统计复习与小结教案苏教版必修3

合集下载

苏教版高中高二数学必修3《统计》教案及教学反思

苏教版高中高二数学必修3《统计》教案及教学反思

苏教版高中高二数学必修3《统计》教案及教学反思一、教学目标通过本节课的学习和思考,让学生了解并掌握以下知识:1.了解概率统计是什么,以及它在我们日常生活中的应用;2.掌握二项分布的概念、性质和应用,能够利用二项分布进行实际问题的解决;3.掌握泊松分布的基本知识和特点,能够根据实际情况选择不同的分布模型;4.能够利用中心极限定理解决实际问题和对数据进行分析。

二、教学内容1. 概率统计(1)概念概率统计是概率论和统计学的组合,它主要研究随机现象的规律和规律的应用问题。

(2)应用在我们的生活和工作中,概率统计有着非常重要的应用。

例如:天气预报、金融风险分析、质量控制、医学诊断等等。

2. 二项分布(1)概念二项分布是把n个相同的独立的伯努利试验重复进行,且每次试验只有两个结果时的概率分布。

(2)性质二项分布具有以下性质:•试验次数n确定时,二项分布仅由成功概率p确定;•二项分布是离散分布,其取值只能是非负整数;•二项分布是对称的当且仅当p=0.5.(3)应用二项分布的应用非常广泛,例如:球类比赛的胜负、某种产品的合格率、股票价格上涨或下跌的概率等。

3. 泊松分布(1)概念泊松分布是一种离散分布,它适用于表示单位时间或空间内某事件发生次数的概率分布。

(2)特点泊松分布的特点:•事件出现次数的概率与时间长度成正比,与时间长度无关;•事件的发生是独立的,且在一段时间内发生的次数是有限的;•很多的小概率事件会造成一个大概率事件。

(3)应用泊松分布广泛应用于解决人群中非病因的死亡率、单位时间内某机器失效的次数、电话交换机接到电话的数量等问题。

4. 中心极限定理(1)概念中心极限定理是数理统计学的基本定理,它表明在适当的条件下,大量独立随机变量之和的分布趋近于正态分布。

(2)应用中心极限定理常被应用于测量样本的均值和方差,通过对均值和方差的估计抽取出随机变量,从而推断总体的均值和方差。

三、教学方法本节课的教学采用多媒体辅助教学的方式,老师通过讲授理论知识,观看视频,模拟实验等多种形式将重点难点知识点讲透彻,深入学生的思想中。

高中数学第2章统计章末复习课讲义苏教版必修3

高中数学第2章统计章末复习课讲义苏教版必修3

高中数学第2章统计章末复习课讲义苏教版必修3抽样方法【例类别粮食类植物油类动物性食品类果蔬类种数40103020抽取的植物油类与果蔬类食品种数之和为________.6 [因为总体的个数为40+10+30+20=100,所以根据分层抽样的定义可知,抽取的植物油类食品种数为10100×20=2,抽取的果蔬类食品种数为20100×20=4,所以抽取的植物油类与果蔬类食品种数之和为2+4=6.]1.抽样方法有:简单随机抽样、分层抽样.2.两种抽样方法比较3.选择抽样方法与总体的个体数有关.在具体的抽样过程中还需明确下列运算关系: (1)两种抽样方法中每个个体被抽到的可能性p =样本容量n总体容量N.(2)对于分层抽样,设第i 层的个体数及从其中抽取的样本个体数分别为N i ,n i (i ∈N *),则分层抽样比p =样本容量n 总体容量N =n iN i.1.从30个个体(编号为00~29)中抽取10个样本,现给出某随机数表的第11行到第15行(见下表),如果某人选取第12行的第6列和第7列的数作为第一个数并且由此数向右读,则选取的前4个的号码分别为________.9264 4607 2021 3920 7766 3817 3256 1640 5858 7766 3170 0500 2593 0545 5370 7814 2889 6628 6757 8231 1589 0062 0047 3815 5131 8186 3709 4521 6665 5325 5383 2702 9055 7196 2172 3207 1114 1384 4359 448817,00,02,07 [在随机数表中,将处于00~29的号码选出,满足要求的前4个号码为17,00,02,07.]2.利用简单随机抽样,从n 个个体中抽取一个容量为10的样本.若第二次抽取时,余下的每个个体被抽到的概率为13,则在整个抽样过程中,每个个体被抽到的概率为________.514 [根据题意,9n -1=13, 解得n =28.故在整个抽样过程中每个个体被抽到的概率为1028=514.]用样本的频率分布估计总体分布[12.5,15.5),6;[15.5,18.5),16;[18.5,21.5),18;[21.5,24.5),22;[24.5,27.5),20;[27.5,30.5),10;[30.5,33.5],8.(1)列出样本的频率分布表; (2)画出频率分布直方图;(3)估计数据小于30的数据约占多大百分比. 思路点拨:(1)每组频率=每组频数样本容量.(2)频率分布直方图中, 纵轴表示的是频率组距.(3)小于30的数据所占百分比也就是前6组的频率之和,可用两种方法求解,法一:前6组频率相加,法二:用1减去第7组频率.[解] (1)样本的频率分布表如下:分组 频数 频率 [12.5,15.5) 6 0.06 [15.5,18.5) 16 0.16 [18.5,21.5) 18 0.18 [21.5,24.5) 22 0.22 [24.5,27.5) 20 0.20 [27.5,30.5) 10 0.10 [30.5,33.5]8 0.08 合计1001.00(3)法一:小于30的数据占0.06+0.16+0.18+0.22+0.20+0.10=0.92=92%. 法二:因为所有组的频率之和为1,大于30的数据占0.08,故小于30的数据占1-0.08=0.92=92%.1.样本频率分布直方图的制作步骤(1)求全距,确定组距和组数,要根据全距的大小和数据的多少,选择恰当的组距,使表格不至于太长或太短.当全距组距不是整数时,组数的“取舍”一般不是依据四舍五入,而是按组数=⎣⎢⎡⎦⎥⎤全距组距+1确定,即取全距组距的整数部分加1.(2)分组,通常对组内数值所在区间取左闭右开区间,最后一组取闭区间. (3)计算频数、频率,列出频率分布表.(4)建立平面直角坐标系,把横轴分成若干段,每一段对应一个组的组距,以此线段为底作矩形,高等于该组的频率组距,这样得到一系列矩形,每一个矩形的面积恰好是该组上的频率,这些矩形构成了频率分布直方图.2.求频率、频数的方法与技巧(1)频率=频数样本容量,已知其中任意两个量就可以求出第三个量.(2)各小组的频数和等于样本容量,频率和等于1.(3)由样本的频率可估计总体的频率,从而估计出总体的频数.3.为了了解某校高三学生的视力情况,随机地抽查了该校100名高三学生的视力情况,得到频率分布直方图如图,由于不慎将部分数据丢失,但知道后5组频数和为62,视力在4.6到4.8之间的学生数为a ,最大频率为0.32,则a 的值为________.54 [[4.7,4.8)之间频率为0.32,[4.6,4.7)之间频率为1-0.62-0.05-0.11=1-0.78=0.22.所以a =(0.22+0.32)×100=54.]4.为了解高中一年级学生身高情况,某校按10%的比例对全校700名高中一年级学生按性别进行抽样检查,测得身高频数分布表如表1、表2.表1:男生身高频数分布表身高(cm) [160,165) [165,170) [170,175) [175,180) [180,185) [185,190] 频数25141342表2:女生身高频数分布表身高(cm) [150,155) [155,160) [160,165) [165,170) [170,175) [175,180] 频数1712631(1)求该校男生的人数并画出频率分布直方图;(2)估计该校学生身高在165 cm ~180 cm 的人数占总人数的百分比.思路点拨:(1)由表1中数据可知样本中男生人数为2+5+14+13+4+2=40,又分层抽样比例10%,故全校男生数400.画频率分布直方图应注意两点:①频率分布直方图是用面积表示频率;②在频率分布直方图中,所有矩形的面积之和等于1.(2)由表1、表2中数据可估计身高在165 cm ~180 cm 的人数占总人数的百分比. [解] (1)样本中男生人数为40,分层抽样比例为10%,可得全校男生人数为400.频率分布直方图如图.(2)由表1、表2知,样本中身高在165 cm ~180 cm 的学生人数为5+14+13+6+3+1=42,样本容量为70,所以样本中学生身高在165 cm ~180 cm 的频率为4270=35,故估计该校学生身高在165 cm ~180 cm 的人数占总人数的60%.用样本的数字特征估计总体的数字特征从中抽取6件测量,数据为甲:99,100,98,100,100,103; 乙:99,100,102,99,100,100.(1)分别计算两组数据的平均数及方差;(2)根据计算结果判断哪台机床加工零件的质量更稳定.思路点拨:利用平均数公式及方差公式计算求解,方差小的质量更稳定.[解] (1)x 甲=16(99+100+98+100+100+103)=100,x 乙=16(99+100+102+99+100+100)=100.s 2甲=16[(99-100)2+(100-100)2+(98-100)2+(100-100)2+(100-100)2+(103-100)2]=73,s 2乙=16[(99-100)2+(100-100)2+(102-100)2+(99-100)2+(100-100)2+(100-100)2]=1.(2)两台机床所加工零件的直径的平均数相同, 又s 2甲>s 2乙,所以乙机床加工零件的质量更稳定.样本的数字特征可分为两大类:一类是反映样本数据集中趋势的,包括众数、中位数和平均数;另一类是反映样本波动大小的,包括方差及标准差.我们常通过样本的数字特征估计总体的数字特征.5.有容量为100的样本,数据分组及各组的数、频率如下:[12.5,14.5),6,0.06;[14.5,16.5),16,0.16;[16.5,18.5),18,0.18;[18.5,20.5),22,0.22;[20.5,22.5),20,0.20;[22.5,24.5),10,0.10;[24.5,26.5),8,0.08.试估计总体的平均数.[解] 法一:总体的平均数约为1100×(13.5×6+15.5×16+17.5×18+19.5×22+21.5×20+23.5×10+25.5×8)=19.42.故总体的平均数约为19.42. 法二:求组中值与对应频率积的和13.5×0.06+15.5×0.16+17.5×0.18+19.5×0.22+21.5×0.20+23.5×0.10+25.5×0.08=19.42.故总体的平均数约为19.42.6.对甲、乙的学习成绩进行抽样分析,各抽5门功课,得到的观测值如下:甲 60 80 70 90 70 乙8060708075思路点拨:根据表中数据计算两组数据的平均数及方差,然后定量分析.[解] 甲的平均成绩为x 甲=74,乙的平均成绩为x 乙=73.所以甲的平均成绩好. 甲的方差是s 2甲=15[(-14)2+62+(-4)2+162+(-4)2]=104,乙的方差是s 2乙=15×[72+(-13)2+(-3)2+72+22]=56.因为s 2甲>s 2乙,所以乙的各门功课发展较平衡.变量间的相关关系象局与某医院查阅了1月份至6月份每月10号的昼夜温差情况与因患感冒而就诊的人数,得到如下资料:日期 1月 10日 2月 10日 3月 10日 4月 10日 5月 10日 6月 10日 昼夜温差x /℃ 10 11 13 12 8 6 就诊人数y /人222529261612明;(2)该兴趣小组确定的研究方案是:先从这6组数据中选取2组,用剩下的4组数据求线性回归方程,再用被选取的2组数据进行检验.①若选取的是1月与6月的2组数据,请根据2月份至5月份的数据,求出y 关于x 的线性回归方程y ^=bx +A .②若由线性回归方程得到的估计数据与所选出的检验数据的误差均不超过2人,则认为得到的线性回归方程是理想的,试问该小组所得线性回归方程是否理想?③若7月10日这天就诊人数为20,试估计这天昼夜温差大概是多少?思路点拨:以昼夜温差x 值为横坐标,以就诊人数y 值为纵坐标,在平面直角坐标系中作出散点图,观察点的分布规律,作出判断.利用“变量x 与y 的相关系数公式及线性回归系数公式求出r ,b ,a 再作定量分析.[解] (1)散点图如图所示,由图可见昼夜温差与就诊人数间具有线性相关关系.。

高中数学 第2章 统计章末复习课学案 苏教版必修3-苏教版高一必修3数学学案

高中数学 第2章 统计章末复习课学案 苏教版必修3-苏教版高一必修3数学学案

第2章统计章末复习课网络构建核心归纳1.关于抽样方法(1)用随机数表法抽样时,对个体所编号码位数要相同,当问题所给位数不同时,以位数较多的为准,在位数较少的数前面添“0”凑齐位数.(2)两种抽样方法的异同点类别共同点各自特点相互联系适用范围简单随机抽样抽样过程中每个个体被抽到的可能性相同从总体中逐个抽取总体中的个体数较少分层抽样将总体分成几层,按各层个体数之比抽取各层抽样时采用简单随机抽样或系统抽样总体由差异明显的几部分组成2.关于用样本估计总体(1)用样本频率分布估计总体频率分布时,通常要对给定的一组数据进行列表、作图处理,作频率分布表与频率分布直方图时要注意其方法步骤.(2)平均数反映了样本数据的平均水平,而标准差反映了样本数据的波动程度.要点一抽样方法的运用1.抽样方法有:简单随机抽样、分层抽样.2.两种抽样方法比较【例1】 某校高一年级有学生400人,高二年级有学生360人,现采用分层抽样的方法从全校学生中抽出55人,其中从高一年级学生中抽出20人,则从高三年级学生中抽取的人数为________.解析 由从高一年级学生中抽出20人知抽样比为20400=120,所以从高二年级学生中抽取的人数为360×120=18,所以从高三年级学生中抽取的人数为55-20-18=17. 答案 17【训练1】 某校数学教研组为了解学生学习数学的情况,采用分层抽样的方法从高一600人、高二780人、高三n 人中,抽取35人进行问卷调查.已知高二被抽取的人数为13,则n =( ) A.660 B.720 C.780D.800解析 由已知条件,抽样比为13780=160,从而35600+780+n =160,解得n =720.答案 B要点二 用样本的频率分布估计总体分布此类问题通常要对样本数据进行列表、作图处理.这类问题采用的图表主要有:条形图、直方图、频率折线图、扇形图等.它们的主要优点是直观,能够清楚表示总体的分布走势. 【例2】 某制造商生产一批直径为40 mm 的乒乓球,现随机抽样检查20个,测得每个球的直径(单位:mm ,保留两位小数)如下:40.03 40.00 39.98 40.00 39.99 40.00 39.98 40.01 39.98 39.99 40.00 39.99 39.95 40.0140.02 39.98 40.00 39.99 40.00 39.96 (1)完成下面的频率分布表,并画出频率分布直方图;分组 频数 频率 频率组距 [39.95,39.97) [39.97,39.99) [39.99,40.01) [40.01,40.03]合计(2)假定乒乓球的直径误差不超过0.02 mm 为合格品,若这批乒乓球的总数为 10 000个,试根据抽样检查结果估计这批产品的合格个数. 解 (1)频率分布表和频率分布直方图如图分组 频数 频率 频率组距 [39.95,39.97) 2 0.10 5 [39.97,39.99) 4 0.20 10 [39.99,40.01) 10 0.50 25 [40.01,40.03]4 0.20 10 合计201.0050(2)∵抽样的20个产品中在[39.98,40.02]范围内有17个, ∴产品合格率为1720×100%=85%.∴10 000×85%=8 500(个).故根据抽样检查结果,可以估计这批产品的合格数为8 500个.【训练2】 有一个容量为100的样本,数据的分组及各组的频数如下: [12.5,15.5),6;[15.5,18.5),16;[18.5,21.5),18; [21.5,24.5),22;[24.5,27.5),20;[27.5,30.5),10;[30.5,33.5],8.(1)列出样本的频率分布表(含累积频率); (2)画出频率分布直方图;(3)估计小于30的数据约占多大百分比. 解 (1)样本的频率分布表如下:分组 频数 频率 累积频率 [12.5,15.5) 6 0.06 0.06 [15.5,18.5) 16 0.16 0.22 [18.5,21.5) 18 0.18 0.40 [21.5,24.5) 22 0.22 0.62 [24.5,27.5) 20 0.20 0.82 [27.5,30.5) 10 0.10 0.92 [30.5,33.5] 8 0.08 1.00 合 计1001.00(2)频率分布直方图如图.(3)小于30的数据约占90%.要点三 用样本的数字特征估计总体的数字特征为了从整体上更好地把握总体的规律,我们还可以通过样本数据的众数、中位数、平均数和标准差等数字特征对总体相应的数字特征作出估计.众数就是样本数据中出现次数最多的那个值;中位数就是把样本数据按照由小到大(或由大到小)的顺序排列,如果数据的个数是奇数,处于中间位置的数,如果数据的个数是偶数,中间两个数据的平均数;平均数就是所有样本数据的平均值,用x -表示;标准差是反映样本数据分散程度大小的最常用统计量,其计算公式是s =1n[x 1-x-2+x 2-x-2+…+x n -x-2].【例3】 汽车行业是碳排放量比较大的行业之一,若规定CO 2排放量超过130 g/km 的M 1型新车将受到惩罚(视为排放量超标),某检测单位对甲、乙两品牌M 1型新车分别抽取5辆进行CO 2排放量检测,记录如下(单位:g/km):经测算发现,乙品牌车CO 2排放量的平均值为乙=120 g/km. 若乙品牌车比甲品牌车的CO 2排放量的稳定性要好,求x 的取值范围. 解 ∵x -甲=80+110+120+140+1505=120,∴x -甲=x -乙=120,由x -乙=100+120+x +y +1605=120,得x +y =220.5s 2甲=(80-120)2+(110-120)2+(120-120)2+(140-120)2+(150-120)2=3 000, 5s 2乙=(100-120)2+(120-120)2+(x -120)2+(y -120)2+(160-120)2=2 000+(x -120)2+(y -120)2.由乙品牌车比甲品牌车的CO 2排放量的稳定性好,得5s 2乙<5s 2甲,即2 000+(x -120)2+(y -120)2<3 000.又∵x +y =220,∴x 2-220x +11 700<0, 解得90<x <130,即x 的取值范围为{x |90<x <130}.【训练3】 某校高一(1),(2)班各有49名学生,两班在一次数学测验中的成绩统计如下表所示:(1)高一(1)班的小刚回家对妈妈说:“昨天的数学测验,全班平均79分,得70分的人最多,我得了85分,在班里可算是上游了”.(2)请你根据表中数据,对这两个班的测验情况进行简要分析,并提出教学建议. 解 (1)由中位数可知85分排在25名之后,从名次上讲,85分不能算是上游.(2)高一(1)班成绩的中位数是87分,说明高于87分的人占一半,而平均数为79分,标准差又很大,说明低分也很多,两极分化严重,建议加强对学习困难者的帮助.高一(2)班成绩的中位数和平均数都是79分,标准差又小,说明学生成绩之间的差别较小,学习很差的学生少,但学习优异的学生也很少,建议采取措施提高优秀率.。

必修三第二章统计复习教案

必修三第二章统计复习教案

必修三第二章统计复习教学设计必修三第二章《统计》复习专题一、基础知识回首1:简单随机抽样( 1)整体和样本①在统计学中,把研究对象的全体叫做整体.②把每个研究对象叫做个体.③把整体中个体的总数叫做整体容量.④为了研究整体的有关性质,一般从整体中随机抽取一部分:,,,研究,我们称它为样本.此中个体的个数称为样本容量.(2)简单随机抽样:就是从整体中不加任何分组、划类、排队等,完整随机地抽取检查单位。

特色是:每个样本个体被抽中的可能性同样(概率相等),样本的每个个体完整独立,相互间无必定的关系性和排挤性且为逐一不放回抽取,简单随机抽样是其余各样抽样形式的基础。

往常不过在整体个体之间差别程度较小和数量较少时,才采纳这类方法。

(3)简单随机抽样常用的方法:①抽签法②随机数表法③计算机模拟法(4)抽签法 :①给检核对象集体中的每一个对象编号;②准备抽签的工具,实行抽签;③对样本中的每一个个体进行丈量或检查(5)随机数表法:①给检核对象集体中的每一个对象编号(编号位数同样);②获得样本编号2:系统抽样(1)系统抽样(等距抽样或机械抽样):把整体的单位进行排序,再计算出抽样距离,而后依照这一固定的抽样距离抽取样本。

第一个样本采纳简单随机抽样的方法抽取。

K (抽样距离)=N/n(若 N/n 不是整数,则需先用简单随机抽样剔除数量最少的个体后再进行)2(2)系统抽样,即等距抽样是实质中最为常用的抽样方法之一。

由于它对抽样框的要求较低,实行也比较简单。

更为重要的是,假如有某种与检查指标有关的协助变量可供使用,整体单元按协助变量的大小次序排队的话,使用系统抽样能够大大提升预计精度。

3:分层抽样(1)分层抽样(种类抽样):先将整体中的全部单位依照某种特色或标记(性别、年纪等)区分红若干种类或层次,而后再在各个种类或层次中采纳简单随机抽样或系用抽样的方法抽取一个子样本,最后,将这些子样本合起来组成整体的样本。

两种方法:①先以分层变量将整体区分为若干层,再依照各层在整体中的比率从各层中抽取。

高中数学统计小结教案

高中数学统计小结教案

高中数学统计小结教案
主题:统计学小结
目标:
1. 理解统计学的基本概念和方法。

2. 掌握统计学中的常用公式和计算方法。

3. 在实际问题中灵活运用统计学知识。

学习内容:
1. 统计学的定义和作用。

2. 数据的分类和表示。

3. 统计学中的常用方法和公式。

4. 实际问题中的统计学应用。

教学步骤:
1. 引入:通过一个真实的例子引入统计学的概念和作用,让学生认识到统计学在我们日常生活中的重要性。

2. 理论学习:讲解统计学的基本定义和方法,包括数据的分类和表示、频数分布、统计量等内容,引导学生理解统计学的基本原理。

3. 练习:布置一些练习题让学生巩固所学知识,例如计算频数、求平均值、方差等。

4. 应用:给学生一些实际问题,让他们运用所学知识解决问题,培养他们的统计学思维和实际操作能力。

5. 总结:对本节课的内容进行总结,并对下节课的内容进行展望。

评估:
1. 学生的学习表现和参与度。

2. 练习题和实际问题的完成情况。

3. 学生对统计学的理解和应用能力。

拓展:
1. 鼓励学生自主学习和探究统计学的更深层次的知识。

2. 给学生更多的实际问题进行解决,加深他们对统计学的理解和运用能力。

3. 鼓励学生参加统计学竞赛和活动,提高他们的统计学能力和竞争力。

高中数学 第二章 统计教案 苏教版必修3

高中数学 第二章 统计教案 苏教版必修3

第2章统计§2.1抽样方法2.1.1 简单随机抽样(教师用书独具)●三维目标1.知识与技能理解抽样的必要性,简单随机抽样的概念,掌握简单随机抽样的两种方法.2.过程与方法通过实例分析、解决,体验简单随机抽样的科学性及其方法的可靠性,培养分析问题、解决问题的能力.3.情感态度与价值观通过身边事例研究,体会抽样调查在生活中的应用.●重点难点重点:掌握简单随机抽样的特点及常见的两种方法(抽签法、随机数表法).难点:理解简单随机抽样的科学性,以及由此推断结论的可靠性.通过生活实例让学生知道在不适宜普查的情况下,如何进行抽样调查才是比较科学的,结论才是可靠的,通过学生的实际操作,逐步引导学生总结出随机抽样的概念,体会随机抽样在处理现实问题中的必要性和重要性,让学生在概念中找关键词使之加深对概念的理解,并归纳实施步骤从而强化重点.教学时充分让学生自己分析、判断,自主学习、合作交流.采用讨论发现法教学,通过抓阉等游戏尽可能的让学生动手操作,体验并激发学生积极思考,再利用多媒体中随机数生成器等进行随机抽样,让学生感受样本得到的随机性,从而化解难点.(教师用书独具)●教学建议结合本节课的教学内容和学生的认知水平,在教法上,建议教师采用“启发—探究—讨论”式教学模式,以促进学生发展为出发点,着眼于知识的形成和发展以及学生的学习体验,以问题链形式由浅入深、循序渐进,让不同层次的学生都能参与到课堂教学中,体验成功的喜悦.运用由浅入深的问题形式,给学生创造一种思维情境,一种动脑、动手、动口的机会,提高能力,增长才干.由于本节课内容实例多,信息容量大,文字多,采用多媒体辅助教学,节省时间,提高教学效率,另外采用这种形式也可强化学生感观刺激,从而大大提高学生的学习兴趣.●教学流程创设问题情境,引出问题:要判断一锅汤的味道需要把整锅汤都喝完吗?该怎样判断?⇒引导学生结合初中学习过的抽样知识,观察、比较、分析,得出简单随机抽样的概念.⇒通过引导学生回答所提问题理解简单随机抽样的条件、特征及讨论由简单抽样能够解决的问题.⇒通过例1及其变式训练,使学生理解简单随机抽样的概念与解决问题的方法.⇒通过例2及其变式训练,使学生掌握利用抽签法设计抽样方案问题的解题策略.⇒通过例3及其变式训练阐明随机数表法的原理,使学生明确用随机数表法解决问题的基本模式.⇒完成当堂双基达标,巩固所学知识并进行反馈矫正.⇒归纳整理,进行课堂小结,整体把握这两种抽样设计的优缺点及应用范围.课标解读1.理解简单随机抽样的概念.(重点) 2.学会两种简单随机抽样的方法.(重点) 3.能合理地从总体中抽取样本.(难点)简单随机抽样【问题导思】要判断一锅汤的味道需要把整锅汤都喝完吗?该怎样判断?【提示】不需要,只要将锅里的汤“搅拌均匀”品尝一小勺就知道汤的味道.假设你作为一名食品卫生工作人员,要对某食品店内的一批水果罐头进行卫生达标检验,你准备怎样做?【提示】从中抽取一定数量的罐头作为检验的样本.一般地,从个体数为N的总体中逐个不放回地抽取n个个体作为样本(n<N),如果每个个体都有相同的机会被取到,那么这样的抽样方法称为简单随机抽样.抽签法和随机数表法都是简单随机抽样.抽签法【问题导思】假设在你们班选派3个人参加学校的某项活动,为了体现选派的公平性,用什么方法确定具体人选?【提示】抽签法.抽签法的步骤(1)将总体中的N个个体编号;(2)将这N个号码写在形状、大小相同的号签上;(3)将号签放在同一箱中,并搅拌均匀;(4)从箱中每次抽出1个号签,连续抽取k次;(5)将总体中与抽到的号签的编号一致的k个个体取出.随机数表法【问题导思】当总体的个数较多时,怎么抽取质量比较高的样本?【提示】随机数表法随机数表法的步骤(1)将总体中的个体编号(每个号码位数一致);(2)在随机数表中任选一个数作为开始;(3)从选定的数开始按一定的方向读下去,若得到的号码在编号中,则取出;若得到的号码不在编号中或前面已经取出,则跳过,如此继续下去,直到取满为止;(4)根据选定的号码抽取样本.简单随机抽样的判断下列抽取样本的方式是否属于简单随机抽样,并说明理由.(1)从全班50名同学中,选出3名三好学生.(2)从无限多个个体中,选出100个个体作样本.(3)从100件产品中选5件检验质量,抽取一件检验后放回,再抽一件,共抽五次.(4)从全班同学中选两名参观世博会,将全班同学的学号写在大小相同的纸片上,放入箱子里搅拌均匀后,一次取出两张,由纸片上的学号确定人选.【思路探究】根据简单随机抽样的特点逐一判断即可.【自主解答】(1)不是简单随机抽样,选三好学生时,不是每位学生被选上的机会都相等.(2)不是简单随机抽样,因为总体N无限,不符合简单随机抽样的定义.(3)不是简单随机抽样,因为是有放回抽样.(4)不是简单随机抽样,因为一次取了两张纸片,不是逐个抽取.1.简单随机抽样的特点是:(1)总体有限;(2)不放回抽取;(3)逐个抽取;(4)机会均等,不满足其中任何一条都不是简单随机抽样.2.判断一种抽样是不是简单随机抽样,评判的惟一标准就是其特征,尤其是总体有限容易被忽视,如本例中的(4),容易误判为简单随机抽样.判断下列抽取样本的方法是否是简单随机抽样:(1)从8台电脑中不放回地逐个随机抽取2台进行质量检验(假设8台电脑已经编号,对编号随机抽取).(2)某班50名同学,指定年龄最小的5个人参加某项活动;(3)从20个零件中一次性抽出3个进行质量检测.【解】(1)是简单随机抽样,简单随机抽样就是从有限个个体中逐个不放回地抽取个体构成样本.(2)不是简单随机抽样,因为每个个体被抽到的机会不是均等的.(3)不是简单随机抽样,因为不是逐个抽取的.抽签法的应用从某班46名学生中随机选出5名参加某项活动.请用抽签法设计抽样方案.【思路探究】按抽签法的步骤进行抽样.【自主解答】第一步,编号.一般用正整数1,2,3,…,46来给总体中所有的个体编号;第二步,写号码标签.把号码写在形状、大小相同的号签上,号签形式可不限,如小球、卡片等;第三步,均匀搅拌.把上述号签放在同一个容器内均匀搅拌;第四步,抽取.从容器中逐个连续地抽取5次,得到一个容量为5的样本.1.一个抽样能否用抽签法关键看两点:一是制签方便,二是易被搅匀.这就要求总体中个体数量不多.2.采用抽签法最重要的是保证每个个体等可能的被抽取,这就要求把号签搅匀.3.若个体中已有编号如考号、学号、标签号码等,可不必重新编号.从40件产品中抽取10件进行质量检验,写出抽取样本的步骤.【解】第一步将40件产品按1,2,…,40进行编号;第二步将1~40这40个号码写在形状、大小均相同的号签上;第三步将号签放在同一箱中,并搅拌均匀;第四步依次从箱中抽取10个号签;第五步将抽到的10个号签上的号码对应的产品取出,即得样本.随机数表法有一批机器,编号为1,2,3, (112)请用随机数表法抽取10台入样,写出抽样过程.【思路探究】各机器的编号位数不一致,需将编号进行调整.【自主解答】第一步将原来的编号调整为001,002,003, (112)第二步在随机数表中,任选一数作为开始,任选一方向作为读数方向,比如,选第9行第7个数“3”向右读;第三步从数“3”开始,向右读,每次读三位,凡是不在001~112中的数跳过去不读,前面已经读过的也跳过去不读,依次可得到074,100,094,052,080,003,105,107,083,092;第四步对应原来的编号74,100,94,52,80,3,105,107,83,92的机器便是要抽取的对象.1.随机数表的构成与特点:随机数表是由0,1,2,…,9这10个数字组成的数表,并且表中的每一位置出现各个数字的可能性相同.通常根据实际需要和方便使用的原则,将几个数组合成一组,然后通过随机数表抽取样本.2.随机数表的产生方法并不唯一,如抽签法、抛掷骰子法、计算机生成法,编号时号码的位数一定要一致.读数时,读取的每个数的位数与编号的位数也要一致.3.使用随机数表法时,选取开始读的数是随机的,读数的方向也是随机的.因选取开始读的数不同,读数方向不同,所以抽取的样本号码可能不一致,但均符合抽样的公平性、等可能性.只要按随机数表法的步骤抽取,都是符合要求的、正确的.某校有学生1 200人,为了调查某种情况,打算抽取一个样本容量为50的样本,问此样本若采用简单随机抽样将如何获得?【解】简单随机抽样分两种:抽签法和随机数表法.尽管此题总体中的个体数不算少,但依题意其操作过程却是等可能的.法一首先,把该校学生都编上号码:0 001,0 002,0 003,…,1 200.若用抽签法,则做1 200个形状、大小相同的号签(号签可以用小球、卡片、纸条等制作),然后将这些号签放在同一个箱子里,进行均匀搅拌.抽签时,每次从中抽出1个号签,连续抽取50次,得到一个容量为50的样本.法二首先,把该校学生都编上号码:0 001,0 002,0 003,…,1 200.若用随机数表法,则在随机数表中任选一数作为开始,任选一方向作为读数方向,每次读取四位,凡不在0 001~1 200中的数跳过去不读,前面已经读过的也跳过去不读.一直到取够50个为止.忽视抽样方法步骤出错某单位支援西部开发,现从报名的20名志愿者中选取5人组成志愿小组到新疆工作,请用抽签法设计抽样方案.【错解】第一步,将20名志愿者编号,号码是01,02,03,…,20;第二步,将号码分成5份:{01,06,11,16},{02,07,12,17},{03,08,13,18},{04,09,14,19},{05,10,15,20},并将每一份中的号码写在一张纸条上,揉成团,制成号签,得5个号签;第三步,在5个号签中随机抽取1个号签,并记录上面的编号;第四步,所得号签对应的5位志愿者就是志愿小组的成员.【错因分析】设计方案时,没有按照抽签法的一般步骤进行方案设计,不符合简单随机抽样的特点.【防范措施】 1.设计方案时步骤要合理、正确.2.方案的设计要符合简单随机抽样的等可能性.3.正确掌握抽签法的步骤.【正解】第一步,将20名志愿者编号,号码是01,02,03,…,19,20;第二步,将号码分别写在一张纸条上,揉成团,制成号签;第三步,将得到的号签放入一个不透明的袋子中,并搅拌均匀;第四步,从袋子中逐个不放回地抽取5个号签,并记录上面的编号;第五步,所得号码对应的志愿者就是志愿小组的成员.1.抽签法与随机数表法都要求被抽取样本的总体的个体数有限,都是从总体中逐个地进行抽取,都是不放回抽样.2.当总体中的个体数较多,样本容量较小时,抽签法将总体的编号“搅拌均匀”比较困难,因此用此种方法产生的样本代表性差的可能性很大,而随机数表法中每个个体被抽到的可能性相等,用这种方法产生的样本代表性较好.3.简单随机抽样每个个体入样的可能性都相等.1.简单随机抽样的常用方法有________和________.随机地选定随机数表读数,选定开始读取的数后,读数的方向可以是________.【解析】根据简单随机抽样的分类及随机数表法的操作步骤可知.【答案】抽签法随机数表法任意的2.关于简单随机抽样的特点,有以下几种说法,其中不正确的是________.①要求总体的个数有限②从总体中逐个抽取③这是一种不放回抽样④每个个体被抽到的机会不一样,与先后顺序有关【解析】简单随机抽样除了具有特点①②③外,还具有等可能性,每个个体被抽到的机会相等,与先后顺序无关,故只有④不正确.【答案】④3.某校有教学班100个,每班50人,要求每班选派2人参加“学生代表大会”,在该问题中,样本容量是________.【解析】N=100×50=5 000,抽取比例250=1 25.∴n=5 000×125=200.【答案】2004.从20名学生中要抽取5名进行问卷调查,写出抽样的过程.【解】①先将20名学生进行编号,从1编到20;②把号码写在形状、大小均相同的号签上;③将号签放在某个箱子中进行充分搅拌;④依次从箱子中取出5个号签,按这5个号签上的号码抽取学生,即得样本.一、填空题1.为了了解参加运动会的2 000名运动员的年龄情况,从中抽取100名运动员抽查.就这个问题,下列说法中正确的是________.①2 000名运动员是总体;②每名运动员是个体;③所抽取的100名运动员是一个样本;④样本容量为100.【解析】 2 000名运动员的年龄是总体,每个运动员的年龄是个体,所抽取的100名运动员的年龄组成一个样本,样本容量为100.【答案】④2.下面的抽样方法是简单随机抽样的是________.①从某城市的流动人口中随机抽取100人作调查;②在某年明信片销售活动中,规定每100万张为一个开奖组,通过随机抽取的方法确定号码的后四位为2 709的为三等奖;③在待检验的30件零件中随机逐个拿出5件进行检验.【解析】①中总体容量较大,不宜用简单随机抽样;②中抽取的个体的间隔是固定的,不是简单随机抽样.【答案】③3.从个体数为N的总体中抽取一个容量为k的样本,采用简单随机抽样,当总体的个数不多时,一般用______进行抽样.【解析】由抽签法特点知易采用抽签法.【答案】抽签法4.(2013·苏州高一检测)采用抽签法从含有3个个体的总体{1,3,8}中抽取一个容量为2的样本,则所有可能的样本是________.【解析】从三个总体中任取两个即可组成样本∴所有可能的样本为{1,3},{1,8},{3,8}.【答案】{1,3},{1,8},{3,8}5.用简单随机抽样方法从含有10个个体的总体中,抽取一个容量为3的样本,其中某一个体a“第一次被抽到”的可能性、“第二次被抽到”的可能性分别是________.【解析】简单随机抽样中,每个个体被抽取的机会均等,都为110.【答案】110,1106.某工厂的质检人员对生产的100件产品,采用随机数法抽取10件检查,对100件产品采用下面的编号方法①1,2,3, (100)②001,002, (100)③00,01,02, (99)④01,02,03, (100)其中正确的序号是________.【解析】采用随机数表编号时,所编号码应位数相同,以保证每个号码被抽到的机率相等.【答案】②③7.某中学高一年级有1 400人,高二年级有1 320人,高三年级有1 280人,以每人被抽到的机会为0.02,从该中学学生中抽取一个容量为n的样本,则n=________.【解析】三个年级的总人数为1 400+1 320+1 280=4 000(人),每人被抽到的机会均为0.02,∴n=4 000×0.02=80.【答案】808.(2013·江西高考改编)总体由编号为01,02,…,19,20的20个个体组成,利用下面的随机数表选取5个个体,选取方法是从随机数表第1行的第5列和第6列数字开始由左到右依次选取两个数字,则选出来的第5个个体的编号为________.7816657208026314070243699728019832049234493582003623486969387481 【解析】由随机数表法的随机抽样的过程可知选出的5个个体是08,02,14,07,01,所以第5个个体的编号是01.【答案】01二、解答题9.要从北京某中学文艺部30名学生中随机抽取3名参加国庆阅兵仪式,试写出利用抽签法抽样的过程.【解】第一步将30名学生编号为1,2,3, (30)第二步将这30个号码写到形状、大小相同的号签上;第三步将号签放在同一箱中,并搅拌均匀;第四步从箱中每次抽取1个号签,连续抽取3次;第五步抽到的3个号签上的号码对应的3名学生就是参加国庆阅兵仪式的学生.10.上海某中学从40名学生中选1名作为上海男篮拉拉队的成员,采用下面两种方法:方法一将这40名学生从1~40进行编号,相应的制作写有1~40的40个号签,把这40个号签放在一个暗箱中搅拌均匀,最后随机地从中抽取1个号签,与这个号签对应的学生幸运入选.方法二将39个白球与一个红球混合放在一个暗箱中搅拌均匀,让40名学生逐一从中摸取一个球,摸到红球的学生成为拉拉队的成员.试问这两种方法是否都是抽签法?为什么?这两种方法有何异同?【解】抽签法抽样时给总体中的N个个体编号各不相同,由此可知方法一是抽签法,方法二不是抽签法.因为抽签法要求所有的号签编号互不相同,而方法二中39个白球无法相互区分.这两种方法的相同之处在于每名学生被选中的机会都相等.11.某次数学竞赛中要求考生解答的12道题是这样产生的:从30道选择题中随机抽取3道,从50道填空题中随机抽取5道,从40道解答题中随机抽取4道,试确定某考生所要解答的12道题的序号.【解】法一:(抽签法)第一步:将选择题、填空题、解答题编号,号码是1,2,3, (120)第二步:将1~120这120个号码分别写在大小、形状都相同的号签上;第三步:将选择题、填空题、解答题的号签分别放入三个箱子中,都搅拌均匀;第四步:分别从装有选择题、填空题、解答题号签的箱子中逐个抽取3个、5个、4个号签,并且记录所得号签的号码,这就是所要解答的问题的序号.法二:(随机数表法)第一步:对题目编号,选择题编号为001,002,...,030;填空题编号为031,032,...,080;解答题编号为081,082, (120)第二步:在随机数表中任意选择一个数作为开始,任选一个方向作为读数方向,比如,选第15行第6列的数4作为开始,向右读;第三步:从数字4开始向右读下去,每次读三位,凡是不在001~120中的数跳过去不读,遇到已经读过的数也跳过去,从001~030中选3个号码,从031~080中选5个号码,从081~120中选4个号码,依次可以得到038,119,033,099,004,047,094,116,044,068,013,030.第四步:以上号码就是所要解答的问题序号,选择题的序号是4,13,30;填空题的序号是38,33,47,44,68;解答题的序号是119,99,94,116.(教师用书独具)中央电视台希望在春节联欢晚会播出一周内获得当年春节联欢晚会的收视率.下面是三名同学为电视台设计的调查方案.同学A:我把春节联欢晚会收视率调查表放在互联网上,只要上网登录该网址的人就可以看到这张表,他们填表的信息可以很快反馈到我的电脑中,这样,我就可以很快统计出收视率了.同学B:我给我们居民小区的每一个住户发一份是否在除夕那天晚上看中央电视台春节联欢晚会的调查表,只要一两天就可以统计出收视率.同学C:我在电话号码本上随机地选出一定数量的电话号码,然后逐个给他们打电话,问一下他们是否收看了中央电视台春节联欢晚会,我不出家门就可以统计出中央电视台春节联欢晚会的收视率.请问:上述三名同学设计的调查方案是否能够获得比较准确的收视率?为什么?【思路点拨】判断的标准是所有可能看电视的人群是否有相同的的机会被抽中.【规范解答】调查的总体是所有可能看电视的人群.学生A的设计方案考虑的人群是上网而且登录该网址的人群,那些不能上网的人,或者不登录该网址的人就被排除在外了.因此A方案抽取的样本的代表性差.学生B的设计方案考虑的人群是小区的居民,有一定的片面性.因此B方案抽取的样本的代表性差.学生C的设计方案考虑的人群是那些有电话的人,也有一定的片面性.因此C方案抽取的样本的代表性差.所以,这三种方案都有一定的片面性,不能得到比较准确的收视率.1936年,美国进行总统选举.竞选的是民主党的罗斯福和共和党的兰登,罗斯福是在任的总统.美国权威的《文学摘要》杂志社,为了预测总统候选人中谁能当选,采用了大规模的模拟选举.他们以电话簿上的地址和俱乐部成员名单上的地址发出100万封信,收到回信20万封.在调查史上,样本容量这么大是少见的,杂志社花费了大量的人力和物力.他们相信自己的调查统计结果,即兰登将以57%对43%的比例获胜,并大力进行宣传.最后选举结果却是罗斯福以62%对38%的巨大优势获胜,连任总统.这个调查使《文学摘要》杂志社威信扫地,不久只得关门停刊.试分析这次调查失败的原因.【解】统计不当的原因,其中之一是选取了不适当的样本作为统计调查的基础,如果抽样时使用了不适当的方法,往往得到错误的结论.失败的原因:①抽样方法不正确.样本不是从总体(全体美国公民)中随机地抽取.1936年,美国有私人电话和参加俱乐部的家庭,都是比较富裕的家庭.1929~1933年的世界经济危机,使美国经济遭受沉重打击.“罗斯福新政”动用行政手段干预市场经济,损害了部分富人的利益,“喝了富人的血”,但广大的美国人民从中得到了好处.所以,从这部分富人中抽取的样本严重偏离了总体,导致样本不具有代表性.②样本容量相对太小也是导致估计出现偏差的一个原因,因为样本容量越大,估计才越准确,发出的信不少,但回收率太低.2.1.2 系统抽样(教师用书独具)●三维目标1.知识与技能(1)理解系统抽样的定义,特点及操作步骤.(2)理解科学、合理选用抽样方法的必要性.2.过程与方法(1)系统抽样的操作步骤.(2)通过生活实例的对比分析,让学生了解各种抽样方法的使用范围,能根据实际情况选择适当的抽样方法.3.情感态度与价值观:(1)将生活实例与数学进行结合,使学生感受到生活处处有数学;激发学生学习的兴趣,渗透“运用数学”解决实际问题的意识.(2)培养学生科学的探索精神,合作探讨、相互交流的能力,概括归纳的能力.●重点难点重点:系统抽样的定义及操作步骤;难点:系统抽样中的处理办法.(教师用书独具)●教学建议在探讨中总结定义,培养学生合作探讨,相互交流的能力.培养学生概括归纳的能力.让学生体会学数学的成就感.通过师生的互动,理解系统抽样概念.●教学流程创设问题情境,引出问题:从500名学生中抽取50名学生调查对老师的意见除了用简单随机抽样外还有其他方法吗?⇒引导学生结合前面学习过的简单随机抽样的知识,观察、比较、分析,得出系统抽样的概念.⇒通过引导学生回答所提问题,理解系统抽样的应用条件、应用范围及由系统抽样能够解决的问题.⇒通过例1及其变式训练,使学生掌握系统抽样概念问题的解题方法.⇒通过例2及其变式训练,使学生掌握简单的系统抽样的方案设计问题的解题策略.⇒通过例3及其变式训练阐明需剔除个体的系统抽样的方法,使学生明确抽样方法解决问题的基本模式.⇒完成当堂双基达标,巩固所学知识并进行反馈矫正.⇒归纳整理,进行课堂小结,整体认识本节课所学知识.。

必修三第二章统计复习教案

必修三第二章统计复习教案

必修三第二章《统计》复习专题一、基础知识回顾1:简单随机抽样(1)总体与样本①在统计学中 , 把研究对象得全体叫做总体.②把每个研究对象叫做个体.③把总体中个体得总数叫做总体容量.④为了研究总体得有关性质,一般从总体中随机抽取一部分:, , , 研究,我们称它为样本.其中个体得个数称为样本容量.(2)简单随机抽样:就就是从总体中不加任何分组、划类、排队等,完全随机地抽取调查单位。

特点就是:每个样本个体被抽中得可能性相同(概率相等),样本得每个个体完全独立,彼此间无一定得关联性与排斥性且为逐个不放回抽取,简单随机抽样就是其它各种抽样形式得基础。

通常只就是在总体个体之间差异程度较小与数目较少时,才采用这种方法。

(3)简单随机抽样常用得方法:①抽签法②随机数表法③计算机模拟法(4)抽签法:①给调查对象群体中得每一个对象编号;②准备抽签得工具,实施抽签;③对样本中得每一个个体进行测量或调查(5)随机数表法:①给调查对象群体中得每一个对象编号(编号位数相同);②获取样本编号2:系统抽样(1)系统抽样(等距抽样或机械抽样):把总体得单位进行排序,再计算出抽样距离,然后按照这一固定得抽样距离抽取样本。

第一个样本采用简单随机抽样得办法抽取。

K(抽样距离)=N/n(若N/n 不就是整数,则需先用简单随机抽样剔除数目最少得个体后再进行)(2)系统抽样,即等距抽样就是实际中最为常用得抽样方法之一。

因为它对抽样框得要求较低,实施也比较简单。

更为重要得就是,如果有某种与调查指标相关得辅助变量可供使用,总体单元按辅助变量得大小顺序排队得话,使用系统抽样可以大大提高估计精度。

3:分层抽样(1)分层抽样(类型抽样):先将总体中得所有单位按照某种特征或标志(性别、年龄等)划分成若干类型或层次,然后再在各个类型或层次中采用简单随机抽样或系用抽样得办法抽取一个子样本,最后,将这些子样本合起来构成总体得样本。

两种方法:①先以分层变量将总体划分为若干层,再按照各层在总体中得比例从各层中抽取。

必修三第二章统计复习优秀教案

必修三第二章统计复习优秀教案

必修三第二章《统计》复习专题一、基础知识回顾1:简单随机抽样(1)总体和样本①在统计学中 , 把研究对象的全体叫做总体.②把每个研究对象叫做个体.③把总体中个体的总数叫做总体容量.④为了研究总体的有关性质,一般从总体中随机抽取一部分:,,,研究,我们称它为样本.其中个体的个数称为样本容量.(2)简单随机抽样:就是从总体中不加任何分组、划类、排队等,完全随机地抽取调查单位。

特点是:每个样本个体被抽中的可能性相同(概率相等),样本的每个个体完全独立,彼此间无一定的关联性和排斥性且为逐个不放回抽取,简单随机抽样是其它各种抽样形式的基础。

通常只是在总体个体之间差异程度较小和数目较少时,才采用这种方法。

(3)简单随机抽样常用的方法:①抽签法②随机数表法③计算机模拟法(4)抽签法:①给调查对象群体中的每一个对象编号;②准备抽签的工具,实施抽签;③对样本中的每一个个体进行测量或调查(5)随机数表法:①给调查对象群体中的每一个对象编号(编号位数相同);②获取样本编号2:系统抽样(1)系统抽样(等距抽样或机械抽样):把总体的单位进行排序,再计算出抽样距离,然后按照这一固定的抽样距离抽取样本。

第一个样本采用简单随机抽样的办法抽取。

K(抽样距离)=N/n(若N/n不是整数,则需先用简单随机抽样剔除数目最少的个体后再进行)(2)系统抽样,即等距抽样是实际中最为常用的抽样方法之一。

因为它对抽样框的要求较低,实施也比较简单。

更为重要的是,如果有某种与调查指标相关的辅助变量可供使用,总体单元按辅助变量的大小顺序排队的话,使用系统抽样可以大大提高估计精度。

3:分层抽样(1)分层抽样(类型抽样):先将总体中的所有单位按照某种特征或标志(性别、年龄等)划分成若干类型或层次,然后再在各个类型或层次中采用简单随机抽样或系用抽样的办法抽取一个子样本,最后,将这些子样本合起来构成总体的样本。

两种方法:①先以分层变量将总体划分为若干层,再按照各层在总体中的比例从各层中抽取。

高中数学 复习课(二)统计教学案 苏教版必修3

高中数学 复习课(二)统计教学案 苏教版必修3

复习课(二) 统计抽样方法高考对抽样方法的考查主要是基础题,难度不大.系统抽样和分层抽样是考查的热点,考查形式以填空题为主.[考点精要]1.简单随机抽样(1)特征:①一个一个不放回的抽取.②每个个体被抽到可能性相等.(2)常用方法:①抽签法.②随机数表法.2.系统抽样(1)适用环境:当总体中个数较多时,可用系统抽样.(2)操作步骤:将总体平均分成几个部分,再按照一定方法从每个部分抽取一个个体作为样本.3.分层抽样(1)适用范围:当总体由差异明显的几个部分组成时可用分层抽样.(2)操作步骤:将总体中的个体按不同特点分成层次比较分明的几部分,然后按各部分在总体中所占的比实施抽样.[典例](1)(山东高考改编)采用系统抽样方法从960人中抽取32人做问卷调查,为此将他们随机编号为1,2,…,960,分组后在第一组采用简单随机抽样的方法抽到的号码为9,抽到的32人中,编号落入区间[1,450]的人做问卷A,编号落入区间[451,750]的人做问卷B,其余的人做问卷C,则抽到的人中,做问卷B的人数为________.(2)(江苏高考)某学校高一、高二、高三年级的学生人数之比为3∶3∶4,现用分层抽样的方法从该校高中三个年级的学生中抽取容量为50的样本,则应从高二年级抽取________名学生.(3)已知某地区中小学生人数和近视情况分别如图1和图2所示.为了解该地区中小学生的近视形成原因,用分层抽样的方法抽取2%的学生进行调查,则样本容量和抽取的高中生近视人数分别为______.[解析] (1)抽取号码的间隔为96032=30,抽取的号码依次为9,39,69,…,939,落入区间[451,750]的有459,489,…,729共10人,即做B 卷的有10人.(2)设应从高二年级抽取x 名学生,则x 50=310,∴x =15.(3)该地区中小学生人数为3 500+2 000+4 500=10 000,则样本容量为10 000×2%=200,其中抽取高中生近视眼人数为2 000×2%×50%=20. [答案] (1)10 (2)15 (3)200,20 [类题通法](1)系统抽样中,易忽视抽取的样本数也就是分段的段数,当Nn 不是整数时,注意剔除.(2)分层抽样中,易忽视每层抽取的个体的比例是相同的.[题组训练]1.为了解1 000名学生的学习情况,采用系统抽样的方法从中抽取容量为40的样本,则分段的间隔为________.解析:根据系统抽样的特点可知,分段间隔为1 00040=25.答案:252.某高校甲、乙、丙、丁四个专业分别有150,150,400,300名学生.为了解学生的就业倾向,用分层抽样的方法从该校这四个专业共抽取40名学生进行调查,应在丙专业抽取的学生人数为________.解析:抽样比为40150+150+400+300=4100.因此丙专业应抽取4100×400=16(人).答案:163.(北京高考)某校老年、中年和青年教师的人数见下表,采用分层抽样的方法调查教师的身体状况,在抽取的样本中,青年教师有320人,则该样本中的老年教师人数为______.类别 人数 老年教师 900 中年教师 1 800 青年教师 1 600 合计4 300解析:设该样本中老年教师人数为x ,则有x 900=3201 600,故x =180.答案:180高考对各种统计图表的考查主要是基础题,频率分布条形图和直方图是考查的热点,但也要注意关注茎叶图。

苏教版高中数学必修三教案:第3章概率复习与小结

苏教版高中数学必修三教案:第3章概率复习与小结

第3章概率复习与小结姜堰市蒋垛中学朱善宏教学目标:通过复习,使学生在具体情景中:1.了解随机事件发生的不确定性及频率的稳定性;2.了解概率的某些基本性质和简单的概率模型;3.会计算一些随机事件所含的基本事件数及事件发生的概率;4.能运用实验、计算器(机)模拟估计简单随机事件发生的概率;5.培养学生的理性思维能力和辩证思维能力,增强学生的辩证唯物主义世界观.教学重点:求解一些简单古典概型、几何概型.教学难点:古典概型、几何概型的对比.教学方法:谈话、启发式.教学过程:一、问题情境1.回顾本章所涉及到的定义或概念.2.说出你对这些定义或概念的理解及它们之间的区别和联系.3.你能否用知识网络将它们联系起来.二、学生活动三、建构数学随机事件注意点:1.要搞清楚什么是随机事件的条件和结果.2.事件的结果是相应于“一定条件”而言的.因此,要弄清某一随机事件,必须明确何为事件发生的条件,何为在此条件下产生的结果.3.随机事件在一次试验中是否发生虽然不能事先确定,但是在大量重复试验的情况下,它的发生呈现出一定的规律性.概率注意点:(1)求一个事件的概率的基本方法是通过大量的重复试验;(2)只有当频率在某个常数附近摆动时,这个常数才叫做事件A 的概率;(3)概率是频率的稳定值,而频率是概率的近似值;(4)概率反映了随机事件发生的可能性的大小;(5)必然事件的概率为1,不可能事件的概率为0.因此()10≤≤A P .四、数学运用(一)随机现象例1 指出下列事件中,哪些是不可能事件?哪些是必然事件?哪些是随机事件?(1)若a b c ,,都是实数,则()()c ab bc a =;(2)没有空气,动物也能生存下去;(3)在标准大气压下,水在温度c ︒90时沸腾;(4)直线()1+=x k y 过定点()0,1-; (5)某一天内电话收到的呼叫次数为0;(6)一个袋内装有性状大小相同的一个白球和一个黑球,从中任意摸出1个球则为白球.(二)古典概型与几何概型的对比.古典概型的概率公式:几何概型的概率公式相同:两者基本事件的发生都是等可能的;不同:古典概型要求基本事件有有限个,几何概型要求基本事件有无限多个.例2掷一颗均匀的骰子,求掷得偶数点的概率.分析:先确定掷一颗均匀的骰子试验的样本空间Ω和掷得偶数点事件A ,再确定样本空间元素的个数n ,和事件A 的元素个数m .最后利用公式即可. 解:掷一颗均匀的骰子,它的样本空间是Ω={1, 2,3, 4,5,6}∴n =6而掷得偶数点事件A ={2, 4,6}∴m =3∴P (A ) =2163= 点评枚举法是计算古典概型中事件的重要方法,同时也要能熟练地运用图表法和树形图对某些等可能事件进行列举,教材例3的图表法采用坐标系的形式,横、纵轴分别表示第一、二次抛掷后向上的点数,此表能清楚直观地表现出各种情况,树形图对于元素不多而又易于分类的计数问题很有效,例4中画出了三“树”,其实只要画出一个树即可推知其余两个树的情况.例3如图所示,在边长为1的正方形OABC 内任取一点P (x ,y ).(1)求点P 到原点距离小于1的概率;(2)求以x ,y ,1为边长能构成锐角三角形的概率.解析(1)所有的点P 构成正方形区域D ,若点P 到原点距离小于1,则⎩⎨⎧ 0<x <1,0<y <1,x 2+y 2<1,所以符合条件的点P 构成的区域是圆x 2+y 2=1在第一象限所围的平面部分.∴点P 到原点距离小于1的概率为:14·π·1212=π4=π4. (2)构成三角形的点P 在△ABC 内,若构成锐角三角形,则最大边1所对的角α必是锐角,cos α=x 2+y 2-122xy>0,x 2+y 2>1, 即点P 在以原点为圆心,1为半径的圆外,∴点P 在边AB ,BC 及圆弧AC 围成的区域内,∴其概率为:12-π4·1212=π4. 答:点P 到原点距离小于1的概率为π4;以x ,y ,1为边长能构成锐角三角形的概率为1-π4.注: 解决几何概型问题,判断事件的等可能性这是易忽略点,其次要正确理解几何概型的含义:某一事件A 发生的概率只与构成该事件区域的长度(面积或体积)成比例,而与位置和形状无关系,这是易错之处.为防止错误发生,解决实际问题时,一定要按部就班,先判断是否为几何概型,再严格按照几何概型的计算方法求解,最后做出正确判断,防止想当然,凭直觉.(三) 互斥事件1.互斥事件概率的理解.(1)互斥事件概率的加法公式,是在事件A 和事件B 互斥的前提下进行的.事件A ,B 互为对立事件的条件是:A ∩B 为不可能事件,A ∪B 为必然事件,且有P (A )+P (B )=1.(2)对立事件一定是互斥事件,而互斥事件却不一定是对立事件,只有当两个互斥事件中有一个发生时,它才能成为对立事件.(3)从集合的角度来看,若将总体看成全集U ,将事件A 看成由A 所含的结果组成的集合,则A 是U 的子集,这时A 的对立事件可看成是A 的补集;判断两个事件是否为对立事件,首先要判断它们是否互斥;其次要确定它们中必定要有一个发生.2.从正面解决问题较困难时,可转换思维视角从其反面考虑,即从事件的对立事件考虑,往往可以降低解题的难度,简化运算.此技巧为“正难则反”策略,此策略在互斥事件的概率中应用相当广泛和频繁,应引起我们足够的重视.例4一只蚂蚁在边长分别为3,4,5的三角形ABC 区域内任意爬行,则其恰在离三个顶点的距离都大于1的地方的概率是.答:112π . (四)练习.1.从装有2个红球和2个白球的口袋内任取2个球,那么互斥而不对立的事件是 ( ) A .至少有1个白球和全是白球 B .至少有1个白球和至少有1个红球C .恰有1个白球和恰有2个白球D .至少有1个红球和全是白球2.如果事件A ,B 互斥,那么 ( )A B C 45A.A+B是必然事件B.BA+是必然事件C.A与B一定互斥D.A与B一定不互斥3.下列命题中,真命题的个数是( )①将一枚硬币抛两次,设事件A为“两次出现正面”,事件B为“只有一次出现反面”,则事件A与B是对立事件;②若事件A与B为对立事件,则事件A与B为互斥事件;③若事件A与B为互斥事件,则事件A与B为对立事件;④若事件A与B为对立事件,则事件A+B为必然事件.A.1 B.2 C.3 D.44.甲,乙两人下棋,甲获胜的概率为40%,甲不输的概率为90%,则甲,乙两人下成和棋的概率为( ) A.60%B.30%C.10%D.50%5.某射击运动员在一次射击训练中,命中10环,9环,8环,7环的概率分别为0.21,0.23,0.25,0.28.则这名运动员在一次射击中:命中10环或9环的概率是__________,少于7环的概率是____________.6.在区间[0,10]上任取一个数,求x<3 或x>6的概率______.7.有5张1角,3张2角和2张5角的邮票,任取2张,求其中两张是同价格的概率___________.8.已知随机事件E为“掷一枚骰子,观察点数”,事件A表示“点数小于5”,事件B表示“点数是奇数”,事件C表示“点数是偶数”.问:(1)事件A+C表示什么?(2)事件CA+,分别表示什么?+,ACA9.我国已经正式加入WTO,包括汽车在内的进口商品将最多在5年内把关税全部降低到世贸组织所要求的水平,其中有21%的进口商品恰好5年关税达到要求,18%的进口商品恰好4年关税达到要求,其余的进口商品将在3年或3年内达到要求,求进口汽车在不超过4年的时间内关税达到要求的概率.10.袋中有2个伍分硬币,2个贰分硬币,2个壹分硬币,从中任取3个,求总数超过7分的概率.11.某公共汽车站每隔10分钟就有一趟车经过,小王随机赶到车站,则小王等车时间不超过4分钟的概率是________.五、要点归纳与方法小结本节课学习了以下内容:指导学生阅读有关资料,了解人类认识随机现象的过程.结合概率的教学,进行偶然性和必然性对立统一观点的教育.让学生感受数学与现实世界的重要联系,崇尚数学的理性精神,逐步形成辨证的思维品质;养成准确、清晰、有条理地表述问题的习惯,提高学生的数学表达和交流的能力;进一步拓宽学生的视野,逐步认识数学的科学价值、应用价值和文化价值.。

苏教版高中数学必修3第2章 统计 全章复习讲义设计(含答案解析)

苏教版高中数学必修3第2章 统计 全章复习讲义设计(含答案解析)

【知识梳理】知识点一:抽样方法从调查的对象中按照一定的方法抽取一部分,进行调查或观测,获取数据,并以此对调查对象的某项指标做出推断,这就是抽样调查.调查对象的全体称为总体,被抽取的一部分称为样本.1.简单的随机抽样简单随机抽样的概念:设一个总体的个体数为N.如果通过逐个抽取的方法从中抽取一个样本,且每次抽取时各个个体被抽到的概率相等,就称这样的抽样为简单随机抽样.①用简单随机抽样从含有N个个体的总体中抽取一个容量为n的样本时,每次抽取一个个体时,任一个体被抽到的概率为1N ;在整个抽样过程中各个个体被抽到的概率为nN;②简单随机抽样的特点是:不放回抽样,逐个地进行抽取,各个个体被抽到的概率相等;③简单随机抽样方法体现了抽样的客观性与公平性,是其他更复杂抽样方法的基础.简单抽样常用方法:①抽签法:先将总体中的所有个体(共有N个)编号(号码可从1到N),并把号码写在形状、大小相同的号签上(号签可用小球、卡片、纸条等制作),然后将这些号签放在同一个箱子里,进行均匀搅拌,抽签时每次从中抽一个号签,连续抽取n次,就得到一个容量为n的样本.适用范围:总体的个体数不多.优点:抽签法简便易行,当总体的个体数不太多时适宜采用抽签法.②随机数表法:随机数表抽样“三步曲”:第一步,将总体中的个体编号;第二步,选定开始的数字;第三步,获取样本号码.【解析】由题意可得1011910,5x y ++++=22222(10)(10)(1010)(1110)(910)25x y -+-+-+-+-=,解得12,8.||4x y x y ==-=,故选D .例3. 对某电子元件进行寿命追踪调查,情况如下:寿命(h ) 100~200 200~300300~400400~500500~600个 数2030804030(1)列出频率分布表;(2)画出频率分布直方图和累积频率分布图; (3)估计电子元件寿命在100~400 h 以内的概率; (4)估计电子元件寿命在400 h 以上的概率.【思路点拨】 通过本题可掌握总体分布估计的各种方法和步骤. 【解析】(1)频率分布表如下:寿命(h ) 频 数 频 率 累积频率 100~200 20 0.10 0.10 200~300 30 0.15 0.25 300~400 80 0.40 0.65 400~500 40 0.20 0.85 500~600 30 0.15 1 合 计2001(2)频率分布直方图如下:(3)由累积频率分布图可以看出,寿命在100~400 h内的电子元件出现的频率为0.65,所以我们估计电子元件寿命在100~400 h内的概率为0.65.(4)由频率分布表可知,寿命在400 h以上的电子元件出现的频率为0.20+0.15=0.35,故我们估计电子元件寿命在400 h以上的概率为0.35.【总结升华】画频率分布条形图、直方图时要注意纵、横坐标轴的意义.举一反三:【变式1】为了了解某地区高三学生的身体发育情况,抽查了该地区100名年龄为17.5岁-18岁的男生体重(kg) ,得到频率分布直方图如下:根据上图可得这100名学生中体重在〔56.5,64.5〕的学生人数是()(A)20 (B)30 (C)40 (D)50【答案】C;【解析】根据运算的算式:体重在〔56.5,64.5〕学生的累积频率为2×0.03+2×0.05+2×0.05+2×0.07=0.4,则体重在〔56.5,64.5〕学生的人数为0.4×100=40.【变式2】某班学生在一次数学考试中成绩分布如下表:分数段[0,80)[80,90)[90,100)人数 2 5 6)分数段[100,110)[110,120 [120,130)人数8 12 6分数段[130,140)[140,150)人数 4 2那么分数在[100,110)中的频率和分数不满110分的累积频率分别是_______、_______(精确到0.01). 【答案】0.18 0.47【解析】由频率计算方法知:总人数=45.分数在[100,110)中的频率为458=0.178≈0.18. 分数不满110分的累积频率为458652+++=4521≈0.47【变式3】为检测某种产品的质量,抽取了一个容量为30的样本,检测结果为一级品5件,二级品8件,三级品为13件,次品4件 (1)列出样本频率分布表;(2)画出表示样本频率分布的条形图;(3)根据上述结果,估计商品为二级品或三级品的概率约是多少? 【解析】(1)样本的频率分布表为产品频数频率 一级品 5 0.17 二级品 8 0.27 三级品 13 0.43 次品40.13(2)样本频率分布的条形图为:(3)此种产品为二级品或三级品的概率约为0.27+0.43=0.7.例4.甲、乙两小组各10名学生的英语口语测试成绩如下:(单位:分) 甲组 76 90 84 86 81 87 86 82 85 83 乙组 82 84 85 89 79 80 91 89 79 74 用茎叶图表示两小组的成绩,并判断哪个小组的成绩更整齐一些?【思路点拨】学会用茎叶图表示数据的方法;并会进行统计推断.【解析】用茎叶图表示两小组的成绩如图:由图可知甲组成绩较集中,即甲组成绩更整齐一些.【总结升华】对各数据是二、三位数,且数据量不是很大时,用茎叶图表示较为方便,也便于进行统计推断,否则,应改用其他方法.举一反三:【变式1】甲、乙两个学习小组各有10名同学,他们在一次数学测验中成绩的茎叶图如图所示,则他们在这次测验中成绩较好的是组.【答案】甲小组类型三:变量的相关性和回归分析例5.某产品的广告支出x(单位:万元)与销售收入y(单位:万元)之间有下表所对应的数据:广告支出x(单位:万元) 1 2 3 4销售收入y(单位:万元)12 28 42 56(1) 画出表中数据的散点图;(2)求出y对x的回归直线方程;(3)若广告费为9万元,则销售收入约为多少万元?【解析】(1)作出的散点图如下图所示(2)观测散点图可知各点大致分布在一条直线附近,由此可知散点图大致表现为线性相关.列出下表:序号 x y X 2xy 1 1 12 1 12 2 2 28 4 56 3 3 42 9 126 44 56 16 224 ∑1013830418易得569,22x y ==所以 414222156944184732255304()42i ii ii x y xyb xx ==--⨯⨯===-⨯-∑∑ 697352252a y bx =-=-⨯=- 故y 对x 的回归直线方程为73ˆ25yx =- (3)当x=9时, 73ˆ92129.45y=⨯-= 012 3 4x(万元)Y(万元)1020 30 40 50 60 .. . .08.0423.15=⨯-=-=bx y a .∴线性回归方程为:08.023.1^+=+=x a bx y .(2)当x=10时,38.1208.01023.1^=+⨯=y (万元) 即估计使用10年时维修费用是12.38万元.【变式2】一个工厂在某年里每月产品的总成本y (万元)与该月产量x (万件)之间有如下一组数据:x 1.08 1.12 1.19 1.28 1.36 1.48 y 2.25 2.37 2.40 2.55 2.64 2.75 x 1.59 1.68 1.80 1.87 1.98 2.07 y 2.92 3.03 3.14 3.26 3.36 3.50(1)画出散点图;(2)求月总成本y 与月产量x 之间的回归直线方程. 【解析】(1)画出散点图:(2)设回归直线方程a bx y+=ˆ, 利用计算a ,b ,得b ≈1.215, 974.0ˆ≈-=+=x b y a bx y,从中抽取一个容量为100的样本,较为恰当的抽样方法是( )A.简单随机抽样B.系统抽样C.分层抽样D.以上三种均可3. 从N 个编号中抽取n 个号码入样,若采用系统抽样方法进行抽取,则分段间隔应为( ) A .n N B .n C .⎥⎦⎤⎢⎣⎡n N D.1+⎥⎦⎤⎢⎣⎡n N 4.下列说法错误的是 ( )A .在统计里,把所需考察对象的全体叫做总体B .一组数据的平均数一定大于这组数据中的每个数据C .平均数、众数与中位数从不同的角度描述了一组数据的集中趋势D .一组数据的方差越大,说明这组数据的波动越大5.要从已编号(160:)的60枚最新研制的某型导弹中随机抽取6枚来进行发射试验,用每部分选取的号码间隔一样的系统抽样方法确定所选取的6枚导弹的编号可能是( )A .5,10,15,20,25,30B .3,13,23,33,43,53C .1,2,3,4,5,6D .2,4,8,16,32,486. 某校为了了解学生的课外阅读情况,随机调查了50名学生,得到他们在某一天各自课外阅读所用时间的数据,结果用下面的条形图表示,根据条形图可得这50名学生这一天平均每人的课外阅读时间为( ) A.0.6 h B.0.9 h C.1.0 h D.1.5 h7.某班50名学生在一次百米测试中,成绩全部介于13秒与19秒之间,将测试结果按如下方式分成六组:第一组,成绩大于等于13秒且小于14秒;第二组,成绩大于等于14秒且小于15秒;……;第六组,成绩大于等于18秒且小于等于19秒.下图是按上述分组方法得到的频率分布直方图.设成绩小于17秒的学生人数占全班总人数的百分比为x ,成绩大于等于15秒且小于17秒的学生人数为y ,则从频率分布直方图中可分析出x 和y 分别为( )A .0.9,35B .0.9,45C .0.1,35D .0.1,458.根据某水文观测点的历史统计数据,得到某条河流水位的频率分布直方图(如图).从图中可以看出,该水文观测点平均至少一百年才遇到一次的洪水的最低水位是( ) A .48米B .49米C .50米D .51米9.用系统抽样法要从160名学生抽取容量为20的样本,将160名学生从1~160编号.按编号顺序平均分成20组(1~8号,9~16号,…,153~160号),若第16组应抽出的号码为126,则第一组中抽签方法确定的号码是________.10.从一堆苹果中任取了20只,并得到它们的质量(单位:克)数据分布表如下:分组 [)90100, [)100110, [)110120, [)120130, [)130140, [)140150, 频数1231031则这堆苹果中,质量不小于...120克的苹果数约占苹果总数的 %.11.某校有学生2000人,其中高三学生500人,为了解学生的身体素质情况,采用按年级分层抽样的方法,从该校学生中抽取一个200人的样本,则样本中高三学生的人数为 . 12.甲,乙两人在相同条件下练习射击,每人打5发子弹,命中环数如下甲 6 8 9 9 8乙 10 7 7 7 9则两人射击成绩的稳定程度是__________________.13.为了了解初三学生女生身高情况,某中学对初三女生身高进行了一次测量,所得数据整理后列出了频率分布表如下:组别频数频率145.5~149.5 1 0.02149.5~153.5 4 0.08153.5~157.5 20 0.40157.5~161.5 15 0.30161.5~165.5 8 0.16165.5~169.5 m n合计M Nm n M N所表示的数分别是多少?(1)求出表中,,,(2)画出频率分布直方图.(3)全体女生中身高在哪组范围内的人数最多?14.从两个班中各随机的抽取10名学生,他们的数学成绩如下:甲班76 74 82 96 66 76 78 72 52 68乙班86 84 62 76 78 92 82 74 88 85画出茎叶图并分析两个班学生的数学学习情况.15.对甲、乙的学习成绩进行抽样分析,各抽5门功课,得到的观测值如下:问:甲、乙谁的平均成绩最好?谁的各门功课发展较平衡?16.以下是某地搜集到的新房屋的销售价格y 和房屋的面积x 的数据:(1)画出数据对应的散点图;(2)求线性回归方程,并在散点图中加上回归直线; (3)据(2)的结果估计当房屋面积为2150m 时的销售价格.【答案与解析】1.【答案】B 【解析】∵n40=0.125,∴n=320.故选B. 2. 【答案】C 3. 【答案】C 【解析】剔除零头 4. 【答案】B【解析】平均数不大于最大值,不小于最小值 5. 【答案】B 【解析】60106=,间隔应为10 6. 【答案】B 【解析】505.020)5.11(1025⨯++⨯+⨯=0.9.7.【答案】A【解析】由图知,成绩小于17秒的学生人数占全班总人数的频率为0.020.180.360.340.9+++=, 所以0.9x =;成绩大于等于15秒且小于17秒的的频率为0.360.340.7+=,104416461451222222=++++=)(甲s 5627313751222222=++++=)(乙s ∵ 22乙甲乙甲,s s x x >>∴ 甲的平均成绩较好,乙的各门功课发展较平衡16.【解析】(1)数据对应的散点图如图所示:(2)1095151==∑=i i x x ,1570)(251=-=∑=x x l i i xx , 308))((,2.2351=--==∑=y y x x l y i i i xy设所求回归直线方程为a bx y +=), 则1962.01570308≈==xx xyl l b 8166.115703081092.23≈⨯-=-=x b y a 故所求回归直线方程为8166.11962.0+=x y )(3)据(2),当2150x m =时,销售价格的估计值为: 2466.318166.11501962.0=+⨯=y )(万元)。

必修三第二章统计复习教案

必修三第二章统计复习教案

必修三第二章统计复习教案一、基础知识回顾1.1 数据的分类数据可以分成两类:定量数据和定性数据。

定量数据又可以分成离散型数据和连续型数据。

1.2 数据的搜集与整理数据搜集包括问卷调查、观察、实验、采访、统计报表等方式。

数据整理包括数据的分类、汇总、整理等。

1.3 数据的描述统计1.3.1 频数和频率频数是指每种取值出现的次数,频率是指每种取值出现的次数占总次数的比例。

1.3.2 累计频数和累计频率累计频数是指某个区间的频数加上前面所有区间的频数之和,累计频率是指某个区间的频率加上前面所有区间的频率之和。

1.3.3 均值、中位数和众数均值是指所有数据的总和除以数据个数,中位数是指将所有数据按大小排序后排在中间的数,众数是指出现次数最多的数。

1.3.4 极差和标准差极差是指最大值和最小值的差,标准差是指各个数据和均值的差的平方和的平均数的算术平方根。

二、实践应用2.1 统计图的绘制统计图包括条形图、饼图、直方图、折线图等,可以反映数据的频数和分布规律。

2.2 描述统计的应用应用描述统计可以对数据进行初步分析,为后续的推断统计提供参考,也可以为决策提供数据支持。

2.3 推断统计的基本原理推断统计包括参数估计和假设检验两个方面。

参数估计是指利用样本数据推断总体参数的取值,假设检验是指根据样本数据推断总体参数是否满足某个假设。

三、拓展应用3.1 正态分布和标准化分布正态分布是指在概率论和统计学中最重要的分布之一,其分布图像呈钟形。

标准化分布是指将正态分布转化为符合标准正态分布的过程。

3.2 相关系数和回归分析相关系数是指用于反映两个变量是否有相关关系的一种统计指标,回归分析是指建立两个或多个变量之间关系的一种数学模型。

3.3 统计软件的应用随着计算机技术的发展,统计软件的应用越来越广泛,可以大大提高数据分析的效率和准确性。

四、考试重点必修三第二章的考试重点包括数据的描述统计、统计图的绘制、推断统计的基本原理以及常见的综合应用题型。

高中数学 第二章 统计复习与小结教案 苏教版必修3

高中数学 第二章 统计复习与小结教案 苏教版必修3

第2章统计教学目标:1.结合具体的实际问题情境,理解随机抽样的必要性和重要性.2.学会用简单随机抽样方法从总体中抽取样本;3.通过对实际问题的分析,了解分层抽样和系统抽样方法.教学重点、难点:1.简单随机抽样,分层抽样和系统抽样的准确应用;2.会列频率分布表,画频率分布直方图,频率折线图,茎叶图;3.计算数据的标准差和方差;4.利用散点图直观认识变量间的相关关系.能根据给出的线性回归方程的系数公式建立线性回归方程.教学方法:讲练结合.教学过程:一、复习统计相关知识点1.抽样方法.(1)简单随机抽样(2)系统抽样(3)分层抽样2.样本分布估计总体分布.(1)频率分布表(2)直方图(3)折线图(4)散点图(5)茎叶图3.样本特征数估计总体特征数.(1)平均数(2)方差(标准差)(3)众数(4)中位数二、数学运用例1 在一次有奖明信片的100000个有机会中奖的号码(编号00000—99999)中,邮政部门按照随机抽取的方式确定后两位是23的作为中奖号码,这是运用了________抽样方法.例2 某单位有500名职工,其中不到35岁的有125人,35岁~49岁的有280人,50岁以上的有95人.为了了解该单位职工与身体状况有关的某项指标,要从中抽取一个容量为100的样本,应该用___________抽样法.例3 某社区有500个家庭,其中高收入家庭125户,中等收入家庭280户,低收入家庭95户,为了调查社会购买力的某项指标,要从中抽取1个容量为100户的样本,记做①;某学校高一年级有12名女排运动员,要从中选出3个调查学习负担情况,记做②.那么完成上述2项调查应采用的抽样方法是①__________②______________.例4 某公司生产三种型号的轿车,产量分别为1200辆,6000辆和2000辆.为检验该公司的产品质量,现用分层抽样的方法抽取46辆进行检验,这三种型号的轿车依次应抽取______________辆.例5 两名跳远运动员在10次测试中的成绩分别如下(单位:m):甲:5.58 5.93 6.07 5.91 5.99 6.13 5.89 6.05 6.00 6.19乙:6.11 6.08 5.83 5.92 5.84 5.81 6.18 6.17 5.85 6.21试估计哪位运动员的成绩比较稳定.例6 如图,从参加环保知识竞赛的学生中抽出60名,将其成绩(均为整数)整理后画出的频率分布直方图如下:观察图形,回答下列问题:(1)79.5~89.5这一组的频数、频率分别是多少?(2)估计这次环保知识竞赛的及格率(60分及以上为及格)练习:1.如图,是某单位职工年龄(取正整数)的频数分布图,根据图形提供的信息,回答下列问题(直接写出答案)注:每组可含最低值,不含最高值.(1)该单位职工共有多少人?(2)不小于38岁但小于44岁的职工人数占职工总人数的百分比是多少?(3)如果42岁的职工有4人,那么年龄在42岁以上的职工有几人?2.为了解某地初三年级男生的身高情况,从其中的一个学校选取容量为60的样本(60名男生的身高),分组情况如下:(1)求出表中a,m的值.(2)画出频率分布直方图和频率折线图.三、归纳小结根据简单随机抽样,分层抽样和系统抽样的特点准确应用;会列频率分布表,画频率分布直方图,能够根据数据的平均数及方差对总体估计.。

高中数学必修3《统计》小结与复习课件

高中数学必修3《统计》小结与复习课件
2
总体、个体、样本、样本容量
总体:在统计中,所有考察对象的全体。 个体:总体中的每一个考察对象。 样本:从总体中抽取的一部分个体叫做 这个总体的一个样本。 样本容量:样本中个体的数目。
3
抽样方法:
(1)简单随机抽样 (抽签法、随机数法) (2)系统抽样 (3)分层抽样
4
1、抽签法步骤
(1)先将总体中的所有个体(共有N个) 编号(号码可从0到N-1). (2)把号码写在形状、大小相同的号签上, 号签可用小球、卡片、纸条等制作。 (3)将这些号签放在同一个容器中,搅拌均 匀。 (4)抽签时,每次从中抽出一个号签,连续 抽取n次。 (5)抽出样本。
1
16
(2)其频率分布直方图如下
频率/组距 0.07 0.06 0.05 0.04 0.03 0.02 0.01
o 122 126 130 134 138 142 146 150 154 158 身 高 ( cm )
(3)由样本频率分布表可知身高小于134cm 的男孩
出现的频率为0.04+0.07+0.08=0.19, 所以我们估计身高小于134cm的人数占总人数的19%.
但两个变量之间又有关系,称为相关关系。 (2)相关关系与函数关系的异同点。 相同点:两者均是指两个变量间的关系。 不同点:函数关系是一种确定关系,是一种因果
系;相关关系是一种非确定的关系,也不一定是因 果关系(但可能是伴随关系)。
(3)相关关系的分析方向。 在收集大量数据的基础上,利用统计分析,发现
标准差:s s2 ( x1 x)2 ( xn x)2 n
12
分析样本的分布情况可用 样本的频率分布表
样本的频率分布直方图
频率分布直方图的特征: (1)从频率分布直方图可以清楚的看出数据分布的

推荐高中数学复习课二统计教学案苏教版必修3

推荐高中数学复习课二统计教学案苏教版必修3

复习课(二) 统计抽样方法高考对抽样方法的考查主要是基础题,难度不大.系统抽样和分层抽样是考查的热点,考查形式以填空题为主.[考点精要]1.简单随机抽样(1)特征:①一个一个不放回的抽取.②每个个体被抽到可能性相等.(2)常用方法:①抽签法.②随机数表法.2.系统抽样(1)适用环境:当总体中个数较多时,可用系统抽样.(2)操作步骤:将总体平均分成几个部分,再按照一定方法从每个部分抽取一个个体作为样本.3.分层抽样(1)适用范围:当总体由差异明显的几个部分组成时可用分层抽样.(2)操作步骤:将总体中的个体按不同特点分成层次比较分明的几部分,然后按各部分在总体中所占的比实施抽样.[典例] (1)(山东高考改编)采用系统抽样方法从960人中抽取32人做问卷调查,为此将他们随机编号为1,2,…,960,分组后在第一组采用简单随机抽样的方法抽到的号码为9,抽到的32人中,编号落入区间[1, 450]的人做问卷A,编号落入区间[451,750]的人做问卷B,其余的人做问卷C,则抽到的人中,做问卷B的人数为________.(2)(江苏高考)某学校高一、高二、高三年级的学生人数之比为3∶3∶4,现用分层抽样的方法从该校高中三个年级的学生中抽取容量为50的样本,则应从高二年级抽取________名学生.(3)已知某地区中小学生人数和近视情况分别如图1和图2所示.为了解该地区中小学生的近视形成原因,用分层抽样的方法抽取2%的学生进行调查,则样本容量和抽取的高中生近视人数分别为______.[解析](1)抽取号码的间隔为96032=30,抽取的号码依次为9,39,69,…,939,落入区间[451,750]的有459,489,…,729共10人,即做B 卷的有10人.(2)设应从高二年级抽取x 名学生,则x 50=310,∴x =15.(3)该地区中小学生人数为3 500+2 000+4 500=10 000,则样本容量为10 000×2%=200,其中抽取高中生近视眼人数为2 000×2%×50%=20. [答案](1)10 (2)15 (3)200,20 [类题通法](1)系统抽样中,易忽视抽取的样本数也就是分段的段数,当Nn 不是整数时,注意剔除.(2)分层抽样中,易忽视每层抽取的个体的比例是相同的.[题组训练]1.为了解1000名学生的学习情况,采用系统抽样的方法从中抽取容量为40的样本,则分段的间隔为________.解析:根据系统抽样的特点可知,分段间隔为1 00040=25.答案:252.某高校甲、乙、丙、丁四个专业分别有150,150,400,300名学生.为了解学生的就业倾向,用分层抽样的方法从该校这四个专业共抽取40名学生进行调查,应在丙专业抽取的学生人数为________.解析:抽样比为40150+150+400+300=4100.因此丙专业应抽取4100×400=16(人). 答案:16 3.(北京高考)某校老年、中年和青年教师的人数见下表,采用分层抽样的方法调查教师的身体状况,在抽取的样本中,青年教师有320人,则该样本中的老年教师人数为______.解析:设该样本中老年教师人数为x ,则有x 900=3201 600,故x =180. 答案:180高考对各种统计图表的考查主要是基础题,频率分布条形图和直方图是考查的热点,但也要注意关注茎叶图。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第2章统计
教学目标:
1.结合具体的实际问题情境,理解随机抽样的必要性和重要性.
2.学会用简单随机抽样方法从总体中抽取样本;
3.通过对实际问题的分析,了解分层抽样和系统抽样方法.
教学重点、难点:
1.简单随机抽样,分层抽样和系统抽样的准确应用;
2.会列频率分布表,画频率分布直方图,频率折线图,茎叶图;
3.计算数据的标准差和方差;
4.利用散点图直观认识变量间的相关关系.能根据给出的线性回归方程
的系数公式建立线性回归方程.
教学方法:
讲练结合.
教学过程:
一、复习统计相关知识点
1.抽样方法.
(1)简单随机抽样(2)系统抽样(3)分层抽样
2.样本分布估计总体分布.
(1)频率分布表(2)直方图(3)折线图(4)散点图
(5)茎叶图
3.样本特征数估计总体特征数.
(1)平均数(2)方差(标准差)(3)众数(4)中位数
二、数学运用
例1 在一次有奖明信片的100000个有机会中奖的号码(编号00000—99999)中,邮政部门按照随机抽取的方式确定后两位是23的作为中奖号码,这是运用了________抽样方法.
例2 某单位有500名职工,其中不到35岁的有125人,35岁~49岁的
有280人,50岁以上的有95人.为了了解该单位职工与身体状况有关的某项指标,要从中
抽取一个容量为100的样本,应该用___________抽样法.
例3 某社区有500个家庭,其中高收入家庭125户,中等收入家庭280
户,低收入家庭95户,为了调查社会购买力的某项指标,要从中抽取1个容量为100户的样本,记做①;某学校高一年级有12名女排运动员,要从中选出3个调查学习负担情况,记做②.那么完成上述2项调查应采用的抽样方法是①__________②______________.例4 某公司生产三种型号的轿车,产量分别为1200辆,6000辆和2000辆.为检验该公司的产品质量,现用分层抽样的方法抽取46辆进行检验,这三种型号的轿车依次应抽取______________辆.
例5 两名跳远运动员在10次测试中的成绩分别如下(单位:m):
甲:5.58 5.93 6.07 5.91 5.99 6.13 5.89 6.05 6.00 6.19
乙:6.11 6.08 5.83 5.92 5.84 5.81 6.18 6.17 5.85 6.21
试估计哪位运动员的成绩比较稳定.
例6 如图,从参加环保知识竞赛的学生中抽出60名,将其成绩(均为整数)整理后画出的频率分布直方图如下:观察图形,回答下列问题:
(1)79.5~89.5这一组的频数、频率分别是多少?
(2)估计这次环保知识竞赛的及格率(60分及以上为及格)
练习:
1.如图,是某单位职工年龄(取正整数)的频数分布图,根据图形提供的信息,回答下列问题(直接写出答案)注:每组可含最低值,不含最高值.
(1)该单位职工共有多少人?
(2)不小于38岁但小于44岁的职工人数占职工总人数的百分比是多少?
(3)如果42岁的职工有4人,那么年龄在42岁以上的职工有几人?
2.为了解某地初三年级男生的身高情况,从其中的一个学校选取容量为60
的样本(60名男生的身高),分组情况如下:
(1)求出表中a,m的值.
(2)画出频率分布直方图和频率折线图.
三、归纳小结
根据简单随机抽样,分层抽样和系统抽样的特点准确应用;会列频率分布表,画频率分布直方图,能够根据数据的平均数及方差对总体估计.。

相关文档
最新文档