第三课时 平行关系
人教版八年级数学下册_2021春《第3课时_平行四边形的判定》教学设计
人教版八下18.1.2平行四边形判定(第3课时)教学设计教学流程图地位与作用本节内容是在学习平行四边形性质与判定后进行的,是平行四边形性质的应用.在研究平行四边形性质时,我们借助三角形的有关知识进行研究,在学习了平行四边形后,也可以利用平行四边形来研究三角形,体现了辩证与联系的思想.三角形中位线定理是三角形中重要的定理,它揭示了连结三角形任意两边中点所得的线段与第三边的位置关系和倍分关系,与相似等内容有着密切的联系,在图形证明和计算中具有广泛的应用.概念解析三角形的中位线平行于第三边并且等于等三边的一半,在同一个题设下,有两个结论,一个结论表明位置关系,另一个结论表明数量关系,两者在这里得到完美呈现.应用这个定理时,不一定同时用到两个结论,有时用到平行关系,有时用到倍分关系,根据具体情况,灵活使用.思想方法三角形的中位线定理的探索和证明,可以完整地体现“合情推理,提出猜想——演绎推理,证明猜想”的几何探究过程,引导学生经历这样的过程,有利于他们体会两种推理功能不同、相辅相成;三角形中位线定理的发现和证明过程体现了归纳、类比、转化等思想方法,核心是通过构造平行四边形,把三角形的问题转化为平行四边形问题.知识类型三角形中位线定理属于原理与规则类知识,需要学生在经历探索、猜想、证明的过程中理解新知识,在联系与应用中将知识转化为能力.教学重点基于以上分析,本课的教学重点是:探索并证明三角形的中位线定理.教学目标解析教学目标1.通过作图、猜想、验证等得出三角形的中位线定理,并能给出证明.2.会利用三角形的中位线定理解决有关问题.目标解析达成目标1的标志是:理解三角形中位线的概念,明确三角形中位线与中线的区别;能通过作图测量等手段猜想三角形中位线与第三边的数量关系与位置关系;能抓住中点这个关键信息,利用对角线互相平分构造平行四边形进行定理的证明.达成目标2的标志是:明确三角形中位线定理的条件与结论;对于题目中存在两个中点的问题能自动联想中位线定理是否可用;在只有一个中点的情况下,根据题目信息(包括结论信息)添加辅助线;能在复杂图形中能敏捷感知中位线并灵活运用三角形中位线定理解决问题.教学问题诊断分析具备的基础学生已经掌握了三角形全等、平行线、平行四边形的性质和判定等知识,在前面的学习中积累了较丰富的几何猜想与论证的经验,并且具备一定的分析思维能力.与本课目标的差距分析八年级学生知识的迁移能力有限,数学思想方法的运用也不够灵活,三角形的中位线定理既要证明线段的位置关系,又要证明线段的倍分关系,对于几何逻辑思维尚不成熟的八年级学生来讲,难度较大.存在的问题三角形的中位线定理的证明的突破口在于添加辅助线,学生在前面的学习中,添加辅助线的练习相对较少,因此,如何适当添加辅助线、是学生的困难所在.应对策略教学中,教师让学生通过观察和动手测量,作出初步猜想,再引导学生去证明猜想,重点分析辅助线是如何想到的.通过问题串的策略让学生意识到所证明的结论既有平行关系,又有数量关系,结合结论与条件的中点信息,联想已学过的知识,在追问与交流中发现构造平行四边形来证明的方法,同时及时回顾与多种证法来深化认识加深体会.教学难点基于以上分析,本课的教学难点是:证明三角形的中位线定理时添加辅助线.教学支持条件分析可印发练习纸以便于学生构造不同的平行四边形添加辅助线,可用实物投影或希沃授课软件展示学生的成果;用ppt展示定理的证明;可用常用统计软件统计显示测评结果;根据测评结果,对没有达标的部分内容、没有达标的部分同学,用点对点技术推送相应的训练资源.教学支持条件分析可印发练习纸以便于学生构造不同的平行四边形添加辅助线,可用实物投影或希沃授课软件展示学生的成果;用ppt展示定理的证明;可用常用统计软件统计显示测评结果;根据测评结果,对没有达标的部分内容、没有达标的部分同学,用点对点技术推送相应的训练资源.教学过程设计课前检测1.四边形ABCD中,对角线AC,BD相交于点O,给出下列四个条件:①AD∥BC;②AD=BC;③OA=OC;④OB=OD,从中任选两个条件,能使四边形ABCD为平行四边形的选法有()A.3种B.4种C.5种D.6种答案:B2.A,B,C是平面内不在同一条直线上的三点,点D是平面内任意一点,若A,B,C,D四点恰能构成一个平行四边形,则在平面内符合这样条件的点D有() A.1个B.2个C.3个D.4个答案:C3.如图,在四边形ABCD中,E是BC边的中点,连结DE并延长,交AB的延长线于点F,AB=BF.添加一个条件,使四边形ABCD是平行四边形.你认为下面四个条件中可选择的是()A.AD=BC B.CD=BF C.∠A=∠C D.∠F=∠CDE答案:D4.四个点A,B,C,D在同一平面内,现有下列四个条件:①AB=CD;②AD=BC;③AB∥CD;④AD∥BC,从这些条件中任选两个能使四边形ABCD是平行四边形的选法有()A.3种B.4种C.5种D.6种答案:B5.如图,在△ABC中,点D、E分别是边AB,BC的中点.若△DBE的周长是6,则△ABC的周长是()A. 8B. 10C. 12D. 14答案:C设计意图:本组课前检测题主要检查学生对于平行四边形判定掌握的情况.前4题是关于平行四边形的判定,最后一题是关于三角形中位线定理的问题,设计此问题的意图是检查学生对于三角形中位线定理的直观感知.这些知识都是本节课学生所需要的,如果学生这些知识不完整,必将影响本节的学习,需要进行适当的复习.新课学习1.掌握概念,明确区别如图1,△ABC中,D,E分别是边AB,AC的中点,连接DE.像DE这样,连接三角形两边中点的线段叫做三角形的中位线.问题1:(1)三角形有几条中位线?(2)三角形的中位线与中线有什么区别?师生活动设计:教师直接提出问题,让学生通过作图,观察得出中位线与中线的区别:三角形的中位线的两端点都是三角形边的中点,而三角形的中线只有一个端点是边的中点,另一个端点是三角形的一个顶点.设计意图:让学生理解三角形中位线的概念,明确三角形中位线与中线的区别.2.提出问题,观察猜想问题2:观察图1,你能发现△ABC的中位线DE与边BC的位置关系吗?度量一下,DE与BC之间有什么数量关系?师生活动设计:教师直接提出问题,让学生通过观察和动手测量DE,BC的长度,作出初步猜想.设计意图:让学生通过观察测量,提出猜想.3.分析问题,寻找思路问题3:要确定猜想正确,必须进行证明,这首先要对照图形写出已知、求证.请试一试!(已知:在△ABC中,D、E分别是AB、AC的中点.求证:DE∥BC且DE=BC)追问1:怎样分析证明思路?师生活动设计:教师引导学生分析,判断两直线平行,可以用平行线的判定,也可以用平行四边形性质,由于已知条件是线段关系(中点导致出现线段相等),而从线段相等出发证线段平行,应该用平行四边形判定,图中没有平行四边形,因此需要构造一个平行四边形.另外证明线段的倍分可以进行截长或补短.根据以上分析,让学生构造不同的平行四边形如图2(1)---(5).设计意图:让学生运用化三角形问题为平行四边形问题的思想,构造出不同的联系条件和结论的几何模型——平行四边形,形成不同的解题方案.追问2:请各自试一试,上面的五种方案是否都可行,如可行,说出辅助线的画法,如不可行,请说明原因.师生活动设计:学生在独立思考的基础上分小组讨论,教师进行必要的启发.设计意图:在上述方案中,图2中的(1)(2)(3)无法实施,因为根据现有的知识无法判定平行四边形.而方案(4)(5)可行.让学生经历从失败到成功的过程,让学生体会数学问题的解决过程伴随着挫折,需要持之以恒地理性思考.4.推理论证,形成定理问题4:请用适当的方法证明猜想.师生活动设计1:教师引导学生针对方案4,5进行证明.方案4有以下两种证明方法(方案5证明方法与方案4相类似).方法1:如图3,延长DE到F,使EF=DE,连接CF,由△ADE≌△CFE,可得AD∥FC,且AD=FC,因此有BD∥FC,BD=FC,所以四边形BCFD是平行四边形.所以DF∥BC,DF=BC,因为DE=DF,所以DE∥BC且DE=BC.(也可以过点C作CF∥AB交DE的延长线于F点,证明方法与上面大体相同)方法2:如图4,延长DE到F,使EF=DE,连接CF、CD和AF,又AE=EC,所以四边形ADCF是平行四边形.所以AD∥FC,且AD=FC.因为AD=BD,所以BD∥FC,且BD=FC.所以四边形BCFD是平行四边形.所以DF∥BC,且DF=BC,因为DE=DF,所以DE∥BC且DE=BC.问题5 :请用自己的语言说出得到的结论.师生活动设计:教师引导学生用文字语言和符号语言描述定理内容:(1)三角形的中位线平行于第三边,并且等于第三边的一半.(2)结合图形给出数学表达形式:在△ABC中,D、E分别是边AB、AC的中点,∴DE∥BC,且DE=BC .设计意图:用演绎推理证明结论,培养学生严谨的科学态度.由学生讨论得到添加辅助线的方法,提升学生分析与解决问题的能力.目标检测1:如图5,△ABC中,∠C=90°,∠A=30°,AB=8,D,E,F,分别是边BC,AC,AB的中点,斜边上的中线是线段_______,直角△ABC的中位线分别是____________,∠CED=______°,四边形AEDF的周长为__________.设计意图:辨别三角形中位线与中线的区别,能直接应用中位线定理.如果学生能够顺利完成,则进行例1的教学,如果存在问题,则引导学生结合图形再次理解三角形中位线定理.5.尝试运用,掌握定理例1 已知:在四边形ABCD中,E、F、G、H分别是AB、BC、CD、DA的中点.求证:四边形EFGH是平行四边形.师生活动设计:教师引导学生分析,因为已知点E、F、G、H分别是线段的中点,可以设法应用三角形中位线性质找到四边形EFGH的边之间的关系.由于四边形的对角线可以把四边形分成两个三角形,所以添加辅助线,连接AC或BD,构造“三角形中位线”的基本图形后,此题便可得证.证明:如图6,连结AC,△DAC中,∵AH=HD,CG=GD,∴HG∥AC,HG=AC(三角形中位线性质).同理EF∥AC,EF=AC.∴HG∥EF,且HG=EF.∴四边形EFGH是平行四边形.设计意图:例1是三角形中位线性质与平行四边形的判定的综合应用,通过巧妙构造三角形,并运用三角形的中位线定理来解题,体会三角形中位线定理的魅力,巩固新知识.可以借助与多媒体或教具把辅助线的添加方法讲清楚,证明完成后,可得出一般认识:顺次连结四边形四条边的中点,所得的四边形是平行四边形.这个结论今后也会经常会用到.目标检测2:如图7,点D、E、F分别是△ABC的边AB、BC、CA的中点.求证:(1)∠A=∠DEF;(2)四边形AFED的周长等于AB+AC.设计意图:能运用三角形中位线定理以及平行四边形的判定解决有关问题.如果学生能顺利完成,则展开追问1,如果存在困难,则引导学生关注“点D、E、F分别是△ABC的边AB、BC、CA的中点.”这个条件,从而应用三角形中位线定理解决问题.追问1:图中有哪些平行四边形?设计意图:通过找平行四边形让学生进一步巩固新知识.课堂小结问题6:通过本节课的研究,你感悟到什么?还有什么疑惑?师生活动设计:让学生回顾课堂中学到的知识,并畅谈由此受到的启发,教师在倾听学生的回答的同时注意适时的归纳总结.设计意图:学生自主小结,提高学生的数学概括表达能力,增强学生学习过程中的反思意识.有助于学生在归纳过程中把所学的知识条理化、系统化.目标检测设计1.如图,A,B两点被池塘隔开,在AB外选一点C,连接AC和BC,并分别找出AC 和BC的中点M,N,如果测得MN=20m,那么A,B两点间的距离是____m.2.如图,在△ABC中,点D,E分别是AB,AC的中点,∠A=50°,∠ADE=60°,则∠C的度数为()A.50°B.60°C.70°D.80°3.一个三角形的周长是120cm,过三角形各边的中点作对边的平行线,则这三条平行线所组成的三角形的周长是_______cm.4.如图,AD是△ABC的中线,EF是中位线. 求证:AD与EF互相平分.5.已知:如图,E、F、G、H分别是AB、BC、CD、DA的中点.求证:四边形EFGH 是平行四边形.。
第七章 第三节 空间中的平行关系
课时规范练A组基础对点练1.(2019·益阳市、湘谭市调研)下图中,G,N,M,H分别是正三棱柱(两0底面为正三角形的直棱柱)的顶点或所在棱的中点,则表示直线GH,MN是异面直线的图形有()A.①③B.②③C.②④D.②③④解析:由题意,可知题图①中,GH∥MN,因此直线GH与MN共面;题图②中,连接GN,G,H,N三点共面,但M平面GHN,因此直线GH与MN异面;题图③中,连接MG,则GM∥HN,因此直线GH与MN共面;题图④中,连接GN,G,M,N三点共面,但H平面GMN,所以直线GH 与MN异面.故选C.答案:C2.如图所示,在下列四个正方体中,A,B为正方体的两个顶点,M,N,Q为所在棱的中点,则在这四个正方体中,直线AB与平面MNQ不平行的是()解析:对于选项A,设正方体的底面对角线的交点为O(图略),连接OQ,则OQ∥AB,因为OQ与平面MNQ有交点,所以AB与平面MNQ有交点,即AB与平面MNQ不平行,故选A.3.(2019·银川模拟)已知m,n是两条不同的直线,α,β是两个不同的平面,若m⊥α,n⊥β,且β⊥α,则下列结论一定正确的是()A.m⊥n B.m∥nC.m与n相交D.m与n异面解析:若β⊥α,m⊥α,则直线m与平面β的位置关系有两种:mβ或m ∥β.当mβ时,又n⊥β,所以m⊥n;当m∥β时,又n⊥β,所以m⊥n,故m ⊥n,故选A.答案:A4.(2019·济宁模拟)如图所示,在三棱柱ABC-A1B1C1中,侧棱AA1⊥底面A1B1C1,底面三角形A1B1C1是正三角形,E是BC的中点,则下列叙述正确的是()A.CC1与B1E是异面直线B.AC⊥平面ABB1A1C.AE⊥B1C1D.A1C1∥平面AB1E解析:对于A,CC1与B1E均在侧面BCC1B1内,又两直线不平行,故相交,A错误;对于B,AC与平面ABB1A1所成的角为60,所以AC不垂直于平面ABB1A1,故B错误;对于C,AE⊥BC,BC∥B1C1,所以AE⊥B1C1,故C正确;对于D,AC与平面AB1E有公共点A,AC∥A1C1,所以A1C1与平面AB1E相交,故D错误.答案:C5.已知互相垂直的平面α,β交于直线l,若直线m,n满足m∥α,n⊥β,则() A.m∥l B.m∥nC.n⊥l D.m⊥n解析:因为α∩β=l,所以lβ,又n⊥β,所以n⊥l.故选C.答案:C6.(2019·重庆六校联考(一))设a,b是两条不同的直线,α,β是两个不同的平面,则α∥β的一个充分条件是()A.存在一条直线a,a∥α,a∥βB.存在一条直线a,aα,a∥βC.存在两条平行直线a,b,aα,bβ,a∥β,b∥αD.存在两条异面直线a,b,aα,bβ,a∥β,b∥α解析:对于选项A,若存在一条直线a,a∥α,a∥β,则α∥β或α与β相交,若α∥β,则存在一条直线a,使得a∥α,a∥β,所以选项A的内容是α∥β的一个必要条件;同理,选项B,C的内容也是α∥β的一个必要条件而不是充分条件;对于选项D,可以通过平移把两条异面直线平移到一个平面中,成为相交直线,则有α∥β,所以选项D的内容是α∥β的一个充分条件.故选D.答案:D7.(2019·宜昌调研)如图所示,在棱长均相等的四棱锥P-ABCD中,O为底面正方形的中心,M,N分别为侧棱P A,PB的中点,有下列结论:①PC∥平面OMN;②平面PCD∥平面OMN;③OM⊥P A;④直线PD与MN所成角的大小为90.其中正确结论的序号是________.(写出所有正确结论的序号)解析:如图所示,连接AC,易得PC∥OM,所以PC∥平面OMN,结论①正确.同理PD∥ON,所以平面PCD∥平面OMN,结论②正确.由于四棱锥的棱长均相等,所以AB2+BC2=P A2+PC2=AC2,所以PC⊥P A,又PC∥OM,所以OM⊥P A,结论③正确.由于M,N分别为侧棱P A,PB的中点,所以MN∥AB,又四边形ABCD为正方形,所以AB ∥CD,又三角形PDC为等边三角形,所以∠PDC=60,所以直线PD与MN所成的角即∠PDC,故④错误.故正确的结论为①②③.答案:①②③8.如图所示,四棱锥P ABCD中,四边形ABCD为正方形,PD⊥平面ABCD,PD=DC=2,点E,F分别为AD,PC的中点.(1)证明:DF∥平面PBE;(2)求点F到平面PBE的距离.解析:(1)证明:取PB的中点G,连接EG,FG,则FG∥BC,且FG=12BC,∵DE∥BC且DE=12BC,∴DE∥FG且DE=FG,∴四边形DEGF为平行四边形,∴DF∥EG,又DF平面PBE,EG平面PBE,∴DF∥平面PBE.(2)由(1)知DF∥平面PBE,∴点D到平面PBE的距离与F到平面PBE的距离是相等的,故转化为求点D到平面PBE的距离,设为d.连接BD.∵V D PBE=V P BDE,∴13S△PBE·d=13S△BDE·PD,由题意可求得PE=BE=5,PB=23,∴S△PBE =12×23×(5)2-⎝⎛⎭⎪⎫2322=6,又S△BDE=12DE·AB=12×1×2=1,∴d=6 3.9.(2019·昆明七校模拟)一个正方体的平面展开图及该正方体直观图的示意图如图所示,在正方体中,设BC的中点为M,GH的中点为N.(1)请将字母F,G,H标记在正方体相应的顶点处(不需说明理由);(2)证明:直线MN∥平面BDH;(3)过点M,N,H的平面将正方体分割为两部分,求这两部分的体积比.解析:(1)点F,G,H的位置如图所示.(2)证明:连接BD,设O为BD的中点,连接OM,OH,AC,BH,MN. ∵M,N分别是BC,GH的中点,∴OM∥CD,且OM=12CD,NH∥CD,且NH=12CD,∴OM∥NH,OM=NH,则四边形MNHO是平行四边形,∴MN∥OH,又MN平面BDH,OH平面BDH,∴MN∥平面BDH.(3)由(2)知OM∥NH,OM=NH,连接GM,MH,过点M,N,H的平面就是平面GMH,它将正方体分割为两个同高的棱柱,高都是正方体的棱长,∴体积比等于底面积之比,即3∶1.B组能力提升练10.(2019·荆州模拟)如图所示,在三棱柱ABC-A′B′C′中,点E,F,H,K 分别为AC′,CB′,A′B′,B′C′的中点,G为△ABC的重心.从K,H,G,B′中取一点作为P,使得该棱柱恰有2条棱与平面PEF平行,则P 为()A.K B.HC.G D.B′解析:取A′C′的中点M,连接EM,MK,KF,EF,则EM,得四边形EFKM为平行四边形,若P=K,则AA′∥BB′∥CC′∥KF,故与平面PEF平行的棱超过2条;HB′∥MK⇒HB′∥EF,若P=H或P=B′,则平面PEF与平面EFB′A′为同一平面,与平面EFB′A′平行的棱只有AB,不满足条件;连接BC′,则EF∥A′B′∥AB,若P=G,则AB,A′B′与平面PEF平行.故选C.答案:C11.(2019·洛阳统考(一))正方形ABCD和等腰直角三角形DCE组成如图所示的梯形,M,N分别是AC,DE的中点,将△DCE沿CD折起(点E始终不在平面ABCD内),则下列说法一定正确的是()A.MN∥平面BCEB.在折起过程中,一定存在某个位置,使MN⊥ACC.MN⊥AED.在折起过程中,不存在某个位置,使DE⊥AD解析:折起后的图形如图所示,取CD的中点O,连接MO,NO,则在△ACD中,M,O分别是AC,CD的中点,∴MO∥AD∥BC,同理NO∥CE,又BC∩CE=C,∴平面MON∥平面BCE,∴MN∥平面BCE,故A正确;易知MO⊥CD,NO⊥CD,又MO∩NO=O,∴CD⊥平面MNO,∴MN⊥CD,若MN⊥AC,又AC∩CD=C,∴MN⊥平面ABCD,∴MN⊥MO,又MO=12AD=12EC=NO,∴MN不可能垂直于MO,故MN⊥AC不成立,故B错误;取CE 的中点Q,连接MQ,则在△ACE中,M,Q分别是AC,CE的中点,∴MQ∥AE,由图知MQ与MN不可能始终垂直,故C错误,当平面CDE⊥平面ABCD时,又平面CDE∩平面ABCD=CD,AD⊥CD,AD平面ABCD,∴AD⊥平面CDE,∴AD⊥DE,故D错误.答案:A12.下列命题正确的是()A.若两条直线和同一个平面平行,则这两条直线平行B.若一条直线与两个平面所成的角相等,则这两个平面平行C.若一条直线与两个相交平面都平行,则这条直线与这两个平面的交线平行D.若两个平面垂直于同一个平面,则这两个平面平行解析:A选项中两条直线可能平行也可能异面或相交;对于B选项,如图所示,在正方体ABCD-A1B1C1D1中,平面ABB1A1和平面BCC1B1与B1D1所成的角相等,但这两个平面垂直;D选项中两平面也可能相交.C正确.答案:C13.(2019·杭州模拟)如图所示,在正方体ABCD-A1B1C1D1中,AB=2,E为AD 的中点,点F在CD上,若EF∥平面AB1C,则EF=________.解析:根据题意,因为EF∥平面AB1C,所以EF∥AC.又E是AD的中点,所以F是CD的中点.因为在Rt△DEF中,DE=DF=1,故EF= 2.答案: 214.(2019·唐山统一考试)在三棱锥P ABC中,PB=6,AC=3,G为△P AC的重心,过点G作三棱锥的一个截面,使截面平行于直线PB和AC,则截面的周长为________.解析:过点G作EF∥AC,分别交P A、PC于点E、F,过E、F分别作EN ∥PB、FM∥PB,分别交AB、BC于点N、M,连接MN(图略),则四边形EFMN是平行四边形,所以EF3=23,即EF=MN=2,FMPB=FM6=13,即FM=EN=2,所以截面的周长为2×4=8.答案:815.如图所示,四棱锥P ABCD的底面是边长为8的正方形,四条侧棱长均为217 .点G,E,F,H分别是棱PB,AB,CD,PC上共面的四点,平面GEFH⊥平面ABCD,BC∥平面GEFH .(1)证明:GH∥EF;(2)若EB=2,求四边形GEFH的面积.解析:(1)证明:因为BC∥平面GEFH,BC平面PBC,且平面PBC∩平面GEFH=GH,所以GH∥BC.同理可证EF∥BC,因此GH∥EF.(2)如图所示,连接AC,BD交于点O,BD交EF于点K,连接OP,GK.因为P A=PC,O是AC的中点,所以PO⊥AC,同理可得PO⊥BD.又BD∩AC=O,且AC,BD都在底面内,所以PO⊥底面ABCD.又平面GEFH⊥平面ABCD,且PO平面GEFH,所以PO∥平面GEFH.因为平面PBD∩平面GEFH=GK,所以PO∥GK,且GK⊥底面ABCD,从而GK⊥EF,所以GK是梯形GEFH的高.由AB=8,EB=2,得EB∶AB=KB∶DB=1∶4,从而KB=14DB=12OB,即K为OB的中点.由PO∥GK得GK=12PO,即G是PB的中点,且GH=12BC=4.由已知可得OB=42,PO=PB2-OB2=68-32=6,所以GK=3.故四边形GEFH的面积S=GH+EF2·GK=4+82×3=18.。
冀教版四年级数学上册教案-第三课时平行线
7.3 平行线⏹教学内容教材第82~84页平行线⏹教学提示平行线的学习,教材安排了四个活动。
活动一,设计了“挂装饰画”的活动。
师生合作把一幅装饰画挂在墙上,并让学生思考怎样把装饰画挂端正?活动目的是结合实际例子,使学生体会要挂的端正,装饰画上的两棵钉子与房顶线之间的距离应一样高。
接着试一试,通过把房顶线看作一条直线,把两个钉了看作两个点,画出一条直线,引出平行线的概念。
活动二,教材设计了两组直线,先让学生想象一下,每组中两条直线向两个方向无限延伸,会出现什么结果?在交流学生想象结果的基础上概括出平行线的概念。
关于平行线的概念中“同一平面内”怎样理解,教师不作理论上的解释,可通过实际例子,让学生了解如不同方向的两支铅笔等。
然后教材出示了生活中几种常见的可以看做平行线的物体,借助实物来理解平行线。
活动三,教材呈现了一组平行线,通过让学生在平行线之间任意画出几条垂线,并测量出它们的长度等活动发现平行线之间所有垂线的长度都相等。
活动四,画平行线。
教材出示了方格纸上画平行线和沿着直尺的两个边缘来画平行线。
最后试一试借助平行线的性质来说明长方形和正方形的对边分别平行。
⏹教学目标知识与能力1、了解同一平面上两条直线的平行关系;2、知道平行线之间所有垂线的长度都相等;3、能借助方格纸或直尺画出一组平行线。
过程与方法1、结合生活情境,经历了解两条直线平行以及画平行线的过程,会判断一组直线是不是平行线。
情感、态度与价值观1、对周围环境中与平行线有关的事物有好奇心,在尝试用自己的方法画平行线的活动中,获得成功的体验。
⏹重点、难点重点从生活情境中抽象并建立两条直线平行的表象,知道两条平行线之间所有垂线的长度都相等。
难点用平行线之间所有垂直线段都相等说明长方形、正方形的对边分别平行。
⏹教学准备教师准备:多媒体教学课件、直尺、三角尺、长方形、正方形、方格纸学生准备:直尺、三角尺、方格纸、长方形、正方形⏹教学过程(一)新课导入复习引入。
高三数学第七章第3课时优质课件
解析:选 D.条件 A 中,增加 l 与 m 相交才能判断出 α∥β,A 错.由条件 B、C 都有可能 α 与 β 相交,排除 B 和 C.而垂直 于同一直线的两个平面平行,D 成立.
目录
4. (2013· 安康模拟)在正方体 ABCD-A1B1C1D1 中, 是 DD1 E 的中点,则 BD1 与平面 ACE 的位置关系为________.
目录
跟踪训练 1.如图,四边形 ABCD 是平行四边形,点 P 是平面 ABCD 外一点,M 是 PC 的中点,在 DM 上取一点 G,过 G 和 AP 作平面交平面 BDM 于 GH. 求证:AP∥GH.
目录
证明:如图,连接 AC 交 BD 于点 O,连接 MO, ∵四边形 ABCD 是平行四边形, ∴O 是 AC 中点, 又 M 是 PC 的中点, ∴AP∥OM. 则有 PA∥平面 BMD.(根据直线和平面平行的判定定理) ∵平面 PAHG∩平面 BMD=GH, ∴PA∥GH. (根据直线和平面平行的性质定理)
目录
【规律小结】 (1)利用定义;
判定平面与平面平行的方法:
(2)利用面面平行的判定定理; (3)利用面面平行的判定定理的推论; (4)面面平行的传递性(α∥β,β∥γ⇒α∥γ);
(5)利用线面垂直的性质(l⊥α,l⊥β⇒α∥β).
目录
跟踪训练 2. (2013· 南昌调研)如图,在直四棱柱 ABCD-A1B1C1D1 中, 底面是正方形, F、 分别是棱 B1B, 1D, 的中点. E、 G D DA 求 证: (1)平面 AD1E∥平面 BGF; (2)D1E⊥AC.
目录
【解】 当 Q 为 CC1 的中点时, 平面 D1BQ∥平面 PAO.证明如下: ∵Q 为 CC1 的中点,P 为 DD1 的中点, ∴QB∥PA. ∵P,O 分别为 DD1,DB 的中点, ∴D1B∥PO. 又∵D1B 平面 PAO,PO 平面 PAO, QB 平面 PAO,PA 平面 PAO, ∴D1B∥平面 PAO,QB∥平面 PAO, 又 D1B∩QB=B,D1B、QB ∴平面 D1BQ∥平面 PAO. 平面 D1BQ,
第03讲 空间直线、平面的平行 (精讲)-1(含答案解析)
第03讲空间直线、平面的平行(精讲)-1第03讲空间直线、平面的平行(精讲)目录第一部分:知识点精准记忆第二部分:课前自我评估测试第三部分:典型例题剖析题型一:直线与平面平行的判定与性质角度1:直线与平面平行的判定角度2:直线与平面平行的性质题型二:平面与平面平行的判定与性质角度1:平面与平面平行的判定角度2:平面与平面平行的性质题型三:平行关系的综合应用第四部分:高考真题感悟知识点一:直线与平面平行1、直线与平面平行的定义直线l 与平面α没有公共点,则称直线l 与平面α平行.2、直线与平面平行的判定定理如果平面外一条直线与此平面内的一条直线平行,那么该直线与此平面平行符号表述:a b a a b ααα⊄⎫⎪⊂⇒⎬⎪⎭3、直线与平面平行的性质定理如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线就和交线平行符号表述:a αP ,a β⊂,b αβ= ⇒a b知识点二:平面与平面平行1、平面与平面平行的定义两个平面没有公共点2、平面与平面平行的判定定理如果一个平面内的有两条相交直线平行于另一个平面,那么这两个平面平行.符号表述:,////,//a b a b P a b ββαβαα⊂⊂⎫⎪⋂=⇒⎬⎪⎭3、平面与平面平行的性质定理3.1性质定理两个平行平面,如果另一个平面与这两个平面相交,那么两条交线平行.符号语言////a a bb αβαγβγ⎫⎪⋂=⇒⎬⎪⋂=⎭3.2性质两个平面平行,则其中一个平面内的直线平行与另一平面符号语言:,a a αβαβ⊂⇒∥∥(2022·全国·高一课时练习)1.判断正误.(1)若平面//α平面β,l ⊂平面β,m ⊂平面α,则lm .()(2)夹在两平行平面之间的平行线段相等.()(2022·全国·高一课时练习)2.已知长方体ABCD A B C D -'''',平面α 平面ABCD EF =,平面α 平面A B C D E F ''''''=,则EF 与E F ''的位置关系是A .平行B .相交C .异面D .不确定(2022·全国·高一课时练习)3.在正方体1111F EFG E G H H -中,下列四对平面彼此平行的一对是A .平面11E FG 与平面1EGH B .平面1FHG 与平面11F H G C .平面11F H H 与平面1FHE D .平面11E HG 与平面1EH G (2022·全国·高一课时练习)4.若一个平面内的两条直线分别平行于另一个平面内的两条直线,则这两个平面的位置关系是()A .一定平行B .一定相交C .平行或相交D .以上判断都不对(2022·全国·高一课时练习)5.直线a ∥平面α,平面α内有n 条直线交于一点,那么这n 条直线中与直线a 平行的直线()A .至少有一条B .至多有一条C .有且只有一条D .不存在(2022·全国·高二课时练习)6.若平面//α平面β,直线a α⊂,则a 与β的位置关系是____________.题型一:直线与平面平行的判定与性质角度1:直线与平面平行的判定典型例题例题1.(2022·四川绵阳·高二期末(理))7.如图,三棱柱111ABC A B C -的侧棱与底面垂直,2AC =,BC =,4AB =,12AA =,点D 是AB 的中点(1)求证:1//AC 平面1CDB ;(2)求直线1AC 与直线1CB 所成角的余弦值.例题2.(2022·四川凉山·高一期末(文))8.已知直三棱柱ABC A B C '''-中,AA C C ''为正方形,P ,O 分别为AC ',BC 的中点.(1)证明:PO ∥平面ABB A '';(2)若ABC 是边长为2正三角形,求四面体B AOC '-的体积.题型归类练(2022·四川成都·高一期末(理))9.在四棱锥P ABCD -中,四边形ABCD 为矩形,平面ABCD ⊥平面PAB ,点,E F 分别在线段,CB AP 上,且CE EB =,=AF FP .求证://EF 平面PCD .(2022·重庆市第七中学校高一期末)10.如图,正三棱柱111ABC A B C -的所有棱长均为2,E 为线段11B C 的中点,F 为正方形11ACC A 对角线的交点.(1)求证:EF ∥面1B AC ;(2)求三棱锥111C B A C -的体积.(2022·河北石家庄·高一期末)11.如图,在直三棱柱111ABC A B C -中,AC BC ==90ACB ∠=︒.12AA =,D 为AB 的中点.(1)求证:1AC ∥平面1B CD ;(2)求异面直线1AC 与1B C 所成角的余弦值.(2022·四川南充·高二期末(文))12.如图,四棱锥P ABCD -的底面是正方形,PA ⊥平面ABCD ,E ,F 分别为AB ,PD 的中点,且2PA AD ==.(1)求证:AF ∥平面PEC ;(2)求三棱锥C PEF -的体积.角度2:直线与平面平行的性质典型例题例题1.(2022·山东·济南市章丘区第四中学高一阶段练习)13.如图,四边形ABCD 为长方形,PD ⊥平面ABCD ,2PD AB ==,4=AD ,点E 、F 分别为AD 、PC 的中点.设平面PDC 平面PBE l =.(1)证明://DF 平面PBE ;(2)证明://DF l ;(3)求三棱锥P BDE -的体积.例题2.(2022·吉林·双辽市第一中学高三期末(文))14.如图,三棱锥-P ABC 中,AC ,BC ,PC 两两垂直,AC BC =,E ,F 分别是AC ,BC 的中点,ABC 的面积为8,四棱锥P ABFE -的体积为4.(1)若平面PEF 平面=PAB l ,求证://EF l ;(2)求三棱锥-P ABC 的表面积.题型归类练(2022·重庆巴蜀中学高二期末)15.如图所示,在四棱锥P ABCD -中,底面是直角梯形,//AD BC ,90ADC ∠= ,AC和BD 相交于点N ,面PAC ⊥面ABCD ,22BC AD ==,1CD =,2PA PC ==.在线段PD 上确定一点M ,使得//PB 面ACM ,求此时PM MD 的值.(2022·安徽池州·高一期末)16.在四棱锥V ABCD -中,底面ABCD 为平行四边形,BC ⊥平面VAB ,VA VB ⊥,设平面VAB 与平面VCD 的公共直线为l .写出图中与l 平行的直线,并证明。
北师版小学四年级上册数学教案 第二单元 线与角 第3课时 平移与平行
第二单元线与角第3课时平移与平行教学内容:平移与平行(第20-21页)教学目标:1、借助实际情境和操作活动,感受平移前后的位置关系,认识平行线。
2、会用三角尺和直尺画平行线,培养学生的绘画能力。
3、感受教学的价值,进一步参透生活与数学的密切联系的思想。
教学重难点:1、认识平行线,体会平行线的特征,会画平行线。
2、在一些斜线中寻找平行关系,在立体图形中寻找平行线。
教法与学法:教法:创设情境,质疑引导。
学法:观察发现,动手操作。
教具准备:小棒,长方形纸,方格纸,正方体,三角尺与直尺。
平移与平行同一平面内,不相交的两条直线互相平行。
两条直线间的距离相等,永不相交。
一、激趣导入(课件出示:教材第20页推拉门),在我们漂亮的教室里,见过这样的东西吗?现在老师把推拉门上面的两个门框画下来,你们看,这其实就是我们前面学习的什么线?线段。
这两条线之间的距离一样吗?(一样。
)你们观察得真仔细。
现在我还要考考你们的想象力,请闭上眼睛,如果我们把这两条直线无限延长,穿过了我们的教学楼,它们能相交吗?两条直线之间的距离一样,而且延长后又永远不相交,像这样的两条直线,我们就叫它们是平行线。
二、自主学习如何去判断哪些直线是平行线呢?它有什么特点呢?出示格子图、铅笔。
1.感知特征。
请看,我手里拿的是什么?(铅笔)现在我先将这支铅笔放在格子图上,用颜色笔把铅笔的位置标注出来,然后把铅笔向右移动3格,再看看现在铅笔的位置和原来的位置发生了什么变化(向右移动了3格),最后我们也用颜色笔把铅笔现在的位置标注出来。
刚才的过程,其实就是我们以前学习过的平移。
那我们到底怎样从平移中得到直线间的平行关系呢?(板书:平移与平行)我们接着来研究。
现在我们在铅笔原来的位置上找3个点,第一个点平移了3格,第二个点也平移了3格,那么这个点呢?(师指着第3个点)也就是这两条直线之间的宽度怎么样?(一样、相等)宽度一样,我们换个词就说它们的距离相等。
想象一下,如果我们把它们向上或向下延长,会相交吗?(不会)所以像这样的两条直线,它们之间的距离相等,而且永不相交,我们就说这两条直线互相平行。
第3课时平行线及其性质七年级数学下册考点知识清单+例题讲解+课后练习(人教版)(原卷版)
第3课时——平行线及其性质(答案卷)知识点一:平行线:1.平行线的定义:在同一平面内,的两条直线叫做平行线。
若直线a平行于直线b,则记作,读作。
注意:一定要在同一平面内。
且一定要时直线。
2.平行线的画法:过直线外一点画直线与已知直线平行的具体步骤:①将直角三角板的一条直角边与已知直线重合。
②将直尺与三角尺的另一直角边紧靠在一起。
③固定直尺不变,平移三角尺,使三角尺原来与已知直线重合的直角边与已知点重合。
④沿着三角尺该直角边画直线。
【类型一:确定平行线】1.在同一个平面内,不重合的两条直线的位置关系是()A.平行B.相交C.平行或相交D.无法确定2.在长方体中,对任意一条棱,与它平行的棱共有()A.1条B.2条C.3条D.4条3.观察如图所示的长方体,与棱AB平行的棱有几条()A.4B.3C.2D.1【类型二:作图】4.如图所示,在∠AOB内有一点P.(1)过P画l1∥OA;(2)过P画l2∥OB;(3)用量角器量一量l1与l2相交的角与∠O的大小有怎样关系?5.在下面的方格纸中经过点C 画与线段AB 互相平行的直线l 1,再经过点B 画一条与线段AB 垂直的直线l 2.知识点二:平行公理及其推论:1. 平行公理:经过直线外一点, 条直线与这条直线平行。
有且只有:存在且唯一。
2. 平行公理的推论:如果两条直线都与第三条直线平行,那么这两条直线也互相平行。
即若c b b a ∥,∥, 则a c 。
3. 垂直于同一直线的两直线平行:若c a b a ⊥⊥,,则b c 。
【类型一:对平行公理及其推论的判断理解】6.下列说法正确的是( )A .垂直于同一条直线的两直线互相垂直B .经过一点有且只有一条直线与已知直线平行C .如果两条直线被第三条直线所截,那么同位角相等D .从直线外一点到这条直线的垂线段的长度,叫做点到直线的距离7.下列说法正确的是( )A .a 、b 、c 是直线,若a ⊥b ,b ∥c ,则a ∥cB .a 、b 、c 是直线,若a ⊥b ,b ⊥c ,则a ⊥cC .a 、b 、c 是直线,若a ∥b ,b ⊥c ,则a ∥cD .a 、b 、c 是直线,若a ∥b ,b ∥c ,则a ∥c8.同一平面内有四条直线a、b、c、d,若a∥b,a⊥c,b⊥d,则c、d的位置关系为()A.互相垂直B.互相平行C.相交D.没有确定关系9.下列说法中,正确的个数为()(1)过一点有无数条直线与已知直线平行(2)如果a∥b,a∥c,那么b∥c(3)如果两线段不相交,那么它们就平行(4)如果两直线不相交,那么它们就平行A.1个B.2个C.3个D.4个10.下列说法不正确的是()A.过马路的斑马线是平行线B.100米跑道的跑道线是平行线C.若a∥b,b∥d,则a⊥dD.过直线外一点有且只有一条直线与已知直线平行知识点三:平行线的性质:1.两直线平行,同位角相等:两条平行线被第三条直线所截,同位角相等。
原创1:1.2.2 空间中的平行关系(三)(讲授式)
C'
观察:观察右边的长方体,平面B′D′与平面BD
平行,平面ABCD内的直线BD与平面B′D′内的直线
有哪些位置关系呢?它们满足什么条件时平行?
D'
A'
B'
C
B
D
A
观察猜想:平面B′D′与平面BD内的直线只有两种位置关系:平行或异面.
平面B′D′∩平面CD′ = C′D′ ,平面BD∩平面CD′=CD,由长方体的性质可知,
平面相交.
④夹在两个平行平面间的所有平行线段相等.
第
一
章
立
体
几
何
初
步
例2 如图,在长方体 − ′′′′中,
求证:平面′//平面’’.
分析:只要证明一个平面内有两条相交直线
和另一个平面平行即可.
− ′ ′ ′ ′ 是正方体,
证明: ∵
∴AB//DC//D’C’且AB=DC=D’C’.
⟹ 是平行四边形.
⟹ BC′//AD′.
线平行的转化策略.
课堂练习
一.判断下列命题的真假;
1.如果两个平面不相交,那么它们就没有共公点;
2.如果一个平面内的两条直线平行于另一个平面,那么这两个平面平行;
3.如果一个平面内的任何一条直线都平行于另一个平面,那么这两个平面平行;
4.已知两个平行平面中的一个平面内有一条直线,
则在另一个平面内有且只有一条直线与已知直线平行;
面面平行⇌线线平行
典例精讲
平面与平面平行判定定理的应用
例5 已知三个平行平面α、β、γ与两条异面直线l,m分别交于
A、B、C 和D、E、F.求证:
2022-2023学年七年级数学下册课件之平行线的性质 第三课时(人教版)
∴∠1 = ∠2 (两直线平行,同位角相等). ∴ ∠2= ∠1 = 90° (等量代换).
∴a⊥c (垂直的定义).
总结
证明是从条件出发,经过一步步推理,最后推出结论的过 程.证明的每一步推理都要有根据,不能“想当然”,这些根据 可以是已知条件,也可以是定义、公理,已学过的定理.在初学 证明时要把根据写在每一步推理后面的括号里,如本例中的“已 知”“等量代换”等.
1 在下面的括号内,填上推理的根据.
如图,∠A+∠B=180°,求证∠C+∠D=180°. 证明:∵∠A+∠B=180°, ∴AD∥BC( 同旁内角互补,两直线平行 ). ∴ ∠C+∠D=180°(两直线平行,同旁内角互补) .
B
C
2 命题“同位角相等”是真命题吗?如果是,说出理由; 如果不是,请举出反例.
①两直线平行,同旁内角互补;②相等的角是对
顶角;③等角的余角相等;④对顶角相等.
A.1个
B.2个
C.3个
D.4个
5 能说明命题“对于任何实数a,|a|>-a”是假
命题的一个反例可以是( A )
A.a=-2
B.a= 1
3
C.a=1
D.a=2
把“同旁内角互补”改写为“如果……那么……”的形式. 解: 如果两个角是同旁内角,那么这两个角互补. 易错点:改写命题时,语句不通顺,命题补充不完整.
(2)命题改写的方法:先搞清命题的题设(已知事项)部 分和结论部分;再将其改写为“如果……那么……” 的形式:“如果”后面跟的是已知事项,“那么” 后面跟的是由已知事项推出的事项(即结论).
1 指出下列命题的题设和结论:
(1)如果AB⊥CD,垂足为O,那么∠AOC=90°;
小学三年级数学上册第三课时教案详解
小学三年级数学上册第三课时教案详解数学是我们学习的一门非常重要的科目,也是许多同学感到困难的学科之一。
但是,如果我们能找到一些简单而又有效的学习方法,那么数学也会变得更加简单易懂。
在小学三年级数学上册中,第三课时就是一门非常重要的课程。
那么,这门课程的教学内容和教学方法是什么呢?在下面的文章里,就让我们一起来详细了解一下吧!一、教学目标1.认识小学里常见的几何图形,熟练掌握平行线和垂直线的定义和判断方法。
2.通过观察、比较和实践,培养学生的观察能力、比较能力和判断能力。
3.引导学生敢于尝试、勇于提问、大胆探究、勇于创造。
二、教学内容1.复习正方形和长方形的定义和性质,引入三角形和圆形的概念。
2.认识平行线和垂直线,掌握它们的定义和判断方法。
3.识别命题中的关键词,并初步理解几何证明的方法。
4.通过实践,综合运用所学知识,探究几何图形之间的关系。
三、教学重点和难点1.教学重点:平行线和垂直线的定义和判断方法。
2.教学难点:命题中的关键词及其所表达的含义。
四、教学方法和教学手段1.案例教学法通过讲解一些实际案例来引出知识点,从而更加生动形象地传授知识。
2.趣味性教学法利用各种有趣的游戏和活动,帮助学生快乐地学习知识。
3.问答式教学法通过老师提问,引导学生主动思考和回答问题,增加学生的参与度和学习兴趣。
5、教学过程1.引入:在课堂开始时,老师可以利用一些具体的实例或者事例来引出本课的主题,例如:(1)大家去过恒隆广场吧?广场的大门和大厅进去是直角形吧?(2)同学们知道垂直线和平行线的定义吗?2.知识点讲解:从课本出发,教师对本课所要涉及到的概念和知识点进行详细讲解,并且用讲解之后需要认真理解的关键词来引导学生,例如:平行四边形、正方形、垂直、对角线等等。
3.理解巩固:通过一些小练习或者让学生自己思考和总结,巩固刚才所学的知识点,例如:通过涂色完成题目、手工制作几何图形、运用真实例子分析几何图形的关系等等。
沪科版七年级数学下册第十章《10.2 平行线的判定(第3课时)》公开课课件
27 b
83
A
3、如图 ∠ C=61。
当∠ABE= 61
度时,EF∥CN
F
B
E
当∠CBF= 61 度时,EF∥CN
C
N
平行线的判定示意图
判定
同位角相等 内错角相等 同旁内角互补
两直线平行 位置关系
数量关系
课堂作业
必做:课本123第2题
选做:如图,BC、DE分别平分ABD和BDF,
还有其他解法吗?
平行线的判定方法3
两条直线被第三条直线所截,如果同旁内角互补, 那么这两条直线平行. 简单说成:
同旁内角互补,两直线平行
c
a
1
34
b
2
例题1.
如图:
① ∵ ∠1 =___∠_2_ (已知)
C,两直线平行)
② ∵ ∠2 = ∠4 (已知)
∴ CD∥BF (同位角相等,两直线平行)
思考
两条直线被第三条直线所截, 同时得到同位角、内错角和 同旁内角,由同位角相等可 以判定两直线平行,那么, 能否利用内错角和同旁内角 来判定两直线平行呢?
探究1:如果 ∠2 = ∠3,能否推出 a//b呢?
c 1
a
3
2 b
解: ∵ ∵∠2 = ∠3 (已知)
∠ 1= ∠ 3 (对顶角相等) ∴ ∠1= ∠2 (等量代换) ∴ a∥b (同位角相等,两直线平行)
且1=2,请找出平行线,并说明理由。
课外作业
A
C
基础训练同步
D
预习10.3平行线的性质
13
4
2
B
E
F
•不习惯读书进修的人,常会自满于现状,觉得再没有什么事情需要学习,于是他们不进则退。经验丰富的人读书用两只眼睛,一只眼睛看到纸面上的话,另 一眼睛看到纸的背面。2022年3月30日星期三2022/3/302022/3/302022/3/30 •书籍是屹立在时间的汪洋大海中的灯塔。2022年3月2022/3/302022/3/302022/3/303/30/2022 •正确的略读可使人用很少的时间接触大量的文献,并挑选出有意义的部分。2022/3/302022/3/30March 30, 2022 •书籍是屹立在时间的汪洋大海中的灯塔。
北师版四年级数学上册 第2单元第3课时--平移与平行
从下图中找出两组互相平行的线段,并用不同的颜 色描出来。
你能想办法得到一组平行线吗?
小试牛刀(源于《典中点》)
1.下面各组直线中,平行的画“√”,不平行的画 “×”。
√
×
√
×
×
√
2.填一填。
(1)在同一平面内,不相交的两条直线叫作
( 平行线 )。
(2)长方形的对边是互相( 平行 )的,邻边是互相
辨析:没有理解“平行”的含义。
第二单元 线与角
平移与平行(建议一课时完成)
BS 四年级上册
1 课堂探究点
认识平行线及平行线的画法
2 课时流程
探索 新知
课堂 小结
当堂 检测
课后 作业
观察下面的双杠,通过上节课的学习,我们知道了双 杠下部分是垂直于地面的,那么双杠的上半部分是什 么关系呢?
探究点 认识平行线及平行线的画法
说一说生活中的平移现象,用铅笔在方格纸上移一 移,画一画。
略。
2.从下图中各找出两组互相平行的线段,并用不 同的颜色描出来。
略。
3.你能用学到的知识说明其中的道理吗?
略。
用下面的方法也可以得到一组平行线,试一试。
易错辨析(选题源于《典中点》)
6.判断。(对的画“√”,错的画“×”)
(1)不相交的两条直线一定互相平行。
( ×)
(2)
中,a是平行线,b也是平行线。( × )
( 垂直 )的。
(3)
有( 两 )组平行线。
3.从下面的图形中各找出两组互相平行的线段,并 用不同的颜色描出来。
略
4.用平移的方法画一条与线段AB平行的线段。 (答案不唯一)
归纳总结:
平行线间的垂直线段的长度叫作平行 线间的距离;平行线间的距离处处相等。
教学设计2:1.2.2 第3课时 平面与平面平行
1.2.2 第3课时 平面与平面平行三维目标 1.知识与技能(1)理解并掌握平面与平面平行的判定定理与性质定理. (2)进一步培养学生观察、发现的能力和空间想象能力. 重点、难点重点:平面与平面平行的判定定理和性质定理.难点:平面与平面平行判定定理、性质定理的理解及应用.重难点突破:以生活中的实例(如门扇、书的封面边缘与所在桌面的位置关系)为切入点,通过创设情境,让学生经历观察、想象、思考和应用的过程建构新的知识,再通过类比、联想,使建构的知识得以完善,从而突出重点,然后通过分组讨论、设计练习等教学手段来化解难点. 教学建议本节知识是上节知识的拓展和延伸,由于判定与性质是相辅相成相互统一的.故教学时,可采用引导发现法,采用以思导学的方式,从判定定理出发,把探索性质定理的问题转移到线与线及线与面位置关系的问题上,然后教师要引导学生经历从现实的生活空间中抽象出空间图形的过程,注重引导学生通过观察、操作、有条理的思考和推理等活动,引导学生借助图形直观,通过归纳、类比等合情推理来探索平面平行的性质及其证明,最后通过典例训练使学生体会线与面之间的互化关系,提高学生的空间想象能力和逻辑推理能力. 知识梳理1.两平面α与β有且仅有α∥β和α∩β=l 两种位置关系.2.下面的命题在“________”处缺少一个条件,补上这个条件,使其构成真命题(m ,n 为直线,α,β为平面),则此条件应为______________.⎭⎪⎬⎪⎫m ⊂αn ⊂αm ∥βn ∥β⇒α∥β 3.平面与平面平行的性质定理:如果两个平行平面同时和第三个平面相交,________________________.符号表示为:⎭⎪⎬⎪⎫α∥βα∩γ=a β∩γ=b ⇒a ∥b . 4.面面平行的其他性质:(1)两平面平行,其中一个平面内的任一直线平行于另一个平面,即⎭⎪⎬⎪⎫α∥βa ⊂α⇒a ∥β,可用来证明线面平行;(2)夹在两个平行平面间的平行线段________; (3)平行于同一平面的两个平面________.(4)两条直线被三个平行平面所截,截得的对应线段__________. 【提示】2.m ,n 相交 3.那么它们的交线平行 4.(2)相等 (3)平行 (4)成比例 知识点1 两个平面的位置关系 【问题导思】观察前面问题中的长方体,平面A 1C 1与长方体的其余各个面,两两之间有几种位置关系?【提示】两种位置关系:两个平面相交或两个平面平行. 空间中两个平面的位置关系例1 已知下列说法:①若两个平面α∥β,a⊂α,b⊂β,则a∥b;②若两个平面α∥β,a⊂α,b⊂β,则a与b是异面直线;③若两个平面α∥β,a⊂α,b⊂β,则a与b一定不相交;④若两个平面α∥β,a⊂α,b⊂β,则a与b平行或异面;⑤若两个平面α∩β=b,a⊂α,则a与β一定相交.其中正确的是________(将你认为正确的序号都填上).【思路探究】由平面间的位置关系逐一判断.【自主解答】①错.a与b也可能异面;②错.a与b也可能平行;③对.∵α∥β,∴α与β无公共点.又∵a⊂α,b⊂β,∴a与b无公共点;④对.由已知及③知:a与b无公共点,那么a∥b或a与b异面;⑤错.a与β也可能平行.【答案】③④规律方法总结两个平面的位置关系有两种:平行和相交,没有公共点则平行,有公共点则相交.熟练掌握这两种位置关系,并借助图形来说明,是解决本题的关键.变式训练1 如果在两个平面内分别有一条直线,这两条直线互相平行,那么两个平面的位置关系一定是()A.平行B.相交C.平行或相交D.不能确定【解析】如图所示,由图可知C正确.【答案】C知识点2 平面与平面平行的判定【问题导思】1.三角板的一条边所在平面与平面α平行,这个三角板所在平面与α平行吗?【提示】不一定.2.三角板的两条边所在直线分别与平面α平行,这个三角板所在平面与α平行吗?【提示】平行.平面与平面平行的判定(1)文字语言:如果一个平面内有两条直线平行于另一个平面,那么这两个平面平行.(2)符号语言:a⊂β,b⊂β,,a∥α,b∥α⇒β∥α.(3)图形语言:如图所示.图1-2-15【提示】(1)相交(2)例2 在正方体ABCD-A1B1C1D1中,M、N、P分别是C1C、B1C1、C1D1的中点,求证:平面MNP∥平面A1BD.【思路探究】由于M、N、P都为中点,故添加B1C、B1D1作为联系的桥梁.【自主解答】如图所示,连结B1D1、B1C.∵P、N分别是D1C1、B1C1的中点,∴PN∥B1D1.又B1D1∥BD,∴PN∥BD.又PN⊄面A1BD,∴PN∥平面A1BD.同理MN∥平面A1BD,又PN∩MN=N,∴平面PMN∥平面A1BD.规律方法总结本例的证明体现了证明面面平行的常用方法,解决此类问题的关键是选择或添加适当的辅助线(或辅助面),使问题转化为证线面平行或线线平行.变式训练2如图1-2-17,三棱锥P-ABC中,E,F,G分别是AB,AC,AP的中点.证明平面GFE∥平面PCB.图1-2-17【证明】因为E,F,G分别是AB,AC,AP的中点,所以EF∥BC,GF∥CP.因为EF,GF⊄平面PCB,所以EF∥平面PCB,GF∥平面PCB.又EF∩GF=F,所以平面GFE∥平面PCB.知识点3 平面与平面平行的性质【问题导思】观察长方体ABCD-A1B1C1D1的两个面:平面ABCD及平面A1B1C1D1.1.平面A1B1C1D1中的所有线都平行于平面ABCD吗?【提示】是的.2.若m⊂平面ABCD,n⊂平面A1B1C1D1,则m∥n吗?【提示】不一定.3.过BC的平面交面A1B1C1D1于EF,EF与BC什么关系?【提示】平行.1.平面与平面平行的性质定理(1)文字语言:如果两个平行平面同时和第三个平面相交,那么它们的交线.(2)符号语言:α∥β,α∩γ=a,⇒a∥b.(3)图形语言:如图所示.图1-2-16(4)作用:证明两直线.【提示】(1)平行(2)(4)平行2.三个平面平行的性质两条直线被三个平行平面所截,截得的.【提示】对于线段成比例例3 如图1-2-18,平面四边形ABCD的四个顶点A、B、C、D均在平行四边形A′B′C′D′所确定一个平面α外,且AA′、BB′、CC′、DD′互相平行.图1-2-18求证:四边形ABCD是平行四边形.【思路探究】先证平面AA′B′B∥平面DD′C′C,再证AB∥CD,同理证明BC∥AD,进而证明ABCD为平行四边形.【自主解答】在▱A′B′C′D′中,A′B′∥C′D′,∵A′B′⊄平面C′D′DC,C′D′⊂平面C′D′DC,∴A′B′∥平面C′D′DC.同理A′A∥平面C′D′DC.又A′A∩A′B′=A′,∴平面A′B′BA∥平面C′D′DC.∵平面ABCD∩平面A′B′BA=AB,平面ABCD∩平面C′D′DC=CD,∴AB∥CD.同理AD∥BC.∴四边形ABCD是平行四边形.规律方法总结1.利用面面平行的性质定理证明线线平行的关键是把要证明的直线看作是平面的交线,往往需要有三个平面,即有两平面平行,再构造第三个面与两平行平面都相交.2.面面平行⇒线线平行,体现了转化思想与判定定理的交替使用,可实现线线、线面及面面平行的相互转化.变式训练3 如图1-2-19,已知α∥β,点P是平面α、β外的一点(不在α与β之间),直线PB、PD分别与α、β相交于点A、B和C、D.图1-2-19(1)求证:AC ∥BD ;(2)已知P A =4 cm ,AB =5 cm ,PC =3 cm ,求PD 的长. 【解】 (1)∵PB ∩PD =P ,∴直线PB 和PD 确定一个平面γ, 则α∩γ=AC ,β∩γ=BD . 又α∥β,∴AC ∥BD . (2)由(1)得AC ∥BD , ∴P A AB =PC CD ,∴45=3CD ,∴CD =154, ∴PD =PC +CD =274.课堂小结1. 常见的面面平行的判定方法: (1)利用定义:两个平面没有公共点. (2)归纳为线面平行.①平面α内的所有直线(任一直线)都平行于β,则α∥β;②判定定理:平面α内的两条相交直线a ,b 都平行于β.⎭⎪⎬⎪⎫a ⊂αb ⊂αa ∩b =P a ∥βb ∥β⇒α∥β,五个条件缺一不可. 应用时的关键是在α内找到与β平行的相交直线a ,b .(3)化归为线线平行:平面α内的两条相交直线与平面β内的两条相交直线分别平行,则α∥β(证明后可用).(4)利用平行平面的传递性:两个平面同时和第三个平面平行,则这两个平面平行.当堂检测1.下列命题正确的为()A.若平面α内的两条直线分别与平面β平行,则α与β平行B.若平面α内有无数条直线与平面β平行,则α与β平行C.过已知平面外一点,有且只有一个平面与已知平面平行D.过已知平面外一条直线,必能作出与已知平面平行的平面【答案】C2.α和β是两个不重合的平面,在下列条件中,可判定α∥β的是()A.α内有无数条直线平行于βB.α内不共线三点到β的距离相等C.l、m是平面α内的直线,且l∥β,m∥β,m∥βD.l、m是异面直线且l∥α,m∥α,l∥β,m∥β【答案】D3.给出下列结论,正确的有()①平行于同一条直线的两个平面平行;②平行于同一个平面的两个平面平行;③过平面外两点,不能作一个平面与已知平面平行;④若a,b为异面直线,则过a与b平行的平面只有一个.A.1个B.2个C.3个D.4个【答案】B4.三棱柱ABC-A1B1C1,D是BC上一点,且A1B∥平面AC1D,D1是B1C1的中点.求证:平面A1BD1∥平面AC1D.证明连接A1C交AC1于点E,∵四边形A1ACC1是平行四边形,∴E是A1C的中点,连接ED,∵A1B∥平面AC1D,平面A1BC∩平面AC1D=ED,∴A1B∥ED.∵E是A1C的中点,∴D是BC的中点.又∵D1是B1C1的中点,∴BD1∥C1D,A1D1∥AD,∴BD1∥平面AC1D,A1D1∥平面AC1D.又A1D1∩BD1=D1,∴平面A1BD1∥平面AC1D.反思感悟判定或证明面面平行的方法(1)面面平行的定义;(2)面面平行的判定定理:如果一个平面内有两条相交直线平行于另一个平面,那么这两个平面平行;(3)两个平面同时平行于第三个平面,那么这两个平面平行.。
北师大版四年级数学上册第3课时 平移与平行(教案)
第3课时平移与平行1.借助实际情境和操作活动,感受平移前后的位置关系,认识平行线。
2.能永三角板和支持画平行线,培养学生的绘画能力。
3.感受教学的价值,进一步参透生活与数学的密切联系的思想。
认识平行线,体会平行线的特征,会画平行线。
在一些斜线中寻找平行关系,在立体图形中寻找平行线。
教法:创设情境,质疑引导。
学法:观察发现,动手操作。
小棒,长方形纸,方格纸,正方体,三角尺与直尺。
一、激趣导入谈话:同学们见过的汽车行驶的痕迹是什么样的?对,车轮的印是互相平行的。
就像这幅图里的一样。
出示延缓18页“看一看”左图。
请学生举例:你还能想到生活中哪些是互相平行的吗?出示第18页“看一看”右图。
边指图边说明:铅笔平移前后的线条是互相平行的。
二、自主学习1、移一移。
(1)用小棒在方格纸上移一移。
并说一说移动前后小棒的位置关系。
准备2根小棒放在一条线段上(先重叠放在一起),然后平移其中一根小棒。
提问:这两根小棒经过平移后是什么位置关系?(平行)如果我们把其中的一根小棒叫AB,另一根叫CD,那么就可以AB说平行于CD或CD平行于A B。
(2)出示第18页小鱼图。
说出小鱼图中每条线段的名称,然后说出哪些线段是互相平行的。
三、反馈交流1、折一折。
已经认识了平行线,下面继续学习。
出示一张长方形纸这是什么?用长方形张折两条折痕,然后打开看一看,根据这两条折痕,你能发现什么呢?请学生汇报折纸情况。
2、说一说。
出示教材第19页“说一说”的三幅图片。
生活中有很多平行的线,想一想这些图案中哪些线互相平行,并与同学进行交流。
3、画一画。
你会画一组平行线吗?鼓励学生自己想办法画一组平行线,允许学生用不同的方法来解决问题。
启发:怎样画平行线更准确、美观呢?我们要用三角尺或直尺画平行线。
四、当堂训练1、第20页“实践活动”。
2、思维训练(1)、把一张长方形纸对折两次,使三条折痕互相平行。
(2)、过B点画直线A的平行线。
五、课堂小结提问:平行线由什么特点?怎样画平行线?。
《平行与垂直》第三课时教学设计一等奖
《平行与垂直》第三课时教学设计一等奖《《平行与垂直》第三课时教学设计一等奖》这是优秀的教学设计一等奖文章,希望可以对您的学习工作中带来帮助!1、《平行与垂直》第三课时教学设计一等奖一、【教学目标】1.知识技能(1).了解平行线与垂线的性质。
(2).利用平行线与垂线的性质解决生活中的问题。
2.过程与方法技能(1)通过让学生经历画、量、比、想的过程,了解点到直线间垂直线段最短的性质,培养学生的观察与发现能力;(2)在对知识的探究过程中,培养学生观察、想象、动手操作的能力,发展初步的空间观念。
3.情感态度与价值观通过活动,让学生从中感受到学习的乐趣,使学生体验数学与生活的密切联系。
二、【教学重点】巩固对平行线和垂线的认识,运用垂线的性质解决实际问题。
三、【教学难点】理解“点到直线的距离”的概念。
四、【教具、学具】教具:多媒体课件、三角板学具:学案、三角板五、【教学过程】一、情景导入师:同学们,请你们看大屏幕,上面的`图画熟悉吗?齐答师:奔跑吧都有哪些人物?谁来说一下?举手答师:这些人物里面你最喜欢谁呢?为什么?找几名同学答师:今天奔跑吧里面的三位兄弟来和我们一起做一个游戏。
出示课件,这三个人是谁?今天的游戏规则是李晨、鹿晗和郑恺一起出发进过一个100米的赛道后,一起去拔对面的旗子,先拔到的人胜出,哪谁会胜出呢?为什么?指名答师:今天我们就带着这个问题一起来探寻其中的奥秘吧。
二、展示目标。
1出示本节课的学习目标2师生齐读三、复习引入1、过点A画已知直线的垂线2、找两名同学进行板演,其他同学做学案上的。
3、反馈交流。
师:今天我们就在垂线的基础上来探讨有关垂线的性质。
四、探究新知1、探寻垂线的性质(1)引入我们把上面游戏里的问题抽象为数学问题,大家请看:从直线外一点A,到这条直线画几条线段。
量一量所画线段的长度,哪一条最短?大家拿起你们的学案按上面的图自己来画一画,量一量,看看什么样的线段最短?我们的发现:______________________________________________。
3空间中的平行关系 教案
(其中 l 、 m 为直线, 、 为平面),则此条件为________.
①
m l∥m
l∥
;
②
m∥ l∥m
l∥
;
③
l
l∥
.
2. P 是△ABC 所在平面外一点,平面∥平面 ABC , 交线段 PA 、 PB 、 PC 于 A′、
B′、 C′,若 PA′: AA′=2:3 ,则 S△A′B′C′: S△ABC ( )
a
b a
b
A
∥
a∥
b∥
图形语言 作用
a
b α
线线平行 线面平行
4
β
b α aA
线线平行 面面平行
考点 2 线面平行与面面平行的性质
线面平行的性质
面面平行的性质
文字语言
一条直线与一个平面平行,则过这条直 线的任一平面与此平面的交线与该直 线平行
如果两个平行平面同时和第三个平面 相交,那么它们的交线平行
11
平面 EFGH 平面 CDHG HG , EF∥HG . 同理 EH∥FG , 四边形 EFGH 的形状是平行四边形.
5.【答案】:A
【解析】:B 中,AB//MQ;C 中,AB//MQ;D 中,AB//NQ.所以答案为 A.
巩固
1.考查下列三个命题,在“
”处都缺少同一个条件,补上这个条件使其构成真命题
类型二 面面平行的判定与性质
例题 1
如图所示,正方体 ABCD A1B1C1D1 中,M 、N 、E 、F 分别是棱 A1B1 、A1D1 、B1C1 、 C1D1 的中点.求证:平面 AMN∥平面 EFDB .
D1
F
C1
N
A1 M D
第3课时直线与平面平行
第3课时 直线、平面的平行关系1.平面的基本性质(1)公理1:如果一条直线上的两点在一个平面内,那么这条直线在此平面内. (2)公理2:过不在一条直线上的三点,有且只有一个平面.(3)公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线. (4)公理2的三个推论推论1:经过一条直线和这条直线外一点有且只有一个平面; 推论2:经过两条相交直线有且只有一个平面; 推论3:经过两条平行直线有且只有一个平面. 2.空间中两直线的位置关系 (1)空间中两直线的位置关系 ⎩⎪⎨⎪⎧共面直线⎩⎨⎧平行相交异面直线:不同在任何一个平面内(2)异面直线所成的角①定义:设a ,b 是两条异面直线,经过空间任一点O 作直线a ′∥a ,b ′∥b ,把a ′与b ′所成的锐角(或直角)叫做异面直线a 与b 所成的角(或夹角). ②范围:⎝ ⎛⎦⎥⎤0,π2.(3)平行公理:平行于同一条直线的两条直线互相平行.(4)定理:空间中如果两个角的两边分别对应平行,那么这两个角相等或互补. 3.直线与平面、平面与平面之间的位置关系(1)直线与平面的位置关系有相交、平行、在平面内三种情况. (2)平面与平面的位置关系有平行、相交两种情况. 4.直线与平面平行的判定定理和性质定理5.平面与平面平行的判定定理和性质定理(1)若一条直线平行于一个平面内的一条直线,则这条直线平行于这个平面.(×)(2)若一条直线平行于一个平面,则这条直线平行于这个平面内的任一条直线.(×)(3)若直线a与平面α内无数条直线平行,则a∥α.(×)(4)若直线a∥α,P∈α,则过点P且平行于a的直线有无数条.(×)(5)如果一个平面内的两条直线平行于另一个平面,那么这两个平面平行.(×)(6)如果两个平面平行,那么分别在这两个平面内的两条直线平行或异面.(√)(7)设l为直线,α,β是两个不同的平面,若l∥α,l∥β,则α∥β.(×)(8)两个不重合的平面只能把空间分成四个部分.(×)(9)两个平面α,β有一个公共点A,就说α,β相交于A点,记作α∩β=A.(×)(10)两两相交的三条直线最多可以确定三个平面.(√)考点一平面的基本性质[例1](1)有下列命题:①经过三点确定一个平面;②梯形可以确定一个平面;③两两相交的三条直线最多可以确定三个平面;④如果两个平面有三个公共点,则这两个平面重合.其中正确命题的个数是()A.0B.1C.2 D.3解析:对于①,三点可能在一直线上,故①错误;②正确;对于③,三条直线两两相交,如空间直角坐标系,能确定三个平面,故③正确;对于④,没有强调三点不共线,则两平面也可能相交,故④错误.答案:C(2)过同一点的4条直线中,任意3条都不在同一平面内,则这四条直线确定平面的个数为________.解析:由题意知这4条直线中的每两条都确定一个平面,因此,共可确定6个平面.答案:6[方法引航]空间平面的构成,可由点,可由线,也可由点和线;面与面的公共点在面的交线上.1.如图是正方体或四面体,P ,Q ,R ,S 分别是所在棱的中点,则这四个点不共面的一个是( )解析:选D.A ,B ,C 图中四点一定共面,D 中四点不共面.2.(2017·江西七校联考)已知直线a 和平面α,β,α∩β=l ,a ⊄α,a ⊄β,且a 在α,β内的射影分别为直线b 和c ,则直线b 和c 的位置关系是( ) A .相交或平行 B .相交或异面 C .平行或异面 D .相交、平行或异面解析:选D.依题意,直线b 和c 的位置关系可能是相交、平行或异面,故选D.考点二 直线与平面的平行关系[例2] (1)在空间四边形ABCD 中,E ,F 分别为AB ,AD 上的点,且AE ∶EB =AF ∶FD =1∶4,又H ,G 分别为BC ,CD 的中点,则( ) A .BD ∥平面EFG ,且四边形EFGH 是平行四边形 B .EF ∥平面BCD ,且四边形EFGH 是梯形 C .HG ∥平面ABD ,且四边形EFGH 是平行四边形 D .EH ∥平面ADC ,且四边形EFGH 是梯形解析:如图,由题意得, EF ∥BD ,且EF =15BD . HG ∥BD ,且HG =12BD .∴EF ∥HG ,且EF ≠HG ,又HG ⊂面BCD , ∴EF ∥平面BCD 且四边形EFGH 是梯形. 答案:B(2)(2016·高考全国丙卷)如图,四棱锥P -ABCD 中,P A ⊥底面ABCD ,AD ∥BC ,AB =AD =AC =3,P A =BC =4,M 为线段AD 上一点,AM =2MD ,N 为PC 的中点.①证明MN ∥平面P AB ; ②求四面体N -BCM 的体积.解:①证明:由已知得AM =23AD =2,取BP 的中点T ,连接AT ,TN ,由N 为PC 中点知TN ∥BC ,TN =12BC =2. 又AD ∥BC ,故TN 綊AM ,故四边形AMNT 为平行四边形,于是MN ∥AT . 因为AT ⊂平面P AB ,MN ⊄平面P AB ,所以MN ∥平面P AB .②因为P A ⊥平面ABCD ,N 为PC 的中点,所以N 到平面ABCD 的距离为12P A . 取BC 的中点E ,连接AE . 由AB =AC =3得AE ⊥BC ,AE =AB 2-BE 2= 5.由AM ∥BC 得M 到BC 的距离为5, 故S △BCM =12×4×5=2 5.所以四面体N -BCM 的体积V N -BCM=13·S △BCM ·P A 2=453. [方法引航] 判断或证明线面平行的常用方法 (1)利用线面平行的定义(无公共点);(2)利用线面平行的判定定理(a ⊄α,b ⊂α,a ∥b ⇒a ∥α); (3)利用面面平行的性质定理(α∥β,a ⊂α⇒a ∥β); (4)利用面面平行的性质(α∥β,a ⊄α,a ⊄β,a ∥α⇒a ∥β).1.过三棱柱ABC -A 1B 1C 1任意两条棱的中点作直线,其中与平面ABB 1A 1平行的直线有________条.解析:如图,E 、F 、G 、H 分别是A 1C 1、B 1C 1、BC 、AC 的中点,则与平面ABB 1A 1平行的直线有EF ,GH ,FG ,EH ,EG ,FH 共6条.答案:62.如图,四棱锥P -ABCD 中,AD ∥BC ,AB =BC =12AD ,E ,F ,H 分别为线段AD ,PC ,CD 的中点,AC 与BE 交于O 点,G 是线段OF 上一点.(1)求证:AP ∥平面BEF ; (2)求证:GH ∥平面P AD .证明:(1)连接EC,∵AD∥BC,BC=12AD,∴BC綊AE,∴四边形ABCE是平行四边形,∴O为AC的中点.又∵F是PC的中点,∴FO∥AP,FO⊂平面BEF,AP⊄平面BEF,∴AP∥平面BEF.(2)连接FH,OH,∵F,H分别是PC,CD的中点,∴FH∥PD,∴FH∥平面P AD.又∵O是BE的中点,H是CD的中点,∴OH∥AD,∴OH∥平面P AD.又FH∩OH=H,∴平面OHF∥平面P AD.又∵GH⊂平面OHF,∴GH∥平面P AD.考点三平面与平面平行的判定与性质[例3](1)(2017·山东济南模拟)平面α∥平面β的一个充分条件是() A.存在一条直线a,a∥α,a∥βB.存在一条直线a,a⊂α,a∥βC.存在两条平行直线a,b,a⊂α,b⊂β,a∥β,b∥αD.存在两条异面直线a,b,a⊂α,b⊂β,a∥β,b∥α解析:若α∩β=l,a∥l,a⊄α,a⊄β,则a∥α,a∥β,故排除A.若α∩β=l,a⊂α,a∥l,则a∥β,故排除B.若α∩β=l,a⊂α,a∥l,b⊂β,b∥l,则a∥β,b∥α,故排除C.故选D.答案:D(2)如图所示,在三棱柱ABC-A1B1C1中,E,F,G,H分别是AB,AC,A1B1,A1C1的中点,求证:①B,C,H,G四点共面;②平面EF A1∥平面BCHG.证明:①∵G,H分别是A1B1,A1C1的中点,∴GH是△A1B1C1的中位线,∴GH∥B1C1.又∵B1C1∥BC,∴GH∥BC,∴B,C,H,G四点共面.②∵E,F分别是AB,AC的中点,∴EF∥BC.∵EF⊄平面BCHG,BC⊂平面BCHG,∴EF∥平面BCHG.∵A1G綊EB,∴四边形A1EBG是平行四边形,∴A1E∥GB.∵A1E⊄平面BCHG,GB⊂平面BCHG,∴A1E∥平面BCHG.∵A1E∩EF=E,∴平面EF A1∥平面BCHG.[方法引航] 1.面面平行的判定方法(1)利用定义:即证两个平面没有公共点(不常用).(2)利用面面平行的判定定理(主要方法).(3)利用垂直于同一条直线的两平面平行(客观题可用).(4)利用平面平行的传递性,即两个平面同时平行于第三个平面,则这两个平面平行(客观题可用).2.面面平行的性质由面面平行,可得出线面平行,也可得出线线平行,但必须是这两个平行平面与第三个平面的交线.1.将本例(2)中条件改为已知H为A1C1的中点,过BC和H点的平面与A1B1交于点G,求证G为A1B1的中点.证明:因为在三棱柱中,面A1B1C1∥面ABC.面A1B1C1∩面BCHG=HG,面ABC∩面BCHG=BC,∴GH∥BC(面面平行性质)BC ∥B1C1.∴GH∥B1C1,H为A1C1的中点,∴G为A1B1的中点.2.在本例(2)条件下,若D1,D分别为B1C1,BC的中点,求证:(1)平面A1BD1∥平面AC1D.(2)若点N∈AD,求证:C1N始终平行面A1BD1.证明:(1)如图所示,连接A1C交AC1于点M,∵四边形A1ACC1是平行四边形,∴M是A1C的中点,连接MD,∵D为BC的中点,∴A1B∥DM.∵A1B⊂平面A1BD1,DM⊄平面A1BD1,∴DM∥平面A1BD1.又由三棱柱的性质知,D1C1綊BD,∴四边形BDC1D1为平行四边形,∴DC1∥BD1. 又DC1⊄平面A1BD1,BD1⊂平面A1BD1,∴DC1∥平面A1BD1,又∵DC1∩DM=D,DC1,DM⊂平面AC1D,∴平面A1BD1∥平面AC1D.(2)由(1)可知,平面A1BD1∥平面AC1D.∵N∈AD,∴C1N⊂面AC1D.∴C1N∥面A1BD1.[方法探究]空间平行的转化与探索[典例](2017·河北石家庄模拟)如图,棱柱ABCD-A1B1C1D1的底面ABCD为菱形,平面AA1C1C⊥平面ABCD.(1)证明:平面AB1C∥平面DA1C1;(2)在直线CC1上是否存在点P,使BP∥平面DA1C1?若存在,求出点P的位置;若不存在,说明理由.[解](1)证明:由棱柱ABCD-A1B1C1D1的性质,知AB1∥DC1,A1D∥B1C,AB1∩B1C =B1,A1D∩DC1=D,∴平面AB1C∥平面DA1C1.(2)存在这样的点P满足题意.如图,在C1C的延长线上取一点P,使C1C=CP,连接BP,∵B1B綊CC1∴BB1綊CP,∴四边形BB1CP为平行四边形,∴BP∥B1C,∵A1D∥B1C,∴BP∥A1D.又∵A1D⊂平面DA1C1,BP⊄平面DA1C1,∴BP∥平面DA1C1.[思维程序](1)线∥线⇒面∥面;棱柱性质⇒面的对角线平行⇒面∥面.(2)先找点P,再证明平行;平行四边形性质⇒BP∥B1C∥A1D.[高考真题体验]1.(2016·高考山东卷)在如图所示的圆台中,AC 是下底面圆O 的直径,EF 是上底面圆O ′的直径,FB 是圆台的一条母线.(1)已知G ,H 分别为EC ,FB 的中点.求证:GH ∥平面ABC ; (2)已知EF =FB =12AC =23,AB =BC .求二面角F -BC -A 的余弦值. 解:(1)证明:设FC 中点为I ,连接GI ,HI在△CEF 中,因为点G 是CE 的中点,所以GI ∥EF . 又EF ∥OB ,所以GI ∥OB .在△CFB 中,因为H 是FB 的中点,所以HI ∥BC . 又HI ∩GI =I ,所以平面GHI ∥平面ABC . 因为GH ⊂平面GHI ,所以GH ∥平面ABC . (2)连接OO ′,则OO ′⊥平面ABC .又AB =BC ,且AC 是圆O 的直径,所以BO ⊥AC . 以O 为坐标原点,建立如图所示的空间直角坐标系O -xyz .由题意得B (0,23,0),C (-23,0,0), 所以BC→=(-23,-23,0), 过点F 作FM 垂直OB 于点M . 所以FM =FB 2-BM 2=3,可得F (0,3,3).故BF→=(0,-3,3).设m =(x ,y ,z )是平面BCF 的法向量. 由⎩⎨⎧m ·BC →=0,m ·BF →=0,可得⎩⎪⎨⎪⎧-23x -23y =0,-3y +3z =0.可得平面BCF 的一个法向量m =⎝ ⎛⎭⎪⎫-1,1,33.因为平面ABC 的一个法向量n =(0,0,1). 所以cos 〈m ,n 〉=m ·n |m |·|n |=77. 所以二面角F -BC -A 的余弦值为77.2.(2016·高考山东卷)在如图所示的几何体中,D 是AC 的中点,EF ∥DB .(1)已知AB=BC,AE=EC.求证:AC⊥FB;(2)已知G,H分别是EC和FB的中点.求证:GH∥平面ABC.证明:(1)因为EF∥DB,所以EF与DB确定平面BDEF.如图①所示连接DE.因为AE=EC,D为AC的中点,所以DE⊥AC.同理可得BD⊥AC.又BD∩DE=D,所以AC⊥平面BDEF,因为FB⊂平面BDEF,所以AC⊥FB.图①(2)如图②,设FC的中点为I,连接GI,HI.在△CEF中,因为G是CE的中点,所以GI∥EF.又EF∥DB,所以GI∥DB.在△CFB中,因为H是FB的中点,所以HI∥BC,又HI∩GI=I,所以平面GHI∥平面ABC.因为GH⊂平面GHI,所以GH∥平面ABC.图②3.(2014·高考陕西卷)四面体ABCD及其三视图如图所示,平行于棱AD,BC的平面分别交四面体的棱AB,BD,DC,CA于点E,F,G,H.(1)求四面体A-BCD的体积;(2)证明:四边形EFGH是矩形.证明:(1)由该四面体的三视图可知,BD⊥DC,BD⊥AD,AD⊥DC,BD=CD =2,AD=1,∴AD⊥平面BDC,∴四面体的体积V=13×12×2×2×1=23.(2)∵BC∥平面EFGH,平面EFGH∩平面BDC=FG,平面EFGH∩平面ABC=EH,∴BC∥FG,BC∥EH,∴FG∥EH.同理EF∥AD,HG∥AD,∴EF∥HG,∴四边形EFGH是平行四边形.又AD⊥平面BDC,∴AD⊥BC,∴EF⊥FG,∴四边形EFGH是矩形.课时规范训练A组基础演练1.若直线m⊂平面α,则条件甲:“直线l∥α”是条件乙:“l∥m”的() A.充分不必要条件B.必要不充分条件C.充要条件D.即不充分也不必要条件答案:D2.若直线a平行于平面α,则下列结论错误的是()A.a平行于α内的所有直线B.α内有无数条直线与a平行C.直线a上的点到平面α的距离相等D.α内存在无数条直线与a成90°角解析:选A.若直线a平行于平面α,则α内既存在无数条直线与a平行,也存在无数条直线与a异面且垂直,所以A不正确,B、D正确.又夹在相互平行的线与平面间的平行线段相等,所以C正确.3.已知a,b是两条不重合的直线,α,β是两个不重合的平面,则下列命题中正确的是()A.a∥b,b⊂α,则a∥αB.a,b⊂α,a∥β,b∥β,则α∥βC.a⊥α,b∥α,则a⊥bD.当a⊂α,且b⊄α时,若b∥α,则a∥b解析:选C.A选项是易错项,由a∥b,b⊂α,也可能推出a⊂α;B中的直线a,b不一定相交,平面α,β也可能相交;C正确;D中的直线a,b也可能异面.4.已知直线a,b,平面α,则以下三个命题:①若a∥b,b⊂α,则a∥α;②若a∥b,a∥α,则b∥α;③若a∥α,b∥α,则a∥b.其中真命题的个数是()A.0 B.1C.2 D.3解析:选A.对于①,若a∥b,b⊂α,则应有a∥α或a⊂α,所以①不正确;对于②,若a∥b,a∥α,则应有b∥α或b⊂α,因此②不正确;对于③,若a∥α,b∥α,则应有a∥b或a与b相交或a与b异面,因此③是假命题.综上,在空间中,以上三个命题都是假命题.5.已知直线a与平面α、β,α∥β,a⊂α,点B∈β,则在β内过点B的所有直线中()A.不一定存在与a平行的直线B.只有两条与a平行的直线C.存在无数条与a平行的直线D.存在唯一一条与a平行的直线解析:选D.设直线a和点B所确定的平面为γ,则α∩γ=a,记β∩γ=b,∵α∥β,∴a∥b,故存在唯一一条直线b与a平行.6.如图所示,ABCD-A1B1C1D1是棱长为a的正方体,M、N分别是下底面的棱A1B1、B1C1的中点,P是上底面的棱AD上的一点,AP=a3,过P、M、N的平面交上底面于PQ,Q在CD上,则PQ=________.解析:∵平面ABCD ∥平面A 1B 1C 1D 1, ∴MN ∥PQ .∵M 、N 分别是A 1B 1、B 1C 1的中点, AP =a 3,∴CQ =a 3,从而DP =DQ =2a 3,∴PQ =223a . 答案:223a7.已知平面α∥平面β,P 是α、β外一点,过点P 的直线m 与α、β分别交于A 、C ,过点P 的直线n 与α、β分别交于B 、D 且P A =6,AC =9,PD =8,则BD 的长为________.解析:根据题意可得到以下如图两种情况:可求出BD 的长分别为245或24. 答案:24或2458.在正四棱柱ABCD -A 1B 1C 1D 1中,O 为底面ABCD 的中心,P 是DD 1的中点,设Q 是CC 1上的点,则点Q 满足条件________时,有平面D 1BQ ∥平面P AO . 解析:假设Q 为CC 1的中点,因为P 为DD 1的中点,所以QB ∥P A .连接DB ,因为P ,O 分别为DD 1,DB 的中点,所以D 1B ∥PO ,又D 1B ⊄平面P AO ,QB ⊄平面P AO ,所以D 1B ∥平面P AO ,QB ∥平面P AO ,又D 1B ∩QB =B ,∴平面D 1BQ ∥平面P AO ,故Q 满足Q 为CC 1的中点时,有平面D 1BQ ∥平面P AO . 答案:Q 为CC 1的中点9.如图E 、F 、G 、H 分别是正方体ABCD -A 1B 1C 1D 1的棱BC 、CC 1、C 1D 1、AA 1的中点.求证:(1)EG∥平面BB1D1D;(2)平面BDF∥平面B1D1H.证明:(1)取B1D1的中点O,连接GO,OB,易证四边形BEGO为平行四边形,故OB∥GE,由线面平行的判定定理即可证EG∥平面BB1D1D.(2)由题意可知BD∥B1D1.如图,连接HB、D1F,易证四边形HBFD1是平行四边形,故HD1∥BF.又B1D1∩HD1=D1,BD∩BF=B,所以平面BDF∥平面B1D1H.10.如图,在三棱柱ABC-A1B1C1中,点E在线段B1C1上,B1E=3EC1,试探究:在AC上是否存在点F,满足EF∥平面A1ABB1?若存在,请指出点F的位置,并给出证明;若不存在,请说明理由.解:法一:当AF=3FC时,FE∥平面A1ABB1.证明如下:在平面A1B1C1内过点E作EG∥A1C1交A1B1于点G,连接AG.,∵B1E=3EC1,∴EG=34A1C1又AF∥A1C1且AF=3,4A1C1∴AF∥EG且AF=EG,∴四边形AFEG为平行四边形,∴EF∥AG,又EF⊄平面A1ABB1,AG⊂平面A1ABB1,∴EF∥平面A1ABB1.法二:当AF=3FC时,FE∥平面A1ABB1.证明如下:在平面BCC1B1内过点E作EG∥BB1交BC于点G,∵EG∥BB1,EG⊄平面A1ABB1,BB1⊂平面A1ABB1,∴EG∥平面A1ABB1,∵B1E=3EC1,∴BG=3GC,∴FG∥AB,又AB⊂平面A1ABB1,FG⊄平面A1ABB1,∴FG∥平面A1ABB1.又EG⊂平面EFG,FG⊂平面EFG,EG∩FG=G,∴平面EFG∥平面A1ABB1.∵EF⊂平面EFG,∴EF∥平面A1ABB1.B组能力突破1.如图,L,M,N分别为正方体对应棱的中点,则平面LMN与平面PQR的位置关系是()A.垂直B.相交不垂直C.平行D.重合解析:选C.如图,分别取另三条棱的中点A,B,C将平面LMN延展为平面正六边形AMBNCL,因为PQ∥AL,PR∥AM,且PQ与PR相交,AL与AM相交,所以平面PQR∥平面AMBNCL,即平面LMN∥平面PQR.2.正方体ABCD-A1B1C1D1中,E,F,G分别是A1B1,CD,B1C1的中点,则正确的命题是()A.AE⊥CGB.AE与CG是异面直线C.四边形AEC1F是正方形D.AE∥平面BC1F解析:选D.由正方体的几何特征知,AE与平面BCC1B1不垂直,则AE⊥CG不成立;由于EG ∥A 1C 1∥AC ,故A 、E 、G 、C 四点共面,所以AE 与CG 是异面直线错误;在四边形AEC 1F 中,AE =EC 1=C 1F =AF ,但AF 与AE 不垂直,故四边形AEC 1F 是正方形错误;由于AE ∥C 1F ,由线面平行的判定定理,可得AE ∥平面BC 1F .3.设l ,m ,n 表示不同的直线,α,β,γ表示不同的平面,给出下列四个命题: ①若m ∥l ,且m ⊥α,则l ⊥α;②若m ∥l ,且m ∥α,则l ∥α;③若α∩β=l ,β∩γ=m ,γ∩α=n ,则l ∥m ∥n ;④若α∩β=m ,β∩γ=l ,γ∩α=n ,且n ∥β,则l ∥m .其中正确命题的个数是( )A .1B .2C .3D .4解析:选B.易知①正确;②错误,l 与α的具体关系不能确定;③错误,以墙角为例即可说明,④正确,可以以三棱柱为例证明.4.空间四边形ABCD 的两条对棱AC 、BD 的长分别为5和4,则平行于两条对棱的截面四边形EFGH 在平移过程中,周长的取值范围是________.解析:设DH DA =GH AC =k ,∴AH DA =EH BD =1-k ,∴GH =5k ,EH =4(1-k ),∴周长=8+2k .又∵0<k <1,∴周长的取值范围为(8,10).答案:(8,10)5.如图,几何体E -ABCD 是四棱锥,△ABD 为正三角形,CB =CD ,EC ⊥BD .(1)求证:BE=DE;(2)若∠BCD=120°,M为线段AE的中点.求证:DM∥平面BEC.(3)在(2)的条件下,在线段AD上是否存在一点N,使得BN∥面DEC,并说明理由.证明:(1)取BD的中点O,连接CO,EO.由于CB=CD,所以CO⊥BD,又EC⊥BD,EC∩CO=C,CO,EC⊂平面EOC,所以BD⊥平面EOC,因此BD⊥EO,又O为BD的中点,所以BE=DE.(2)法一:取AB的中点N,连接DM,DN,MN,因为M是AE的中点,所以MN∥BE.又MN⊄平面BEC,BE⊂平面BEC,所以MN∥平面BEC.又因为△ABD为正三角形,所以∠BDN=30°,又CB=CD,∠BCD=120°,因此∠CBD=30°,所以∠BDN=∠CBD,所以DN∥BC. 又DN⊄平面BEC,BC⊂平面BEC,所以DN∥平面BEC.又MN∩DN=N,故平面DMN∥平面BEC,又DM⊂平面DMN,所以DM∥平面BEC.法二:延长AD,BC交于点F,连接EF.因为CB=CD,∠BCD=120°,所以∠CBD=30°.因为△ABD为正三角形,所以∠BAD=∠ABD=60°,所以∠ABC=90°,因此∠AFB=30°,所以AB=12AF.又AB=AD,所以D为线段AF的中点.连接DM,由于点M是线段AE的中点,因此DM∥EF.又DM⊄平面BEC,EF⊂平面BEC,所以DM∥平面BEC.(3)存在点N为AD的中点取AD的中点N,连接BN,O为BD的中点由(2)可知∠DCO=60°,∴∠BDC=30°,又∵DBN=30°,∴BN∥DC.DC⊂面DEC,∴BN∥面DEC.。
中班数学认识简单的平行和垂直关系
中班数学认识简单的平行和垂直关系在早期数学教育中,让幼儿认识简单的平行和垂直关系是非常重要的。
这些概念为今后学习几何方面的知识打下基础,并培养他们的观察力和逻辑思维能力。
在本文中,我们将探讨如何向中班幼儿介绍平行和垂直的概念,并为他们提供一些简单有趣的活动,以巩固他们的理解。
一、认识平行的概念1. 平行的定义在数学中,我们说两条直线是平行的,意味着它们永远不会相交。
它们始终保持相同的距离,永不交错。
2. 平行的特征让孩子们观察身边的平行线条,例如窗户的边框、台阶之间的间距等等。
指引他们发现平行线的共同特征:始终保持相同的间距,不会相交。
3. 平行的符号继续引导孩子们认识平行线的符号表示方法。
平行线通常用双竖线符号 "||" 来表示。
与此同时,也可以教给孩子们在纸上画出平行线,并在两条平行线之间用 "||" 符号标记。
二、认识垂直的概念1. 垂直的定义在数学中,我们说两条线条是垂直的,意味着它们相交成直角,即形成一个 90 度的角。
2. 垂直的特征帮助孩子们观察垂直线条的特征,例如墙壁与地面的交接处、门与地面的交接处等等。
引导他们发现垂直线的共同特点:相交成直角。
3. 垂直的符号与孩子们分享垂直线的符号表示。
垂直线通常用"┴" 符号来表示。
可以在纸上画出垂直线,并用"┴" 符号标记两条垂直线的交点。
三、巩固练习活动1. 平行与垂直的物体分类为了帮助幼儿更好地理解平行和垂直的概念,可以准备一些小物体(例如积木或纸片)让他们进行分类。
指导他们将物体分为平行和垂直的两组,并询问他们为什么做出这样的分类。
通过亲自操作和观察,幼儿们将更好地理解这些概念。
2. 室内环境寻找活动带领幼儿们在教室或家中寻找平行和垂直的线条。
例如,他们可以找到两个垂直相交的书架边、两个平行的窗户等等。
与幼儿们一起观察、描述和记录这些线条,并进行集体讨论,促使他们更深入地思考这些概念。
高中数学平行关系图解教案
高中数学平行关系图解教案一、教学目标1. 理解平行线的定义及其性质。
2. 掌握判断直线平行的方法。
3. 能够应用平行关系解决实际问题。
二、教学内容与重点1. 平行线的定义:在同一平面内,不相交的两条直线称为平行线。
2. 平行线的判定:通过同位角相等、内错角相等等性质来判断直线是否平行。
3. 平行线的性质:平行线间的距离处处相等,以及平行线与第三条直线相交时产生的同位角、内错角等的关系。
三、教学方法采用直观教学与探究学习相结合的方式,通过图解示例和实际操作,引导学生自主发现平行关系的规律。
四、教学过程1. 引入新课:通过展示两条铁轨的图片,引出平行线的概念。
2. 讲解定义:详细解释平行线的定义,并用图示辅助说明。
3. 探讨判定方法:通过几个具体的图例,让学生观察并总结判断平行线的几种方法。
4. 验证性质:通过作图和测量,让学生亲自验证平行线的性质。
5. 应用实践:布置相关的练习题,让学生在实际问题中运用平行关系进行解题。
6. 小结回顾:总结本节课的重点内容,确保学生对平行关系有清晰的认识。
五、教学评价通过课堂提问、作业检查和小测验等方式,评估学生对平行关系的理解和掌握情况。
六、教学反思课后,教师应根据学生的反馈和学习效果,对教学方法和内容进行调整和优化。
七、教案实施注意事项1. 在讲解平行线的定义时要清晰准确,避免产生歧义。
2. 在探讨判定方法时,要引导学生通过观察和思考来自主发现规律。
3. 在验证性质时,要注重培养学生的实验操作能力和精确度。
4. 在应用实践中,要鼓励学生发挥创造性思维,解决实际问题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
专题3 空间中的平行关系
一、主要知识及主要方法:
1.空间直线:
(1)空间两条直线的位置关系:相交直线; 平行直线; 异面直线。
异面直线的画法常用的有三种: (2)平行直线:线线平行的判定方法
(3)异面直线定理:连结平面内一点与平面外一点的直线,和这个平面内不经过此点的直线是异面直线。
推理模式:
,,,A B a B a ααα∉∈⊂∉⇒AB 与a 是异面直线。
2.直线和平面
(
1)直线和平面的位置关系:直线在平面内;直线和平面相交;直线和平面平行。
它们的图形分别可表示为: 符号分别可表示为a α⊂,a A α= ,//a α。
(2)线面平行的判定定理:如果不在一个平面内的一条直线和平面内的一条直线平行,那么这条直线和这个平面平行。
推理模式:,,////a b a b a ααα⊄⊂⇒. 线面平行的判定方法 (3)线面平行的性质定理:如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行。
推理模式://,,//a a b a b αβαβ⊂=⇒ .
3.平面和平面
(1)两个平面的位置关系有两种:两平面相交(有一条公共直线)、两平面平行(没有公共点) (2)两个平面平行的判定定理:如果一个平面内有两条相交直线都平行于一个平面,那么这两个平面平行。
推论:如果一个平面内有两条相交直线分别平行于另一个平面内的两条相交直线,那么这两个平面互相平行。
(
(4)两个平面平行的性质
性质1:如果两个平面平行,那么其中一个平面内的直线平行于另一个平面; 性质2:如果两个平行平面同时和第三个平面相交,那么它们的交线平行。
(二)典例分析:
【例1】(1)a 、b 、c 是条不重合的直线,αβγ、、为三个不重合的平面,直线均不在平面内,
给出六个命题:
(1)
;;;;_______a c a c c a b a b a b c b c a c a a γαααβαγβαγαγαβαβγγ⎫⎫⎫⎫
⇒⇒⇒⇒⎬⎬⎬⎬⎭⎭⎭⎭
⎫⎫⇒;⇒⎬⎬⎭⎭
∥∥∥∥∥(2)∥;(3)∥(4)∥∥∥∥∥∥∥(5)∥(6)∥其中正确的序号是∥∥
(2).设有平面α、β和直线m 、n ,则m ∥α的一个充分条件是( ) A.α⊥β且m ⊥β B.α∩β=n 且m ∥n C.m ∥n 且n ∥α D.α∥β且m β 【例2】已知M 、N 、P 是下列正方体各棱的中点,则AB//平面MNP 的图形序号是__________
B
B B
M N
N
M
P
A
A A A B
M
M
N
N
P
P P ①
②
③
④
【训练1】已知m、n为两条不同的直线,α、β为两个不同的平面,则下列命题中正确的是( ).
A.m∥n,m⊥α⇒n⊥αB.α∥β,m⊂α,n⊂β⇒m∥n
C.m⊥α,m⊥n⇒n∥αD.m⊂α,n⊂α,m∥β,n∥β⇒α∥β
【例3】(2011·天津改编)如图,在四棱锥PABCD中,底面ABCD为平行四边形,O为AC的中点,M为PD的中点.求证:PB∥平面ACM.
【训练2】如图,若PA⊥平面ABCD,四边形ABCD是矩形,E、F分别是AB、PD的中点,求证:AF∥平面PCE.
【例4】►如图,在正方体ABCDA1B1C1D1中,M、N、P分别为所在边的中点.求证:平面MNP∥平面A1C1B;
【训练3】如图,在三棱柱ABCA1B1C1中,E,F,G,H分别是AB,
AC,A
1B
1
,A1C1的中点,求证:
(1)B,C,H,G四点共面;
(2)平面EFA1∥平面BCHG.
【例5】►如图所示,在三棱柱ABCA1B1C1中,A1A⊥平面ABC,若D是棱CC1的中点,问在棱AB上是否存在一点E,使DE∥平面AB1C1?若存在,请确定点E的位置;若不存在,请说明理由.
【训练4】如图,在四棱锥PABCD中,底面是平行四边形,PA⊥平面ABCD,点M、N 分别为BC、PA的中点.在线段PD上是否存在一点E,使NM∥平面ACE?若存在,请确定点E的位置;若不存在,请说明理由.
空间中的平行关系习题
1.下列命题中真命题的个数为________.
①直线l 平行于平面α内的无数条直线,则l ∥α;
②若直线a 在平面α外,则a ∥α;③若直线a ∥b ,直线b ⊂α,则a ∥α; ④若直线a ∥b ,b ⊂α,那么直线a 就平行于平面α内的无数条直线. 2.给出下列命题,其中正确的命题是________(填序号). ①直线上有两点到平面的距离相等,则此直线与平面平行;
②夹在两个平行平面间的两条异面线段的中点连线平行于这两个平面; ③直线m ⊥平面α,直线n ⊥m ,则n ∥α;
④a 、b 是异面直线,则存在唯一的平面α,使它与a 、b 都平行且与a 、b 距离相等. 3.设l 1、l 2是两条直线,α、β是两个平面,A 为一点,有下列四个命题,其中正
确命题的个数是________.
①若l 1⊂α,l 2∩α=A ,则l 1与l 2必为异面直线; ②若l 1∥α,l 2∥l 1,则l 2∥α;
③若l 1⊂α,l 2⊂β,l 1∥β,l 2∥α,则α∥β; ④若α⊥β,l 1⊂α,则l 1⊥β.
4.在四面体ABCD 中,截面PQMN 是正方形,则下列命题 中,正确的为________(填序号).
①AC ⊥BD ;②AC ∥截面PQMN ;③AC =BD ;④异面直线PM 与BD 所成的角为45°. 5.过三棱柱ABC —A 1B 1C 1的任意两条棱的中点作直线,其中与平面 ABB 1A 1平行的有
______条.
6. 如图所示,ABCD —A 1B 1C 1D 1是棱长为a 的正方体,M ,N 分 别是下底面的棱A 1B 1,B 1C 1的中点,P 是上底面的棱AD 上的一点,AP =a
3
,过P ,M ,N 的平面交上底面于PQ ,Q 在
CD 上,则PQ =________.
7.已知平面α∥平面β,P 是α、β外一点,过点P 的直线m 与α、β分别交于
A 、C ,过点P 的直线n 与α、β分别交于
B 、D 且PA =6,A
C =9,P
D =8,则BD 的长为________.
8.如图,在正方体ABCD-A 1B 1C 1D 1中,E 、F 、G 、H 分别是棱CC 1、C 1D 1、D 1D 、CD 的中点,N 是BC 的中点,点M 在四边形EFGH 上及其内部运动,则M 满足条件 时,有MN ∥平面B 1BDD 1.
9.考察下列三个命题,在“_____”处都缺少同一个条件,补上这个条件使其构成真命题(其中l 、m 为直线,α、β为平面),则此条件为__________.
①
⎭
⎬⎫
m ⊂αl ∥m
⇒l ∥α;②
⎭
⎬⎫
l ∥m m ∥α
⇒l ∥α;③
⎭
⎬⎫
l ⊥β
α⊥β ⇒l ∥α. 10.如图所示,在三棱柱ABC —A 1B 1C 1中,M 、N 分别是BC 和A 1B 1的中点. 求证:MN ∥平面AA 1C 1C .
11.如图所示,在正方体ABCD -A 1B 1C 1D 1中,E 是棱DD 1的中点.在棱C 1D 1上是否存在一点F ,使B 1F ∥平面A 1BE ?证明你的结论.
12.两个全等的正方形ABCD 和ABEF 所在平面相交于AB ,M ∈AC ,N ∈FB ,且AM =FN ,求证:MN ∥平面BCE 。
13.如图,在底面为平行四边形的四棱锥P ABCD -中 AB AC ⊥, PA ⊥平面ABCD ,且 PA AB =,点E 是PD 的中点.
求证:(1)AC PB ⊥ (2)//EAC PB 平面
14.如下图,在正方体ABCD —A 1B 1C 1D 1中,M 、N 、P 分别是C 1C 、B 1C 1、C 1D 1的中点, 求证:(1)平面MNP ∥平面A 1BD .(2)AP ⊥MN ;
P
A B C D E
P
A A
C C
1
1
M
15(10.P是△ABC所在平面外一点,A′、B′、C′分别是△PBC、△PCA、△PAB的重心。
(1)求证:平面A′B′C′∥平面ABC;
(2)S△A′B′C′∶S△ABC的值。
16.(16分) (2010·济宁一模)如图,四边形ABCD为矩形,DA⊥平面ABE,AE=EB =BC=2,BF⊥平面ACE,且点F在CE上.
(1)求证:AE⊥BE; (2)求三棱锥D—AEC的体积;
(3)设点M在线段AB上,且满足AM=2MB,试在线段CE上确定一点N,使得MN∥
平面DAE.。