f (x )在[-2,2]上的图像如图所示,则此函数的最小值、最大值分别是( )A .-1,0B .0,2C .-1,2D .12,2答案:C解析:由题图可知,f (x )的最大值为f (1)=2,f (x )的最小值为f (-2)=-1.4.函数f (x )=x 2-2x +3的单调减区间是________. 答案:(-∞,1]解析:因为f (x )=x 2-2x +3是图像开口向上的二次函数,其对称轴为x =1,所以函数f (x )的单调减区间是(-∞,1]. 三、合作探究类型1:定义法证明(判断)函数的单调性例1:证明:函数f (x )=x +1x 在(0,1)上是减函数. 思路点拨:设元任取x 1,x 2∈0,1且x 1>x 2―→作差:fx 1-fx 2――→变形判号:fx 2>fx 1――→结论减函数证明:设x 1,x 2是区间(0,1)上的任意两个实数,且x 1>x 2,则f (x 1)-f (x 2)=⎝ ⎛⎭⎪⎫x 1+1x 1-⎝ ⎛⎭⎪⎫x 2+1x 2=(x 1-x 2)+⎝ ⎛⎭⎪⎫1x 1-1x 2=(x 1-x 2)+x 2-x 1x 1x 2=(x 1-x 2)⎝ ⎛⎭⎪⎫1-1x 1x 2=x 1-x 2-1+x 1x 2x 1x 2,∵0<x 2<x 1<1,∴x 1-x 2>0,0<x 1x 2<1,则-1+x 1x 2<0,∴x1-x2-1+x1x2x1x2<0,即f(x1)<f(x2),∴f(x)=x+1x在(0,1)上是减函数.规律方法利用定义证明函数单调性的步骤1.取值:设x1,x2是该区间内的任意两个值,且x1>x2.2.作差变形:作差f(x1)-f(x2),并通过因式分解、通分、配方、有理化等手段,转化为易判断正负的式子.3.定号:确定f(x1)-f(x2)的符号.4.结论:根据f(x1)-f(x2)的符号及定义判断单调性.提醒:作差变形是证明单调性的关键,且变形的结果是几个因式乘积的形式.跟踪训练1.证明:函数y=xx+1在(-1,+∞)上是增函数.证明:设x1>x2>-1,则y1-y2=x1x1+1-x2x2+1=x1-x2x1+1x2+1.∵x1>x2>-1,∴x1-x2>0,x1+1>0,x2+1>0,∴x1-x2x1+1x2+1>0,即y1-y2>0,y1>y2,∴y=xx+1在(-1,+∞)上是增函数.类型2:求函数的单调区间例2:求下列函数的单调区间,并指出该函数在其单调区间上是增函数还是减函数.(1)f(x)=-1x;(2)f(x)=⎩⎨⎧2x+1,x≥1,5-x,x<1;(3)f(x)=-x2+2|x|+3.解:(1)函数f(x)=-1x的单调区间为(-∞,0),(0,+∞),其在(-∞,0),(0,+∞)上都是增函数.(2)当x≥1时,f(x)是增函数,当x<1时,f(x)是减函数,所以f(x)的单调区间为(-∞,1),[1,+∞),并且函数f(x)在(-∞,1)上是减函数,在[1,+∞)上是增函数.(3)因为f (x )=-x 2+2|x |+3=⎩⎨⎧-x 2+2x +3,x ≥0,-x 2-2x +3,x <0.根据解析式可作出函数的图像如图所示,由图像可知,函数f (x )的单调区间为(-∞,-1],(-1,0),[0,1),[1,+∞).f (x )在(-∞,-1],[0,1)上是增函数,在(-1,0),[1,+∞)上是减函数.(3)因为f (x )=-x 2+2|x |+3=⎩⎨⎧-x 2+2x +3,x ≥0,-x 2-2x +3,x <0.根据解析式可作出函数的图像如图所示,由图像可知,函数f (x )的单调区间为(-∞,-1],(-1,0),[0,1),[1,+∞).f (x )在(-∞,-1],[0,1)上是增函数,在(-1,0),[1,+∞)上是减函数.规律方法求函数单调区间的方法1.利用已知函数的单调性求函数的单调区间. 2.利用函数图像求函数的单调区间.提醒:1.若所求出函数的单调增区间或单调减区间不唯一,函数的单调区间之间要用“,”隔开.2.理清“单调区间”和“在区间上单调”的区别与联系. 跟踪训练2.根据如图所示,写出函数在每一单调区间上是增函数还是减函数.解:函数在[-1,0],[2,4]上是减函数,在[0,2],[4,5]上是增函数. 3.写出y =|x 2-2x -3|的单调区间. 解:先画出f (x )=⎩⎨⎧x 2-2x -3,x <-1或x >3,-(x 2-2x -3),-1≤x ≤3的图像,如图.所以y =|x 2-2x -3|的单调减区间为(-∞,-1],[1,3];单调增区间为[-1,1],[3,+∞).类型3:函数单调性的应用 探究问题1.若函数f (x )是其定义域上的增函数,且f (a )>f (b ),则a ,b 满足什么关系.如果函数f (x )是减函数呢?提示:若函数f (x )是其定义域上的增函数,那么当f (a )>f (b )时,a >b ;若函数f (x )是其定义域上的减函数,那么当f (a )>f (b )时,a <b .2.决定二次函数f (x )=ax 2+bx +c 单调性的因素有哪些?提示:开口方向和对称轴的位置,即字母a 的符号及-b2a 的大小.例3:(1)若函数f (x )=-x 2-2(a +1)x +3在区间(-∞,3]上是增函数,则实数a 的取值范围是________.(2)已知函数y =f (x )是(-∞,+∞)上的增函数,且f (2x -3)>f (5x -6),则实数x 的取值范围为________.思路点拨:(1)分析fx 的对称轴与区间的关系数形结合,建立关于a 的不等式――→求a 的范围(2)f2x -3>f5x -6f (x )在(-∞,+∞)上是增函数,建立关于x 的不等式――→求x 的范围答案:(1)(-∞,-4] (2)(-∞,1)解析:(1)∵f (x )=-x 2-2(a +1)x +3的图像开口向下,要使f (x )在(-∞,3]上是增函数,只需-(a +1)≥3,即a ≤-4.∴实数a 的取值范围为(-∞,-4].(2)∵f (x )在(-∞,+∞)上是增函数,且f (2x -3)>f (5x -6),∴2x -3>5x -6,即x <1.∴实数x 的取值范围为(-∞,1).]母题探究1.(变条件)若本例(1)的函数f (x )在(1,2)上是单调函数,求a 的取值范围.解:由题意可知-(a +1)≤1或-(a +1)≥2,即a ≤-3或a ≥-2. 所以a 的取值范围为(-∞,-3]∪[-2,+∞).2.(变条件)若本例(2)的函数f (x )是定义在(0,+∞)上的减函数,求x 的取值范围.解:由题意可知,⎩⎨⎧2x -3>0,5x -6>0,2x -3<5x -6,解得x >32.∴x 的取值范围为⎝ ⎛⎭⎪⎫32,+∞.规律方法函数单调性的应用1.函数单调性定义的“双向性”:利用定义可以判断、证明函数的单调性,反过来,若已知函数的单调性可以确定函数中参数的取值范围.2.若一个函数在区间[a ,b ]上是单调的,则此函数在这一单调区间内的任意子集上也是单调的.类型4:求函数的最值(值域)例4:已知函数f (x )=2x +1x +1.(1)判断函数在区间(-1,+∞)上的单调性,并用定义证明你的结论; (2)求该函数在区间[2,4]上的最大值和最小值.解:(1)f (x )在(-1,+∞)上为增函数,证明如下:任取-1<x 1<x 2,则f (x 1)-f (x 2)=2x 1+1x 1+1-2x 2+1x 2+1=x 1-x 2(x 1+1)(x 2+1),因为-1<x 1<x 2⇒x 1+1>0,x 2+1>0,x 1-x 2<0, 所以f (x 1)-f (x 2)<0⇒f (x 1)<f (x 2), 所以f (x )在(-1,+∞)上为增函数. (2)由(1)知f (x )在[2,4]上单调递增,所以f (x )的最小值为f (2)=2×2+12+1=53, 最大值为f (4)=2×4+14+1=95. 规律方法1.利用单调性求函数的最大(小)值的一般步骤 (1)判断函数的单调性.(2)利用单调性求出最大(小)值. 2.函数的最大(小)值与单调性的关系(1)若函数f (x )在区间[a ,b ]上是增(减)函数,则f (x )在区间[a ,b ]上的最小(大)值是f (a ),最大(小)值是f (b ).(2)若函数f (x )在区间[a ,b ]上是增(减)函数,在区间[b ,c ]上是减(增)函数,则f (x )在区间[a ,c ]上的最大(小)值是f (b ),最小(大)值是f (a )与f (c )中较小(大)的一个.提醒:(1)求最值勿忘求定义域.(2)闭区间上的最值,不判断单调性而直接将两端点值代入是最容易出现的错误,求解时一定注意.跟踪训练4.已知函数f (x )=⎩⎪⎨⎪⎧x 2,-1<x ≤1,1x ,x >1,求(1)f (x )的最大值、最小值;(2)f (x )的最值点.解:(1)作出函数f (x )的图像(如图).由图像可知,当x =1时,f (x )取最大值为f (1)=1.当x =0时,f (x )取最小值f (0)=0,故f (x )的最大值为1,最小值为0.(2)f (x )的最大值点为x 0=1,最小值点为x 0=0. 四、课堂小结1.定义单调性时应强调x 1,x 2在其定义域内的任意性,其本质是把区间上无限多个函数值的大小比较转化为两个任意值的大小比较.2.证明函数的单调性(利用定义)一定要严格遵循设元、作差、变形、定号、结论的步骤,特别在变形上,一定要注意因式分解、配方等技巧的运用,直到符号判定水到渠成才可.3.求函数的最值与求函数的值域类似,常用的方法是:(1)图像法,即画出函数的图像,根据图像的最高点或最低点写出最值; (2)单调性法,一般需要先确定函数的单调性,然后根据单调性的意义求出最值;4.通过函数最值的学习,渗透数形结合思想,树立以形识数的解题意识. 五、当堂达标1.思考辨析(1)若函数y =f (x )在定义域上有f (1)<f (2),则函数y =f (x )是增函数.( )(2)若函数y =f (x )在区间[1,3]上是减函数,则函数y =f (x )的单调递减区间是[1,3].( )(3)任何函数都有最大(小)值.( )(4)函数f (x )在[a ,b ]上的最值一定是f (a )(或f (b )).( ) 答案:(1)×(2)×(3)×(4)×2.下列函数中,在(0,2)上是增函数的是( )A .y =1x B .y =2x -1 C .y =1-2x D .y =(2x -1)2答案:B解析:对于A ,y =1x 在(-∞,0),(0,+∞)上单调递减;对于B ,y =2x -1在R 上单调递增;对于C ,y =1-2x 在R 上单调递减;对于D ,y =(2x -1)2在⎝ ⎛⎭⎪⎫-∞,12上单调递减,在⎝ ⎛⎭⎪⎫12,+∞上单调递增.故选B .3.函数y =x 2-2x ,x ∈[0,3]的值域为________. 答案:[-1,3]解析:∵函数y =x 2-2x =(x -1)2-1,x ∈[0,3],∴当x =1时,函数y 取得最小值为-1,当x =3时,函数取得最大值为3,故函数的值域为[-1,3].4.试用函数单调性的定义证明:f (x )=2xx -1在(1,+∞)上是减函数.证明:f (x )=2+2x -1,设x 1>x 2>1,则f (x 1)-f (x 2)=2x 1-1-2x 2-1=2(x 2-x 1)(x 1-1)(x 2-1).因为x 1>x 2>1,所以x 2-x 1<0,x 1-1>0,x 2-1>0, 所以f (x 1)<f (x 2),所以f (x )在(1,+∞)上是减函数.【第2课时】【教学目标】【核心素养】1.理解斜率的含义及平均变化率的概念.(重点) 2.掌握判断函数单调性的充要条件.(重点、难点)通过利用函数f (x )的平均变化证明f (x )在I 上的单调性,提升数学运算和培养逻辑推理素养.【教学过程】一、新知初探 1.直线的斜率(1)定义:给定平面直角坐标系中的任意两点A (x 1,y 1),B (x 2,y 2),当x 1≠x 2时,称y 2-y 1x 2-x 1为直线AB 的斜率;(若记Δx =x 2-x 1,Δy =y 2-y 1,当Δx ≠0时,斜率记为ΔyΔx ),当x 1=x 2时,称直线AB 的斜率不存在.(2)作用:直线AB 的斜率反映了直线相对于x 轴的倾斜程度. 2.平均变化率与函数单调性若I 是函数y =f (x )的定义域的子集,对任意x 1,x 2∈I 且x 1≠x 2,记y 1=f(x 1),y 2=f (x 2),Δy Δx =y 2-y 1x 2-x 1⎝ ⎛⎭⎪⎫即Δf Δx =f (x 2)-f (x 1)x 2-x 1,则 (1)y =f (x )在I 上是增函数的充要条件是ΔyΔx >0在I 上恒成立;(2)y =f (x )在I 上是减函数的充要条件是ΔyΔx <0在I 上恒成立.当x 1≠x 2时,称Δf Δx =f (x 2)-f (x 1)x 2-x 1为函数y =f (x )在区间[x 1,x 2](x 1<x 2时)或[x 2,x 1](x 1>x 2时)上的平均变化率.通常称Δx 为自变量的改变量,Δy 为因变量的改变量.3.平均变化率的物理意义(1)把位移s 看成时间t 的函数s =s (t ),则平均变化率的物理意义是物体在时间段[t 1,t 2]上的平均速度,即v =s (t 2)-s (t 1)t 2-t 1.(2)把速度v 看成时间t 的函数v =v (t ),则平均变化率的物理意义是物体在时间段[t 1,t 2]上的平均加速度,即a =v (t 2)-v (t 1)t 2-t 1.二、初试身手1.已知点A (1,0),B (-1,1),则直线AB 的斜率为( )A .-12B .12C .-2D .2 答案:A解析:直线AB 的斜率1-0-1-1=-12.2.如图,函数y =f (x )在[1,3]上的平均变化率为( )A .1B .-1C .2D .-2答案:B解析:Δy Δx =f (3)-f (1)3-1=1-33-1=-1.3.一次函数y =-2x +3在R 上是________函数.(填“增”或“减”) 答案:减解析:任取x 1,x 2∈R 且x 1≠x 2.∴y 1=-2x 1+3,y 2=-2x 2+3,∴Δy Δx =y 1-y 2x 1-x 2=-2<0,故y =-2x +3在R 上是减函数.4.已知函数f (x )=2x 2+3x -5,当x 1=4,且Δx =1时,求Δy 的平均变化率Δy Δx .解:∵f(x)=2x2+3x-5,x1=4,x2=x1+Δx,∴Δy=f(x2)-f(x1)=2(x1+Δx)2+3(x1+Δx)-5-(2x21+3x1-5)=2(Δx)2+(4x1+3)Δx.当x1=4,Δx=1时,Δy=2×12+(4×4+3)×1=21.则ΔyΔx=211=21.三、合作探究类型1:平均变化率的计算例1:一正方形铁板在0℃时边长为10cm,加热后会膨胀,当温度为t℃时,边长变为10(1+at)cm,a为常数.试求铁板面积对温度的平均膨胀率.思路点拨:由正方形的边长与面积关系列出函数表达式,再求面积的平均变化率.解:设温度的增量为Δt,则铁板面积S的增量ΔS=102[1+a(t+Δt)]2-102(1+at)2=200(a+a2t)Δt+100a2(Δt)2,所以平均膨胀率ΔSΔt=200(a+a2t)+100a2Δt.规律方法1.关于平均变化率的问题在生活中随处可见,常见的有求某段时间内的平均速度、平均加速度、平均膨胀率等.找准自变量的改变量和因变量的改变量是解题的关键.2.求平均变化率只需要三个步骤:(1)求出或者设出自变量的改变量;(2)根据自变量的改变量求出函数值的改变量;(3)求出函数值的改变量与自变量的改变量的比值.跟踪训练1.路灯距地面8m,一个身高为1.6m的人以84m/min的速度在地面上从路灯在地面上的射影点C处沿直线匀速离开路灯.(1)求身影的长度y与人距路灯的距离x之间的关系式;(2)求人离开路灯10s内身影长度y关于时间t的平均变化率.解:(1)如图所示,设此人从C点运动到B点的位移为x m,AB为身影长度,AB的长度为y m,由于CD∥BE,则ABAC=BECD,即yy+x=1.68,所以y=0.25x.(2)84m/min=1.4m/s,则y关于t的函数关系式为y=0.25×1.4t=0.35t,所以10 s内平均变化率ΔyΔt=3.510=0.35(m/s),即此人离开灯10s内身影长度y关于时间t的平均变化率为0.35m/s.类型2:利用平均变化率证明函数的单调性例2:若函数y=f(x)是其定义域的子集I上的增函数且f(x)>0,求证:g=1f(x)在I上为减函数.思路点拨:由y=f(x)在I上为增函数的充要条件可得ΔyΔx>0,再证ΔgΔx<0即可.证明:任取x1,x2∈I且x2>x1,则Δx=x2-x1>0,Δy=f(x2)-f(x1),∵函数y=f(x)是其定义域的子集I上的增函数,∴Δy>0,ΔyΔx>0,∴Δg=g(x2)-g(x2)=1f(x2)-1f(x1)=f(x1)-f(x2)f(x1)f(x2).又∵f(x)>0,∴f(x1)f(x2)>0且f(x1)-f(x2)<0,∴Δg<0,∴ΔgΔx<0,故g=1f(x)在I上为减函数.规律方法单调函数的运算性质若函数f(x),g(x)在区间I上具有单调性,则:1.f(x)与f(x)+C (C为常数)具有相同的单调性.2.f(x)与a·f(x),当a>0时具有相同的单调性;当a<0时具有相反的单调性.3.当f(x)恒为正值或恒为负值时,f(x)与1f(x)具有相反的单调性.(4f(x)g(x)f(x)+g(x)f(x)-g(x)增函数增函数增函数不能确定单调性增函数减函数不能确定单调性增函数减函数减函数减函数不能确定单调性减函数增函数不能确定单调性减函数跟踪训练2.已知函数f(x)=1-3x+2,x∈[3,5],判断函数f(x)的单调性,并证明.解:由于y=x+2在[3,5]上是增函数,且恒大于零,因此,由性质知f(x)=1-3x+2为增函数.证明过程如下:任取x1,x2∈[3,5]且x1<x2,即Δx=x2-x1>0,则Δy=f(x2)-f(x1)=1-3x2+2-⎝⎛⎭⎪⎫1-3x1+2=3x1+2-3x2+2=3(x2-x1)(x1+2)(x2+2).∵(x1+2)(x2+2)>0,∴Δy>0,∴ΔyΔx>0,故函数f(x)在[3,5]上是增函数.类型3:二次函数的单调性最值问题探究问题1.二次函数f(x)=ax2+bx+c(a>0)的对称轴与区间[m,n]可能存在几种位置关系,试画草图给予说明?提示:2.求二次函数f(x)=ax2+bx+c在[m,n]上的最值,应考虑哪些因素?提示:若求二次函数f(x)在[m,n]上的最值,应考虑其开口方向及对称轴x =-b2a 与区间[m ,n ]的关系.例3:已知函数f (x )=x 2-ax +1,求f (x )在[0,1]上的最大值. 思路点拨:解:因为函数f (x )=x 2-ax +1的图像开口向上,其对称轴为x =a2, 当a 2≤12,即a ≤1时,f (x )的最大值为f (1)=2-a ; 当a 2>12,即a >1时,f (x )的最大值为f (0)=1. 母题探究1.在题设条件不变的情况下,求f (x )在[0,1]上的最小值.解:(1)当a2≤0,即a ≤0时,f (x )在[0,1]上单调递增,∴f (x )min =f (0)=1.(2)当a2≥1,即a ≥2时,f (x )在[0,1]上单调递减,∴f (x )min =f (1)=2-a .(3)当0<a 2<1,即0<a <2时,f (x )在⎣⎢⎡⎦⎥⎤0,a 2上单调递减,在⎣⎢⎡⎦⎥⎤a 2,1上单调递增,故f (x )min =f ⎝ ⎛⎭⎪⎫a 2=1-a 24.2.在本例条件不变的情况下,若a =1,求f (x )在[t ,t +1](t ∈R )上的最小值.解:当a =1时,f (x )=x 2-x +1,其图像的对称轴为x =12, ①当t ≥12时,f (x )在其上是增函数,∴f (x )min =f (t )=t 2-t +1; ②当t +1≤12,即t ≤-12时,f (x )在其上是减函数,∴f (x )min =f (t +1)=⎝ ⎛⎭⎪⎫t +122+34=t 2+t +1;③当t <12<t +1,即-12<t <12时,函数f (x )在⎣⎢⎡⎦⎥⎤t ,12上单调递减,在⎝ ⎛⎦⎥⎤12,t +1上单调递增,所以f (x )min =f ⎝ ⎛⎭⎪⎫12=34.规律方法二次函数在闭区间上的最值设f(x)=ax2+bx+c(a>0),则二次函数f(x)在闭区间[m,n]上的最大对称轴与区间的关系-b2a<m<n,即-b2a∈(-∞,m)m<-b2a<n,即-b2a∈(m,n)m<n<-b2a,即-b2a∈(n,+∞)图像最值f(x)max=f(n),f(x)min=f(m)f(x)max=max{f(n),f(m)},f(x)min=f⎝⎛⎭⎪⎫-b2af(x)max=f(m),f(x)min=f(n)四、课堂小结1.平均变化率中Δx,Δy,ΔyΔx的理解(1)函数f(x)应在x1,x2处有定义;(2)x2在x1附近,即Δx=x2-x1≠0,但Δx可正可负;(3)注意变量的对应,若Δx=x2-x1,则Δy=f(x2)-f(x1),而不是Δy =f(x1)-f(x2);(4)平均变化率可正可负,也可为零.但是,若函数在某区间上的平均变化率为0,并不能说明该函数在此区间上的函数值都相等.2.判断函数y=f(x)在I上单调性的充要条件(1)y=f(x)在I上单调递增的充要条件是ΔyΔx>0恒成立;(2)y=f(x)在I上单调递减的充要条件是ΔyΔx<0恒成立.五、当堂达标1.思考辨析(1)一次函数y=ax+b(a≠0)从x1到x2的平均变化率为a.()(2)函数y=f(x)的平均变化率ΔyΔx=f(x2)-f(x1)x2-x1的几何意义是过函数y=f(x)图像上两点A(x1,f(x1)),B(x2,f(x2))所在直线的斜率.()(3)在[a,b]上,y=ax2+bx+c(a≠0)任意两点的平均变化率都相等.()答案:(1)√(2)√(3)×2.函数f(x)=x从1到4的平均变化率为()A.13B.12C.1 D.3 答案:A解析:Δy=4-1=1,Δx=4-1=3,则平均变化率为ΔyΔx=13.3.李华在参加一次同学聚会时,他用如图所示的圆口杯喝饮料,李华认为:如果向杯子中倒饮料的速度一定(即单位时间内倒入的饮料量相同),那么杯子中饮料的高度h是关于时间t的函数h(t),则函数h(t)的图像可能是()答案:B解析:由于圆口杯的形状是“下细上粗”,则开始阶段饮料的高度增加较快,往后高度增加得越来越慢,仅有B中的图像符合题意.4.一质点的运动方程为s=8-3t2,其中s表示位移(单位:m),t表示时间(单位:s).求该质点在[1,1+Δt]这段时间内的平均速度.解:该质点在[1,1+Δt]这段时间内的平均速度为ΔsΔt=8-3(1+Δt)2-8+3×12Δt=(-6-3Δt)(m/s).。

优秀教案 函数单调性教案

优秀教案   函数单调性教案

1.3.1 函数的单调性教学目标:1、理解函数单调性的定义,会判断和证明简单函数的单调性。

2、培养从概念出发,进一步研究其性质的意识及能力,体会感悟数形结合、分类讨论的数学思想。

教学重点:形成增、减函数的形式化定义。

教学难点:形成增、减函数概念的过程中如何从图像的直观认识过渡函数增、减的数学符号;用定义证明函数的单调性。

一、复习旧知识区间的有关知识及其表示方法。

二、讲授新课1、观察下面各个函数的图像,并说出函数图像的特点。

2、研究一次函数12)(+=xxf和二次函数2)(xxf=的单调性。

不同的函数,图像的变化趋势不同,同一函数在不同区间的变化趋势也不同,通过描述这两个函数图像的性质,引出本节课题——函数的单调性。

3、深入研究二次函数2)(xxf=的图像,从特殊到一般引出增、减函数的定义。

]0,(-∞上)(x f 随x 的增大而减小,),0[+∞上)(x f 随x 的增大而增大增函数:),()(,,212121x f x f x x D x x <<∈∀时,有当那么就说)(x f 在D 上是增函数。

减函数:),()(,,212121x f x f x x D x x ><∈∀时,有当那么就说)(x f 在D 上是减函数。

区间D 叫做)(x f y =的单调区间。

三、例题演练例1 下图是定义在[]9,6-上的函数)(x f y =,根据图像说出函数的单调区间,以及在每一单调区间上,它是增函数还是减函数。

例2 证明函数12)(+=x x f 在R 上的单调性。

四、随堂练习证明:(1) 函数23)(+-=x x f 在R 上是单调减函数。

(2) 函数1)(2-=x x f 在),0(+∞上是增函数。

五、课堂小结1、增、减函数的的形式化定义是什么?2、如何用定义证明函数的单调性?六、作业布置A :证明:函数xx f 11)(-=在)0,(-∞上的单调性。

B :探究一次函数的)(R x b mx y ∈+=的单调性,并证明你的结论。

高中数学 2.1.3 函数的单调性教学设计 新人教B版必修1

高中数学 2.1.3 函数的单调性教学设计 新人教B版必修1

函数的单调性教学设计一、教材分析函数的单调性是函数的重要性质.从知识的网络结构上看,函数的单调性既是函数概念的延续和拓展,又是后续研究指数函数、对数函数、三角函数的单调性等内容的基础,在研究各种具体函数的性质和应用、解决各种问题中都有着广泛的应用.函数单调性概念的建立过程中蕴涵诸多数学思想方法,对于进一步探索、研究函数的其他性质有很强的启发与示X作用。

二、学情分析根据上述教材结构与内容分析,立足学生的认知水平,制定如下教学目标和重、难点三、教学目标1.知识与技能:使学生理解函数单调性的概念,初步掌握判别函数单调性的方法;2.过程与方法:引导学生通过观察、归纳、抽象、概括,自主建构单调增函数、单调减函数等概念;能运用函数单调性概念解决简单的问题;使学生领会数形结合的数学思想方法,培养学生发现问题、分析问题、解决问题的能力.3.情感、态度与价值观:在函数单调性的学习过程中,使学生体验数学的科学价值和应用价值,培养学生善于观察、勇于探索的良好习惯和严谨的科学态度.根据上述教学目标,本节课的教学重点是函数单调性的概念形成和初步运用.虽然高一学生已经有一定的抽象思维能力,但函数单调性概念对他们来说还是比较抽象的.因此,本节课的学习难点是函数单调性的概念形成.四、教学重点、难点教学重点:函数单调性的概念;判断、证明函数的单调性教学难点:归纳并抽象函数单调性定义;用定义判断单调性的基本步骤五、学法与教法学法:〔1〕合作学习:引导学生分组讨论,合作交流,共同探讨问题〔2〕自主学习:引导学生通过亲身经历,动口、动脑、动手参与数学活动〔3〕探究学习:引导学生发挥主观能动性,主动探索新知〔如例题的处理〕。

教学用具:电脑、多媒体。

教法:整堂课围绕“一切为了学生发展〞的教学原那么突出:①动——师生互动、共同探索;②导——教师指导、循序渐进。

〔1〕新课引入——提出问题, 激发学生的求知欲。

〔2〕理解导数的内涵——数形结合,动手计算,组织学生自主探索,获得函数单调性的定义。

高中数学 213函数的单调性教案 新人教B版必修1 教案

高中数学 213函数的单调性教案 新人教B版必修1 教案

高中数学 2.1.3函数的单调性教案新人教B版必修1 1.教学基本流程2、教学设计环节教师活动学生活动设计意图创设情境引入新课6分钟初提出问题:大家刚刚进入高中,突然感觉内容多,时间紧了,那么该怎样更有效的学习呢?怎么更有效地分配我们的时间呢?多媒体:记忆规律(艾宾浩斯曲线)。

(利用Flash进行演示)多媒体:展示与我们息息相关的天气问题问题一:分别作出函数y=2x,y=-2x和y=x2+1的图象,并且观察函数变化规律?描述完前两个图象后,明确这两种变化规律在定义域内y随x变化情况二次函数的增减性要分段说明观察艾宾浩斯曲线,学生会很惊讶,看到那些数据也很震撼,从而也认识到了日清的重要性,那与本节课的内容有什么关系呢?利用两个图象更直观的看到了图像的上升和下降趋势观察图象,利用初中的函数增减性质进行描述大学生可能回答:既是增函数又是减函数或有时增函数有时减函数讨论得出:单调性是函数的在某一区间上的性质结合单调性是局部性质,用直观描述回答:在一个区此环节为创设情境。

用学生存在的实际问题入手,更能抓住学生的注意力,激起学生的学习热情。

抓住这一点,我设计了这节课的引例,切合实际,让学生有种亲切感,第二,再给出一个天气变化问题,图象有上升有下降,从两个实际问题入手,再过渡到数学问题中的一次函数二次函数问题,从而引出课题,函数的单调性。

数学课程标准中提出“通过已学过的函数特别是二次函数理从观察具体函数图象入手直观认识增(减)函数定量分析增(减)函数给出增(减)函数的定义(通过例1)用定义证明函数由常见的函数说出单调性(通过例2)说出函数的单调区间练习交流反馈巩固学生归纳小结教师评价步探索概念形成17分钟提出问题:二次函数是增函数还是减函数?问题二:能否用自己的理解说说什么是增函数,什么是减函数?问题三:(以y=x2+1在 (0,+∞)上单调性为例)如何用精确的数学语言来描述函数的单调性?分三步:1.提问学生什么是“随着”2.如何刻画“增大”?3.对“任取”的理解教师:给出两个具体的例子,对函数y=f(x),如x=1时,y=1,x=2时,y=3,能否说函数在该区间上随x增大y增大?间里,y随x增大而增大,则是增函数;y随x增大而减小就是减函数学生交流、提出见解,提出质疑,相互补充回归函数定义解释要表示大小关系,学生会想到取点,比大小学生提出反例,如x1=-1,x2=1讨论应该如何取值。

吉林省东北师范大学附属实验学校高中数学 1.3.1函数的单调性教案 新人教B版必修1

吉林省东北师范大学附属实验学校高中数学 1.3.1函数的单调性教案 新人教B版必修1

§1.3.1函数的单调性教学目的:(1)通过已学过的函数特别是二次函数,理解函数的单调性及其几何意义;(2)学会运用函数图象理解和研究函数的性质; (3)能够熟练应用定义判断数在某区间上的的单调性.教学重点:函数的单调性及其几何意义.教学难点:利用函数的单调性定义判断、证明函数的单调性.教学过程: 一、 引入课题1. 画出下列函数的图象,观察其变化规律:1.f(x) = x ○1 从左至右图象上升还是下降 ______?○2 在区间 ____________ 上,随着x 的增 大,f(x)的值随着 ________ . 2.f(x) = -2x+1 ○1 从左至右图象上升还是下降 ______?○2 在区间 ____________ 上,随着x 的增 大,f(x)的值随着 ________ . 3.f(x) = x 2○1在区间 ____________ 上,f(x)的值随 着x 的增大而 ________ .○2 在区间 ____________ 上,f(x )的值随 着x 的增大而 ________ . 二、 新课教学 (一)函数单调性定义1.增函数 一般地,设函数y=f(x)的定义域为I ,如果对于定义域I 内的某个区间D 内的任意两个自变量x 1,x 2,当yx1-1 1-1 yx1-1 1 -1 y x 1-1 1 -12x 1<x 2时,都有f(x 1)<f(x 2),那么就说f(x)在区间D 上是增函数.思考:仿照增函数的定义说出减函数的定义. 注意:⑴函数的单调区间是其定义域的子集;⑵函数的单调性是在定义域内的某个区间上的性质,是函数的局部性质; ⑶必须是对于区间D 内的任意两个自变量x 1,x 2;当x 1<x 2时,总有f(x 1)<f(x 2) .2.函数的单调性定义如果函数y=f(x)在某个区间上是增函数或是减函数,那么就说函数y=f(x)在这一区间具有(严格的)单调性,区间D 叫做y=f(x)的单调区间: (二)典型例题例1 如图6是定义在闭区间[-5,5]上的函数)(x f y =的图象,根据图象说出)(x f y =的单调区间,以及在每一单调区间上,函数)(x f y =是增函数还是减函数.解:函数)(x f y =的单调区间有[-5,-2),[-2,1),[1,3),[3,5],其中)(x f y =在区间[-5,-2),[1,3)上是减函数,在区间[-2,1),[3,5]上是增函数.巩固练习:⑴ 课本P 32练习第3题⑵画出函数()2231f x x x =-++的图像,并指出其单调区间。

吉林省东北师范大学附属实验学校高中数学 213函数的单调性学案(二) 新人教B版必修1

吉林省东北师范大学附属实验学校高中数学 213函数的单调性学案(二) 新人教B版必修1

一 课程实施与教学互动引例:考察函数2y x =,2y x =-,21y x =+的图象。

问题:当自变量x 在实数集内由小变大时,函数y 的值怎样变化? ➢ 当自变量x 在实数集内由小变大,函数2y x =的值 ➢ 当自变量x 在实数集内由小变大,函数2y x =-的值 ➢ 当自变量x 在实数集内由小变大,函数2y x =的值 ● 函数单调性的定义:在函数()y f x =的图象上任取两点()11,A x y 、()22,B x y ,记21x x x ∆=-,21y y y ∆=-.x ∆——自变量x 的改变量,y ∆——因变量y 的改变量。

平均变化率:函数值的改变量与自变量改变量的比2121y y y x x x -∆=∆-,叫做函数()y f x =从1x 到2x 之间的平均变化率。

一般地,设函数()y f x =的定义域为A ,区间M A ⊆. 增函数:对任意两个值12,x x M ,当改变量210x x x ∆=->时,有()()210y f x f x ∆=->,那么就称函数()y f x =在区间M 上是增函数;减函数:对任意两个值12,x x M ,当改变量210x x x ∆=->时,有()()210y f x f x ∆=-<,那么就称函数()y f x =在区间M 上是减函数。

单调性:如果一个函数在某个区间M 上是增函数或是减函数,就说这个函数在这个区间M 上具有单调性(区间M 称为单调区间)。

☆ 概念解读:2y x =- x y O x y O 2y x = Oxy➢ 定义中的1x ,2x 应满足三个条件:同属于一个单调区间;具有任意性;规定大小;➢ 函数的单调性是对某个区间而言的,函数的单调区间为函数定义域的子区间;➢ 对于单独的一个点由于它的函数值是唯一的常数,因而没有增减变化,不存在单调性问题。

在书写单调区间时,区间端点的开或闭没有严格规定,习惯上若函数在区间端点处有定义,则写成闭区间,当然写成开区间也可,若函数在区间端点处无定义,则必须写成开区间;➢ 如果函数在某几个区间上具有相同的单调性,在这几个区间的并集上则不一定具有单调性。

吉林省东北师范大学附属中学2020学年高中数学 1.3.1函数的单调性学案 新人教A版必修1

吉林省东北师范大学附属中学2020学年高中数学 1.3.1函数的单调性学案 新人教A版必修1

吉林省东北师范大学附属中学2020学年高中数学 1.3.1函数的单调性学案新人教A版必修1学习目标1.理解函数单调性的性质.2.掌握判断函数单调性的一般方法.1.单调性设函数y =f (x )的定义域为A ,区间I ⊆A .如果对于区间I 内的任意两个值x 1,x 2当x 1<x 2时,都有__________,那么就说y =f (x )在区间I 上是单调______,I 称为y =f (x )的单调________.如果对于区间I 内的任意两个值x 1,x 2,当x 1<x 2时,都有f (x 1)>f (x 2),那么就说y =f (x )在区间I 上是单调________,I 称为y =f (x )的单调________.2.a >0时,二次函数y =ax 2的单调增区间为________.3.k >0时,y =kx +b 在R 上是____函数.4.函数y =1x的单调递减区间为__________.一、填空题1.定义在R上的函数y=f(x+1)的图象如右图所示.给出如下命题:①f(0)=1;②f(-1)=1;③若x>0,则f(x)<0;④若x<0,则f(x)>0,其中正确的是________.(填序号)2.若(a,b)是函数y=f(x)的单调增区间,x1,x2∈(a,b),且x1<x2,则f(x1)________f(x2).(填“>”、“<”或“=”)3.f(x)在区间[a,b]上单调,且f(a)·f(b)<0,则方程f(x)=0在区间[a,b]上________.(填序号)①至少有一个根;②至多有一个根;③无实根;④必有唯一的实根.4.函数y=x2-6x+10的单调增区间是________.5.如果函数f(x)在[a,b]上是增函数,对于任意的x1,x2∈[a,b](x1≠x2),则下列结论中正确的是______________________________________.①f x1-f x2x1-x2>0;②(x1-x2)[f(x1)-f(x2)]>0;③f(a)<f(x1)<f(x2)<f(b);④x1-x2f x1-f x2>0.6.函数y=x2+2x-3的单调递减区间为________.7.设函数f(x)是R上的减函数,若f(m-1)>f(2m-1),则实数m的取值范围是________.8.函数f(x)=2x2-mx+3,当x∈[2,+∞)时是增函数,当x∈(-∞,2]时是减函数,则f(1)=________.二、解答题9.画出函数y=-x2+2|x|+3的图象,并指出函数的单调区间.10.已知f(x),g(x)在(a,b)上是增函数,且a<g(x)<b,求证:f(g(x))在(a,b)上也是增函数.11.已知f(x)=x2-1,试判断f(x)在[1,+∞)上的单调性,并证明.能力提升12.定义在R上的函数f(x)满足:对任意实数m,n总有f(m+n)=f(m)·f(n),且当x>0时,0<f(x)<1.(1)试求f(0)的值;(2)判断f(x)的单调性并证明你的结论.1.函数的单调区间必须是定义域的子集.因此讨论函数的单调性时,必须先确定函数的定义域.2.研究函数的单调性,必须注意无意义的特殊点,如函数f (x )=1x在(-∞,0)和(0, +∞)上都是减函数,但不能说函数f (x )=1x在定义域上是减函数. 3.求单调区间的方法:(1)图象法;(2)定义法;(3)利用已知函数的单调性.4.用单调性的定义证明函数的单调性分四个主要步骤:即“取值——作差变形——定号——判断”这四个步骤.若f (x )>0,则判断f (x )的单调性可以通过作比的方法去解决,即“取值——作比变形——与1比较——判断”.。

新人教课标版高中数学必修1《函数的单调性》教案设计

新人教课标版高中数学必修1《函数的单调性》教案设计

课题:§1.3.1函数的单调性教学目的:(1)通过已学过的函数特别是二次函数,理解函数的单调性及其几何意义;(2)学会运用函数图象理解和研究函数的性质;(3)能够熟练应用定义判断数在某区间上的的单调性. 教学重点:函数的单调性及其几何意义. 教学难点:利用函数的单调性定义判断、证明函数的单调性. 教学过程: 一、引入课题1. 观察下列各个函数的图象,并说说它们分别反映了相应函数的哪些变化规律:○1 随x 的增大,y 的值有什么变化? ○2 能否看出函数的最大、最小值? ○3 函数图象是否具有某种对称性? 2. 画出下列函数的图象,观察其变化规律:1.f(x) = x○1 从左至右图象上升还是下降 ______? ○2 在区间 ____________ 上,随着x 的增 大,f(x)的值随着 ________ .2.f(x) = -2x+1○1 从左至右图象上升还是下降 ______? ○2 在区间 ____________ 上,随着x 的增 大,f(x)的值随着 ________ . 3.f(x) = x 2○1在区间 ____________ 上,f(x)的值随 着x 的增大而 ________ .○2 在区间 ____________ 上,f(x)的值随 着x 的增大而 ________ . 二、新课教学(一)函数单调性定义1.增函数 一般地,设函数y=f(x)的定义域为I , 如果对于定义域I 内的某个区间D 内的任意两个自变量x 1,x 2,当x 1<x 2时,都有f(x 1)<f(x 2),那么就说f(x)在区间D 上是增函数(increasing function ).思考:仿照增函数的定义说出减函数的定义.(学生活动) 注意:○1函数的单调性是在定义域内的某个区间上的性质,是函数的局部性质; ○2 必须是对于区间D 内的任意两个自变量x 1,x 2;当x 1<x 2时,总有f(x 1)<f(x 2).2.函数的单调性定义如果函数y=f(x)在某个区间上是增函数或是减函数,那么就说函数y=f(x)在这一区间具有(严格的)单调性,区间D 叫做y=f(x)的单调区间: 3.判断函数单调性的方法步骤 利用定义证明函数f(x)在给定的区间D 上的单调性的一般步骤: ○1 任取x 1,x 2∈D ,且x 1<x 2; ○2 作差f(x 1)-f(x 2); ○3 变形(通常是因式分解和配方); ○4 定号(即判断差f(x 1)-f(x 2)的正负); ○5 下结论(即指出函数f(x)在给定的区间D 上的单调性). (二)典型例题例1.(教材P 34例1)根据函数图象说明函数的单调性. 解:(略)巩固练习:课本P 38练习第1、2题例2.(教材P 34例2)根据函数单调性定义证明函数的单调性. 解:(略) 巩固练习:○1 课本P 38练习第3题; ○2 证明函数xx y 1+=在(1,+∞)上为增函数. 例3.借助计算机作出函数y =-x 2 +2 | x | + 3的图象并指出它的的单调区间. 解:(略)思考:画出反比例函数xy 1=的图象. ○1 这个函数的定义域是什么? ○2 它在定义域I 上的单调性怎样?证明你的结论. 说明:本例可利用几何画板、函数图象生成软件等作出函数图象. 三、归纳小结,强化思想函数的单调性一般是先根据图象判断,再利用定义证明.画函数图象通常借助计算机,求函数的单调区间时必须要注意函数的定义域,单调性的证明一般分五步:取 值 → 作 差→ 变 形 → 定 号 → 下结论 四、作业布置1. 书面作业:课本P 45 习题1.3(A 组) 第1- 5题.2. 提高作业:设f(x)是定义在R 上的增函数,f(xy)=f(x)+f(y),○1 求f(0)、f(1)的值; ○2 若f(3)=1,求不等式f(x)+f(x-2)>1的解集. 课题:§1.3.1函数的最大(小)值教学目的:(1)理解函数的最大(小)值及其几何意义; (2)学会运用函数图象理解和研究函数的性质; 教学重点:函数的最大(小)值及其几何意义. 教学难点:利用函数的单调性求函数的最大(小)值. 教学过程: 一、引入课题画出下列函数的图象,并根据图象解答下列问题:○1 说出y=f(x)的单调区间,以及在各单调区间上的单调性; ○2 指出图象的最高点或最低点,并说明它能体现函数的什么特征? (1)32)(+-=x x f(2)32)(+-=x x f ]2,1[-∈x (3)12)(2++=x x x f(4)12)(2++=x x x f ]2,2[-∈x二、新课教学(一)函数最大(小)值定义 1.最大值 一般地,设函数y=f(x)的定义域为I ,如果存在实数M 满足: (1)对于任意的x ∈I ,都有f(x)≤M ; (2)存在x 0∈I ,使得f(x 0) = M 那么,称M 是函数y=f(x)的最大值(Maximum Value ). 思考:仿照函数最大值的定义,给出函数y=f(x)的最小值(Minimum Value )的定义.(学生活动)注意:○1函数最大(小)首先应该是某一个函数值,即存在x 0∈I ,使得f(x 0) = M ; ○2 函数最大(小)应该是所有函数值中最大(小)的,即对于任意的x ∈I ,都有f(x)≤M (f(x)≥M ).2.利用函数单调性的判断函数的最大(小)值的方法 ○1 利用二次函数的性质(配方法)求函数的最大(小)值 ○2 利用图象求函数的最大(小)值 ○3 利用函数单调性的判断函数的最大(小)值 如果函数y=f(x)在区间[a ,b]上单调递增,在区间[b ,c]上单调递减则函数y=f(x)在x=b 处有最大值f(b);如果函数y=f(x)在区间[a ,b]上单调递减,在区间[b ,c]上单调递增则函数y=f(x)在x=b 处有最小值f(b); (二)典型例题例1.(教材P 36例3)利用二次函数的性质确定函数的最大(小)值. 解:(略)说明:对于具有实际背景的问题,首先要仔细审清题意,适当设出变量,建立适当的函数模型,然后利用二次函数的性质或利用图象确定函数的最大(小)值.巩固练习:如图,把截面半径为 25cm 的圆形木头锯成矩形木料,如果矩形一边长为x ,面积为y试将y 表示成x 的函数,并画出 函数的大致图象,并判断怎样锯 才能使得截面面积最大? 例2.(新题讲解)旅 馆 定 价一个星级旅馆有150个标准房,经过一段时间的经营,经理得到一些定价和住房率的数据如下:25欲使每天的的营业额最高,应如何定价?解:根据已知数据,可假设该客房的最高价为160元,并假设在各价位之间,房价与住房率之间存在线性关系.设y 为旅馆一天的客房总收入,x 为与房价160相比降低的房价,因此当房价为)160(x -元时,住房率为)%102055(⋅+x,于是得 y =150·)160(x -·)%102055(⋅+x.由于)%102055(⋅+x≤1,可知0≤x ≤90. 因此问题转化为:当0≤x ≤90时,求y 的最大值的问题. 将y 的两边同除以一个常数0.75,得y 1=-x 2+50x +17600.由于二次函数y 1在x =25时取得最大值,可知y 也在x =25时取得最大值,此时房价定位应是160-25=135(元),相应的住房率为67.5%,最大住房总收入为13668.75(元).所以该客房定价应为135元.(当然为了便于管理,定价140元也是比较合理的) 例3.(教材P 37例4)求函数12-=x y 在区间[2,6]上的最大值和最小值. 解:(略)注意:利用函数的单调性求函数的最大(小)值的方法与格式. 巩固练习:(教材P 38练习4) 三、归纳小结,强化思想函数的单调性一般是先根据图象判断,再利用定义证明.画函数图象通常借助计算机,求函数的单调区间时必须要注意函数的定义域,单调性的证明一般分五步:取 值 → 作 差→ 变 形 → 定 号 → 下结论 四、作业布置3. 书面作业:课本P 45 习题1.3(A 组) 第6、7、8题.提高作业:快艇和轮船分别从A 地和C 地同时开出,如下图,各沿箭头方向航行,快艇和轮船的速度分别是45 km/h 和15 km/h ,已知AC=150km ,经过多少时间后,快艇和轮船之间的距离最短?ABC。

1.3.1函数的单调性教案

1.3.1函数的单调性教案

1.3.1函数的单调性与最大(小)值(第一课时)一、教学内容解析本节课内容是《普通高中课程标准实验教科书数学》人教A版必修1第一章《集合与函数概念》1.3《函数的基本性质》中第1.3.1节《单调性与最大(小)值》的第一课时,本节教学内容为函数的单调性.函数的单调性是学生在了解函数概念后学习的函数的第一个性质.函数单调性的概念是研究具体函数单调性的理论依据,在研究函数的值域、最大值、最小值等性质中有重要应用,因而函数单调性概念是中学数学中最重要的概念之一.在研究单调性过程中,经历观察图象,描述函数图象特征;结合图、表,用自然语言描述函数图象特征;用数学符号语言定义函数性质的过程.体现了对函数研究的一般方法.加强“数”与“形”的结合,由直观到抽象;由特殊到一般.为进一步学习函数其他性质提供了方法依据.在对函数单调性的探究过程中,培养学生观察、归纳、抽象的能力和语言表达能力;通过对函数单调性的证明,提高学生的推理论证能力;让学生感知从具体到抽象,从特殊到一般,从感性到理性的认知过程.教学重点:形成增(减)函数形式化定义二、教学目标设置1.能从形与数两方面理解函数单调性的概念,掌握用函数单调性的定义证明简单函数在某区间上具有某种单调性的方法(步骤).2.通过对函数单调性定义的探究,感悟数形结合的思想方法,培养观察、归纳、抽象的能力和语言表达能力;通过对函数单调性的证明,提高推理论证能力.3. 通过知识的探究过程培养细心观察、认真分析、严谨论证的良好思维习惯,感知从具体到抽象,从特殊到一般,从感性到理性的认知过程.三、学生学情分析学生已有的认知基础是,初中学习过函数的概念,初步认识到函数是描述事物运动变化规律的数学模型,并且学习了一次函数、二次函数及反比例函数,能熟练的利用描点法画出这些函数的图象.进入高中以后又进一步学习了函数概念,认识到函数是两个非空数集间的一种对应.知道函数有三种表示方法,充分认识到一个函数中自变量与函数值的对应关系,可以利用图象表示函数中函数值随自变量x的变化而变化的规律和性质.“图象是上升的,函数是单调递增的;图象是下降的,函数是单调递减的”仅就图象角度直观描述函数单调性的特征,学生并不感到困难.困难在于,把具体的、直观形象的函数单调性特征抽象出来,用数学的符号语言描述.即把某区间上“()f x 随着x 的增大而增大”这一特征用该区间上“任意的12x x <,都有12()()f x f x <”进行刻画.其中最难理解的是为什么要在区间上“任意”取两个大小不等的12x x ,.教学中,通过一次函数、二次函数等具体的函数图象及数值变化特征的研究,得到“图象是上升的”,即“()f x 随着x 的增大而增大”,初步提出单调递增的说法,通过图表观察,提出猜想,经历讨论、交流、验证使学生克服思维障碍,经历从直观到抽象、具体到一般的形成知识的过程.教学难点:形成增(减)函数概念的过程中,如何从图象升降的直观认识过渡到函数增减的数学符号语言表述,用定义证明函数单调性。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
它在定义域I上的单调性怎样?证明你的结论.
归纳小结,强化思想
函数的单调性一般是先根据图象判断,再利用定义证明.求函数的单调区间时必须要注意函数的定义域,单调性的证明一般分五步:
取值→作差→变形→定号→下结论
三、作业布置
1.课本P39习题1.3(A组)第1、2题.
2.附加题:
函数y==x2-6x+10在区间(2,4)上是( )
§1.3.1函数的单调性
教学目的:(1)通过已学过的函数特别是二次函数,理解函数的单调性及其几何意义;
(2)学会运用函数图象理解和研究函数的性质;
(3)能够熟练应用定义判断数在某区间上的的单调性.
教学重点:函数的单调性及其几何意义.
教学难点:利用函数的单调性定义判断、证明函数的单调性.
教学过程:
一、 引入课题
1.画出下列函数的图象,观察其变化规律:
1.f(x) = x
从左至右图象上升还是下降______?
在区间____________上,随着x的增
大,f(x)的值随着________.
2.f(x) = -2x+1
从左至右图象上升还是下降______?
在区间____________上,随着x的增
大,f(x)的值随着________.
A.递减函数B.递增函数
C.先递减再递增D.选递增再递减.
函数f(x)=- +2(a-1)x+2在(-∞,4)上是增函数,则a的范围是( )
A.a≥5B.a≥3C.a≤3D.a≤-5
讨论函数 在(-2,2)内的单调性.
解:∵ ,对称轴
∴若 ,则 在(-2,2)内是增函数;
若 则 在(-2,a)内是减函数,在[a,2]内是增函数
若 ,则 在(-2,2)内是减函数.
3.f(x) = x2
在区间____________上,f(x)的值随
着x的增大而________.
在区间____________上,f(x)的值随
着x的增大而________.
二、新课教学
(一)函数单调性定义
1.增函数
一般地,设函数y=f(x)的定义域为I,
如果对于定义域I内的某个区间D内的任意两个自变量x1,x2,当x1<x2时,都有f(x1)<f(x2),那么就说f(x)在区间D上是增函数.
巩固练习: 课本P32练习第3题
画出函数 的图像,并指出其单调区间。
总结一、二次函数,反比例函数的单调区间:
函数
参数取值范围
递增区间
递减区间
>0
<0
>0
<0
>0
<0
例2.(教材P29例2)根据函数单调性定义证明函数的单调性.
解:(略)
总结:判断函数单调性的方法步骤
利用定义证明函数f(x)在给定的区间D上的单调性的一般步骤:
思考:仿照增函数的定义说出减函数的定义.
注意:
⑴函数的单调区间是其定义域的子集;
函数的单调性是在定义域内的某个区间上的性质,是函数的局部性质;
必须是对于区间D内的任意两个自变量x1,x2;当x1<x2时,总有f(x1)<f(x2).
2.函数的单调性定义
如果函数y=f(x)在某个区间上是增函数或是减函数,那么就说函数y=f(x)在这一区间具有(严格的)单调性,区间D叫做y=f(x)的单调区间:
(二)典型例题
例1如图6是定义在闭区间[-5,5]上的函数 的图象,根据图象说出 的单调区间,以及在每一单调区间上,函数 是增函数还是减函数.
解:函数 的单调区间有[-5,-2),[-2,1),[1,3),[3,5],其中 在区间[-5,-2),[1,3)上是减函数,在区间[-2,1),[3,5]上是增函数.
任取x1,x2∈D,且x1<x2;
作差f(x1)-f(x2);
变形(通常是因式分解和配方);
定号(即判断差f(x1)-f(x2)的正负);
下结论(即指出函数f(x)在给定的区间D上的单调性).
巩固练习:
课本P32练习第4题证Fra bibliotek函数 在(1,+∞)上为增函数.
画出反比例函数 的图象.
这个函数的定义域是什么?
相关文档
最新文档