空间向量及其运算PPT课件

合集下载

46空间向量及其运算ppt

46空间向量及其运算ppt
1→ 1 → D1C1=a+c+ AB=a+c+ b. 2 2 1→ → → → → (2)∵N 是 BC 的中点,∴A1N=A1A+AB+BN=-a+b+ BC 2 1→ 1 =-a+b+ AD=-a+b+ c. 2 2
→ → → 1→ → (3)∵M 是 AA1 的中点,∴MP=MA+AP= A1A+AP 2 1 1 1 1 =- a+a+c+2b= a+ b+c, 2 2 2 → → → 1→ → 又NC1=NC+CC1= BC+AA1 2 1→ → 1 = AD+AA1= c+a, 2 2 1 → → 1 1 ∴MP+NC1=2a+2b+c+a+2c 3 1 3 = a+ b+ c. 2 2 2
平行向量 (共线向量)
方向相同或相反的非零向量
0 与任一向量共线.
常用 e 表示 记作 a b 记作 a b 记作 a ∥b
要点梳理
1. 空间向量的有关概念及表示法
平面向量 概念 加法 减法 数乘 运算
具有大小和方向的量 加法:三角形法则或 平行四边形法则
ab
a
空间向量
具有大小和方向的量
b
b ab
a
a
ka ( k 0)
ka ( k 0)
减法:三角形法则 数乘:ka, k为正数,负数,零
b
a b
运 算 律
加法交换律 a b b a 加法交换律 a b b a 加法结合律 加法结合律 ( a b ) c a (b c ) (a b ) c a (b c )
若A(, y1 ), B( x2 , y2 ) x1 则 AB ( x2 x1 , y2 y1 ); | AB | ( x2 x1 )2 ( y2 y1 )2 , C ( x , y )是AB的中点,则 x1 x2 x 2 y y1 y2 2

空间向量及其运算课件 课件

空间向量及其运算课件  课件
| AB | (x2 x1)2 ( y2 y1)2 , C(x, y)是AB的中点,则
x
y
x1 y1
2
x2 y2
2
空间向量
空间向量的坐标运算:
a (x1, y1, z1),b (x2 , y2 , z2 )
a b (x1 x2 , y1 y2 , z1 z2 );
a (x1, y1, z1), R;
空间向量
空间向量的夹角:
a (x1, y1, z1),b (x2 , y2 , z2 ) cos a,b a • b
| a || b |
x1x2 y1 y2 z1z2
x12 y12 z12 x22 y22 z22
垂直与平行:
a (x1, y1, z1),b (x2 , y2 , z2 ) a // b x1 y1 z1 (?)
(4)已知不共线的三点A、B、C,对平面 ABC外的任意一点O,若 OG 1 (OA OB OC) 则G是三角形ABC的重心 3
以上命题中,正确的是__________
已知三棱锥O—ABC中,G为△ABC的重心,OA=a,OB=b, OC=c,试用a , b , c 来表示OG.
(1)若AD是△ABC的中线,则有
平面的向量参数方程:
A, B,C是不共线的三点,P 平面ABC
存在唯一的实数对x, y,使 AP x
AB yAC
存在唯一的实数对x, y,使
OP (1 x y) OA yOC
存在唯一的实数对x, y, z
(x y z 1),使 OP x OA
yOB zOC
空间向量及其运算
• 空间向量的概念、表示、相等关系。 • 空间向量的加法、减法、数乘向量 • 加法交换律 • 加法结合律 • 数乘分配律

《空间向量及其运算》课件

《空间向量及其运算》课件

向量的模的运算律
模的加法运算律
$|overset{longrightarrow}{a} + overset{longrightarrow}{b}| = |overset{longrightarrow}{a}| + |overset{longrightarrow}{b}|$ 当且仅当 $overset{longrightarrow}{a}$ 与 $overset{longrightarrow}{b}$ 同向。
模的数乘运算律
$|lambdaoverset{longrightarrow}{a}| = |lambda||overset{longrightarrow}{a}|$,其 中 $lambda$ 是标量。
特殊向量的模的性质
零向量的模
$|overset{longrightarrow}{0}| = 0$。
向量的加法结合律
向量加法满足结合律,即对于任意三个向量 $overset{longrightarrow}{a}$、 $overset{longrightarrow}{b}$和 $overset{longrightarrow}{c}$,有 $(overset{longrightarrow}{a} + overset{longrightarrow}{b}) + overset{longrightarrow}{c} = overset{longrightarrow}{a} + (overset{longrightarrow}{b} + overset{longrightarrow}{c})$。
模的等式
当且仅当 $overset{longrightarrow}{a}$与 $overset{longrightarrow}{b}$同向 或反向时,有 $|overset{longrightarrow}{a}| = |overset{longrightarrow}{b}|$。

人教版空间向量及其运算PPT教学课件

人教版空间向量及其运算PPT教学课件

2、种类及其作用
(1)油脂. 只有C、H、O构成(种子,果实,动物体的 脂肪细胞)基本结构单元是甘油和脂肪酸
储能多
生物体内主要的储存能量的物质
作用
减少热量散失 减少内脏器官的摩擦
体积小
缓冲外界压力
1g油脂的热价为38.71kj,1g糖氧化分解的能量为17.15
(2)类脂.
C H O P 在动物的脑、卵、神经组织 磷脂 和大豆的种子中,磷脂含量较多
(1)假设一个多肽化合物,由10个氨基酸构成一 条肽链,那么该多肽的分子量约为 1118 。
(2)假设一个多肽化合物,由10个氨基酸构成两 条肽链,那么该多肽的分子量约为 1136 。 (3)假设一个多肽化合物,由n个氨基酸构成m条肽 链,那么该多肽的分子量约为 128n-18(n-m)。
例题:
7、假如组成多肽的每个氨基酸中,只含有一个氨基 和一个羧基,那么:
常用 a 、b 、c ……等小写字母来表示.
b
1.向量 a 的大小叫做向量的长度或模,记为 a .
2.可用一条有向线段 AB 来表示向量,向量 AB
的模又记为 AB 就是线段 AB 的长度.
B 终点
类似于平面向量,为了研究的 我们规定:
A 起点方便起见,
零向量、单位向量、相等向量、相反向量、平行
向量、共面向量等概念。(你认为应该怎样规定?)
因此凡是只涉及空间任意两个向量的问题,平 面向量中有关结论仍适用于它们。
返回
向量加法结合律在空间中仍成立吗?
( a + b )+ c = a +( b + c )
O
O
a
a
b +c
A
CA

空间向量及其运算(共22张PPT)

空间向量及其运算(共22张PPT)
向量场的点乘
两个向量场进行点乘运算,得到一个标量场,其 每个标量是原来两个向量场的对应向量的点乘结 果。
向量场的几何意义
向量场表示了空间中某一点受到的力或速度等物理量的分布情况,可以通 过图形表示出来。
向量场的方向表示了该点受到的力的方向或速度的方向,向量的大小表示 了力的大小或速度的大小。
通过观察图形可以直观地了解向量场的分布情况,从而更好地理解物理现 象和问题。
向量的模
向量的模定义为从起点到终点距离的 长度,记作|a|。
向量的模具有以下性质:|a + b| ≤ |a| + |b|,|a - b| ≤ |a| + |b|,|λa| = |λ||a| (λ为实数)。
向量的加法
向量的加法定义为同起点同终点的向量相加,即a + b = b + a(交换律),(λ + μ)a = λa + μa(结合律)。
向量场具有方向性和大小,表 示了空间中某一点受到的力或 速度等物理量的分布情况。
向量场的运算律
1 2 3
向量场的加法
将两个向量场叠加,得到一个新的向量场,其每 个向量是原来两个向量场的对应向量的和。
向量场的数乘
将一个标量与一个向量场中的每个向量相乘,得 到一个新的向量场,其每个向量是原来向量场的 对应向量与该标量的乘积。
向量在其他领域的应用
经济学
在经济学中,例如在市场分析和供需关系中,可以使用向量来表示不同因素之间的关系,通过向量的运算来分析 这些因素之间的关系。
生物学
在生物学中,例如在生态学和生物力学中,可以使用向量来描述生物体的运动、方向和力的作用,通过向量的运 算来分析这些力的作用和影响。
THANKS

空间向量及其线性运算(25张PPT)——高中数学人教A版选择性必修第一册

空间向量及其线性运算(25张PPT)——高中数学人教A版选择性必修第一册
0 AC
9.空间向量共面的充要条件如果两个向量a,b不共线,那么向量p与向量a,b共面→存在唯一的有序实数对(x,y), 使p=xa+yb
A 、B、P 三点共线< →AP= tA一 OP=OA+tABOP 十(x+J=1)
P与A,B,C共面一 AP=xAB+yAC一 OP=OA+xAB+yAC
λ(@+b)=Aa+Ab
a 十h 十C
三、例题精析[例1]已知平行六面体AC’, 求证:AC+AB'+AD'=2ACD
B'B
A
6.向量共线定理对任意两个空间向量a,b(b≠0),a//b一存在实数入,使a=λb。
7.直线的方向向量O是直线l 上一点,在直线上取非零向量a, 则对于直线上任意一点P, 由数乘向量的定义与向量 共线的充要条件知,存在实数λ,使OP=λa。
(x+J=1) x+y+z=1)
A 、B 、P三点共线
OP=OA+tAB
例 2J 如图,已知平行四边形ABCD,过平面AC外一点 0作射线OA 、OB 、OC 、OD,在四条射线上分别取点E、F、
求证:四点E、F、G、H 共面
G、H, 并 平行的非零向量称为直线/的方向向量,I 上任意一点都可以由直线1上的一点和它 的方向向量表示,即直线可由其上一点和它的方
向向量确定。
8.共面向量如果表示向量a的有向线段OA 所在的直线OA 与直线l平行或重合,那么称向量a平行于直线1,如果 直线OA平行于平面α或在平面α内,那么称向量a平行于平面α。平行于同一个平面的向量,叫共面向量。
(2)空间向量的数乘运算:当λ>0时,当 A<0 时 ,当λ=0时,A7=0

8-5空间向量及其运算课件共83张PPT

8-5空间向量及其运算课件共83张PPT
(1) 解析:∵a+b=(10,-5,-2),a-b=(-2,1,-6),
∴(a+b)·(a-b)=-13. (2) 解析:cos〈a,b〉=|aa|·|bb|=-2155.
核/心/素/养
已知V为矩形ABCD所在平面外一点,且VA=VB=VC=VD,V→P=13V→C,V→M=23 V→B,V→N=23V→D,则VA与平面PMN的位置关系是__平__行____.
A.(2,3,3)
B.(-2,-3,-3)CFra bibliotek(5,-2,1)
D.(-5,2,-1)
4.在三棱锥O-ABC中,M,N分别是OA,BC的中点,G是△ABC的重心,用 基向量O→A,O→B,O→C表示M→G,O→G.
[解] M→G=M→A+A→G=12O→A+23A→N =12O→A+23(O→N-O→A) =12O→A+2312O→B+O→C-O→A =-16O→A+13O→B+13O→C. O→G=O→M+M→G =12O→A-16O→A+13O→B+13O→C =13O→A+13O→B+13O→C.
知识点二 数量积及坐标运算 1.两个向量的数量积 (1)a·b=|a||b|cos〈a,b〉. (2)a⊥b⇔_a_·_b_=__0__(a,b为非零向量). (3)|a|2=__a_2_____,|a|= x2+y2+z2.
2.空间向量的坐标运算
设a=(a1,a2,a3),b=(b1,b2,b3),则 (1)|a|= a21+a22+a32; (2)a+b=_(_a_1+__b_1_,__a_2+__b_2_,__a_3_+__b_3)_; (3)a-b=_(_a_1-__b_1_,__a_2_-__b_2,__a_3_-__b_3_) ; (4)λa=_(λ_a_1_,__λ_a_2,__λ_a_3_)____; (5)a·b=_a_1b_1_+__a_2_b_2+__a_3_b_3__;

空间向量及其线性运算(26张PPT)——高中数学人教A版选择性必修第一册

空间向量及其线性运算(26张PPT)——高中数学人教A版选择性必修第一册
C D
2.已知空间任一点O 和不共线的三点A,B,C, 下列能得到P,A,B,C四点共面的是(B )A.OP=OA+OB+OC
解 析 :若点P,A,B,C 共面,设OP=xOA+yOB+zOC,则x+y+z=1, 满足条件的只有B, 故选B.
D. 以上都不对
(2)∵M 是AA的中点,
又N 是BC的中点,
回顾一下本节课学习了哪些新知识呢?1.空间向量的概念2.空间向量的运算律3.共线向量和共面向量
小结:
同学们再见!
授课老师:
时间:2024年9月1日
2024课件
同学们再见!
授课老师:
时间:2024年9月1日
的充要条件是
如图,0是直线1上一点,在直线1上取非零向量a, 则对于直线1上任意一 点P, 由数乘向量的定义及向量共线的充要条件可知,存在实数λ,使得
直线的方向向量
OP=λa. 把与向量a 平行的非零向量称为直线l的方向向量.
共面向量如图,如果表示向量a 的有向线段OA 所在的直线OA 与直线1平行或重合,那么称向量α平行于直线l.如果直线OA 平行于平面α或在平面α内,那么称向量a 平行于平面α.平行于同一个平面的向量,叫做共面向量.a0 Aa 1aa如果两个向量a,b 不共线,那么向量p 与 向 量a,b 共面的充要条件是存在唯一的有序实数对(x,y), 使 P=xa+yb.
证明:设 DA=a,DC=b.则DB=DC+CB=b+a,
10.如图,在平行六面体ABCD-A₁B₁CD₁中,设AA M,N,P 分别是AA,BC,C₁D₁的中点,试用a,b,c
=a,AB=b,AD=c,表示以下向量:

空间向量及其运算 课件

空间向量及其运算 课件
这三个力两两之间
的夹角都为90度, 它们的合力的大小
为多少N?
F1
这需要进一步来认识空间中的向量
空间向量的有关概念: 空间向量:在空间中,具有大小和方向的量. 常用 a 、b 、c ……等小写字母来表示. 1.向量 a 的大小叫做向量的长度或模,记为 a .
2.可用一条有向线段 AB 来表示向量,向量 AB 的模又记为 AB 就是线段 AB 的长度.
(2)首尾相接的若干向量若构成一个封闭图 形,则它们的和为零向量。 A1 A2 A2 A3 A3 A4 An A1 0
(2)首尾相接的若干向量若构成一个封闭图 形,则它们的和为零向量。 A1 A2 A2 A3 A3 A4 An A1 0
问题 1: C
向上
B
正北
O 正东 A
如图:已知 OA=6 米, AB=6 米,BC=3 米,
? 那么 OC=
问题 2:
F2 F3
已知F1=10N, F2=15N,F3=15N
平面向量
概念 定义 表示法 相等向量
加法 减法
加法:三角形法则或 平行四边形法则
数乘 减法:三角形法则
运算 数乘:ka,k为正数,负数,零
空间向量
具有大小和方向的量
加法:三角形法则或 平行四边形法则 减法:三角形法则
数乘:ka,k为正数,负数,零
运 加法交换律 a b b a 算 加法结合律 律 (a b) c a (b c)
数乘分配律
k(a b) ka+kb
加法交换律 a b b a
成立吗? 加法结合律
数乘分配律 k(a b) ka+kb
空间中
向量加法结合律:
( a + b )+ c = a +( b + c )

1.1空间向量及其运算课件(人教版)

1.1空间向量及其运算课件(人教版)

空间向量数量积的直接计 算
空间向量的数量 积
A
8.用向量方法证明:在平面内的一条直线,如果与这个平面的 一条斜线在这个平面上的射影垂直,那么它也与这条斜线垂直 (三垂线定理)
空间向量及其运算总结
加法
减法
线

加法运算律

算 数乘
数乘运算律
分配律 结合律
b+a a+(b+c)
相同 相反
空间向量及其运算总结

共线(平行)向量

表示空间向量的有向线段所
向 定义 在的直线互__相___平__行__或__重___合_,

则这些向量叫做共__线___向__量__或

平行向量
线
、 充要 共 条件 面
共面向量
平行于_同__一__个__平___面_的向 量叫做共面向量
空间向量及其运算总结
数乘向量与数量积的结合
共线(平行)向量
定义
充要 条件
互相平行或重合 共线向量
方向向量:
空间向量的共线与共面
共面向量 定义 平行于_同__一__个___平__面___的向
量叫做共面向量
充 要 条 件
此知识点可用来证明四 点共面,即通过证明三 个向量共面证明四点共 面
1.举出一些表示三个不同在一个平面内的向量的实 例. 一间教室的三面墙,每个平面取一个向

(1)根据向量加法的首尾相连法则,x=1 ;
共线与共面向量基本定 理
空间向量的共线定理与共 面
空间向量的夹角
定义:
夹角范围:
空间向量的数量积及运算律
定义:
运算律: 交换律 分配律
数量积的性 质

空间向量及其运算-课件

空间向量及其运算-课件

例2 在60O的两面角α-l-β中, A∈α,B∈β,已知A、B到直线l 的距离分别是2和4,且A体ABCD-A1B1C1D1 中 , E 、 F 分 别 是 BB1 、 DC 的 中 点
(1) 求AE与D1F所成的角; (2)证明AE⊥平面A1D1F。

9、有时候读书是一种巧妙地避开思考 的方法 。2021/3/52021/3/5Fr iday, March 05, 2021
第 课时
2
空间如向果量三基个本向定量理a:,b,c 不共面, p 那么对空间任一向量 ,存在一
个唯一的有序实数对x、y、z,使
pxaybzc
推论: 设O、A、B、C是不共面的四
个点,则对空间任一点P,都存在 唯一的三个有序实数x、y、z,使
OP xOA yOB zOC
例1 利用空间向量的方法证明直线与 平面垂直的判定定理:

10、阅读一切好书如同和过去最杰出 的人谈 话。2021/3/52021/3/52021/3/53/5/2021 8:37:55 AM

11、越是没有本领的就越加自命不凡 。2021/3/52021/3/52021/3/5M ar-215- Mar-21

12、越是无能的人,越喜欢挑剔别人 的错儿 。2021/3/52021/3/52021/3/5Fr iday, March 05, 2021
12 3
第 课时
1
如果l是经过点A且平行于已知非 零向量 a 的直线,那么对任一点
O,点P在直线l上的充要条件是存 在实数t,满足等式:O PO Ata
三定个理向:量如共果面两的个充向要量条件a与 : b 不 共线,则向量 p与向量 a, b 共
面使的:充p 要条x件a 是存y在b实数对x、y,

第八章第五节空间向量的运算及应用课件共60张PPT

第八章第五节空间向量的运算及应用课件共60张PPT

A.-12 a+12 b+c
B.12 a+12 b+c
C.-12 a-12 b+c
D.12 a-12 b+c
A
→ [BM
=BB1+B1M=AA1+12
→ (AD
-A→B
)=c+12
(b-a)=-12
a+12
b+c.]
4.若平面 α 的一个法向量为 u1=(-3,y,2),平面 β 的一个法向量为 u2=(6,-2,z),且 α∥β,则 y+z=________.
向量的基本定理及其意义,掌握空间 小问.
向量的正交分解及其坐标表示. 学科素养: 逻辑推理、数学运算.
课程标准
考向预测
3.掌握空间向量的线性运算及其坐 考情分析: 本节主要考查空间向量
标表示. 的线性运算、数量积及其坐标运算,
4.掌握空间向量的数量积及其坐标 利用空间向量证明空间中的平行与
表示,能运用向量的数量积判断向量 垂直关系,多出现在解答题中的第一
解析: (1)由题意可知,A→B =O→B -O→A =a+2b,A→C =O→C -O→A =
-a-2b,∴A→B =-A→C ,又A→B ,A→C 有公共点,∴A,B,C 三点共线.
(2)∵A→M =kAC1,B→N =kB→C ,∴M→N =M→A +A→B +B→N =kC1A+A→B

→ k BC
-4),点 E,F 分别为线段 BC,AD 的中点,则E→F 的坐标为( )
A.(2,3,3)
B.(-2,-3,-3)
C.(5,-2,1)
D.(-5,2,-1)
B [因为点 E,F 分别为线段 BC,AD 的中点.设 O 为坐标原点,所以E→F
=O→F
-O→E

空间向量及其运算PPT优秀课件9

空间向量及其运算PPT优秀课件9
97.有三个人是我的朋友爱我的人.恨我的人.以及对我冷漠的人。 爱我的人教我温柔;恨我的人教我谨慎;对我冷漠的人教我自立。――[J·E·丁格] 98.过去的事已经一去不复返。聪明的人是考虑现在和未来,根本无暇去想过去的事。――[英国哲学家培根] 99.真正的发现之旅不只是为了寻找全新的景色,也为了拥有全新的眼光。――[马塞尔·普劳斯特] 100.这个世界总是充满美好的事物,然而能看到这些美好事物的人,事实上是少之又少。――[罗丹] 101.称赞不但对人的感情,而且对人的理智也发生巨大的作用,在这种令人愉快的影响之下,我觉得更加聪明了,各种想法,以异常的速度接连涌入我的脑际。――[托尔斯泰] 102.人生过程的景观一直在变化,向前跨进,就看到与初始不同的景观,再上前去,又是另一番新的气候――。[叔本华] 103.为何我们如此汲汲于名利,如果一个人和他的同伴保持不一样的速度,或许他耳中听到的是不同的旋律,让他随他所听到的旋律走,无论快慢或远近。――[梭罗] 104.我们最容易不吝惜的是时间,而我们应该最担心的也是时间;因为没有时间的话,我们在世界上什么也不能做。――[威廉·彭] 105.人类的悲剧,就是想延长自己的寿命。我们往往只憧憬地平线那端的神奇【违禁词,被屏蔽】,而忘了去欣赏今天窗外正在盛开的玫瑰花。――[戴尔·卡内基] 106.休息并非无所事事,夏日炎炎时躺在树底下的草地,听着潺潺的水声,看着飘过的白云,亦非浪费时间。――[约翰·罗伯克] 107.没有人会只因年龄而衰老,我们是因放弃我们的理想而衰老。年龄会使皮肤老化,而放弃热情却会使灵魂老化。――[撒母耳·厄尔曼] 108.快乐和智能的区别在于:自认最快乐的人实际上就是最快乐的,但自认为最明智的人一般而言却是最愚蠢的。――[卡雷贝·C·科尔顿] 109.每个人皆有连自己都不清楚的潜在能力。无论是谁,在千钧一发之际,往往能轻易解决从前认为极不可能解决的事。――[戴尔·卡内基] 110.每天安静地坐十五分钟·倾听你的气息,感觉它,感觉你自己,并且试着什么都不想。――[艾瑞克·佛洛姆] 111.你知道何谓沮丧---就是你用一辈子工夫,在公司或任何领域里往上攀爬,却在抵达最高处的同时,发现自己爬错了墙头。--[坎伯] 112.「伟大」这个名词未必非出现在规模很大的事情不可;生活中微小之处,照样可以伟大。――[布鲁克斯] 113.人生的目的有二:先是获得你想要的;然后是享受你所获得的。只有最明智的人类做到第二点。――[罗根·皮沙尔·史密斯] 114.要经常听.时常想.时时学习,才是真正的生活方式。对任何事既不抱希望,也不肯学习的人,没有生存的资格。

1.1空间向量及其运算课件

1.1空间向量及其运算课件
1
(3) AF AD x AB y AA) x y
2
课堂小结
一. 空间向量的有关概念
二. 几类特殊的空间向量
三. 空间向量的线性运算
四. 空间向量的共线(平行)的 充要条件
五. 空间向量的共面充要条件
2
1.1.1空间向量及其线性运算
新知讲授
一. 空间向量的夹角
定义:已知两个非零向量a,b,O是平面上的任意一点,
平面向量/ 空间向量
加法
减法
数乘
运算
加法:三角形法则或平行四边形法则
减法:三角形法则
数乘:ka,k为正数,负数,零
12
学习新知
(1)空间向量的加减法
C
ab
b
A
O
a
a b OA AB OB
(2)空间向量的数乘
a
a b
λa
a b OA OC CA
(λ>0)
0时, a 0
∠AOB
作 OA =a,OB =b,则_______=θ
叫做向量a与b的夹
<a,b>
角.记作: ________
A


a
a

b

O
b
B
关键是共
起点!
• 通常规定: 0≤ <a,b> ≤π
• 如果<a,b>=90°,那么a,b互相垂直,记作a⊥b
• 两个向量的夹角唯一确定,且<a,b>=<b,a>
新知讲授
λa
(λ<0)
B
13
学习新知
平面向量/ 空间向量
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档