2020年上海市青浦区中考数学二模试卷-解析版
上海市青浦区2020年九年级数学第二次学业质量调研试卷(PDF版)
青浦区2019学年九年级第二次学业质量调研测试评分参考 202005一、选择题:1.C ; 2.C ; 3.B ; 4.D ; 5.D ; 6.C .二、填空题:7.2a ; 8.(m m +; 9.3x ≥−; 10.12x −<<; 11.31y x =−; 12.35; 13.1:2; 14.点B 在⊙C 外; 15.1.8;16.; 17.2<r <8; 18.3.三、解答题:19.解:原式4−+. ··························· (2分+2分+2分+2分=8分)=3+. ··············································································································· (2分)20.解:两边同乘以(2)(2)x x +−,得242(2)4(2)x x x x −+−−− ········································· ((1分+1分+1分+1分=4分) 2320x x −+=.······················································································································· (2分) 解得121,2x x ==. ····························································································· (1分+1分2分) 经检验,11x =是原方程的根,22x =是原方程的增根,舍去. ····························· (1分) 所以,原方程的根是1x =. ······································································································ (1分)21.证明:(1)∵4BC =,3BD CD =, ∴3BD =.····················································· (1分) ∵AB=BC , ∠ACB =90°∴∠A =∠B =45°. ·················································(1分)∵DE ⊥AB , ∴在Rt △DEB 中,cos BE B BD ==BE =· (2分)在Rt △ACB 中,AB ==AE = ··················· (1分)(2)∵过点E 作EH ⊥AC 于点H.∴在Rt △AHE 中,cos AH A AE ==,AH=cos 45AE ⋅°= 52 ··············· (1分) ∴53422CH AC AH =−=−=,∴EH= AH=52 ·························· (1分+1分=2分) ∴在Rt △CHE 中,cot ∠ECB =35CHEH =,即∠ECB 的余切值是35················ (2分) 22.解:(1)20分钟时,甲乙两人相距500米. ································································· (3分) (可参考给满分:20分钟后.,甲乙两人相距500米;20分钟时(或后),甲到达终点)(2)1500==7520V 米分甲,1000==5020V 米乙分 ························ (2分+2分=4分)依题意,可列方程:75(x -20)+50(x -20)=500 ··················································· (1分)解这个方程,得 x =24··································································································· (1分) 答:甲的速度是每分钟75米,乙的速度是每分钟50米,两人相遇时x 的值为24.(1分)23.证明:(1)∵∠EAF =12∠BAD .∴∠DAF +∠BAE =12∠BAD ·································· (1分) ∵DF 平分∠HDC ,∴∠HDF =12∠HDC . ··················································· (1分) 又∵ABCD 是平行四边形,∴AB ∥CD .∴∠BAD =∠CDH .∴∠HDF =∠DAF +∠BAE . ···············································································(1分) 又∵∠HDF =∠DAF +∠F , ················································································(1分) ∴∠BAE=∠F . ······································································································· (1分)同理:∠DAF=∠E ·································································································(1分) ∴△ABE ∽△FDA···································································································· (1分) (2)作AP 平分∠DAB 交CD∴∠DAP =12∠BAD , ∵∠HDF =12∠CDH ,且∠BAD =∠CDH∴DF ∥AP ································································································································ (1分) 同理:BE ∥AP ,∴DF ∥BE∵△ABE ∽△FDA ∴ADDFBE AB =,即BE DF AD AB ⋅=⋅ ···································· (1分)又∵2DF AD AB =⋅ ∴BE =DF ··································································································································(1分) ∴四边形DFEB 是平行四边形 ·························································································(1分) ∴BD =EF ··································································································································(1分)24.解:(1)∵二次函数243y ax ax =−+的图像与y 轴交于点C , ∴点C 的坐标为(0,3) ∴OC =3 ·················································································· (1分) 联结AC ,在Rt △AOC 中,tan ∠CA O=OC OA =3 ∴OA =1 ································ (1分) 将点A (1,0)代入243y ax ax =−+,得430a a −+=, ····························· (1分) 解得: 1a =.所以,这个二次函数的解析式为 243y x x =−+. ············································ (1分)(2)过点C 作CG ⊥DF ,过点P 作PQ ⊥DF ,垂足分别为点G 、Q .∵抛物线243y x x =−+的对称轴为直线2x =,∴2CG =.·························· (1分) ∵23CDF FDP CG PQ S S ∆∆==,∴3PQ =. ················································································· (1分) ∴点P 的横坐标为5. ······································································································· (1分) ∴把5x =代入 243y x x =−+,得 8y =∴点P 的坐标为(5,8) ········(1分) (3)过点P 作PH ⊥OM ,垂足分别为点H∵点P 的坐标为(5,8) ∴OH=5,PH=8. ·································································· (1分) ∵将△PCD 沿直线MN 翻折,点P 恰好与点O 重合,∴MN OP ⊥,∴∠ONM +∠NOP=90°. ··········································································· (1分) 又∵∠POH +∠NOP=90°,∴∠ONM =∠POH . ········································································································ (1分)∴85tan tan OM PH ONM POM ON OH ∠=∠===. ····························································· (1分)25.解:(1)联结OF ,交BC 于点H .∵F 是 BC中点,∴OF ⊥BC ,BC =2BH . ············································································· (1分) ∴∠BOF =∠COF .∵OA =OF 且OC ⊥AF ,∴∠AOC=∠COF∴∠AOC =∠COF =∠BOF =60°································································································· (1分)在Rt BOH ∆中,Sin ∠BOH =BHOB ················································································ (1分)∴BH ,BC =············································································································· (1分) (2)联结BF .∵AF ⊥OC ,垂足为点=D ,∴AD =DF .··············································································· (1分) 又∵OA = OB ,∴OD ∥BF ,22BF OD x ==.······························································································ (1分) ∴32DECD x EF BF x−==, ··············································································································· (1分) ∴33DE xDF x−=+ 即33DE x AD x −=+ ······························································································ (1分) ∴36DEx AE −=, ···························································································································· (1分) ∴36x y −=. ································································································································ (1分) (3)AOD ∆∽CDE ∆,分两种情况:①当DOA DCE ∠=∠时,CB AB //,不符合题意,舍去. (1分)②当DAO DCE ∠=∠时,联结OF .∵,OA OF OB OC ==,∴,OAF OFA OCB OBC ∠=∠∠=∠.DAODCE ∠=∠ OBC OCB OFA OAF ∠=∠=∠=∠∴. (1分) ∵,FOB OAF OFA COA OCB OBC ∠=+∠∠=∠+∠∵AOC COF ∠=∠∴60AOC COF FOB ∠=∠=∠= . (1分)°=∠∴30OAF ,2321==∴OA OD (1分) 即,线段OD 的长为32。
2019-2020学年上海市青浦区九年级第二学期(二模)考试数学试卷(含答案)
青浦区2019学年九年级第二次学业质量调研测试数 学 试 卷(时间100分钟,满分150分) Q2020.05考生注意:1.本试卷含三个大题,共25题.答题时,考生务必按答题要求在答题纸规定的位置上作答,在草稿纸、本调研卷上答题一律无效.2.除第一、二大题外,其余各题如无特别说明,都必须在答题纸的相应位置上写出证明或计算的主要步骤.一、选择题:(本大题共6题,每题4分,满分24分)[每小题只有一个正确选项,在答题纸相应题号的选项上用2B 铅笔正确填涂] 1. (0)a a ≠的倒数是( ▲ )(A )a ; (B )a -; (C )1a ; (D )1a-. 2.计算2(2)x -的结果,正确的是( ▲ )(A )22x ; (B )22x -; (C )24x ; (D )24x -. 3.如果反比例函数ky x=的图像分布在第二、四象限,那么k 的取值范围是( ▲ ) (A )0k >; (B )0k <; (C )0k ≥; (D )0k ≤. 4.下列方程中,没有实数根的是( ▲ )(A ); (B );(C );(D ). 5. 为了解某校初三400名学生的体重情况,从中抽取50名学生的体重进行分析.在这项调查220x x -=2210x x --=2210x x -+=2220x x -+=中,下列说法正确的是( ▲ )(A )400名学生中每位学生是个体; (B )400名学生是总体; (C )被抽取的50名学生是总体的一个样本; (D )样本的容量是50. 6.如图1,点G 是ABC ∆的重心,联结AG 并延长交BC 边于点D .设a AB =u u u r r ,b GD =u u u r r ,那么向量BC u u u r 用向量a r 、b r表示为( ▲(A )32BC b a =-u u u rr r; (B )32BC b a =+u u u rr r;(C )62BC b a =-u u u r r r;(D )62BC b a =+u u u rr r.二、填空题:(本大题共12题,每题4分,满分48分)[在答题纸相应题号后的空格内直接填写答案] 7. 计算:3a a ÷= ▲ .8. 在实数范围内因式分解:22m -= ▲ . 9. 函数y 的定义域是 ▲ .10.不等式组1020.x x +≥⎧⎨->⎩,的解集是 ▲ .11.如果将直线3y x =平移,使其经过点(0,-1),那么平移后的直线表达式是 ▲ . 12.从2,3,4,5,6这五个数中任选一个数,选出的这个数是素数的概率是 ▲ . 13.如果点D 、E 分别是ABC ∆的AB 、AC 边的中点,那么ADE ∆与ABC ∆的周长之比是 ▲ .图114.已知点C 在线段AB 上,且012AC AB <<.如果⊙C 经过点A ,那么点B 与⊙C 的位置关系是 ▲ .15.随机选取50粒种子在适宜的温度下做发芽天数的试验,试验的结果如右表所示.估计该作物种子发芽的天数的平均数约为 ▲ 天.16.在ABC ∆中,3AB AC ==,2BC =,将ABC ∆绕着点B 顺时针旋转,如果点A 落在射线BC 上的点A '处.那么=AA ' ▲ .17.在Rt ABC ∆中,90oACB ∠=,3AC =,4BC =.分别以A 、B 为圆心画圆,如果⊙A 经过点C ,⊙B 与⊙A 相交,那么⊙B 的半径r 的取值范围是 ▲ . 18.小明学习完《相似三角形》一章后,发现了一个有趣的结论:在两个不相似的直角三角形中,分别存在经过直角顶点的一条直线,把直角三角形分成两个小三角形后,如果第一个直角三角形分割 出来的一个小三角形与第二个直角三角形分割出来的一个小三角形相似,那么分割出来的另外两个小三角形也相似.他把这样的 两条直线称为这两个直角三角形的相似..分割线.... 如图2、图3,直线CG 、DH 分别是两个不相似的Rt ABC ∆ 和Rt DEF ∆的相似分割线,CG 、DH 分别与斜边AB 、EF 交于 点G 、 H ,如果BCG ∆与DFH ∆相似,3AC =,5AB =,4DE =,8DF =,那么AG = ▲ .三、解答题:(本大题共7题,满分78分)[将下列各题的解答过程,做在答题纸的相应位置上]GCA图2HFED图319.(本题满分10分)计算:2121182-⎛⎫- ⎪⎝⎭.20.(本题满分10分)解方程:24211422x x x x -=---+. 21.(本题满分10分,第(1)小题5分,第(2)小题5分)如图4,在Rt ABC ∆中,90ACB ∠=o,4AC BC ==, 点D 在边BC 上,且3BD CD =,DE AB ⊥,垂足为点E ,联结CE .(1)求线段AE 的长; (2)求ACE ∠的余切值.22.(本题满分10分,第(1)小题3分,第(2)小题7分)某湖边健身步道全长1500米,甲、乙两人同时从同一起 点匀速向终点步行.甲先到达终点后立刻返回,在整个步行过 程中,甲、乙两人间的距离y (米)与出发的时间x的关系如图5中OA —AB 折线所示.(1)用文字语言描述点A 的实际意义; (2)求甲、乙两人的速度及两人相遇时x 的值. 23.(本题满分12分,第(1)小题7分,第(2)小题5分)如图6,在平行四边形ABCD 中,BE 、DF 分别是平行四边形的ABCDE 图4GBA图5两个外角的平分线,12EAF BAD ∠=∠,边AE 、AF 分别交两条角平分线于点E 、F .(1)求证:ABE ∆∽FDA ∆;(2)联结BD 、EF ,如果2DF AD AB =⋅,求证:BD EF =.24.(本题满分12分,第(1)小题4分,第(2)小题4分,第(3)小题4分)如图7,在平面直角坐标系xOy 中,二次函数243y a x a x =-+ 的图像与x 轴正半轴交于点A 、B ,与y 轴相交于点C ,顶点为D ,且tan 3∠=CAO .(1)求这个二次函数的解析式;(2)点P 是对称轴右侧抛物线上的点,联结CP ,交对称轴于点F ,当:2:3CDF FDP S S =V V 时,求点P 的坐标;(3)在(2)的条件下,将△PCD 沿直线MN 翻折,当点P 恰好与点O 重合时,折痕MN 交轴于点M ,交轴于点N ,求OM ON的值.x y 图7备用图25.(本题满分14分,第(1)小题4分,第(2)小题6分,第(3)小题4分)如图8,已知AB 是半圆O 的直径,6AB =,点C 在半圆O 上.过点A 作AD ⊥OC ,垂足为点D ,AD 的延长线与弦BC 交于点E ,与半圆O 交于点F (点F 不与点B 重合).(1)当点F 为»BC的中点时,求弦BC 的长; (2)设OD x =,DE AEy =,求与的函数关系式;(3)当△AOD 与△CDE 相似时,求线段OD 的长.y x OABCDE FOABCDE F备用图图8青浦区2019学年九年级第二次学业质量调研测试评分参考 202005一、选择题:1.C ; 2.C ; 3.B ; 4.D ; 5.D ; 6.C .二、填空题:7.2a ; 8.(m m ; 9.3x ≥-;10.12x -≤<; 11.31y x =-; 12.35;13.1:2; 14.点B 在⊙C 外; 15.1.8;16. 17.2<r <8; 18.3.三、解答题:19.解:原式4+. ····················································· (8分)=3. ············································································· (2分)20.解:两边同乘以(2)(2)x x +-,得242(2)4(2)x x x x -+=--- ································································ (4分)2320x x -+=.·················································································· (2分) 解得121,2x x ==. ·············································································· (2分) 经检验,11x =是原方程的根,22x =是原方程的增根,舍去. ······················· (1分)所以,原方程的根是1x =.······································································· (1分) 21.证明:(1)∵4BC =,3BD CD =, ∴3BD =. ······································ (1分)∵AB=BC , ∠ACB =90°∴∠A =∠B =45°.································· (1分)∵DE ⊥AB , ∴在Rt △DEB 中,cos 2BE B BD==.∴BE =·· (2分)在Rt △ACB 中,AB ==AE =·············· (1分)(2)∵过点E 作EH ⊥AC 于点H.∴在Rt △AHE 中,cos AH A AE ==,AH=cos45AE ⋅︒= 52············· (1分) ∴53422CH AC AH =-=-=,∴EH= AH=52···································· (2分) ∴在Rt △CHE 中,cot ∠ECB =35CH EH=,即∠ECB 的余切值是35············· (2分)22.解:(1)20分钟时,甲乙两人相距500米. ··············································· (3分)(2)1500==7520V 米分甲,1000==5020V 米乙分··································· (4分)依题意,可列方程:75(x -20)+50(x -20)=500 ······································· (1分) 解这个方程,得 x =24 ····································································· (1分)答:甲的速度是每分钟75米,乙的速度是每分钟50米,两人相遇时x 的值为24. ·· (1分)23.证明:(1)∵∠EAF=12∠BAD.∴∠DAF+∠BAE=12∠BAD ·························(1分)∵DF平分∠HDC,∴∠HDF=12∠HDC.····································(1分)又∵ABCD是平行四边形,∴AB∥CD.∴∠BAD=∠CDH.∴∠HDF =∠DAF+∠BAE.·······················································(1分)又∵∠HDF =∠DAF+∠F, ·······················································(1分)∴∠BAE=∠F. ······································································(1分)同理:∠DAF=∠E···································································(1分)∴△ABE∽△FDA ····································································(1分)(2)作AP平分∠DAB交CD∴∠DAP=12∠BAD,∵∠HDF=12∠CDH,且∠BAD=∠CDH∴DF∥AP ·······················································································(1分)同理:BE∥AP,∴DF∥BE∵△ABE∽△FDA ∴AD DFBE AB=,即BE DF AD AB⋅=⋅···························(1分)又∵2DF AD AB =⋅∴BE =DF ························································································ (1分) ∴四边形DFEB 是平行四边形 ····························································· (1分) ∴BD =EF ························································································ (1分)24.解:(1)∵二次函数243y ax ax =-+的图像与y 轴交于点C ,∴点C 的坐标为(0,3) ∴OC =3 ·························································· (1分)联结AC ,在Rt △AOC 中,tan ∠CA O=OC OA=3∴OA =1 ·························· (1分) 将点A (1,0)代入243y ax ax =-+,得430a a -+=, ······················· (1分) 解得: 1a =.所以,这个二次函数的解析式为 243y x x =-+. ································· (1分) (2)过点C 作CG ⊥DF ,过点P 作PQ ⊥DF ,垂足分别为点G 、Q .∵抛物线243y x x =-+的对称轴为直线2x =,∴2CG =.····················· (1分)∵23CDF FDP CG PQ S S ∆∆==,∴3PQ =. ························································· (1分) ∴点P 的横坐标为5. ······································································· (1分) ∴把5x =代入 243y x x =-+,得 8y =∴点P 的坐标为(5,8) ········· (1分)(3)过点P 作PH ⊥OM ,垂足分别为点H∵点P 的坐标为(5,8) ∴OH=5,PH=8. ··············································· (1分) ∵将△PCD 沿直线MN 翻折,点P 恰好与点O 重合,∴MN OP ⊥,∴∠ONM +∠NOP=90°. ···················································· (1分) 又∵∠POH +∠NOP=90°,∴∠ONM =∠POH . ········································································ (1分) ∴85tan tan OMPHONM POM ON OH ∠=∠===.············································ (1分) 25.解:(1)联结OF ,交BC 于点H .∵F 是»BC 中点,∴OF ⊥BC ,BC =2BH . ····················································· (1分)∴∠BOF =∠COF .∵OA =OF 且OC ⊥AF ,∴∠AOC=∠COF∴∠AOC =∠COF =∠BOF =60° ·································································· (1分)在Rt BOH ∆中,Sin ∠BOH =BHOB =2························································ (1分)∴BH BC =·········································································· (1分) (2)联结BF .∵AF ⊥OC ,垂足为点=D ,∴AD =DF . ······················································· (1分) 又∵OA = OB ,∴OD ∥BF ,22BF OD x ==. ································································· (1分)∴32DECDxEF BF x -==, ············································································· (1分)∴33DEx DFx -=+ 即33DE x AD x -=+ ·································································· (1分) ∴36DEx AE -=, ····················································································· (1分) ∴36x y -=. ······················································································· (1分) (3)AOD ∆∽CDE ∆,分两种情况:①当DOA DCE ∠=∠时,CB AB //,不符合题意,舍去. (1分) ②当DAO DCE ∠=∠时,联结OF .∵,OA OF OB OC ==,∴,OAF OFA OCB OBC ∠=∠∠=∠.DAO DCE ∠=∠ΘOBC OCB OFA OAF ∠=∠=∠=∠∴. (1分) ∵2AOD OCB OBC OAF ∠=∠+∠=∠, (1分)30OAF ∴∠=︒ ,2321==∴OA OD . (1分) 即,线段OD 的长为32。
2020年上海市青浦区中考数学二模试卷
2020年上海市青浦区中考数学二模试卷一、选择题:(本大题共6题,每题4分,满分24分)1.(4分)a(a≠0)的倒数是()A.a B.﹣a C.D.2.(4分)计算(﹣2x)2的结果是()A.2x2B.﹣2x2C.4x2D.﹣4x23.(4分)如果反比例函数y=的图象在二、四象限,那么k的取值范围是()A.k>0B.k<0C.k≥0D.k≤04.(4分)下列方程中,没有实数根的是()A.x2﹣2x=0B.x2﹣2x﹣1=0C.x2﹣2x+1=0D.x2﹣2x+2=0 5.(4分)为了解某校初三400名学生的体重情况,从中抽取50名学生的体重进行分析.在这项调查中,下列说法正确的是()A.400名学生中每位学生是个体B.400名学生是总体C.被抽取的50名学生是总体的一个样本D.样本的容量是506.(4分)如图,点G是△ABC的重心,联结AG并延长交BC边于点D.设,,那么向量用向量、表示为()A.B.C.D.二、填空题:(本大题共12题,每题4分,满分48分)7.(4分)计算:a3÷a=.8.(4分)在实数范围内分解因式:m2﹣2=.9.(4分)函数的定义域是.10.(4分)不等式组的整数解是.11.(4分)如果将直线y=3x平移,使其经过点(0,﹣1),那么平移后的直线表达式是.12.(4分)从2,3,4,5,6这五个数中任选一个数,选出的这个数是素数的概率是.13.(4分)如果点D、E分别是△ABC的AB、AC边的中点,那么△ADE与△ABC的周长之比是.14.(4分)已知点C在线段AB上,且0<AC<AB.如果⊙C经过点A,那么点B与⊙C 的位置关系是.15.(4分)随机选取50粒种子在适宜的温度下做发芽天数的试验,试验的结果如表所示.估计该作物种子发芽的天数的平均数约为天.天数123发芽1530516.(4分)在△ABC中,AB=AC=3,BC=2,将△ABC绕着点B顺时针旋转,如果点A 落在射线BC上的点A'处.那么AA'=.17.(4分)在Rt△ABC中,∠ACB=90°,AC=3,BC=4.分别以A、B为圆心画圆,如果⊙A经过点C,⊙B与⊙A相交,那么⊙B的半径r的取值范围是.18.(4分)小明学习完《相似三角形》一章后,发现了一个有趣的结论:在两个不相似的直角三角形中,分别存在经过直角顶点的一条直线,把直角三角形分成两个小三角形后,如果第一个直角三角形分割出来的一个小三角形与第二个直角三角形分割出来的一个小三角形相似,那么分割出来的另外两个小三角形也相似.他把这样的两条直线称为这两个直角三角形的相似分割线.如图1、图2,直线CG、DH分别是两个不相似的Rt△ABC和Rt△DEF的相似分割线,CG、DH分别与斜边AB、EF交于点G、H,如果△BCG与△DFH相似,AC=3,AB=5,DE=4,DF=8,那么AG=.三、解答题:(本大题共7题,满分78分)19.(10分)计算:.20.(10分)解方程:﹣=1﹣.21.(10分)如图,在Rt△ABC中,∠ACB=90°,AC=BC=4,点D在边BC上,且BD =3CD,DE⊥AB,垂足为点E,联结CE.(1)求线段AE的长;(2)求∠ACE的余切值.22.(10分)某湖边健身步道全长1500米,甲、乙两人同时从同一起点匀速向终点步行.甲先到达终点后立刻返回,在整个步行过程中,甲、乙两人间的距离y(米)与出发的时间x(分)之间的关系如图中OA﹣AB折线所示.(1)用文字语言描述点A的实际意义;(2)求甲、乙两人的速度及两人相遇时x的值.23.(12分)如图,在平行四边形ABCD中,BE、DF分别是平行四边形的两个外角的平分线,∠EAF=∠BAD,边AE、AF分别交两条角平分线于点E、F.(1)求证:△ABE∽△FDA;(2)联结BD、EF,如果DF2=AD•AB,求证:BD=EF.24.(12分)如图,在平面直角坐标系xOy中,二次函数y=ax2﹣4ax+3的图象与x轴正半轴交于点A、B,与y轴相交于点C,顶点为D,且tan∠CAO=3.(1)求这个二次函数的解析式;(2)点P是对称轴右侧抛物线上的点,联结CP,交对称轴于点F,当S△CDF:S△FDP=2:3时,求点P的坐标;(3)在(2)的条件下,将△PCD沿直线MN翻折,当点P恰好与点O重合时,折痕MN交x轴于点M,交y轴于点N,求的值.25.(14分)如图,已知AB是半圆O的直径,AB=6,点C在半圆O上.过点A作AD⊥OC,垂足为点D,AD的延长线与弦BC交于点E,与半圆O交于点F(点F不与点B 重合).(1)当点F为的中点时,求弦BC的长;(2)设OD=x,=y,求y与x的函数关系式;(3)当△AOD与△CDE相似时,求线段OD的长.。
2020年上海市青浦区中考数学二模试卷 (含答案解析)
2020年上海市青浦区中考数学二模试卷一、选择题(本大题共6小题,共24.0分)1.7的倒数是()A. −7B. 7C. −17D. 172.计算(−a2)3的结果是()A. a5B. −a5C. a6D. −a63.若反比例函数y=3−2mx的图象在二、四象限,则m的值可以是()A. −1B. 0C. 1D. 24.下列方程中,没有实数根的是()A. 2x2−5x−4=0B. 7t2−5t+2=0C. x(x+1)=3D. 3y2+25=10√3y5.为了了解某县八年级学生的体重情况从中抽取了200名学生进行体重测试.在这个问题中,下列说法错误的是()A. 200学生的体重是总体B. 200学生的体重是一个样本C. 每个学生的体重是个体D. 全县八年级学生的体重是总体6.如图,△ABC的两条中线AD、CE交于点G,联结BG并延长,交边AC于点F,那么下列结论不正确的是()A. AF=FCB. GF=BGC. AG=2GDD. EG=13CE二、填空题(本大题共12小题,共48.0分)7.计算:a6÷a3=______.8.在实数范围内分解因式:ax2−2a=________.9.使函数y=√x−1有意义的自变量x的取值范围是______ .10.不等式组{2x−1≤1−12x<1的整数解的个数为______.11.将直线y=2x−3平移,使之经过点(1,4),则平移后的直线解析式是______.12.在1,π,√3,2,−3.2这五个数中随机取出一个数,则取出的这个数大于2的概率是________.13.已知:如图,△ABC的面积为12,点D、E分别是边AB、AC的中点,则四边形BCED的面积为______.14.已知⊙O的半径为5cm,当线段OA=5cm时,点A和⊙O的位置关系是______.15.某校在“爱护地球,绿化祖国”的创建活动中,组织学生开展植树造林活动.为了解全校学生的植树情况,学校随机抽查了100名学生的植树情况,将调查数据整理如下表:植树数量(单位:棵)456810人数302225158则这100名同学平均每人植树______ 棵;若该校共有1000名学生,请根据以上调查结果估计该校学生的植树总数是______ 棵.16.如图,已知△ABC中,∠C=90°,BC=3,AC=4,BD平分∠ABC,将△ABC绕着点A旋转后,点B、C的对应点分别记为B1、C1,如果点B1落在射线BD上,那么CC1的长度为______.17.在Rt△ABC中,∠C=90°,AC=3,BC=4,CD⊥AB,垂足为点D,以点D为圆心作⊙D,使得点A在⊙D内,且点B在⊙D外.设⊙D的半径为r,那么r的取值范围是________________.18.如图,四边形ABCD中,AB//CD,∠B=90°,AB=1,CD=2,BC=m,点P是边BC上一动点,若△PAB与△PCD相似,且满足条件的点P恰有2个,则m的值为______.三、解答题(本大题共7小题,共78.0分)19.计算:(√2−1)2+√3+√2+812−(√33)−1.20.解方程:(1)3x =6x−1;(2)x+1x−1−4x2−1=1.21.已知:如图,在△ABC中,AB=13,AC=8,cos∠BAC=513,BD⊥AC,垂足为点D,E是BD的中点,联结AE并延长,交边BC于点F.(1)求∠EAD的正切值;(2)求BFCF的值.22.甲、乙两人在笔直的湖边公路上同起点、同终点、同方向匀速步行2400m,先到终点的人在终点休息等候对方.已知甲先出发4min,在整个步行过程中,甲、乙两人的距离ym与甲出发的时间t min之间的函数关系如图所示.(1)甲步行的速度为____m/min;(2)解释点P(16,0)的实际意义;(3)乙走完全程用了多少分钟?(4)乙到达终点时,甲离终点还有多少米?23.已知:如图,AC是平行四边形ABCD的对角线,G是AD延长线上的一点,BG交AC于点F,交CD于点E.求证:BF2=EF·FG.x2+x+4与x轴交于A、B两点,与y轴交于点C.24.如图,二次函数y=−12(1)求点A、B、C的坐标;(2)M为线段AB上一动点,过点M作MD//BC交线段AC于点D,连接CM.①当点M的坐标为(1,0)时,求点D的坐标;②求△CMD面积的最大值.25.如图,在平面直角坐标系中,直线AB与x轴,y轴分别交于点A(−4,0),B(0,3),动点P从点O出发,沿x轴负方向以每秒1个单位的速度运动,同时动点Q从点B出发,沿射线BO方向以每秒2个单位的速度运动,过点P作PC⊥AB于点C,连接PQ,CQ,以PQ,CQ为邻边构造平行四边形PQCD,设点P运动的时间为t秒.(1)当点Q在线段OB上时,用含t的代数式表示PC,AC的长;(2)在运动过程中.①当点D落在x轴上时,求出满足条件的t的值;②若点D落在△ABO内部(不包括边界)时,直接写出t的取值范围;(3)作点Q关于x轴的对称点Q′,连接CQ′,在运动过程中,是否存在某时刻使过A,P,C三点的圆与△CQQ′三边中的一条边相切?若存在,请求出t的值;若不存在,请说明理由.【答案与解析】1.答案:D解析:.本题考查了倒数的定义:a(a≠0)的倒数为1a直接根据倒数的定义求解..解:7的倒数为17故选:D.2.答案:D解析:本题主要考查了积的乘方的性质,熟记运算性质是解题的关键.根据积的乘方法则:把每一个因式分别乘方,再把所得的幂相乘,进行计算即可.解:(−a2)3=−a2×3=−a6.故选:D.3.答案:D的图象在二、四象限,解析:解:∵反比例函数y=3−2mx∴3−2m<0,解得m>1.5,∴m的值可以是2,故选:D.,k>0时,图象位于一三象限,k<0时,图象位于二四象限,可得根据反比例函数的性质:y=kx答案.本题考查了反比例函数的性质,利用反比例函数的性质得出关于m的不等式是解题关键.4.答案:B解析:本题考查了根的判别式,属于基础题.逐一分析四个选项中方程根的判别式Δ的正负,由此即可得出结论.解:A.∵在方程2x2−5x−4=0中,Δ=(−5)2−4×2×(−4)=57>0,∴方程2x2−5x−4=0有两个不相等的实数根;B.∵在方程7t2−5t+2=0中,Δ=(−5)2−4×7×2=−31<0,∴方程7t2−5t+2=0没有实数根;C.原方程可变形为x2+x−3=0,∵Δ=12−4×1×(−3)=13>0,∴方程x(x+1)=3有两个不相等的实数根;D.原方程整理得:3y2−10√3y+25=0,∵Δ=(−10√3)2−4×3×25=0,∴方程3y2+25=10√3y有两个相等的实数根;故选B.5.答案:A解析:解:B,C,D正确.A、本题考查的对象是某县八年级学生的体重情况,故总体是全县八年级学生的体重.则A错误.故选A.本题考查的对象是某县八年级学生的体重情况,故总体是全县八年级学生的体重;个体是每个学生的体重;样本是200学生的体重.解题要分清具体问题中的总体、个体与样本.关键是明确考查的对象,总体、个体与样本的考查对象是相同的,所不同的是范围的大小.样本容量是样本中包含的个体的数目,不能带单位.6.答案:B解析:由题意点G是△ABC的重心,利用三角形的中位线定理即可判断;本题考查三角形的重心,三角形的中位线定理等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.解:如图连接DE.∵△ABC的两条中线AD、CE交于点G,∴点G是△ABC的重心,∴DF也是△ABC的中线,∴AF=FC,故A不符合题意,∵BE=AE,BD=CD,∴DE//AC,DE=12AC,∴EGCG =DGAG=DEAC=12,∴AG=2DG,EG=13CE,故C,D不符合题意,故选B.7.答案:a3解析:根据同底数幂相除,底数不变指数相减计算即可.本题主要考查同底数幂的除法运算性质,熟练掌握运算性质是解题的关键.解:a6÷a3=a6−3=a3.故应填a3.8.答案:a(x+√2)(x−√2)解析:此题考查了实数范围内分解因式,熟练掌握因式分解的方法是解本题的关键.原式提取公因式,再利用平方差公式分解即可.解:ax2−2a,=a(x2−2),=a(x+√2)(x−√2).故答案为a(x+√2)(x−√2).9.答案:x >1解析:解:由题意得,x −1>0,解得x >1.故答案为:x >1.根据被开方数大于等于0,分母不等于0列式计算即可得解.本题考查了函数自变量的范围,一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.10.答案:3解析:解:{2x −1≤1①−12x <1②, 由不等式①得x ≤1,由不等式②得x >−2,其解集是−2<x ≤1,所以整数解为−1,0,1共3个.故答案为:3.先求出每个不等式的解集,再确定其公共解,得到不等式组的解集,然后求其整数解.考查不等式组的解法及整数解的确定.求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.11.答案:y =2x +2解析:解:设平移后直线的解析式为y =2x +b .把(1,4)代入直线解析式得4=2×1+b ,解得b =2.∴平移后直线的解析式为y =2x +2.故答案为:y =2x +2.根据平移不改变k 的值,可设平移后直线的解析式为y =2x +b ,然后将点(1,4)代入即可得出直线的函数解析式.本题考查了一次函数图象与几何变换及待定系数法去函数的解析式,掌握直线y=kx+b(k≠0)平移时,k的值不变是解题的关键.12.答案:15解析:此题主要考查了概率公式,正确应用概率公式是解题关键.首先找出大于2的数字个数,进而利用概率公式求出答案.解:∵在1,π,√3,2,−3.2这五个数中,只有π这个数大于2,∴随机取出一个数,这个数大于2的概率是:15.故答案为15.13.答案:9解析:解:设四边形BCED的面积为x,则S△ADE=12−x,∵点D、E分别是边AB、AC的中点,∴DE是△ABC的中位线,∴DE//BC,且DE=12BC,∴△ADE∽△ABC,则S△ADES△ABC=(DEBC)2,即12−x12=14,解得:x=9,即四边形BCED的面积为9,故答案为:9.设四边形BCED的面积为x,则S△ADE=12−x,由题意知DE//BC且DE=12BC,从而得S△ADES△ABC=(DEBC)2,据此建立关于x的方程,解之可得.本题主要考查相似三角形的判定与性质,解题的关键是掌握中位线定理及相似三角形的面积比等于相似比的平方的性质.14.答案:点A在⊙O上解析:此题考查了点和圆的位置关系与数量之间的联系:当点到圆心的距离等于圆的半径时,则点在圆上.根据点到圆心的距离和圆的半径之间的数量关系,即可判断点和圆的位置关系.点到圆心的距离小于圆的半径,则点在圆内;点到圆心的距离等于圆的半径,则点在圆上;点到圆心的距离大于圆的半径,则点在圆外.解:∵点A到圆心O的距离d=5cm=r,∴点A在⊙O上.故答案为:点A在⊙O上.15.答案:5.8;5800解析:本题考查的是加权平均数的求法.频率=频数÷总数,用样本估计整体让整体×样本的百分比即可.(1)根据平均数的计算方法:求出所有数据的和,然后除以数据的总个数;(2)根据总体平均数约等于样本平均数,用样本的平均数乘以总人数即可.解:平均数=(30×4+5×22+6×25+8×15+10×8)÷100=580÷100=5.8棵,植树总数=5.8×1000=5800棵.故答案为5.8;5800.16.答案:16√55解析:解:∵∠C=90°,BC=3,AC=4,∴AB=5,∵将△ABC绕着点A旋转后得△AB1C1,∴AC1=AC=4,AB1=AB=5,∠CAC1=∠BAB1,∴∠AB1B=∠ABB1,∵BD平分∠ABC,∴∠ABB1=∠CBB1,∴∠AB1B=∠CBB1,∴AB1//BC,∴∠B 1AC =∠ACB =90°, ∴△AB 1D∽△CBD , ∴AD CD=AB 1BC =53, ∴AD =52,CD =32,∴B 1D =√AB 12+AD 2=5√52,BD =√BC 2+CD 2=3√52, ∴BB 1=4√5,∵∠C 1AC =∠B 1AB ,AC =AC 1,AB =AB 1, ∴△ACC 1∽△ABB 1, ∴AC AB=CC 1BB 1, ∴CC 1=16√55,故答案为:16√55. 根据勾股定理得到AB =5,根据旋转的性质得到AC 1=AC =4,AB 1=AB =5,∠CAC 1=∠BAB 1,推出AB′//BC ,根据平行线的性质得到∠B 1AC =∠ACB =90°,根据相似三角形的性质得到AD =52,CD =32,根据勾股定理求得BB 1=4√5,根据相似三角形的性质即可得到结论.本题考查了旋转的性质,等腰三角形的判定和性质,平行线的判定和性质,勾股定理,正确的作出图形是解题的关键.17.答案:95<r <165解析: 【试题解析】本题考查勾股定理,点和圆的位置关系,属于一般题.先根据勾股定理求出AB 的长,根据面积关系可得出CD 的长,由点与圆的位置关系即可得出结论. 解:∵Rt △ABC 中,∠ACB =90°,AC =3,BC =4, ∴AB =√32+42=5. ∵CD ⊥AB , ∴CD =AC×BC AB=125.∴AD =√32−(125)2=95,BD =√42−(125)2=165,∵点A 在圆内,点B 在圆外, r 的范围是95<r <165,故答案为95<r <165.18.答案:3解析:解:∵AB//CD ,∠B =90°, ∴∠C +∠B =180°, ∴∠C =90°,当∠BAP =∠CDP 时,△PAB∽△PDC , ∴PBPC =ABCD ,即PBPC =12, ∴PC =2PB①,当∠BAP =∠CPD 时,△PAB∽△DPC , ∴PBCD =ABPC ,即PB ×PC =1×2=2②, 由①②得:2PB 2=2, 解得:PB =1,(负值舍去) ∴PC =2, ∴BC =3; 故答案为:3.由平行线得出∠C =90°,当∠BAP =∠CDP 时,△PAB∽△PDC ,得出PBPC =ABCD ,得出PC =2PB①,当∠BAP =∠CPD 时,△PAB∽△DPC ,得出PBCD =ABPC ,即PB ×PC =1×2=2②,由①②得:PB =1,得出PC =2,BC =3即可.本题考查了相似三角形的判定与性质、平行线的性质、分类讨论;熟练掌握相似三角形的判定与性质是解题的关键.19.答案:解:原式=3−2√2+√3−√2+2√2−√3=3−√2.解析:此题主要考查了实数运算,正确化简各数是解题关键.直接利用负整数指数幂的性质和二次根式的性质以及分数指数幂的性质分别化简得出答案.20.答案:解:(1)去分母,得3(x−1)=6x,去括号,得3x−3=6x,移项,得3x−6x=3,合并同类项,得−3x=3,系数化成1,得x=−1,经检验:x=−1是原方程解,所以原分式方程的解是x=−1;(2)去分母,得(x+1)2−4=x2−1,去括号,得x2+2x+1−4=x2−1,移项,得x2+2x−x2=−1−1+4,合并同类项,得2x=2,系数化成1,得x=1,经检验:x=1是增根,所以原分式方程无解.解析:此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.方程整理后,去分母转化为整式方程,求出整式方程的解得到x的值,然后再检验即可得到结论.(1)方程两边同时乘以x(x−1),再求解即可;(2)方程两边同时乘以(x−1)(x+1)去分母,再求解即可.21.答案:解:(1)∵BD⊥AC,∴∠ADE=90°,Rt△ADB中,AB=13,cos∠BAC=5,13∴AD=5,由勾股定理得:BD=12,∵E是BD的中点,∴ED=6,∴∠EAD的正切=EDAD =65;(2)过D作DG//AF交BC于G,∵AC=8,AD=5,∴CD=3,∵DG//AF,∴CDAD =CGFG=35,设CG=3x,FG=5x,∵EF//DG,BE=ED,∴BF=FG=5x,FC=FG+CG=8x,∴BFCF =5x8x=58.解析:本题是考查了解直角三角形的问题,熟练掌握锐角三角函数的定义,在直角三角形中,根据锐角三角函数的定义列式,如果没有直角三角形,或将角转化到直角三角形内,或作垂线构建直角三角形.(1)先根据锐角三角函数值求AD的长,由勾股定理得BD的长,根据锐角三角函数定义可得结论;(2)作平行线,构建平行线分线段成比例定理可设CG=3x,FG=5x,分别表示BF和FC的长,代入可得结论.22.答案:60解析:解:(1)甲步行的速度为:240÷4=60m/min;故答案是:60;(2)当甲出发16 min 时,甲乙两人距离0 m(或乙出发12 min 时,乙追上了甲);(3)乙步行的速度为:16×60÷12=80 m/min ; 乙走完全程用的时间为:2400÷80=30min ;(4)乙到达终点时,甲离终点距离是:2400−(4+30)×60=360(米).根据题意和函数图象中的数据可以判断各个小题中的结论是否正确,从而可以解答本题. 本题考查一次函数的应用,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.23.答案:证明:∵四边形ABCD 是平行四边形,∴AB//CD ,AD//BC ,∴△ABF∽△CEF ,△AGF∽△CBF ,∴BF ︰EF =AF ︰CF ,AF ︰CF =FG ︰BF , ∴BF ︰EF =FG ︰BF , ∴BF 2=EF ·FG .解析:本题考查平行四边形的性质,相似三角形的判定和性质,关键是根据平行四边形的性质得AB//CD ,AD//BC ,再根据相似三角形的判定和性质即可解答.24.答案:解:(1)当y =0时,−12x 2+x +4=0,解得x 1=−2,x 2=4,则A(−2,0),B(4,0), 当x =0时,y =−12x 2+x +4=4,则C(0,4); (2)①设直线BC 的解析式为y =kx +b , 把B(4,0),C(0,4)代入得{4k +b =0b =4,解得{k =−1b =4.所以直线BC 的解析式为y =−x +4, 设直线AC 的解析式为y =px +q , 把A(−2,0),C(0,4)代入得{−2p +q =0q =4,解得{p =2q =4.所以直线AC 的解析式为y =2x +4, 因为直线MD//BC ,所以直线MD 的解析式可设为y =−x +n , 把M(1,0)代入得−1+n =0,解得n =1, 所以直线MD 的解析式为y =−x +1,解方程组{y =2x +4y =−x +1得{x =−1y =2,则点D 的坐标为(−1,2);②设M(t,0),直线MD 的解析式为y =−x +t ,解方程组{y =2x +4y =−x +t 得{x =t−43y =2t+43,则D(t−43,2t+43), S △CDM =S △CAB −S △ADM −S △CMB =1⋅4⋅(4+2)−1⋅(t +2)⋅2t +4−1⋅(4−t)⋅4 =−13t 2+23t +83=−13(t −1)2+3,当t =1时,△CMD 面积有最大值,最大值为3.解析:本题考查了二次函数的综合题:熟练掌握二次函数图象与x 轴的交点问题和二次函数的性质;会利用待定系数法求一次函数的解析式,理解两直线平行的问题;记住三角形面积公式. (1)根据二次函数与x 轴的交点问题,通过解方程−12x 2+x +4=0可确定A 点和B 点坐标,计算当x =0时的函数值可得到C 点坐标;(2)①先利用待定系数法求出直线BC 的解析式为y =−x +4,直线AC 的解析式为y =2x +4,再利用直线平行问题可确定直线MD 的解析式为y =−x +1,然后解方程组{y =2x +4y =−x +1可得点D 的坐标;②设M(t,0),则直线MD 的解析式为y =−x +t ,通过解方程组{y =2x +4y =−x +t 得D(t−43,2t+43),然后根据三角形面积公式和利用S △CDM =S △CAB −S △ADM −S △CMB 得到S △CDM =−13t 2+23t +83=−13(t −1)2+3,再根据二次函数的性质求解.25.答案:解:(1)如图1中,∵OA=4,OB=3,∴AB=√OB2+OA2=√32+42=5,在Rt△ACP中,PA=4−t,∵sin∠OAB=PCAP =OBAB,∴PC=35(4−t),∵cos∠OAB=OAAB =ACAP,∴AC=45(4−t).(2)①当D在x轴上时,如图2中,∵QC//OA,∴BQOB =BCAB,∴2t3=5−45(4−t)5,解得t=2738.∴t=2738s时,点D在x轴上,②如图3中,∵PQ//AB,∴OQOB =OPOA,∴3−2t3=t4,∴t=1211,综上所述,当2738<t<1211时,点D落在△ABO内部(不包括边界).(3)如图3中,作QN⊥BC于N,∵Q(0,3−2t),Q′(0,2t−3),当QC与⊙M相切时,则QC⊥CM,∴∠QCM=90°,∴∠QCP+∠PCM=90°,∵∠QCP+∠QCB=90°,∴∠BCQ =∠PCM =∠CPM ,∵∠CPM +∠PAC =90°,∠OBA +∠OAB =90°,∴∠APC =∠OBA ,∴∠QBC =∠QCB ,∴BQ =CQ ,∵cos∠ABO =OB AB =BN BQ ,∴12[5−45(4−t)]2t=35, 解得t =98,当CQ′是⊙M 切线时,同法可得12[5−45(4−t)]6−2t =35, 解得t =2716,∴t =98s 或2716s 时,过A ,P ,C 三点的圆与△CQQ′三边中的一条边相切.解析:(1)利用三角函数sin∠OAB =PC AP =OB AB ,cos∠OAB =OA AB =AC AP ,列出关系式即可解决问题.(2)①当D 在x 轴上时,如图2中,由QC//OA ,得BQ OB =BC AB ,由此即可解决问题.②当点D 在AB 上时,如图3中,由PQ//AB ,得OQ OB =OP OA ,求出时间t ,求出①②两种情形时的△POQ 的面积即可解决问题.(3)如图4中,当QC 与⊙M 相切时,则QC ⊥CM ,首先证明QB =QC ,作QN∠BC 于N ,根据cos∠ABO =OB AB =BN BQ ,列出方程即可解决问题,当CQ′是⊙M 切线时,方法类似. 本题考查圆的综合题、锐角三角函数、平行四边形的性质、等腰三角形的性质、切线的性质等知识,解题的关键是求得点D 在特殊位置时的时间,学会利用方程解决问题,属于中考压轴题.。
2020届上海市青浦区中考二模数学试卷有答案(加精)
100.580.560.540.5图1青浦区九年级第二次学业质量调研测试数学试卷(满分150分,100分钟完成)考生注意:1.本试卷含三个大题,共25题.答题时,考生务必按答题要求在答题纸规定的位置上作答,在草稿纸、本调研卷上答题一律无效.2.除第一、二大题外,其余各题如无特别说明,都必须在答题纸的相应位置上写出证明或计算的主要步骤.一、选择题:(本大题共6题,每题4分,满分24分)[每小题只有一个正确选项,在答题纸相应题号的选项上用2B 铅笔正确填涂] 1.下列实数中,有理数是( ▲ ) (A ;(B )2.1g;(C )π; (D )135.2.下列方程有实数根的是( ▲ )(A )4+2=0x ; (B 1-; (C )2+21=0x x -;(D )111x x x =--. 3.已知反比例函数1y x=,下列结论正确的是( ▲ ) (A )图像经过点(-1,1);(B )图像在第一、三象限;(C )y 随着x 的增大而减小; (D )当1x >时,1y <. 4.用配方法解方程241=0x x -+,配方后所得的方程是( ▲ )(A )2(2)=3x -; (B )2(+2)=3x ; (C )2(2)=3x --;(D )2(+2)=3x -.5. “a 是实数,20a ≥”这一事件是( ▲ )(A )不可能事件; (B )不确定事件; (C )随机事件; (D )必然事件. 6. 某校40名学生参加科普知识竞赛(竞赛分数都是整数),竞赛成绩的频数分布直方图如图1所示,成绩的中位数落在( ▲ )(A )50.5~60.5分; (B )60.5~70.5分; (C )70.5~80.5分; (D )80.5~90.5分.二、填空题:(本大题共12题,每题4分,满分48分)[在答题纸相应题号后的空格内直接填写答案] 7.计算:32()=a a ÷- ▲ . 8.因式分解:24=a a - ▲ .9.函数=3y x +的定义域是 ▲ .010.不等式组1020.x x +≥⎧⎨->⎩,的整数解是 ▲ .11.关于x 的方程=2(1)ax x a +≠的解是 ▲ . 12.抛物线2(3)+1y x =-的顶点坐标是 ▲ .13.掷一枚材质均匀的骰子,掷得的点数为合数的概率是 ▲ .14.如果点1P (2,1y )、2P (3,2y )在抛物线2+2y x x =-上,那么1y ▲ 2y .(填“>”、 “<”或 “=”)15.如图2,已知在平行四边形ABCD 中,E 是边AB 的中点,F 在边AD 上,且AF ︰FD=2︰1,如果AB a =u u u r r ,BC b =u u u r r ,那么EF =u u u r▲ . 16.如图3,如果两个相似多边形任意一组对应顶点P 、P '所在的直线都经过同一点O ,且有(0)OP k OP k '=⋅≠,那么我们把这样的两个多边形叫位似多边形,点O 叫做位似中心.已知ABC ∆与A B C '''∆是关于点O 的位似三角形,3OA OA '=,则ABC ∆与A B C '''∆的周长之比是 ▲ .17.如图4,在△ABC 中,BC=7,AC =32,tan 1C =,点P 为AB 边上一动点(点P 不与点B 重合),以点P 为圆心,PB 为半径画圆,如果点C 在圆外,那么PB 的取值范围是 ▲ .18.已知,在Rt △ABC 中,∠C =90°,AC =9, BC =12,点D 、E 分别在边AC 、BC 上,且CD ︰CE =3︰4.将△CDE 绕点D 顺时针旋转,当点C 落在线段DE 上的点F 处时,BF恰好是∠ABC 的平分线,此时线段CD 的长是 ▲ .三、解答题:(本大题共7题,满分78分)[将下列各题的解答过程,做在答题纸的相应位置上]19.(本题满分10分)计算:10121552(3)2-+---+().20.(本题满分10分)图3 A BCDEF 图2图4 POP'先化简,再求值:25+3222x x x x ⎛⎫--÷⎪++⎝⎭(),其中x =21. (本题满分10分,第(1)、(2)小题,每小题5分)如图5,在Rt △ABC 中,∠C =90°,AC=3,BC =4,∠ABC 的平分线交边AC 于点D ,延长BD 至点E ,且BD=2DE ,联结AE . (1)求线段CD 的长; (2)求△ADE 的面积.22.(本题满分10分)如图6,海中有一个小岛A ,该岛四周11海里范围内有暗礁.有一货轮在海面上由西向正东方向航行,到达B 处时它在小岛南偏西60°的方向上,再往正东方向行驶10海里后恰好到达小岛南偏西45°方向上的点C 处.问:如果货轮继续向正东方向航行,是否会有触礁的危险?(参考数据:1.411.73≈)23.(本题满分12分,第(1)、(2)小题,每小题6分)如图7,在梯形ABCD 中,AD ∥BC ,对角线AC 、BD 交于点M ,点E 在边 BC 上,且DAE DCB ∠=∠,联结AE ,AE 与BD 交于点F .(1)求证:2DM MF MB =⋅; (2)联结DE ,如果3BF FM =,求证:四边形ABED 是平行四边形.24.(本题满分12分,第(1)、(2)、(3)小题,每小题4分)已知:如图8,在平面直角坐标系xOy 中,抛物线23y ax bx =++的图像与x 轴交于点A (3,0),与y 轴交于点B ,顶点C 在直线2x =上,将抛物线沿射线AC 的方向平移,当顶点C 恰好落在y 轴上的点D 处时,点B 落在点E 处. (1)求这个抛物线的解析式;(2)求平移过程中线段BC 所扫过的面积;MFE DCB A图7东AB C图6ED C BA图5(3)已知点F 在x 轴上,点G 在坐标平面内,且以点C 、E 、F 、G 为顶点的四边形是矩形,求点F 的坐标. .25.(本题满分14分,第(1)小题4分,第(2)小题6分,第(3)小题4分)如图9-1,已知扇形MON,∠MON =90o ,点B 在弧MN 上移动,联结BM ,作OD ⊥BM ,垂足为点D ,C 为线段OD 上一点,且OC =BM ,联结BC 并延长交半径OM 于点A ,设OA = x ,∠COM 的正切值为y . (1)如图9-2,当AB ⊥OM 时,求证:AM =AC ; (2)求y 关于x 的函数关系式,并写出定义域; (3)当△OAC 为等腰三角形时,求x 的值.青浦区九年级第二次学业质量调研测试评分参考一、选择题:1.B ; 2.C ; 3.B ; 4.A ; 5.D ; 6.C . 二、填空题:7.a ; 8.()4-a a ; 9.3≥-x ; 10.101、、-; 11.21-a ; 12.(3,1); 13.13; 14.>; 15.2132-r r b a ; 16.1︰3; 17.3508<<PB ; 18.6.OMND C B图9-1OMNDCBA图9-2 NMO备用图三、解答题:19.解:原式212-+. ································································ (8分)=1. ············································································· (2分)20.解:原式=()2245223--+⨯++x x x x , ····························································· (5分) =()()()233223+-+⨯++x x x x x , ······················································· (1分)=33-+x x . ·················································································· (1分)当=x2. ············································ (3分)21.解:(1)过点D 作DH ⊥AB ,垂足为点H .················································ (1分)∵BD 平分∠ABC ,∠C =90°, ∴DH = DC =x , ········································································ (1分) 则AD =3-x . ∵∠C =90°,AC=3,BC =4,∴AB =5. ··········································· (1分)∵sin ∠==HD BCBAC AD AB, ∴435=-x x , ·········································································· (1分) ∴43=x . ················································································ (1分)(2)1141052233=⋅=⨯⨯=V ABD S AB DH . ············································· (1分)∵BD=2DE ,∴2==V V ABD ADE S BD S DE, ································································ (3分) ∴1015323=⨯=V ADE S . ······························································· (1分) 22.解:过点A 作AH ⊥BC ,垂足为点H . ······················································ (1分)由题意,得∠BAH =60°,∠CAH =45°,BC =10. ····································· (1分) 设AH =x ,则CH =x . ······································································· (1分) 在Rt △ABH 中,∵tan ∠=BH BAH AH ,∴10tan 60+︒=xx, ······································· (3分)10=+x,解得513.65=≈x , ······································ (2分) ∵13.65>11, ················································································ (1分)∴货轮继续向正东方向航行,不会有触礁的危险. ································· (1分) 答:货轮继续向正东方向航行,不会有触礁的危险.23.证明:(1)∵AD //BC ,∴∠=∠DAE AEB , ·············································· (1分)∵∠=∠DCB DAE ,∴∠=∠DCB AEB , ································ (1分) ∴AE //DC ,··········································································· (1分)∴=FM AMMD MC. ··································································· (1分) ∵AD //BC ,∴=AM DMMC MB, ··················································· (1分) ∴=FM DM MD MB, ··································································· (1分) 即2=⋅MD MF MB .(2)设=FM a ,则=3BF a ,=4BM a . ··········································· (1分)由2=⋅MD MF MB ,得24=⋅MD a a , ∴2=MD a , ········································································ (1分) ∴3==DF BF a . ·································································· (1分)∵AD //BC ,∴1==AF DFEF BF,···················································· (1分) ∴=AF EF , ········································································· (1分) ∴四边形ABED 是平行四边形. ··················································· (1分)24.解:(1)∵顶点C 在直线2x =上,∴22=-=bx a,∴4=-b a .················ (1分) 将A (3,0)代入23y ax bx =++,得933=0++a b ,··················· (1分) 解得1=a ,4=-b . ································································ (1分) ∴抛物线的解析式为243=-+y x x . ·········································· (1分) (2)过点C 作CM ⊥x 轴,CN ⊥y 轴,垂足分别为M 、N .∵243=-+y x x =()221=--x ,∴C (2,1-). ························· (1分)∵1==CM MA ,∴∠MAC =45°,∴∠ODA =45°,∴3==OD OA . ···································································· (1分) ∵抛物线243=-+y x x 与y 轴交于点B ,∴B (0,3), ∴6=BD . ········································································ (1分) ∵抛物线在平移的过程中,线段BC 所扫过的面积为平行四边形BCDE 的面积, ∴12262122==⨯⨯⋅=⨯=Y V BCDE BCD S S BD CN . ························ (1分) (3)联结CE .∵四边形BCDE 是平行四边形,∴点O 是对角线CE 与BD 的交点,即 OE OC ==(i )当CE 为矩形的一边时,过点C 作1CF CE ⊥,交x 轴于点1F ,设点1F a (,0),在1Rt OCF V 中,22211=OF OC CF +, 即 22(2)5a a =-+,解得 52a =,∴点152F (,0) ································ (1分)同理,得点252F (-,0) ······································································ (1分) (ii )当CE 为矩形的对角线时,以点O 为圆心,OC 长为半径画弧分别交x 轴于点 3F 、4F ,可得34=OF OF OC ==3F )、4F ()····· (2分) 综上所述:满足条件的点有152F (,0),252F (-,0),3F )),4F (). 25.解:(1)∵OD ⊥BM ,AB ⊥OM ,∴∠ODM =∠BAM =90°. ··························· (1分)∵∠ABM +∠M =∠DOM +∠M ,∴∠ABM =∠DOM . ······················ (1分) ∵∠OAC =∠BAM ,OC =BM ,∴△OAC ≌△ABM , ·································································· (1分) ∴AC =AM . ············································································ (1分) (2)过点D 作DE //AB ,交OM 于点E . ·············································· (1分)∵OB =OM ,OD ⊥BM ,∴BD =DM . ··········································· (1分) ∵DE //AB ,∴=MD MEDM AE,∴AE =EM , ∵OMAE=)12x . ··············································· (1分) ∵DE //AB ,∴2==OA OC DMOE OD OD , ···························································· (1分) ∴2=DM OA OD OE,∴=y(0<≤x ···················································· (2分)(3)(i ) 当OA =OC 时, ∵111222===DM BM OC x , 在Rt △ODM中,==OD ∵=DM y OD,1=x2=x,或2=x (舍).(2分) (ii )当AO =AC 时,则∠AOC =∠ACO ,∵∠ACO >∠COB ,∠COB =∠AOC ,∴∠ACO >∠AOC , ∴此种情况不存在. ·································································· (1分) (ⅲ)当CO =CA 时,则∠COA =∠CAO=α,∵∠CAO >∠M ,∠M =90α︒-,∴α>90α︒-,∴α>45︒, ∴290α∠=>︒BOA ,∵90∠≤︒BOA ,∴此种情况不存在. ········ (1分)。
上海市青浦区2020年中考数学二模试卷(含解析)
2020年中考数学二模试卷一、选择题(本题共6题)1.a(a≠0)的倒数是()A.a B.﹣a C.D.2.计算(﹣2x)2的结果是()A.2x2B.﹣2x2C.4x2D.﹣4x23.如果反比例函数y=的图象在二、四象限,那么k的取值范围是()A.k>0B.k<0C.k≥0D.k≤04.下列方程中,没有实数根的是()A.x2﹣2x=0B.x2﹣2x﹣1=0C.x2﹣2x+1=0D.x2﹣2x+2=0 5.为了解某校初三400名学生的体重情况,从中抽取50名学生的体重进行分析.在这项调查中,下列说法正确的是()A.400名学生中每位学生是个体B.400名学生是总体C.被抽取的50名学生是总体的一个样本D.样本的容量是506.如图,点G是△ABC的重心,联结AG并延长交BC边于点D.设,,那么向量用向量、表示为()A.B.C.D.二、填空题:(本大题共12题,每题4分,满分48分)7.计算:a3÷a=.8.在实数范围内分解因式:m2﹣2=.9.函数的定义域是.10.不等式组的整数解是.11.如果将直线y=3x平移,使其经过点(0,﹣1),那么平移后的直线表达式是.12.从2,3,4,5,6这五个数中任选一个数,选出的这个数是素数的概率是.13.如果点D、E分别是△ABC的AB、AC边的中点,那么△ADE与△ABC的周长之比是.14.已知点C在线段AB上,且0<AC<AB.如果⊙C经过点A,那么点B与⊙C的位置关系是.15.随机选取50粒种子在适宜的温度下做发芽天数的试验,试验的结果如表所示.估计该作物种子发芽的天数的平均数约为天.天数123发芽1530516.在△ABC中,AB=AC=3,BC=2,将△ABC绕着点B顺时针旋转,如果点A落在射线BC上的点A'处.那么AA'=.17.在Rt△ABC中,∠ACB=90°,AC=3,BC=4.分别以A、B为圆心画圆,如果⊙A 经过点C,⊙B与⊙A相交,那么⊙B的半径r的取值范围是.18.小明学习完《相似三角形》一章后,发现了一个有趣的结论:在两个不相似的直角三角形中,分别存在经过直角顶点的一条直线,把直角三角形分成两个小三角形后,如果第一个直角三角形分割出来的一个小三角形与第二个直角三角形分割出来的一个小三角形相似,那么分割出来的另外两个小三角形也相似.他把这样的两条直线称为这两个直角三角形的相似分割线.如图1、图2,直线CG、DH分别是两个不相似的Rt△ABC和Rt△DEF的相似分割线,CG、DH分别与斜边AB、EF交于点G、H,如果△BCG与△DFH相似,AC=3,AB=5,DE=4,DF=8,那么AG=.三、解答题:(本大题共7题,满分78分)19.计算:.20.解方程:﹣=1﹣.21.如图,在Rt△ABC中,∠ACB=90°,AC=BC=4,点D在边BC上,且BD=3CD,DE⊥AB,垂足为点E,联结CE.(1)求线段AE的长;(2)求∠ACE的余切值.22.某湖边健身步道全长1500米,甲、乙两人同时从同一起点匀速向终点步行.甲先到达终点后立刻返回,在整个步行过程中,甲、乙两人间的距离y(米)与出发的时间x(分)之间的关系如图中OA﹣AB折线所示.(1)用文字语言描述点A的实际意义;(2)求甲、乙两人的速度及两人相遇时x的值.23.如图,在平行四边形ABCD中,BE、DF分别是平行四边形的两个外角的平分线,∠EAF =∠BAD,边AE、AF分别交两条角平分线于点E、F.(1)求证:△ABE∽△FDA;(2)联结BD、EF,如果DF2=AD•AB,求证:BD=EF.24.如图,在平面直角坐标系xOy中,二次函数y=ax2﹣4ax+3的图象与x轴正半轴交于点A、B,与y轴相交于点C,顶点为D,且tan∠CAO=3.(1)求这个二次函数的解析式;(2)点P是对称轴右侧抛物线上的点,联结CP,交对称轴于点F,当S△CDF:S△FDP=2:3时,求点P的坐标;(3)在(2)的条件下,将△PCD沿直线MN翻折,当点P恰好与点O重合时,折痕MN交x轴于点M,交y轴于点N,求的值.25.如图,已知AB是半圆O的直径,AB=6,点C在半圆O上.过点A作AD⊥OC,垂足为点D,AD的延长线与弦BC交于点E,与半圆O交于点F(点F不与点B重合).(1)当点F为的中点时,求弦BC的长;(2)设OD=x,=y,求y与x的函数关系式;(3)当△AOD与△CDE相似时,求线段OD的长.参考答案一、选择题:(本大题共6题,每题4分,满分24分)1.a(a≠0)的倒数是()A.a B.﹣a C.D.【分析】一般地,a•=1 (a≠0),就说a(a≠0)的倒数是.据此即可得出答案.解:a(a≠0)的倒数是,故选:C.2.计算(﹣2x)2的结果是()A.2x2B.﹣2x2C.4x2D.﹣4x2【分析】根据积的乘方法则计算即可.解:(﹣2x)2=4x2.故选:C.3.如果反比例函数y=的图象在二、四象限,那么k的取值范围是()A.k>0B.k<0C.k≥0D.k≤0【分析】根据反比例函数图象的性质:当k<0时,反比例函数图象位于第二、四象限.解:∵图象在二、四象限,∴k<0.故选:B.4.下列方程中,没有实数根的是()A.x2﹣2x=0B.x2﹣2x﹣1=0C.x2﹣2x+1=0D.x2﹣2x+2=0【分析】分别计算各方程的根的判别式的值,然后根据判别式的意义判定方程根的情况即可.解:A、△=(﹣2)2﹣4×1×0=4>0,方程有两个不相等的实数根,所以A选项错误;B、△=(﹣2)2﹣4×1×(﹣1)=8>0,方程有两个不相等的实数根,所以B选项错误;C、△=(﹣2)2﹣4×1×1=0,方程有两个相等的实数根,所以C选项错误;D、△=(﹣2)2﹣4×1×2=﹣4<0,方程没有实数根,所以D选项正确.故选:D.5.为了解某校初三400名学生的体重情况,从中抽取50名学生的体重进行分析.在这项调查中,下列说法正确的是()A.400名学生中每位学生是个体B.400名学生是总体C.被抽取的50名学生是总体的一个样本D.样本的容量是50【分析】总体是所有调查对象的全体;样本是所抽查对象的情况;所抽查对象的数量;个体是每一个调查的对象.解:A.400名学生中每位学生的体重是个体,故本选项不合题意;B.400名学生的体重是总体,故本选项不合题意;C.被抽取的50名学生的体重是总体的一个样本,故本选项不合题意;D.样本的容量是50,符号题意;故选:D.6.如图,点G是△ABC的重心,联结AG并延长交BC边于点D.设,,那么向量用向量、表示为()A.B.C.D.【分析】G是△ABC的重心,推出AG=2DG,推出AD=3DG,利用三角形法则求出即可解决问题.解:∵G是△ABC的重心,∴AG=2DG,∴AD=3DG,∴=3=3,∵=+=﹣+3,DB=BD,∴=2=6﹣2,故选:C.二、填空题:(本大题共12题,每题4分,满分48分)7.计算:a3÷a=a2.【分析】根据同底数幂相除,底数不变指数相减进行计算即可求解.解:a3÷a=a3﹣1=a2.故答案为:a2.8.在实数范围内分解因式:m2﹣2=.【分析】在实数范围内把2写作()2,原式满足平方差公式的特点,利用平方差公式即可把原式分解因式.解:m2﹣2=m2﹣()2=(m+)(m﹣).故答案为:(m+)(m﹣)9.函数的定义域是x≥﹣3.【分析】根据二次根式的性质,被开方数大于或等于0,可以求出x的范围.解:根据题意得:x+3≥0,解得:x≥﹣3.故答案为:x≥﹣3.10.不等式组的整数解是﹣1,0,1.【分析】先求出每个不等式的解集,再确定其公共解,得到不等式组的解集,然后求其整数解.解:解不等式x+1≥0,得:x≥﹣1,解不等式2﹣x>0,得:x<2,则不等式组的解集为﹣1≤x<2,所以不等式组的整数解为﹣1、0、1,故答案为:﹣1、0、1.11.如果将直线y=3x平移,使其经过点(0,﹣1),那么平移后的直线表达式是y=3x﹣1.【分析】根据平移不改变k的值可设平移后直线的解析式为y=3x+b,然后将点(0,﹣1)代入即可得出直线的函数解析式.解:设平移后直线的解析式为y=3x+b,把(0,﹣1)代入直线解析式得﹣1=b,解得b=﹣1.所以平移后直线的解析式为y=3x﹣1.故答案为:y=3x﹣1.12.从2,3,4,5,6这五个数中任选一个数,选出的这个数是素数的概率是.【分析】这五个数中任选一个数共有5种等可能结果,其中选出的这个数是素数的有2、3、5这3种结果,根据概率公式求解可得.解:从从2,3,4,5,6这五个数中任选一个数共有5种等可能结果,其中选出的这个数是素数的有2、3、5这3种结果,所以选出的这个数是素数的概率是,故答案为:.13.如果点D、E分别是△ABC的AB、AC边的中点,那么△ADE与△ABC的周长之比是1:2.【分析】根据中位线的定理即可求出答案.解:∵点D、E分别是△ABC的AB、AC边的中点,∴DE是△ABC的中位线,∴,∴==故答案为:1:2.14.已知点C在线段AB上,且0<AC<AB.如果⊙C经过点A,那么点B与⊙C的位置关系是点B在⊙C外.【分析】直接根据点与圆的位置关系即可得出结论.解:如图,∵点C在线段AB上,且0<AC<AB,∴BC>AC,∴点B在⊙C外,故答案为:点B在⊙C外.15.随机选取50粒种子在适宜的温度下做发芽天数的试验,试验的结果如表所示.估计该作物种子发芽的天数的平均数约为 1.8天.天数123发芽15305【分析】利用加权平均数的定义列式计算可得.解:估计该作物种子发芽的天数的平均数约为=1.8(天),故答案为:1.8.16.在△ABC中,AB=AC=3,BC=2,将△ABC绕着点B顺时针旋转,如果点A落在射线BC上的点A'处.那么AA'=2.【分析】作AH⊥BC于H,如图,利用等腰三角形的性质得BH=CH=BC=1,利用勾股定理可计算出AH=2,再根据旋转的性质得BA′=BA=3,则HA′=2,然后利用勾股定理可计算出AA′的长.解:作AH⊥BC于H,如图,∵AB=AC=3,BC=2,∴BH=CH=BC=1,∴AH==2,∵△ABC绕着点B顺时针旋转,如果点A落在射线BC上的点A'处,∴BA′=BA=3,∴HA′=2,在Rt△AHA′中,AA′==2.故答案为2.17.在Rt△ABC中,∠ACB=90°,AC=3,BC=4.分别以A、B为圆心画圆,如果⊙A 经过点C,⊙B与⊙A相交,那么⊙B的半径r的取值范围是2<r<8.【分析】根据勾股定理求出斜边AB,根据⊙A经过点C求出⊙A的半径为3,再求出⊙B 的半径范围即可.解:在Rt△ABC中,∠ACB=90°,AC=3,BC=4,由勾股定理得:AB==5,∵⊙A经过点C,∴AD=AC=3,∴BD=2,∵⊙B与⊙A相交,∴⊙B的半径r的取值范围是2<r<8,故答案为:2<r<8.18.小明学习完《相似三角形》一章后,发现了一个有趣的结论:在两个不相似的直角三角形中,分别存在经过直角顶点的一条直线,把直角三角形分成两个小三角形后,如果第一个直角三角形分割出来的一个小三角形与第二个直角三角形分割出来的一个小三角形相似,那么分割出来的另外两个小三角形也相似.他把这样的两条直线称为这两个直角三角形的相似分割线.如图1、图2,直线CG、DH分别是两个不相似的Rt△ABC和Rt△DEF的相似分割线,CG、DH分别与斜边AB、EF交于点G、H,如果△BCG与△DFH相似,AC=3,AB=5,DE=4,DF=8,那么AG=3.【分析】先由勾股定理得出BC的值,再由△BCG∽△DFH列出比例式,设AG=x,用含x的式子表示出DH;按照相似分割线可知,△AGC∽DHE,但要先得出两个相似三角形的边或角是如何对应的,再根据相似三角形的性质列出比例式,解得x值即可.解:∵Rt△ABC,AC=3,AB=5,∴由勾股定理得:BC=4,∵△BCG∽△DFH,∴=,已知DF=8,设AG=x,则BG=5﹣x,∴=,∴DH=10﹣2x,∵△BCG∽△DFH,∴∠B=∠FDH,∠BGC=∠CHF,∴∠AGC=∠DHE,∵∠A+∠B=90°,∠EDH+∠FDH=90°,∴∠A=∠EDH,∴△AGC∽DHE,∴=,又DE=4,∴=,解得:x=3,经检验,x=3是原方程的解,且符合题意.∴AG=3.故答案为:3.三、解答题:(本大题共7题,满分78分)19.计算:.【分析】直接利用二次根式的性质以及分数指数幂的性质分别化简得出答案.解:原式==﹣1﹣2﹣++4=.20.解方程:﹣=1﹣.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.解:去分母得:4x﹣2x﹣4=x2﹣4﹣x+2,即x2﹣3x+2=0,解得:x=1或x=2,经检验x=2是增根,分式方程的解为x=1.21.如图,在Rt△ABC中,∠ACB=90°,AC=BC=4,点D在边BC上,且BD=3CD,DE⊥AB,垂足为点E,联结CE.(1)求线段AE的长;(2)求∠ACE的余切值.【分析】(1)根据锐角三角函数定义即可求出AE的长;(2)过点E作EH⊥AC于点H.根据等腰直角三角形的性质可得EH=AH的值,再根据三角函数即可求出∠ACE的余切值.解:(1)∵BC=4,BD=3CD,∴BD=3.∵AB=BC,∠ACB=90°,∴∠A=∠B=45°.∵DE⊥AB,∴在Rt△DEB中,.∴在Rt△ACB中,,∴(2)如图,过点E作EH⊥AC于点H.∴在Rt△AHE中,,AH=AE•cos45°=,∴,∴EH=AH=,∴在Rt△CHE中,cot∠ECB=,即∠ECB的余切值是.22.某湖边健身步道全长1500米,甲、乙两人同时从同一起点匀速向终点步行.甲先到达终点后立刻返回,在整个步行过程中,甲、乙两人间的距离y(米)与出发的时间x(分)之间的关系如图中OA﹣AB折线所示.(1)用文字语言描述点A的实际意义;(2)求甲、乙两人的速度及两人相遇时x的值.【分析】(1)根据题意结合图象解答即可;(2)根据图象分别求出两人的速度,再根据题意列方程解答即可.解:(1)点A的实际意义为:20分钟时,甲乙两人相距500米.(2)根据题意得,(米/分),(米/分),依题意,可列方程:75(x﹣20)+50(x﹣20)=500,解这个方程,得x=24,答:甲的速度是每分钟75米,乙的速度是每分钟50米,两人相遇时x的值为24.23.如图,在平行四边形ABCD中,BE、DF分别是平行四边形的两个外角的平分线,∠EAF =∠BAD,边AE、AF分别交两条角平分线于点E、F.(1)求证:△ABE∽△FDA;(2)联结BD、EF,如果DF2=AD•AB,求证:BD=EF.【分析】(1)根据角平分线的定义得到∠HDF=∠HDC.根据平行四边形的性质得到AB∥CD.求得∠BAD=∠CDH.等量代换得到∠BAE=∠F,同理∠DAF=∠E,于是得到结论;(2)作AP平分∠DAB交CD于点P,由角平分线的定义得到∠DAP=∠BAD,求得∠HDF=∠DAP,推出DF∥AP,同理BE∥AP,根据相似三角形的性质得到BE=DF,根据平行四边形的性质即可得到结论.解:(1)∵∠EAF=∠BAD,∴∠DAF+∠BAE=∠BAD,∵DF平分∠HDC,∴∠HDF=∠HDC,又∵四边形ABCD是平行四边形,∴AB∥CD,∴∠BAD=∠CDH,∴∠HDF=∠EAF,∴∠HDF=∠DAF+∠BAE,又∵∠HDF=∠DAF+∠F,∴∠BAE=∠F,同理:∠DAF=∠E,∴△ABE∽△FDA;(2)作AP平分∠DAB交CD于点P,∴∠DAP=∠BAD,∵∠HDF=∠CDH,且∠BAD=∠CDH∴∠HDF=∠DAP,∴DF∥AP,同理:BE∥AP,∴DF∥BE,∵△ABE∽△FDA,∴,即BE•DF=AD•AB,又∵DF2=AD•AB,∴BE=DF,∴四边形DFEB是平行四边形,∴BD=EF.24.如图,在平面直角坐标系xOy中,二次函数y=ax2﹣4ax+3的图象与x轴正半轴交于点A、B,与y轴相交于点C,顶点为D,且tan∠CAO=3.(1)求这个二次函数的解析式;(2)点P是对称轴右侧抛物线上的点,联结CP,交对称轴于点F,当S△CDF:S△FDP=2:3时,求点P的坐标;(3)在(2)的条件下,将△PCD沿直线MN翻折,当点P恰好与点O重合时,折痕MN交x轴于点M,交y轴于点N,求的值.【分析】(1)在Rt△AOC中,tan∠CAO==3,求出点A的坐标,即可求解;(2)利用,即可求解;(3)证明∠ONM=∠POH,则.解:(1)∵二次函数y=ax2﹣4ax+3的图象与y轴交于点C,∴点C的坐标为(0,3),∴OC=3,连接AC,在Rt△AOC中,tan∠CAO==3,∴OA=1,将点A(1,0)代入y=ax2﹣4ax+3,得a﹣4a+3=0,解得:a=1.所以,这个二次函数的解析式为y=x2﹣4x+3;(2)过点C作CG⊥DF,过点P作PQ⊥DF,垂足分别为点G、Q.∵抛物线y=x2﹣4x+3的对称轴为直线x=2,∴CG=2,∵,∴PQ=3,∴点P的横坐标为5,∴把x=5代入y=x2﹣4x+3,得y=8,∴点P的坐标为(5,8);(3)过点P作PH⊥OM,垂足分别为点H,∵点P的坐标为(5,8),∴OH=5,PH=8,∵将△PCD沿直线MN翻折,点P恰好与点O重合,∴MN⊥OP,∴∠ONM+∠NOP=90°,又∵∠POH+∠NOP=90°,∴∠ONM=∠POH,∴.25.如图,已知AB是半圆O的直径,AB=6,点C在半圆O上.过点A作AD⊥OC,垂足为点D,AD的延长线与弦BC交于点E,与半圆O交于点F(点F不与点B重合).(1)当点F为的中点时,求弦BC的长;(2)设OD=x,=y,求y与x的函数关系式;(3)当△AOD与△CDE相似时,求线段OD的长.【分析】(1)联结OF,交BC于点H.得出∠BOF=∠COF.则∠AOC=∠COF=∠BOF=60°,可求出BH,BC的长;(2)联结BF.证得OD∥BF,则,即,得出,则得出结论;(3)分两种情况:①当∠DCE=∠DOA时,AB∥CB,不符合题意,舍去,②当∠DCE =∠DAO时,联结OF,证得∠OAF=30°,得出OD=,则答案得出.解:(1)如图1,联结OF,交BC于点H.∵F是中点,∴OF⊥BC,BC=2BH.∴∠BOF=∠COF.∵OA=OF,OC⊥AF,∴∠AOC=∠COF,∴∠AOC=∠COF=∠BOF=60°,在Rt△BOH中,sin∠BOH==,∵AB=6,∴OB=3,∴BH=,∴BC=2BH=3;(2)如图2,联结BF.∵AF⊥OC,垂足为点=D,∴AD=DF.又∵OA=OB,∴OD∥BF,BF=2OD=2x.∴,∴,即,∴,∴y=.(3)△AOD∽△CDE,分两种情况:①当∠DCE=∠DOA时,AB∥CB,不符合题意,舍去.②当∠DCE=∠DAO时,联结OF.∵OA=OF,OB=OC,∴∠OAF=∠OFA,∠OCB=∠OBC.∵∠DCE=∠DAO,∴∠OAF=∠OFA=∠OCB=∠OBC.∵∠AOD=∠OCB+∠OBC=2∠OAF,∴∠OAF=30°,∴OD=.即线段OD的长为.。
上海市青浦区2019-2020学年中考数学二月模拟试卷含解析
上海市青浦区2019-2020学年中考数学二月模拟试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.计算(﹣3)﹣(﹣6)的结果等于()A.3 B.﹣3 C.9 D.182.如图,将△ABC沿着点B到C的方向平移到△DEF的位置,AB=10,DO=4,平移距离为6,则阴影部分面积为()A.42 B.96 C.84 D.483.由6个大小相同的正方体搭成的几何体如图所示,比较它的正视图、左视图和俯视图的面积,则()A.三个视图的面积一样大B.主视图的面积最小C.左视图的面积最小D.俯视图的面积最小4.若点M(﹣3,y1),N(﹣4,y2)都在正比例函数y=﹣k2x(k≠0)的图象上,则y1与y2的大小关系是()A.y1<y2B.y1>y2C.y1=y2D.不能确定5.如果将直线l1:y=2x﹣2平移后得到直线l2:y=2x,那么下列平移过程正确的是()A.将l1向左平移2个单位B.将l1向右平移2个单位C.将l1向上平移2个单位D.将l1向下平移2个单位6.如图,直线m∥n,直角三角板ABC的顶点A在直线m上,则∠α的余角等于()A.19°B.38°C.42°D.52°7.如图,点A是反比例函数y=kx的图象上的一点,过点A作AB⊥x轴,垂足为B.点C为y轴上的一点,连接AC,BC.若△ABC的面积为3,则k的值是()A.3 B.﹣3 C.6 D.﹣68.如图,正方形ABCD中,对角线AC、BD交于点O,∠BAC的平分线交BD于E,交BC于F,BH⊥AF 于H,交AC于G,交CD于P,连接GE、GF,以下结论:①△OAE≌△OBG;②四边形BEGF是菱形;③BE=CG;④PG2AE=﹣1;⑤S△PBC:S△AFC=1:2,其中正确的有()个.A.2 B.3 C.4 D.59.如图,抛物线y=-x2+mx的对称轴为直线x=2,若关于x的-元二次方程-x2+mx-t=0 (t为实数)在l<x<3的范围内有解,则t的取值范围是( )A.-5<t≤4B.3<t≤4C.-5<t<3 D.t>-510.甲、乙两人同时分别从A,B两地沿同一条公路骑自行车到C地.已知A,C两地间的距离为110千米,B,C两地间的距离为100千米.甲骑自行车的平均速度比乙快2千米/时.结果两人同时到达C地.求两人的平均速度,为解决此问题,设乙骑自行车的平均速度为x千米/时.由题意列出方程.其中正确的是()A.1101002x x=+B.1101002x x=+C.1101002x x=-D.1101002x x=-11.某班将举行“庆祝建党95周年知识竞赛”活动,班长安排小明购买奖品,如图是小明买回奖品时与班长的对话情境:请根据如图对话信息,计算乙种笔记本买了()A.25本B.20本C.15本D.10本12.在1-7月份,某种水果的每斤进价与出售价的信息如图所示,则出售该种水果每斤利润最大的月份是()A.3月份B.4月份C.5月份D.6月份二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图,在△ABC中,BC=7,32AC=,tanC=1,点P为AB边上一动点(点P不与点B重合),以点P为圆心,PB 为半径画圆,如果点C在圆外,那么PB的取值范围______.14.分式方程2154x=-的解是_____.15.如图,⊙O的半径为2,AB为⊙O的直径,P为AB延长线上一点,过点P作⊙O的切线,切点为C.若PC=23,则BC的长为______.16.一般地,当α、β为任意角时,sin(α+β)与sin(α﹣β)的值可以用下面的公式求得:sin(α+β)=sinα•cosβ+cosα•sinβ;sin(α﹣β)=sinα•cosβ﹣cosα•sinβ.例如sin90°=sin(60°+30°)=sin60°•cos30°+cos60°•sin30°=331122⨯+⨯=1.类似地,可以求得sin15°的值是_______.17.圆锥的底面半径为4cm,高为5cm,则它的表面积为______ cm1.18.如图,在Rt△ABC中,∠ACB=90°,AC=4,BC=3,点D为AB的中点,将△ACD绕着点C逆时针旋转,使点A落在CB的延长线A′处,点D落在点D′处,则D′B长为_____.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)随着互联网的发展,同学们的学习习惯也有了改变,一些同学在做题遇到困难时,喜欢上网查找答案.针对这个问题,某校调查了部分学生对这种做法的意见(分为:赞成、无所谓、反对),并将调查结果绘制成图1和图2两个不完整的统计图.请根据图中提供的信息,解答下列问题:此次抽样调查中,共调查了多少名学生?将图1补充完整;求出扇形统计图中持“反对”意见的学生所在扇形的圆心角的度数;根据抽样调查结果,请你估计该校1500名学生中有多少名学生持“无所谓”意见.20.(6分)某生姜种植基地计划种植A,B两种生姜30亩.已知A,B两种生姜的年产量分别为2000千克/亩、2500千克/亩,收购单价分别是8元/千克、7元/千克.(1)若该基地收获两种生姜的年总产量为68000千克,求A,B两种生姜各种多少亩?(2)若要求种植A种生姜的亩数不少于B种的一半,那么种植A,B两种生姜各多少亩时,全部收购该基地生姜的年总收入最多?最多是多少元?21.(6分)我市304国道通辽至霍林郭勒段在修建过程中经过一座山峰,如图所示,其中山脚A、C两地海拔高度约为1000米,山顶B处的海拔高度约为1400米,由B处望山脚A处的俯角为30°,由B处望山脚C处的俯角为45°,若在A、C两地间打通一隧道,求隧道最短为多少米(结果取整数,参考数据3)22.(8分)如图,四边形ABCD中,AC平分∠DAB,AC2=AB•AD,∠ADC=90°,E为AB的中点.(1)求证:△ADC∽△ACB;(2)CE与AD有怎样的位置关系?试说明理由;(3)若AD=4,AB=6,求ACAF的值.23.(8分)“铁路建设助推经济发展”,近年来我国政府十分重视铁路建设.渝利铁路通车后,从重庆到上海比原铁路全程缩短了320千米,列车设计运行时速比原铁路设计运行时速提高了120千米/小时,全程设计运行时间只需8小时,比原铁路设计运行时间少用16小时.(1)渝利铁路通车后,重庆到上海的列车设计运行里程是多少千米?(2)专家建议:从安全的角度考虑,实际运行时速减少m%,以便于有充分时间应对突发事件,这样,从重庆到上海的实际运行时间将增加109m%小时,求m的值.24.(10分)先化简:241133aa a-⎛⎫÷+⎪--⎝⎭,再从3-、2、3中选择一个合适的数作为a的值代入求值.25.(10分)如图,在△ABC中,AB=AC,D为BC的中点,DE⊥AB,DF⊥AC,垂足分别为E、F,求证:DE=DF.26.(12分)如图,梯形ABCD中,AD∥BC,AE⊥BC于E,∠ADC的平分线交AE于点O,以点O 为圆心,OA为半径的圆经过点B,交BC于另一点F.(1)求证:CD与⊙O相切;(2)若BF=24,OE=5,求tan∠ABC的值.27.(12分)已知y 关于x 的二次函数22(0).y ax bx a =--≠(1)当2,4a b ==时,求该函数图像的顶点坐标.(2)在(1)条件下,(,)P m t 为该函数图像上的一点,若p 关于原点的对称点p '也落在该函数图像上,求m 的值(3)当函数的图像经过点(1,0)时,若12113(,),(,)22A y B y a-是该函数图像上的两点,试比较1y 与2y 的大小.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.A【解析】原式=−3+6=3,故选A2.D【解析】【分析】【详解】由平移的性质知,BE=6,DE=AB=10,∴OE=DE ﹣DO=10﹣4=6,∴S 四边形ODFC =S 梯形ABEO =12(AB+OE )•BE=12(10+6)×6=1. 故选D.【点睛】本题考查平移的性质,平移前后两个图形大小,形状完全相同,图形上的每个点都平移了相同的距离,对应点之间的距离就是平移的距离.3.C【解析】试题分析:根据三视图的意义,可知正视图由5个面,左视图有3个面,俯视图有4个面,故可知主视图的面积最大.故选C考点:三视图4.A【解析】【分析】根据正比例函数的增减性解答即可.【详解】∵正比例函数y=﹣k2x(k≠0),﹣k2<0,∴该函数的图象中y随x的增大而减小,∵点M(﹣3,y1),N(﹣4,y2)在正比例函数y=﹣k2x(k≠0)图象上,﹣4<﹣3,∴y2>y1,故选:A.【点睛】本题考查了正比例函数图象与系数的关系:对于y=kx(k为常数,k≠0),当k>0时,y=kx的图象经过一、三象限,y随x的增大而增大;当k<0时,y=kx的图象经过二、四象限,y随x的增大而减小. 5.C【解析】【分析】根据“上加下减”的原则求解即可.【详解】将函数y=2x﹣2的图象向上平移2个单位长度,所得图象对应的函数解析式是y=2x.故选:C.【点睛】本题考查的是一次函数的图象与几何变换,熟知函数图象变换的法则是解答此题的关键.6.D【解析】试题分析:过C作CD∥直线m,∵m∥n,∴CD∥m∥n,∴∠DCA=∠FAC=52°,∠α=∠DCB,∵∠ACB=90°,∴∠α=90°﹣52°=38°,则∠a的余角是52°.故选D.考点:平行线的性质;余角和补角.7.D【解析】试题分析:连结OA ,如图,∵AB ⊥x 轴,∴OC ∥AB ,∴S △OAB =S △CAB =3,而S △OAB =|k|,∴|k|=3,∵k <0,∴k=﹣1.故选D .考点:反比例函数系数k 的几何意义.8.C【解析】【分析】根据AF 是∠BAC 的平分线,BH ⊥AF ,可证AF 为BG 的垂直平分线,然后再根据正方形内角及角平分线进行角度转换证明EG =EB ,FG =FB ,即可判定②选项;设OA =OB =OC =a ,菱形BEGF 的边长为b ,由四边形BEGF 是菱形转换得到CF 2GF =2BF ,由四边形ABCD 是正方形和角度转换证明△OAE ≌△OBG ,即可判定①;则△GOE 是等腰直角三角形,得到GE 2OG ,整理得出a ,b 的关系式,再由△PGC ∽△BGA ,得到BG PG=2,从而判断得出④;得出∠EAB =∠GBC 从而证明△EAB ≌△GBC ,即可判定③;证明△FAB ≌△PBC 得到BF =CP ,即可求出PBC AFC S S V V ,从而判断⑤. 【详解】解:∵AF 是∠BAC 的平分线,∴∠GAH =∠BAH ,∵BH ⊥AF ,∴∠AHG =∠AHB =90°,在△AHG 和△AHB 中GAH BAH AH AHAHG AHB ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴△AHG ≌△AHB (ASA ),∴GH =BH ,∴AF 是线段BG 的垂直平分线,∴EG =EB ,FG =FB ,∵四边形ABCD 是正方形,∴∠BAF =∠CAF =12×45°=22.5°,∠ABE =45°,∠ABF =90°, ∴∠BEF =∠BAF+∠ABE =67.5°,∠BFE =90°﹣∠BAF =67.5°, ∴∠BEF =∠BFE ,∴EB =FB ,∴EG =EB =FB =FG ,∴四边形BEGF 是菱形;②正确;设OA =OB =OC =a ,菱形BEGF 的边长为b , ∵四边形BEGF 是菱形,∴GF ∥OB ,∴∠CGF =∠COB =90°,∴∠GFC =∠GCF =45°,∴CG =GF =b ,∠CGF =90°,∴CFGFBF ,∵四边形ABCD 是正方形,∴OA =OB ,∠AOE =∠BOG =90°,∵BH ⊥AF ,∴∠GAH+∠AGH =90°=∠OBG+∠AGH ,∴∠OAE =∠OBG ,在△OAE 和△OBG 中OAE OBG OA OBAOE BOG ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴△OAE ≌△OBG (ASA ),①正确;∴OG =OE =a ﹣b ,∴△GOE 是等腰直角三角形, ∴GEOG ,∴b(a ﹣b ),整理得a=22+b , ∴AC =2a =()b ,AG =AC ﹣CG =()b , ∵四边形ABCD 是正方形, ∴PC ∥AB , ∴BG PG =AG C G=(1b b+=, ∵△OAE ≌△OBG ,∴AE =BG , ∴AE PG=, ∴PG AE=1,④正确; ∵∠OAE =∠OBG ,∠CAB =∠DBC =45°, ∴∠EAB =∠GBC ,在△EAB 和△GBC 中EAB GBC AB BCABE BCG 45︒∠=∠⎧⎪=⎨⎪∠=∠=⎩, ∴△EAB ≌△GBC (ASA ), ∴BE =CG ,③正确;在△FAB 和△PBC 中FAB PBC AB BCABF BCP 90︒∠=∠⎧⎪=⎨⎪∠=∠=⎩, ∴△FAB ≌△PBC (ASA ), ∴BF =CP , ∴PBC AFC S S V V =1212BC CP AB CF ⋅⋅=CP CF=2,⑤错误; 综上所述,正确的有4个,故选:C .【点睛】本题综合考查了全等三角形的判定与性质,相似三角形,菱形的判定与性质等四边形的综合题.该题难度较大,需要学生对有关于四边形的性质的知识有一系统的掌握.9.B【解析】【分析】先利用抛物线的对称轴方程求出m 得到抛物线解析式为y=-x 2+4x ,配方得到抛物线的顶点坐标为(2,4),再计算出当x=1或3时,y=3,结合函数图象,利用抛物线y=-x 2+4x 与直线y=t 在1<x <3的范围内有公共点可确定t 的范围.【详解】∵ 抛物线y=-x 2+mx 的对称轴为直线x=2,∴222(1)b m a -=-=⨯-, 解之:m=4,∴y=-x 2+4x ,当x=2时,y=-4+8=4,∴顶点坐标为(2,4),∵ 关于x 的-元二次方程-x 2+mx-t=0 (t 为实数)在l<x<3的范围内有解,当x=1时,y=-1+4=3,当x=2时,y=-4+8=4,∴ 3<t≤4,故选:B【点睛】本题考查了抛物线与x 轴的交点:把求二次函数y=ax 2+bx+c (a ,b ,c 是常数,a≠0)与x 轴的交点坐标问题转化为解关于x 的一元二次方程.也考查了二次函数的性质.10.A【解析】设乙骑自行车的平均速度为x 千米/时,则甲骑自行车的平均速度为(x+2)千米/时,根据题意可得等量关系:甲骑110千米所用时间=乙骑100千米所用时间,根据等量关系可列出方程即可.解:设乙骑自行车的平均速度为x 千米/时,由题意得:1102x +=100x, 故选A .11.C【解析】【分析】设甲种笔记本买了x 本,甲种笔记本的单价是y 元,则乙种笔记本买了(40﹣x )本,乙种笔记本的单价是(y+3)元,根据题意列出关于x 、y 的二元一次方程组,求出x 、y 的值即可.【详解】解:设甲种笔记本买了x 本,甲种笔记本的单价是y 元,则乙种笔记本买了(40﹣x )本,乙种笔记本的单价是(y+3)元,根据题意,得:()()1254033006813xy xy x y =⎧⎨+-+=-+⎩, 解得:2515x y =⎧⎨=⎩, 答:甲种笔记本买了25本,乙种笔记本买了15本.故选C .【点睛】本题考查的是二元二次方程组的应用,能根据题意得出关于x 、y 的二元二次方程组是解答此题的关键. 12.B【解析】【分析】【详解】解:各月每斤利润:3月:7.5-4.5=3元,4月:6-2.5=3.5元,5月:4.5-2=2.5元,6月:3-1.5=1.5元,所以,4月利润最大,故选B .二、填空题:(本大题共6个小题,每小题4分,共24分.)13.3508<<PB 【解析】分析:根据题意作出合适的辅助线,然后根据题意即可求得PB 的取值范围.详解:作AD ⊥BC 于点D ,作PE ⊥BC 于点E .∵在△ABC 中,BC=7,,tanC=1,∴AD=CD=3,∴BD=4,∴AB=5,由题意可得,当PB=PC 时,点C 恰好在以点P 为圆心,PB 为半径圆上.∵AD ⊥BC ,PE ⊥BC ,∴PE ∥AD ,∴△BPE ∽△BDA ,∴BE BP BD BA =,即7245BP =,得:BP=358.故答案为0<PB <358.点睛:本题考查了点与圆的位置关系、解直角三角形,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.14.x=13【解析】【分析】解分式方程的步骤:①去分母;②求出整式方程的解;③检验;④得出结论.【详解】2154x =-, 去分母,可得x ﹣5=8,解得x=13,经检验:x=13是原方程的解.【点睛】本题主要考查了解分式方程,解分式方程时,去分母后所得整式方程的解有可能使原方程中的分母为0,所以应检验.15.2【解析】【分析】连接OC ,根据勾股定理计算OP=4,由直角三角形30度的逆定理可得∠OPC=30°,则∠COP=60°,可得△OCB 是等边三角形,从而得结论.【详解】连接OC ,∵PC 是⊙O 的切线,∴OC ⊥PC ,∴∠OCP=90°,∵OC=2,∴=4,∴∠OPC=30°,∴∠COP=60°,∵OC=OB=2,∴△OCB 是等边三角形,∴BC=OB=2,故答案为2【点睛】本题考查切线的性质、等腰三角形的性质、等边三角形的判定等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.16.4. 【解析】试题分析:sin15°=sin (60°﹣45°)=sin60°•cos45°﹣cos60°•sin45°=12222-⨯=4.故答考点:特殊角的三角函数值;新定义.17.16)π【解析】【分析】利用勾股定理求得圆锥的母线长,则圆锥表面积=底面积+侧面积=π×底面半径的平方+底面周长×母线长÷1. 【详解】底面半径为4cm,则底面周长=8πcm,底面面积=16πcm 1;由勾股定理得,母线长,圆锥的侧面面积2182π⨯,∴它的表面积 )cm 1=()16π cm 1 ,故答案为:()16π.【点睛】本题考查了有关扇形和圆锥的相关计算.解题思路:解决此类问题时要紧紧抓住两者之间的两个对应关系:(1)圆锥的母线长等于侧面展开图的扇形半径;(1)圆锥的底面周长等于侧面展开图的扇形弧长.正确对这两个关系的记忆是解题的关键.18.13.【解析】【详解】试题分析:解:∵在Rt△ABC中,∠ACB=90°,AC=4,BC=3,∴AB=5,∵点D为AB的中点,∴CD=AD=BD=AB=2.5,过D′作D′E⊥BC,∵将△ACD绕着点C逆时针旋转,使点A落在CB的延长线A′处,点D落在点D′处,∴CD′=AD=A′D′,∴D′E==1.5,∵A′E=CE=2,BC=3,∴BE=1,∴BD′=,故答案为.考点:旋转的性质.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.()1200名;()2见解析;()336o;(4)375.【解析】【分析】()1根据统计图中的数据可以求得此次抽样调查中,共调查了多少名学生;()2根据()1中的结果和统计图中的数据可以求得反对的人数,从而可以将条形统计图补充完整; ()3根据统计图中的数据可以求得扇形统计图中持“反对”意见的学生所在扇形的圆心角的度数; ()4根据统计图中的数据可以估计该校1500名学生中有多少名学生持“无所谓”意见.【详解】解:()113065%200÷=,答:此次抽样调查中,共调查了200名学生;()2反对的人数为:2001305020--=,补全的条形统计图如右图所示;()3扇形统计图中持“反对”意见的学生所在扇形的圆心角的度数是:2036036200⨯=o o ; (4)501500375200⨯=, 答:该校1500名学生中有375名学生持“无所谓”意见.【点睛】本题考查条形统计图、扇形统计图、用样本估计总体,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.20.(1)种植A 种生姜14亩,种植B 种生姜16亩;(2) 种植A 种生姜10亩,种植B 种生姜20亩时,全部收购该基地生姜的年总收入最多,最多为510000元.【解析】试题分析:(1)设该基地种植A 种生姜x 亩,那么种植B 种生姜(30-x )亩,根据:A 种生姜的产量+B 种生姜的产量=总产量,列方程求解;(2)设A 种生姜x 亩,根据A 种生姜的亩数不少于B 种的一半,列不等式求x 的取值范围,再根据(1)的等量关系列出函数关系式,在x 的取值范围内求总产量的最大值.试题解析:(1)设该基地种植A 种生姜x 亩,那么种植B 种生姜(30-x)亩,根据题意,2000x+2500(30-x)=68000,解得x=14,∴30-x=16,答:种植A 种生姜14亩,种植B 种生姜16亩;(2)由题意得,x≥(30-x),解得x≥10,设全部收购该基地生姜的年总收入为y 元,则y=8×2000x+7×2500(30-x)=-1500x+525000,∵y随x的增大而减小,∴当x=10时,y有最大值,此时,30-x=20,y的最大值为510000元,答:种植A种生姜10亩,种植B种生姜20亩时,全部收购该基地生姜的年总收入最多,最多为510000元.【点睛】本题考查了一次函数的应用.关键是根据总产量=A种生姜的产量+B种生姜的产量,列方程或函数关系式.21.隧道最短为1093米.【解析】【分析】作BD⊥AC于D,利用直角三角形的性质和三角函数解答即可.【详解】如图,作BD⊥AC于D,由题意可得:BD=1400﹣1000=400(米),∠BAC=30°,∠BCA=45°,在Rt△ABD中,∵tan30°=BDAD,即4003AD=∴3(米),在Rt△BCD中,∵tan45°=BDCD,即4001CD=,∴CD=400(米),∴3(米),答:隧道最短为1093米.【点睛】本题考查了解直角三角形的应用,正确添加辅助线构建直角三角形是解题的关键.22.(1)证明见解析;(2)CE∥AD,理由见解析;(3)74.【解析】【分析】(1)根据角平分线的定义得到∠DAC=∠CAB,根据相似三角形的判定定理证明;(2)根据相似三角形的性质得到∠ACB=∠ADC=90°,根据直角三角形的性质得到CE=AE,根据等腰三角形的性质、平行线的判定定理证明;(3)根据相似三角形的性质列出比例式,计算即可.【详解】解:(1)∵AC 平分∠DAB ,∴∠DAC=∠CAB ,又∵AC 2=AB•AD ,∴AD :AC=AC :AB ,∴△ADC ∽△ACB ;(2)CE ∥AD ,理由:∵△ADC ∽△ACB ,∴∠ACB=∠ADC=90°,又∵E 为AB 的中点,∴∠EAC=∠ECA ,∵∠DAC=∠CAE ,∴∠DAC=∠ECA ,∴CE ∥AD ;(3)∵AD=4,AB=6,CE=12AB=AE=3, ∵CE ∥AD ,∴∠FCE=∠DAC ,∠CEF=∠ADF ,∴△CEF ∽△ADF , ∴CF AF =CE AD =34, ∴AC AF =74. 23.(1)1600千米;(2)1【解析】试题分析:(1)利用“从重庆到上海比原铁路全程缩短了320千米,列车设计运行时速比原铁路设计运行时速提高了l20千米/小时,全程设计运行时间只需8小时,比原铁路设计运行时间少用16小时”,分别得出等式组成方程组求出即可;(2)根据题意得出方程(80+120)(1-m%)(8+109m%)=1600,进而解方程求出即可. 试题解析:(1)设原时速为xkm/h ,通车后里程为ykm ,则有: ()()8120816320x y x y ⎧+⎪⎨++⎪⎩== ,解得:801600x y ⎧⎨⎩==. 答:渝利铁路通车后,重庆到上海的列车设计运行里程是1600千米;(2)由题意可得出:(80+120)(1﹣m%)(8+109m%)=1600, 解得:m 1=1,m 2=0(不合题意舍去),答:m 的值为1.24.-1.【解析】【分析】根据分式的加法和除法可以化简题目中的式子,然后在3-、2、3中选择一个使得原分式有意义的值代入化简后的式子即可解答本题.【详解】 241133a a a -⎛⎫÷+ ⎪--⎝⎭()()223133a a a a a +--+=÷-- ()()22332a a a a a +--=⋅-- 2a =+,当3a =-时,原式321=-+=-.故答案为:-1.【点睛】本题考查分式的化简求值,解答本题的关键是明确分式化简求值的方法.25.答案见解析【解析】由于AB=AC ,那么∠B=∠C ,而DE ⊥AC ,DF ⊥AB 可知∠BFD=∠CED=90°,又D 是BC 中点,可知BD=CD ,利用AAS 可证△BFD ≌△CED ,从而有DE=DF .26.(1)证明见解析;(2)32【解析】试题分析:(1)过点O 作OG ⊥DC ,垂足为G .先证明∠OAD=90°,从而得到∠OAD=∠OGD=90°,然后利用AAS 可证明△ADO ≌△GDO ,则OA=OG=r ,则DC 是⊙O 的切线;(2)连接OF ,依据垂径定理可知BE=EF=1,在Rt △OEF 中,依据勾股定理可知求得OF=13,然后可得到AE 的长,最后在Rt △ABE 中,利用锐角三角函数的定义求解即可.试题解析:(1)证明:过点O 作OG ⊥DC ,垂足为G .∵AD ∥BC ,AE ⊥BC 于E ,∴OA ⊥AD .∴∠OAD=∠OGD=90°.在△ADO 和△GDO 中OAD OGD ADO GDO OD OD ∠∠⎧⎪∠∠⎨⎪⎩===,∴△ADO ≌△GDO .∴OA=OG .∴DC 是⊙O 的切线.(2)如图所示:连接OF .∵OA ⊥BC ,∴BE=EF=12BF=1. 在Rt △OEF 中,OE=5,EF=1,∴2213OE EF +=,∴AE=OA+OE=13+5=2.∴tan ∠ABC =32AE BE =. 【点睛】本题主要考查的是切线的判定、垂径定理、勾股定理的应用、锐角三角函数的定义,掌握本题的辅助线的作法是解题的关键.27.(1)2242y x x =-- 2214x =--(),顶点坐标(1,-4);(2)m=±1;(3)①当a >0时,y 2>y 1 ,②当a <0时,y 1>y 2 .【解析】试题分析:(1)把a=2,b=4代入22y ax bx =--并配方,即可求出此时二次函数图象的顶点坐标;(2)由题意把(m ,t )和(-m ,-t )代入(1)中所得函数的解析式,解方程组即可求得m 的值; (3)把点(1,0)代入22y ax bx =--可得b=a-2,由此可得抛物线的对称轴为直线:2112222b b a x a a a a--=-===-,再分a>0和a<0两种情况分别讨论即可y 1和y 2的大小关系了. 试题解析:(1)把a=2,b=4代入22y ax bx =--得:222422(1)4y x x x =--=--, ∴此时二次函数的图象的顶点坐标为(1,-4);(2)由题意,把(m ,t )和(-m ,-t )代入2242y x x =--得: 2242m m t --=①,2242m m t +-=-②,由①+②得:2440m -=,解得:1m =±;(3)把点(1,0)代入22y ax bx =--得a-b-2=0,∴b=a-2, ∴此时该二次函数图象的对称轴为直线:2112222b b a x a a a a--=-===-, ①当a>0时,1111()22a a--=,13112()()22a a a ---=, ∵此时21a a >,且抛物线开口向上, ∴12113,,,22A y B y a ⎛⎫⎛⎫- ⎪ ⎪⎝⎭⎝⎭中,点B 距离对称轴更远, ∴y 1<y 2;②当a<0时,1111()22a a --=-,13112()()22a a a---=-, ∵此时12a a -<-,且抛物线开口向下, ∴12113,,,22A y B y a ⎛⎫⎛⎫- ⎪ ⎪⎝⎭⎝⎭中,点B 距离对称轴更远, ∴y 1>y 2;综上所述,当a>0时,y 1<y 2;当a<0时,y 1>y 2.点睛:在抛物线上:(1)当抛物线开口向上时,抛物线上的点到对称轴的距离越远,所对应的函数值就越大;(2)当抛物线开口向下时,抛物线上的点到对称轴的距离越近,所对应的函数值就越大;。
上海市青浦区2020年中考数学二模试卷解析版
三角形中,分别存在经过直角顶点的一条直线,把直角三角形分成两个小三角形后 ,如果第一个直角三角形分割出来的一个小三角形与第二个直角三角形分割出来的 一个小三角形相似,那么分割出来的另外两个小三角形也相似.他把这样的两条直 线称为这两个直角三角形的相似分割线. 如图 1、图 2,直线 CG、DH 分别是两个不相似的 Rt△ABC 和 Rt△DEF 的相似分割 线,CG、DH 分别与斜边 AB、EF 交于点 G、H,如果△BCG 与△DFH 相似,AC=3 ,AB=5,DE=4,DF=8,那么 AG=______.
计该作物种子发芽的天数的平均数约为______天. 天数 1 2 3
发芽 15 30 5 16. 在△ABC 中,AB=AC=3,BC=2,将△ABC 绕着点 B 顺时针旋转,如果点 A 落在射
线 BC 上的点 A'处.那么 AA'=______. 17. 在 Rt△ABC 中,∠ACB=90°,AC=3,BC=4.分别以 A、B 为圆心画圆,如果⊙A 经
A. 400 名学生中每位学生是个体
B. 400 名学生是总体
C. 被抽取的 50 名学生是总体的一个样本
D. 样本的容量是 50
6. 如图,点 G 是△ABC 的重心,联结 AG 并延长交 BC 边
于点 D.设
,
,那么向量 用向量 、 表示为
( )
A.
B.
C.
D.
二、填空题(本大题共 12 小题,共 48.0 分)
三、计算题(本大题共 1 小题,共 10.0 分) 19. 解方程: - =1- .
2024年上海市青浦区中考数学二模试卷+答案解析
2024年上海市青浦区中考数学二模试卷一、选择题:本题共6小题,每小题4分,共24分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.下列二次根式中,与是同类二次根式的是()A.B.C.D.2.下列计算正确的是()A. B.C.D.3.下列函数中,函数值y 随自变量x 的值增大而增大的是()A.B.C.D.4.某兴趣小组有5名成员,身高厘米分别为:161,165,169,163,增加一名身高为165厘米的成员后,现兴趣小组成员的身高与原来相比,下列说法正确的是()A.平均数不变,方差不变 B.平均数不变,方差变小C.平均数不变,方差变大D.平均数变小,方差不变5.已知四边形ABCD 中,AB 与CD 不平行,AC 与BD 相交于点O ,那么下列条件中,能判断这个四边形为等腰梯形的是()A. B.C.,D.,6.如图,在平行四边形ABCD 中,对角线AC 、BD 相交于点O ,过O 作AC 的垂线交AD 于点E ,EC 与BD 相交于点F ,且,那么下列结论错误的是()A. B.C.D.二、填空题:本题共12小题,每小题4分,共48分。
7.分解因式:______.8.方程的解是______.9.函数的定义域是______.10.如果关于x的方程有实数根,那么实数c的取值范围是______.11.如果将抛物线向右平移3个单位,那么所得新抛物线的表达式是______.12.甲、乙两位同学分别在A、B、C三个景点中任意选择一个游玩,那么他们选择同一个景点的概率是______.13.某校有2000名学生参加了“安全伴我行”的宣传教育活动.为了解活动效果,随机从中抽取m名学生进行了一次测试,满分为100分,按成绩划分为A,B,C,D四个等级,将收集的数据整理绘制成如下不完整的统计图表.请根据以上信息,估计该校共有______名学生的成绩达到A等级.成绩频数分布表等级成绩x频数A nB117C32D814.如图,热气球的探测器显示,从热气球A处看一栋楼顶部B的仰角为,看这栋楼底部C的俯角为,热气球A处与楼的水平距离为m米,那么这栋楼BC的高度为______米用含、、m的式子表示15.如图,在中,中线AD、BE相交于点F,设,,那么向量用向量、表示为______.16.如图,有一幅不完整的正多边形图案,小明量得图中一边与对角线的夹角,那么这个正多边形的中心角是______度.17.正方形ABCD的边长为1,E为边DC的中点,点F在边AD上,将沿直线EF翻折,使点D落在点G处,如果,那么线段DF的长为______.18.在矩形ABCD中,,,AC与BD相交于点经过点B,如果与有公共点,且与边CD没有公共点,那么的半径长r的取值范围是______.三、解答题:本题共7小题,共78分。
2019~2020学年上海市青浦区九年级二模数学试卷及参考答案
2019~2020学年上海市青浦区九年级二模数学试卷(时间:100分钟,满分150分)一、选择题(本大题共6题,每题4分,满分24分) 1.(0)a a ≠的倒数是( )(A )a ; (B )a -; (C )1a;(D )1a -.2. 计算2(2)x -的结果,正确的是( )(A )22x ;(B )22x -;(C )24x ;(D )24x -.3. 如果反比例函数ky x =的图像分布在第二、四象限,那么k 的取值范围是( ) (A )0k >;(B )0k <; (C )0k ≥; (D )0k ≤.4. 下列方程中,没有实数根的是( )(A )220x x -=;(B )2210x x --=; (C )2210x x -+=;(D )2220x x -+=.5. 为了了解某校初三400名学生的体重情况,从中抽取50名学生的体重进行分析,在这项调查中,下列说法正确的是( ) (A )400名学生中每位学生是个体;(B )400名学生是总体;(C )被抽取的50名学生是总体的一个样本;(D )样本容量是50.6. 如图,点G 是ABC △的重心,联结AG 并延长交BC 边于点D .设AB a =u u u r r ,GD b =u u u r r,那么向量BC u u u r 用向量a r 、b r表示为( )(A )32BC b a =-u u u r r r ; (B )32BC b a =+u u u r r r ;(C )62BC b a =-u u u r r r ; (D )62BC b a =+u u u r r r .第6题图二、填空题(本大题共12题,每题4分,满分48分) 7. 计算:3a a ÷=____________.8. 在实数范围内因式分解:22m -=____________.9. 函数y ____________. 10. 不等式组10;20.x x +≥⎧⎨->⎩的解集是____________.11. 如果将直线3y x =平移,使其经过点(0,1)-,那么平移后的直线表达式是__________. 12. 从2、3、4、5、6这五个数中任选一个数,选出的这个数是素数的概率是________.13.如果点D、E分别是ABC△边的中点,那么ADE△与ABC△的周长之比是_______.14.已知点C在线段AB上,且12AC AB<<.如果⊙C经过点A,那么点B与⊙C的位置关系是____________.15.随机选取50粒种子在适宜的温度下做发芽天数的试验,试验的结果如下表所示.估计该作物种子发芽的天数的平均数约为_________天.16.在ABC△中,3AB AC==,2BC=,将ABC△绕着点B顺时针旋转,如果点A落在射线BC上的点'A处,那么'AA=____________.17.在Rt ABC△中,90ACB∠=︒,3AC=,4BC=,分别以A、B为圆心画圆,如果⊙A 经过点C,⊙B与⊙A相交,那么⊙B的半径r的取值范围是____________.18.小明学习完《相似三角形》一章后,发现了一个有趣的结论:在两个不相似的直角三角形中,分别存在经过直角顶点的一条直线,把直角三角形分成两个小三角形后,如果第一个直角三角形分割出来的一个小三角形与第二个直角三角形分割出来的一个小三角形相似,那么分割出来的另外两个三角形也相似,他把这样的两条直线称为这两个直角三角形的相似分割线.如图,直线CG、DH分别是两个不相似的Rt ABC△和Rt DEF△的相似分割线,CG、DH分别与斜边AB、EF交于点G、H,如果BCG△与DFH△相似,3AC=,5AB=,4DE=,8DF=,那么AG=____________.第18题图三、解答题(本大题共7题,满分78分)19.(本题满分10分)-2121182⎛⎫-- ⎪⎝⎭.20. (本题满分10分)解方程:24211422x x x x -=---+.21. (本题满分10分,每小题各5分)如图,在Rt ABC △中,90ACB ∠=︒,4AC BC ==,点D 在边BC 上,且3BD CD =,DE AB ⊥,垂足为点E ,联结CE .(1)求线段AE 的长;(2)求ACE ∠的余切值.22. (本题满分1哦分,其中第(1)小题3分,第(2)小题7分)某湖边健身步道全长1500米,甲、乙两人同时从同一起点匀速向终点步行.甲先到达终点后立刻返回,在整个步行过程中,甲、乙两人间的距离y (米)与出发时间x (分)之间的关系如图中OA AB -折线所示.(1)用文字语言描述点A 的实际意义; (2)求甲、乙两人的速度及两人相遇时x 的值.23. (本题满分12分,其中第(1)小题7分,第(2)小题5分)如图,在平行四边形ABCD 中,BE 、DF 分别是平行四边形的两个外角的平分线,12EAF BAD ∠=∠,边AE 、AF 分别交两条交平分线于点E 、F .(1)求证:ABE △∽FDA △;(2)联结BD 、EF ,如果2DF AD AB =⋅,求证:BD EF =.24. (本题满分12分,每小题各4分)如图,在平面直角坐标系xOy 中,二次函数243y ax ax =-+的图像与x 轴正半轴交于点A 、B ,与y 轴交于点C ,顶点为D ,且tan 3CAO ∠=.(1)求这个二次函数的解析式;(2)点P 是对称轴右侧抛物线上的点,联结CP ,交对称轴于点F ,当:2:3CDF FDP S S =△△时,求点P 的坐标.(3)在(2)的条件下,将PCD △沿直线MN 翻折,当点P 恰好与点O 重合时,折痕MN 交x 轴于点M ,交y 轴于点N ,求OMON的值.备用图25.(本题满分14分,其中第(1)小题4分,第(2)小题6分,第(3)小题4分)如图,已知AB是半圆O的直径,6AB=,点C在半圆O上,过点A作AD OC⊥,垂足为点D,AD的延长线与弦BC交于点E,与半圆O交于点F(点F不与点B重合).(1)当点F为»BC的中点时,求弦BC的长;(2)设OD x=,DEyAE=,求y与x的函数关系式;(3)当AOD△与CDE△相似时,求线段OD的长.备用图。
2020-2021学年上海市静安区、青浦区中考二模数学试题及答案解析
上海市静安区、青浦区中考二模数 学(满分150分,100分钟完成)考生注意:1.本试卷含三个大题,共25题.答题时,考生务必按答题要求在答题纸规定的位置上作答,在草稿纸、本调研卷上答题一律无效.2.除第一、二大题外,其余各题如无特别说明,都必须在答题纸的相应位置上写出证明或计算的主要步骤.一、选择题:(本大题共6题,每题4分,满分24分)[每小题只有一个正确选项,在答题纸相应题号的选项上用2B 铅笔正确填涂] 1.当2-<a 时,2)2(+a 等于(A )2+a (B )2-a (C )a -2 (D )2--a 2.如果b a <,那么下列不等式中一定正确的是(A )b b a -<-2 (B )ab a <2 (C ) 2b ab < (D )22b a <3.已知函数2)1(-+-=k x k y (k 为常数),如果y 随着x 的增大而减小,那么k 的取值范围是(A )1>k (B )1<k (C ) 2>k (D )2<k4.某校九年级200名学生在第一学期的期末考试中数学成绩(分数都是整数)分布如下表: 表中每组数据含最小值和最大值,在最低分为75分与最高分为149分之间的每个分数都有学生,那么下列关于这200名学生成绩的说法中一定正确的是(A )中位数在105~119分数段 (B )中位数是119.5分 (C )中位数在120~134分数段 (D )众数在120~134分数段5.如图,将△ABC 沿直线AB 翻折后得到△1ABC ,再将△ABC 绕点A 旋转后得到△22C AB ,对于下列两个结论:①“△1ABC 能绕一点旋转后与△22C AB 重合”; ②“△1ABC 能沿一直线翻折后与△22C AB 重合”的正确性是 (A )结论①、②都正确 (B )结论①、②都错误 (C )结论①正确、②错误 (D )结论①错误、②正确 6.如果四边形ABCD 的对角线相交于点O ,且AO =CO ,那么下列条 件中 不能..判断四边形ABCD 为平行四边形的是 (A )OB =OD (B )AB//CD (C )AB =CD (D )∠ADB =∠DBC 二、填空题:(本大题共12题,每题4分,满分48分)[在答题纸相应题号后的空格内直接填写答案] 7.数25的平方根是 ▲ . 8.分解因式:=--122x x ▲ .9.如果二次根式x 23-有意义,那么x 的取值范围是 ▲ . 10.关于x 的方程0122=++-m mx x 根的情况是 ▲ .11.如果抛物线h x a y +-=2)1(经过点A (0,4)、B (2,m ),那么m 的值是 ▲ . 12.某小组8位学生一次数学测试的分数为121,123,123,124,126,127,128,128,那么这个小组测试分数的标准差是 ▲ .(第5题图)13.从3位男同学和2位女同学中任选2人参加志愿者活动,所选2人中恰好是一位男同学和一位女同学的概率是 ▲ .14.如图,在△ABC 中,点D 在边AC 上,AD=2CD ,如果b BD a A B ==,,那么=BC ▲ .15.在Rt △ABC 中,∠C =90° ,点D 、E 分别是边AC 、AB 的中点,点F 在边BC 上,AF 与DE 相交于点G ,如果∠AFB =110° ,那么∠CGF 的度数是 ▲ .16. 将关于x 的一元二次方程02=++q px x 变形为q px x --=2,就可将2x 表示为关于x 的一次多项式,从而达到“降次”的目的,我们称这样的方法为“降次法”. 已知012=--x x ,可用“降次法”求得134--x x 的值是 ▲ .17.如果⊙O 1与⊙O 2相交于点A 、B ,⊙O 1的半径是5,点O 1到AB 的距离为3,那么⊙O 2的半径r 的取值范围是 ▲ .18.如图,在等腰梯形ABCD 中,AD//BC ,点E 、F 、G 分别在边AB 、BC 、CD 上,四边形AEFG 是正方形,如果∠B= 60°, AD=1,那么BC 的长是 ▲ .三、解答题:(本大题共7题,满分78分)[将下列各题的解答过程,做在答题纸的相应位置上] 19.(本题满分10分)化简:x x x x -++--12121)1)(1(,并求当13+=x 时的值.20.(本题满分10分)(第18题图)(第14题图)解方程:411322=+++x x x x .21.(本题满分10分,第(1)小题满分6分,第(2)小题满分4分)已知:如图,在菱形ABCD 中,AE ⊥BC ,垂足为E ,对角线BD= 4,21tan =∠CBD . 求:(1)边AB 的长;(2)∠ABE 的正弦值.22.(本题满分10分)小丽购买了6支水笔和3本练习本,共用21元;小明购买了12支水笔和5本练习本,共用39元.已知水笔与练习本的单价分别相同,求水笔与练习本的单价.23.(本题满分12分,第(1)小题满分7分,第(2)小题满分5分)已知:如图,在△ABC 中,AB=AC ,点D 、E 分别是边AC 、AB 的中点,DF ⊥AC ,DF 与CE 相交于点F ,AF 的延长线与BD 相交于点G .(1)求证:BD DG AD ⋅=2; (2)联结CG ,求证:∠ECB =∠DCG .(第21题图) ABCED(第23题图)ABCDE GF24.(本题满分12分,第(1)小题满分3分,第(2)小题满分5分,第(3)小题满分4分)已知⊙O 的半径为3,⊙P 与⊙O 相切于点A ,经过点A 的直线与⊙O 、⊙P 分别交于点B 、C ,31cos =∠BAO ,设⊙P 的半径为x ,线段OC 的长为y .(1)求AB 的长;(2)如图,当⊙P 与⊙O 外切时,求y 与x 之间的函数解析式,并写出函数的定义域; (3)当∠OCA =∠OPC 时,求⊙P25.(本题满分14分,第(1)小题满分4分,第(2)小题满分4分,第(3)小题满分6分)(第24题图)如图,反比例函数的图像经过点A(–2,5)和点B(–5,p),□ABCD的顶点C、D分别在y 轴的负半轴、x轴的正半轴上,二次函数的图像经过点A、C、D.(1)求直线AB的表达式;(3)如果点E且∠DCE=∠BDO,求点E(第25题图)上海市静安区、青浦区中考二模数学试卷参考答案及评分标准.10一、选择题:(本大题共6题,每题4分,满分24分)1.D ; 2.A ; 3.B ; 4.B ; 5.D ; 6.C . 二.填空题:(本大题共12题,满分48分) 7.5±; 8.)21)(21(--+-x x ; 9.23≤x ; 10.没有实数根; 11.4; 12.6; 13.53; 14.a b 2123-; 15.︒40; 16.1; 17.4≥r ; 18.32+. 三、(本大题共7题, 第19~22题每题10分, 第23、24题每题12分, 第25题14分, 满分78分) 19.解:原式=x xx -+-11……………………………………………………………………(4分)=xxx -=-111……………………………………………………………………(2分) 当13+=x 时,原式=233)13)(13()13(313131-=-+--=+--.…………………(4分) 20.解:设xx y 12+=,…………………………………………………………………………(1分)得:43=+y y,………………………………………………………………………(1分) 0342=+-y y ,…………………………………………………………………(1分).3,121==y y ……………………………………………………………………(2分)当1=y 时,,112=+xx 012=+-x x ,此方程没有数解.…………………(2分)当3=y 时,,312=+x x 0132=+-x x ,253±=x .………………………(2分) 经检验253±=x 都是原方程的根,…………………………………………(1分) 所以原方程的根是253±=x .21.解:(1) 联结AC ,AC 与BD 相交于点O ,………………………………………………(1分)∵四边形ABCD 是菱形,∴AC ⊥BD ,BO =221=BD .……………………(1分) ∵Rt △BOC 中,21tan ==∠OB OC CBD ,………………………………………(1分) ∴OC =1,…………………………………………………………………………(1分) ∴AB =BC =5212222=+=+OC BO .……………………………………(1分)(2)∵AE ⊥BC ,∴AC BD AE BC S ABCD ⋅⋅21==菱形,………………………………(2分)∵AC =2OC =2,∴42215⨯⨯=AE ,…………………………………………(1分)∴54=AE ,………………………………………………………………………(1分)∴54sin ==∠AB AE ABE .…………………………………………………………(1分)22.解:设水笔与练习本的单价分别为x 元、y 元,…………………………………………(1分)∴⎩⎨⎧=+=+,39512,2136y x y x ………………………………………………………………………(4分)解得⎩⎨⎧==.3,2y x ……………………………………………………………………………(4分)答:水笔与练习本的单价分别是2元与3元.…………………………………………(1分)23.证明:(1)∵AB=AC ,AD =,21AC AE =,21AB ∴AD =AE ,…………………………(1分) ∵∠BAD=∠CAE ,∴△BAD ≌△CAE .…………………………………………(1分) ∴∠ABD =∠ACE ,…………………………………………………………………(1分) ∵DF ⊥AC ,AD =CD ,∴AF =CF ,………………………………………………(1分) ∴∠GAD =∠ACE ,∴∠GAD =∠ABD .………………………………………(1分) ∵∠GDA=∠ADB ,∴△GDA ∽△ADB .…………………………………………(1分) ∴ADDGDB AD =,∴BD DG AD ⋅=2.……………………………………………(1分) (2)∵ADDG DB AD =,AD =CD ,∴CD DGDB CD =.………………………………………(1分) ∵∠CDG=∠BDC ,∴△DCG ∽△DBC .…………………………………………(1分) ∴∠DBC=∠DCG .…………………………………………………………………(1分) ∵AB=AC ,∴∠ABC=∠ACB .……………………………………………………(1分) ∵∠ABD =∠ACE ,∴∠ECB =∠DBC=∠DCG .………………………………(1分)24.解:(1)在⊙O 中,作OD ⊥AB ,垂足为D ,……………………………………………(1分)在Rt △OAD 中,31cos ==∠OA AD BAO ,………………………………………(1分)∴AD=31AO=1. ∴AB=2AD=2.………………………………………………(1分) (2)联结OB 、PA 、PC ,∵⊙P 与⊙O 相切于点A ,∴点P 、A 、O 在一直线上.……………………(1分)∵PC=PA ,OA=OB ,∴∠PCA=∠PAC=∠OAB=∠OBA ,∴PC//OB .………(1分) ∴AO PA AB AC =,∴AC 32xAC AB PA =⋅=. ………………………………………(1分) ∵81322222=-=-=AD OA OD ,CD=AD+AC=132+x , ∴OC=8)132(222++=+x CD OD ,………………………………………(1分)∴81124312++=x x y ,定义域为0>x .…………………………………(1分)(3) 当⊙P 与⊙O 外切时,∵∠BOA=∠OCA ,∠CAO=∠POC ,∴△OAC ∽△OCP .∴OPOCOC OA =,∴OP OA OC ⋅=2,……………………(1分) ∴)3(3)81124(912x x x +=++,∴01=x (不符合题意,舍去)4152=x , ∴这时⊙P 的半径为415.………………………………………………………(1分) ∴2932=x ,427=x ,∴这时⊙P 的半径为427.……………………………(1分) ∴⊙P 的半径为415或427.25.解:(1)设反比例函数的解析式为xky =.∵它图像经过点A (–2,5)和点B (–5,p ), ∴5=2-k,∴10-=k ,∴反比例函数的解析式为xy 10-=.……………………(1分)∴2510=--=p ,∴点B 的坐标为(–5,2).……………………………………(1分) 设直线AB 的表达式为n mx y +=,则⎩⎨⎧+-=+-=,52,25n m n m ………………………………(1分) ∴⎩⎨⎧==.7,1n m ∴直线AB 的表达式为7+=x y .………………………………………(1分) (2)由□ABCD 中,AB//CD ,设CD 的表达式为c x y +=,…………………………(1分)∴C (0,c ),D (–c ,0),…………………………………………………………(1分) ∵CD =AB ,∴22AB CD =∴2222)52()25(-++-=+c c ,……………………(1分)∴c =–3,∴点C 、D 的坐标分别是(0,–3)、(3,0).………………………(1分)(3)设二次函数的解析式为32-+=bx ax y ,⎩⎨⎧-+=--=,3390,3245b a b a ………………………(1分) ∴⎩⎨⎧-==.2,1b a ∴二次函数的解析式为322--=x x y .…………………………(1分) 作EF ⊥y 轴,BG ⊥y 轴,垂足分别为F 、G .∵OC =OD ,BG =CG ,∴∠BCG =∠OCD=∠ODC =45 º.∴∠BCD=90º,∵∠DCE =∠BDO ,∴∠ECF=∠BDC .……………………………………………(1分)∴tan ∠ECF=tan ∠BDC=35)30()03()23()50(2222=++-+++=CD BC .…………………………(1分) 设CF =3t ,则EF =5t ,OF =3–3t ,∴点E (5t ,3t –3),………………………(1分) ∴31025332--=-t t t ,2513,(021==t t 舍去).∴点E (513,2536-).………(1分)。
【附5套中考模拟试卷】上海市青浦区2019-2020学年中考数学二模考试卷含解析
(2)C粮仓至少需要支援200吨粮食,问此调拨计划能满足C粮仓的需求吗?
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19.(6分)在 中, ,BD为AC边上的中线,过点C作 于点E,过点A作BD的平行线,交CE的延长线于点F,在AF的延长线上截取 ,连接BG,DF.
求证: ;
求证:四边形BDFG为菱形;
若 , ,求四边形BDFG的周长.
A.3 B.2 C.5D.
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13.如图,在梯形 中, ,E、F分别是边 的中点,设 ,那么 等于__________(结果用 的线性组合表示).
14.如图1,在△ABC中,∠ACB=90°,BC=2,∠A=30°,点E,F分别是线段BC,AC的中点,连结EF.
D.反比例函数的图象关于直线y=﹣x成轴对称
5.如图,分别以等边三角形ABC的三个顶点为圆心,以边长为半径画弧,得到的封闭图形是莱洛三角形,若AB=2,则莱洛三角形的面积(即阴影部分面积)为( )
A. B. C.2 D.2
6.4的平方根是( )
A.4B.±4C.±2D.2
7.计算: 得( )
A.- B.- C.- D.
上海市青浦区2019-2020学年中考数学二模考试卷
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1.实数﹣5.22的绝对值是( )
A.5.22B.﹣5.22C.±5.22D.
2.若正多边形的一个内角是150°,则该正多边形的边数是()
A.6 B.12 C.16 D.18
上海市青浦区2019-2020学年中考数学第二次调研试卷含解析
上海市青浦区2019-2020学年中考数学第二次调研试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.如图图形中,既是轴对称图形,又是中心对称图形的是( )A .B .C .D .2.下列各数是不等式组32123x x +⎧⎨--⎩f p 的解是( ) A .0 B .1-C .2D .3 3.下列四个函数图象中,当x<0时,函数值y 随自变量x 的增大而减小的是( )A .B .C .D .4.关于x 的方程3x+2a=x ﹣5的解是负数,则a 的取值范围是( )A .a<52 B .a >52 C .a <﹣52 D .a >﹣525.如图,二次函数2y ax bx =+的图象开口向下,且经过第三象限的点P.若点P 的横坐标为1-,则一次函数()y a b x b =-+的图象大致是( )A .B .C .D .6.若ab <0,则正比例函数y=ax 与反比例函数y=b x在同一坐标系中的大致图象可能是( ) A . B . C . D .7.如图所示是小孔成像原理的示意图,根据图中所标注的尺寸,求出这支蜡烛在暗盒中所成像CD 的长( )A .16cmB .13cm C .12cm D .1cm8.如图所示的图形为四位同学画的数轴,其中正确的是( )A .B .C .D .9.如图,已知正五边形 ABCDE 内接于O e ,连结BD ,则ABD ∠的度数是( )A .60︒B .70︒C .72︒D .144︒10.下列计算,正确的是( )A .a 2•a 2=2a 2B .a 2+a 2=a 4C .(﹣a 2)2=a 4D .(a+1)2=a 2+111.图1~图4是四个基本作图的痕迹,关于四条弧①、②、③、④有四种说法:弧①是以O 为圆心,任意长为半径所画的弧;弧②是以P 为圆心,任意长为半径所画的弧;弧③是以A 为圆心,任意长为半径所画的弧;弧④是以P 为圆心,任意长为半径所画的弧;其中正确说法的个数为( )A .4B .3C .2D .112.通过观察下面每个图形中5个实数的关系,得出第四个图形中y 的值是( )A .8B .﹣8C .﹣12D .12二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图,点A 在双曲线y =k x的第一象限的那一支上,AB 垂直于y 轴与点B ,点C 在x 轴正半轴上,且OC =2AB ,点E 在线段AC 上,且AE =3EC ,点D 为OB 的中点,若△ADE 的面积为3,则k 的值为_____.14.分解因式:244m m ++=___________.15.如图,在平面直角坐标系中,矩形OACB 的顶点O 是坐标原点,顶点A 、B 分别在x 轴、y 轴的正半轴上,OA =3,OB =4,D 为边OB 的中点.若E 为边OA 上的一个动点,当△CDE 的周长最小时,则点E 的坐标____________.16.如图,身高1.6米的小丽在阳光下的影长为2米,在同一时刻,一棵大树的影长为8米,则这棵树的高度为_____米.17.如图,⊙O 的半径为6,四边形ABCD 内接于⊙O ,连接OB ,OD ,若∠BOD=∠BCD ,则弧BD 的长为________.18.已知一元二次方程x 2-4x -3=0的两根为m ,n ,则2m -mn +2n = .三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图1,点O是正方形ABCD两对角线的交点,分别延长OD到点G,OC到点E,使OG=1OD,OE=1OC,然后以OG、OE为邻边作正方形OEFG,连接AG,DE.(1)求证:DE⊥AG;(1)正方形ABCD固定,将正方形OEFG绕点O逆时针旋转α角(0°<α<360°)得到正方形OE′F′G′,如图1.①在旋转过程中,当∠OAG′是直角时,求α的度数;②若正方形ABCD的边长为1,在旋转过程中,求AF′长的最大值和此时α的度数,直接写出结果不必说明理由.20.(6分)如图,已知抛物线的顶点为A(1,4),抛物线与y轴交于点B(0,3),与x轴交于C、D两点.点P是x轴上的一个动点.求此抛物线的解析式;求C、D两点坐标及△BCD的面积;若点P在x轴上方的抛物线上,满足S△PCD=12S△BCD,求点P的坐标.21.(6分)在□ABCD中,E为BC边上一点,且AB=AE,求证:AC=DE。
【附5套中考模拟试卷】上海市青浦区2019-2020学年中考数学仿真第二次备考试题含解析
上海市青浦区2019-2020学年中考数学仿真第二次备考试题一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.不等式23x+…的解集在数轴上表示正确的是()A.B.C.D.2.若分式11x-有意义,则x的取值范围是A.x>1 B.x<1 C.x≠1D.x≠03.下列计算正确的是()A.2m+3n=5mn B.m2•m3=m6C.m8÷m6=m2D.(﹣m)3=m34.实数a,b,c在数轴上对应点的位置大致如图所示,O为原点,则下列关系式正确的是()A.a﹣c<b﹣c B.|a﹣b|=a﹣b C.ac>bc D.﹣b<﹣c5.许昌市2017年国内生产总值完成1915.5亿元,同比增长9.3%,增速居全省第一位,用科学记数法表示1915.5亿应为()A.1915.15×108B.19.155×1010C.1.9155×1011D.1.9155×10126.下列算式中,结果等于x6的是()A.x2•x2•x2B.x2+x2+x2C.x2•x3D.x4+x27.如图,为测量平地上一块不规则区域(图中的阴影部分)的面积,画一个边长为4m的正方形,使不规则区域落在正方形内.现向正方形内随机投掷小球(假设小球落在正方形内每一点都是等可能的),经过大量重复投掷试验,发现小球落在不规则区域的频率稳定在常数0.65附近,由此可估计不规则区域的面积约为()A.2.6m2B.5.6m2C.8.25m2D.10.4m28.对于反比例函数y=kx(k≠0),下列所给的四个结论中,正确的是()A.若点(3,6)在其图象上,则(﹣3,6)也在其图象上B.当k>0时,y随x的增大而减小C .过图象上任一点P 作x 轴、y 轴的线,垂足分别A 、B ,则矩形OAPB 的面积为kD .反比例函数的图象关于直线y=﹣x 成轴对称9.在直角坐标平面内,已知点M(4,3),以M 为圆心,r 为半径的圆与x 轴相交,与y 轴相离,那么r 的取值范围为( )A .0r 5<<B .3r 5<<C .4r 5<<D .3r 4<<10.用半径为8的半圆围成一个圆锥的侧面,则圆锥的底面半径等于( )A .4B .6C .16πD .811.如图,在⊙O 中,直径CD ⊥弦AB ,则下列结论中正确的是( )A .AC=AB B .∠C=12∠BODC .∠C=∠BD .∠A=∠B0D12.定义:若点P (a ,b )在函数y=的图象上,将以a 为二次项系数,b 为一次项系数构造的二次函数y=ax 2+bx 称为函数y=的一个“派生函数”.例如:点(2, )在函数y=的图象上,则函数y=2x 2+称为函数y=的一个“派生函数”.现给出以下两个命题:(1)存在函数y=的一个“派生函数”,其图象的对称轴在y 轴的右侧(2)函数y=的所有“派生函数”的图象都经过同一点,下列判断正确的是( )A .命题(1)与命题(2)都是真命题B .命题(1)与命题(2)都是假命题C .命题(1)是假命题,命题(2)是真命题D .命题(1)是真命题,命题(2)是假命题二、填空题:(本大题共6个小题,每小题4分,共24分.)13.不等式组2030x x ->⎧⎨+>⎩的解集为________. 143a -_____.1520n n 的最小值为___16.9的算术平方根是 .17.如图所示,矩形ABCD 的顶点D 在反比例函数k y x=(x <0)的图象上,顶点B ,C 在x 轴上,对角线AC 的延长线交y 轴于点E ,连接BE ,△BCE 的面积是6,则k=_____.18. “若实数a ,b ,c 满足a <b <c ,则a+b <c”,能够说明该命题是假命题的一组a ,b ,c 的值依次为_____.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图,BD 是菱形ABCD 的对角线,75CBD ∠=︒,(1)请用尺规作图法,作AB 的垂直平分线EF ,垂足为E ,交AD 于F ;(不要求写作法,保留作图痕迹)在(1)条件下,连接BF ,求DBF ∠的度数.20.(6分)某学校要了解学生上学交通情况,选取七年级全体学生进行调查,根据调查结果,画出扇形统计图(如图),图中“公交车”对应的扇形圆心角为60°,“自行车”对应的扇形圆心角为120°,已知七年级乘公交车上学的人数为50人.(1)七年级学生中,骑自行车和乘公交车上学的学生人数哪个更多?多多少人?(2)如果全校有学生2400人,学校准备的600个自行车停车位是否足够?21.(6分)计算(﹣12)﹣2﹣(π﹣3)032|+2sin60°; 22.(8分)如图在由边长为1个单位长度的小正方形组成的12×12网格中,已知点A ,B ,C ,D 均为网格线的交点在网格中将△ABC 绕点D 顺时针旋转90°画出旋转后的图形△A 1B 1C 1;在网格中将△ABC 放大2倍得到△DEF ,使A 与D 为对应点.23.(8分)一辆快车从甲地开往乙地,一辆慢车从乙地开往甲地,两车同时出发,设慢车离乙地的距离为y 1(km ),快车离乙地的距离为y 2(km ),慢车行驶时间为x (h ),两车之间的距离为S (km ),y 1,y2与x 的函数关系图象如图①所示,S 与x 的函数关系图象如图②所示:(1)图中的a=______,b=______.(2)求快车在行驶的过程中S 关于x 的函数关系式.(3)直接写出两车出发多长时间相距200km?24.(10分)如图,在平面直角坐标系中,直线y =x+2与x 轴,y 轴分别交于A ,B 两点,点C (2,m )为直线y =x+2上一点,直线y =﹣12x+b 过点C . 求m 和b 的值;直线y =﹣12x+b 与x 轴交于点D ,动点P 从点D 开始以每秒1个单位的速度向x 轴负方向运动.设点P 的运动时间为t 秒.①若点P 在线段DA 上,且△ACP 的面积为10,求t 的值;②是否存在t 的值,使△ACP 为等腰三角形?若存在,直接写出t 的值;若不存在,请说明理由. 25.(10分)先化简,再求值:22x 3x 311x 1x 2x 1x 1--⎛⎫÷-+ ⎪-++-⎝⎭,再从0x 4<<的范围内选取一个你最喜欢的值代入,求值.26.(12分)一位运动员推铅球,铅球运行时离地面的高度y (米)是关于运行时间x (秒)的二次函数.已知铅球刚出手时离地面的高度为53米;铅球出手后,经过4秒到达离地面3米的高度,经过10秒落到地面.如图建立平面直角坐标系.(Ⅰ)为了求这个二次函数的解析式,需要该二次函数图象上三个点的坐标.根据题意可知,该二次函数图象上三个点的坐标分别是____________________________;(Ⅱ)求这个二次函数的解析式和自变量x的取值范围.27.(12分)某数学兴趣小组为测量如图(①所示的一段古城墙的高度,设计用平面镜测量的示意图如图②所示,点P处放一水平的平面镜,光线从点A出发经过平面镜反射后刚好射到古城墙CD的顶端C处.已知AB⊥BD、CD⊥BD,且测得AB=1.2m,BP=1.8m.PD=12m,求该城墙的高度(平面镜的原度忽略不计):请你设计一个测量这段古城墙高度的方案.要求:①面出示意图(不要求写画法);②写出方案,给出简要的计算过程:③给出的方案不能用到图②的方法.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.B【解析】【分析】根据不等式的性质:先移项,再合并即可解得不等式的解集,最后将解集表示在数轴上即可.【详解】解:解:移项得,x≤3-2,合并得,x≤1;在数轴上表示应包括1和它左边的部分,如下:;故选:B .【点睛】本题考查了一元一次不等式的解集的求法及在数轴上表示不等式的解集,注意数轴上包括的端点实心点表示.2.C【解析】【分析】【详解】分式分母不为0,所以10x -≠,解得1x ≠.故选:C.3.C【解析】【分析】根据同底数幂的除法,底数不变指数相减;合并同类项,系数相加字母和字母的指数不变;同底数幂的乘法,底数不变指数相加;幂的乘方,底数不变指数相乘,对各选项计算后利用排除法求解.【详解】解:A 、2m 与3n 不是同类项,不能合并,故错误;B 、m 2•m 3=m 5,故错误;C 、正确;D 、(-m )3=-m 3,故错误;故选:C .【点睛】本题考查同底数幂的除法,合并同类项,同底数幂的乘法,幂的乘方很容易混淆,一定要记准法则才能做题.4.A【解析】【分析】根据数轴上点的位置确定出a ,b ,c 的范围,判断即可.【详解】由数轴上点的位置得:a <b <0<c ,∴ac <bc ,|a ﹣b|=b ﹣a ,﹣b >﹣c ,a ﹣c <b ﹣c.故选A .【点睛】考查了实数与数轴,弄清数轴上点表示的数是解本题的关键.5.C【解析】【分析】科学记数法的表示形式为10n a ⨯的形式,其中110a ≤<,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数.【详解】用科学记数法表示1915.5亿应为1.9155×1011, 故选C .【点睛】考查科学记数法,掌握绝对值大于1的数的表示方法是解题的关键.6.A【解析】试题解析:A 、x 2•x 2•x 2=x 6,故选项A 符合题意;B 、x 2+x 2+x 2=3x 2,故选项B 不符合题意;C 、x 2•x 3=x 5,故选项C 不符合题意;D 、x 4+x 2,无法计算,故选项D 不符合题意.故选A .7.D【解析】【分析】首先确定小石子落在不规则区域的概率,然后利用概率公式求得其面积即可.【详解】∵经过大量重复投掷试验,发现小石子落在不规则区域的频率稳定在常数0.65附近,∴小石子落在不规则区域的概率为0.65,∵正方形的边长为4m ,∴面积为16 m 2设不规则部分的面积为s m 2则16s =0.65 解得:s=10.4故答案为:D .【点睛】利用频率估计概率.8.D【解析】分析:根据反比例函数的性质一一判断即可;详解:A .若点(3,6)在其图象上,则(﹣3,6)不在其图象上,故本选项不符合题意;B .当k >0时,y 随x 的增大而减小,错误,应该是当k >0时,在每个象限,y 随x 的增大而减小;故本选项不符合题意;C .错误,应该是过图象上任一点P 作x 轴、y 轴的线,垂足分别A 、B ,则矩形OAPB 的面积为|k|;故本选项不符合题意;D .正确,本选项符合题意.故选D .点睛:本题考查了反比例函数的性质,解题的关键是熟练掌握反比例函数的性质,灵活运用所学知识解决问题,属于中考常考题型.9.D【解析】【分析】先求出点M 到x 轴、y 轴的距离,再根据直线和圆的位置关系得出即可.【详解】解:∵点M 的坐标是(4,3),∴点M 到x 轴的距离是3,到y 轴的距离是4,∵点M (4,3),以M 为圆心,r 为半径的圆与x 轴相交,与y 轴相离,∴r 的取值范围是3<r <4,故选:D .【点睛】本题考查点的坐标和直线与圆的位置关系,能熟记直线与圆的位置关系的内容是解此题的关键. 10.A【解析】【分析】由于半圆的弧长=圆锥的底面周长,那么圆锥的底面周长为8π,底面半径=8π÷2π.【详解】解:由题意知:底面周长=8π,∴底面半径=8π÷2π=1.故选A.【点睛】此题主要考查了圆锥侧面展开扇形与底面圆之间的关系,圆锥的侧面展开图是一个扇形,此扇形的弧长等于圆锥底面周长,扇形的半径等于圆锥的母线长,解决本题的关键是应用半圆的弧长=圆锥的底面周长.11.B【解析】【分析】先利用垂径定理得到弧AD=弧BD,然后根据圆周角定理得到∠C=12∠BOD,从而可对各选项进行判断.【详解】解:∵直径CD⊥弦AB,∴弧AD =弧BD,∴∠C=12∠BOD.故选B.【点睛】本题考查了垂径定理和圆周角定理,垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.12.C【解析】试题分析:(1)根据二次函数y=ax2+bx的性质a、b同号对称轴在y轴左侧,a、b异号对称轴在y轴右侧即可判断.(2)根据“派生函数”y=ax2+bx,x=0时,y=0,经过原点,不能得出结论.(1)∵P(a,b)在y=上,∴a和b同号,所以对称轴在y轴左侧,∴存在函数y=的一个“派生函数”,其图象的对称轴在y轴的右侧是假命题.(2)∵函数y=的所有“派生函数”为y=ax2+bx,∴x=0时,y=0,∴所有“派生函数”为y=ax2+bx经过原点,∴函数y=的所有“派生函数”,的图象都进过同一点,是真命题.考点:(1)命题与定理;(2)新定义型二、填空题:(本大题共6个小题,每小题4分,共24分.)13.x>1【解析】【分析】分别求出两个不等式的解集,再求其公共解集.【详解】2030x x ->⎧⎨+>⎩①②, 解不等式①,得:x>1,解不等式②,得:x >-3,所以不等式组的解集为:x>1,故答案为:x>1.【点睛】本题考查一元一次不等式组的解法,属于基础题.求不等式组的解集,要遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.14.﹣【解析】30a -≥Q ,0a ∴≤.== .15.1【解析】【分析】,则1n 是完全平方数,满足条件的最小正整数n 为1.【详解】∴1n 是完全平方数;∴n 的最小正整数值为1.故答案为:1.【点睛】主要考查了二次根式的定义,关键是根据乘除法法则和二次根式有意义的条件.二次根式有意义的条件是被开方数是非负数进行解答.16.1.【解析】【分析】根据一个正数的算术平方根就是其正的平方根即可得出.【详解】∵239=,∴9算术平方根为1.故答案为1.【点睛】本题考查了算术平方根,熟练掌握算术平方根的概念是解题的关键.17.-1【解析】【分析】先设D(a,b),得出CO=-a,CD=AB=b,k=ab,再根据△BCE的面积是6,得出BC×OE=1,最后根据AB∥OE,得出BC ABOC EO=,即BC•EO=AB•CO,求得ab的值即可.【详解】设D(a,b),则CO=-a,CD=AB=b,∵矩形ABCD的顶点D在反比例函数y=kx(x<0)的图象上,∴k=ab,∵△BCE的面积是6,∴12×BC×OE=6,即BC×OE=1,∵AB∥OE,∴BC ABOC EO=,即BC•EO=AB•CO,∴1=b×(-a),即ab=-1,∴k=-1,故答案为-1.【点睛】本题主要考查了反比例函数系数k的几何意义,矩形的性质以及平行线分线段成比例定理的综合应用,能很好地考核学生分析问题,解决问题的能力.解题的关键是将△BCE的面积与点D的坐标联系在一起,体现了数形结合的思想方法.18.答案不唯一,如1,2,3;【解析】分析:设a,b,c是任意实数.若a<b<c,则a+b<c”是假命题,则若a<b<c,则a+b≥c”是真命题,举例即可,本题答案不唯一详解:设a,b,c是任意实数.若a<b<c,则a+b<c”是假命题,则若a<b<c,则a+b≥c”是真命题,可设a,b,c的值依次1,2,3,(答案不唯一),故答案为1,2,3.点睛:本题考查了命题的真假,举例说明即可,三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(1)答案见解析;(2)45°.【解析】【分析】(1)分别以A、B为圆心,大于12AB长为半径画弧,过两弧的交点作直线即可;(2)根据∠DBF=∠ABD﹣∠ABF计算即可;【详解】(1)如图所示,直线EF即为所求;(2)∵四边形ABCD是菱形,∴∠ABD=∠DBC12∠ABC=75°,DC∥AB,∠A=∠C,∴∠ABC=150°,∠ABC+∠C=180°,∴∠C=∠A=30°.∵EF垂直平分线段AB,∴AF=FB,∴∠A=∠FBA=30°,∴∠DBF=∠ABD﹣∠FBE=45°.【点睛】本题考查了线段的垂直平分线作法和性质,菱形的性质等知识,解题的关键是灵活运用所学知识解决问题.20.(1)骑自行车的人数多,多50人;(2)学校准备的600个自行车停车位不足够,理由见解析【解析】分析: (1)根据乘公交车的人数除以乘公交车的人数所占的比例,可得调查的样本容量,根据样本容量乘以自行车所占的百分比,可得骑自行车的人数,根据有理数的减法,可得答案;(2)根据学校总人数乘以骑自行车所占的百分比,可得答案.详解:(1)乘公交车所占的百分比60360=16, 调查的样本容量50÷16=300人,骑自行车的人数300×120360=100人, 骑自行车的人数多,多100﹣50=50人;(2)全校骑自行车的人数2400×120360=800人, 800>600,故学校准备的600个自行车停车位不足够.点睛: 本题考查了扇形统计图,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.扇形统计图直接反映部分占总体的百分比大小.21.1【解析】【分析】原式利用零指数幂、负整数指数幂法则,绝对值的代数意义,以及特殊角的三角函数值计算即可得到结果.【详解】原式.【点睛】此题考查了实数的运算,绝对值,零指数幂、负整数指数幂,以及特殊角的三角函数值,熟练掌握运算法则是解本题的关键.22.(1)见解析(2)见解析【解析】【分析】(1)根据旋转变换的定义和性质求解可得;(2)根据位似变换的定义和性质求解可得.【详解】解:(1)如图所示,△A 1B 1C 1即为所求;(2)如图所示,△DEF即为所求.【点睛】本题主要考查作图﹣位似变换与旋转变换,解题的关键是掌握位似变换与旋转变换的定义与性质.23.(1)a=6, b=154;(2)1516060004151606006460(610)x xS x xx x⎧⎛⎫-+<⎪⎪⎝⎭⎪⎪⎛⎫=-<⎨ ⎪⎝⎭⎪⎪⎪⎩„„剟;(3)52h或5h【解析】【分析】(1)根据S与x之间的函数关系式可以得到当位于C点时,两人之间的距离增加变缓,此时快车到站,指出此时a的值即可,求得a的值后求出两车相遇时的时间即为b的值;(2)根据函数的图像可以得到A、B、C、D的点的坐标,利用待定系数法求得函数的解析式即可. (3)分两车相遇前和两车相遇后两种情况讨论,当相遇前令s=200即可求得x的值.【详解】解:(1)由s与x之间的函数的图像可知:当位于C点时,两车之间的距离增加变缓,由此可以得到a=6,∵快车每小时行驶100千米,慢车每小时行驶60千米,两地之间的距离为600,∴15 600(10060)4b=÷+=;(2)∵从函数的图象上可以得到A、B、C、D点的坐标分别为:(0,600)、(154,0)、(6,360)、(10,600),∴设线段AB所在直线解析式为:S=kx+b,∴600150 4bk b=⎧⎪⎨+=⎪⎩解得:k=-160,b=600,设线段BC所在的直线的解析式为:S=kx+b,∴15046360k b k b ⎧+=⎪⎨⎪+=⎩解得:k=160,b=-600,设直线CD 的解析式为:S=kx+b ,636010600k b k b +=⎧⎨+=⎩ 解得:k=60,b=0 ∴1516060004151606006460(610)x x S x x x x ⎧⎛⎫-+< ⎪⎪⎝⎭⎪⎪⎛⎫=-<⎨ ⎪⎝⎭⎪⎪⎪⎩„„剟 (3)当两车相遇前相距200km ,此时:S=-160x+600=200,解得:52x =, 当两车相遇后相距200km ,此时:S=160x-600=200,解得:x=5, ∴52x =或5时两车相距200千米 【点睛】本题考查了一次函数的综合知识,特别是本题中涉及到了分段函数的知识,解题时主要自变量的取值范围. 24.(1)4,5;(2)①7;②4或12-或12+8.【解析】【分析】()1分别令y 0=可得b 和m 的值;()2①根据ACP V 的面积公式列等式可得t 的值;②存在,分三种情况:i)当AC CP =时,如图1,ii)当AC AP =时,如图2,iii)当AP PC =时,如图3,分别求t 的值即可.【详解】()1把点()C 2,m 代入直线y x 2=+中得:m 224=+=,∴点()C 2,4,Q 直线1y x b 2=-+过点C , 142b 2=-⨯+,b 5=; ()2①由题意得:PD t =,y x 2=+中,当y 0=时,x 20+=,x 2=-,()A 2,0∴-,1y x 52=-+中,当y 0=时,1x 502-+=, x 10=,()D 10,0∴,AD 10212∴=+=,ACP QV 的面积为10,()112t 4102∴-⋅=, t 7=,则t 的值7秒;②存在,分三种情况:i)当AC CP =时,如图1,过C 作CE AD ⊥于E ,PE AE 4∴==,PD 1284∴=-=,即t 4=;ii)当AC AP =时,如图2,2212AC AP AP 4442===+=,1DP t 1242∴==-,2DP t 1242==+;iii)当AP PC =时,如图3,OA OB 2==Q ,BAO 45∠∴=o ,CAP ACP 45∠∠∴==o ,APC 90∠∴=o ,AP PC 4∴==,PD 1248∴=-=,即t 8=;综上,当t 4=秒或(1242-秒或(1242+秒或8秒时,ACP V 为等腰三角形.【点睛】本题属于一次函数综合题,涉及的知识有:待定系数法求一次函数解析式,坐标与图形性质,勾股定理,等腰三角形的判定,以及一次函数与坐标轴的交点,熟练掌握性质及定理是解本题的关键,并注意运用分类讨论的思想解决问题.25.原式=11x -,把x=2代入的原式=1. 【解析】 试题分析:先对原分式的分子、分母进行因式分解,然后按顺序进行乘除法运算、加减法运算,最后选取有意义的数值代入计算即可.试题解析:原式=()()()21311·1131x x x x x x x +-+--+--- =11x - 当x=2时,原式=126.(0,53),(4,3) 【解析】 试题分析:(Ⅰ)根据“刚出手时离地面高度为53米、经过4秒到达离地面3米的高度和经过1秒落到地面”可得三点坐标;(Ⅱ)利用待定系数法求解可得.试题解析:解:(Ⅰ)由题意知,该二次函数图象上的三个点的坐标分别是(0,53)、(4,3)、(1,0).故答案为:(0,53)、(4,3)、(1,0). (Ⅱ)设这个二次函数的解析式为y=ax 2+bx+c ,将(Ⅰ)三点坐标代入,得:531643100100c a b c a b c ⎧=⎪⎪++=⎨⎪++=⎪⎩,解得:1122353a b c ⎧=-⎪⎪⎪=⎨⎪⎪=⎪⎩,所以所求抛物线解析式为y=﹣112x 2+23x+53,因为铅球从运动员抛出到落地所经过的时间为1秒,所以自变量的取值范围为0≤x≤1.27.(1)8m ;(2)答案不唯一【解析】【分析】(1)根据入射角等于反射角可得 ∠APB=∠CPD ,由 AB ⊥BD 、CD ⊥BD 可得到 ∠ABP=∠CDP=90°,从而可证得三角形相似,根据相似三角形的性质列出比例式,即可求出CD 的长.(2)设计成视角问题求古城墙的高度.【详解】(1)解:由题意,得∠APB=∠CPD ,∠ABP=∠CDP=90°,∴Rt△ABP∽Rt△CDP,∴AB CD BP BP=,∴CD=1.212 1.8⨯=8.答:该古城墙的高度为8m(2)解:答案不唯一,如:如图,在距这段古城墙底部am的E处,用高h(m)的测角仪DE测得这段古城墙顶端A的仰角为α.即可测量这段古城墙AB的高度,过点D作DC⊥AB于点C.在Rt△ACD中,∠ACD=90°,tanα=AC CD,∴AC=α tanα,∴AB=AC+BC=αtanα+h【点睛】本题考查相似三角形性质的应用.解题时关键是找出相似的三角形,然后根据对应边成比例列出方程,建立适当的数学模型来解决问题.Administrator A d m i n i s t r a t o rGT ? M i c r o s o f t W o r d。
上海市青浦区2019-2020学年中考第二次模拟数学试题含解析
上海市青浦区2019-2020学年中考第二次模拟数学试题一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.计算6m 6÷(-2m 2)3的结果为( )A .m -B .1-C .34D .34- 2.如图所示,在折纸活动中,小明制作了一张△ABC 纸片,点D,E 分别在边AB,AC 上,将△ABC 沿着DE 折叠压平,A 与A′重合,若∠A=70°,则∠1+∠2= ( )A .70°B .110°C .130°D .140°3.如图,已知AOB ∠,用尺规作图作2AOC AOB ∠=∠.第一步的作法以点O 为圆心,任意长为半径画弧,分别交OA ,OB 于点E ,F 第二步的作法是( )A .以点E 为圆心,OE 长为半径画弧,与第1步所画的弧相交于点DB .以点E 为圆心,EF 长为半径画弧,与第1步所画的弧相交于点DC .以点F 为圆心,OE 长为半径画弧,与第1步所画的弧相交于点DD .以点F 为圆心,EF 长为半径画弧,与第1步所画的弧相交于点D4.叶绿体是植物进行光合作用的场所,叶绿体DNA 最早发现于衣藻叶绿体,长约0.00005米.其中,0.00005用科学记数法表示为( )A .0.5×10﹣4B .5×10﹣4C .5×10﹣5D .50×10﹣35.如图,二次函数y=ax 2+bx+c 的图象与y 轴正半轴相交,其顶点坐标为(,1),下列结论:①ac <1;②a+b=1;③4ac ﹣b 2=4a ;④a+b+c <1.其中正确结论的个数是( )A .1B .2C .3D .46.若二次函数()20y ax bx c a =++≠的图象与x 轴有两个交点,坐标分别是(x 1,0),(x 2,0),且12x x <.图象上有一点()00M x y ,在x 轴下方,则下列判断正确的是( )A .0a >B .240b ac -≥C .102x x x <<D .()()01020a x x x x --< 7.若2<2a -<3,则a 的值可以是( )A .﹣7B .163C .132D .128.某经销商销售一批电话手表,第一个月以550元/块的价格售出60块,第二个月起降价,以500元/块的价格将这批电话手表全部售出,销售总额超过了5.5万元.这批电话手表至少有( )A .103块B .104块C .105块D .106块9.一元一次不等式2(1+x )>1+3x 的解集在数轴上表示为( )A .B .C .D .10.如图,在矩形ABCD 中,AB=5,BC=7,点E 为BC 上一动点,把△ABE 沿AE 折叠,当点B 的对应点B′落在∠ADC 的角平分线上时,则点B′到BC 的距离为( )A .1或2B .2或3C .3或4D .4或511.有一圆形苗圃如图1所示,中间有两条交叉过道AB ,CD ,它们为苗圃O e 的直径,且AB ⊥CD .入口K 位于»AD 中点,园丁在苗圃圆周或两条交叉过道上匀速行进.设该园丁行进的时间为x ,与入口K 的距离为y ,表示y 与x 的函数关系的图象大致如图2所示,则该园丁行进的路线可能是( )A .A→O→DB .C→A→O→ BC .D→O→CD .O→D→B→C12.下面说法正确的个数有( )①如果三角形三个内角的比是1∶2∶3,那么这个三角形是直角三角形;②如果三角形的一个外角等于与它相邻的一个内角,则这么三角形是直角三角形;③如果一个三角形的三条高的交点恰好是三角形的一个顶点,那么这个三角形是直角三角形; ④如果∠A=∠B=∠C ,那么△ABC 是直角三角形;⑤若三角形的一个内角等于另两个内角之差,那么这个三角形是直角三角形;⑥在△ABC中,若∠A+∠B=∠C,则此三角形是直角三角形.A.3个B.4个C.5个D.6个二、填空题:(本大题共6个小题,每小题4分,共24分.)13.化简11x-÷211x-=_____.14.甲乙两人8次射击的成绩如图所示(单位:环)根据图中的信息判断,这8次射击中成绩比较稳定的是______(填“甲”或“乙”)15.不等式组372291xx+≥⎧⎨-<⎩的非负整数解的个数是_____.16.已知⊙O1、⊙O2的半径分别为2和5,圆心距为d,若⊙O1与⊙O2相交,那么d的取值范围是_________.17.如图,△ABC中,DE垂直平分AC交AB于E,∠A=30°,∠ACB=80°,则∠BCE=_____ °.18.如图,在Rt△ABC中,∠B=90°,AB=3,BC=4,将△ABC折叠,使点B恰好落在边AC上,与点B′重合,AE为折痕,则EB′=_______.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图,AB是圆O的直径,AC是圆O的弦,过点C的切线交AB的延长线于点D,若∠A=∠D,CD=23.(1)求∠A的度数.(2)求图中阴影部分的面积.20.(6分)如图,已知平行四边形ABCD,将这个四边形折叠,使得点A和点C重合,请你用尺规做出折痕所在的直线。
2020年上海市中考数学二模试卷及解析
2020年上海市二模试卷数学试卷一、选择题(本大题共6小题,共24分)1. 拒绝“餐桌浪费”,刻不容缓.节约一粒米的帐:一个人一日三餐少浪费一粒米,全国一年就可以节省32400000斤,这些粮食可供9万人吃一年.“32400000”这个数据用科学记数法表示为( )A. 324×105B. 32.4×106C. 3.24×107D. 0.32×1082. 如果关于x 的方程x −m +2=0(m 为常数)的解是x =−1,那么m 的值是( )A. m =3B. m =−3C. m =1D. m =−13. 将抛物线y =x 2−2x −1向上平移1个单位,平移后所得抛物线的表达式是( )A. y =x 2−2xB. y =x 2−2x −2C. y =x 2−x −1D. y =x 2−3x −14. 现有甲、乙两个合唱队,队员的平均身高都是175cm ,方差分别是S 甲2、S 乙2,如果S 甲2>S 乙2,那么两个队中队员的身高较整齐的是( )A. 甲队B. 乙队C. 两队一样整齐D. 不能确定5. 已知|a ⃗ |=1,|b ⃗ |=3,而且b ⃗ 和a ⃗ 的方向相反,那么下列结论中正确的是( ) A. a ⃗ =3b ⃗ B. a ⃗ =−3b ⃗ C. b ⃗ =3a ⃗ D. b ⃗ =−3a ⃗6. 对于一个正多边形,下列四个命题中,错误的是 ( )A. 正多边形是轴对称图形,每条边的垂直平分线是它的对称轴B. 正多边形是中心对称图形,正多边形的中心是它的对称中心C. 正多边形每一个外角都等于正多边形的中心角D. 正多边形每一个内角都与正多边形的中心角互补二、填空题(本大题共12小题,共48分) 7. 计算:a 6÷a 3=______.8. 分解因式:2a 2−4a =______.9. 已知关于x 的方程x 2+3x −m =0有两个相等的实数根,则m 的值为______. 10. 不等式组{x +1≥0x −1<1的解集是______.11. 方程√2x −1=1的根是______. 12. 已知反比例函数y =2k+1x的图象经过点(2,−1),那么k 的值是______.13. 不透明的袋中装有8个小球,这些小球除了有红白两种颜色外其它都一样,其中2个小球为红色,6个小球为白色,随机地从袋中摸取一个小球是红球的概率为______.14. 在一次有12人参加的测试中,得100分、95分、90分、85分、75分的人数分别是1、4、3、2、2,那么这组数据的众数是______分.15. 在Rt △ACB 中,∠C =90°,AC =3,BC =3√3,以点A 为圆心作圆A ,要使B 、C两点中的一点在圆A 外,另一点在圆A 内,那么圆A 的半径长r 的取值范围是______. 16. 如图,平行四边形ABCD 的对角线AC 、BD 交于点O ,过点O 的线段EF 与AD 、BC 分别交于点E 、F ,如果AB =4,BC =5,OE =32,那么四边形EFCD 的周长为______.17. 各顶点都在方格纸横竖格子线的交错点上的多边形称为格点多边形,奥地利数学家皮克(G.Pick,1859~1942年)证明了格点多边形的面积公式:S =a +12b −1,其中a 表示多边表内部的格点数,b 表示多边形边界上的格点数,S 表示多边形的面积.如图格点多边形的面积是______.18. 如图,点M 的坐标为(3,2),点P 从原点O 出发,以每秒1个单位的速度沿y 轴向上移动,同时过点P 的直线l 也随之上下平移,且直线l 与直线y =−x 平行,如果点M 关于直线l 的对称点落在坐标轴上,如果点P 的移动时间为t 秒,那么t 的值可以是______.三、计算题(本大题共1小题,共10分)19. 计算:(−2018)0+(12)−2−12+tan60∘+√(3−π)2.四、解答题(本大题共6小题,共68分) 20. 解方程:16x 2−4=x+2x−2−1x+2.21. 如图已知:△ABC 中,AD 是边BC 上的高、E 是边AC 的中点,BC =11,AD =12,DFGH 为边长为4的正方形,其中点F 、G 、H 分别在AD 、AB 、BC 上. (1)求BD 的长度; (2)求cos ∠EDC 的值.22.某乒乓球馆普通票价20元/张,暑假为了促销,新推出两种优惠卡:①金卡售价600元/张,每次凭卡不再收费;②银卡售价150元/张,每次凭卡另收10元;暑期普通票正常出售,两种优惠卡仅限暑期使用,不限次数.设打乒乓x次时,所需总费用为y元.(1)分别写出选择银卡、普通票消费时,y与x之间的函数关系式;(2)在同一个坐标系中,若三种消费方式对应的函数图象如图所示,请根据函数图象,写出选择哪种消费方式更合算.23.如图,在矩形ABCD中,点E是边AB的中点,△EBC沿直线EC翻折,使B点落在矩形ABCD内部的点P处,联结AP并延长AP交CD于点F,联结BP交CE于点Q.(1)求证:四边形AECF是平行四边形;(2)如果PA=PE,求证:△APB≌△EPC.24.在平面直角坐标系xOy中,如图,抛物线y=mx2−2x+n(m、n是常数)经过点A(−2,3)、B(−3,0),与y轴的交点为点C.(1)求此抛物线的表达式;(2)点D为y轴上一点,如果直线BD和直线BC的夹角为15°,求线段CD的长度;(3)设点P为此抛物线的对称轴上的一个动点,当△BPC为直角三角形时,求点P的坐标.25.在圆O中,AB是圆O的直径,AB=10,点C是圆O上一点(与点A、B不重合),点M是弦BC的中点.(1)如图1,如果AM交OC于点E,求OE:CE的值;(2)如图2,如果AM⊥OC于点E,求sin∠ABC的值;(3)如图3,如果AB:BC=5:4,点D为弦BC上一动点,过点D作DF⊥OC,交半径OC于点H,与射线BO交于圆内点F.探究一:如果设BD=x,FO=y,求y关于x的函数解析式及其定义域;探究二:如果以点O为圆心,OF为半径的圆经过点D,直接写出此时BD的长度;请你完成上述两个探究.答案和解析1.【答案】C【解析】解:32400000=3.24×107元.故选:C.用科学记数法表示较大的数时,一般形式为a×10−n,其中1≤|a|<10,n为整数,据此判断即可.此题主要考查了用科学记数法表示较大的数,一般形式为a×10−n,其中1≤|a|<10,确定a与n的值是解题的关键.2.【答案】C【解析】解:把x=−1,代入方程关于x的方程x−m+2=0(m为常数)得:−1−m+2=0,解得:m=1,故选:C.理解一元一次的解和解一元一次方程的概念是解此题的关键.本题考查了一元一次方程两个概念,重点是理解一元一次方程的解和会解一元一次方程.3.【答案】A【解析】解:∵将抛物线y=x2−2x−1向上平移1个单位,∴平移后抛物线的表达式y=x2−2x−1+1,即y=x2−2x.故选:A.根据向上平移纵坐标加求得结论即可.本题考查了二次函数图象与几何变换,此类题目利用顶点的平移确定抛物线函数图象的变化更简便.4.【答案】B【解析】【分析】根据方差的意义,方差越小数据越稳定,故比较方差后可以作出判断.本题考查了方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.【解答】解:∵S甲2>S乙2,∴两个队中队员的身高较整齐的是:乙队.故选:B.5.【答案】D【解析】解:∵|a |=1,|b⃗|=3,而且b⃗ 和a⃗的方向相反,∴b⃗=−3a,故选:D.根据平面向量的性质即可解决问题.本题考查平面向量的性质,解题的关键是熟练掌握基本知识,属于中考常考题型.6.【答案】B【解析】解:A、正多边形是轴对称图形,每条边的垂直平分线是它的对称轴,正确,故此选项错误;B、正奇数多边形多边形不是中心对称图形,错误,故本选项正确;C、正多边形每一个外角都等于正多边形的中心角,正确,故本选项错误;D、正多边形每一个内角都与正多边形的中心角互补,正确,故本选项错误.故选:B.利用正多边形的对称轴的性质、对称性、中心角的定义及中心角的性质作出判断即可.本题考查了正多边形和圆的知识,解题的关键是正确的理解正多边形的有关的定义.7.【答案】a3【解析】解:a6÷a3=a6−3=a3.故应填a3.根据同底数幂相除,底数不变指数相减计算即可.本题主要考查同底数幂的除法运算性质,熟练掌握运算性质是解题的关键.8.【答案】2a(a−2)【解析】解:2a2−4a=2a(a−2).故答案为:2a(a−2).观察原式,找到公因式2a,提出即可得出答案.本题考查了因式分解的基本方法一---提公因式法.本题只要将原式的公因式2a提出即可.9.【答案】−94【解析】解:∵关于x的方程x2+3x−m=0有两个相等的实数根,∴△=32−4×1×(−m)=0,解得:m=−94,故答案为:−94.根据方程有两个相等的实数根得出△=0,求出m的值即可.本题考查的是根的判别式,熟知一元二次方程ax2+bx+c=0(a≠0)的根与△=b2−4ac的关系是解答此题的关键.10.【答案】−1≤x<2【解析】解:{x+1≥0 ①x−1<1 ②由①得:x≥−1,由②得:x<2,∴不等式组的解集为−1≤x<2.故答案为−1≤x<2.分别求出不等式组中两不等式的解集,找出解集的公共部分即可.此题考查了一元一次不等式组的解法,不等式组取解集的方法为:同大取大;同小取小;大小小大去中间;大大小小无解.11.【答案】1【解析】解:两边平方得2x−1=1,解得x=1.经检验x=1是原方程的根.故本题答案为:x=1.本题思路是两边平方后去根号,解方程.平方时可能产生增根,要验根.12.【答案】k=−32【解析】解:∵反比例函数y=2k+1x的图象经过点(2,−1),∴−1=2 k+12∴k=−32;故填k=−32.根据点的坐标与函数解析式的关系,将点的坐标代入,可以得到−1=2 k+12,然后解方程,便可以得到k的值.本题侧重考查利用待定系数法求函数的解析式的方法,可以结合代入法进行解答13.【答案】14【解析】【分析】本题主要考查概率公式,解题的关键是掌握随机事件A的概率P(A)=事件A可能出现的结果数÷所有可能出现的结果数.用红色小球的个数除以球的总个数即可得.【解答】解:∵袋子中共有8个小球,其中红色小球有2个,∴随机地从袋中摸取一个小球是红球的概率为26+2=28=14,故答案为:14.14.【答案】95【解析】解:∵95分出现了4次,出现的次数最多,∴这组数据的众数是95分;故答案为:95.根据众数的定义即众数是一组数据中出现次数最多的数据,即可得出答案.此题考查了众数,熟练掌握众数的定义是解题的关键,众数是一组数据中出现次数最多的数.15.【答案】3<r<6【解析】解:∵Rt△ACB中,∠C=90°,AC=3,BC=3√3,∴AB=6,如果以点A为圆心作圆,使点C在圆A内,则r>3,点B在圆A外,则r<6,因而圆A半径r的取值范围为3<r<6.故答案为3<r<6;熟记“设点到圆心的距离为d,则当d=r时,点在圆上;当d>r时,点在圆外;当d<r时,点在圆内”即可求解,本题考查了对点与圆的位置关系的判断.设点到圆心的距离为d,则当d=r时,点在圆上;当d>r时,点在圆外;当d<r时,点在圆内.16.【答案】12【解析】解:∵四边形ABCD平行四边形,∴AB=CD=4,AD=BC=5,AO=OC,∠OAD=∠OCF,∠AOE=∠COF,∴△OAE≌△OCF(AAS),∴OF=OE=1.5,CF=AE,∴四边形EFCD的周长=ED+CD+CF+OF+OE=ED+AE+CD+OE+OF=AD+CD+OE+OF=4+5+1.5+1.5=12.故答案为:12.根据平行四边形的性质知,AB=CD=4,AD=BC=5,AO=OC,∠OAD=∠OCF,∠AOE和∠COF是对顶角相等,根据全等三角形的性质得到OF=OE=1.5,CF=AE,所于是得到结论.本题利用了平行四边形的性质,由已知条件先证出△OAE≌△OCF,再全等三角形的性质,转化边的关系后再求解.17.【答案】6【解析】解:∵a表示多边形内部的格点数,b表示多边形边界上的格点数,S表示多边形的面积,∴a=4,b=6,∴格点多边形的面积S=a+12b−1=4+12×6−1=6.故答案为:6.分别统计出多边形内部的格点数a和边界上的格点数b,再代入公式S=a+12b−1,即可得出格点多边形的面积.本题考查格点多边形面积的计算,解题的关键是根据图形正确统计出a,b的值.18.【答案】2或3(答一个即可)【解析】解:设直线l:y=−x+b.如图,过点M作MF⊥直线l,交y轴于点F,交x轴于点E,则点E、F为点M在坐标轴上的对称点.过点M作MD⊥x轴于点D,则OD=3,MD=2.由直线l:y=−x+b可知∠PDO=∠OPD=45°,∴∠MED=∠OEF=45°,则△MDE与△OEF均为等腰直角三角形,∴DE=MD=2,OE=OF=1,∴E(1,0),F(0,−1).∵M(3,2),F(0,−1),∴线段MF中点坐标为(32,1 2 ).直线y=−x+b过点(32,12),则=−32+b,解得:b=2,∴t=2.∵M(3,2),E(1,0),∴线段ME中点坐标为(2,1).直线y=−x+b过点(2,1),则1=−2+b,解得:b=3,∴t=3.故点M关于l的对称点,当t=2时,落在y轴上,当t=3时,落在x轴上.故答案为:2或3(答一个即可).找出点M关于直线l在坐标轴上的对称点E、F,如图所示.求出点E、F的坐标,然后分别求出ME、MF中点坐标,最后分别求出时间t的值.考查了一次函数的图象与几何变换.注意在x轴、y轴上均有点M的对称点,不要漏解;其次注意点E、F坐标以及线段中点坐标的求法.19.【答案】解:原式=1+4−2+√3π−3=π+√3.【解析】原式利用零指数幂、负整数指数幂法则,特殊角的三角函数值,以及二次根式性质计算即可求出值.此题考查了实数的运算,熟练掌握运算法则是解本题的关键.20.【答案】解:方程两边同乘以(x+2)(x−2)得:16=(x+2)2−(x−2),整理得:x2+3x−10=0,解此方程得:x1=−5,x2=2,经检验x1=−5是原方程的解,x2=2是增根(舍去),所以原方程的解是:x=−5.【解析】先把分式方程转化成整式方程,求出方程的解,再进行检验即可.本题考查了解分式方程,能把分式方程转化成整式方程是解此题的关键.21.【答案】解:(1)∵四边形DFGH为顶点在△ABD边长的正方形,且边长为4,∴GF//BD,GF=DF=4,∴GFBD =AFAD,∵AD=12,∴AF=8,则4BD =812,解得:BD=6;(2)∵BC=11,BD=6,∴CD=5,在直角△ADC中,AC2=AD2+DC2,∴AC=13,∵E是边AC的中点,∴ED=EC,∴∠EDC=∠ACD,∴cos∠EDC=cos∠ACD=513.【解析】(1)由四边形DFGH为边长为4的正方形得GFBD =AFAD,将相关线段的长度代入计算可得;(2)先求出CD、AC的长,再由E是边AC的中点知ED=EC,据此得∠EDC=∠ACD,再根据余弦函数的定义可得答案.本题主要考查正方形的性质,解题的关键是掌握正方形的性质、勾股定理、三角函数的应用及直角三角形的性质等.22.【答案】解:(1)由题意可得,选择银卡消费时,y与x之间的函数关系式为:y=10x+150,选择普通票消费时,y与x之间的函数关系式为:y=20x;(2)当10x+150=20x时,得x=15,当10x+150=600时,得x=45,答:当打球次数不足15次时,选择普通票最合算,当打球次数介于15次到45次之间时,选择银卡最合算,当打球次数超过45次时,选择金卡最合算,当打球次数恰为15次时,选择普通票或银卡同为最合算,当打球次数恰为45次时,选择金卡或银卡同为最合算.【解析】(1)根据题意可以直接写出选择银卡、普通票消费时,y与x之间的函数关系式;(2)根据函数图象和(1)中的函数解析式可以分别求得普通票消费和银卡消费相等的情况,银卡消费和金卡消费相等的情况,再根据图象即可解答本题.本题考查一次函数的应用,解答本题的关键是明确题意,利用一次函数的性质和数形结合的思想解答.23.【答案】证明:(1)由折叠得到EC垂直平分BP,设EC与BP交于Q,∴BQ=EQ∵E为AB的中点,∴AE=EB,∴EQ为△ABP的中位线,∴AF//EC,∵AE//FC,∴四边形AECF为平行四边形;(2)∵AF//EC,∴∠APB=∠EQB=90°,由翻折性质∠EPC=∠EBC=90°,∠PEC=∠BEC,∵E为直角△APB斜边AB的中点,且AP=EP,∴△AEP为等边三角形,∠BAP=∠AEP=60°,∠CEP=∠CEB=180°−60°2=60°,在△ABP和△EPC中,{∠BAP=∠CEP ∠APB=∠EPC AP=EP,∴△ABP≌△EPC(AAS).【解析】(1)由折叠的性质得到BE=PE,EC与PB垂直,根据E为AB中点,得到AE= EB=PE,利用三角形内一边上的中线等于这条边的一半的三角形为直角三角形,得到∠APB为90°,进而得到AF与EC平行,再由AE与FC平行,利用两对边平行的四边形为平行四边形即可得证;(2)根据三角形AEP 为等边三角形,得到三条边相等,三内角相等,再由折叠的性质及邻补角定义得到一对角相等,根据同角的余角相等得到一对角相等,再由AP =EB ,利用AAS 即可得证.此题考查全等三角形的判定与性质,折叠的性质,熟练掌握全等三角形的判定与性质是解本题的关键.24.【答案】解:(1)依题意得:{4m +4+n =39m +6+n =0, 解得:{m =−1n =3, ∴抛物线的表达式是y =−x 2−2x +3.(2)∵抛物线y =−x 2−2x +3与y 轴交点为点C ,∴点C 的坐标是(0,3),又点B 的坐标是(−3,0),∴OC =OB =3,∠CBO =45°,∴∠DBO =30°或60°.在直角△BOD 中,DO =BO ⋅tan ∠DBO ,∴DO =√3或3√3,∴CD =3−√3或3√3−3.(3)由抛物线y =−x 2−2x +3得:对称轴是直线x =−1,根据题意:设P(−1,t),又点C 的坐标是(0,3),点B 的坐标是(−3,0),∴BC 2=18,PB 2=(−1+3)2+t 2=4+t 2,PC 2=(−1)2+(t −3)2=t 2−6t +10, ①若点B 为直角顶点,则BC 2+PB 2=PC 2即:18+4+t 2=t 2−6t +10,解之得:t =−2,②若点C 为直角顶点,则BC 2+PC 2=PB 2即:18+t 2−6t +10=4+t 2,解之得:t =4,③若点P 为直角顶点,则PB 2+PC 2=BC 2即:4+t 2+t 2−6t +10=18,解之得:t 1=3+√172,t 2=3−√172.综上所述P 的坐标为(−1,−2)或(−1,4)或(−1,3+√172)或(−1,3−√172).【解析】(1)将点A 和点B 坐标代入解析式求解可得;(2)先求出点C 坐标,从而得出OC =OB =3,∠CBO =45°,据此知∠DBO =30°或60°,依据DO =BO ⋅tan ∠DBO 求出得DO =√3或3√3,从而得出答案;(3)设P(−1,t),知BC 2=18,PB 2=4+t 2,PC 2=t 2−6t +10,再分点B 、点C 和点P 为直角顶点三种情况分别求解可得.本题是二次函数的综合问题,解题的关键是掌握待定系数法求函数解析式、等腰三角形的性质、两点间的距离公式及直角三角形的性质等知识点.25.【答案】解:(1)过点O 作ON//BC 交AM 于点N ,如图1∴AOAB =ONBM,ONMC=OECE,∵AO=BO=12AB∴AOAB=ONBM=12∵点M是弦BC的中点∴BM=MC∴OECE =ONBM,∴OE:CE=1:2;(2)联结OM,如图2∵点M是弦BC的中点,OM经过圆心O ∴OM⊥BC,∠OMC=90°,∵AM⊥OC,∴∠MEO=90°∴∠OMC=∠MEO=90°又∠MOC=∠EOM ∴△MOC∽△EOM;∴OMOE =OCOM,∵OE:CE=1:2∴OM=√33OC,∵OB=OC∴∠ABC=∠OCM在直角△MOC中,sin∠OCM=OMOC =√33∴sin∠ABC=√33;(3)探究一:如图3,过点D作DL⊥DF交BO于点L,取BC中点M,连接OM∵DF⊥OC,∴DL//OC,∴∠LDB=∠C=∠B ∴BL=DL,∵AB=10,AB:BC=5:4,∴BC=8,OC=5,∵BM=CM=4,∴cos∠OCM=MCOC=CHCD=45∵DL//OC,∴BLOB=BDBC设BD=x,则CD=8−x,∴BL=DL=58x,CH=45(8−x),OH=OC−CH=5−45(8−x),∵OH//DL,∴OHLD =OFFL,∴45x−7558=yy+5−58y;∴y关于x的函数解析式是y=207x−5定义域是74≤x<72,探究二:∵以O为圆心,OF为半径的圆经过D,∴OF=OD,∵DF⊥OC,∴OC垂直平分DF,FO=OL,∴y=5−58x,∴207x−5=5−58x,解得:x=11219,∴BD=11219.【解析】(1)如图1,过点O作ON//BC交AM于点N,根据三角形的中位线的性质得到ON=12BM,根据平行线分线段成比例定理即可得到结论;(2)如图1,连接OM,根据垂径定理得到OM⊥BC,根据余角的性质得到∠OME=∠MCE,根据相似三角形的性质得到ME2=OE⋅CE,设OE=x,则CE=2x,ME=√2x,解直角三角形即可得到结论;(3)探究一:如图2,过点D作DL⊥DF交BO于点L,根据平行线的性质得到∠LDB=∠C=∠B,根据等腰三角形的判定定理得到BL=DL,设BD=x,则CD=8−x,BL=DL=58x,CH=45(8−x),OH=OC−CH=5−45(8−x),根据平行线成线段成比例定理得到y=20x−357(其中74≤x<72);探究二:根据题意得到OF=OD,根据等腰三角形的性质得到DF⊥OC,根据直角三角形的性质得到FO=OL,列方程即可得到结论.本题考查了垂径定理,相似三角形的判定和性质,等腰三角形的性质,解直角三角形,正确的作出辅助线是解题的关键.。
2020年上海市静安区、青浦区中考数学二模试卷及答案解析
2020年上海市静安区、青浦区中考数学二模试卷一、选择题:(本大题共6题,每题4分,满分24分).2.(4分)(2015•青浦区二模)某公司三月份的产值为a万元,比二月份增长了m%,那么二月份的产值(单位:万元)为().3.(4分)(2015•青浦区二模)如果关于x的方程x2﹣x+m=0有实数根,那么m的取值范围是()≥<≤4.(4分)(2015•青浦区二模)某餐饮公司为一所学校提供午餐,有10元、12元、15元三种价格的盒饭供师生选择,每人选一份,该校师生某一天购买的这三种价格盒饭数依次占二、填空题:(本大题共12题,每题4分,满分48分)7.(4分)(2015•青浦区二模)计算:=.8.(4分)(2015•青浦区二模)分解因式:x2﹣6xy+9y2=.9.(4分)(2015•青浦区二模)方程=x的根是.10.(4分)(2015•青浦区二模)函数的定义域是.11.(4分)(2015•青浦区二模)某工厂对一个小组生产的零件进行调查.在10天中,这个小组出次品的情况如表所示:那么在这10天中这个小组每天所出次品数的标准差是.12.(4分)(2015•青浦区二模)从①AB∥CD,②AD∥BC,③AB=CD,④AD=BC四个关系中,任选两个作为条件,那么选到能够判定四边形ABCD是平行四边形的概率是.13.(4分)(2015•青浦区二模)如图,在Rt△ABC中,∠ACB=90°,AB=2AC,点E在中线CD上,BE平分∠ABC,那么∠DEB的度数是.14.(4分)(2015•青浦区二模)如果梯形ABCD中,AD∥BC,E、F分别是AB、CD的中点,AD=1,BC=3,那么四边形AEFD与四边形EBCF的面积比是.15.(4分)(2015•青浦区二模)如图,在▱ABCD中,AC与BD相交于点O,点E是OD 的中点,如==,那么=.16.(4分)(2015•青浦区二模)当x=2时,不论k取任何实数,函数y=k(x﹣2)+3的值为3,所以直线y=k(x﹣2)+3一定经过定点(2,3);同样,直线y=k(x﹣3)+x+2一定经过的定点为.17.(4分)(2015•青浦区二模)将矩形ABCD(如图)绕点A旋转后,点D落在对角线AC上的点D′,点C落到C′,如果AB=3,BC=4,那么CC′的长为.18.(4分)(2015•青浦区二模)如图,⊙O1的半径为1,⊙O2的半径为2,O1O2=5,⊙O 分别与⊙O1外切、与⊙O2内切,那么⊙O半径r的取值范围是.三、解答题:(本大题共7题,满分70分)19.(10分)(2015•青浦区二模)化简:﹣(x2+x),并求当x=﹣30时的值.20.(10分)(2015•青浦区二模)求不等式组的整数解.21.(10分)(2015•青浦区二模)如图,在直角坐标系xOy中,反比例函数图象与直线y=x ﹣2相交于横坐标为3的点A.(1)求反比例函数的解析式;(2)如果点B在直线y=x﹣2上,点C在反比例函数图象上,BC∥x轴,BC=4,且BC在点A上方,求点B的坐标.22.(10分)(2015•青浦区二模)甲乙两人各加工30个零件,甲比乙少用1小时完成任务;乙改进操作方法,使生产效率提高了一倍,结果乙完成30个零件的时间比甲完成24个零件所用的时间少1小时.问甲乙两人原来每小时各加工多少个零件.23.(6分)(2015•青浦区二模)如图,在梯形ABCD中,AB∥CD,AD=BC,E是CD的中点,BE交AC于F,过点F作FG∥AB,交AE于点G.(1)求证:AG=BF;(2)当AD2=CA•CF时,求证:AB•AD=AG•AC.。
青浦区2020学年九年级第二次学业质量调研测试数学试卷及答案(二模)
青浦区2020学年九年级第二次学业质量调研测试数学试卷 Q 2021.4(满分150分,100分钟完成)考生注意:1.本试卷含三个大题,共25题.答题时,考生务必按答题要求在答题纸规定的位置上作答,在草稿纸、本调研卷上答题一律无效.2.除第一、二大题外,其余各题如无特别说明,都必须在答题纸的相应位置上写出证明或计算的主要步骤.一、选择题:(本大题共6题,每题4分,满分24分)【每小题只有一个正确选项,在答题纸相应题号的选项上用2B 铅笔正确填涂】1.是同类二次根式的是( ▲ )(A )4; (B ; (C )12; (D .2.如果a >b ,m 为非零实数,那么下列结论一定成立的是( ▲ )(A )a +m <b +m ; (B )m -a <m -b ; (C )am >bm ; (D )m a >mb. 3.下列对反比例函数xy 3=的图像的描述,正确的是( ▲ ) (A )与坐标轴有交点; (B )有两支,分别在第二、四象限; (C )经过点(1,3); (D )函数值y 随x 的值增大而减小.4.某校为了解学生在“慈善募捐”活动中的捐款情况,进行了抽样调查,结果如下表所示.那么该样本中学生捐款金额的中位数和众数分别是( ▲ )(A )20元,50元; (B )35元,50元; (C )50元,50元; (D )20元,20元. 5. 如果一个正多边形的每一个外角都是45°,那么这个正多边形的内角和为( ▲ )(A )360°; (B )720°; (C )1080°; (D )1440°. 6.下列命题中,真命题是( ▲ )(A )一组对边平行,且另一组对边相等的四边形是平行四边形; (B )一组对边平行,且对角线相等的四边形是等腰梯形; (C )一组对边平行,且一组邻边互相垂直的四边形是矩形; (D )一组对边平行,且对角线平分一组对角的四边形是菱形.二、填空题:(本大题共12题,每题4分,满分48分)【在答题纸相应题号后的空格内直接填写答案】 7. 计算:()233a-= ▲ .8. 在实数范围内分解因式:224-y x = ▲ . 9. 方程3=1+2x 的解是 ▲ .10. 如果关于x 的方程032=-+k x x 有两个不相等的实数根,那么实数k 的取值范围是 ▲ . 11. 从 ,3.101001, π选出的这个数是无理数的概率是 ▲ . 12. 如果将抛物线2y x =-向下平移,使其经过点(0,-2),那么所得新抛物线的表达式是 ▲ . 13.为了解某区2400名初中教师中接种新冠疫苗的教师人数,随机调查了其中200名教师,结果有150人接种了疫苗,那么估计该区接种新冠疫苗的初中教师人数约有 ▲ 人. 14. 某传送带与地面所成斜坡的坡度i =1∶2.4,如果它把物体从地面送到离地面6米高的地方,那么物体所经过的路程为 ▲ 米.15.如图1,点G 是△ABC 的重心,设a AB =,b BG =,那么向量DC 用向量a 、b 表示为▲ .16.如图2,在半径为2的⊙O 中,弦AB 与弦CD 相交于点M ,如果AB =CD =32,∠AMC =120°,那么OM 的长为 ▲ .17.在△ABC 中,∠C =90°,AC =3,将△ABC 绕着点A 旋转,点C 恰好落在AB 的中点上,设点B 旋转后的对应点为点D ,则CD 的长为 ▲ .18.在矩形ABCD 中,AC 、BD 相交于点O ,AB =4cm ,AD =8cm .Q 为直线BC 上一动点,如果以5cm 为半径的⊙Q 与矩形ABCD 的各边有4个公共点,那么线段OQ 长的取值范围是 ▲ .GABC图1图2AOBD MC13三、解答题:(本大题共7题,满分78分)【将下列各题的解答过程,做在答题纸的相应位置上】 19.(本题满分10分)计算:22312723-⎛⎫⎪⎝⎭.20.(本题满分10分)解方程组:22319560.;+=⎧⎨--=⎩x y x xy y21.(本题满分10分,每小题满分各5分)如图3,在Rt △ABC 中,∠ACB =90°,AC =3,sin ∠ABC =31, D 是边AB 上一点,且CD =CA ,BE ⊥CD ,垂足为点E . (1)求AD 的长; (2)求∠EBC 的正切值.22.(本题满分10分,每小题满分各5分)某校九年级学生从学校乘车前往郊野公园春游,1号车于上午8点出发,2号车晚10分钟出发.设1号车的行驶时间为x 分钟,行驶的路程为1y 千米,2号车 的行驶路程为2y 千米,1y 、2y 关于x 的部分函数图像如图4(1)求2y 关于x 的函数解析式;(2)如果2号车与1号车同时到达郊野公园的停车场,求汽车从学校到郊野公园停车场行驶的路程.23.(本题满分12分,每小题满分各6分)已知:如图5,在正方形ABCD 中,联结BD , E 是边AB 上一点,BF ⊥DE ,垂足为点F , 且EF ·BD =BE ·BF .(1)求证:∠ADE =∠BDE ;(2)延长DF 与CB 的延长线交于点G ,求证:BG=BC+AE .ABCDEFADCB E图3图4①②24.(本题满分12分,每小题满分各4分)已知:如图6,在平面直角坐标系xOy 中,抛物线23y ax bx =++的图像与x 轴交于点 A (-1,0)和点B ,与y 轴交于点C ,对称轴是直线x =1,顶点是点D . (1)求该抛物线的解析式和顶点D 的坐标;(2)点P 为该抛物线第三象限上的一点,当四边形PBDC 为梯形时,求点P 的坐标; (3)在(2)的条件下,点E 为x 轴正半轴上的一点,当tan (∠PBO +∠PEO )=25时, 求OE25.(本题满分14分,第(1)小题满分4分,第(2)小题满分6分,第(3)小题满分4分)已知:在半径为2的扇形AOB 中,∠AOB =m °(0<m ≤180),点C 是AB 上的一个动点,直线AC 与直线OB 相交于点D .(1)如图7,当0<m <90,△BCD 是等腰三角形时,求∠D 的大小(用含m 的代数式表示); (2)如图8,当m =90,点C 是AB 的中点时,联结AB 、BC ,求ABCABDS S △△的值;(3)将AC 沿AC 所在的直线折叠,当折叠后的圆弧与OB 所在的直线相切于点E ,且OE =1时,求线段AD 的长.CAD OCADB O图6备用图备用图图7 图8青浦区2020学年九年级第二次学业质量调研测试评分参考一、选择题:1.B ; 2.B ; 3.C ; 4.A ; 5.C ; 6.D . 二、填空题:7.69a ; 8.()()x y x y 22+-; 9.4=x ; 10.49>-k ; 11.21; 12.2=2--x y ; 13.1800; 14.15.6; 15.23+21; 16; 17.73; 18.2≤OQ <5. 三、解答题:19.解:原式=()95+232+9---. ······················································ (8分)=53--. ········································································ (2分)20.解:由②得60-=x y 或0+=x y . ························································· (2分)原方程组可化为31960.,+=⎧⎨-=⎩x y x y 或3190.,+=⎧⎨+=⎩x y x y ······································ (4分)解得原方程组的解是1161,;=⎧⎨=⎩x y 22192192,.⎧=⎪⎪⎨⎪=-⎪⎩x y ············································ (4分) 21.解:(1)过点C 作CH ⊥AB ,垂足为点H .∵∠ACB =90°,∴∠A+∠ABC =90°.同理∠A+∠ACH =90°.∴∠ACH =∠ABC . ·································································· (2分)∴1sin =sin 3∠∠=ACH ABC . ·················································· (1分) ∵∠AHC =90°,AC =3,∴AH =sin ∠⋅ACH AC =1. ···················· (1分)∵CD =CA ,CH ⊥AB ,∴AD =2AH =2. ······································· (1分) (2)∵∠ACB =90°,AC =3,1sin 3∠=ABC ,∴AB =9. ∴DB =AB -AD =9-2=7. ······················································ (1分) ∵BE ⊥CD ,∴∠E =∠CHD =90°.又∵∠EDB =∠HDC ,∴△EDB ∽△HDC . ································································ (1分) ∴DCDBDH DE =. ∵DH =AH =1,CD =3,∴37=DE . ·········································· (1分) ∴316=+=DE CD CE . ∵222DB BE DE =+,∴2314=BE . ······································ (1分) ∴2743214316===∠BE CE EBC tan . ········································· (1分) 22.解:(1)设y 2关于x 的函数解析式为:222b x k y +=(k 2≠0). 根据题意,得:22221003025.,+=⎧⎨+=⎩k b k b ····················································· (2分)解得:452=k ,2252-=b , ·························································· (2分) ∴ y 2关于x 的函数解析式是225452-=x y . ····································· (1分) (2)设y 1关于x 的函数解析式是x k y 11=(k 1≠0). 根据题意,得:30301=k ,∴11=k .∴ y 1关于x 的函数解析式是x y =1. ············································· (2分) ∵ 两辆车同时到达,且行驶路程相同:得方程组525.42,=⎧⎪⎨=-⎪⎩y x y x····························································· (2分)解得:50=x ,50=y .∴ 汽车从学校到郊野公园停车场行驶的路程为50千米. ··················· (1分)23.证明:(1)∵四边形ABCD 是正方形,∴∠A =90°.∵BF ⊥DE ,∴∠BFE =∠A =90°. ∵BF BE BD EF ⋅=⋅,∴BDBEBF EF =. ···································· (1分) ∴Rt △FBE ∽Rt △FDB . ·························································· (2分) ∴∠FBE =∠BDE . ································································ (1分) ∵∠AEF =∠BFE +∠FBE =∠A+∠ADE ,∴∠FBE =∠ADE . ······· (1分) ∴∠ADE =∠BDE . ······························································· (1分) (2)过点E 作EH ⊥BD ,垂足为点H .∵∠A =∠EHD =90°,∠ADE =∠BDE ,DE =DE ,∴△ADE ≌△HDE . ······························································· (1分) ∴AE =HE ,AD =HD .∵AD =BC ,∴HD =BC . ························································ (1分) ∵四边形ABCD 是正方形,∴ ∠EBD =45°. ∵∠EHB =90°,∴∠HEB =45°. ∴∠EBD =∠HEB .∴EH =BH . ········································································· (1分) ∴AE =BH . ········································································· (1分) ∵AD ∥GC ,∴∠ADE =∠BGE .∵∠ADE =∠BDE ,∴∠BGE =∠BDE .∴BG =BD . ··················· (1分) ∵BD =HD +BH ,∴BG =BC +AE .··································································· (1分)24.解:(1)∵抛物线经过点A (-1,0),对称轴是直线x =1,∴3=01.2a b b a-+⎧⎪⎨-=⎪⎩,……(2分),解得=12.a b -⎧⎨=⎩, ·································· (1分)∴抛物线的解析式为223y x x =-++.把x =1代入抛物线的解析式,得y =4. ∴D (1,4). ···················· (1分) (2)∵点P 为抛物线第三象限上的点,且四边形PBDC 为梯形,∴CD ∥BP .········································································ (1分)延长DC 交x 轴负半轴于点F ,过点D 作y 轴的垂线,垂足为点G ,过点P 作x 轴的垂线,垂足为点H . ∵C (0,3),D (1,4), ∴GD =CG =1.∴∠GDC =45°. ∵GD ∥BF ,∴∠DFB =∠GDC =45°.∵CD ∥BP ,∴∠PBF =∠DFB =45°.··········································· (1分) ∴∠PBF =∠HPB ,∴PH =BH .设点P 的坐标为223(,)-++x x x .由题意可知B (3,0).得2323x x x -=--++(). ······················································ (1分)解得2x =-,或3x =.(舍)∴P (-2,-5) ······································································ (1分) (3)∵P (-2,-5),∴在Rt △PHO 中,5tan 2PH POH OH ∠==. ······································ (1分) ∵5tan 2()∠+∠=PBO PEO ,∴PBO PEO POH ∠+∠=∠.由(2)可知,45PBO ∠=,因此45PEO ∠<,所以点E 在点B 的右侧. 又∵PBO BPO POH ∠+∠=∠,∴PEO BPO ∠=∠. ···························· (1分) ∵POB POB ∠=∠,∴△OPB ∽△OEP . ········································· (1分)∴OB OP OP OE =,∴293OE =. ····································· (1分) 25.解:(1)联结OC .∵OC =OB ,∴∠OBC =∠OCB <90°.∴∠CBD 为钝角.∵△BCD 为等腰三角形,∴∠D =∠BCD . ····································· (1分) ∴∠OCB =∠OBC =∠D +∠BCD =2∠D . ····································· (1分) ∴∠OCA =180°-∠OCD =180°-3∠D .∵OC =OA ,∴∠OAC =∠OCA =180°-3∠D . ······························ (1分)在△OAD 中,∵∠OAC +∠D +∠AOB =180°,∴∠D =(21m )°. ··· (1分)(2)联结OC ,过点C 作CF ⊥OD ,垂足为点F .∵点C 是AB 的中点,∴AC =BC ,∴∠BOC =∠AOC . ··············· (1分) ∵∠AOB =90°,∴∠BOC =45°. ·················································· (1分) 在Rt △COF 中,OC =2,∴CF··········································· (1分) ∵CF ⊥OD ,AO ⊥OD ,∴AO ∥CF .∴22==AO CF AD CD . ··············· (1分) ∴222=-AD AC .…(1分)∴2+2==ACAD S S ABC ABD △△. ················· (1分) (3)设折叠后的圆弧所在圆的圆心为O',联结O'E ,O'O ,O'O 交直线AD 于点H . ∵新圆弧由AC 折叠而得,且与直线OB 相切于点E ,∴O'E =2,O'E ⊥OD .当点E 在线段OB 上时,在Rt △O'OE 中,OE =1,O'E =2,则O'O =5. ∵点O'与点O 关于直线AC 对称,∴直线AC 垂直平分线段O'O . ∴OH =25.∴在Rt △AOH 中,AH =211. ································· (1分) 在Rt △DOH 中,tan ∠O'OE =2=OHDH,∴ DH =5. ∴AD =DH +AH. ······················································· (1分)当点E 在线段BO 的延长线上时,同理可得,AH =211,DH =5. ∴AD =DH -AH . ······················································· (2分)。
上海市青浦区2020年初三中考数学二模试卷(解析版)
3.如果反比例函数 y= k 的图象在二、四象限,那么 k 的取值范围是( ) x
A. k>0
B. k<0
C. k≥0
D. k≤0
【答案】B
【解析】
【分析】
根据反比例函数图象的性质:当 k<0 时,反比例函数图象位于第二、四象限.
【详解】解:∵图象在二、四象限,
∴k<0.
故选:B.
【点睛】本题考查反比例函数的图像性质,掌握反比例函数的性质,利用数形结合思想解
∴ BG = BC , DH DF
已知 DF=8,设 AG=x,则 BG=5﹣x,
∴5 x=4 , DH 8
∴DH=10﹣2x, ∵△BCG∽△DFH, ∴∠B=∠FDH,∠BGC=∠CHF, ∴∠AGC=∠DHE, ∵∠A+∠B=90°,∠EDH+∠FDH=90°, ∴∠A=∠EDH, ∴△AGC∽△DHE,
∴ DE AD AE 1 , BC AB AC 2
∴ LADE = DE AD AE = 1 LABC BC AB AC 2
故答案为:1:2. 【点睛】本题考查中位线,解题的关键是熟练运用中位线的性质定理,本题属于基础题型. 14.已知点 C 在线段 AB 上,且 0<AC< 1 AB.如果⊙C 经过点 A,那么点 B 与⊙C 的位
的相似分割线,CG、DH 分别与斜边 AB、EF 交于点 G、H,如果△BCG 与△DFH 相似, AC=3,AB=5,DE=4,DF=8,那么 AG=_____.
【答案】3 【解析】 【分析】 先由勾股定理得出 BC 的值,再由△BCG∽△DFH 列出比例式,设 AG=x,用含 x 的式子 表示出 DH;按照相似分割线可知,△AGC∽△DHE,但要先得出两个相似三角形的边或 角是如何对应的,再根据相似三角形的性质列出比例式,解得 x 值即可. 【详解】解:∵Rt△ABC,AC=3,AB=5, ∴由勾股定理得:BC=4, ∵△BCG∽b 表示为( )
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2020年上海市青浦区中考数学二模试卷一、选择题(本大题共6小题,共24.0分) 1. a(a ≠0)的倒数是( )A. aB. −aC. 1a D. −1a 2. 计算(−2x)2的结果是( )A. 2x 2B. −2x 2C. 4x 2D. −4x 23. 如果反比例函数y =kx 的图象在二、四象限,那么k 的取值范围是( )A. k >0B. k <0C. k ≥0D. k ≤04. 下列方程中,没有实数根的是( )A. x 2−2x =0B. x 2−2x −1=0C. x 2−2x +1=0D. x 2−2x +2=05. 为了解某校初三400名学生的体重情况,从中抽取50名学生的体重进行分析.在这项调查中,下列说法正确的是( ) A. 400名学生中每位学生是个体 B. 400名学生是总体C. 被抽取的50名学生是总体的一个样本D. 样本的容量是506. 如图,点G 是△ABC 的重心,联结AG 并延长交BC 边于点D.设AB ⃗⃗⃗⃗⃗ =a ⃗ ,GD ⃗⃗⃗⃗⃗⃗ =b ⃗ ,那么向量BC ⃗⃗⃗⃗⃗ 用向量a ⃗ 、b ⃗ 表示为( ) A. BC ⃗⃗⃗⃗⃗ =3b ⃗ −2a ⃗B. BC ⃗⃗⃗⃗⃗ =3b ⃗ +2a ⃗C. BC ⃗⃗⃗⃗⃗ =6b ⃗ −2a ⃗D. BC ⃗⃗⃗⃗⃗ =6b ⃗ +2a ⃗二、填空题(本大题共12小题,共48.0分) 7. 计算:a 3÷a = ______ .8. 在实数范围内分解因式:m 2−2=______. 9. 函数y =√x +3的定义域是______. 10. 不等式组{x +1≥02−x >0的整数解是______.11. 如果将直线y =3x 平移,使其经过点(0,−1),那么平移后的直线表达式是______. 12. 从2,3,4,5,6这五个数中任选一个数,选出的这个数是素数的概率是______. 13. 如果点D 、E 分别是△ABC 的AB 、AC 边的中点,那么△ADE 与△ABC 的周长之比是______. 14. 已知点C 在线段AB 上,且0<AC <12AB.如果⊙C 经过点A ,那么点B 与⊙C 的位置关系是______.15. 随机选取50粒种子在适宜的温度下做发芽天数的试验,试验的结果如表所示.估计该作物种子发芽的天数的平均数约为______天.天数123发芽1530516.=3,BC=2,将△ABC绕着点B顺时针旋转,如果点A落在射线BC上的点A′处.那么AA′=______.17.在Rt△ABC中,∠ACB=90°,AC=3,BC=4.分别以A、B为圆心画圆,如果⊙A经过点C,⊙B与⊙A相交,那么⊙B的半径r的取值范围是______.18.小明学习完《相似三角形》一章后,发现了一个有趣的结论:在两个不相似的直角三角形中,分别存在经过直角顶点的一条直线,把直角三角形分成两个小三角形后,如果第一个直角三角形分割出来的一个小三角形与第二个直角三角形分割出来的一个小三角形相似,那么分割出来的另外两个小三角形也相似.他把这样的两条直线称为这两个直角三角形的相似分割线.如图1、图2,直线CG、DH分别是两个不相似的Rt△ABC和Rt△DEF的相似分割线,CG、DH分别与斜边AB、EF交于点G、H,如果△BCG与△DFH相似,AC=3,AB=5,DE=4,DF=8,那么AG=______.三、计算题(本大题共1小题,共10.0分)19.解方程:4xx2−4−2x−2=1−1x+2.四、解答题(本大题共6小题,共68.0分)20.计算:|√3−1|−812−1√3+√2+(12)−2.21.如图,在Rt△ABC中,∠ACB=90°,AC=BC=4,点D在边BC上,且BD=3CD,DE⊥AB,垂足为点E,联结CE.(1)求线段AE的长;(2)求∠ACE的余切值.22.某湖边健身步道全长1500米,甲、乙两人同时从同一起点匀速向终点步行.甲先到达终点后立刻返回,在整个步行过程中,甲、乙两人间的距离y(米)与出发的时间x(分)之间的关系如图中OA−AB折线所示.(1)用文字语言描述点A的实际意义;(2)求甲、乙两人的速度及两人相遇时x的值.23.如图,在平行四边形ABCD中,BE、DF分别是平行四边形的两个外角的平分线,∠EAF=1∠BAD,边AE、AF分别交两条角平分线于点E、F.2(1)求证:△ABE∽△FDA;(2)联结BD、EF,如果DF2=AD⋅AB,求证:BD=EF.24.如图,在平面直角坐标系xOy中,二次函数y=ax2−4ax+3的图象与x轴正半轴交于点A、B,与y轴相交于点C,顶点为D,且tan∠CAO=3.(1)求这个二次函数的解析式;(2)点P是对称轴右侧抛物线上的点,联结CP,交对称轴于点F,当S△CDF:S△FDP=2:3时,求点P的坐标;(3)在(2)的条件下,将△PCD沿直线MN翻折,当点P恰好与点O重合时,折痕MN交x轴于点M,交y轴于点N,求OM的值.ON25.如图,已知AB是半圆O的直径,AB=6,点C在半圆O上.过点A作AD⊥OC,垂足为点D,AD的延长线与弦BC交于点E,与半圆O交于点F(点F不与点B重合).(1)当点F为BC⏜的中点时,求弦BC的长;=y,求y与x的函数关系式;(2)设OD=x,DEAE(3)当△AOD与△CDE相似时,求线段OD的长.答案和解析1.【答案】C【解析】解:a(a≠0)的倒数是1a,故选:C.一般地,a⋅1a =1(a≠0),就说a(a≠0)的倒数是1a.据此即可得出答案.本题考查倒数,解题的关键是掌握倒数的概念:一般地,a⋅1a=1(a≠0),就说a(a≠0)的倒数是1a.2.【答案】C【解析】解:(−2x)2=4x2.故选:C.根据积的乘方法则计算即可.主要考查了积的乘方.要掌握其性质:积的乘方,等于把积中的每一个因式分别乘方,再把所得的幂相乘.3.【答案】B【解析】解:∵图象在二、四象限,∴k<0.故选:B.根据反比例函数图象的性质:当k<0时,反比例函数图象位于第二、四象限.本题考查了反比例函数y=kx(k≠0)的性质:(1)当k>0时,函数的图象位于第一、三象限;(2)当k<0时,函数的图象位于第二、四象限.4.【答案】D【解析】【分析】本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与b2−4ac有如下关系:当b2−4ac>0时,方程有两个不相等的实数根;当b2−4ac=0时,方程有两个相等的实数根;当b2−4ac<0时,方程无实数根.分别计算各方程的根的判别式的值,然后根据判别式的意义判定方程根的情况即可.【解答】解:A.b2−4ac=(−2)2−4×1×0=4>0,方程有两个不相等的实数根,所以A选项错误;B.b2−4ac=(−2)2−4×1×(−1)=8>0,方程有两个不相等的实数根,所以B选项错误;C.b2−4ac=(−2)2−4×1×1=0,方程有两个相等的实数根,所以C选项错误;D.b2−4ac=(−2)2−4×1×2=−4<0,方程没有实数根,所以D选项正确.故选D.5.【答案】D【解析】解:A.400名学生中每位学生的体重是个体,故本选项不合题意; B .400名学生的体重是总体,故本选项不合题意;C .被抽取的50名学生的体重是总体的一个样本,故本选项不合题意;D .样本的容量是50,符号题意; 故选:D .总体是所有调查对象的全体;样本是所抽查对象的情况;所抽查对象的数量;个体是每一个调查的对象.本题考查了统计的有关知识,解决此题的关键是掌握总体、样本、样本容量、个体的定义.6.【答案】C【解析】解:∵G 是△ABC 的重心, ∴AG =2DG , ∴AD =3DG , ∴AD ⃗⃗⃗⃗⃗⃗ =3GD ⃗⃗⃗⃗⃗⃗ =3b ⃗ ,∵BD ⃗⃗⃗⃗⃗⃗ =BA ⃗⃗⃗⃗⃗ +AD ⃗⃗⃗⃗⃗⃗ =−a ⃗ +3b ⃗ ,DB =BD , ∴BC ⃗⃗⃗⃗⃗ =2BD ⃗⃗⃗⃗⃗⃗ =6b ⃗ −2a ⃗ ,故选:C .G 是△ABC 的重心,推出AG =2DG ,推出AD =3DG ,利用三角形法则求出BD⃗⃗⃗⃗⃗⃗ 即可解决问题.本题考查三角形的重心,平面向量,三角形法则等知识,解题的关键是熟练掌握基本知识,属于中考常考题型. 7.【答案】a 2【解析】 【分析】本题考查了同底数幂的除法的运算性质,熟记运算性质是解题的关键. 根据同底数幂相除,底数不变指数相减进行计算即可求解. 【解答】解:a 3÷a =a 3−1=a 2. 故答案为:a 2.8.【答案】(m +√2)(m −√2)【解析】解:m 2−2=m 2−(√2)2=(m +√2)(m −√2).故答案为:(m +√2)(m −√2)在实数范围内把2写作(√2)2,原式满足平方差公式的特点,利用平方差公式即可把原式分解因式.本题考查实数范围内的因式分解,因式分解的步骤为:一提公因式;二看公式.在实数范围内进行因式分解的式子的结果一般要分到出现无理数为止. 9.【答案】x ≥−3【解析】解:根据题意得:x +3≥0, 解得:x ≥−3. 故答案为:x ≥−3.根据二次根式的性质,被开方数大于或等于0,可以求出x 的范围.考查了函数自变量的取值范围,函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.10.【答案】−1,0,1【解析】解:解不等式x+1≥0,得:x≥−1,解不等式2−x>0,得:x<2,则不等式组的解集为−1≤x<2,所以不等式组的整数解为−1、0、1,故答案为:−1、0、1.先求出每个不等式的解集,再确定其公共解,得到不等式组的解集,然后求其整数解.本题主要考查不等式组的解法及整数解的确定.求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.11.【答案】y=3x−1【解析】解:设平移后直线的解析式为y=3x+b,把(0,−1)代入直线解析式得−1=b,解得b=−1.所以平移后直线的解析式为y=3x−1.故答案为:y=3x−1.根据平移不改变k的值可设平移后直线的解析式为y=3x+b,然后将点(0,−1)代入即可得出直线的函数解析式.本题考查了一次函数图象与几何变换,待定系数法求一次函数的解析式,掌握直线y= kx+b(k≠0)平移时k的值不变是解题的关键.12.【答案】35【解析】解:从从2,3,4,5,6这五个数中任选一个数共有5种等可能结果,其中选出的这个数是素数的有2、3、5这3种结果,所以选出的这个数是素数的概率是35,故答案为:35.这五个数中任选一个数共有5种等可能结果,其中选出的这个数是素数的有2、3、5这3种结果,根据概率公式求解可得.此题考查了概率公式的应用.注意用到的知识点为:概率=所求情况数与总情况数之比.13.【答案】1:2【解析】解:∵点D、E分别是△ABC的AB、AC边的中点,∴DE是△ABC的中位线,∴DEBC =ADAB=AEAC=12,∴l△ADEl△ABC=DE+AD+AEBC+AB+AC=12故答案为:1:2.根据中位线的定理即可求出答案.本题考查中位线,解题的关键是熟练运用中位线的性质定理,本题属于基础题型.14.【答案】点B在⊙C外【解析】解:如图,AB,∵点C在线段AB上,且0<AC<12∴BC>AC,∴点B在⊙C外,故答案为:点B在⊙C外.直接根据点与圆的位置关系即可得出结论.本题考查的是点与圆的位置关系,熟知设⊙O的半径为r,点P到圆心的距离OP=d,当d>r时点P在圆外;当d<r时点P在圆内是解答此题的关键.15.【答案】1.8=1.8(天),【解析】解:估计该作物种子发芽的天数的平均数约为1×15+2×30+3×550故答案为:1.8.利用加权平均数的定义列式计算可得.本题主要考查加权平均数,解题的关键是掌握加权平均数的定义.16.【答案】2√3【解析】解:作AH⊥BC于H,如图,∵AB=AC=3,BC=2,BC=1,∴BH=CH=12∴AH=√32−12=2√2,∵△ABC绕着点B顺时针旋转,如果点A落在射线BC上的点A′处,∴BA′=BA=3,∴HA′=2,在Rt△AHA′中,AA′=√(2√2)2+22=2√3.故答案为2√3.BC=1,利用勾股定理作AH⊥BC于H,如图,利用等腰三角形的性质得BH=CH=12可计算出AH=2√2,再根据旋转的性质得BA′=BA=3,则HA′=2,然后利用勾股定理可计算出AA′的长.本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.也考查了等腰三角形的性质.17.【答案】2<r<8【解析】解:在Rt△ABC中,∠ACB=90°,AC=3,BC=4,由勾股定理得:AB=2+42=5,∵⊙A经过点C,∴AD=AC=3,∴BD=2,∵⊙B与⊙A相交,∴⊙B的半径r的取值范围是2<r<8,故答案为:2<r<8.根据勾股定理求出斜边AB,根据⊙A经过点C求出⊙A的半径为3,再求出⊙B的半径范围即可.本题考查了圆与圆的位置关系,勾股定理等知识点,能求出BD的长是解此题的关键.18.【答案】3【解析】解:∵Rt△ABC,AC=3,AB=5,∴由勾股定理得:BC=4,∵△BCG∽△DFH,∴BGDH =BCDF,已知DF=8,设AG=x,则BG=5−x,∴5−xDH =48,∴DH=10−2x,∵△BCG∽△DFH,∴∠B=∠FDH,∠BGC=∠CHF,∴∠AGC=∠DHE,∵∠A+∠B=90°,∠EDH+∠FDH=90°,∴∠A=∠EDH,∴△AGC∽DHE,∴AGDH =ACDE,又DE=4,∴x10−2x =34,解得:x=3,经检验,x=3是原方程的解,且符合题意.∴AG=3.故答案为:3.先由勾股定理得出BC的值,再由△BCG∽△DFH列出比例式,设AG=x,用含x的式子表示出DH;按照相似分割线可知,△AGC∽DHE,但要先得出两个相似三角形的边或角是如何对应的,再根据相似三角形的性质列出比例式,解得x值即可.本题考查了相似三角形的判定与性质,熟练掌握相关性质及定理是解题的关键.19.【答案】解:去分母得:4x−2x−4=x2−4−x+2,即x2−3x+2=0,解得:x=1或x=2,经检验x=2是增根,分式方程的解为x=1.【解析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.20.【答案】解:原式=√3−1−2√2−(√3−√2)+4=√3−1−2√2−√3+√2+4=−√2+3.【解析】直接利用二次根式的性质以及分数指数幂的性质分别化简得出答案.此题主要考查了分数指数幂的性质以及二次根式的性质,正确化简各数是解题关键.21.【答案】解:(1)∵BC=4,BD=3CD,∴BD=3.∵AB=BC,∠ACB=90°,∴∠A=∠B=45°.∵DE⊥AB,∴在Rt△DEB中,cosB=BEBD =√22.∴BE=32√2在Rt△ACB中,AB=√AC2+BC2=4√2,∴AE=52√2(2)如图,过点E作EH⊥AC于点H.∴在Rt△AHE中,cosA=AHAE =√22,AH=AE⋅cos45°=52,∴CH=AC−AH=4−52=32,∴EH=AH=52,∴在Rt△CHE中,cot∠ECB=CHEH =35,即∠ECB的余切值是35.【解析】(1)根据锐角三角函数定义即可求出AE的长;(2)过点E作EH⊥AC于点H.根据等腰直角三角形的性质可得EH=AH的值,再根据三角函数即可求出∠ACE的余切值.本题考查了解直角三角形、等腰直角三角形,解决本题的关键是掌握锐角三角函数定义.22.【答案】解:(1)点A的实际意义为:20分钟时,甲乙两人相距500米.(2)根据题意得,V甲=150020=75(米/分),V乙=100020=50(米/分),依题意,可列方程:75(x−20)+50(x−20)=500,解这个方程,得x=24,答:甲的速度是每分钟75米,乙的速度是每分钟50米,两人相遇时x的值为24.【解析】(1)根据题意结合图象解答即可;(2)根据图象分别求出两人的速度,再根据题意列方程解答即可.本题考查了一次函数的应用,正确掌握分析函数图象是解题的关键.23.【答案】解:(1)∵∠EAF=12∠BAD,∴∠DAF+∠BAE=12∠BAD,∵DF平分∠HDC,∴∠HDF=12∠HDC,又∵四边形ABCD是平行四边形,∴AB//CD,∴∠BAD=∠CDH,∴∠HDF=∠EAF,∴∠HDF=∠DAF+∠BAE,又∵∠HDF=∠DAF+∠F,∴∠BAE=∠F,同理:∠DAF=∠E,∴△ABE∽△FDA;(2)作AP平分∠DAB交CD于点P,∴∠DAP=12∠BAD,∵∠HDF=12∠CDH,且∠BAD=∠CDH∴∠HDF=∠DAP,∴DF//AP,同理:BE//AP,∴DF//BE,∵△ABE∽△FDA,∴ADBE =DFAB,即BE⋅DF=AD⋅AB,又∵DF2=AD⋅AB,∴BE=DF,∴四边形DFEB是平行四边形,∴BD=EF.∠HDC.根据平行四边形的性质得到【解析】(1)根据角平分线的定义得到∠HDF=12AB//CD.求得∠BAD=∠CDH.等量代换得到∠BAE=∠F,同理∠DAF=∠E,于是得到结论;∠BAD,求得(2)作AP平分∠DAB交CD于点P,由角平分线的定义得到∠DAP=12∠HDF=∠DAP,推出DF//AP,同理BE//AP,根据相似三角形的性质得到BE=DF,根据平行四边形的性质即可得到结论.本题考查了相似三角形的判定和性质,平行四边形的性质,角平分线的定义,熟练掌握相似三角形的判定和性质是解题的关键.24.【答案】解:(1)∵二次函数y=ax2−4ax+3的图象与y轴交于点C,∴点C的坐标为(0,3),∴OC=3,=3,连接AC,在Rt△AOC中,tan∠CAO=OCOA∴OA=1,将点A(1,0)代入y=ax2−4ax+3,得a−4a+3=0,解得:a=1.所以,这个二次函数的解析式为y=x2−4x+3;(2)过点C作CG⊥DF,过点P作PQ⊥DF,垂足分别为点G、Q.∵抛物线y=x2−4x+3的对称轴为直线x=2,∴CG=2,∵S△CDFS△FDP =CGPQ=23,∴PQ=3,∴点P的横坐标为5,∴把x=5代入y=x2−4x+3,得y=8,∴点P的坐标为(5,8);(3)过点P作PH⊥OM,垂足分别为点H,∵点P的坐标为(5,8),∴OH=5,PH=8,∵将△PCD沿直线MN翻折,点P恰好与点O重合,∴MN⊥OP,∴∠ONM+∠NOP=90°,又∵∠POH+∠NOP=90°,∴∠ONM=∠POH,∴tan∠ONM=OMON =tan∠POM=PHOH=85.【解析】(1)在Rt△AOC中,tan∠CAO=OCOA=3,求出点A的坐标,即可求解;(2)利用S△CDFS△FDP =CGPQ=23,即可求解;(3)证明∠ONM=∠POH,则tan∠ONM=OMON =tan∠POM=PHOH=85.本题考查的是二次函数综合运用,涉及到一次函数的性质、图象的翻折、面积的计算等,具有一定的综合性,难度适中.25.【答案】解:(1)如图1,联结OF,交BC于点H.∵F是BC⏜中点,∴OF⊥BC,BC=2BH.∴∠BOF=∠COF.∵OA=OF,OC⊥AF,∴∠AOC=∠COF,∴∠AOC=∠COF=∠BOF=60°,在Rt△BOH中,sin∠BOH=BHOB =√32,∵AB=6,∴OB=3,∴BH=3√32,∴BC=2BH=3√3;(2)如图2,联结BF.∵AF⊥OC,垂足为点=D,∴AD=DF.又∵OA=OB,∴OD//BF,BF=2OD=2x.∴DEEF =CDBF=3−x2x,∴DEDF =3−x3+x,即DEAD =3−x3+x,∴DEAE =3−x6,∴y=3−x6.(3)△AOD∽△CDE,分两种情况:①当∠DCE=∠DOA时,AB//CB,不符合题意,舍去.②当∠DCE=∠DAO时,联结OF.∵OA=OF,OB=OC,∴∠OAF=∠OFA,∠OCB=∠OBC.∵∠DCE=∠DAO,∴∠OAF=∠OFA=∠OCB=∠OBC.∵∠AOD=∠OCB+∠OBC=2∠OAF,∴∠OAF=30°,∴OD=12OA=32.即线段OD的长为32.【解析】(1)联结OF,交BC于点H.得出∠BOF=∠COF.则∠AOC=∠COF=∠BOF=60°,可求出BH,BC的长;(2)联结BF.证得OD//BF,则DEDF =3−x3+x,即DEAD=3−x3+x,得出DEAE=3−x6,则得出结论;(3)分两种情况:①当∠DCE=∠DOA时,AB//CB,不符合题意,舍去,②当∠DCE=∠DAO时,联结OF,证得∠OAF=30°,得出OD=12OA=32,则答案得出.本题属于圆综合题,考查了垂径定理,勾股定理,直角三角形的性质,圆周角定理,相似三角形的判定和性质,锐角三角函数,解直角三角形等知识,解题的关键是学会添加常用辅助线,构造基本图形解决问题.。