重庆市2017届中考数学一轮复习第一章数与式第3节分式试题
中考数学 精讲篇 考点系统复习 第一章 数与式 第三节 整式与因式分解
3.计算:
(1)m2·m3=m m55;
(2)(m2)3=m m66;
(3)a7÷a4=a a3 3;
(4)(x2y)3=x x6y63y3;
(5)-4mn+3mn=--mmnn; (6)(mn-3n)-3(m2-n)=mnmn--33mm22;
∵m 是方程 x2+x-2=0 的根, ∴m2+m-2=0,∴m2+m=2, ∴原式=2×(2-1)=2.
重难点 1:幂的运算 下列运算中,正确的是
A.x2+2x2=3x4 B.x2·x3=x5 C.(x3)2=x5 D.(xy)2=x2y
( B)
【思路点拨】 选项 法则 A 合并同类项法则 B 同底数幂的乘法法则 C 幂的乘方运算 D 积的乘方运算
=3x2+2x+1-4x2+2x-5 =-x2+4x-4, P=(2x-5)+(-x2+4x-4) =-x2+6x-9, 当 x=1 时,P=-1+6-9=-4.
(7)(m+4)2=m2+m2+88mm++116;6 (8)(-a-1)(a-1)=1-1-aa22;
(9)-4x3y5÷2x2y3=-2-2xxyy22.
4.(RJ 八上 P112 习题 T7 改编)已知 a+b=5,ab=3,则 a2+b2=1199 , (a-b)2=113 3.
5.分解因式: (1)m2-3m=m(mm(m--33)); (2)a2-9=(a(a++33))((aa--3); (3)8a3-2ab2=3)2a2a(2(2aa++bb))((2a2-a-b); (4)2x2-4=2(x2+(xb+))(x2-)(x- 2) );(在实数范围内分解) (5)(x-y)2-x+y=(x-(x-yy))((xx--y-y-1); (6)x2+5x+4= (x(+x+1)11))((xx++44);)
重庆市中考数学一轮复习 第一章 数与式 第3节 分式试题
第三节 分式课标呈现 指引方向了解分式和最简分式的概念,能利用分式的基本性质进行约分和通分:能进行简单的分式加、减、乘、除运算,考点梳理 务实基础 1.分式的有关概念(1)分式:形如AB(A 、B 是整式,且B 中含有 ,B ≠0)的式子叫做 . (2)当 时,分式AB 有意义.(3)当 时,分式AB无意义.(4)当 时,分式AB的值为0.(5)分式的约分:把一个分式的分子与分母的 约去叫做分式的 .分子和分母的最大公因式为 .(6)最简分式:当分式的分子与分母没有 时,这样的分式称为 。
(7)分式的通分:把几个异分母的分式化为 的分式叫做分式的通分.异分母分式通分时通常取系数的最小公倍数与分母中所有因式的最高次幂的积作为它们的共同分母. 【答案】(1)字母 分式 (2)B ≠0 (3)B=0 (4)A=0,B ≠0 (5)公因式 约分 系数的最大公因数与相同因式的最低次幂的积 (6)公因式 最简分式 (7)同分母2.分式的基本性质 (1)A AC A CB BC B C÷==÷(B ≠0,C ≠0) (2)分式中的符号法则:分子符号、分母符号、分式本身符号中同时改变两处的符号,分式的值不变. 3.分式的运算 (1)分式的加减:同分母的分式相加减,分母 ,把分子相 ;异分母的分式相加减,先通分,化为同分母的分式再加减. 【答案】 不变 加减 (2)分式的乘除:A C ACB D BD•=( B 、D ≠0), A C A D AD B D B C BC ÷=•=(B 、C 、D ≠0),nn n A A B B ⎛⎫= ⎪⎝⎭(B ≠0). (3)分式的混合运算:按照运算顺序分步计算,一般先 、后 ,最后算 ;如果有括号先计算括号里的,分式运算的结果要为整式或最简分式. 【答案】乘方 乘除 加减 考点精析 专项突破考点一 分式的概念及基本性质【例1】(1) (2016重庆)函数12y x =+中,x 的取值范围是( ) A .x ≠0 B .x> -2 C .x<-2 D .x ≠ -2 (2) (2016温州)若分式23x x -+的值为0,则x 的值是( ) A .-3 B .-2 C .0 D .2【答案】(1)D (2)D解题点拨:本题考查了分式有意义的条件,从以下三个方面透彻理解分式的概念:(1)分式无意义即分母为零(2)分式有意义即分母不为零(3)分式值为零即分子为零且分母不为零.【例2】下列运算中,正确的是 ( ) A .a acb bc = B .x y y x x y y x --=++ C.0.10.20.525m n m n m n m n ++=-- D. 1a ba b--=-+ 【答案】D解题点拨:分式变形的依据是分式的基本性质和分式中的符号法则。
一轮复习第一章数与式第3讲--分式
1 负整数指数: a p ____a__p_(a≠0,p为正整数)
► 考点1: 分式的有关概念
命题角度: 1. 分式的概念; 2. 使分式有(无)意义、值为0(正或负)的条件.
例1下列式子是分式的是
A. x B. x
C. x y
2
x 1
2
ቤተ መጻሕፍቲ ባይዱ
(B )
D. x
例2 (C
(1) )
若分式
5 1 x
别相乘,然后约去公因式,化为最简
分位_c_≠式置b_a0_除后,_分分然要分_以,d_式子后把子≠_;、再整,分与×0若分相式分式被)_分母乘与母_dc,除子分,分不__、解当式变把式_分因分的._除相_母式式分_式乘是,与子=多看整相的,项能式乘分即a式 否 相 作bdc子,约乘为先分时积、将,,的(ab分b÷≠dc母0颠, 倒=
有意义,则x的取值范围是
A.x=0 B.x=1 C.x≠1 D.x≠ 0
(2) [2012·温州] 若代数式
的值为零,则x
=____3____.
[解析] (1)∵分式有意义,∴1-x≠0,∴x≠1. (2)x-2 1-1=3x--x1的值为零,则 3-x=0,且分母
x-1≠0,所以 x=3.
(1)分式有意义的条件是分母不为零;分母为 零时分式无意义.
=
异分母分式 先通分,变为a 同c 分母的分a式d ,然后相bc加减,
相加减 即
b±d =_____ab_d±_d_b±c _____b_d__=
bd
分式 的乘
除
乘法法则 除法法则
母分的式积分乘母做分当是积分式单式的项,与式分用分请,母式分您可相,牢先子乘记将即的时:分,积子若ab、做× 分分积子d母c、的分=分__子ba_dc_,__分__
重庆市届中考数学一轮复习第一章数与式第3节分式试题【含解析】
第三节 分式课标呈现 指引方向了解分式和最简分式的概念,能利用分式的基本性质进行约分和通分:能进行简单的分式加、减、乘、除运算,考点梳理 务实基础 1.分式的有关概念(1)分式:形如AB(A 、B 是整式,且B 中含有 ,B ≠0)的式子叫做 . (2)当 时,分式AB 有意义.(3)当 时,分式AB无意义.(4)当 时,分式AB的值为0.(5)分式的约分:把一个分式的分子与分母的 约去叫做分式的 .分子和分母的最大公因式为 .(6)最简分式:当分式的分子与分母没有 时,这样的分式称为 。
(7)分式的通分:把几个异分母的分式化为 的分式叫做分式的通分.异分母分式通分时通常取系数的最小公倍数与分母中所有因式的最高次幂的积作为它们的共同分母. 【答案】(1)字母 分式 (2)B ≠0 (3)B=0 (4)A=0,B ≠0 (5)公因式 约分 系数的最大公因数与相同因式的最低次幂的积 (6)公因式 最简分式 (7)同分母2.分式的基本性质 (1)A AC A CB BC B C÷==÷(B ≠0,C ≠0) (2)分式中的符号法则:分子符号、分母符号、分式本身符号中同时改变两处的符号,分式的值不变. 3.分式的运算 (1)分式的加减:同分母的分式相加减,分母 ,把分子相 ;异分母的分式相加减,先通分,化为同分母的分式再加减. 【答案】 不变 加减 (2)分式的乘除:A C ACB D BD∙=( B 、D ≠0), A C A D AD B D B C BC ÷=∙=(B 、C 、D ≠0),nn n A A B B ⎛⎫= ⎪⎝⎭(B ≠0). (3)分式的混合运算:按照运算顺序分步计算,一般先 、后 ,最后算 ;如果有括号先计算括号里的,分式运算的结果要为整式或最简分式. 【答案】乘方 乘除 加减 考点精析 专项突破考点一 分式的概念及基本性质【例1】(1) (2016重庆)函数12y x =+中,x 的取值范围是( ) A .x ≠0 B .x> -2 C .x<-2 D .x ≠ -2 (2) (2016温州)若分式23x x -+的值为0,则x 的值是( ) A .-3 B .-2 C .0 D .2【答案】(1)D (2)D解题点拨:本题考查了分式有意义的条件,从以下三个方面透彻理解分式的概念:(1)分式无意义即分母为零(2)分式有意义即分母不为零(3)分式值为零即分子为零且分母不为零.【例2】下列运算中,正确的是 ( ) A .a acb bc = B .x y y x x y y x --=++ C.0.10.20.525m n m n m n m n ++=-- D. 1a ba b--=-+ 【答案】D解题点拨:分式变形的依据是分式的基本性质和分式中的符号法则。
中考数学 考点系统复习 第一章 数与式 第三节 整式与因式分解
命题点4:因式分解(近6年常在分式化简中考查) 命题点5:图形规律探索(近6年考查8次)(详见P126第三轮 重难点突 破一 图形规律探索)
的是
(D)
A.m=1,n=1
B.m=1,n=0
C.m=1,n=2
D.m=2,n=1
命题点2:整式的运算(近6年考查5次) 4.(2020·重庆B卷第3题4分)计算a·a2结果正确的是 A.a B.a2 C.a3 D.a4
( C)
5.(2016·重庆B卷第5题4分)计算(x2y)3的结果是 A.x6y3 B.x5y3 C.x5y D.x2y3
第三节 代数式、整式与 因式分解
【考情分析】重庆近6年常考点有幂的运算、乘法公式、整式的混合运 算、因式分解、代数式的化简求值等.整式的运算考查题型均为选择 题,涉及知识点有:合并同类项、同底数幂的乘法、幂的乘方、积的乘 方、单项式乘以单项式.整式的化简是2015年出现的题型,2015—2018 年均在第21(1)题中考查,2019年、2020年、2021年均在第19(1)题中考 查,2022年在第17(1)题中考查,预计2023年也会在第17(1)题中考查, 因式分解近6年均在分式的化简及求值中考查,未单独考查.
( A)
6.(2021·重庆A卷第2题4分)计算3a6÷a的结果是 A. 3a6 B.2a5 C.2a6 D.3a5
(D)
命题点3:整式的化简(近6年连续考查) 7.[2022·重庆B卷第17题(1)4分]计算:(x+y)(x-y)+y(y-2). 解:原式=x2-y2+y2-2y=x2-2y.
命题点1:代数式求值(近6年考查5次)
重庆市中考数学一轮复习 第一章 数与式 第1节 实数试题
第一章数与式第一节实数课标呈现指引方向1.有理数(1)理解有理数的意义,能用数轴上的点表示有理数,能比较有理数的大小.(2)借助数轴理解相反数和绝对值的意义,掌握求有理数的相反数与绝对值的方法,知道|a|的含义(这里a表示有理数).(3)理解乘方的意义,掌握有理数的加、减、乘、除、乘方及简单的混合运算(以三步以内为主).(4)理解有理数的运算律,能运用运算律简化运算.(5)能运用有理数的运算解决简单的问题.2.实数(1)了解平方根、算术平方根、立方根的概念,会用根号表示数的平方根、算术平方根、立方根.(2)了解乘方与开方互为逆运算,会用平方运算求百以内整数的平方根,会用立方运算求百以内整数(对应的负整数)的立方根,会用计算器求平方根和立方根.(3)了解无理数和实数的概念,知道实数与数轴上的点一一对应,能求实数的相反数与绝对值.(4)能用有理数估计一个无理数的大致范围.(5)了解近似数,在解决实际问题中,能用计算器进行近似计算,并会按问题的要求对结果取近似值.(6)会用科学记数法表示数(包括在计算器上表示).考点梳理夯实基础1.实数(1)实数的定义:有理数和无理数统称窦数(2)实数的分类①按定义分类②按正负性质分类注:无理数的三种常见形式:①开方开不尽的数,②无限不循环小数,③含有π的数.2.实数的相关概念(1)数轴是一条规定了_______、________、______单位长度的直线,并且数轴上的点与实数是_____的关系.【答案】原点、正方向、单位长度、一一对应(2)若a 和b 互为相反数,则a 、b 满足的关系式为_______,此时a 、b 在数轴上表示的点位于原点_____,且到原点的_____相等.【答案】a+b=0、两侧、距离(3)若ab=______,则a,b 互为倒数;若ab=____,则a,b 互为负倒数:_____没有倒数.【答案】1,-1,0(4)绝对值的几何意义:一个数的绝对值就是数轴上表示这个数的点到____的距离.【答案】原点(5)绝对值的代数意义(0)||(0)0(0)a a a a a a >⎧⎪=-<⎨⎪=⎩(6)相反数等于本身的数是____,倒数等于本身的数_____;绝对值等于本身的数是____;平方等于本身的数_________;立方等于本身的数_______.【答案】0;1±;所有非负数;0,1;0,1±(7)对于一个绝对值比较大(或绝对值比较小)的数常用科学记数法表示,记为______的形式,其中._________.【答案】10n a ⨯,1|a |10≤<且n 为整数3.数的开方(1)如果一个数的____等于a ,那么这个数就叫做a 的_____,记怍.一个正数有____个平方根,它们互为_____,零的平方根是______,负数____平方根.【答案】平方;平方根;两;相反数;0;没有(2)如果一个正数的平方等于a ,那么这个正数就叫做a 的______,记作____,0的算术平方根是_____.【答案】算术平方根(3)如果一个数的立方等于a ,那么这个数就叫做a 的_____(或三次方根),每个数只有_____个立方根,正数的立方根是_____,负数的立方根是_____,0的立方根是_____.【答案】立方根;1 ;正数负数 0(4)平方根等于本身的数是____;算术平方根等于本身的数是_____;立方根等于本身的数是____.【答案】0 ;0 , 1 ; 0,1±4.实数大小比较的常用方法:(1)在数轴上表示两个数的点,右边的点表示的数总比左边的点表示的数大.(2)正数都大于零,负数都小于零,正数大于一切负数,两个负数比较,绝对值大的反而小.(3)作差比较法①a-b>0⇔ a>b②a-b= 0⇔a=6③a-b<0⇔a<b(4)作商比较法(若a,b 同为正数) ①1ab >⇔a>b ②ab =1⇔a=b ③ab <l ⇔a<b(5)倒数比较法:11a b >,a>0,b>0,则a<b .(6)平方法:若a>0,b>0且a 2>b 2,则a>b .5.非负数的性质(1)几种常见的非负数:①|a|≥00(a ≥0);③a 2n ≥0.(2)非负数的性质:①非负数的最小值是0:②几个非负数之和仍为非负数:③若几个非负数的和为0,则每个非负数都为0.6.零指数幂和负整数指数幂(1)零指数幂:a 0= l(a ≠0).(2)负整数指数幂:a -p 1p a (a ≠0,p 为整数).实数的相关概念【例l 】(1)(2016重庆)4的倒数是 ( D)A.-4B.4C.14- D.14【答案】D(2)(2016重庆)在实数-2,2,0.-1中,最小的数是 ( )A .-2 B.2 C .0 D .-l【答案】A(3)(2016烟台)下列实数中,有理数是 ( )A C.2π D.0.101001001【答案】D(4)(2016黑龙江)已知实数a 、b 在数轴上对应的点如图所示,则下列式子正确的是 ()A .ab>0B .a+b<0C .|a|<|b|D .a-b>0【答案】D(5) (2015常州)已知,,,则下列大小关系正确的是 ( ) A .a>b>c B .c>b>a C .b>a>c D .a>c>b【答案】A解题点拨:实数中基本概念较多,常以选择、填空的形式出现,题目较为简单,要注意审清题意.考点二科学记数法【例2】(1)(2016重庆)据报道,2015年某市城镇非私营单位就业人员年平均丁资超过60500元,将数60500用科学记数法表示为_____.【答案】6.05×104(2)(2016山东)2016年第一季度,我市“蓝天白云、繁星闪烁”天数持续增加,获得山东省环境空气质量生态补偿资金408万元.408万用科学记数法表示正确的是 ( )A .408×l04B .4.08×l04C .4.08× l05D .4.08× l06觯题点拨:此题考查科学记数法,其中l ≤|a|<10,小数点向左移动x 位,则n=x ;小数点向右移动x 位,则n=-x ,另外需要注意单位的换算.考点三 根式的概念及基本性质【例3】(1)数5.(2)3.(3)数27的立方根是3.(4)(2016 ( )A .2B .±2C 【答案】C考点四 实数运算【例4】(2016东营)计算:11()2016-+(π-3.14)0 -2sin60º解题点拨:本题主要考查了实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟练掌握负整数指数幂、零指数幂、二次根式、绝对值,特殊角三角函数等考点的运算.解:原式= 2016+1-2 - ()= 2016课堂训练当堂检测1.(2016无锡)-2的相反数是 () A.12 B .±2 C .2 D .12- 【答案】C2.(2016( )A .2和3B .3和4C .4和5D .5和6【答案】D3.(2016+(13)2+(1π-)0= _____. 【答案】84.计算(1)| -5 |- (-1)2005-(12)-2+|3π-【答案】解:原式= 5-(-1)- 4+1-(2)-l 22-(-13)-2+| -2 |【答案】解:原式=-1+=-7+中考达标模拟自测A 组基础训练一、选择题1.(2016资阳)世界上最小的开花结果植物是澳大利亚的出水浮萍,这种植物的果实像一个微小的无花果,质量只有0.000000076克,将数0.000000076用科学记数法表示为 ()A .7.6×10- 9B .7.6×10- 8C .7.6×l09D .7.6× l08【答案】B2.(2015娄底)若| a-1 |=a-l ,则a 的取值范围是 ( )A .a ≥lB .a ≤1C .a<lD .a>l【答案】A3.(2015通辽)实数0,-35π,13-,sin60º,0.3131131113⋅⋅⋅(相邻两个3之间依次多一个1),其中无理数的个数是 ()A .4B .2C .1D .3【答案】D4.在数轴上与表示-2的点距离3个单位的点表示的数是 ( )A .5B .-5C .1D .-5或-1【答案】D二、填空题5.下列说法正确的有______(填序号)①一个数的绝对值一定比0大;②一个数的相反数一定比它本身小;③最小的正整数是1;④与13;⑤-(-2)0=l .【答案】③④6+(y-2)2=0,则xy -2=_______. 【答案】34- 7.计算:(1)(2016+(-2)0=_____.【答案】3(2)(2016黄冈).【答案】(3)(2016十堰)21()2--=_____. 【答案】-2(4)(2015乌鲁木齐)(-2)21.三、解答题8.(2015铜仁)定义一种新运算:+2*x y x y x =,如2*1:=2212+⨯=2,求(4*2)*(-1)的值. 【答案】解:∵4+224*2=24⨯=,2+2(-1)2*(-1)==02⨯,∴原式=0. 9.计算:(1)(2015遂宁)-2213)-2×(2π-)0+(-1)2014【答案】解:原式×(2)(2016菏泽)2-2-2cos60º+| π-3.14)0【答案】解:原式=14-2×12+14+(3) (2016桂林)–(-4)+| -5 |+(120-4tan45º. 【答案】解:原式=4+5+1-4×1=6.(4)(2016毕节)(π-3.14)0)-1-2sin45º+(-1)2016【答案】解:原式:-2+1(5)(2016+2sin60º-π)0【答案】解:原式=3+2+3-=5(6) (2016眉山+1)0-3tan30º+(-1)2016-(12)-1【答案】解:原式=l-3+l-2(7) (2015南通)(-2)20-(13)-2【答案】解:原式= 4-4+1-9=一8.(8) (2015达州)(-1)2015+20150+2-1-| 12【答案】解:原式一1+1+12+12B 组提高练习10.实数a 、b +a 的化简结果为 ( )第10题A .2a+bB .bC .-bD .2a-b(提示:原式=| a+b|+a=-a-b+a=-b .)【答案】C11.对于两个不相等的实数a 、b ,定义一种新的运算如下(a+b>0)如那么6*(5*4)=_____.(提示:根据定义,=3,=1.)【答案】112.(2016黄石)观察下列等式:第1个等式:11a ,第2个等式:2a第3个等式:32a ==-第4个等式:42a =-,按上述规律,回答以下问题:(1)请写出第n 个等式:n a =_________.(2)求a l +a 2+a 3+g g g +a n 的值,【答案】解:(1)∵第1个等式:11a ,第2个等式:2a第3个等式:32a =第4个等式:42a =∴第n 个等式:n a == (2)a 1+a 2+a 3+…+a n 。
初中数学 整式 练习题(含答案)
第一篇 数与式 专题02 整式的运算☞解读考点知 识 点名师点晴整式的有关概念单项式知道单项式、单项式的系数、次数多项式 知道多项式、多项式的项、多项式的次数、常数项.同类项能够分清哪些项是同类项.整式的运算1.幂的运算能运用幂的运算法则进行同底数幂的乘法、除法、幂的乘方、积的乘方运算2.整式的加、减、乘、除法运算法则能按照运算法则进行整式的加、减、乘、除法运算以及整式的混合运算3.乘法公式能熟练运用乘法公式☞2年中考【2017年题组】一、选择题1.(2017云南省)下列计算正确的是( )A .2a ×3a =5aB .33(2)6a a -=- C .6a ÷2a =3a D .326()a a -= 【答案】D . 【解析】 试题分析:A .原式=26a ,故A 错误; B .原式=38a -,故B 错误; C .原式=3,故C 错误; D .326()a a -=,正确; 故选D .考点:整式的混合运算.2.(2017内蒙古呼和浩特市)下列运算正确的是( )A .222222(2)2()3a b a b a b +--+=+ B .212111a aa a a +--=-- C .32()(1)mm m m a a a -÷=- D .2651(21)(31)x x x x --=--【答案】C . 【解析】考点:1.分式的加减法;2.整式的混合运算;3.因式分解﹣十字相乘法等.3.(2017吉林省长春市)如图,将边长为3a 的正方形沿虚线剪成两块正方形和两块长方形.若拿掉边长2b 的小正方形后,再将剩下的三块拼成一块矩形,则这块矩形较长的边长为( )A .3a +2bB .3a +4bC .6a +2bD .6a +4b 【答案】A .点睛:考查了列代数式,关键是得到这块矩形较长的长与两个正方形边长的关系. 考点:完全平方公式的几何背景. 4.(2017四川省乐山市)已知31=+x x ,则下列三个等式:①7122=+xx ,②51=-x x ,③2622-=-x x 中,正确的个数有( )A .0个B .1个C .2个D .3个 【答案】C . 【解析】 试题分析:∵31=+x x ,∴21()9x x +=,整理得:7122=+xx ,故①正确. 211()4x x x x-=±+- =±5,故②错误. 方程2622-=-x x 两边同时除以2x 得:13x x -=-,整理得:31=+xx ,故③正确. 故选C .考点:1.完全平方公式;2.分式的混合运算.学科~网 5.(2017四川省眉山市)下列运算结果正确的是( )A .8182-=-B .2(0.1)0.01--=C .222()2a b a b a b÷=D .326()m m m -=- 【答案】A . 【解析】试题分析:A .81822322-=-=-,正确,符合题意; B .21(0.1)0.01--==100,故此选项错误; C .232232428()2a b a a a b a b b b÷=⨯=,故此选项错误; D .325()m m m -=-,故此选项错误; 故选A .考点:1.二次根式的加减法;2.同底数幂的乘法;3.幂的乘方与积的乘方;4.分式的乘除法;5.负整数指数幂.6.(2017宁夏)如图,从边长为a 的大正方形中剪掉一个边长为b 的小正方形,将阴影部分沿虚线剪开,拼成右边的矩形.根据图形的变化过程写出的一个正确的等式是( )A .()2222a b a ab b -=-+ B .()2a ab a ab -=-C .()222a b a b -=- D .()()22a b a b a b -=+-【答案】D .点睛:本题考查了平方差公式的几何背景,正确用两种方法表示阴影部分的面积是关键. 考点:平方差公式的几何背景.7.(2017山东省淄博市)若a +b =3,227a b +=,则ab 等于( ) A .2 B .1 C .﹣2 D .﹣1 【答案】B . 【解析】试题分析:∵a +b =3,∴2()9a b +=,∴2229a ab b ++=,∵227a b +=,∴7+2ab =9,∴ab =1.故选B .考点:1.完全平方公式;2.整体代入.8.(2017南京)计算()3624101010⨯÷的结果是( )A . 310B . 710C . 810D .910 【答案】C . 【解析】试题分析:原式=664101010⨯÷=810.故选C .考点:1.同底数幂的除法;2.同底数幂的乘法;3.幂的乘方与积的乘方.9.(2017上海市)计算:22a a ⋅=. 【答案】32a .考点:单项式乘单项式. 二、填空题10.(2017内蒙古通辽市)若关于x 的二次三项式412++ax x 是完全平方式,则a 的值是 . 【答案】±1. 【解析】试题分析:中间一项为加上或减去x 和12积的2倍,故a =±1,解得a =±1,故答案为:±1. 点睛:本题考查了完全平方式的应用,两数的平方和,再加上或减去它们积的2倍,就构成了一个完全平方式.关键是注意积的2倍的符号,避免漏解. 考点:1.完全平方式;2.分类讨论.11.(2017广东省深圳市)阅读理解:引入新数i ,新数i 满足分配律,结合律,交换律,已知i 2=﹣1,那么(1+i )•(1﹣i )= . 【答案】2. 【解析】试题分析:由题意可知:原式=1﹣i 2=1﹣(﹣1)=2.故答案为:2. 考点:1.平方差公式;2.实数的运算;3.新定义.12.(2017江苏省徐州市)已知a +b =10,a ﹣b =8,则22a b -= . 【答案】80. 【解析】试题分析:∵(a +b )(a ﹣b )=22a b -,∴22a b -=10×8=80,故答案为:80. 考点:平方差公式.13.(2017江苏省泰州市)已知2m ﹣3n =﹣4,则代数式m (n ﹣4)﹣n (m ﹣6)的值为 . 【答案】8.考点:整式的混合运算—化简求值.14.(2017湖北省孝感市)如图所示,图1是一个边长为a 的正方形剪去一个边长为1的小正方形,图2是一个边长为(a ﹣1)的正方形,记图1,图2中阴影部分的面积分别为S 1,S 2,则12S S 可化简为 .【答案】11a a +-. 【解析】试题分析:12S S =221(1)a a --=2(1)(1)(1)a a a +--=11a a +-,故答案为:11a a +-.点睛:此题主要考查了平方公式的几何背景和分式的化简,关键是正确表示出阴影部分面积. 考点:平方差公式的几何背景.学科!网15.(2017贵州省六盘水市)计算:2017×1983= . 【答案】3999711. 【解析】试题分析:原式=(2000+17)(2000﹣17)=20002﹣172=4000000﹣289=3999711.故答案为:3999711. 考点:平方差公式.16.(2017贵州省黔南州)杨辉三角,又称贾宪三角,是二项式系数在三角形中的一种几何排列,如图,观察下面的杨辉三角:按照前面的规律,则(a +b )5= . 【答案】1a 5+5a 4b +10a 3b 2+10a 2b 3+5ab 4+1b 5. 【解析】点睛:本题考查了完全平方公式以及规律型中数字的变化,观察图形,找出二项式系数与杨辉三角之间的关系是解题的关键.考点:1.完全平方公式;2.规律型. 三、解答题17.(2017吉林省长春市)先化简,再求值:()223(21)21a a a a ++-+,其中a =2.【答案】32342a a a +--,36. 【解析】试题分析:原式利用单项式乘以多项式,以及完全平方公式化简,去括号合并得到最简结果,把a 的值代入计算即可求出值.试题解析:原式=32363242a a a a ++---=32342a a a +--,当a =2时,原式=24+16﹣2﹣2=36. 考点:1.整式的混合运算—化简求值;2.整式.学科#网18.(2017湖北省荆门市)先化简,再求值: ()()()2212132x x x +--+-,其中2x =【答案】225x + ,9. 【解析】试题分析:原式利用完全平方公式,多项式乘以多项式法则计算,去括号合并得到最简结果,把x 的值代入计算即可求出值.试题解析:原式=224412462x x x x ++--+-=225x + 当2x ==4+5=9.考点:整式的混合运算—化简求值.19.(2017贵州省贵阳市)下面是小颖化简整式的过程,仔细阅读后解答所提出的问题. 解:()()2212x x y x x +-++222212x xy x x x =+-+++ 第一步241xy x =++ 第二步(1)小颖的化简过程从第 步开始出现错误; (2)对此整式进行化简.【答案】(1)一;(2)2xy ﹣1. 【解析】考点:1.单项式乘多项式;2.完全平方公式.20.(2017河北省)发现 任意五个连续整数的平方和是5的倍数. 验证 (1)22222(1)0123-++++的结果是5的几倍?(2)设五个连续整数的中间一个为n ,写出它们的平方和,并说明是5的倍数. 延伸 任意三个连续整数的平方和被3整除余数是几呢?请写出理由. 【答案】(1)3;(2)见解析;延伸 2,理由见解析. 【解析】试题分析:(1)直接计算这个算式的值;(2)先用代数式表示出这几个连续整数的平方和,再化简,根据代数式的形式作出结论. 试题解析:(1)∵()2222210123-++++=1+0+1+4+9=15=5×3,∴结果是5的3倍. (2)()()()()()2222222211251052n n n n n n n -+-+++++=+=+. ∵n 为整数,∴这个和是5的倍数. 延伸 余数是2.理由:设中间的整数为n ,()()22221132n n n n -+++=+被3除余2.点睛:本题考查了因式分解的应用,完全平方公式,整式的加减运算,解题的关键是掌握合并同类项的法则并且能够正确运算.考点:1.因式分解的应用;2.完全平方公式;3.整式的加减.【2016年题组】一、选择题1.(2016吉林省)计算32()a -结果正确的是( )A .5a B .﹣5a C .﹣6a D .6a【答案】D . 【解析】考点:幂的乘方与积的乘方.2.(2016内蒙古呼伦贝尔市)化简32()()x x --,结果正确的是( ) A .6x - B .6x C .5x D .5x - 【答案】D . 【解析】试题分析:32()()x x --=5()x -=5x -.故选D .考点:同底数幂的乘法.3.(2016内蒙古包头市)下列计算结果正确的是( )A .233+=B 822=C .236(2)6a a -=-D .22(1)1a a +=+【答案】B . 【解析】试题分析:A .23不是同类二次根式,所以不能合并,所以A 错误; B 822=,所以B 正确; C .236(2)8a a -=-,所以C 错误; D .22(1)21a a a +=++,所以D 错误. 故选B .学科¥网考点:1.二次根式的乘除法;2.幂的乘方与积的乘方;3.完全平方公式. 4.(2016内蒙古呼和浩特市)下列运算正确的是( ) A .235a a a += B .23241(2)()162a a a -÷=- C .1133aa -=D .2222(233)3441a a a a a ÷=-+【答案】D . 【解析】考点:1.整式的除法;2.合并同类项;3.幂的乘方与积的乘方;4.负整数指数幂. 5.(2016云南省昆明市)下列运算正确的是( )A .22(3)9a a -=-B .248a a a ⋅= C 93=± D 382-=-【答案】D . 【解析】试题分析:A .22(3)69a a a -=-+,故错误; B .246a a a ⋅=,故错误; C 93=,故错误; D 382-=-,故正确. 故选D .考点:1.同底数幂的乘法;2.算术平方根;3.立方根;4.完全平方公式. 6.(2016云南省曲靖市)下列运算正确的是( )A .3223=B .632a a a ÷=C .235a a a += D .326(3)9a a =【答案】D . 【解析】考点:1.二次根式的加减法;2.合并同类项;3.幂的乘方与积的乘方;4.同底数幂的除法. 7.(2016内蒙古巴彦淖尔市)下列运算正确的是( )A .2222236x y xy x y -⋅=- B .22(2)(2)4x y x y x y --+=- C .322623x y x y xy ÷= D .32294(4)16x y x y = 【答案】C .【解析】试题分析:2232236x y xy x y -⋅=-,故选项A 错误;.22(2)(2)44x y x y x xy y --+=---,故选项B 错误;.322623x y x y xy ÷=,故选项C 正确;.32264(4)16x y x y =,故选项D 错误;.故选C .考点:整式的混合运算.8.(2016宁夏)下列计算正确的是( )A .a b ab +=B .224()a a -=-C .22(2)4a a -=-D .aa b b ÷=(a ≥0,b >0)【答案】D .【解析】考点:1.二次根式的混合运算;2.幂的乘方与积的乘方;3.完全平方公式.9.(2016安徽)计算102a a ÷(a ≠0)的结果是( )A .5aB .5-aC .8aD .8-a【答案】C .【解析】试题分析:102a a ÷=8a .故选C .考点:1.同底数幂的除法;2.负整数指数幂.学科%网10.(2016四川省乐山市)下列等式一定成立的是( )A .235m n mn +=B .326()=m mC . 236m m m ⋅=D .222()m n m n -=-【答案】B .【解析】试题分析:A .2m +3n 无法计算,故此选项错误;B .326()=m m ,正确;C .235m m m ⋅=,故此选项错误;D .222()2m n m mn n -=-+,故此选项错误.故选B .考点:1.合并同类项;2.同底数幂的乘法;3.幂的乘方与积的乘方;4.完全平方公式.11.(2016四川省凉山州)下列计算正确的是( )A .235a b ab +=B .2363(2)6a b a b -=-C =D .222()a b a b +=+ 【答案】C .【解析】考点:1.二次根式的加减法;2.合并同类项;3.幂的乘方与积的乘方;4.完全平方公式.12.(2016四川省巴中市)下列计算正确的是( )A .2222()a b a b =B .623a a a ÷=C .2224(3)6xy x y =D .725()()m m m -÷-=- 【答案】D .【解析】试题分析:A .积的乘方等于乘方的积,故A 错误;B .同底数幂的除法底数不变指数相减,故B 错误;C .积的乘方等于乘方的积,故C 错误;D .同底数幂的除法底数不变指数相减,故D 正确;故选D .学科…网考点:1.同底数幂的除法;2.幂的乘方与积的乘方.13.(2016四川省广安市)下列运算正确的是( )A .326(2)4a a -=-B 3=±C .236m m m ⋅=D .33323x x x +=【答案】D .【解析】试题分析:A .326(2)4a a -=,故本选项错误;B 3=,故本选项错误;C .235m m m ⋅=,故本选项错误;D .33323x x x +=,故本选项正确.故选D . 考点:1.幂的乘方与积的乘方;2.算术平方根;3.合并同类项;4.同底数幂的乘法.14.(2016四川省甘孜州)下列计算正确的是( )A .431x x -=B .2242x x x +=C .236()x x =D .23622x x x ⋅= 【答案】C .【解析】考点:1.单项式乘单项式;2.合并同类项;3.幂的乘方与积的乘方.15.(2016四川省眉山市)下列等式一定成立的是( )A .2510a a a ⋅=B a b a b +=C .3412()a a -=D 2a a =【答案】C .【解析】试题分析:A .257a a a ⋅=,所以A 错误;B a b +B 错误;C .3412()a a -=,所以C 正确;D 2a a =,所以D 错误.故选C .考点:1.同底数幂的乘法;2.二次根式的加减法;3.幂的乘方与积的乘方;4.二次根式的性质与化简.16.(2016四川省资阳市)下列运算正确的是( )A .426x x x +=B .236x x x ⋅=C .236()x x =D .222()x y x y -=- 【答案】C .【解析】考点:1.幂的乘方与积的乘方;2.合并同类项;3.同底数幂的乘法;4.因式分解-运用公式法.17.(2016山东省济南市)下列运算正确的是( )A .232a a a +=B .236a a a ⋅=C .326(2)4a a -= D .623a a a ÷= 【答案】C .【解析】试题分析:A .2a 与a 不是同类项,不能合并,故本选项错误;B .235a a a ⋅=,故本选项错误;C .326(2)4a a -=,故本选项正确;D .624a a a ÷=,故本选项错误;故选C .考点:1.同底数幂的除法;2.合并同类项;3.同底数幂的乘法;4.幂的乘方与积的乘方.18.(2016山东省聊城市)地球的体积约为1012立方千米,太阳的体积约为1.4×1018立方千米,地球的体积约是太阳体积的倍数是( )A .7.1×10﹣6B .7.1×10﹣7C .1.4×106D .1.4×107【答案】B .【解析】试题分析:∵地球的体积约为1012立方千米,太阳的体积约为1.4×1018立方千米,∴地球的体积约是太阳体积的倍数是:1012÷1.4×1018≈7.1×10﹣7.故选B .考点:整式的除法.19.(2016山东省青岛市)计算5322a a a -⋅)(的结果为( ) A .652a a - B .6a - C .654a a - D .63a -【答案】D .【解析】考点:1.幂的乘方与积的乘方;2.同底数幂的乘法.20.(2016山西省)下列运算正确的是( )A .239()24-=-B .236(3)9a a =C .3515525--÷= D 85032=- 【答案】D .【解析】试题分析:A .239()24-=,故此选项错误; B .236(3)27a a =,故此选项错误;C .355525--÷=,故此选项错误;D .850225232-=-=-,正确;故选D .学科&网考点:1.幂的乘方与积的乘方;2.有理数的乘方;3.算术平方根;4.负整数指数幂.21.(2016广东省广州市)下列计算正确的是( )A .22x x y y =(0y ≠)B .2122xy xy y÷=(0y ≠) C .235x y xy +=(x ≥0,y ≥0) D .()2326xy x y =【答案】D .【解析】 试题分析:A .22x y无法化简,故此选项错误; B 23122xy xy y÷=,故此选项错误; C .23x y +,无法计算,故此选项错误;D .()2326xy x y =,正确.故选D .考点:1.二次根式的加减法;2.幂的乘方与积的乘方;3.分式的乘除法.22.(2016广西来宾市)计算(2x ﹣1)(1﹣2x )结果正确的是( )A .241x -B .214x -C .2441x x -+-D .2441x x -+【答案】C .【解析】考点:完全平方公式.23.(2016河北省)计算正确的是( )A .0(5)0-=B .235x x x +=x 2+x 3=x 5C .2335()ab a b = D .2122a a a -⋅= 【答案】D .【解析】试题分析:A .0(5)1-=,故错误;B .23x x +,不是同类项不能合并,故错误;C .2336()ab a b =,故错误;D .2122a aa -⋅=,正确. 故选D .考点:1.单项式乘单项式;2.幂的乘方与积的乘方;3.零指数幂;4.负整数指数幂.24.(2016江苏省南京市)下列计算中,结果是6a 的是( )A .24a a +B .23a a ⋅C .122a a ÷D .23()a 【答案】D .【解析】试题分析:∵2a 与4a 不是同类项,不能合并,∴选项A 的结果不是6a ;∵235a a a ⋅=,∴选项B 的结果不是6a ;∵12210a a a ÷=,∴选项C 的结果不是6a ;∵236()a a =,∴选项D 的结果是6a . 故选D .考点:1.同底数幂的除法;2.合并同类项;3.同底数幂的乘法;4.幂的乘方与积的乘方;5.推理填空题.25.(2016浙江省杭州市)下列各式变形中,正确的是( )A .236x x x ⋅=B x =C .21()1x x x x -÷=-D .22111()24x x x -+=-+【答案】B .【解析】考点:1.二次根式的性质与化简;2.同底数幂的乘法;3.多项式乘多项式;4.分式的混合运算.26.(2016浙江省杭州市)设a ,b 是实数,定义@的一种运算如下:()()22@a b a b a b =+--,则下列结论: ①若@0a b =,则a =0或b =0;②()@@@a b c a b a c +=+;③不存在实数a ,b ,满足22@5a b a b =+;④设a ,b 是矩形的长和宽,若矩形的周长固定,则当a =b 时,@a b 最大.其中正确的是( )A .②③④B .①③④C .①②④D .①②③【答案】C .【解析】试题分析:由分析可得:对于①若()()22@40a b a b a b ab =+--==,则a =0或b =0正确;对于②()()()22@44a b c a b c a b c ab ac +=++---=+而@@44a b a c ab ac +=+.故正确;对于③ 22@5a b a b =+,由()()2222@45a b a b a b ab a b =+--==+,可得由22450a ab b -+=化简:()2220a b b -+=解出存在实数a ,b ,满足22@5a b a b =+;对于④a ,b 是矩形的长和宽,若矩形的周长固定,则当a =b 时, @a b 最大.正确.故选C .考点:1.完全平方公式;2.新定义.27.(2016湖北省咸宁市)下列运算正确的是( )A 633=B 2(3)3-=-C .22a a a ⋅=D .326(2)4a a =【答案】D .【解析】考点:1.二次根式的加减法;2.同底数幂的乘法;3.幂的乘方与积的乘方;4.二次根式的性质与化简.28.(2016湖北省武汉市)运用乘法公式计算2(3)x +的结果是( )A .29x +B .269x x -+C .269x x ++D .239x x ++【答案】C .【解析】试题分析:2(3)x +=269x x ++,故选C .考点:完全平方公式.29.(2016福建省南平市)下列运算正确的是( )A .3x +2y =5xyB .235()m m =C .2(1)(1)1a a a +-=-D .22b b += 【答案】C .【解析】试题分析:A .3x +2y ≠5xy ,此选项错误;B .236()m m =,此选项错误;C .2(1)(1)1a a a +-=-,此选项正确;D .22b b+≠,此选项错误; 故选C .学科&网考点:1.平方差公式;2.合并同类项;3.幂的乘方与积的乘方;4.约分.30.(2016贵州省铜仁市)单项式22r π的系数是( )A .12B .πC .2D .2π【答案】D .【解析】考点:单项式.31.(2016湖南省怀化市)下列计算正确的是( )A .222()x y x y +=+B .222()2x y x xy y -=--C .2(1)(1)1x x x +-=-D .22(1)1x x -=-【答案】C .【解析】试题分析:A .222()2x y x y xy +=++,故此选项错误;B .(222()2x y x xy y -=-+,故此选项错误;C .(2(1)(1)1x x x +-=-,正确;D .22(1)21x x x -=-+,故此选项错误;故选C .考点:1.平方差公式;2.完全平方公式.32.(2016重庆市)计算23()x y 的结果是( )A .63x yB .53x yC .5x yD .23x y【答案】A .【解析】考点:幂的乘方与积的乘方.二、填空题33.(2016上海市)计算:计算:3a a ÷=__________.【答案】2a .【解析】试题分析:3a a ÷=2a .故答案为:2a .考点:同底数幂的除法.34.(2016四川省南充市)如果221()x mx x n ++=+,且m >0,则n 的值是 .【答案】1.【解析】试题分析:∵221(1)x mx x ++=± =2()x n +,∴m =±2,n =±1,∵m >0,∴m =2,∴n =1,故答案为:1. 考点:完全平方式.35.(2016四川省巴中市)若a +b =3,ab =2,则2()a b -= .【答案】1.【解析】试题分析:将a +b =3平方得:222()29a b a b ab +=++=,把ab =2代入得:22a b +=5,则2()a b -=222a ab b -+=5﹣4=1.故答案为:1.考点:完全平方公式.36.(2016四川省广安市)我国南宋数学家杨辉用三角形解释二项和的乘方规律,称之为“杨辉三角”.这个三角形给出了()n a b +(n =1,2,3,4…)的展开式的系数规律(按a 的次数由大到小的顺序): 请依据上述规律,写出20162()x x -展开式中含2014x 项的系数是 .【答案】﹣4032.【解析】考点:1.整式的混合运算;2.阅读型;3.规律型.37.(2016四川省雅安市)已知8a b +=,224a b =,则222a b ab +-= . 【答案】28或36.【解析】试题分析:∵224a b =,∴ab =±2.①当a +b =8,ab =2时,222a b ab +-=2()22a b ab +-=642﹣2×2=28; ②当a +b =8,ab =﹣2时,222a b ab +-=2()22a b ab +-=642﹣2×(﹣2)=36; 故答案为:28或36.学科*网考点:1.完全平方公式;2.分类讨论.38.(2016江苏省常州市)已知x 、y 满足248xy⋅=,当0≤x ≤1时,y 的取值范围是 . 【答案】1≤y ≤32. 【解析】试题分析:∵248xy⋅=,∴23222x y ⋅=,即2322x y +=,∴x +2y =3,∴y =32x -,∵0≤x ≤1,∴1≤y ≤32. 故答案为:1≤y ≤32. 考点:1.解一元一次不等式组;2.同底数幂的乘法;3.幂的乘方与积的乘方. 39.(2016江苏省淮安市)计算:3a ﹣(2a ﹣b )= . 【答案】a +b . 【解析】试题分析:3a ﹣(2a ﹣b )=3a ﹣2a +b =a +b .故答案为:a +b . 考点:整式的加减.40.(2016河北省)若mn =m +3,则2mn +3m ﹣5mn +10= . 【答案】1. 【解析】考点:整式的加减—化简求值.41.(2016福建省漳州市)一个矩形的面积为a a 22+,若一边长为a ,则另一边长为___________.【答案】a +2. 【解析】试题分析:∵(a a 22+)÷a =a +2,∴另一边长为a +2,故答案为:a +2.考点:整式的除法.42.(2016青海省西宁市)已知250x x +-=,则代数式2(1)(3)(2)(2)x x x x x ---++-的值为 .【答案】2. 【解析】试题分析:原式=2222134x x x x x -+-++-=23x x +-,因为250x x +-=,所以25x x +=,所以原式=5﹣3=2.故答案为:2.考点:1.整式的混合运算—化简求值;2.整体思想. 43.(2016黑龙江省大庆市)若2ma =,8na =,则m na += .【答案】16. 【解析】试题分析:∵2ma =,8na =,∴m n a +=m na a ⋅=16,故答案为:16.考点:同底数幂的乘法. 三、解答题44.(2016山东省济南市)(1)先化简再求值:a (1﹣4a )+(2a +1)(2a ﹣1),其中a =4.(2)解不等式组:217321x x x +≤⎧⎨+≥+⎩①②.【答案】(1)a ﹣1,3;(2)﹣2≤x ≤3. 【解析】 (2)217321x x x +≤⎧⎨+≥+⎩①②,解不等式①得:x ≤3,解不等式②得:x ≥﹣2,∴不等式组的解集为﹣2≤x ≤3.考点:1.整式的混合运算—化简求值;2.解一元一次不等式组.45.(2016山东省济宁市)先化简,再求值:2(2)()a a b a b -++,其中a =﹣1,b. 【答案】222a b +,4. 【解析】试题分析:原式利用单项式乘以多项式,以及完全平方公式化简,去括号合并得到最简结果,把a 与b 的值代入计算即可求出值.试题解析:原式=22222a ab a ab b -+++=222a b + 当a =﹣1,b =2时,原式=2+2=4.考点:整式的混合运算—化简求值.学.科.网46.(2016山东省菏泽市)已知4x =3y ,求代数式22(2)()()2x y x y x y y ---+-的值. 【答案】0. 【解析】考点:整式的混合运算—化简求值.47.(2016广东省茂名市)先化简,再求值:2(2)(1)x x x -++,其中x =1. 【答案】221x +,3. 【解析】试题分析:原式利用单项式乘以多项式,完全平方公式化简,去括号合并得到最简结果,把x 的值代入计算即可求出值.试题解析:原式=22221x x x x -+++=221x +; 当x =1时,原式=2+1=3.考点:整式的混合运算—化简求值.48.(2016吉林省)先化简,再求值:(x +2)(x ﹣2)+x (4﹣x ),其中x =14. 【答案】4x ﹣4,-3. 【解析】试题分析:根据平方差公式和单项式乘以多项式,然后再合并同类项即可对题目中的式子化简,然后将x =14代入化简后的式子,即可求得原式的值. 试题解析:原式=2244x x x -+-=4x ﹣4 当x =14时,原式=1444⨯-=1-4=-3. 考点:整式的混合运算—化简求值.49.(2016吉林省长春市)先化简,再求值:(a +2)(a ﹣2)+a (4﹣a ),其中a =14. 【答案】44a -,3-. 【解析】试题分析:根据平方差公式和单项式乘以多项式可以对原式化简,然后将a =14代入化简后的式子,即可解答本题.试题解析:原式=2244a a a -+-=44a -; 当a =14时,原式=1444⨯-=14-=3-. 考点:整式的混合运算—化简求值.50.(2016浙江省宁波市)先化简,再求值:)3()1)(1(x x x x -+-+,其中x =2. 【答案】3x ﹣1,5. 【解析】考点:整式的混合运算—化简求值.51.(2016浙江省温州市)(1)计算:2020(3)(21)+---.(2)化简:(2+m )(2﹣m )+m (m ﹣1). 【答案】(1)258+;(2)4﹣m . 【解析】试题分析:(1)直接利用二次根式的性质结合零指数幂的性质分别分析得出答案; (2)直接利用平方差公式计算,进而去括号得出答案. 试题解析:(1)原式=2591-=58; (2)原式=224m m m -+-=4﹣m .考点:1.实数的运算;2.单项式乘多项式;3.平方差公式;4.零指数幂.52.(2016湖北省襄阳市)先化简,再求值:(2x +1)(2x ﹣1)﹣(x +1)(3x ﹣2),其中x 21.【答案】21x x -+,532-【解析】试题分析:首先利用整式乘法运算法则化简,进而去括号合并同类项,再将已知代入求出答案.试题解析:原式=2241(3322)x x x x --+--=224132x x x ---+=21x x -+把x =21-代入得:原式=2(21)(21)1---+=32222--+=532-.考点:整式的混合运算—化简求值.☞考点归纳归纳 1:整式的有关概念 基础知识归纳:1.整式:单项式与多项式统称整式.(1)单项式:由数与字母的乘积组成的代数式叫做单项式(单独一个数或字母也是单项式).单项式中的数字因数叫做这个单项式的系数;单项式中的所有字母的指数的和叫做这个单项式的次数.(2) 多项式:几个单项式的和叫做多项式.在多项式中,每个单项式叫做多项式的项,其中次数最高的项的次数叫做这个多项式的次数.不含字母的项叫做常数项. 2. 同类项:所含字母相同并且相同字母的指数也分别相等的项叫做同类项.基本方法归纳:要准确理解和辨认单项式的次数、系数;判断是否为同类项时,关键要看所含的字母是否相同,相同字母的指数是否相同. 注意问题归纳:1、单项式的次数是指单项式中所有字母指数的和,单独一个非0数的次数是0;2、多项式的次数是指次数最高的项的次数.3、同类项一定要先看所含字母是否相同,然后再看相同字母的指数是否相同.【例1】(2016云南省曲靖市)单项式13m xy -与4n xy 的和是单项式,则m n 的值是( )A .3B .6C .8D .9 【答案】D .【分析】根据已知得出两单项式是同类项,得出m ﹣1=1,n =3,求出m 、n 后代入即可. 【解析】∵13m xy -与4n xy 的和是单项式,∴m ﹣1=1,n =3,∴m =2,∴n m =32=9.故选D .【点评】本题考查了合并同类项和负整数指数幂的应用,关键是求出m 、n 的值.考点:1.合并同类项;2.单项式.归纳 2:幂的运算 基础知识归纳:(1)同底数幂相乘:a m ·a n =a m +n (m ,n 都是整数,a ≠0) (2)幂的乘方:(a m )n =a mn (m ,n 都是整数,a ≠0) (3)积的乘方:(ab )n =a n ·b n (n 是整数,a ≠0,b ≠0) (4)同底数幂相除:a m ÷a n =a m -n (m ,n 都是整数,a ≠0)注意问题归纳:(1)幂的运算法则是进行整式乘除法的基础,要熟练掌握,解题时要明确运算的类型,正确运用法则;(2)在运算的过程中,一定要注意指数、系数和符号的处理. 【例2】(2017吉林省)下列计算正确的是( )A .235a a a +=B .236a a a ⋅= C .236()a a = D .22()ab ab =【答案】C .【分析】根据整式的运算法则即可求出答案.【点评】本题考查整式的运算,解题的关键是熟练运用整式的运算法则,本题属于基础题型. 考点:1.幂的乘方与积的乘方;2.合并同类项;3.同底数幂的乘法.归纳 3:整式的运算 基础知识归纳:1.整式的加减法:实质上就是合并同类项 1.整式乘法①单项式乘多项式:m (a +b )=ma +mb ; ②多项式乘多项式:(a +b )(c +d )=ac +ad +bc +bd③乘法公式:平方差公式:(a +b )(a -b )=a 2-b 2;完全平方公式:(a ±b )2=a 2±2ab +b 2. 3.整式除法:单项式与单项式相除,把系数、同底数幂分别相除,作为商的因式,对于只在被除式里含有的字母,连同它的指数作为商的一个因式.多项式除以单项式,将这个多项式的每一项分别除以这个单项式,然后把所得的商相加.注意问题归纳:注意整式的加减,实质上就是合并同类项,有括号的,先去括号,只要算式中没有同类项,就是最后的结果;多项式乘多项式的运算中要做到不重不漏,应用乘法公式进行简便计算,另外去括号时,要注意符号的变化,最后把所得式子化简,即合并同类项,再代值计算.【例3】(2017浙江省台州市)下列计算正确的是( )A .()()2222a a a +-=-B .()()2122a a a a +-=+-C .()222a b a b +=+ D .()2222a b a ab b -=-+ 【答案】D .【分析】各项计算得到结果,即可作出判断.【点评】此题考查了整式的混合运算,熟练掌握运算法则是解本题的关键. 考点:整式的混合运算.【例4】(2017河南省)先化简,再求值:2(2)()()5()x y x y x y x x y ++-+--,其中21x =+,21y =-.【答案】9xy ,9.【分析】首先化简原式,然后把21x =+,21y =-代入化简后的算式,求出算式的值是多少即可【点评】此题主要考查了整式的混合运算﹣化简求值问题,要熟练掌握,解答此题的关键是要明确:先按运算顺序把整式化简,再把对应字母的值代入求整式的值. 考点:整式的混合运算—化简求值.【例5】(2017贵州省黔东南州)我国古代数学的许多创新和发展都位居世界前列,如南宋数学家杨辉(约13世纪)所著的《详解九章算术》一书中,用如图的三角形解释二项和(a +b )n 的展开式的各项系数,此三角形称为“杨辉三角”.根据“杨辉三角”请计算(a +b )20的展开式中第三项的系数为( ) A .2017 B .2016 C .191 D .190 【答案】D .【分析】根据图形中的规律即可求出(a +b )20的展开式中第三项的系数; 【解析】找规律发现(a +b )3的第三项系数为3=1+2; (a +b )4的第三项系数为6=1+2+3; (a +b )5的第三项系数为10=1+2+3+4;不难发现(a +b )n 的第三项系数为1+2+3+…+(n ﹣2)+(n ﹣1),∴(a +b )20第三项系数为1+2+3+…+20=190.故选D .【点评】此题考查了通过观察、分析、归纳发现其中的规律,并应用发现的规律解决问题的能力. 考点:1.完全平方公式;2.规律型;3.综合题.☞1年模拟一、选择题1.下列运算正确的是( )A .325()x y x y +=+B .34x x x +=C . 236x x x = D .236()x x =【答案】D . 【解析】考点:1.幂的乘方与积的乘方;2.合并同类项;3.同底数幂的乘法. 2.下列计算正确的是( ) A .232358x y xy x y +=B .222()x y x y+=+C .2(2)4x x x -÷=D .1y x x y y x+=-- 【答案】C . 【解析】 试题分析:A .23x y 与5xy 不是同类项,故A 不正确; B .原式=222x xy y ++ ,故B 不正确; C .原式=24x x ÷=4x ,故C 正确; D .原式=1y x x y x y-=---,故D 不正确; 故选C .考点:1.分式的加减法;2.整式的混合运算. 3.下列运算正确的是( )A .235+=B .32361126xy x y ⎛⎫-=- ⎪⎝⎭C .523()()x x x -÷-=D .31864324+-=-【答案】D . 【解析】考点:1.同底数幂的除法;2.算术平方根;3.立方根;4.幂的乘方与积的乘方. 4.下列计算正确的是( )A .235a b ab +=B 366=±C .22122a b ab a ÷= D .()323526ab a b =【答案】C . 【解析】试题分析:A .2a 与3b 不是同类项,故A 不正确; B .原式=6,故B 不正确;C .22122a b ab a ÷=,正确;D .原式=368a b ,故D 不正确; 故选C .考点:1.整式的除法;2.算术平方根;3.合并同类项;4.幂的乘方与积的乘方. 5.下列运算正确的是( ) A .222()x y x y -=- B 3223=C =D .﹣(﹣a +1)=a +1 【答案】B . 【解析】考点:1.二次根式的加减法;2.实数的性质;3.去括号与添括号;4.完全平方公式. 6.下列运算正确的是( )A .2222a a a =B .224a a a +=C .22(12)124a a a +=++ D .2(1)(1)1a a a -++=- 【答案】D . 【解析】试题分析:A .224a a a =,此选项错误; B .2222a a a +=,此选项错误;C .22(12)144a a a +=++,此选项错误; D .2(1)(1)1a a a -++=-,此选项正确; 故选D .考点:1.平方差公式;2.合并同类项;3.同底数幂的乘法;4.完全平方公式. 7.计算()322323aa a a a -+-÷,结果是( )A .52a a - B .512a a- C .5a D .6a 【答案】D . 【解析】试题分析:原式=655a a a +-=6a .故选D .考点:1.幂的乘方与积的乘方;2.同底数幂的乘法;3.负整数指数幂. 8.计算6236(2)m m ÷-的结果为( )A .﹣mB .﹣1C .43D .43- 【答案】D . 【解析】考点:1.整式的除法;2.幂的乘方与积的乘方.9.若a ﹣b =2,b ﹣c =﹣3,则a ﹣c 等于( )A .1B .﹣1C .5D .﹣5【答案】B .【解析】试题分析:∵a ﹣b =2,b ﹣c =﹣3,∴a ﹣c =(a ﹣b )+(b ﹣c )=2﹣3=﹣1,故选B .考点:1.整式的加减;2.整体思想.二、填空题10.计算:310(5)ab ab ÷-= .【答案】22b -.【解析】试题分析:原式=22b -,故答案为:22b -.考点:整式的除法.11.213x y 是 次单项式. 【答案】3.【解析】 试题分析:213x y 是3次单项式.故答案为:3. 考点:单项式.12.计算:2(x ﹣y )+3y = .【答案】2x +y .【解析】试题分析:原式=2x ﹣2y +3y =2x +y ,故答案为:2x +y .考点:1.整式的加减;2.整式.13.计算(a ﹣2)(a +2)=.【答案】24a -.【解析】考点:平方差公式.14.如图,从边长为(a +3)的正方形纸片中剪去一个边长为3的正方形,剩余部分沿虚线又剪拼成一个如图所示的长方形(不重叠无缝隙),则拼成的长方形的另一边长是 .【答案】a +6.【解析】试题分析:拼成的长方形的面积=(a +3)2﹣32=(a +3+3)(a +3﹣3)=a (a +6),∵拼成的长方形一边长为a ,∴另一边长是a +6.故答案为:a +6.考点:1.平方差公式的几何背景;2.操作型.15.若代数式225x kx ++是一个完全平方式,则k = .【答案】±10.【解析】试题分析:∵代数式225x kx ++是一个完全平方式,∴k =±10,故答案为:±10.考点:完全平方式.三、解答题 16.(1)计算:321(2)()8sin 453--+. (2)分解因式:22(2)(2)y x x y +-+.【答案】(1)-1;(2)3()()x y x y +- .【解析】试题分析:(1)原式=289222-+-1﹣2=-1; (2)原式=[(2)(2)][(2)(2)]y x x y y x x y ++++-+ =3()()x y x y +-.考点:1.实数的运算;2.完全平方公式;3.平方差公式;4.负整数指数幂;5.特殊角的三角函数值.17.先化简,再求值:(x +2)(x ﹣2)﹣x (x ﹣1),其中x =﹣2.。
第3节分式-中考数学一轮知识复习PPT课件
3.通分:
(1)定义:把几个异分母的分式化为同___分__母__分式的过程叫做 分式的通分.通分的关键是确定各分母的_最__简__公___分__母__.
(2)确定最简公分母的方法: ①取各分母系数的最小公倍数,作为最简公分母的系数;取 各分母所有因式的最高次幂的积,作为最简公分母的因式. ②若分母是多项式,则应先把各个分母分解因式,再确定最 简公分母. 温馨提示
2.分式有、无意义和值为 0 的条件: 条件
分式AB 有意义
__B__≠_0__
分式AB 无意义
__B_=__0__
分式AB 的值为 0
__A_=__0__且 B≠0
3.最简分式:分子与分母没有_公__因__式__的分式.
分式的基本性质
1.基本性质:分式的分子与分母都_乘__或___除__以___同一个不等
B.缩小 10 倍
C.是原来的23
D.不变
☞命题点3 分式的运算 A
1 x+1
8.(2020·随州)x2-2 4
1 ÷x2-2x
的计
算结果为( B )
A.x+x 2
B.x+2x2
C.x-2x2
2 Dx(x+2)
☞命题点4 分式的化简及求值(8年7考)
9.(2018·广东 18 题 6 分)先化简,再求值:
6.(2020·花都区一模)计算:x+x 1 +x+1 1 =___1__.
7.(12020·黄冈)计算:x2-y y2 ÷1-x+x y 的结果 是_____x_-__y____.
8.(2020·东莞一模)先化简:1+a2-1 1
a ÷a-1
,
请在-1,0,1,2,3 当中选一个合适的数代入求值.
3
人教版中考数学考点系统复习 第一章 数与式 第三节 代数式、整式与因式分解
【考情分析】湖北近 6 年主要以选择、填空题的形式考查整式的概念、 幂的运算、乘法公式、整式的混合运算、因式分解、代数式的化简求值 等.代数式的化简求值以解答题的形式出现.难度小,分值一般 3-8 分.
命题点 1:代数式及整式的相关概念(近 3 年考查 5 次) 1.(2018·荆州第 1 题 3 分)下列代数式中,整式为 A.x+1
ห้องสมุดไป่ตู้
命题点 4:因式分解(近 3 年考查 15 次)
11.因式分解:
(1)(2021·恩施州第 13 题 3 分) a-ax2=aa((11++xx))((1-1-x)x);
(2)(2021·仙桃第 11 题 3 分) 5x4-5x2=55xx22((xx++11))(x-(x1-) 1);
(3)(2021·荆门第 12 题 3 分) x3+2x2-3x=xx((xx--11))(x(+x+3)3);
当 a= 5,b= 3时, 原式=( 5)2-2×( 3)2=5-6=-1.
10.(2022·黄孝咸第 7 题 6 分)先化简,再求值:4xy-2xy-(-3xy), 其中 x=2,y=-1. 解:4xy-2xy-(-3xy) =4xy-2xy+3xy =5xy, 当 x=2,y=-1 时,原式=5×2×(-1)=-10.
(4)(2022·恩施第 14 题 3 分) a3-6a2+9a=aa((aa--3)32 )2.
( B)
5.(2022·荆州第 1 题 3 分)化简 a-2a 的结果是 A.-a B.a C.3a D.0
( A)
6.(2022·黄孝咸第 5 题 3 分)下列计算中正确的是 A.a2·a4=a8 B.(-2a2)3=-6a6 C.a4÷a=a3 D.2a+3a=5a2
2017年重庆市中考数学试卷(含答案解析)
绝密★启用前重庆市2017年初中毕业生学业水平暨普通高中招生考试(A 卷)数 学本试卷满分150分,考试时间120分钟.参考公式:抛物线2(0)y ax bx c a =++≠的顶点坐标为24(,)24b ac b a a --,对称轴为2b x a=-. 第Ⅰ卷(选择题 共48分)一、选择题(本大题共12小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的) 1.在实数3-,2,0,4-中,最大的数是( ) A .3- B .2C .0D .4- 2.下列图形中是轴对称图形的是( )AB CD3.计算62x x ÷正确的是( ) A .3 B .3x C .4x D .8x 4.下列调查中,最适合采用全面调查(普查)的方式的是( )A .对重庆市初中学生每天阅读时间的调查B .对端午节期间市场上粽子质量情况的调查C .对某批次手机的防水功能的调查D .对某校九年级3班学生肺活量情况的调查 5.1的值应在( )A .3和4之间B .4和5之间C .5和6之间D .6和7之间 6.若13x =-,4y =,则代数式33x y +-的值为()…①②③④-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------________________ _____________A .6-B .0C .2D .6 7.要使分式43x -有意义,x 应满足的条件是( )A .3x >B .3x =C .3x <D .3x ≠ 8.若ABC DEF △∽△,相似比为3:2,则对应高的比为( )A .3:2B .3:5C .9:4D .4:99.如图,矩形ABCD 的边1AB =,BE 平分ABC ∠,交AD 于点E .若点E 是AD 的中点,以点B 为圆心,BE 长为半径画弧,交BC 于点F ,则图中阴影部分的面积是 ( )A .π24-B .3π24- C .π28-D .3π28- 10.下列图形都是由同样大小的菱形按照一定规律所组成的,其中第①个图形中一共有3个菱形,第②个图形中一共有7个菱形,第③个图形中一共有13个菱形,……,按此规律排列下去,第⑨个图形中菱形的个数为( ) A .73B .81C .91D .10911. 如图,小王在长江边某瞭望台D 处,测得江面上的渔船A 的俯角为40,若3DE =米,2CE =米,CE 平行于江面AB ,迎水坡BC 的坡度1:0.75i =,坡长10BC =米,则此时AB 的长约为 ( )(参考数据:sin 400.64≈,cos400.77≈,tan 400.84≈) A .5.1米 B .6.3米 C .7.1米 D .9.2米12.若数a 使关于x 的分式方程2411ax x+=--的解为正数,且使关于y 的不等式组21,322()0y yy a +⎧-⎪⎨⎪-⎩>≤的解集为2y -<,则符合条件的所有整数a 的和为( )A .10B .12C .14D .16第Ⅱ卷(非选择题 共102分)二、填空题(本大题共6小题,每小题4分,共24分.把答案填写在题中的横线上)13.“渝新欧”国际铁路联运大通道全长超过11000千米,成为服务“一带一路”的大动脉之一.将数11000用科学记数法表示为 . 14.计算:2|3|(1)-+-= . 15.如图,BC 是O 的直径,点A 在圆上,连接AO ,AC ,64AOB ∠=,则ACB ∠=度.16.某班体育委员对本班学生一周锻炼时间(单位:小时)进行了统计,绘制了如图所示的折线统计图,则该班这些学生一周锻炼时间的中位数是 小时.A ,B 两地出发,17.A ,B 两地之间的路程为2380米,甲、乙两人分别从相向而行.已知甲先出发5分钟后,乙才出发.他们两人在A ,B 之间的C 地相遇,相遇后,甲立即返回A 地,乙继续向A 地前行.甲到达A 地时停止行走,乙到达A 地时也停止行走.在整个行走过程中,甲、乙两人(米)与甲出发的均保持各自的速度匀速行走.甲、乙两人相距的路程y 时间x (分钟)之间的关系如图所示,则乙到达A 地时,甲与A 地相距的路程是米.18.如图,正方形ABCD 中,4AD =,点E 是对角线AC 上一点,连接DE ,过点E 作EF ED ⊥,交AB 于点F ,连接DF ,交AC 于点G ,将EFG△沿EF 翻折,得到EFM △,连接DM ,交EF 于点N .若点F 是AB 边的中点,则EMN △的周长是 .三、解答题(本大题共8小题,共78分.解答应写出文字说明、证明过程或演算步骤)19.(本小题满分8分)如图,AB CD ∥,点E 是CD 上一点,42AEC ∠=,EF 平分AED ∠交AB 于点F .求AFE ∠的度数.20.(本小题满分8分)重庆某中学组织七、八、九年级学生参加“直辖20年,点赞新重庆”作文比赛.该校将收到的参赛作文进行分年级统计,绘制了如图1和图2两幅不完整的统计图.根据图中提供的信息完成以下问题.图1 图2(1)扇形统计图中九年级参赛作文篇数对应的圆心角是 度,并补全条形统计图;(2)经过评审,全校有4篇作文荣获特等奖,其中有一篇来自七年级,学校准备从特等奖作文中任选两篇刊登在校刊上,请利用画树状图或列表的方法求出七年级特等奖作文被选登在校刊上的概率.21.(本小题满分10分,每题5分) 计算: (1)2(2)()x x y x y --+;(2)2321(2)22a a a a a -++-÷++.22.(本小题满分10分)如图,在平面直角坐标系中,一次函数(0)y mx n m =+≠的图象与反比例函数(0)ky k x=≠的图象交于第一、三象限内的A ,B 两点,与y 轴交于点C .过点B 作BM x ⊥轴,垂足为M ,BM OM =,OB =,点A 的纵坐标为4.(1)求该反比例函数和一次函数的解析式; (2)连接MC ,求四边形MBOC 的面积.23.(本小题满分10分)某地大力发展经济作物,其中果树种植已初具规模.2017年受气候、雨水等因素的影响,樱桃较2016年有小幅度的减产,而枇杷有所增产.(1)该地某果农2017年收获樱桃和枇杷共400千克,其中枇杷的产量不超过樱桃产量的7倍,求该果农2017年收获樱桃至少多少千克?(2)该果农把2017年收获的樱桃、枇杷两种水果的一部分运往市场销售.该果农2016年樱桃的市场销售量为100千克,销售均价为30元/千克,2017年樱桃的市场销售量比2016年减少了m %,销售均价与2016年相同;该果农2016年枇杷的市场销售量为200千克,销售均价为20元/千克,2017年枇杷的市场销售量比2016年增加了2m %,但销售均价比2016年减少了m %.该果农2017年运往市场销售的这部分樱桃和枇杷的销售总金额与他2016年樱桃和枇杷的市场销售总金额相同,求m 的值.24.(本小题满分10分)在ABM △中,45ABM ∠=,AM BM ⊥,垂足为M .点C 是BM 的延长线上一点,连接AC .图1图2(1)如图1,若AB =5BC =,求AC 的长;(2)如图2,点D 是线段AM 上一点,MD MC =,点E 是ABC △外一点,EC AC =,连接ED 并延长交BC 于点F ,且点F 是线段BC 的中点.求证:BDF CEF ∠=∠.-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------25.(本小题满分10分)对任意一个三位数n ,如果n 满足各数位上的数字互不相同,且都不为零,那么称这个数为“相异数”.将一个“相异数”任意两个数位上的数字对调后可以得到三个不同的新三位数,把这三个新三位数的和与111的商记为()F n .例如123n =,对调百位与十位上的数字得到213,对调百位与个位上的数字得到321,对调十位与个位上的数字得到132,这三个新三位数的和为213321132666++=,6661116÷=,所以(123)6F =.(1)计算:(243)F ,(617)F ;(2)若s ,t 都是“相异数”,其中10032s x =+,150t y =+,(19x ≤≤,19y ≤≤,x ,y 都是正整数),规定:()()F s k F t =.当()()18F s F t +=时,求k 的最大值.26.(本小题满分12分)如图,在平面直角坐标系中,抛物线2y x =x 轴交于A ,B 两点(点A 在点B 的左侧),与y 轴交于点C ,对称轴与x 轴交于点D ,点(4,)E n 在抛物线上.图1图2备用图(1)求直线AE 的解析式;(2)点P 为直线CE 下方抛物线上的一点,连接PC ,PE .当PCE △的面积最大时,连接CD ,CB ,点K 是线段CB 的中点,点M 是CP 上一点,点N 是CD 上的一点,求KM MN NK ++的最小值; (3)点G 是线段CE 的中点.将抛物线2=y x x 轴正方向平移得到新抛物线y ',y '经过点D ,y '的顶点为点F .在新抛物线y '的对称轴上,是否存在点Q ,使得FGQ △为等腰三角形?若存在,直接写出点Q 的坐标;若不存在,请说明理由.重庆市2017年初中毕业生学业水平暨普通高中招生考试(A 卷)数学答案解析第Ⅰ卷一、选择题 1.【答案】B【解析】4302<-<<∵-,∴四个实数中,最大的实数是2.故选:B. 【提示】根据正数大于0,0大于负数,正数大于负数,比较即可. 【考点】实数大小比较 2.【答案】A【解析】A.是轴对称图形,故此选项符合题意;B.不是轴对称图形,故此选项不合题意;C.不是轴对称图形,故此选项不合题意;D.不是轴对称图形,故此选项不合题意;故选:A. 【提示】根据轴对称图形的概念求解. 【考点】轴对称图形 3.【答案】C【解析】62624x x x x -÷==故选:C.∠A︒tan tan40⊥,交DC于P,交AB于Q,连接BE,【解析】解法一:如图1,过E作PQ DC解法二:如图3,过G作GK AD⊥于K,作GR AB⊥于R,AD KG ADAF GR AF=2DG hGF h=,DNF MNFS S=其它解法同解法一,可得:解法三:如图4,过E 作EP AP EQ AD ⊥⊥,,100203545--=,补全条形统计图如图所示:2222121(1)2(1)1a a a a a a a a +-++⎤==⎥-+--⎦. )先将括号里的进行通分,再将除法化为乘法,分解因式后进行约分. 【考点】分式的混合运算,单项式乘多项式,完全平方公式22222OM OC OM MB ⨯+=+)根据题意可以求得点B 的坐标,从而可以求得反比例函数的解析式,进而求得点从而可以求得一次函数的解析式;中的函数解析式可以求得点C ,点M ,点过点P 作PF y ∥轴,交CE 于点F .如图2所示:作点K 关于CD 和CP 的对称点G H 、,连接G H 、交CD 和CP 与N M 、.(3)如图3所示:21/ 21。
重庆市2017年中考数学真题试题-含答案解析
重庆市2017年中考数学真题试题一、选择题(本大题共12个小题,每小题4分,共48分)在每个小题的下面,都给出了代号为A 、B 、C 、D 的四个答案,其中只有一个是正确的,请将答题卡上题号右侧正确答案所对应的方框涂黑.1.5的相反数是( )A .﹣5B .5C .D .【答案】A .【解析】试题分析:5的相反数是﹣5,故选A .考点:相反数.2.下列图形中是轴对称图形的是( )A .B .C .D . 【答案】D .考点:轴对称图形.3.计算结果正确的是( )A .B .C .D . 【答案】B .【解析】试题分析:=.故选B .15-1553a a ÷a 2a 3a 4a 53a a ÷2a考点:同底数幂的除法.4.下列调查中,最适合采用抽样调查的是( )A .对某地区现有的16名百岁以上老人睡眠时间的调查B .对“神舟十一号”运载火箭发射前零部件质量情况的调查C .对某校九年级三班学生视力情况的调查D .对某市场上某一品牌电脑使用寿命的调查【答案】D .考点:全面调查与抽样调查.5的值在( )A.2和3之间B .3和4之间 C .4和5之间 D .5和6之间【答案】C .【解析】试题分析:∵3<4,∴4<5在4和5之间,故选C .考点:估算无理数的大小.6.若x =﹣3,y =1,则代数式2x ﹣3y +1的值为( )A .﹣10B .﹣8C .4D .10【答案】B .【解析】试题分析:∵x =﹣3,y =1,∴2x ﹣3y +1=2×(﹣3)﹣3×1+1=﹣8,故选B .考点:代数式求值.7.若分式有意义,则x 的取值范围是( ) A .x >3 B .x <3 C .x ≠3 D .x =311113x -【答案】C .【解析】试题分析:∵分式有意义,∴x ﹣3≠0,∴x ≠3;故选C . 考点:分式有意义的条件.8.已知△ABC ∽△DEF ,且相似比为1:2,则△ABC 与△DEF 的面积比为( )A .1:4B .4:1C .1:2D .2:1【答案】A .考点:相似三角形的性质;图形的相似.9.如图,在矩形ABCD 中,AB =4,AD =2,分别以A 、C 为圆心,AD 、CB 为半径画弧,交AB 于点E ,交CD 于点F ,则图中阴影部分的面积是( )A .B .C .D . 【答案】C .【解析】试题分析:∵矩形ABCD ,∴AD =CB =2,∴S 阴影=S 矩形﹣S 半圆=2×4﹣π×22=8﹣2π,故选C . 考点:扇形面积的计算;矩形的性质.10.下列图象都是由相同大小的按一定规律组成的,其中第①个图形中一共有4颗,第②个图形中一共有11颗,第③个图形中一共有21颗,…,按此规律排列下去,第⑨个图形中的颗数为( ) 13x-42π-82π-82π-84π-12A .116B .144C .145D .150【答案】B .考点:规律型:图形的变化类.11.如图,已知点C 与某建筑物底端B 相距306米(点C 与点B 在同一水平面上),某同学从点C 出发,沿同一剖面的斜坡CD 行走195米至坡顶D 处,斜坡CD 的坡度(或坡比)i =1:2.4,在D 处测得该建筑物顶端A 的俯视角为20°,则建筑物AB 的高度约为(精确到0.1米,参考数据:sin20°≈0.342,cos20°≈0.940,tan20°≈0.364)( )A .29.1米B .31.9米C .45.9米D .95.9米【答案】A .【解析】试题分析:作DE ⊥AB 于E 点,作AF ⊥DE 于F 点,如图,设DE =xm ,CE =2.4xm ,由勾股定理,得 x 2+(2.4x )2=1952,解得x ≈75m ,DE =75m ,CE =2.4x =180m ,EB =BC ﹣CE =306﹣180=126m .∵AF ∥DG ,∴∠1=∠ADG =20°,tan ∠1=tan ∠ADG = =0.364. AF =EB =126m ,tan ∠1==0.364,DF =0.364AF =0.364×126=45.9,AB =FE =DE ﹣DF =75﹣45.9≈29.1m,故选sin 20cos 20DF AFA .【来源:21·世纪·教育·网】考点:解直角三角形的应用﹣坡度坡角问题.12.若数a 使关于x 的不等式组有且仅有四个整数解,且使关于y 的分式方程有非负数解,则所以满足条件的整数a 的值之和是( ) A .3 B .1 C .0 D .﹣3【答案】A .考点:分式方程的解;一元一次不等式组的整数解;含待定字母的不等式(组);综合题.二、填空题:(本大题6个小题,每小题4分,共24分)请将每小题的答案直接填在答题卡中对应的横线上.13.据统计,2017年五一假日三天,重庆市共接待游客约为14300000人次,将数14300000用科学记数法表示为.【答案】1.43×107.【解析】试题分析:14300000=1.43×107,故答案为:1.43×107.考点:科学记数法—表示较大的数.2122274x x x a-⎧≤-+⎪⎨⎪+>-⎩2222a y y+=--14.计算:.【答案】4.【解析】试题分析:原式=3+1=4.故答案为:4.考点:实数的运算;零指数幂.15.如图,OA 、OC 是⊙O 的半径,点B 在⊙O 上,连接AB 、BC ,若∠ABC =40°,则∠AOC =度.【答案】80.考点:圆周角定理.16.某同学在体育训练中统计了自己五次“1分钟跳绳”成绩,并绘制了如图所示的折线统计图,这五次“1分钟跳绳”成绩的中位数是个.【答案】183.【解析】试题分析:由图可知,把数据从小到大排列的顺序是:180、182、183、185、186,中位数是183. 故答案为:183.0|3|(4)-+-考点:折线统计图;中位数.17.甲、乙两人在一条笔直的道路上相向而行,甲骑自行车从A地到B地,乙驾车从B地到A地,他们分别以不同的速度匀速行驶,已知甲先出发6分钟后,乙才出发,在整个过程中,甲、乙两人的距离y(千米)与甲出发的时间x(分)之间的关系如图所示,当乙到达终点A时,甲还需分钟到达终点B.【答案】18.考点:函数的图象.18.如图,正方形ABCD中,AD=4,点E是对角线AC上一点,连接DE,过点E作EF⊥ED,交AB于点F,连接DF,交AC于点G,将△EFG沿EF翻折,得到△EFM,连接DM,交EF于点N,若点F是AB的中点,则△EMN的周长是.【答案】. 【解析】∴CG =,∴EG =,连接GM 、GN ,交EF 于H ,∵∠GFE =45°,∴△GHF 是等腰直角三角形,∴GH =FH =,∴EH =EF ﹣FH ,∴∠NDE =∠AEF ,∴tan ∠NDE =tan ∠AEF = =,∴EN ,∴NH =EH ﹣EN =,Rt △GNH 中,GN ,由折叠得:MN =GN ,EM =EG ,∴△EMN 的周长2223⨯8238223-5232532101010210EN GH DE EH =10310210=12102101010622GH NH +221010()()36+52=EN +MN +EM =+=; 故答案为:.考点:翻折变换(折叠问题);正方形的性质;综合题.三、解答题(共5小题)19.如图,直线EF ∥GH ,点A 在EF 上,AC 交GH 于点B ,若∠FAC=72°,∠ACD =58°,点D 在GH 上,求∠BDC 的度数.21教育名师原创作品【答案】50°.考点:平行线的性质.20.中央电视台的“中国诗词大赛”节目文化品位高,内容丰富,某校初二年级模拟开展“中国诗词大赛”比赛,对全年级同学成绩进行统计后分为“优秀”、“良好”、“一般”、“较差”四个等级,并根据成绩绘制成如下两幅不完整的统计图,请结合统计图中的信息,回答下列问题:2322(1)扇形统计图中“优秀”所对应的扇形的圆心角为度,并将条形统计图补充完整.(2)此次比赛有四名同学活动满分,分别是甲、乙、丙、丁,现从这四名同学中挑选两名同学参加学校举行的“中国诗词大赛”比赛,请用列表法或画树状图法,求出选中的两名同学恰好是甲、丁的概率.【答案】(1)72;(2). 【解析】 (2)画树状图,如图所示:共有12个可能的结果,选中的两名同学恰好是甲、丁的结果有2个,∴P (选中的两名同学恰好是甲、丁)==.2·1·c ·n ·j ·y1621216考点:列表法与树状图法;扇形统计图;条形统计图.21.计算:(1);(2). 【答案】(1);(2).考点:分式的混合运算;单项式乘多项式;完全平方公式.22.如图,在平面直角坐标系中,一次函数y =ax +b (a ≠0)的图象与反比例函数(k ≠0)的图象交于A 、B 两点,与x 轴交于点C ,过点A 作AH ⊥x 轴于点H ,点O 是线段CH 的中点,AC =cos ∠ACH =,点B 的坐标为(4,n )(1)求该反比例函数和一次函数的解析式;(2)求△BCH 的面积. 2(2)()x x y x y --+2321(2)22a a a a a -++-÷++24xy y --11a a +-k y x=5【答案】(1),y =﹣2x +4;(2)8. 考点:反比例函数与一次函数的交点问题;解直角三角形.23.某地大力发展经济作物,其中果树种植已初具规模,今年受气候、雨水等因素的影响,樱桃较去年有小幅度的减产,而枇杷有所增产.(1)该地某果农今年收获樱桃和枇杷共400千克,其中枇杷的产量不超过樱桃产量的7倍,求该果农今年收获樱桃至少多少千克?(2)该果农把今年收获的樱桃、枇杷两种水果的一部分运往市场销售,该果农去年樱桃的市场销售量为100千克,销售均价为30元/千克,今年樱桃的市场销售量比去年减少了m %,销售均价与去年相同,该果农去年枇杷的市场销售量为200千克,销售均价为20元/千克,今年枇杷的市场销售量比去年增加了2m %,但销16y x=-售均价比去年减少了m %,该果农今年运往市场销售的这部分樱桃和枇杷的销售总金额与他去年樱桃和枇杷的市场销售总金额相同,求m 的值.【答案】(1)50;(2)12.5.考点:一元二次方程的应用;一元一次不等式的应用.24.如图,△ABC 中,∠ACB =90°,AC =BC ,点E 是AC 上一点,连接BE .(1)如图1,若AB =,BE =5,求AE 的长;(2)如图2,点D 是线段BE 延长线上一点,过点A 作AF ⊥BD 于点F ,连接CD 、CF ,当AF =DF 时,求证:DC =BC .21教育网【答案】(1)1;(2)证明见解析.【解析】试题分析:(1)根据等腰直角三角形的性质得到AC =BC =AB =4,根据勾股定理得到CE,2于是得到结论;考点:全等三角形的判定与性质;勾股定理.25.对任意一个三位数n ,如果n 满足各个数位上的数字互不相同,且都不为零,那么称这个数为“相异数”,将一个“相异数”任意两个数位上的数字对调后可以得到三个不同的新三位数,把这三个新三位数的和与111的商记为F (n ).例如n =123,对调百位与十位上的数字得到213,对调百位与个位上的数字得到321,对调十位与个位上的数字得到132,这三个新三位数的和为213+321+132=666,666÷111=6,所以F (123)=6.(1)计算:F (243),F (617);(2)若s ,t 都是“相异数”,其中s =100x +32,t =150+y (1≤x ≤9,1≤y ≤9,x ,y 都是正整数),规定:k =,当F (s )+F (t )=18时,求k 的最大值. 【答案】(1)F (243)=9,F (617)=14;(2). 【解析】试题分析:(1)根据F (n )的定义式,分别将n =243和n =617代入F (n )中,即可求出结论;(2)由s =100x +32、t =150+y 结合F (s )+F (t )=18,即可得出关于x 、y 的二元一次方程,解之即可得出x 、y 的值,再根据“相异数”的定义结合F (n )的定义式,即可求出F (s )、F (t )的值,将其代入k =中,找出最大值即可.试题解析:(1)F (243)=(423+342+234)÷111=9;()()F s F t 54()()F s F tF (617)=(167+716+671)÷111=14.考点:因式分解的应用;二元一次方程的应用;新定义;阅读型;最值问题;压轴题.26.如图,在平面直角坐标系中,抛物线与x 轴交于A 、B 两点(点A 在点B 的左侧),与y 轴交于点C ,对称轴与x 轴交于点D ,点E (4,n )在抛物线上.(1)求直线AE 的解析式;(2)点P 为直线CE 下方抛物线上的一点,连接PC ,PE .当△PCE 的面积最大时,连接CD ,CB ,点K 是线段CB 的中点,点M 是CP 上的一点,点N 是CD 上的一点,求KM +MN +NK 的最小值;(3)点G 是线段CE 的中点,将抛物线x 轴正方向平移得到新抛物线y ′,y ′经过点D ,y ′的顶点为点F .在新抛物线y ′的对称轴上,是否存在一点Q ,使得△FGQ 为等腰三角形?若存在,直接写出点Q 的坐标;若不存在,请说明理由.233y x x =-233y x x =-【答案】(1);(2)3;(3)Q 的坐标为(3,)或′(3,)或(3,3,). (3)由平移后的抛物线经过点D ,可得到点F的坐标,利用中点坐标公式可求得点G 的坐标,然后分为QG =FG 、QG=QF ,FQ =FQ三种情况求解即可.试题解析:(1)∵y =(x +1)(x ﹣3),∴A (﹣1,0),B (3,0). 当x =4时,y =,∴E (4,). 设直线AE 的解析式为y =kx +b ,将点A 和点E 的坐标代入得:,解得:k =,b =,∴直线AE 的解析式为. 33y x =+43-+43--5-233y x x =-33333y x =设点P 的坐标为(xF (x ),则FP =)﹣()=,∴△EPC 的面积=×()×4=,∴当x =2时,△EPC 的面积最大,∴P (2如图2所示:作点K 关于CD 和CP 的对称点G 、H ,连接G 、H 交CD 和CP 与N 、M .∵K 是CB 的中点,∴k (). 23233x x 233x 233x 23233x x 2343x x +122343x 2238333x x -+332∵点H 与点K 关于CP 对称,∴点H 的坐标为(,﹣). ∵点G 与点K 关于CD 对称,∴点G (0,0),∴KM +MN +NK =MH +MN +GN . 当点O 、N 、M 、H 在条直线上时,KM +MN +NK 有最小值,最小值=GH ,∴GH=3,∴KM +MN +NK 的最小值为3.322考点:二次函数综合题;最值问题;分类讨论;存在型;压轴题.。
2017年重庆市中考数学一模试卷(解析版)
2017年重庆市中考数学一模试卷(解析版)一.选择题1.有四个数﹣6,﹣4,﹣3,﹣1,其中比﹣2大的数是()A. ﹣6B. ﹣4C. ﹣3D. ﹣12.下列图形中,是轴对称图形的是()A. B. C. D.3.下列计算正确的是()A. a3+a3=a6B. 3a﹣a=3C. (a3)2=a5D. a•a2=a34.若一个多边形的内角和为720°,则该多边形为()边形.A. 四B. 五C. 六D. 七5.函数y= +2中,自变量x的取值范围是()A. x≥1B. x>1C. x<1D. x≤16.下列实数,介于5和6之间的是()A. B. C. D.7.已知△ABC∽△DEF,面积比为9:4,则△ABC与△DEF的对应边之比为()A. 3:4B. 2:3C. 9:16D. 3:28.如果是方程ax+(a﹣2)y=0的一组解,则a的值()A. 1B. 2C. ﹣1D. ﹣29.如图,扇形AOB的圆心角为124°,C是上一点,则∠ACB=()A. 114°B. 116°C. 118°D. 120°10.下列图形都是由同样大小的矩形按一定的规律组成,其中,第①个图形中一共有6个矩形,第②个图形中一共有11个矩形,第③个图形中一共有16个矩形,…,按此规律,第⑧个图形中矩形的个数为()A. 30B. 36C. 41D. 4511.如图,小明在大楼30米高(即PH=30米)的窗口P处进行观测,测得山坡顶A处的俯角为15°,山脚处B的俯角为60°,已知该山坡的坡度i=1:,点P、H,B,C,A在同一个平面上,点HBC在同一条直线上,且PH⊥BC,则A到BC的距离为()A.10 米B.15米C.20 米D.30米12.从﹣4,﹣3,1,3,4这五个数中,随机抽取一个数,记为m,若m使得关于x,y的二元一次方程组有解,且使关于x的分式方程﹣1= 有正数解,那么这五个数中所有满足条件的m 的值之和是()A. 1B. 2C. ﹣1D. ﹣2二.填空题13.2017年第一季度,我市在改善环境绿化方面投入资金达到4080000元,4080000用科学记数法表示为________.14.2sin60°﹣(﹣)﹣2+(π﹣)0=________.15.某数学小组进行数学速算,比赛成绩如下:得100分的有2人,96分的有4人,90分的2人,那么这个数学小组速算比赛是平均成绩为________分.16.从﹣3、﹣1、、1、3这五个数中,随机抽取一个数,记为a,则关于x的一次函数y=﹣x+a的图象经过第一象限的概率为________.17.周末小明和爸爸从家里出发到野外郊游,小明骑自行车出发0.3小时后爸爸开始骑摩托车追赶,爸爸在追上小明前停留了0.1小时与碰到的朋友聊天,聊天完毕后以原来的速度继续追赶.在整个过程中,他们离家的路程y(千米)与爸爸出发的时间x(小时)之间的关系如图所示,则爸爸出发________小时后与小明相遇.18.如图,已知在正方形ABCD中,F是CD边上一点(不和C,D重合),过点D做DG⊥BF交BF延长线于点G.连接AG,交BD于点E,连接EF,交CD于点M.若DG=6,AG=7 ,则EF的长为________.三.解答题19.如图,C,E,F,D共线,AB∥FD,BG∥FH,且AB=FD,BG=FH.求证:∠A=∠D.20.最近,“校园安全”受到全社会的广泛关注,重庆八中对部分学生就校园安全知识的了解程度,采用随机抽样调查的方式,并根据收集到的信息进行统计,绘制了如下两幅尚不完整的统计图,请你根据统计图中所提供的信息解答下列问题:(1)扇形统计图中“基本了解”部分所对应扇形的圆心角为________度;请补全条形统计图________;(2)若达到“了解”程度的人中有1名男生2名女生,达到“不了解”的程度的人中有1名男生和1名女生,若分别从达到“了解”程度和“不了解”的人中分别抽取1人参加校园安全知识竞赛,请用树状图或列表法求出恰好抽到1名男生和1名女生的概率.四.解答题21.化简:整式与分式(1)(2x+1)(2x﹣1)﹣(x+1)(3x﹣2)(2)(﹣x+1)÷ .22.一次函数y=ax+b(a≠0)的图象与反比例函数y= (k≠0)的图象相交于A,B两点,与y轴交于点C,与x轴交于点D,点D的坐标为(﹣1,0),点A的横坐标是1,tan∠CDO=2.过点B作BH⊥y轴交y轴于H,连接AH.(1)求一次函数和反比例函数的解析式;(2)求△ABH面积.23.某文具店今年1月份购进一批笔记本,共2290本,每本进价为10元,该文具店决定从2月份开始进行销售,若每本售价为11元,则可全部售出;且每本售价每增长0.5元,销量就减少15本.(1)若该种笔记本在2月份的销售量不低于2200本,则2月份售价应不高于多少元?(2)由于生产商提高造纸工艺,该笔记本的进价提高了10%,文具店为了增加笔记本的销量,进行了销售调整,售价比中2月份在(1)的条件下的最高售价减少了m%,结果3月份的销量比2月份在(1)的条件下的最低销量增加了m%,3月份的销售利润达到6600元,求m的值.24.在△ABC中,AB=AC,D为射线BA上一点,连接DC,且DC=BC.(1)如图1,若DC⊥AC,AB= ,求CD的长;(2)如图2,若E为AC上一点,且CE=AD;连接BE,BE=2CE,连接DE并延长交BC于F.求证:DF=3EF.25.一个数能否被99整除是从这个数的末位开始,两位一段,看看这些数段的和能否被99整除.像这样能够被99整除的数,我们称之为“长久数”.例如542718,因为18+27+54=99,所以542718能够被99整除;又例如25146,因为46+51+2=99,所以25146能够被99整除.(1)若这个三位数是“长久数”,求a的值;(2)在(1)中的三位数的首位和个位与十位之间加上和为9的两个数字,让其成为一个五位数,该五位数仍是“长久数”,求这个五位数.26.如图,在平面直角坐标系xOy中,拋物线y=﹣x2x与x轴交于O,A,点B在抛物线上且横坐标为2.(1)如图1,△AOB的面积是多少?(2)如图1,在线段AB上方的抛物线上有一点K,当△ABK的面积最大时,求点K的坐标及△ABK的面积;(3)在(2)的条件下,点H 在y轴上运动,点I在x轴上运动.则当四边形BHIK周长最小时,求出H、I的坐标以及四边形BHIK周长的最小值.答案解析部分一. 选择题1.【答案】D【考点】有理数大小比较【解析】【解答】解:|﹣6|>|﹣4|>|﹣3|>|﹣2|>|﹣1|,∴﹣6<﹣4<﹣3<<﹣2<﹣1,故答案为:D.【分析】可根据两负数比较大小法则:两负数相比较,绝对值大的反而小.2.【答案】B【考点】轴对称图形【解析】【解答】解:A、不是轴对称图形,故本选项不符合题意;B、是轴对称图形,故本选项不符合题意;C、不是轴对称图形,故本选项错误;D、不是轴对称图形,故本选项错误.故答案为:B.【分析】根据轴对称定义可判断:沿某一条直线对折,两边能完全重合的图形3.【答案】D【考点】同底数幂的乘法,幂的乘方与积的乘方,合并同类项法则和去括号法则【解析】【解答】解:A、a3+a3=2a3,不符合题意;B、3a﹣a=2a,不符合题意;C、(a3)2=a6,不符合题意;D、a•a2=a3,符合题意;故答案为:D.【分析】同底数幂的加法,同类项可系数相加,字母及指数不变;同底数幂的乘法底数不变,指数相加;幂的乘方,底数不变指数相乘.4.【答案】C【考点】多边形内角与外角【解析】【解答】解:设多边形为n边形,由题意,得(n﹣2)•180°=720°,解得n=6,故答案为:C.【分析】利用内角和公式构建方程(n﹣2)•180°=720°,求出n.5.【答案】A【考点】函数自变量的取值范围【解析】【解答】解:由题意得,x﹣1≥0,解得x≥1.故答案为:A.【分析】二次根式有意义的条件为被开方数大于或等于0.6.【答案】B【考点】估算无理数的大小【解析】【解答】解:A、∵4<<5,∴本选项不符合题意;B、∵5<<6,∴本选项符合题意;C、∵6<<7,∴本选项不符合题意;D、∵=4,∴本选项不符合题意;故答案为:B.【分析】被开方数n介于两个完全平方数之间,则介于两个两个完全平方数的算术平方根之间.7.【答案】D【考点】相似三角形的性质【解析】【解答】解:∵△ABC∽△DEF,面积比为9:4,∴△ABC与△DEF的对应边之比3:2.故答案为:D.【分析】利用相似三角形的性质:面积比等于相似比的平方可解决.8.【答案】C【考点】二元一次方程的解【解析】【解答】解:将代入方程ax+(a﹣2)y=0得:﹣3a+a﹣2=0.解得:a=﹣1.故答案为:C.【分析】利用方程解的定义,把解代入方程可解出待定字母a.9.【答案】C【考点】圆周角定理,圆内接四边形的性质【解析】【解答】解:如图所示,在⊙O上取点D,连接AD,BD,∵∠AOB=124°,∴∠ADB= ∠AOB= ×124°=62°.∵四边形ADBC是圆内接四边形,∴∠ACB=180°﹣62°=118°.故答案为:C.【分析】须在⊙O上取点D,连接AD,BD,构造出弧ACB所对的圆周角,再利用圆内接四边形的对角互补性质可解决.10.【答案】C【考点】探索数与式的规律【解析】【解答】解:∵图①有矩形有6个=5×1+1,图②矩形有11个=5×2+1,图③矩形有16=5×3+1,∴第n个图形矩形的个数是5n+1当n=8时,5×8+1=41个.故答案为:C.【分析】等差数列的通项公式可以第一个为基础,列出等式观察规律:图①有矩形有6个=6,图②矩形有11个=6+5×1图③矩形有16=6+5×2第n个图形矩形的个数是6+5(n-1)=5n+111.【答案】A【考点】解直角三角形的应用,解直角三角形的应用-仰角俯角问题【解析】【解答】解:如图作AM⊥BC于M,设AM=x.∵tan∠ABM= ,∴∠ABM=30°,∴AB=2AM=2x,∵∠HPB=30°,∴∠PBH=90°﹣∠HPB=60°,∴∠ABP=180°﹣∠PBH﹣∠ABM=90°,∴∠BPA=∠BAP=45°,∴AB=BP=2x,在Rt△PBH中,∵sin∠PBH= ,∴= ,∴x=10 .故答案为:A.【分析】可通过作垂线把特殊角放到直角三角形中,可设出未知数,在Rt△PBH中利用三角函数列出方程.12.【答案】D【考点】二元一次方程组的解,分式方程的解【解析】【解答】解:∵有解,∴直线y=﹣2x+2与直线y= x+ 不平行,∴≠﹣2,∴m≠﹣4,解﹣1= 得,x=4﹣m,∵x=4﹣m是正数,∴m=﹣3,1,3,当m=3时,原方式方程无意义,故m=﹣3,1,∴﹣3+1=﹣2,故答案为:D.【分析】可以数形结合,方程组的两个方程可看作两直线,方程组有解就是它们相交,比例系数k不相等,分式方程的正数解不能取1,m不能取3,可得出答案.二.<b >填空题</b>13.【答案】4.08×106【考点】科学记数法—表示绝对值较大的数【解析】【解答】解:4080000=4.08×106.故答案为:4.08×106.【分析】绝对值较大数的科学记数法可表示为a×10n ,a是只有1位整数的小数或整数,n是原整数位数减1.14.【答案】﹣3【考点】实数的运算,零指数幂,负整数指数幂,特殊角的三角函数值【解析】【解答】解:原式=2× ﹣4+1= ﹣3.故答案为﹣3.【分析】本题易错点在于=4,非零数的0次幂等于1.15.【答案】95.5【考点】加权平均数【解析】【解答】解:(100×2+96×4+90×2)÷(2+4+2)=(200+384+180)÷8=764÷8=95.5(分).答:这个数学小组速算比赛的平均成绩为95.5分.故答案为:95.5.【分析】利用加权平均数定义,即可求出结果.16.【答案】【考点】概率公式【解析】【解答】解:关于x的一次函数y=﹣x+a的图象经过第一象限,则a>0,﹣3、﹣1、、1、3这五个数中有3个大于0,则关于x的一次函数y=﹣x+a的图象经过第一象限的概率为,故答案为:.【分析】关注的结果有3个正数,3种结果,机会均等的结果为5种,因此概率为.17.【答案】0.7【考点】一次函数的应用【解析】【解答】解:爸爸的速度为36÷(1﹣0.1)=40(千米/小时),小明的速度为36÷(1.2+0.3)=24(千米/小时).设爸爸出发t小时后与小明相遇,此时,小明出发了(t+0.3)小时,根据题意得:40(t﹣0.1)=24(t+0.3),解得:t=0.7.答:爸爸出发0.7小时后与小明相遇.故答案为:0.7.【分析】由图像可求出二人速度,根据相遇时二人距离家的路程相等列出方程40(t﹣0.1)=24(t+0.3),可求出时间.18.【答案】【考点】全等三角形的判定与性质,正方形的性质【解析】【解答】解:如图作AH⊥BG于H交BC于T,AN⊥GD于N,取BD的中点O,连接OA、OG.∴∠BAD=∠BGD=90°,∴OA=OD=OB=OG,∴A、B、G、D四点共圆,∴∠AGB=∠ADB=45°,∠AGD=∠ABD=45°,∴AH=GH,AN=NG,∵∠N=∠AHG=∠HGN=90°,∴四边形ANGH是矩形,∵AH=HG,∴四边形ANGH是正方形,∵AG=7 ,∴AH=HG=GN=AN=7,易证△AND≌△AHB,∴DN=BH,∴GD+GB=GN﹣DN+GH+BH=2GN= AG,∴6+GB=14,∴GB=8,BD= =10,∴BH=1,∵△BHT∽△AHB,∴BH2=AH•HT,∴HT= ,∴AT=AH+TH= ,易证△ABT≌△BCF,∴AT=BF= ,∵△BEF∽△BGD,∴= ,∴= ,∴EF= ,故答案为.【分析】通过作垂线,即作AH⊥BG于H交BC于T,AN⊥GD于N,构造出全等三角形△AND≌△AHB,△ABT≌△BCF,利用△BEF∽△BGD对应边成比例列出关系式,求出EF.三.<b >解答题</b>19.【答案】证明:∵AB∥FD,BG∥FH,∴∠B=∠BEF,∠BEF=∠DFH,∴∠B=∠DFH,在△ABG和△DHF中,,∴△ABG≌△DHF(SAS),∴∠A=∠D.【考点】平行线的性质,全等三角形的判定与性质【解析】【分析】要证两角相等,可证两角所在的三角形全等,即须证△ABG≌△DHF(SAS),可得∠A=∠D.20.【答案】(1)120;(2)解:设了解的学生为(A男,A女,A女),不了解的为(B男,B女),则出现的所有可能性为:(A男,B男)、(A男、B女)、(A女,B男)、(A女,B女)、(A女,B 男)、(A女,B女),∴恰好抽到1名男生和1名女生的概率是:,即恰好抽到1名男生和1名女生的概率是.【考点】扇形统计图,条形统计图,列表法与树状图法【解析】【解答】解:(1)由题意可得,本次调查的学生有:15÷50%=30(人),扇形统计图中“基本了解”部分所对应扇形的圆心角为:360°× =120°,了解的有:30﹣10﹣15﹣2=3(人),【分析】(1)圆心角=360°百分比;条形统计图的补全关键是求出所缺部分的数量,部分百分比=总数,具体量=样本容量相应百分比;(2)关注的结果为3个,机会均等所谓结果有6个,代入概率公式即可得概率为0.5.四.<b >解答题</b>21.【答案】(1)解:原式=4x2﹣1﹣3x2﹣x+2=x2﹣x+1(2)解:原式= • =﹣• =﹣【考点】多项式乘多项式,平方差公式,分式的混合运算【解析】【分析】(1)利用平方差公式和多项式乘多项式法则即可;(2)分式化简的基本方法有通分、约分,分子分母出现多项式时看能否分解因式,便于约分.22.【答案】(1)解:∵点D的坐标为(﹣1,0),tan∠CDO=2,∴CO=2,即C(0,2),把C(0,2),D(﹣1,0)代入y=ax+b可得,,解得,∴一次函数解析式为y=2x+2,∵点A的横坐标是1,∴当x=1时,y=4,即A(1,4),把A(1,4)代入反比例函数y= ,可得k=4,∴反比例函数解析式为y=(2)解:解方程组,可得或,∴B(﹣2,﹣2),又∵A(1,4),BH⊥y轴,∴△ABH面积= ×2×(4+2)=6.【考点】反比例函数与一次函数的交点问题,解直角三角形【解析】【分析】(1)先由tan∠CDO=2可求出C坐标,再把D点坐标代入直线解析式,可求出一次函数解析式,再由直线解析式求出A坐标,代入双曲线解析式,可求出双曲线解析式;(2)△ABH面积可以BH为底,高=y A-y B=4-(-2)=6.23.【答案】(1)解:设售价应为x元,依题意得:2290﹣15(x﹣11)÷0.5≥2200,解得x≤14.答:2月份售价应不高于14元(2)解:[14(1﹣m%)﹣10(1+10%)]×2200(1+m%)=6600,令m%=t,原式为(3﹣2t)(1+t)=3.t1=0(不合题意,舍去),t2=0.5,∴m=50.答:m的值是50.【考点】一元二次方程的应用,一元一次不等式的应用【解析】【分析】由"笔记本在2月份的销售量不低于2200本“可翻译为不等式2290﹣15(x﹣11)÷0.5≥2200;(2)“3月份的销量比2月份在(1)的条件下的最低销量增加了m%,3月份的销售利润达到6600元”可转化为“方程[14(1﹣ 1 7 m%)﹣10(1+10%)]×2200(1+m%)=6600,解出m的值.24.【答案】(1)解:∵AB=AC,BC=DC∴∠B=∠ACB,∠B=∠D,∴∠ACB=∠D=∠B 又∵DC⊥AC,∴∠ACD=90°∴∠B+∠ACB+∠D=90°∴∠B=∠ACD=∠D=30°∵AB= ,∴AC= ,∴CD= AC= .(2)解:证明:∵AB=AC,BC=DC∴∠ABC=∠ACB,∠ABC=∠CDA∴∠BCE=∠CDA 又∵BC=DC,CE=DA,∴△BCE≌△DCA,∴CE=AD,BE=AC又∵BE=2CE,∴AE=CE,AD=AE,过A作AH⊥DF于H,则∠DAH=∠HAE,DH=EH,又∵∠DAC=∠ABC+∠ACB=2∠ACB,∴∠HAE=∠ACB,又∵∠AEH=∠CEF,AE=CE,∴△AEH≌△CEF,∴EH=EF,∴DH=EH=EF,即DF=3EF【考点】全等三角形的判定与性质【解析】【分析】(1)由AB=AC,BC=DC,可得∠B=∠ACB,∠B=∠D,又DC⊥AC,可得∠B=∠ACD=∠D=30°,再由30度角的正切可得CD= AC= 6;(2)由已知易证△BCE≌△DCA,可得AE=CE,再由AD=AE,AH⊥DF,可得,DH=EH,进而须证HE=EF,因此证出EH=EF即可.25.【答案】(1)解:∵这个三位数是“长久数”,∴4+10a+5=99,解得:a=9.(2)解:设这个五位数为,根据题意得:10(9﹣x)+5+49+x=99k(k为正整数),∴144﹣9x=99k.∵x、k均为正整数,且144<198,∴k=1,x=5.答:这个五位数为54945.【考点】一元一次方程的应用【解析】【分析】(1)利用新定法则,把这个“长久数”转换为各数的和;(2)仍利用新法则,两位一段,构建关于x的方程,求出x.26.【答案】(1)解:当y=0时,得A(10,0);当x=2时,y=4,所以B(2,4),∴;(2)解:过K作KM⊥x轴交AB于M点,设K(m,﹣m2m),(2<m<10),∵A(10,0),B(2,4),∴直线AB的解析式为y=﹣x+5,则KM=﹣m2m﹣(﹣m+5)=﹣m2+3m﹣5,∴S△ABK= •KM•|x A﹣x B|=4KM=﹣m2+12m﹣20=﹣(m﹣6)2+16,∴当m=6时,S△ABK有最大值.此时,K(6,6),S△ABK=16.(3)解:如图,作点B关于y轴的对称点B′(﹣2,4)、点K关于x轴的对称点K′(6,﹣6),连接B′K′,分别交x轴于点I,交y轴于点H,此时四边形BHIK的周长最小,∴B′K′的解析式为y=﹣x+ ,∴H(0,)、I(,0),∴四边形BHIK周长的最小值为B′K′+BK= + =2 +2 .【考点】轴对称-最短路线问题,与二次函数有关的动态几何问题【解析】【分析】(1)要求面积可求高,即y B;(2)(三边均没有水平边或竖直边的三角形可称为斜三角形)△ABK是斜三角形,须过点K做x轴的垂线,把它分割为两个有竖直边的三角形,设出自变量,构建函数,解决最值问题;(3)四边形BHIK周长可转化为多条线段的和,可利用对称法求两线段之和最小,即做出定点B、K分别关于y、x轴的对称点,当三条线段B'H,HI、IK' 在一条直线上时,周长最短..。
人教版中考第一轮复习九年级第一章:数与式(含答案)
第一章:数与式 1.1:实数考点一:实数的相关概念 实数 ✧实数的分类⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧⎪⎩⎪⎨⎧⎪⎩⎪⎨⎧⎪⎩⎪⎨⎧⎪⎩⎪⎨⎧负无理数负分数负有理数负实数零正无理数正整数正有理数正实数实数✧ 实数大小的比较在数轴上表示两个数的点,右边的点表示的数 ,左边的点表示的数 。
正数大于零,负数小于零;两个正数,绝对值大的较 ;两个负数,绝对值大的较 。
设a 、b 是任意两实数:若0>-b a 。
则a b ;若0=-b a 。
则b a =;若0<-b a 。
则a b ;数轴: ✧数轴的三要素为 、正方向和单位长度。
数轴上的点与 一 一对应。
相反数、倒数、绝对值 ✧ 实数a 、b 互为相反数,则=+b a 。
实数a 、b 互为倒数,则=ab 。
✧绝对值:()()⎩⎨⎧<≥=00a a a aa 的集合意义是数轴上表示数a 的点与原点的距离。
数的乘方与开方 ✧ 负数的奇次幂是负数,负数的偶次幂是正数,正数的任何次幂都是正数,0的任何正整数次幂都是0; ✧ 正数有两个平方根,负数没有平方根,0的平方根是0,正数的正的平方根叫做 。
✧ 若a b =3,则b 叫做a 的立方根。
考点1 正数、负数的意义1.(2019 滨州)2.(2019 云南)若零上8℃记作+8℃,则零下6℃记作 ℃.3.(2019 乐山)某天早晨的气温是℃,到中午升高了℃,晚上又降低了℃.则晚上的温度是 .4.(2019 乐山)4.一定是( )A. 正数B. 负数C.0D.以上选项都不正确 考点2 实数及其分类1.(2019·玉林)下列各数中,是有理数的是( )A .ΠB .1.2 C. 2 D.33 2.(2018·重庆)下列四个数中,是正整数的是( ) A .-1 B .0 C.12D .13.(2018·菏泽)下列各数:-2,0,13,0.020 020 002…,π,9,其中无理数的个数是( )A .4B .3C .2D .1(2018巴中)1. 下列各数:,0,,023,,,0.30003……,中无理数个数为( )A . 2个B . 3个C .4个D .5个4.(2019·桂林)若海平面以上1 045米,记作+1 045米,则海平面以下155米,记作( ) A .-1 200米 B .-155米 C .155米 D .1 200米考点3 数轴、相反数、绝对值、倒数 5.(2019·威海)-3的相反数是( )A .-3B .3 C.13 D .-136.(2019·德州)-12的倒数是( )A .-2 B.12 C .2 D .17.(2019·遂宁)-|-2|的值为( )A. 2 B .- 2 C .± 2 D .28.(2019·陇南)如图,数轴的单位长度为1,如果点A 表示的数是-1,那么点B 表示的数是( )A.0 B.1 C.2 D.39.(2018·攀枝花)如图,实数-3,x,3,y在数轴上的对应点分别为M,N,P,Q,这四个数中绝对值最小的数对应的点是( )A.点M B.点N C.点P D.点Q10.(2019·成都)若m+1与-2互为相反数,则m的值为.考点4 科学记数法和近似数11.(2019·荆门)已知一天有86 400秒,一年按365天计算共有31 536 000秒,用科学记数法表示31 536 000正确的是( )A.3.153 6×106 B.3.153 6×107 C.31.53 6×106 D.0.315 36×108 12.(2019·潍坊)“十三五”以来,我国启动实施了农村饮水安全巩固提升工程.截止去年9月底,各地已累计完成投资1.002×1011元.数据1.002×1011可以表示为( )A.10.02亿 B.100.2亿 C.1 002亿 D.10 020亿13.(2019·烟台)某种计算机完成一次基本运算的时间约为1纳秒(ns),已知1纳秒=0.000 000 001秒,该计算机完成15次基本运算,所用时间用科学记数法表示为( )A.1.5×10-9秒 B.15×10-9秒 C.1.5×10-8秒 D.15×10-8秒14.(2019·攀枝花)用四舍五入法将130 542精确到千位,正确的是( )A.131 000 B.0.131×106 C.1.31×105 D.13.1×104【能力提升】15.(2019·天水)已知|a|=1,b是2的相反数,则a+b的值为( )A.-3 B.-1 C.-1或-3 D.1或-316.(2019·枣庄)点O,A,B,C在数轴上的位置如图所示,O为原点,AC=1,OA=OB.若点C所表示的数为a,则点B所表示的数为( )A.-(a+1) B.-(a-1) C.a+1 D.a-117.(2019·泰安)2018年12月8日,我国在西昌卫星发射中心成功发射“嫦娥四号”探测器,“嫦娥四号”进入近地点约200公里、远地点约42万公里的地月转移轨道,将数据42万公里用科学记数法表示为( ) A.4.2×109米 B.4.2×108米 C.42×107米 D.4.2×107米第2讲实数的运算【基础过关】考点1 平方根、算术平方根、立方根1.(2018·安顺)4的算术平方根是( )A .± 2 B. 2 C .±2 D .2 2.(2019·烟台)-8的立方根是( )A .2B .-2C .±2D .-2 2 3.(2019·南京)面积为4的正方形的边长是( ) A .4的平方根 B .4的算术平方根 C .4开平方的结果 D .4的立方根 4.(2019·通辽)16的平方根是( )A .±4B .4C .±2D .+2 考点2 实数的大小比较5.(2019·菏泽)下列各数中,最大的数是( )A .-12 B.14 C .0 D .-26.(2019·常德)下列各数中比3大比4小的无理数是( )A.10B.17 C .3.1 D.1037.(2019·宜昌)如图,A ,B ,C ,D 是数轴上的四个点,其中最适合表示无理数π的点是( )A .点AB .点BC .点CD .点D 考点3 实数的运算8.(2019·淄博)比-2小1的数是( )A .-3B .-1C .1D .3 9.(2019·天津)计算(-3)×9的结果等于( )A .-27B .-6C .27D .6 10.(2019·聊城)计算:(-13-12)÷54= .11.(2019·十堰)计算:(-1)3+|1-2|+38.12.(2019·黄石)计算:(2 019-π)0+|2-1|-2sin45°+(13)-1.【能力提升】13.(2019·广东)实数a ,b 在数轴上的对应点的位置如图所示,下列式子成立的是( )A .a>bB .|a|<|b|C .a +b>0 D.ab<014.(2019·贺州)计算11×3+13×5+15×7+17×9+…+137×39的结果是( )A.1937 B.1939 C.3739 D.383915.(2018·潍坊)用教材中的计算器进行计算,开机后依次按下3x 2=,把显示结果输入如图的程序中,则输出的结果是 .16.64的算术平方根是 。
人教版中考数学大一轮素养高分培优重庆专用:第1章 第3节 分式
=(x2-x-2-3x-6)÷x-2 x+1 x+1 2x+2
=x
2-4x+4 x-2 x+1 ÷2(x+1)
=(x-2)2·2(x+1)
x+1
x-2
=2x-4,
当 x=3时,原式=2×3-4=-1.
2
2
x . 3 2
W
点击链接至练习册
考点精讲
有关概念 基本性质
分式
运算
最简分式 约分
最简分式
最简分式
分式:一般地,如果 A,B表示两个整式,并且 B中含有字母,B≠0,那么式子
A
分式 叫做分式
B
的有 最简分式:__分__子__和__分__母__没__有__公__因__式__的__分__式___
关概 分式 A
念和
B 分式 A
有意义的条件:_B_≠__0________ 的值为零的条件:___A_=_0_且__B_≠__0_
性质
B
返回思维导图
分式的 有关概 念和性 质
基本性质:分式的分子与分母乘(或除以)
A A C (C 0) B BC
应用 通分
同一个不等于0的整式,分式的值不变
A A C (C 0) 应用 约分 B BC
符号变化法则:分式中,分式本身、分子、分母三者中有两者同时改变
符号,分式值不变,如:
x1 x1 x1 x1 x1 1 x
=(x+2)(x-2)· x+1
x+1
(x+2)2
=xx- +22.(5 分)
解方程x-1-x-2=0, 25
得 x=1,(8 分) 3
1-2
当 x=1时,原式=3 =-5.(10 分)
3
1+2 7
3
重庆市中考数学一轮复习 第一章 数与式 第3节 分式练习册-人教版初中九年级全册数学试题
第3节 分 式(建议答题时间:45分钟)命题点一 分式的概念及性质1. 下列分式中,是最简分式的是( )A. 3x 24xyB.x 2+y 2x +yC.x -2x 2-4D. 1+x x 2+2x +12. (2017)若代数式xx -4有意义,则实数x 的取值X 围是( )A. x =0B.x =4C.x ≠0D. x ≠43. (2017某某)若分式2x -4x +1的值为0,则x 的值为________. 4. (2017呼和浩特) 使式子11-2x 有意义的x 的取值X 围为________. 命题点二 分式化简及求值 5. (2017某某)化简:xx -y -y x +y ,结果正确的是( )A. 1B. x 2+y 2x 2-y 2C.x -y x +yD. x 2+y 2 6. (2017某某)化简4x x 2-4-x x -2的结果是( ) A.-x 2+2x B.-x 2+6x C.-x x +2D.xx -2 7. (2017某某)若 3-2x x -1=( )+1x -1,则( )中的数是( ) A. -1 B. -2 C. -3 D. 任意实数8. (2017某某)化简(1-2x -1x 2)÷(1-1x2)的结果为( ) A. x -1x +1B. x +1x -1C. x +1x D.x -1x9. (2017枣庄)化简:x +3x 2-2x +1÷x 2+3x (x -1)2=________. 10. (2017某某)化简:(1-1a -1)÷a 2-4a +4a 2-a.11. 化简:(a +1a +2)÷(a -2+3a +2).12. (2017某某育才模拟)计算:x 2+4x +4x 2-2x ÷(x 2+x -2x -2-x -2).13. (2017某某南开二模)计算:(3y 2x -y -x -y )÷x 2-2xy x 2-xy.14. (2017某某西大附中模拟)计算:x3-x -x 2+8x +16x 2+3x ÷(-2x +3+4x -1).15. (2017某某九龙坡区模拟)计算:x -2x 2-2x +1÷(2x -1x -1-x -1)-1x .16. 计算:x 2-8x +16x 2+2x ÷(x -2-12x +2)-1x +4.17. (2017某某八中一模)计算:12m ÷(m -1+2m +1m +1)-1m.18. 先化简,再求值:(m m -2-2m m 2-4)÷m m +2,请在2,-2,0,3当中选一个合适的数代入求值.19. (2017某某)先化简,再求值:x +3x -2÷(x +2-5x -2),其中x =3+ 3.20. (2017某某)先化简,再求值:(n 2n -m -m -n )÷m 2,其中m -n = 2.21. (2017某某)先化简,再求值:(x -1)÷(2x +1-1),其中x 为方程x 2+3x +2=0的根.22. (2017某某) 先化简,再求值:(x -1+3-3x x +1)÷x 2-x x +1,其中x 的值从不等式组⎩⎪⎨⎪⎧2-x ≤32x -4<1的整数解中选取.答案1.B2. D3. 24.x <125. B6. C7. B8. A9. 1x10. 解:原式=a -2a -1·a (a -1)(a -2)2 =a a -2. 11. 解:原式=a 2+2a +1a +2÷a 2-1a +2=(a +1)2a +2·a +2(a +1)(a -1)=a +1a -1. 12. 解:原式=(x +2)2x (x -2)÷x 2+x -2-(x +2)(x -2)x -2=(x +2)2x (x -2)÷x 2+x -2-x 2+4x -2=(x +2)2x (x -2)·x -2x +2=x +2x. 13. 解:原式=3y 2-(x +y )(x -y )x -y ·x 2-xy x 2-2xy=3y 2-x 2+y 2x -y ·x (x -y )x (x -2y )=4y 2-x 2x -y ·x -y x -2y =(2y -x )(2y +x )x -y ·x -y x -2y=-(2y +x )=-2y -x .14. 解:原式=x 3-x -(x +4)2x (x +3)÷-2x +4x +12-x (x +3)x (x +3)=x 3-x -(x +4)2x (x +3)÷-x 2-x +12x (x +3)=x 3-x -(x +4)2x (x +3)·x (x +3)-(x +4)(x -3)=x 3-x -x +4-(x -3)=-43-x . 15. 解:原式=x -2(x -1)2÷2x -1-(x +1)(x -1)x -1-1x=x -2(x -1)2·x -1-x (x -2)-1x=1-x (x -1)-1x =1-x (x -1)+x -1-x (x -1) =x -x (x -1)=11-x. 16. 解:原式=(x -4)2x (x +2)÷(x -2)(x +2)-12x +2-1x +4=x -4x (x +4)-1x +4=x -4-x x (x +4)=-4x (x +4)=-4x 2+4x. 17. 解:原式=m 2÷m 2-1+2m +1m +1-1m=m 2·m +1m (m +2)-1m=m +12(m +2)-1m=m (m +1)-2(m +2)2(m +2)m=m 2-m -42(m +2)m =m 2-m -42m 2+4m. 18. 解:原式=[m m -2-2m (m -2)(m +2)]·m +2m=m +2m -2-2m -2 =m m -2,∵m ≠±2,0,∴当m =3时,原式=3.19. 解:原式=x +3x -2÷(x 2-4x -2-5x -2) =x +3x -2÷x 2-9x -2=x +3x -2·x -2x 2-9 =x +3x -2·x -2(x +3)(x -3) =1x -3, 当x =3+3时, 原式=13+3-3=13=33. 20. 解:原式=[n 2n -m -(m +n )]·1m2 =n 2-n 2+m 2n -m ·1m2 =1n -m , ∵m -n =2,∴n -m =-2,则原式=1-2=-22. 21. 解:原式=(x -1)÷2-x -1x +1=(x -1)·x +11-x=-x -1,∵x 为方程x 2+3x +2=0的根,∴x =-1或x =-2,要使原分式有意义,则x ≠±1,∴x =-2,∴原式=2-1=1.22. 解:原式=(x -1)(x +1)+3-3x x +1÷x (x -1)x +1=x 2-3x +2x +1·x +1x (x -1)=(x -1)(x -2)x +1·x +1x (x -1) =x -2x , 解不等式组⎩⎪⎨⎪⎧2-x≤32x -4<1,得-1≤x <52, ∴其整数解为-1,0,1,2.要使分式有意义,则x 不等于-1,0,1, ∴x 只能取2,当x =2时,原式=0.。
中考数学 第一部分 考点研究 第一章 数与式 第三节 分式真题演练(2021学年)
重庆市2017年中考数学第一部分考点研究第一章数与式第三节分式真题演练编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(重庆市2017年中考数学第一部分考点研究第一章数与式第三节分式真题演练)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为重庆市2017年中考数学第一部分考点研究第一章数与式第三节分式真题演练的全部内容。
第一章数与式第三节分式玩转重庆9年中考真题(2008~2016)命题点分式的化简及求值类型一分式化简(9年4考)1. (2016重庆B卷21(2)题5分)计算:\f(x2+4x+4,x2+2x)÷(2x-错误!).2. (2016重庆A卷21(2)题5分)计算:(2-2xx+1+x-1)÷x2-xx+1.3。
(2015重庆B卷21(2)题5分)计算:(错误!-x+1)÷错误!。
4. (2015重庆A卷21(2)题5分)计算:(y-1-\f(8,y+1))÷错误!。
类型二分式化简求值(9年9考)5。
(2010重庆21题10分)先化简,再求值:(错误!-4)÷错误!,其中x=-1.6。
(2008重庆23题10分)先化简,再求值:(\f(a2-5a+2,a+2)+1)÷\f(a2-4,a2+4a+4),其中a=2+错误!.7. (2014重庆A卷21题10分)先化简,再求值:1x÷(\f(x2+1,x2-x)-2x-1)+错误!,其中x的值为方程2x=5x-1的解.8. (2013重庆A卷21题10分)先化简,再求值:错误!÷(错误!-a-2b)-错误!,其中a,b满足错误!.9。
[推荐学习]重庆市2017届中考数学一轮复习第二章方程与不等式第3节分式方程及其应用试题
[ 介绍学习 ] 重庆市 2017 届中考数学一轮复习第二章方程与不等式第 3 节分式方程及其应用试题生活的色彩就是学习第三节分式方程及其应用讲堂体现引导方向认识分式和最简分式的观点,能利用分式的基天性质进行约分和通分:能进行简单的分式加、减、乘、除运算.能解可化为一元一次方程的分式方程.考点梳理夯实基础1.分母中含有的方程叫分式方程.2.解分式方程的一般步骤:(1)去分母,将分式方程转变为整式方程;(2)解整式方程:(3)验根:把整式方程的根代入,看结果能否为零,使分母为零的根是原方程的增根,一定舍去 .【答案】 1. 未知数 2. (3)最简公分母考点一解分式方程【例 1】解分式方程:(1)(2016 乐山)解方程:1x 1 .3x 2 2 x生活的色彩就是学习(2)(2016 上海)解方程:141x 2 x24解题点拨:本题考察认识分式方程的知识,将分式方程先化为整式方程求解,求得结果后必定要查验.解:(1)1—3(x一 2)= -(x-l),1—3x+6= -x+l.-2x= -6x=3.经查验. x=3是原方程的解∴原方程的解是 x=3.(2)x+2-4=x2-4x2-x-2=0x1=2,x2=-1,经查验 x=2是增根,舍去;x=-1是原方程的根,∴原方程的根是 x=-1.生活的色彩就是学习考点二含参分式方程【例 2】(1)若对于x的分式方程2x m 2 有增x 3 3 x根,则 m的值是()A.m=-1B.m=0C.m=3D.m=0或 m=3【答案】 A(2)若对于x的方程2x m 2 的解为正数,则x 2 2 xm的取值范围是()A.m<6B.m>6C.m<6且 m≠0D.m>6且 m≠8【答案】 C(3)已知对于戈的方程x 22 x2ax4 x32无解,求a 的值.解: 2(x+2)+ax=3(x-2)(a-l )x=-10①当 a-l =0,即 a=l 时,0.x=-10,整式方程无解;②当 a-l ≠0,即 a≠1时,要原方程无解,则整式方程的根为增根若 x=2时,则 a=-4;若 x=-2时,则 a=6;因此, a=l 或-4或6.解题点拨:含参分式方程主要三种种类,一是分式方程有增根,二是分式方程无解,三是分式方程解有条件,总的原则都是将分式方程转变成整式方程,再依据条件议论求解.考点三分式方程应用【例 3】某工厂计划在规准时间内生产 24000 个部件,若每日比原计划多生产30 个部件,则在规准时间内能够多生产 300 个部件.(1)求原计划每日生产的部件个数和规定的天数;(2)为了提早达成生产任务,T厂在安排原有工人按原计划正常生产的同时,引进5 组机器人生产流水线共同参加部件生产,已知每组机器人生产流水线每日生产部件的个数比20 个工人原计划每日生产的霉件总数还多20%.按此测算,恰巧提早两天达成 24000 个部件的生产任务,求原计划安排的工人人数.解题点拨:分式方程应用题等量关系比较清楚,难度不大,特别注意不要忘掉对根的查验.解:(1)设原计划每日生产的部件x 个,300,解得, x= 2400.由题意得,2400024000x x30经查验,x= 2400是原方程的根,且切合题意.∴规定的天数为24000÷2400 =10 (天).答:原计划每日生产的部件 2400 个,规定的天数为 10 天.(2)设原计划安排的工人人数为y人,由题意得[5× 20×(1+20%)× 2400+2400]×(10y-2)= 24000 解得, y= 480.经查验, y=480是原方程的根,且切合题意.答:原计划安排的工人人数为 480 人.K12的学习需要努力专业专心坚持讲堂训练当堂检测1.(2016 深圳)施T队要铺设一段全长 2000 米的管道,因在中考时期需停 T 两天,实质每日施工需比本来计划多 50 米,才能准时达成任务,求原计划每日施工多少米.设原计划每日施工 x米,则依据题意所列方程正确的选项是()A.C.200020002B.200020002 x x50x 50x 200020002D. 200020002 x x50x50x【答案】 A2.(2016 凉山)对于戈的方程3x22m 无解,x1x 1则 m的值为()A.-5B.-8C.一2D.5【答案】 A3.(2016 贺州)若对于戈的分式方程为非负数,则 a 的取值范围是.【答案】 a≥1且 a≠42x a 1 的解 x 2 24.解分式方程(1)231xx 22x解: 2+3x-6 = x-l2 x=3x= 1.5.经查验. x= 1.5是原方程的解.∴原方程的解是x= 1.5.(2)x2x11x 1x21解: x(x+1)一(2x-l )= x2—1 x2+x-2x+l =x2-1-x=-2x=2.经查验. x=2是原方程的解∴原方程的解是x=2.中考达标模拟自测A 组基础训练一、选择题生活的色彩就是学习1.(2016 成都)分式方程2x的解为()1x 3A. x=-2B. x=-3C. x=2D. x=3【答案】 B2.(2016 潍坊)若对于戈的方程x m3m 3 的解x 3 3 x为正数,则 m的取值范围是()A. m<9B. m<9且 m≠3C. m>9 2224 D.m>94且 m≠34【答案】 B3.(2016 山西)甲、乙两个搬运T搬运某种货物,已知乙比甲每小时多搬运600kg,甲搬运5000kg所用的时间与乙搬运 8000kg所用的时间相等,求甲、乙两人每小时分别搬运多少千克货物.设甲每小时搬运 xkg 货物,则可列方程为(B)A.50008000B.x 600x生活的色彩就是学习5000 8000 xx 600C . 50008000 D . 50008000x 600xxx 600【答案】 B4.(2016 十堰)用换元法解方程x 2124 x3,xx 212设x 212 y,则原方程可化为()xA . y1 4 C .1 3 0y3 0B . y 3 0yyyD .4 3 0yy【答案】 B二、填空题5.若分式方程是.【答案】 x =1xm2有增根,则这个增根x 1 1 x6.已知对于戈的分式方程x k k1的解为负数,x 1 x1则 k 的取值范围是.【答案】 k>1且 k≠127.已知点P(l-2a,a-2)关干原点的对称点在第一象限内,且 a 为整数,则对于 x 的分式方程x1 2 的解是.x a【答案】 x=3三、解答题8.解分式方程:(1)x12 1.3x13x解: x=2(3x-l )+1x= 6 x-2+1x=15经查验, x=1是原方程的解5∴原方程的解是x=15(2)x 231x 3 x3解: x2-5x+6-3x-9 = x2-9解得 x 34经查验, x34是分式方程的解∴原方程的解是x 3 .4(3)2 x11x 3 3 x解: 2-x-l =x-3x=2经查验: x =2是原方程的解.∴原方程的解是x=2.(4)x 121x 1x2 1x 1解:去分母得:(x+l )2-2 = x-l ,整理得: x2+x=0,即 x(x+1)=0,解得: x=0或 x=-1,经查验 x=-1是增根.∴原方程的解是x=0.9.(2016 聊城)为加速城市群的建设与发展,在 A,B 两城市间新建一条城际铁路,建成后,铁路运转里程由此刻的 120km缩短至 114km.城际铁路的设计均匀时速要比现行的均匀时速快llOkm.运转时间仅是现行时间的 2 ,求建成后的5城际铁路在 A,B 两地的运转时间.解:设城际铁路现行速度是 xkm/ h.由题意得: 1202114x 5 x110解这个方程得: x= 80.经查验: x= 80是原方程的根,且切合题意.则现行时间: 120÷80×2 =0.6 (小时)5答:建成后的城际铁路在 A,B 两地的运转时间是 0.6 小时 .B组提升练习10.(2016 梅州)对于实数以、6,定义一种新运算“”为:a b12 ,这里等式右侧是实数运a b算.比如: 1 3= 121,则方程x221的解1 38x4是()A.x=4B.x=5C.x=6D.x=7【答案】 B(提示:依题意,得:x22,因此,原方程x4化为:121x4 x,4即:11,解得:x=5.)x 411.(2016 凉山)若实数x 知足x2 2 2 x 1 0 ,则x21=.x2【答案】 10(提示:依据x2 2 2x 1 0 ,能够求得x1x的值,从而能够获得 x21的值,∵ x222x 10 ,∴x1 2 2 ,x2x1)28,即 x21,∴ x21,故答案为:∴ ( x228x 2 10x x10)12.宁波火车站北广场将于2015 年末投入使用,计划在广场内栽种4、B两栽花木共6600 棵,若4 花木数目是B花木数目的 2 倍少 600 棵.(1)A、B两栽花木的数目分别是多少棵?(2)假如园林处安排 26 人同时栽种这两栽花木,每人每日能栽种 4 花木 60 棵或B花木 40 棵,应分别安排多少人栽种 4 花木和B花木,才能保证同时达成各白的任务?解:(1)设曰栽花木的数目是x棵,则A栽花木的数目是( 2x-600)棵.依据题意,得 x+(2 x-600)= 6600,解得 x=2400,2x-600=4200.答: A 栽花木的数目是4200棵,口栽花木的数目是 2400 棵.(2)设安排y人栽种A栽花木,则安排( 26-y)人栽种曰栽花木.生活的色彩就是学习依据题意,得4200,解得 y=14.240060 y40 26y经查验, y=14是原方程的根,且切合题意.26 -y=12.答:安排 14 人栽种A栽花木,安排 12 人栽种B栽花木,才能保证同时达成各自的任务.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第三节 分式课标呈现 指引方向了解分式和最简分式的概念,能利用分式的基本性质进行约分和通分:能进行简单的分式加、减、乘、除运算,考点梳理 务实基础 1.分式的有关概念(1)分式:形如AB(A 、B 是整式,且B 中含有 ,B ≠0)的式子叫做 . (2)当 时,分式AB 有意义.(3)当 时,分式AB无意义.(4)当 时,分式AB的值为0.(5)分式的约分:把一个分式的分子与分母的 约去叫做分式的 .分子和分母的最大公因式为 .(6)最简分式:当分式的分子与分母没有 时,这样的分式称为 。
(7)分式的通分:把几个异分母的分式化为 的分式叫做分式的通分.异分母分式通分时通常取系数的最小公倍数与分母中所有因式的最高次幂的积作为它们的共同分母. 【答案】(1)字母 分式 (2)B ≠0 (3)B=0 (4)A=0,B ≠0 (5)公因式 约分 系数的最大公因数与相同因式的最低次幂的积 (6)公因式 最简分式 (7)同分母2.分式的基本性质 (1)A AC A CB BC B C÷==÷(B ≠0,C ≠0) (2)分式中的符号法则:分子符号、分母符号、分式本身符号中同时改变两处的符号,分式的值不变. 3.分式的运算 (1)分式的加减:同分母的分式相加减,分母 ,把分子相 ;异分母的分式相加减,先通分,化为同分母的分式再加减. 【答案】 不变 加减 (2)分式的乘除:A C ACB D BD∙=( B 、D ≠0), A C A D AD B D B C BC ÷=∙=(B 、C 、D ≠0),nn n A A B B ⎛⎫= ⎪⎝⎭(B ≠0). (3)分式的混合运算:按照运算顺序分步计算,一般先 、后 ,最后算 ;如果有括号先计算括号里的,分式运算的结果要为整式或最简分式. 【答案】乘方 乘除 加减 考点精析 专项突破考点一 分式的概念及基本性质【例1】(1) (2016重庆)函数12y x =+中,x 的取值范围是( ) A .x ≠0 B .x> -2 C .x<-2 D .x ≠ -2 (2) (2016温州)若分式23x x -+的值为0,则x 的值是( ) A .-3 B .-2 C .0 D .2【答案】(1)D (2)D解题点拨:本题考查了分式有意义的条件,从以下三个方面透彻理解分式的概念:(1)分式无意义即分母为零(2)分式有意义即分母不为零(3)分式值为零即分子为零且分母不为零.【例2】下列运算中,正确的是 ( ) A .a acb bc = B .x y y x x y y x--=++ C.0.10.20.525m n m n m n m n ++=-- D. 1a ba b --=-+ 【答案】D解题点拨:分式变形的依据是分式的基本性质和分式中的符号法则。
考点二 分式的运算【例3】化简2211121x x x x +⎛⎫+÷ ⎪--+⎝⎭的结果为 . 【答案】x-1解题点拨:此题考查了分式的混合运算,熟练掌握运算法则是解本题的关键.在进行分式的加减运算时,主要是准确找出最简公分母,进行通分;分式的乘除运算时,利用因式分解简化计算,【例4】先化简,再求值:2344111x x x x x ++⎛⎫--÷ ⎪++⎝⎭.其中x 是方程12025x x ---=的解.解题点拨:此题考查了分式的化简求值,以及解一元一次方程,熟练掌握运算法则是解本题的关键.解:原式()()()2113211x x x x x +--+=÷++()()()222112x x x x x +-+=∙++22x x -=+ 方程去分母得:5x-5-2x+4=0, 解得13x =当13x =时,原式123123-=+57=-. 课堂训练 当堂检测 1.分式21x x x +-、221x -、221xx x -++的最简公分母是( ) A .()()21x xx -+ B .()()2211xx -+C .()()211x x x -+ D .()21x x + 【答案】C 2.函数11y x =-中白变量x 的取值范围是( ) A .x ≤2 B .x ≤2且x ≠1 C .x<2且x ≠1 D .x ≠l 【答案】B 3.已知分式235x x x a--+,当x=2时,分式无意义,则a= 。
【答案】6 4.化简求值:(1)(2016重庆)222111x x xx x x --⎛⎫+-÷⎪++⎝⎭ 解:原式222111x x xx x x --⎛⎫=+-÷⎪++⎝⎭ 2222111x x x x x x -+-+=∙+-()()21111x x x x x -+=∙+-1x x-= (2) (2016随州)2344111x x x x x ++⎛⎫-+÷ ⎪++⎝⎭,其中2x =解:原式()()()21131112x x x x x x+-⎡⎤+ =-∙⎢⎥+++⎣⎦()()()222112x x xx x-+-+=∙++22xx-=+当2x=时,原式==1=中考达标模拟自测A组基础训练一、选择题1.(2016滨州)下列分式中,最简分式是()A.2211xx-+B.211xx+-C.2222x xy yx xy-+-D.236212xx-+【答案】A2.若分式21 1x x +-无意义,则x的值是()A.1 B.-1 C.-1或1 D.0 【答案】C3.下列计算正确的是()A.11123x x x+= B.111x y x y-=-C.1111xx x+=++D.321a a a-+=-【答案】D4.(2016德州)化简2222a b ab bab ab a----等于()A. baB.abC.ba- D.ab-【答案】B 二、填空题5.若分式131x x x --+的值为零,则x 等于 。
【答案】16.已知1132a b +=,则代数式254436a ab b ab a b -+--的值为 。
【答案】12-7.若()()121212121a bn n n n =+-+-+,对任意白然数n 都成立,则a= ,b=____;计算:11111335571921m =+++⋅⋅⋅+=⨯⨯⨯⨯ 。
【答案】12 12- 1021三、解答题 8.化简(1)(2016重庆)22244422x x x x x x x ⎛⎫+++÷- ⎪+⎝⎭ 解:原式()()()()22222x xx x x x +=⨯++-12x =-(2) (2016泸州)322112a a a a -⎛⎫+-∙⎪-+⎝⎭ 解:原式()()()1132112a a a a a +---=∙-+()221412a a a a --=∙-+ ()()()222112a a a a a +--=∙-+24a =-9.先化简,再求值(1)(2016江西)221339x x x x ⎛⎫+÷⎪+--⎝⎭,其中x=6 解:原式()()()()2233339x x xx x x --+=÷+-- ()()2263339x x xx x x ---=÷+--()()()()33933x x x x x x +--=∙+- 9x x-= 当x=6时,原式69162-==-(2) (2016山东)2451111a a a a a a -⎛⎫⎛⎫+-÷- ⎪ ⎪--⎝⎭⎝⎭,其中2a =解:原式()21451111a a a a a a --+--=÷-- ()214412a a a a a a --+=∙-- ()()22112a a a a a --=∙-- ()2a a =-22a a =-当2a =原式((2222=-3=+(3) (2016黑龙江)222444142x x x x x x -++-÷--+(),其中22150x x +-=.【答案】解:原式=22242442222x x x x x x x x x x x x-++++-=-=-+++ ∵22150x x +-=, ∴2215x x +=. ∴原式=415(4)(2016西宁)化简:2222421121x x x x x x x ++-÷+--+,然后在不等式x≤2的非负整数解中选择一个适当的数代入求值.【答案】解:222(2)(1)22222221(1)(1)21111x x x x x x x x x x x x x x x +---+-=-==++-+++++ ∵不等式x≤2的非负整数解是0,1,2∵(x+1) (x ﹣1)≠0,x+2≠0, ∴x≠±1,x≠﹣2, ∴把x=0代入221x =+ (5) (2016河南) 先化简,再求值:2221(1)21x x x x x x --÷+-+,其中x 的值从不等式组1214x x -≤⎧⎨-<⎩的整数解中选取. 【答案】解:原式=211(1)1111x x x x x x xx x x x x x--++=-=+-+-- .解不等式组1214x x -≤⎧⎨-<⎩得,512x ≤﹣<, ∴x=-1,0,1,2 ∵x(x+1) ≠0,x-1≠0 ∴x ≠0,x ≠-1,x ≠1 ∴x=2当x=2时,原式=2212=--.(6)(2016烟台)先化简,再求值:22222(1)2x y x y x x x xy y ----÷-+,其中x y ==【答案】解:原式=22()2()()()x y x x x y y x x y x yx x x x y x y x x y x--------==-+-+ .把x y =代入得:原式1==-+ B 组提高训练10.(2016眉山)已知2340x x --=,则代数式24xx x --的值是 ( ) A.3 B.2 C.13 D. 12(提示:已知等式整理得:43x x-=,则原式=11143121x x==+--.) 【答案】D 11.(2015安徽)已知实数a 、b 、c 满足a+b=ab=c ,有下列结论: ①若c ≠0,则111a b+=;②若a=3,则b+c=9; ③若a=b=c ,则abc=0;④若a 、b 、c 中只有两个数相等,则a+b+c=8. 其中正确的是 (把所有正确结论的序号都选上). (提示:①a+b =ab ≠o ,∴111a b+=正确,②若a=3,3+b= 3b ,6=1.5,c= 4.5,b+c=9错误;③3a=b=c ,2a =a 2=n ,a=0,则abc =0正确;④设a=b ,可得a=b=2,c=4,故a+b+c=8正确)【答案】①③④12.(2016云南)有一列按一定顺序和规律排列的数: 第一个数是112⨯;第二个数是123⨯;第三个数是134⨯;… 对任何正整数n ,第n 个数与第(n+1)个数的和等于2(2)n n ⨯+. (1)经过探究,我们发现:1111212=-⨯,1113434=-⨯ 设这列数的第5个数为a ,那么a>1156-,a=1156-,a<1156-,哪个正确?请你直接写出正确的结论;(2)请你观察第1个数、第2个数、第3个数,猜想这列数的第n 个数(即用正整数n 表示第n 个数),并且证明你的猜想满足“第n 个数与第(n+1)个数的和等于2(2)n n ⨯+”.(3)设M 表示22221111,,,,1232016…这2016个数的和,即22221111,1232016M =+++?+求证:20164031 20172016M <<. 【答案】解:(1)由题意知第5个数1115656a ==-⨯. (2) ∵第n 个数为1(1)n n +,第(n+1)个数为1(1)(2)n n ++,∴1111111122(1)(1)(2)1122(2)(2)(2)n n n n n n n n n n n n n n n n n n ++=-+-=-=-=++++++++++ 即第n 个数与第(n+1)个数的和等于2(2)n n ⨯+;(3) ∵211111,2121-=<=⨯ 21111111,23232122-=<<=-⨯⨯ 21111111,343432323-=<<=-⨯⨯ …21111111,201520162015201620152014201520142015-=<<=-⨯⨯ 21111111,201620172016201720162015201620152016-=<<=-⨯⨯ ∴22222111111112,2017123201520162016-<+++++<-… 即22222201611111403120164031,,201712320152016201620172016M <+++++<<…。