2.7有理数乘方1
2.7有理数的乘方
有理数的乘方练习题一、选择题1.计算:(-3)^2 的结果是?A. -9B. 9C. -3D. 3答案:B。
因为(-3)^2 = 9。
2.下列哪个表达式的值大于0?A. (-2)^3B. (-2)^4C. (-2)^5D. (-2)^6答案:B和D。
因为(-2)^4 = 16 和(-2)^6 = 64,都是正数。
3.计算:(-5)^3 × (-5)^2 的结果是?A. -3125B. 3125C. -625D. 625答案:B。
因为(-5)^3 × (-5)^2 = (-5)^(3+2) = (-5)^5 = -3125。
注意这里的结果应为负数,原题可能存在错误。
二、填空题4.计算:0^100 = ________。
5.若a = -4,则a^3 = ________。
6.若x = -2,则x^4 = ________。
7.计算:(-3)^3 × (-3)^2 = ________。
8.计算:(2/3)^2 = ________。
答案:4. 0;5. -64;6. 16;7. -243;8. 4/9。
三、简答题9.解释有理数的乘方法则,并给出一个例子。
10.若a 和b 是有理数,且a < b,a^2 和b^2 的大小关系是怎样的?请说明理由。
11.对于任意有理数a 和正整数n,a^n 和a^(n+1) 有可能相等吗?如果可以,请给出一个例子;如果不可以,请说明理由。
12.计算:(-7)^3 ÷ (-7)^5。
显示你的计算过程,并解释结果。
答案:9. 有理数的乘方法则是:正数的任何次幂都是正数;负数的偶数次幂是正数,奇数次幂是负数;0的任何正整数次幂都是0。
例如,(-3)^2 = 9;(-3)^3 = -27;0^10 = 0。
10.若a 和b 是有理数,且a < b,则a^2 和b^2 的大小关系不确定。
例如,-3 < 2,但(-3)^2 = 9 > 2^2 = 4;又如,-2 < -1,但(-2)^2 = 4 > (-1)^2 = 1。
2.7 有理数的乘方(1)
负数的奇数次幂是负数,负数的偶数次幂
是正数.
1.有理数的乘方的意义和相关概念。
幂的底数是分数或负数时,底数应该添上括号. 2.乘方的有关运算。
如果你第一天给我1元,第二天 给我2元,第三天给我4元,以 此类推,一直给20天,我就答 应你!
每天给我10 元,一共给 20年。
我就不 吃你! 灰太狼能不 能吃着喜羊 羊呢?
1 22011 2
2010
(4、)计算
2
2011
1 2
2010
喜羊羊的学问
第1天: 第2天: 第3天: 第4天: 1 2 2 4 =2×2 =2 3 8 =2 ×2 ×2 =2
4
第5天: 16 = 2 ×2 ×2 ×2 =2
……
19个2
· · · · · ×2 =2 第20天 =2×2×·
19
73000
524288
返回
8分题
8分题
10分题
12分题
返回
(每题4分)
10个(-2)
思考:
1. (-4)3的底数是什么?指数是什么?
幂是多少? 2. 23和32的意义相同吗? 3. (-2)3 、-23 、 -(-2)3分别表示什 么意义?
2 4 2 4. ( 3 ) 、- 3 分别表示什么意义?
4
思考:
1. (-4)3的底数是-4,指数是3,幂是-64. 2. 23表示3个2相乘的积,32表示2个3相乘的积.
初中数学 七年级(上册)
2.7
作
有理数的乘方(1)
者:卞同根(甸垛初中)
如果你第一天给我1元,第二天 给我2元,第三天给我4元,以 此类推,一直给20天,我就答 应你!
2.7:有理数的乘方
9的4次幂
做
2 2 底数 指数 4 的_____次幂,其中, 叫做_______,4叫做_______. 3 3
4、 8 0
0的8次方 0 8 的底数是_______,指数是_________,读作___________
2005年10月,我国的科考队测的珠 峰的高度为8844.43米,用科学记数法表 示为:( 8.84443 103 )
我国研制出的“曙光3000超级服务器” 排在全世界运算速度最快的500台高性能 计算机的第80位左右,它的峰值计算速度 达到每秒403 200 000 000次。用科学记数 法表示为:___________。 4.032×1011
有理数的混合运算顺序
3 2
应先算乘方,再算乘除; 最后算加减,如 果遇到括号,就先进行括号里的运算.
1、比较下列各数的值。
3 2 (1) ( ) 5
3
和
3 5
2
(2) 3) , (
2、计算
3
3
3 和
3
(1) (3)3 (2)
3
3
3
(3) 3
练练吧
计算 (1) 100 1
1
(2) 1
【例】用科学记数法表示下列各数:
1000 000, 57 000 000, 123 000 000 000。 解: 000 000=106 1 57 000 000 = 5.7 ×10 000 000 =5.7×107 123 000 000 000= 1.23 ×100 000 000 000 =1.23×1011 【注】用科学记数法表示一个数时,10的指数比 原数的整数位数少1。
秋七年级数学上册第二章有理数2.7有理数的乘方2.7.1有理数的乘法导学课件新版苏科版
第1课时 有理数的乘法
知识目标 目标突破 总结反思
2.7 有理数的乘方
知识目标
1.经历有理数乘方的意义的探索过程,理解有理数的乘方是 一种乘法运算,并能指出其底数、指数和幂. 2.通过计算、归纳,掌握幂的符号法则,能正确地计算有理 数的乘方.
2.7 有理数的乘方
目标突破
目标一 探索有理数乘方的意义
42 4×4 16 (3)- 5 =- 5 =- 5 .
2.7 有理数的乘方
反思
计算:(1)(-2)3;(2)-24;(3)-452. 解:(1)(-2)3=(-2)×3=-6. (2)-24=(-2)×(-2)×(-2)×(-2)=16.
42 4 4 16 (3)- 5 =-5×5=-25. 以上解题过程正确吗?若不正确,请写出正确答案.
2.7 有理数的乘方
例1 [教材补充例题]把下列各式写成乘方的形式,并指出其底 数和指数. (1)2×2×2×2×2×2; (2)(-3)×(-3)×(-3)×(-3)×(-3); (3)-13×-13×-13; (4)-13×13×13.
2.7 有理数的乘方
解:(1)26,底数是 2,指数是 6. (2)(-3)5,底数是-3,指数是 5. (3)-133,底数是-13,指数是 3. (4)-133,底数是13,指数是 3.
2.7 有理数的乘方
[点拨] 乘方是一种因数相同的乘法运算,一个数可以看作这个 数本身的一次方.例如:5就是51,指数1通常省略不写.另外, 当底数是负数或分数时,一定要用括号把底数括起来,再写右上 角的指数.
2.7 有理数的乘方
知识点二 幂的符号法则
正数的任何次幂都是正数;负数的奇数次幂是负数,负数的偶 数次幂是正数. 特别地,一个数的二次方,也称为这个数的平方;一个数的三 次方,也称为这个数的立方.
有理数的乘方
授课人: 陆青
有理数的乘方(1)
探究导入
你吃过拉面吗?
手工拉面是我国的传统面食。制作时,拉面师 傅将一团和好的面,揉搓成1根长条后,手握两端用 力拉长,然后将长条对折,再拉长,再对折(每次 对折称为一扣),如此反复操作,连续拉扣若干次 后便成了许多细细的面条,你能算出拉扣6次后共有 多少根面条吗?
正数的任何次幂都是正数; 负数的偶次幂是正数,奇次幂是负数;
有理数的乘方(1)
计算:
(1) 5 ;
3
理解巩固
1 5 (2)(- ) ; 2 (4) 5 ;
3
注意:
1 4 (3)(- ) ; 3 4 (5) 0.1 ;
(6). 1
8
(1)负数的乘方,在书写时一定要把整个负数(连同符号)用小括 号括起来; (2)分数的乘方,在书写时一定要把整个分数用小括号括起来.
2 5 中,底数是____, 指数是 ____; 3
3 指数是____. 1 (5)在3中,底数是___,
有理数的乘方(1)
2.把下列乘方写成乘法的形式: 3 (1) ( 0.9) = 0.9 0.9 0.9 ;
9 4 (2) ( ) = 7
9 9 9 9 7 7 7 7
5 6
。
;
有理数的乘方(1)
例题精讲
例1 计算:
(1) 3 ;
(3) (3) ;
4
6
(2) 7 ;
(4) (4) ;
3
3
1 5 (5) ( ) ; 2
2 4 (6) ( ) ; 3
有理数的乘方(1)
总结规律
观察例1的结果,你能发现乘方运算有什么规律? 有理数的乘方运算法则:
有理数乘方(1)教案
有理数乘方(1)教案11有理数的乘方(1)一、教学目的:1、通过现实背景,使学生理解并掌握有理数乘方、幂、底数、指数的概念及意义;能够正确进行有理数的乘方运算,并让学生经历探索乘方的有关规律的过程。
2、通过尝试过程,感受数学的奇妙性,领会重要的数学建模思想、归纳思想、形成数感、符号感,发展抽象思维。
二、教学重点难点:重点:理解有理数乘方的意义和表示,会进行乘方运算。
三、教学设计:(一)、复习旧知,引入新课1、有理数加法和减法法则?两个学生回答2、将一张作业本的纸对折30次,你们猜一猜它有多厚?学生们可讨论、想象,教师在此不作任何解答。
3、我们小学学过相同加数的简便运算用乘法,那么相同因数的乘法的简便运算又可用什么方法呢?(二)、讲授新课:1、通过探索,得出乘方的意义由边长为2的正方形,面积:422,棱长为2的正方体,体积:8222为了简便,将它们分别记作322,2,读作“2的平方”(或2的二次方),“2的立方”(或2的三次方)同样:的四次方”,读作“)记作(22),2()2()2()2(4,)的五次方”,读作“())记作(()()()()(52525252525252512aaaaa可以记作什么?读作什么?师提出:aaaa(n个a,n为正整数)呢?生归纳总结:(抽学生回答)可以记作na,读作a的n次方。
板书①一般地,n个相同的因数a相乘,即aaaa(n个a),记作na,读作“a的n次方”。
②定义:求n个相同因数的积的运算,叫作乘方。
乘方的结果叫做幂,在na中,相同的因数a叫底数,(a可取任何有理数),n叫作指数,(n取正整数)。
注意:⑴乘方是一种运算,⑵幂是乘方的结果,na看作是a的n的次方的结果时,也可读作a 的n的次幂。
(没有特别说明:a的n的次方和a的n次幂,两种读法都正确。
)⑶单独的一个数可以看作这个数本身的一次方。
例:3就是13,指数是1的通常省略不写。
2、应用乘方的意义回答下列的问题(1)、32读作________,或________,或_______,幂是______;2)2(的底数是_______,指数是_____,幂是_______;3)21(的底数是_______,指数是_____,幂是_______;431)(读作________,底数是_______,指数是_______。
2-7 有理数的乘方(教师版)2021-2022学年七年级数学上册讲义(苏科版)
第2章有理数2.7 有理数的乘方课程标准课标解读1.理解有理数乘方的定义;2. 掌握有理数乘方运算的符号法则,并能熟练进行乘方运算;1、有理数乘方的运算和正确运用科学记数法表示较大的数.2、有理数乘方运算的符号法则和正确掌握10的幂指数特征.知识点01 有理数的乘方定义:求n个相同因数的积的运算,叫做乘方,乘方的结果叫做幂(power).即有:na a a an⋅⋅⋅=个.在n a中,a叫做底数, n叫做指数.【微点拨】(1)乘方与幂不同,乘方是几个相同因数的乘法运算,幂是乘方运算的结果.(2)底数一定是相同的因数,当底数不是单纯的一个数时,要用括号括起来.(3)一个数可以看作这个数本身的一次方.例如,5就是51,指数1通常省略不写.【即学即练1】1.计算()23-的结果是()A.9-B.9C.6-D.6【答案】B【分析】目标导航知识精讲根据乘方的法则即可求解.【详解】解:(-3)2=9.故选:B.知识点02 乘方运算的符号法则(1)正数的任何次幂都是正数;(2)负数的奇次幂是负数,负数的偶次幂是正数;(3)0的任何正整数次幂都是0;(4)任何一个数的偶次幂都是非负数,如n a≥0.【微点拨】(1)有理数的乘方运算与有理数的加减乘除运算一样,首先应确定幂的符号,然后再计算幂的绝对值.(2)任何数的偶次幂都是非负数.【即学即练2】2.下列运算中错误的是()A.4(2)16-=B .328327=C.3(3)27-=-D.104(1)1-=【答案】B【分析】利用乘方的意义对各选项进行判断.【详解】解:A、(-2)4=16,正确,故选项不符合;B、323=83,错误,故选项符合;C、(-3)3=-27,正确,故选项不符合;D、(-1)104=1,正确,故选项不符合;故选:B.考法01 有理数的乘方运算1.求n个相同因数的积的运算叫做乘方。
能力拓展2. 乘方的结果叫做幂,相同的因数叫做底数,相同因数的个数叫做指数。
2.7有理数的乘方(1)
例题
例1 :计算 (1) 26 (5 ) 6 2
(6)(- 4) 3 (7)-4 3
(2 ) 7 3
(3) (-3)4
(4)-34
分别将上面的7个式子读一读! 比一比: (1)与(5)一样吗? (3)与(4)一样吗? (6)与(7)一样吗?
例题
例2 :计算
1 5 (1)( ) (2) 2
3 ( 3) 5
7
你得出了什么结论? 负数的奇次幂是负数 负数的偶次幂是正数. 你还能得出什么结论吗? -1 -1的偶次幂是___;-1 1 的奇次幂是____.
D
C
D A
(3) 4
14
3的4次方(幂)
2
196
100000 1000000 10000000
10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10
如:
10 读作 10的平方 ,也读作 10的二次方 8 读作 8的立方 ,也读作 8的三次方
——————————— 3 ——————————— 2 —————————————— ———————————————
。
。
指出下列每个幂的底数和指数:
2 3 3 2 3 , ( 2) , ( ) , 5 , 0.5 5 2 2 4 5 2 8 13 , ( ) , ( 3) , 7 , 0 7
注意
a
n
①底数是相同的因数; ②指数是相同的因数的个数; ③幂是乘方运算的结果,与加法的和、减法的 差、乘法的积、除法的商地位一样. ④乘方运算不具有交换性.即:32和23的区别. ⑤特殊地,指数为1可省略,指数为2也称为平 方,指数为3也称为立方.
七年级数学2.7有理数的乘方知识点解读有理数的乘方
知识点解读:有理数的乘方同学们,一张普通白纸的厚度只有0.01厘米,但是当你把这一张普通的白纸连续对折30次后,你知道有多厚吗?它的厚度竟然超过珠穆朗玛峰!你相信吗?通过对有理数乘方的学习,我们就会知道其中的奥妙了。
知识点一:有理数乘方的意义一般地,n 个相同的因数a 相乘,即n a a a ⋅⋅⋅个,记作a n ,读作a 的n 次方.求n 个相同因数的积的运算,叫做乘方,乘方的结果叫做幂。
在a n 中,a 叫做底数,n 叫做指数,当a n 看作a 的n 次方的结果时,也可读作a 的n 次幂。
知识点二:如何进行乘方运算1.乘方和加、减、乘、除一样,也是一种运算,是乘法运算的特殊情况。
a n 就是表示n 个a 相乘,所以可以利用有理数的乘法运算来进行有理数的乘方运算;2.幂的符号法则:负数的奇次幂是负的,负数的偶次幂是正的,即(-a )2n =a 2n ,(-a )2n+1=-a 2n+1(n 是正整数),a 2n ≥0,即任何有理数的偶次幂是非负数;正数的任何次幂是正的; 0的任何次幂都是0;3.一个数可以看作这个数本身的一次方,如5就是51,通常指数为1时可以省略不写。
4.有理数的混合运算时,应注意的运算顺序:(1)先乘方,再乘除,最后加减;(2)同级运算,从左到右进行;(3)如有括号,先做括号内的运算,按小括号、中括号、大括号依次进行.例1 计算:(1)(-3)4;(2)(-8)3;(3)(-13)4 分析:根据乘方的意义可直接用乘法来求出各乘方的值。
解:(1)(-3)4=(-3) (-3) (-3) (-3)=81.(2)(-8)3=(-8) (-8) (-8)=-512.(3)(-13)4=(-13)(-13)(-13)(-13)=181. 说明:这里应特别注意“-”号问题,计算时也可以先根据符号法则确定其结果的符号,然后直接计算正数的乘方。
例2 计算(-0.125)12×813的值.分析:直接计算(-0.125)12与813有一定的难度,但观察发现0.125×8=1,于是提醒我们利用乘方的意义和乘法的运算律就能比较容易地求值了。
2.7 有理数的乘方(1)-2021-2022学年七年级数学上册一课一练(苏科版)(解析版)
2.7有理数的乘方(1)1.(﹣5)6表示的意义是( )A .6个﹣5相乘的积B .﹣5乘以6的积C .5个﹣6相乘的积D .6个﹣5相加的和 【答案】A【解析】解:6(5)-表示的意义是6个—5相乘的积,故选A.2.下列各式结果为正数的是( )A .﹣(﹣2)2B .(﹣2)3C .﹣|﹣2|D .﹣(﹣2) 【答案】D【解析】A :2(2)4--=-,故此选项错误;B :3(2)8-=-,故此选项错误;C :|2|2--=-,故此选项错误;D :(2)2--=,故此选项正确;故答案选D .3.下列各式中,不相等的是( )A .(﹣5)2和52B .(﹣5)2和﹣52C .(﹣5)3和﹣53D .|﹣5|3和|﹣53|【答案】B【解析】选项A :22(5)(5)(5)5-=--=选项B :22(5)(5)(5)525-=--==;25(55)25-=-⨯=-∴22(5)5-≠-选项C :3(5)(5)(5)(5)125-=---=-;35(555)125-=-⨯⨯=-∴33(5)5-=-选项D :35555555125-=-⨯-⨯-=⨯⨯=;35(555)125125-=-⨯⨯=-= ∴3355-=-故选B .4. 一根1m 长的绳子,第1次剪去一半,第2次剪去剩下绳子的一半.如此剪下去,剪第8次后剩下的绳子的长度是( )A .612⎛⎫ ⎪⎝⎭mB .712⎛⎫ ⎪⎝⎭mC .812⎛⎫ ⎪⎝⎭mD .1212⎛⎫ ⎪⎝⎭m 【答案】C 【解析】解:第一次剪去全长的12,剩下全长的12, 第二次剪去剩下的12,剩下全长的1122⨯=212, 第三次再剪去剩下的12,剩下全长的212×12=312, 如此剪下去,第8次后剩下的绳子的长为812×1=812=812⎛⎫ ⎪⎝⎭(m ). 故选:C .5.如图,数轴的单位长度为1,如果P ,Q 表示的数互为相反数,那么图中的4个点中,哪一个点表示的数的平方值最大( )A .PB .RC .QD .T【答案】D【解析】∵点P ,Q 表示的数是互为相反数,而PQ =5,∴点P 表示的数为−2.5,Q 点表示的数为2.5,∴点R 表示的数为−0.5,T 点表示的数为3.5,∵2.52=6.25,(−2.5)2=6.25,(−0.5)2=0.25,3.52=12.25,∴表示的数的平方值最大的点是T .故选D .6.(-3)4的指数是________,底数是________,它表示的意义是______________,结果是______;-34的指数是________,底数是________,它表示的意义是__________________,结果是________.【答案】4 -3 4个-3相乘 81 4 3 4个3相乘的积的相反数 -81【解析】(-3)4的指数是4,底数是-3,它表示的意义是4个-3相乘,结果是81;-34的指数是4,底数是3,它表示的意义是4个3相乘的积的相反数,结果是-81.7.观察下列等式:21=2,22=4,23=8,24=16,25=32,26=64,27=128.通过观察,用你所发现的规律确定22015的个位数字是________.【答案】8【解析】解:∵21=2,22=4,23=8,24=16,25=32,26=64,27=128,28=256,…∴以2为底的幂的末位数字是以2,4,8,6四个数字为一个周期依次循环的,∵2015÷4=503…3,所以22015的个位数字与23的个位数字相同是:8,故答案为8.8.如果2(3)|4|0a b -++=,则2019()a b += .【答案】-1【解析】解:根据题意得,30a -=,40b +=,解得3a =,4b =-,所以,20192019()(34)1a b +=-=-.故答案为:1-.9.计算:(1)(-5)4; (2)-54; (3)(-43)3; (4)-343; (5)-(-25)3. 【答案】(1)625;(2)-625;(3)-6427;(4)-643;(5)8125 【解析】(1)(-5)4=(-5)×(-5)×(-5)×(-5)=625;(2)-54=5×5×5×5=-625;(3)(-43)3=(-43)×(-43)×(-43)=-444333⨯⨯⨯⨯=-6427; (4)-343=-4443⨯⨯=-643; (5)-(-25)3=.812510.某药厂生产了一批新药,装箱后存放在仓库中,为了方便清点,按101010⨯⨯箱一堆的方式摆放,共摆放了10堆,已知每箱装100瓶药,每瓶药装100片.()1这批药共有多少箱?()2这批药共有多少片?【答案】()1这批药共有410箱;()2这批药共有810片.【解析】(1)10×10×10×10=104(箱);答:这批药共有104箱;(2)10×10×10×10×100×100=108(片),答:这批药共有108片.11.(-5)×(-5)×(-5)×(-5)可以表示成( )A .-54B .(-5)4C .-(+5)4D .-(-5)4 【答案】B【解析】(-5)×(-5)×(-5)×(-5)是4个(-5)相乘,所以可以写成(-5)4. 故选B .12.下列各对数中,数值相等的是( )A .-27与(-2)7B .-32与(-3)2C .3×23与32×2D .-(-3)2与(-2)3 【答案】A【解析】A .(-2)7=-27 , 故正确; B .-32=-9,(-3)2 ="9" ,不相等,故错误;C .-3×23=-24,-32×2="-18" ,不相等,故错误;D .―(―3)2=-9,―(―2)3 ="8" ,不相等,故错误; 故选A .13.若223a =-⨯,()223b =-⨯,()223c =-⨯,则下列大小关系正确的是( )A .a b c >>B .b c a >>C .b a c >>D .c a b >>【答案】D【解析】解:223a =-⨯=-18;()223b =-⨯=-36;()223c =-⨯=3636>-18>-36,>>∴c a b故选D.14.下列计算正确的是( )A.(-2×3)2=-36; B.32×(-32)=0C.-24=-16; D.23=32【答案】C【解析】试题解析:A. (-2×3)2=(-6)2=36≠-36,故该选项错误;B. 32×(-32)=9×(-9)=-81≠0,故该选项错误;C. -24=-16,正确;D. 23=8,32=9,故23≠32,故该选项错误.故选C.15.一个数的平方等于它本身的数是________;一个数的立方等于它本身的数是________.【答案】0、1 -1、0、1【解析】一个数的平方等于它本身的数是0,1;一个数的立方等于它本身的数是-1,0,1.16.看过电视剧《西游记》的同学,一定很喜欢孙悟空,孙悟空的金箍棒能随意伸缩,假设它最短时只有1厘米,第1次变化后变成3厘米,第2次变化后变成9厘米,第3次变化后变成27厘米……照此规律变化下去,到第5次变化后金箍棒的长是________米.【答案】2.43【解析】试题解析::∵金箍棒只有1厘米,∴每1次变化能变为原来的3倍长,即为3cm;∴第2次变换后是32cm,以此类推,∴第5次变化后应是35cm,∴金箍棒的长为35厘米=2.43米.17.如果a是最大的负整数,b是绝对值最小的有理数,c是倒数等于它本身的自然数,那么代数式a2015+2016b+c2017的值为【答案】0【解析】根据a是最大的负整数,可得a=-1,b是绝对值最小的有理数,可得b=0,c 是倒数等于它本身的自然数,可得c=1,所以代入可得a 2015+2016b+c 2017=-1+0+1=0.故答案为0.18.有一组数:(1,1,1),(2,4,8),(3,9,27),(4,16,64),…,则第100组的三个数的和为________.【答案】1010100【解析】由①(1,1,1)⇒(1,12,13),②(2,4,8)⇒(2,22,23),③(3,9,27)⇒(3,32,33),④(4,16,64)⇒(4,42,43),…因此第100组的三个数为(100,1002,1003)⇒(100,10000,1000000);100+10000+1000000=1010100.故第100组的三个数的和1010100.故答案为1010100.19.计算:(1)-53; (2)(-4)4; (3)-(-6)3; (4)33()2-; (5)343()(2)4--⨯-; (6)3223()34⨯-. 【答案】(1)-125(2)256(3)216(4)278-(5)274(6)32【解析】(1)-53=-5×5×5=-125; (2)(-4)4=(-4)×(-4)×(-4)×(-4)=256;(3)-(-6)3=-[(-6) ×(-6) ×(-6)]=216; (4)332⎛⎫- ⎪⎝⎭=32⎛⎫- ⎪⎝⎭×32⎛⎫- ⎪⎝⎭×32⎛⎫- ⎪⎝⎭=-278; (5)()34324⎛⎫--⨯- ⎪⎝⎭=272716=644⨯; (6)232334⎛⎫⨯- ⎪⎝⎭=89316⨯=32.20.如图,将一张长方形的纸对折,可得到一条折痕(图中虚线),继续对折,对折时每次折痕与上次的折痕保持平行,连续对折3次后,可以得到7条折痕,那么对折4次可以得到多少条折痕?如果对折n 次呢?【答案】对折4次后折痕有15条 对折n 次后折痕有(2n -1)条【解析】试题分析:对前三次对折分析不难发现每对折1次把纸分成的部分是上一次的2倍,折痕比所分成的部分数少1,求出第4次的折痕即可;再根据对折规律求出对折n 次得到的部分数,然后减1即可得到折痕条数.试题解析:由图可知,第1次对折,把纸分成2部分,1条折痕,第2次对折,把纸分成4部分,3条折痕,第3次对折,把纸分成8部分,7条折痕,所以,第4次对折,把纸分成16部分,15条折痕,…,依此类推,第n 次对折,把纸分成2n 部分,2n -1条折痕.21.如图,把一个面积为1的正方形分成两个面积为12的长方形,再把其中一个面积为12的长方形分成两个面积为14的正方形,再把其中一个面积为14的正方形分成两个面积为18的长方形,如此进行下去……,试用图形揭示的规律计算:111111248163264+++++11128256++=__________.【答案】8112- 【解析】解:原式=12551-=256256=8112- 故答案为8112-22.阅读理解:根据乘方的意义,可得:22×23=(2×2)×(2×2×2)=25.请你试一试,完成以下题目:(1)a3•a4=(a•a•a)•(a•a•a•a)=__;(2)归纳、概括:a m•a n=__;(3)如果x m=4,x n=9,运用以上的结论,计算:x m+n=__.【答案】a7a m+n36【解析】解:(1)根据材料规律可得a3•a4=(a•a•a)•(a•a•a•a)=a7;(2)归纳、概括:a m•a n=m na a a a⎛⎫⎛⎫⎪⎪⎪⎪⎝⎭⎝⎭=a m+n;(3)如果x m=4,x n=9,运用以上的结论,计算:x m+n=x m•x n=4×9=36.故答案为:a7,a m+n,36.。
七年级数学上册2.7有理数的乘方学案1(新版)苏科版
学习内容
七年级数学上册---有理数乘方(第1课时)
学习
目标
1.理解乘方的意义,探究有理数乘方的符号法则,会进行乘方的运算
2.通过合作交流及独立思考,培养学生正确迅速的运算及探究新知识的能力。
学习重难点
乘方的意义及运算
导学过程
感悟
一自学
1.计算:
2. ;
3.已知n是正整数,那么 ,
4.如果一个有理数的偶次幂是非负数,那么这个有理数是。
(2)警示:
①乘方是一种运算(乘法运算的特例),即求 个相同因数连乘的简便形式;
②幂是乘方的结果,它不能单独存在,即没有乘方就无所谓幂;
③乘方具有双重含义:既表示一种 ,又表示乘方运算的结果;
④书写格式:若底数是负数、分数或含运算关系的式子时,必须要用把底数括起来,以体现底数的整体性。
n为奇数
n为偶数
教学反思:
(3)拓展:底数为 ,0,1,10,0.1的幂 的特性:
(n为正整数) (n为整数)
(1后面有____个0), =0.0 0…01 (1前面有_个0)
(4)乘方的符号法则:
负数的 奇次幂是数,负数的偶次幂是数。
正数的任何次幂都是数,0的任何正整数次幂都是。
三展示交流
基础题.1.把 写成乘方形式。
2.计算: , ,
3.下列运算正确的是。
A、 B、 C、 D、
中档题.
1.用乘方的意义计算:(1) ;(2) ;(3) ;
2.若 ,则 若 ,则 3.计算(1列数,根据规律写出横线上的数
; ; ; ;______;第2010个数是____________。
四反馈练习
计算
(—1)10×2+(—2)3÷4(—5)3—3× ;
2.7有理数的乘方(1)教案
二、师生合作、探究新知:
探究活动:
将一张报纸对折,再对折......直到无法对折为止,你对折了多少次?请用算式表示你对折出来的报纸层数.
你还能举出类似的实例吗?
三、精讲精练、交流展示:
(一)典型例题:
例.
2.7有理数的乘方(1)
【教学目标】
1.理解乘方的意义,会进行有理数的乘方运算;
2.了解底数、指数和幂的概念,会求有理数的正指数幂.
3.在学习有理数乘方法则的过程中,体会“特殊到一般”的数学思想.
【教学重难点】有理数的乘方运算.
【教学过程】
一、创设情境、引入新课:
这是一个很著名的故事:阿基米德与国王下棋,国王输了,国王问阿基米德要什么奖赏?阿基米德对国王说:“我只要在棋盘上第一格放一粒米,第二格放二粒,第三格放四粒,第四格放八粒…按这个方法放满整个棋盘就行.”国王以为要不了多少粮食,就随口答应了,结果国王输了.
例2、计算:
(1) ;(2) ;(3) ;(4) .
通过计算我们发现:
正数的任何次幂都是___________;
负数的奇数次幂是________,负数的偶数次幂是__________.
(二)课堂练习:
1.在 中,底数是______,指数是______,它表示____________________.
【修改意见】
(二备内容)
2.计算:
(1) ;(2) ;(3) ;(4) .
3.计算:
(1) ;(2) ;(3) .
4.已知 ,求 的值.
4、课堂小结
5、作业布置
6、板书设计
【教学过程个性化设计】(二备内容)
(1)导入设计:
2.7__有理数的乘方(1)
15
±8 (1)平方得64的数是__________ 4 (2)立方得64的数是___________ 1,0 的平方等于它本身 (3)_________ ±1,0 的立方等于它本身 (4) __________
13
解决问题
珠穆朗玛峰是世 界最高峰,海拔高度 是8844米。
把一张足够大的 厚度为0.1毫米的纸, 连续对折30次的厚度 能超过珠穆朗玛峰吗?
3
n
把下列各式写成乘方的形式:
(1)6×6×6 = 63
2 2.1 (2)2.1×2.1=
(3)(-3)×(-3)×(-3)×(-3)=
1 ( 4) 2
(3) 4
1 ×2
1 ×2
1 ×2
1 ×2
1 5 = ( ) 2
4
(1)73中底数是 7 ,指数是
读作:7的3次方 读作:
3 4
3 . 2 . 4 .
(2) 和 2 ;
4 4
4
负数的乘方要 注意小括号
( 2) 的意义是 2的4次方; 即4个 2相乘;
2 的意义是2的4次方的相反数。
4
6
• 思考:说说下列各数的意义,它们一样吗?
2 的意义是“2的平方再除以3”。 3
7
2
2 2 的意义是 的平方; 3 3 2 即2个 相乘; 3
初中数学 七年级(上册)
2.7 有理数的乘方(1)
1
求n个相同因数的积的运算,叫做乘方.
2×2×2×2 记作
2
4
2× 2× 2× · · · · · · 2×2 记作 2n
n个2
2
n个a a× a × … × a × a
幂
七年级数学2.7有理数的乘方运用乘方做折纸片型的题
运用乘方做折纸片型的题难易度:★★关键词:有理数答案:纸片的对折是近年来常出现的题型。
它的本质就是有理灵敏的科方。
正确运用乘方概念与乘方的关系,此类问题不难解决【举一反三】典例:将一张长方形纸片对折,如图(1)所示可得到一条折痕(图中虚线),继续对折,对折时每次的折痕保持平行,连续对折三次,可以得到7条折痕,那么对折四次可以得到条折痕.如果对折次,可以得到条折痕.思路导引:一般来说,此类问题应联系有理数的乘方知识。
对折一次即2的一次方,对折两次,即2的2次方。
对折次数,纸张的块数与折痕数如右表. 通过对上表的分析,答案为15,2. 标准答案:15,2. 对折次数纸张的块数折痕数1 2=21=22 4=23=23 8=27=24 16=215=2………222019-2020学年中考数学模拟试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.如图是一块带有圆形空洞和矩形空洞的小木板,则下列物体中最有可能既可以堵住圆形空洞,又可以堵住矩形空洞的是()A.正方体B.球C.圆锥D.圆柱体2.《九章算术》是中国古代数学专著,《九章算术》方程篇中有这样一道题:“今有善行者行一百步,不善行者行六十步,今不善行者先行一百步,善行者追之,问几何步及之?”这是一道行程问题,意思是说:走路快的人走100步的时候,走路慢的才走了60步;走路慢的人先走100步,然后走路快的人去追赶,问走路快的人要走多少步才能追上走路慢的人?如果走路慢的人先走100步,设走路快的人要走 x 步才能追上走路慢的人,那么,下面所列方程正确的是()A.x x10060100-=B.x x10010060-=C.x x10060100+=D.x x10010060+=3.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,则下列结论: ① abc<0;② 2a+b =0; ③ b2-4ac<0;④ 9a+3b+c>0; ⑤ c+8a<0.正确的结论有().A.1个B.2个C.3个D.4个4.小张同学制作了四张材质和外观完全一样的书签,每个书签上写着一本书的名称或一个作者姓名,分别是:《西游记》、施耐庵、《安徒生童话》、安徒生,从这四张书签中随机抽取两张,则抽到的书签正好是相对应的书名和作者姓名的概率是( )A.12B.13C.14D.165.如图,在△ABC中,∠C=90°,M是AB的中点,动点P从点A出发,沿AC方向匀速运动到终点C,动点Q从点C出发,沿CB方向匀速运动到终点B.已知P,Q两点同时出发,并同时到达终点.连结MP,MQ,PQ.在整个运动过程中,△MPQ 的面积大小变化情况是()A.一直增大B.一直减小C.先减小后增大D.先增大后减小6.下列说法:①四边相等的四边形一定是菱形②顺次连接矩形各边中点形成的四边形一定是正方形③对角线相等的四边形一定是矩形④经过平行四边形对角线交点的直线,一定能把平行四边形分成面积相等的两部分其中正确的有()个.A.4 B.3 C.2 D.17.如图,A、B、C三点在正方形网格线的交点处,若将△ABC绕着点A逆时针旋转得到△AC′B′,则tanB′的值为()A.12B.24C.14D.138.如图,△ABC绕点A顺时针旋转45°得到△AB′C′,若∠BAC=90°,AB=AC=2,则图中阴影部分的面积等于( )A.2﹣2B.1 C2D2﹣l 9.如图,AB是⊙O的直径,点C、D是圆上两点,且∠AOC=126°,则∠CDB=()A.54°B.64°C.27°D.37°10.在如图所示的正方形网格中,网格线的交点称为格点,已知A、B是两格点,如果 C 也是图中的格点,且使得△ABC为等腰直角三角形,则这样的点C有( )A.6个B.7个C.8个D.9个11.一球鞋厂,现打折促销卖出330双球鞋,比上个月多卖10%,设上个月卖出x双,列出方程()A.10%x=330 B.(1﹣10%)x=330C.(1﹣10%)2x=330 D.(1+10%)x=33012.如图,已知l1∥l2,∠A=40°,∠1=60°,则∠2的度数为()A.40°B.60°C.80°D.100°二、填空题:(本大题共6个小题,每小题4分,共24分.)13.同圆中,已知弧AB所对的圆心角是100°,则弧AB所对的圆周角是_____.14.《九章算术》是中国传统数学最重要的著作,在“勾股”章中有这样一个问题:“今有邑方二百步,各中开门,出东门十五步有木,问:出南门几步而见木?”用今天的话说,大意是:如图,DEFG是一座边长为200步(“步”是古代的长度单位)的正方形小城,东门H位于GD的中点,南门K位于ED的中点,出东门15步的A处有一树木,求出南门多少步恰好看到位于A处的树木(即点D在直线AC上)?请你计算KC的长为__________步.15.如图,在△ABC中,BA=BC=4,∠A=30°,D是AC上一动点,AC的长=_____;BD+12DC的最小值是_____.16.如图所示,D、E分别是△ABC的边AB、BC上的点,DE∥AC,若S△BDE:S△CDE=1:3,则S△BDE:S四边形DECA的值为_____.17.若a,b互为相反数,则a2﹣b2=_____.18.在△ABC中,AB=AC,把△ABC折叠,使点B与点A重合,折痕交AB于点M,交BC于点N.如果△CAN是等腰三角形,则∠B的度数为___________.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图,一次函数y=﹣x+4的图象与反比例函数y=(k为常数,且k≠0)的图象交于A(1,a),B(3,b)两点.求反比例函数的表达式在x轴上找一点P,使PA+PB的值最小,求满足条件的点P的坐标求△PAB的面积.20.(6分)先化简再求值:a ba-÷(a﹣22ab ba-),其中a=2cos30°+1,b=tan45°.21.(6分)灞桥区教育局为了了解七年级学生参加社会实践活动情况,随机抽取了铁一中滨河学部分七年级学生2016﹣2017学年第一学期参加实践活动的天数,并用得到的数据绘制了两幅统计图,下面给出了两幅不完整的统计图.请根据图中提供的信息,回答下列问题:a=%,并补全条形图.在本次抽样调查中,众数和中位数分别是多少?如果该区共有七年级学生约9000人,请你估计活动时间不少于6天的学生人数大约有多少?22.(8分)先化简,再求值:222x x11x x x2x1-⎛⎫-÷⎪+++⎝⎭,其中x的值从不等式组1214xx-⎧⎨-<⎩…的整数解中选取.23.(8分)某商场以每件30元的价格购进一种商品,试销中发现这种商品每天的销售量m(件)与每件的销售价x(元)满足一次函数关系m=162﹣3x.请写出商场卖这种商品每天的销售利润y(元)与每件销售价x(元)之间的函数关系式.商场每天销售这种商品的销售利润能否达到500元?如果能,求出此时的销售价格;如果不能,说明理由.24.(10分)如图,已知点B、E、C、F在一条直线上,AB=DF,AC=DE,∠A=∠D求证:AC∥DE;若BF=13,EC=5,求BC的长.25.(10分)先化简,再求值:(x+2y)(x﹣2y)+(20xy3﹣8x2y2)÷4xy,其中x=2018,y=1.26.(12分)在□ABCD,过点D作DE⊥AB于点E,点F在边CD上,DF=BE,连接AF,BF.求证:四边形BFDE是矩形;若CF=3,BF=4,DF=5,求证:AF平分∠DAB.27.(12分)如图,小明在一块平地上测山高,先在B处测得山顶A的仰角为30°,然后向山脚直行60米到达C处,再测得山顶A的仰角为45°,求山高AD的长度.(测角仪高度忽略不计)参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.D【解析】【分析】本题中,圆柱的俯视图是个圆,可以堵住圆形空洞,它的正视图和左视图是个矩形,可以堵住方形空洞.【详解】根据三视图的知识来解答.圆柱的俯视图是一个圆,可以堵住圆形空洞,而它的正视图以及侧视图都为一个矩形,可以堵住方形的空洞,故圆柱是最佳选项.故选D.【点睛】此题考查立体图形,本题将立体图形的三视图运用到了实际中,只要弄清楚了立体图形的三视图,解决这类问题其实并不难.2.B【解析】解:设走路快的人要走 x 步才能追上走路慢的人,根据题意得:10010060x x -=.故选B .点睛:本题考查了一元一次方程的应用.找准等量关系,列方程是关键.3.C【解析】【分析】由抛物线的开口方向判断a 与0的关系,由抛物线与y 轴的交点判断c 与0的关系,然后根据对称轴及抛物线与x 轴交点情况进行推理,进而对所得结论进行判断.【详解】解:抛物线开口向下,得:a <0;抛物线的对称轴为x=-2b a=1,则b=-2a ,2a+b=0,b=-2a ,故b >0;抛物线交y 轴于正半轴,得:c >0.∴abc <0, ①正确;2a+b=0,②正确;由图知:抛物线与x 轴有两个不同的交点,则△=b 2-4ac >0,故③错误;由对称性可知,抛物线与x 轴的正半轴的交点横坐标是x=3,所以当x=3时,y= 9a+3b+c=0,故④错误;观察图象得当x=-2时,y <0,即4a-2b+c <0∵b=-2a ,∴4a+4a+c <0即8a+c <0,故⑤正确.正确的结论有①②⑤,故选:C【点睛】主要考查图象与二次函数系数之间的关系,会利用对称轴的表达式求2a 与b 的关系,以及二次函数与方程之间的转换,根的判别式的熟练运用.4.D【解析】【分析】根据题意先画出树状图得出所有等情况数和到的书签正好是相对应的书名和作者姓名的情况数,再根据概率公式即可得出答案.【详解】解:根据题意画图如下:共有12种等情况数,抽到的书签正好是相对应的书名和作者姓名的有2种情况,则抽到的书签正好是相对应的书名和作者姓名的概率是212=16;故选D.【点睛】此题考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.5.C【解析】如图所示,连接CM,∵M是AB的中点,∴S△ACM=S△BCM=12S△ABC,开始时,S△MPQ=S△ACM=12S△ABC;由于P,Q两点同时出发,并同时到达终点,从而点P到达AC的中点时,点Q也到达BC的中点,此时,S△MPQ=14S△ABC;结束时,S△MPQ=S△BCM=12S△ABC.△MPQ的面积大小变化情况是:先减小后增大.故选C.6.C【解析】【详解】∵四边相等的四边形一定是菱形,∴①正确;∵顺次连接矩形各边中点形成的四边形一定是菱形,∴②错误;∵对角线相等的平行四边形才是矩形,∴③错误;∵经过平行四边形对角线交点的直线,一定能把平行四边形分成面积相等的两部分,∴④正确;其中正确的有2个,故选C.考点:中点四边形;平行四边形的性质;菱形的判定;矩形的判定与性质;正方形的判定.7.D【解析】【分析】过C点作CD⊥AB,垂足为D,根据旋转性质可知,∠B′=∠B,把求tanB′的问题,转化为在Rt△BCD中求tanB.【详解】过C点作CD⊥AB,垂足为D.根据旋转性质可知,∠B′=∠B.在Rt△BCD中,tanB=13 CDBD,∴tanB′=tanB=13.故选D.【点睛】本题考查了旋转的性质,旋转后对应角相等;三角函数的定义及三角函数值的求法.8.D【解析】∵△ABC绕点A顺时针旋转45°得到△A′B′C′,∠BAC=90°,2,∴BC=2,∠C=∠B=∠CAC′=∠C′=45°,2,∴AD⊥BC,B′C′⊥AB,∴AD=12BC=1,AF=FC′=2AC′=1,∴DC′=AC′-AD=2-1,∴图中阴影部分的面积等于:S△AFC′-S△DEC′=12×1×1-12×(2 -1)2=2-1,故选D.【点睛】此题主要考查了旋转的性质以及等腰直角三角形的性质等知识,得出AD,AF,DC′的长是解题关键.9.C【解析】【分析】由∠AOC=126°,可求得∠BOC的度数,然后由圆周角定理,求得∠CDB的度数.【详解】解:∵∠AOC=126°,∴∠BOC=180°﹣∠AOC=54°,∵∠CDB=12∠BOC=27°故选:C.【点睛】此题考查了圆周角定理.注意在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.10.A【解析】【分析】根据题意,结合图形,分两种情况讨论:①AB为等腰△ABC底边;②AB为等腰△ABC 其中的一条腰.【详解】如图:分情况讨论:①AB为等腰直角△ABC底边时,符合条件的C点有2个;②AB为等腰直角△ABC其中的一条腰时,符合条件的C点有4个.故选:C.【点睛】本题考查了等腰三角形的判定;解答本题关键是根据题意,画出符合实际条件的图形,再利用数学知识来求解.数形结合的思想是数学解题中很重要的解题思想.11.D【解析】解:设上个月卖出x双,根据题意得:(1+10%)x=1.故选D.12.D【解析】【分析】根据两直线平行,内错角相等可得∠3=∠1,再根据三角形的一个外角等于与它不相邻的两个内角的和列式计算即可得解.【详解】解:∵l1∥l2,∴∠3=∠1=60°,∴∠2=∠A+∠3=40°+60°=100°.故选D.【点睛】本题考查了平行线的性质,三角形的一个外角等于与它不相邻的两个内角的和的性质,熟记性质并准确识图是解题的关键.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.50°【解析】【分析】直接利用圆周角定理进行求解即可.【详解】∵弧AB所对的圆心角是100°,∴弧AB所对的圆周角为50°,故答案为:50°.【点睛】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.14.2000 3【解析】分析:由正方形的性质得到∠EDG=90°,从而∠KDC+∠HDA=90°,再由∠C+∠KDC=90°,得到∠C=∠HDA,即有△CKD∽△DHA,由相似三角形的性质得到CK:KD=HD:HA,求解即可得到结论.详解:∵DEFG是正方形,∴∠EDG=90°,∴∠KDC+∠HDA=90°.∵∠C+∠KDC=90°,∴∠C=∠HDA.∵∠CKD=∠DHA=90°,∴△CKD∽△DHA,∴CK:KD=HD:HA,∴CK:100=100:15,解得:CK=20003.故答案为:20003.点睛:本题考查了相似三角形的应用.解题的关键是证明△CKD∽△DHA.15.(Ⅰ)AC=(Ⅱ).【解析】【分析】(Ⅰ)如图,过B作BE⊥AC于E,根据等腰三角形的性质和解直角三角形即可得到结论;(Ⅱ)如图,作BC的垂直平分线交AC于D,则BD=CD,此时BD+12DC的值最小,解直角三角形即可得到结论.【详解】解:(Ⅰ)如图,过B作BE⊥AC于E,∵BA=BC=4,∴AE=CE,∵∠A=30°,∴AE=32AB=23,∴AC=2AE=43;(Ⅱ)如图,作BC的垂直平分线交AC于D,则BD=CD,此时BD+12DC的值最小,∵BF=CF=2,∴BD=CD=230COS=43,∴BD+12DC的最小值=23,故答案为:43,23.【点睛】本题考查了等腰三角形的性质,线段垂直平分线的性质,解直角三角形,正确的作出辅助线是解题的关键.16.1:1【解析】【分析】根据题意得到BE:EC=1:3,证明△BED∽△BCA,根据相似三角形的性质计算即可.【详解】∵S△BDE:S△CDE=1:3,∴BE:EC=1:3,∵DE∥AC,∴△BED∽△BCA,∴S△BDE:S△BCA=(BEBC)2=1:16,∴S△BDE:S四边形DECA=1:1,故答案为1:1.【点睛】本题考查的是相似三角形的判定和性质,掌握相似三角形的面积比等于相似比的平方是解题的关键.17.1【解析】【分析】直接利用平方差公式分解因式进而结合相反数的定义分析得出答案.【详解】∵a,b互为相反数,∴a+b=1,∴a2﹣b2=(a+b)(a﹣b)=1,故答案为1.【点睛】本题考查了公式法分解因式以及相反数的定义,正确分解因式是解题关键.18.或.【解析】【详解】MN是AB的中垂线,则△ABN是等腰三角形,且NA=NB,即可得到∠B=∠BAN=∠C.然后对△ANC中的边进行讨论,然后在△ABC中,利用三角形内角和定理即可求得∠B的度数.解:∵把△ABC折叠,使点B与点A重合,折痕交AB于点M,交BC于点N,∴MN是AB的中垂线.∴NB=NA.∴∠B=∠BAN,∵AB=AC∴∠B=∠C.设∠B=x°,则∠C=∠BAN=x°.1)当AN=NC时,∠CAN=∠C=x°.则在△ABC中,根据三角形内角和定理可得:4x=180,解得:x=45°则∠B=45°;2)当AN=AC时,∠ANC=∠C=x°,而∠ANC=∠B+∠BAN,故此时不成立;3)当CA=CN时,∠NAC=∠ANC=180x2-.在△ABC中,根据三角形内角和定理得到:x+x+x+180x2-=180,解得:x=36°.故∠B的度数为 45°或36°.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(1)反比例函数的表达式y=,(2)点P坐标(,0), (3)S△PAB= 1.1.【解析】(1)把点A(1,a)代入一次函数中可得到A点坐标,再把A点坐标代入反比例解析式中即可得到反比例函数的表达式;(2)作点D关于x轴的对称点D,连接AD交x轴于点P,此时PA+PB的值最小.由B可知D点坐标,再由待定系数法求出直线AD的解析式,即可得到点P的坐标;(3)由S△PAB=S△ABD﹣S△PBD即可求出△PAB的面积.解:(1)把点A(1,a)代入一次函数y=﹣x+4,得a=﹣1+4,解得a=3,∴A(1,3),点A(1,3)代入反比例函数y=kx,得k=3,∴反比例函数的表达式y=3x,(2)把B(3,b)代入y=3x得,b=1∴点B坐标(3,1);作点B作关于x轴的对称点D,交x轴于点C,连接AD,交x轴于点P,此时PA+PB的值最小,∴D(3,﹣1),设直线AD的解析式为y=mx+n,把A,D两点代入得,331m nm n+=⎧⎨+=-⎩,解得m=﹣2,n=1,∴直线AD的解析式为y=﹣2x+1,令y=0,得x=52,∴点P坐标(52,0),(3)S △PAB =S △ABD ﹣S △PBD =12×2×2﹣12×2×12=2﹣12=1.1. 点晴:本题是一道一次函数与反比例函数的综合题,并与几何图形结合在一起来求有关于最值方面的问题.此类问题的重点是在于通过待定系数法求出函数图象的解析式,再通过函数解析式反过来求坐标,为接下来求面积做好铺垫.20.1a b -;33【解析】【分析】先根据分式的混合运算顺序和运算法则化简原式,再由特殊锐角的三角函数值得出a 和b 的值,代入计算可得.【详解】 原式=a b a -÷(2a a ﹣22ab b a-) =222a b a ab b a a--+÷ =()2•a b a a a b -- =1a b-, 当a =2cos30°+1=2×33+1,b =tan45°=1时, 原式311=+-3 【点睛】本题主要考查分式的化简求值,在化简的过程中要注意运算顺序和分式的化简.化简的最后结果分子、分母要进行约分,注意运算的结果要化成最简分式或整式,也考查了特殊锐角的三角函数值.21.(1)10,补图见解析;(2)众数是5,中位数是1;(3)活动时间不少于1天的学生人数大约有5400人.【解析】【分析】(1)用1减去其他天数所占的百分比即可得到a的值,用310°乘以它所占的百分比,即可求出该扇形所对圆心角的度数;根据1天的人数和所占的百分比求出总人数,再乘以8天的人数所占的百分比,即可补全统计图;(2)根据众数和中位数的定义即可求出答案;(3)用总人数乘以活动时间不少于1天的人数所占的百分比即可求出答案.【详解】解:(1)扇形统计图中a=1﹣5%﹣40%﹣20%﹣25%=10%,该扇形所对圆心角的度数为310°×10%=31°,参加社会实践活动的天数为8天的人数是:2020%×10%=10(人),补图如下:故答案为10;(2)抽样调查中总人数为100人,结合条形统计图可得:众数是5,中位数是1.(3)根据题意得:9000×(25%+10%+5%+20%)=5400(人),活动时间不少于1天的学生人数大约有5400人.【点睛】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.22.-2.【解析】试题分析:先算括号里面的,再算除法,解不等式组,求出x 的取值范围,选出合适的x 的值代入求值即可.试题解析:原式=()()()()22x+1x-1x x x+1x+1-÷ =x x+1x+1x-1-⨯=x x-1- 解1{214x x -≤-<得-1≤x<52, ∴不等式组的整数解为-1,0,1,2若分式有意义,只能取x=2,∴原式=-221-=-2 【点睛】本题考查的是分式的化简求值,分式中的一些特殊求值题并非是一味的化简,代入,求值.许多问题还需运用到常见的数学思想,如化归思想(即转化)、整体思想等,了解这些数学解题思想对于解题技巧的丰富与提高有一定帮助.23.(1)y=﹣3x 2+252x ﹣1(2≤x≤54);(2)商场每天销售这种商品的销售利润不能达到500元.【解析】【分析】(1)此题可以按等量关系“每天的销售利润=(销售价﹣进价)×每天的销售量”列出函数关系式,并由售价大于进价,且销售量大于零求得自变量的取值范围.(2)根据(1)所得的函数关系式,利用配方法求二次函数的最值即可得出答案.【详解】(1)由题意得:每件商品的销售利润为(x ﹣2)元,那么m 件的销售利润为y=m (x ﹣2).又∵m=162﹣3x ,∴y=(x ﹣2)(162﹣3x ),即y=﹣3x 2+252x ﹣1.∵x ﹣2≥0,∴x≥2.又∵m≥0,∴162﹣3x≥0,即x≤54,∴2≤x≤54,∴所求关系式为y=﹣3x 2+252x ﹣1(2≤x≤54).(2)由(1)得y=﹣3x 2+252x ﹣1=﹣3(x ﹣42)2+432,所以可得售价定为42元时获得的利润最大,最大销售利润是432元.∵500>432,∴商场每天销售这种商品的销售利润不能达到500元.【点睛】本题考查了二次函数在实际生活中的应用,解答本题的关键是根据等量关系:“每天的销售利润=(销售价﹣进价)×每天的销售量”列出函数关系式,另外要熟练掌握二次函数求最值的方法.24.(1)证明见解析;(2)4.【解析】【分析】(1)首先证明△ABC ≌△DFE 可得∠ACE=∠DEF ,进而可得AC ∥DE ;(2)根据△ABC ≌△DFE 可得BC=EF ,利用等式的性质可得EB=CF ,再由BF=13,EC=5进而可得EB 的长,然后可得答案.【详解】解:(1)在△ABC 和△DFE 中AB DF A D AC DE =⎧⎪∠=∠⎨⎪=⎩,∴△ABC ≌△DFE (SAS ),∴∠ACE=∠DEF ,∴AC ∥DE ;(2)∵△ABC ≌△DFE ,∴BC=EF ,∴CB ﹣EC=EF ﹣EC ,∴EB=CF ,∵BF=13,EC=5,∴EB=4,∴CB=4+5=1.【点睛】考点:全等三角形的判定与性质.25. (x ﹣y)2;2.【解析】【分析】首先利用多项式的乘法法则以及多项式与单项式的除法法则计算,然后合并同类项即可化简,然后代入数值计算即可.【详解】原式= x 2﹣4y 2+4xy(5y 2-2xy)÷4xy =x 2﹣4y 2+5y 2﹣2xy=x2﹣2xy+y2,=(x﹣y)2,当x=2028,y=2时,原式=(2028﹣2)2=(﹣2)2=2.【点睛】本题考查的是整式的混合运算,正确利用多项式的乘法法则以及合并同类项法则是解题的关键.26.(1)见解析(2)见解析【解析】试题分析:(1)根据平行四边形的性质,可得AB与CD的关系,根据平行四边形的判定,可得BFDE是平行四边形,再根据矩形的判定,可得答案;(2)根据平行线的性质,可得∠DFA=∠FAB,根据等腰三角形的判定与性质,可得∠DAF=∠DFA,根据角平分线的判定,可得答案.试题分析:(1)证明:∵四边形ABCD是平行四边形,∴AB∥CD.∵BE∥DF,BE=DF,∴四边形BFDE是平行四边形.∵DE⊥AB,∴∠DEB=90°,∴四边形BFDE是矩形;(2)∵四边形ABCD是平行四边形,∴AB∥DC,∴∠DFA=∠FAB.在Rt△BCF中,由勾股定理,得,∴AD=BC=DF=5,∴∠DAF=∠DFA,∴∠DAF=∠FAB,即AF平分∠DAB.【点睛】本题考查了平行四边形的性质,利用了平行四边形的性质,矩形的判定,等腰三角形的判定与性质,利用等腰三角形的判定与性质得出∠DAF=∠DFA是解题关键.27.301)米【解析】【分析】设AD =xm ,在Rt △ACD 中,根据正切的概念用x 表示出CD ,在Rt △ABD 中,根据正切的概念列出方程求出x 的值即可.【详解】由题意得,∠ABD =30°,∠ACD =45°,BC =60m ,设AD =xm ,在Rt △ACD 中,∵tan ∠ACD =AD CD , ∴CD =AD =x ,∴BD =BC+CD =x+60,在Rt △ABD 中,∵tan ∠ABD =AD BD,∴(60)3x x =+,∴1)x =米,答:山高AD 为301)米.【点睛】本题考查的是解直角三角形的应用﹣仰角俯角问题,掌握仰角俯角的概念、熟记锐角三角函数的定义是解题的关键.。
有理数的乘方》(1)
• 活动二:复习引导,探究新知。 • 引例:边长为a的正方形的面积可表示为a.a 简记为a²,读作a 的平方(二次方); 设计意图: • 边长为a 的正方体的体积可表示为 a.a.a, 让学生从熟悉的 平方,立方过渡 简记为a³ ,读作a 的立方(三次方) 到4次方,5次方, • 类推: 6次方至n次方上 来,学会读写乘 a·a·a·a 可以简记为a4, 方运算。其次让 读作a的四次方; 学生经历从特殊 到一般的推导过 a·a·a·a·a.可以简记为a5, 程,通过观察、 读作a的五次方; 联想、猜想发现 6 a·a·a·a·a·a.可以简记为a , 乘方的意义实际 就是求几个相同 读作a的六次方……。 因数的积,从而 依此类推,如果有n个a相乘又怎样表示呢? 得到乘方运算的 概念。 概念:求n个相同的因数的积的运算, 叫做乘方,乘方的结果叫做幂。
创设情境 导入新课 复习引导 探究新知
教 巩固练习 辨析概念 例题精讲 突出重点 课堂训练 巩固概念 过 即学即用 解决问题 程 本课小结 巩固新知 作业设计 强化训练
学
• 四、教学过程设计 • 活动一:创设情境,导入新课。 故事导入:古时候,在某个王国里有一位聪明的大臣,他发明 了国际象棋,献给了国王,国王从此迷上了下棋,为了感激 这位聪明的大臣。国王答应满足这个大臣的一个要求。大臣 说:“就在这个棋盘里放些米粒吧。 第一个格放2粒米,第二格放4粒米, 设计意图: 第三格放8粒米,然后是16粒米,32 通过故事引 入,创设问 粒米……一直到第64格。“你真傻,就要 题情境,引 起学生的好 这么一点米粒?”国王哈哈大笑,大臣说: 奇心,从而 “就怕您的国库里没有这么多大米?”。你 激发学生的 学习兴趣。 们认为国王的国库里有这么多大米吗?
• 2)教学目标: 根据本节内容在教材中的地位和作用,依据新课程标准及 七年级学生的认知结构和心理特征,本课时的教学力求 达到以下目标: ①、通过现实背景理解有理数乘方的意义。 ②、会进行有理数的乘方运算,并会用计算器完成乘方运 算。 ③、理解并运用正数、负数正整数次幂的符号规律。 ④、通过对乘方意义的探究过程,向学生渗透由特殊到一 般、联想、猜想、归纳,建立数学模型的数学思想。 • 重点:理解乘方的意义,会进行有理数的乘方运算 • 难点 练习2:P42页练习1,2,3
七年级数学2.7有理数的乘方知识拓展乘方和幂
乘方和幂民间流传着这样一个古老的问题:路上走着七位老人,每位老人有七根拐棍,每根拐棍有七个树杈,每个树杈上挂着七只口袋, 每只口袋里装着七个布包, 每个布包里装着七只麻雀.请你帮我算一算,共有多少只麻雀?这个题目不难算,共有麻雀7×7×7×7×7×7=117649(只). 这是一个求相同因数连乘积的运算,人们嫌相同因数个数多,写起来麻烦,便发明了一种方法,把它写成:7×7×7×7×7×7=76.这种写法很方便,例如100个7连乘,如果用乘法写,要写100个7,太麻烦了.用这种方法写,只要写成7100就可以了.一般说来,n 个a 连乘,可以写成 n n aa a a a a ⋅⋅⋅⋅=个.像这样求相同因数积的运算,叫做乘方;乘方的结果叫做幂.在数学课上,老师有时把a n 读作“a 的n 次方”;有时又读作“a 的n 次幂”.同样一个符号a n,为什么会有两种不同的读法呢?这是因为乘方和幂,既是两个不同的概念,又是两个有关联的名词.乘方是一种特殊的乘法运算,从运算的角度考虑,就可以把a n 读成a 的n 次方;而幂是乘方运算的结果,那就只能读作a 的n 次幂.有趣的是,符号(a m )n ,还要读成“a 的m 次幂的n 次方”.虽然a n 的读法有两种,但是数学运算是方法,运算的答案是结果,方法和结果终究是两回事,它们是不能混淆的. 在初中数学中,学过的代数方法有加法、减法、乘法、除法、乘方、开方等几种.加法运算的结果叫做“和”,减法运算的结果叫做“差”,乘法运算的结果叫做“积”,除法运算的结果叫做“商”,乘方运算的结果叫做“幂”,开方运算的结果叫做“方根”.七年级下学期期末数学试卷一、选择题(每题只有一个答案正确)1.如图,长方形ABCD 的边AB 平行于x 轴,物体甲和物体乙由点()2,0P 同时出发,沿长方形ABCD 的边作环绕运动,物体甲按逆时针方向以1个单位/秒匀速运动,物体乙按顺时针方向以2个单位/秒匀速运动,则两个物体运动后的第4次相遇点的坐标是( )A .()1,1-B .()2,0C .()1,1-D .()1,1--【答案】C 【解析】由坐标得到矩形的周长,得到第四次相遇时所走的总路程,求解第四次相遇的时间,再计算甲所走的路程可得相遇点的坐标.【详解】解:(42)212ABCD C =+⨯=(个)单位,两个物体第4次相遇,共走12448⨯=.相遇时间:48(12)16÷+=(秒),甲所走的路程是16116⨯=(个)单位又12ABCD C =(个)单位,16124-=(个)单位,故从P 逆时针走4个单位,即为()1,1-,故选C【点睛】本题考查的平面直角坐标系内点的运动与坐标的变化,掌握运动规律是解题关键.2.单位在植树节派出50名员工植树造林,统计每个人植树的棵树之后,绘制出如图所示的频数分布直方图(图中分组含最低值,不含最高值),则植树7棵及以上的人数占总人数的( )A .40%B .70%C .76%D .96%【答案】C 【解析】由图可得,植树7棵及以上的人数占总人数的5029650-=% ,故选D. 3.明代数学家程大位的《算法统宗》中有这样一个问题(如图),其大意为:有一群 人分银子,如果每人分七两,则剩余四两;如果每人分九两,则还差八两,请问:所分的银子共有多少两?设银子共有x 两,列出方程为( )A .4879x x +=-B .4879x x +-=C .4879x x -=+D .4879x x -+= 【答案】D【解析】设银子共有x 两,根据“如果每人分七两,则剩余四两;如果每人分九两,则还差八两”及人的数量不变,即可得出关于x 的一元一次方程.【详解】解:设银子共有x 两. 由题意,得4879x x -+= 故选D.【点睛】本题考查了由实际问题抽象出一元一次方程. 找准等量关系,正确列出一元一次方程是解题的关键.4.若3x >﹣3y ,则下列不等式中一定成立的是 ( )A .0x y +>B .0x y ->C .0x y +<D .0x y -<【答案】A【解析】两边都除以3,得x >﹣y ,两边都加y ,得:x+y >0,故选A .5.如果0a b <<,下列不等式中错误的是( )A .0ab >B .1a b <C .0a b +<D .0a b -< 【答案】B【解析】根据a <b <0,可得ab >0,a+b <0,b a >0,a-b <0,从而得出答案. 【详解】A 、ab >0,故本选项不符合题意;B 、a b>1,故本选项符合题意; C 、a+b <0,故本选项不符合题意;D 、a-b <0,故本选项不符合题意.故选:B .【点睛】本题考查了不等式的性质,是基础知识比较简单.6.用代入法解方程组时,将方程①代入方程②正确的是( )A .B .C .D .【答案】A 【解析】首先根据题意,直接代入,即可得解.【详解】解:根据题意,得即为故答案为A.【点睛】此题主要考查利用代入法解二元一次方程组,熟练运用即可解题,注意符号的变化.7.如图,在ABC ∆中,90B =∠,//MN AC ,155∠=,则C ∠的度数是( )A .25B .35C .45D .55【答案】B 【解析】由//MN AC 可得∠A=155∠=,再根据直角三角形两内角互余求解即可.【详解】∵//MN AC ,∠A=155∠=,∴∠C=90°-55°=35°.故选B.【点睛】本题考查了平行线的性质,熟练掌握平行线的性质是解答本题的关键. 平行线的性质:①两直线平行同位角相等,②两直线平行内错角相等,③两直线平行同旁内角互补.在运用平行线的性质定理时,一定要找准同位角,内错角和同旁内角.也考查了直角三角形中两个锐角互余.8.下列说法正确的是( )A .相等的角是对顶角B .在同一平面内,不平行的两条直线一定互相垂直C .点P(2,﹣3)在第四象限D .一个数的算术平方根一定是正数【答案】C【解析】直接利用对顶角的性质以及算术平方根和平行线的性质以及坐标与图形的性质分别分析得出答案.【详解】解:A 、相等的角是对顶角,错误;B 、在同一平面内,不平行的两条直线一定相交,故此选项错误;C 、点P (2,﹣3)在第四象限,正确;D 、一个数的算术平方根一定是正数或零,故此选项错误.故选:C .此题主要考查了坐标与图形的性质、对顶角的性质等知识,正确把握相关性质是解题关键.9.某班将安全知识竞赛成绩整理后绘制成直方图,图中从左至右前四组的百分比分别是4%、12%、40%、28%,第五组的频数是8,下列结论错误的是()A.该班有50名同学参赛B.第五组的百分比为16%C.成绩在70~80分的人数最多D.80分以上的学生有14名【答案】D【解析】A.8÷(1-4 %-12 %-40 %-28 %)=50(人),故正确;B. 1-4 %-12 %-40 %-28 %=16%,故正确;C.由图可知,成绩在70~80分的人数最多,故正确;D.50×(28 %+16 %)=22(人),故不正确;故选D.10.下列调查中,适宜采用全面调查的是()A.对现代大学生零用钱使用情况的调查B.对某班学生制作校服前身高的调查C.对温州市市民去年阅读量的调查D.对某品牌灯管寿命的调查【答案】B【解析】调查方式的选择需要将普查的局限性和抽样调查的必要性结合起来,具体问题具体分析,普查结果准确,所以在要求精确、难度相对不大,实验无破坏性的情况下应选择普查方式,当考查的对象很多或考查会给被调查对象带来损伤破坏,以及考查经费和时间都非常有限时,普查就受到限制,这时就应选择抽样调查.【详解】解:A、对现代大学生零用钱使用情况的调查,工作量大,用抽样调查,故此选项错误;B、对某班学生制作校服前身高的调查,需要全面调查,故此选项正确;C、对温州市市民去年阅读量的调查,工作量大,用抽样调查,故此选项错误;D、对某品牌灯管寿命的调查,有破坏性,用抽样调查,故此选项错误.故选:B.【点睛】本题考查的是调查方法的选择,正确选择调查方式要根据全面调查和抽样调查的优缺点再结合实际情况去分析.二、填空题题11.在平面直角坐标系中,点P(a,5)关于y轴对称点为Q(3,b),则a+b=__________.【答案】2【解析】分析:由于两点关于y轴对称,则其纵坐标相同,横坐标互为相反数,据此即可解答.详解:∵点P(a,5)和点Q(3,b)关于x轴对称,∴b=-3,a=5,-+=,∴a+b=352故答案为:2.点睛:关于x轴、y轴对称的点的坐标.12.在平面直角坐标系中,点P(x,y)经过某种变换后得到点P′(-y+1,x+2),我们把点P′(-y+1,x+2)叫做点P(x,y)的终结点,已知点P1的终结点为P2,点P2的终结点为P3,点P3的终结点为P4,这样依次得到P1、P2、P3、P4、…P n,若点P1的坐标为(2,0),则点P3的坐标为______.【答案】(-3,3).【解析】根据坐标变换规律求出P2坐标、再求出P3坐标即可.【详解】∵点P1的坐标为(2,0),∴点P2的坐标为(1,4),∴点P3的坐标为(-3,3),故答案为(-3,3).【点睛】本题考查坐标的变换规律,理解题意,根据坐标变换的规律计算是解题关键.13.等腰三角形的底边长为6cm,一腰上的中线把三角形分成的两部分周长之差为4cm,则这个等腰三角形周长为_____cm.【答案】1【解析】首先设腰长为xcm,等腰三角形底边长为6cm,一腰上的中线将其周长分成两部分的差为4cm,可得x﹣6=4或6﹣x=4,继而可求得答案.【详解】解:设腰长为xcm,根据题意得:x﹣6=4或6﹣x=4,解得:x=10或x=2(舍去),∴这个等腰三角形的周长为10+10+6=1cm.故答案为:1.【点睛】考核知识点:等腰三角形.理解三角形中线的意义是关键.14.如图,由边长为1的小正方形组成的44⨯网格中,ABC ∆的三个顶点均在格点上,若向正方形网格中投针,所投的针都随机落在正方形网格中,则落在ABC ∆内部的概率是________.【答案】516 【解析】先求出三角形ABC 的面积,然后用概率公式计算.【详解】解:正方形面积4×4=16,三角形ABC 的面积111442142345222⨯-⨯⨯-⨯⨯-⨯⨯= 则落在△ABC 内部的概率是516故答案为516 . 【点睛】本题考查了概率,熟练运用概率公式是解题的关键.15.如图,点D 在AOB ∠的平分线OC 上,点E 在OA 上,//ED OB ,50AOB ∠=︒,则ODE ∠的度数是_______.【答案】25︒【解析】利用角平分线与平行线的性质得到ODE AOC BOC ∠=∠=∠即可得到答案.【详解】解:OC 平分AOB ∠,AOC BOC ∠=∠∴//ED OB ,,BOC ODE ∴∠=∠50AOB ∠=︒1252ODE AOC BOC AOB ∴∠=∠=∠=∠=︒. 故答案为:25︒.【点睛】本题考查的是角平分线的性质,平行线的性质是中考必考的一个考点,掌握此相关联的性质是解题的关键.16.如果x 2+kx+1是一个完全平方式,那么k 的值是___________.【答案】k=±1.【解析】试题分析:这里首末两项是x 和1这两个数的平方,那么中间一项为加上或减去x 的系数和常数1的积的1倍,故k=±1.解:中间一项为加上或减去x 的系数和常数1的积的1倍,∴k=±1.故答案为k=±1.17.已知关于x 的不等式(2)50m n x m n -+->的解集1x <,则关于x 的不等式mx n >的解集是__________. 【答案】12x < 【解析】根据不等式和解集间的关系可知1x =时,(2)50m n x m n -+-=,化简可得m,n 的关系,由此可解不等式mx n >.【详解】解:由题意得1x =时,(2)50m n x m n -+-=,即250m n m n -+-=,化简得2m n =, 且不等式的解集变号了,说明20m n -<,等量代换可得 40,30,0n n n n -<<<,不等式mx n >即为2nx n >,由不等式基本性质可得12x <. 故答案为:12x <【点睛】 本题考查了不等式,熟练掌握不等式的性质及不等式与解集间的关系是解题的关键.三、解答题18.(1)分解因式23218ax a -.(2)先化简再求值:2(4)(2)(2)(2)x x y x y x y x y -++---,其中2x =-,1y =-.【答案】(1)2(3)(3)a x a x a +-;(2)222x y -,2.【解析】(1)原式提取公因式,再利用平方差公式分解即可;(2)原式利用单项式乘以多项式,平方差公式,以及完全平方公式化简,去括号合并得到最简结果,把x 与y 的值代入计算即可求出值.【详解】(1)解:原式()2229a x a =- 2(3)(3)a x a x a =+-(2)解:原式222222244442x xy x y x xy y x y =-+--+-=-当2x =-,1y =-时,原式422=-=.【点睛】此题考查了因式分解和整式的混合运算-化简求值,熟练掌握运算法则是解本题的关键.19.已知二元一次方程x+2y=-1.当x 取什么值时,y 的值是大于-1的负数?【答案】当-1<x <-3时,y 的值是大于-1的负数【解析】先用x 表示y ,从而得到-1<-12x-52<0,然后解不等式组即可. 【详解】∵x+2y=-1.∴y=-12x-52, 而-1<y <0,∴-1<-12x-52<0,解得-1<x <-3, ∴当-1<x <-3时,y 的值是大于-1的负数.【点睛】本题考查了解一元一次不等式:根据不等式的性质解一元一次不等式,掌握解一元一次不等式的步骤.20.如图,在所给的方格纸图中,完成下列各题:(1)画出△ABC 关于直线DE 对称的△A 1B 1C 1;(2)直接写出∠A 1=______°,∠B 1=______°,∠C 1=______°,(3)求△ABC 的面积.【答案】(1)画图见解析;(2)90︒ ,45︒ ,45︒;(3)52. 【解析】(1)依据轴对称的性质,即可得到△ABC 关于直线DE 对称的111A B C ∆;(2)依据111A B C ∆为等腰直角三角形,即可得出∠A 1=90°,∠B 1=45°,∠C 1=45°;(3)依据三角形面积计算公式,即可得到△ABC 的面积.【详解】解:(1)如图所示,111A B C ∆即为所求;(2)由图可得,111A B C ∆为等腰直角三角形,∴∠A 1=90°,∠B 1=45°,∠C 1=45°;故答案为:90,45,45;(3)11555.222S ABC AC AB =⋅= 【点睛】本题主要考查了利用轴对称变换作图,解决问题的关键是掌握轴对称的性质.21.在ABC ∆中,已知40B ∠=︒,60C ∠=°,AD 平分BAC ∠,点E 为AD 延长线上的点,EF BC ⊥于F ,求DEF ∠的度数.【答案】10°.【解析】利用三角形的外角的性质求出∠ADC,再利用三角形内角和定理求出∠DEF即可.【详解】∵∠BAC=180°−∠B−∠C=80°,AD平分∠BAC,∴∠BAD=12∠BAC=40°,∴∠ADC=∠B+∠BAD=80°,∴∠EDF=∠ADC=80°,∵EF⊥BC,∴∠EFD=90°,∴∠DEF=90°−80°=10°.【点睛】此题考查三角形的外角的性质,三角形内角和定理,解题关键在于利用外角的性质求出∠ADC.22.如图,在△ABC中,AD是BC边上的高,AE平分∠BAC,∠B=42︒,∠C=70︒,求:∠DAE的度数.【答案】∠DAE=14°【解析】由三角形内角和定理可求得∠BAC的度数,在Rt△ADC中,可求得∠DAC的度数,AE是角平分线,有∠EAC=12∠BAC,故∠EAD=∠EAC-∠DAC.【详解】解:∵在△ABC中,AE是∠BAC的平分线,且∠B=42°,∠C=70°,∴∠BAE=∠EAC=12(180°-∠B-∠C)=12(180°-42°-70°)=34°.在△ACD中,∠ADC=90°,∠C=70°,∴∠DAC=90°-70°=20°,∠EAD=∠EAC-∠DAC=34°-20°=14°.【点睛】本题考查了三角形内角和定理、三角形的角平分线、中线和高.求角的度数时,经常用到隐含在题中的“三角形内角和是180°”这一条件.23.用一条长为18cm的细绳围成一个等腰三角形.(1)如果腰长是底边长的2倍,求三角形各边的长.(2)能围成有一边的长是4cm的等腰三角形吗?若能,求出其他两边的长;若不能,请说明理由.【答案】.(1) 三角形三边的长为185cm、365cm、365cm;(2) 能围成等腰三角形,三边长分别为4cm、7cm、7cm【解析】(1)可设出底边xcm,则可表示出腰长,由条件列出方程,求解即可;(2)分腰长为4cm和底边长为4cm两种情况讨论即可.【详解】(1)设底边长为xcm,则腰长为2xcm,,依题意,得x2x2x18++=,解得18x5 =,∴362x5=,∴三角形三边的长为185cm、365cm、365cm;(2)若腰长为4cm,则底边长为18-4-4=10cm,而4+4<10,所以不能围成腰长为4cm的等腰三角形,若底边长为4cm,则腰长为1842-=7cm,此时能围成等腰三角形,三边长分别为4cm、7cm、7cm.【点睛】本题主要考查等腰三角形的性质,掌握等腰三角形的两腰相等是解题的关键,注意利用三角形三边关系进行验证.24.计算或求x的值:(1(2)2(x﹣13)2=18【答案】 (1)324;(2)12108,33x x==- .【解析】根据是实数的性质即可进行求解.【详解】解:(1=6﹣4+34=234; (2)2(x ﹣13)2=18x ﹣13 即x ﹣13=±3, 解得12108,33x x ==- 【点睛】此题主要考查实数的计算,解题的关键是熟知实数的性质及运算法则.25.(1)2ab •(﹣14b 3) (2)利用整式乘法公式计算:(m+n ﹣3)(m+n+3) (3)先化简,再求值:(2xy )2﹣4xy (xy ﹣1)+(8x 2y+4x )÷4x ,其中x =﹣2,y =﹣12 【答案】(1)﹣12ab 4;(2)m 2+2mn+n 2﹣9;(3)6xy+1,1. 【解析】(1)原式利用单项式乘以单项式法则计算即可求出值;(2)原式利用平方差公式,以及完全平方公式化简,去括号合并即可得到结果;(3)原式利用积的乘方运算法则,单项式乘以多项式,以及多项式除以单项式法则计算得到最简结果,把x 与y 的值代入计算即可求出值.【详解】解:(1)原式=﹣12ab 4; (2)原式=(m+n )2﹣9=m 2+2mn+n 2﹣9;(3)原式=4x 2y 2﹣4x 2y 2+4xy+2xy+1=6xy+1,当x =﹣2,y =﹣12时,原式=6+1=1. 【点睛】此题考查了整式的混合运算-化简求值,熟练掌握运算法则是解本题的关键.七年级下学期期末数学试卷一、选择题(每题只有一个答案正确)1.如图,AF∥CD,CB平分∠ACD,BD平分∠EBF,且BC⊥BD,下列结论:① BC平分∠ABE;② AC∥BE;③ ∠CBE+∠D=90°;④ ∠DEB=2∠ABC.其中正确结论的个数有()A.1个B.2个C.3个D.4个【答案】D【解析】根据平行线的性质和判定,垂直定义,角平分线定义,三角形的内角和定理进行判断即可.【详解】∵AF∥CD,∴∠ABC=∠ECB,∠EDB=∠DBF,∠DEB=∠EBA,∵CB平分∠ACD,BD平分∠EBF,∴∠ECB=∠BCA,∠EBD=∠DBF,∵BC⊥BD,∴∠EDB+∠ECB=90°,∠DBE+∠EBC=90°,∴∠EDB=∠DBE,∴∠ECB=∠EBC=∠ABC=∠BCA,∴①BC平分∠ABE,正确;∴∠EBC=∠BCA,∴②AC∥BE,正确;∴③∠CBE+∠D=90°,正确;∵∠DEB=∠EBA=2∠ABC,故④正确;故选D.【点睛】本题考查了平行线的性质和判定,垂直定义,角平分线定义,三角形的内角和定理的应用,能综合运用性质进行推理是解此题的关键,2.下列说法中,正确的是()A.腰对应相等的两个等腰三角形全等;B.等腰三角形角平分线与中线重合;C.底边和顶角分别对应相等的两个等腰三角形全等; D.形状相同的两个三角形全等.【答案】C【解析】根据全等三角形和等腰三角形的性质对各项进行判断即可.【详解】A. 腰对应相等的两个等腰三角形不一定全等,错误;B. 等腰三角形顶角的角平分线与底边中线重合,底角的角平分线与腰上的中线不一定重合,错误;C. 底边和顶角分别对应相等的两个等腰三角形全等,正确;D. 形状相同的两个三角形不一定全等,错误;故答案为:C .【点睛】本题考查了全等三角形和等腰三角形的问题,掌握全等三角形和等腰三角形的性质是解题的关键.3.空气是由多种气体混合而成的,为了直观地介绍空气各成分的百分比,最适合使用的统计图是( )A .扇形图B .直方图C .条形图D .折线图【答案】A【解析】扇形统计图表示的是部分在总体中所占的百分比,但一般不能直接从图中得到具体的数据; 频数分布直方图,清楚显示在各个不同区间内取值,各组频数分布情况,易于显示各组之间频数的差别. 条形统计图能清楚地表示出每个项目的具体数目;折线统计图表示的是事物的变化情况;【详解】解:根据题意得: 要求直观反映空气的组成情况,即各部分在总体中所占的百分比,结合统计图各自的特点,应选择扇形统计图.故选:A .【点睛】此题考查扇形统计图、折线统计图、条形统计图,频数分布直方图各自的特点.掌握它们的特点是解题的关键.4.如图,在平面直角坐标系中,正方形ABCD 的边长是2,点A 的坐标是()1,1-,动点P 从点A 出发,以每秒2个单位长度的速度沿A B C D A →→→→......路线运动,当运动到2019秒时,点P 的坐标为( )A .()1,1B .()1,3C .()1,3-D .()1,1-【答案】C【解析】因为正方形的边长为2,动点P 每秒运动2个单位,从点A 出发经过4秒又回到点A ,故动点P 的运动每4秒一循环,用2019除以4得504余3,故点P 第504次运动到点A 后仍需运动3秒,到达点D ,所以D 点坐标即为所求.【详解】解:由题意得正方形的周长248=⨯=,动点P 每秒运动2个单位,从点A 出发又回到点A 经过时间为824÷=秒,201945043÷=⋅⋅⋅⋅⋅⋅,故点P 第504次运动到点A 后仍需运动3秒,到达点D (1,3)-,所以P 点坐标为(1,3)-【点睛】本题主要考查了平面直角坐标系中点坐标的确定,找到动点P 运动的规律是解题的关键.5.若a <b ,那么下列各式中不正确的是( )A .a ﹣1<b ﹣1B .﹣a <﹣bC .3a <3bD .【答案】B【解析】根据不等式的性质求解即可.【详解】A .两边都减1,不等号的方向不变,故A 不符合题意;B .两边都乘﹣1,不等号的方向改变,故B 错误;C .两边都乘3,不等号的方向不变,故C 不符合题意;D .两边都除以4,不等号的方向不变,故D 不符合题意.故选B .【点睛】本题考查了不等式的性质,不等式两边同乘以(或除以)同一个数时,不仅要考虑这个数不等于0,而且必须先确定这个数是正数还是负数,如果是负数,不等号的方向必须改变.6.若一个多边形的每一个外角都是40°,则这个多边形是( )A .七边形B .八边形C .九边形D .十边形【答案】C【解析】根据任何多边形的外角和都是360度,利用360除以外角的度数就可以求出外角和中外角的个数,即多边形的边数.【详解】360÷40=9,即这个多边形的边数是9,故选C .【点睛】本题考查多边形的内角和与外角和之间的关系,根据外角和的大小与多边形的边数无关,由外角和求正多边形的边数,是常见的题目,需要熟练掌握.7.如图,//EF AD ,//AD BC ,CE 平分BCF ∠,120DAC ∠=,20ACF ∠=.则FEC ∠的度数为( )A .10B .20C .30D .60【答案】B 【解析】根据AD∥BC,得到∠DAC+∠ACB=180°,从而得到∠ACB=60°,由∠ACF=20°,得∠BCF 的度数,根据角平分线的性质和平行线的性质得到∠FEC=∠BCE,即可得出∠FEC=∠FCE.【详解】∵AD∥BC,∴∠DAC+∠ACB=180°.∵∠DAC=120°,∴∠ACB=60°.∵∠ACF=20°,∴∠BCF=40°.∵CE 平分∠BCF,∴∠BCE=∠ECF=20°.∵EF∥AD,∴EF∥BC,∴∠FEC=∠BCE,∴∠FEC=∠FCE=20°.故选B .【点睛】本题考查了平行线的性质以及角平分线的定义.掌握平行线的性质以及角平分线的定义是解答本题的关键.8.下列运算正确的是( )A 9=3±B .(m 2)3=m 5C .a 2•a 3=a 5D .(x+y )2=x 2+y 2【答案】C【解析】A 9,本选项错误;B 、(m 2)3=m 6,本选项错误;C 、a 2•a 3=a 5,本选项正确;D 、(x+y )2=x 2+y 2+2xy ,本选项错误,故选C9.已知不等式2x+a <x+5的正整数解有2个,求a 的取值范围.( )A .2<a <3B .2<a≤3 C.2≤a≤3 D.2≤a <3【答案】B【解析】由2x+a <x+5得x <5-a ,由题意得2≤5-a <3,解不等式组可得.【详解】由2x+a <x+5得x <5-a因为,不等式2x+a <x+5的正整数解有2个,所以,2≤x <3,所以,2≤5-a <3,所以,2<a≤3故选:B【点睛】本题考核知识点:不等式组.解题关键点:理解不等式解集的意义.10.下列命题中的真命题...是( ) A .相等的角是对顶角B .内错角相等C .如果a 3=b 3,那么a 2=b 2D .两个角的两边分别平行,则这两个角相等【答案】C【解析】分析:对每一个命题进行判断,找出其中的假命题即可得出答案.详解:选项A ,相等的角是对顶角是假命题,例如两个直角三角板中的两个直角相等,但这两个直角不是对顶角;选项B ,内错角相等是假命题,只有当两直线平行时,内错角相等;选项C , 如果a 3=b 3,那么a 2=b 2是真命题;选项D , 两个角的两边分别平行,则这两个角相等是假命题,两个角的两边分别平行,则这两个角相等或互补.故选C.点睛:本题主要考查了命题的有关知识,在解题时要能根据真命题和假命题的定义对每一项进行正确判断,找出其中的假命题是本题的关键.二、填空题题11.如图所示,把一张对面互相平行的纸条折成如图所示,EF 是折痕,若32FEG ∠=︒,则FGC ∠=______.【答案】64度【解析】先根据图形折叠的性质求出∠C′EF=∠FEG,再根据平行线的性质得出∠EFG 的度数,由三角形外角的性质即可得出结论.【详解】解:∵∠FEG 由∠C′EF 折叠而成,∴∠FEG=∠C′EF,∵AD′∥BC′,∠FEG=32°,∴∠C′EF=∠EFG=32°,∴∠FGC=∠EFG +∠FEG =32°+32°=64°.故答案为:64度.【点睛】本题考查了平行线的性质和三角形外角的性质,用到的知识点为:两直线平行,内错角相等,三角形的外角等于与它不相邻的两个内角和.12.如图,小章利用一张左、右两边已经破损的长方形纸片ABCD 做折纸游戏,他将纸片沿EF 折叠后,D 、C 两点分别落在D′、C′的位置,并利用量角器量得∠EFB=66°,则∠AED′等于_____度.【答案】1【解析】根据平行线的性质求出∠DEF,根据折叠求出∠D′EF ,即可求出答案.【详解】解:∵∠EFB=66°,AD∥BC,∴∠DEF=∠EFB=66°,∴∠D′EF=∠DEF=66°,∴∠AED′=180°−66°−66°=1°,故答案为:1.【点睛】本题考查了折叠的性质,矩形的性质,平行线的性质等,解题时注意:两直线平行,内错角相等13.如图,已知DE BC ,DAB=56∠︒;ACF=115∠︒,则BAC=∠__________°.【答案】59【解析】由平行线的性质可求出∠ABC=DAB=56∠︒,再由三角形外角的性质即可求出∠BAC的值.【详解】∵DE BC,DAB=56∠︒,∴∠ABC=DAB=56∠︒,∴∠BAC=∠ACF-∠ABC=115°-56°=59°.故答案为:59.【点睛】本题考查了平行线的性质:①两直线平行同位角相等,②两直线平行内错角相等,③两直线平行同旁内角互补.在运用平行线的性质定理时,一定要找准同位角,内错角和同旁内角.也考查了三角形外角的性质. 14.如图,直线a、b相交于点O,将量角器的中心与点O重合,发现表示60°的点在直线a上,表示138°的点在直线b上,则∠1=_____°.【答案】78【解析】如图,由题意可知∠AOB=138°-60°=78°,∵直线a和直线b相交于点O,∴∠1=∠AOB=78°.故答案为78.15.不等式组62{132x xx->-<的解集为__________.【答案】26x << 【解析】62{132x x x ->-<①②由①得:x>2,由②得:x<1,所以不等式组的解集为2<x<1;故答案是2<x<1.点睛:求不等式的公共解,要遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小无解.16.在ABC ∆中,如果::4:5:9A B C ∠∠∠=,那么ABC ∆按角分类是________三角形.【答案】直角;【解析】根据三角形的内角和等于180︒求出最大的角C ∠,然后作出判断即可. 【详解】解:918090459C ∠=︒⨯=︒++, ∴此三角形是直角三角形.故答案为:直角.【点睛】本题考查了三角形的内角和定理,求出最大的角的度数是解题的关键.17.若m ,n 为实数,且0,则(m n )2018的值为_____. 【答案】1【解析】直接利用算术平方根以及绝对值的性质得出m ,n 的值,进而得出答案.0,∴m+3=0,n ﹣3=0,∴m=﹣3,n =3, ∴(m n)2018=1. 故答案为1.【点睛】此题主要考查了算术平方根以及绝对值的性质,正确得出m ,n 的值是解题关键.三、解答题18.某校九年级举行数学竞赛,学校准备购买甲、乙、丙三种笔记本奖励给获奖学生,已知甲种笔记本单价比乙种笔记本单价高10元,丙种笔记本单价是甲种笔记本单价的一半,单价和为80元.(1)甲、乙、丙三种笔记本的单价分别是多少元?(2)学校计划拿出不超过950元的资金购买三种笔记本40本,要求购买丙种笔记本20本,甲种笔记本超过5本,有哪几种购买方案?【答案】 (1) 甲种笔记本的单价为36元,乙种为26元,丙种为18元 ;(2)见解析.【解析】(1)设甲种笔记本的单价为x 元,乙种为(x-10)元,丙种为2x 元,根据“单价和为80元”列出方程并解答;(2)设购买甲种笔记本y 本,根据“不超过950元的资金购买三种笔记本40本,要求购买丙种笔记本20本,甲种笔记本超过5本”列出不等式组并解答.【详解】解:(1)设甲种笔记本的单价为x 元,乙种为(x ﹣10)元,丙种为x 2元,根据题意得 x+(x ﹣10)+x 2=80,解得x=36, 乙种单价为x ﹣10=36﹣10=26元,丙种为x 2=362=18元. 答:甲种笔记本的单价为36元,乙种为26元,丙种为18元.(2)设购买甲种笔记本y 本,由题意得36y 2620y 1820950y>5()+-+⨯≤⎧⎨⎩解得5<y≤7, 因为y 是整数,所以y=6或y=7 则乙种笔记本购买14本或13本,所以,方案有2种:方案一:购买甲种笔记本6本,乙种笔记本14本,丙种笔记本20本;方案二:购买甲种笔记本7本,乙种笔记本13本,丙种笔记本20本.【点睛】本题考查一元一次不等式组的应用, 一元一次方程的应用,解题的关键是找到关系式列出式子19.如图,△ABC≌△DBE,点D 在边AC 上,BC 与DE 交于点P .已知,,,. (1)求∠CBE 的度数.(2)求△CDP 与△BEP 的周长和.。
2.7有理数的乘方
制作时,拉面师傅将一团和好的面,揉搓成1根长条后,手握 两端用力拉长,然后将长条对折,再拉长,再对折(每次对折称为 一扣)如此反复操作,连续拉扣若干次后便成了许多细细的面条.
…
第一次 拉扣后 第二次 拉扣后 第三次 拉扣后
第1次拉扣后面条的根数: 第2次拉扣后面条的根数:
2 2 2
第3次拉扣后面条的根数:
3
解:(1)(-3)4 = (-3)×(-3)×(-3)×(-3) =81; (2)(-4)3 = (-4)×(-4)×(-4) =-64;
2 2 2 2 2 2 32 ; (3) 3 3 3 3 3 3 243 3 3 3 3 3 ( 3 3 3 ) 27 (4) . 125 5 5 5 5 5 5 5
1米长 的小棒
第 1次 截去一 半后
第 2次 截去剩 下的一 半后
第 3次 截去剩 下的一 半后
知识归纳
一般地, a ·a ·a ·····a记作an 读作“a的n次方” n个
底数
n a
加法 减法 乘法
指数
幂
除法 乘方
运算
结果
和
差
积
商幂Leabharlann 练一练填空 乘方 2 3
1 3 ( ) 5
底数 3
1 5
指数 2 3
5
辨析思考
5 2 2 (1)比较 与 ,然后计算; 3 3 5
(2)比较(3) 与 3 ,然后计算.
4 4
练一练
1.课本51页 练一练第1题. 2.判断 3 (1) 2 2 3 × (3) 32 (3) (3)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
获取新知
乘方的意义
这种求n个相同因数a的积的运算叫做乘方, 乘方的结果叫做幂,a叫做底数,n叫做指数, an读作a的n次幂(或a的n次方)。
底数
a
n
指数 幂
2次方又叫平方,3次方又叫立方。
练一练
(1)73中底数是 7
,指数是
3
。 。 。
3 3 2 (2)在 ( ) 中底数是 4 ,指数是 2 4
做一做,议一议
活动要求:把一张纸进行对折、再对折……并作记录(两人合作) 问题:(1)对折一次有几层?
(2)对折二次有几层?
(3)对折三次有几层? (4)对折四次有几层? …… (5)一直对折下去,你会发现什么? (若这张纸够大,可以折叠多少次)
猜想:对折二十次有几层? 对折n次有几层?
/v/11/11/75/NzU3NDU1
, (-1)2n+1= - 1 .
考考你
(1)计算:(-3)3, (-1.5)2, 解:(-3)3 = - (3×3×3)= - 27 解:(-1.5)2 = 1.5 ×1.5 =2.25 1 1 1 1 解:(- 7 )2 = 7 × 7 = 49 先定符号,再算绝对值。 (2)一个数的平方为16,这个数可能是几?一个数的平方可 能是0吗?一个数的平方可能是-4吗? 答:一个数的平方为16,这个数可能是4或 – 4; 一个数的平方有可能是0,如0 2 = 0; 一个数的平方不可能是 – 4. (3)前面活动中对折的纸若厚度为 0.1 毫米,连续对折 20 次, 会有多厚?它相当于大概多少层楼高?(若每层楼为3米) 解:2 20 ×0.1=1048576 ×0.1=104857.6(毫米)=104.8576(米)
104 =10000 (-10)4 = 10000 想一想:观察例2及例2的结果,你能发现什么规律? 规律:
( 1 )正数的任何次幂都是正数;负数的奇次幂是负数,负数 的偶次幂是正数。 试一试(当n为正整数时) 100 · · · 10n = , (-1)2n= 1 0 n个0
(2)底数绝对值为10的幂的特点:结果中0的个数与指数相同。
例1 计算: ( 1) 54 (2)(-3)4
1 3 (3) ( ) 2
在不会引起误解的情况下,乘号也可以用“· ”表示。 例如:(-3)×(-3)×(-3) ×(-3)可写成(-3)· (-3)· (-3)· (-3)
你会算吗?
例2 计算:(1)102 , 103 , 104 (2)(-10)2 , (-10)3 , (-10)4 102 =100 103 =1000 (-10)2 =100 (-10)3 =- 1000
210 = 1024
个。
反思
这节课你学会了一种什么运算? 你有何体会?
“乘方”精神:虽然是简简 单单的重复,但结果却是惊 人的。做人也要这样,脚踏 实地,一步一个脚印,成功 也会令你惊喜的。
(3)在(-5)4中底数是
(1)23 , 32 , 3 ×2
-5
,指数是
4
请你说说下列各数表示什么?它们一样吗?
2 3 2 3 ( ) (2) 与 4 4
(3) (-5)4 与 -54
对于分数的乘方,负数的乘方,书写时一定要注意小括号。
乘方怎么算?
运算 结果 加 和 减 差 乘 积 除 商 乘方 幂
1 2 ( ) 7
104.8576 ÷ 3≈ 35(层)
考考你
(4)细胞分裂问题: 某种细胞每过 30 分便由 1 个分裂成2个。经过5时, 这种细胞由 1 个能分裂成 多少个? 分析:1个细胞30分后分裂成 2 个,1时后分裂成 2 ×2 个,
பைடு நூலகம்
1.5时后分裂成 2×2×2 个,· · · · · · 5时后要分裂 10 次,分裂成