中北大学概率统计习题册第四章完整答案(详解)资料
概率论与数理统计第四章习题及答案
概率论与数理统计习题 第四章 随机变量的数字特征习题4-1 某产品的次品率为,检验员每天检验4次,每次随机地取10件产品进行检验,如发现其中的次品数多于1个,就去调整设备,以X 表示一天中调整设备的次数,试求)(X E (设诸产品是否为次品是相互独立的).解:设表示一次抽检的10件产品的次品数为ξP =P (调整设备)=P (ξ>1)=1-P (ξ≤1)= 1-[P (ξ=0)+ P (ξ=1)]查二项分布表1-=.因此X 表示一天调整设备的次数时X ~B (4, . P (X =0)=⎪⎪⎭⎫ ⎝⎛04××=.P (X =1)=⎪⎪⎭⎫ ⎝⎛14××=, P (X =2)= ⎪⎪⎭⎫⎝⎛24××=.P (X =3)=⎪⎪⎭⎫ ⎝⎛34××=, P (X =4)= ⎪⎪⎭⎫ ⎝⎛44××=. 从而E (X )=np =4×=习题4-2 设随机变量X 的分布律为Λ,2,1,323)1(1==⎭⎬⎫⎩⎨⎧-=+j j X P jjj ,说明X的数学期望不存在.解: 由于1111133322(1)((1))3j j j j j j j j j P X j j j j ∞∞∞++===-=-==∑∑∑,而级数112j j ∞=∑发散,故级数11133(1)((1))j jj j j P X j j∞++=-=-∑不绝对收敛,由数学期望的定义知,X 的数学期望不存在. 习题X-2 0 2 k p求)53(),(),(22+X E X E X E .解 E (X )=(-2)+0+2=由关于随机变量函数的数学期望的定理,知E (X 2)=(-2)2+02+22=E (3X 2+5)=[3 (-2)2+5]+[3 02+5]+[322+5]=如利用数学期望的性质,则有E (3X 2+5)=3E (X 2)+5=3+5=4.135)(3)53(,8.23.04.0)(,2.03.023.004.02)(222222)2(=+=+=⨯+⨯=-=⨯+⨯+⨯-=-X E X E X E X E习题4-4 设随机变量X 的概率密度为⎩⎨⎧≤>=-0,0,0,)(x x e x f x 求XeY X Y 2)2(;2)1(-==的数学期望.解22)(2)0(2)(2)2()()(00=-=+-=+⋅===∞-∞+-∞-+∞-∞-+∞∞-⎰⎰⎰⎰xx xx e dx e xe dx xe dx x dx x xf X E Y E I3131)()()(0303022=-==⋅==∞-∞+-∞+---⎰⎰xx x x X edx e dx e e e E Y E II 习题4-5 设),(Y X 的概率密度为⎩⎨⎧≤≤≤=其它,0,10,12),(2x y y y x f求)(),(),(),(22Y X E XY E Y E X E +.解 各数学期望均可按照⎰⎰+∞∞-+∞∞-=dxdy y x f y x g Y X g E ),(),()],([计算。
概率论与数理统计第四章习题解
7.若连续型随机变量ξ的分布密度是:
⎧ax2 + bx + c , (0 < x < 1)
f (x) = ⎨ ⎩
0
, , (x ≤ 0, x ≥ 1)
已知 E(ξ ) =1/2, D(ξ ) =3/20,求系数 a 、 b 、 c .
解:应用密度函数的性质有:
∫1
(ax 2
+
bx
+
c)dx
=
(a
x3
解:(1). E(ξ ) =-2×0.4+0×0.3+2×0.3=-0.2 .
(2). E(ξ 2 ) = 4 × 0.4 + 0 × 0.3 + 4 × 0.3 = 2.8,
则: E(3ξ 2 + 5) = 3E(ξ 2 ) + 5 = 3 × 2.8 + 5 = 13.4 . (3).由(1),(2)解:
D(ξ ) = E(ξ 2 ) − E 2 (ξ ) = 2.8 − (−0.2)2 = 2.76 .
11.设随机变量
(ξ
,η)
具有概率密度:
f
( x,
y)
=
⎧1 ⎩⎨0
(| y |< x,0 < x < 1) (其它)
,试求:
-5-
E(ξ ) , E(η) .
∫ ∫ ∫ ∫ ∫ 解:
E(ξ )
=
解:由连续型随机变量数学期望的定义式:
∫ ∫ ∫ +∞
1500
E(ξ ) = xf (x)dx =
1
x 2dx − 3000 x(x − 3000) dx
−∞
0 15002
1500 15002
概率论与数理统计(经管类)第四章课后习题答案word档
习题4.11.设随机变量X 的概率密度为(1) (2)f(x)={2x, 0≤x ≤1,0, 其他; f(x)=12e -|x |, -∞<x <+∞求E(X)解: (1)E (X )=∫+∞-∞xf (x )dx = ∫10x ∙2xdx =2∙x 32|10=23(2)E (X )=∫+∞-∞xf (x )dx =∫+∞-∞x ∙12e -|x |=02.设连续型随机变量X 的分布函数为F (x )={0, x <-1,a +b ∙arcsinx, -1≤x <1,1, x ≥1.试确定常数a,b,并求E(X).解:(1)f (x )=F '(x )={b 1-x 2, -1≤x <10, 其他∫+∞-∞f (x )dx =∫1-1b 1-x 2dx =b ∙arcsinx|1-1=bπ=1, 即b =1π又因当时-1≤x <1F (X )=∫X-1f (x )dx =∫x-11π∙11-x 2dx =1π∙arcsinx|x-1=1π∙arcsinx +12, 即a =12(2)E (X )=∫+∞-∞xf (x )dx =∫1-1xπ∙11-x 2=03.设轮船横向摇摆的随机振幅X 的概率密度为f(x)={1σ2e-x 22σ2, x >0,0, x ≤0.求E(X).解:E (X )=∫+∞-∞xf (x )dx =1σ2∫+∞0x ∙e -x 22σ2dx =14.设X 1, X 2,….. X n 独立同分布,均值为,且设,求E(Y).μY =1n ∑n i =1X i 解:E (Y )=E (1n ∑ni =1X i )=1n E (∑ni =1X i )=1n ∙n μ=μ5.设(X,Y)的概率密度为f(x,y)={e -y, 0≤x ≤1,y >0,0, 其他.求E(X+Y).解:E (X +Y )=∫+∞-∞∫+∞-∞(x +y )f (x,y )dxdy =∫+∞0∫10(x +y )e -ydxdy =∫+∞012∙e ‒y +y ∙e ‒y dy =326.设随机变量X 1, X 2相互独立,且X 1, X 2的概率密度分别为f 1(x )={2e -2x, x >0,0, x ≤0,求:f 2(x )={3e -3x, x >0,0, x ≤0,(1)E (2X 1+3X 2); (2)E (2X 1-3X 22); (3)E (X 1X 2解:(1)E (2X 1+3X 2)=2E (X 1)+3E (X 2)=2*12+3*13=2(2)E (2X 1-3X 22)==2E (X 1)-3E (X 22)=1-3*∫+∞x 23e -3xdx =1-3*[-∫+∞x 2d(e -3x)]=1-3*[-x 2∙e -3x|+∞0+∫+∞e -3xdx 2]=1-3*[0+∫+∞e -3x∙2xdx]=1-3*[23∫+∞e -3x∙3xdx ]=1-3*23*13=13(3)E (X 1X 2)=E (X 1)E (X 2)=12*13=167.求E(X).解:E (X )=∑i ∑j x i p ij =0*0.1+0*0.3+1*0.2+1*0.1+2*0.1+2*0.2=0.98.设随机变量X 的概率密度为且E(X)=0.75,求常数c 和.f(x)={cx α, 0≤x ≤1,0, 其他.α解:E (X )=∫+∞-∞xf (x )dx =∫10x ∙cx αdx =0.75习题4.21.设离散型随机变量X 的分布律为X -100.512P0.10.50.10.10.2求E (X ),E (X 2),D (X ).解: E (X )=(-1)*0.1+0*0.5+0.5*0.1+1*0.1+2*0.2=0.45E (X 2)=(-1)2*0.1+0*0.5+(0.5)2*0.1+12*0.1+22*0.2=1.025D (X )=(-1-0.45)2*0.1+(0-0.45)2*0.5+(0.5-0.45)2*0.1+(1-0.45)22.盒中有5个球,其中有3个白球,2个黑球,从中任取两个球,求白球数X 的期望和方差.解: X 的可能取值为0,1,2P {X =0}=C 22C 25=0.1P {X =1}=C 13∙C 12C 25=0.6P {X =2}=C 23C 25=0.3E (X )=0∗0.1+1∗0.6+2∗0.3=1.2D (X )=(0‒1.2)2∗0.1+(1‒1.2)2∗0.6+(2‒1.2)2∗0.3=0.144+0.024+0.192=0.363.设随机变量X,Y 相互独立,他们的概率密度分别为f X (x )={2e ‒2x, x >0,0, x ≤0,f Y(y )={4, 0<y ≤14,0, 其他,求D(X+Y).解:D (X +Y )=D (X )+D (Y )=122+(14‒0)212=491924.设随机变量X 的概率密度为f X (x )=12e ‒|x |, ‒∞<x <+∞,求D(X)解:E (X )=∫+∞‒∞x2e ‒|x |dx =0E(X2)=∫+∞‒∞x 22e‒|x|dx=2∫+∞‒∞x22e‒x=∫+∞‒∞x2e‒x=2=D(X) E(X2)‒[E(X)]2=25.设随机变量X与Y相互独立,且D(X)=1,D(Y)=2,求D(X-Y).解: D(X‒Y)=D(X)+D(Y)=1+2=36.若连续型随机变量X的概率密度为f(x)={ax2+bx+c, 0<x<1,0, 其他,且E(X)=0.5,D(X)=0.15.求常数a,b,c.解:E(X)=∫10x(ax2+bx+c)dx=a4+b3+c2=0.5E(X2)=∫10x2(ax2+bx+c)dx=a5+b4+c3=0.15+(0.5)2=0.4∫+∞‒∞f(x)dx=∫10(ax2+bx+c)dx=a3+b2+c=1解得a=12,b=-12,c=3.习题4.31.设两个随机变量X,Y相互独立,方差分别为4和2,则随机变量3X-2Y的方差是 D .A. 8B. 16C. 28D. 442.设二维随机变量(X,Y)的概率密度为f(x,y)={18(x+y), 0≤x≤2,0≤y≤2,0, 其他求Cov(X,Y).解:E(X)=∫20[∫20x8(x+y)dy]dx=∫20(x28∙y+x8∙y22)|20d x=76E(Y)=∫20[∫20y8(x+y)dx]dy=76E(XY)=∫20[∫20xy8(x+y)dy]dx=43Cov(X,Y)=E(XY)‒E(X)E(Y)=43‒76∗76=‒1363.设二维随机变量(X,Y)的概率密度为f(x,y)={ye‒(x+y), x>0,y>0,0, 其他求X与Y的相关系数ρxy.解:E(X)=∫+∞0(∫+∞0xye‒(x+y)dy)dx=1E(Y)=∫+∞0(∫+∞0y2e‒(x+y)dx)dy=∫+∞0(∫+∞0y2e‒x e‒y dx)dy=∫+∞0y2e‒y dy=‒∫+∞0y2d(e‒y)=‒y2e‒y|+∞0+∫+∞0e‒y d(y2)=0+∫+∞0e‒y∙2ydy=2∫+∞0e‒y∙ydy=2E(XY)=∫+∞0(∫+∞0xy2e‒(x+y)dy)dx=2Cov(X,Y)=E(XY)‒E(X)E(Y)=2‒2∗1=0所以ρxy=Cov(X,Y)D(X)D(Y)=04.设二维随机变量(X,Y)服从二维正态分布,且E(X)=0, E(Y)=0, D(X)=16, D(Y)=25, Cov(X,Y)=12,求(X,Y)的联合概率密度函数f(x,y).布解:f (x,y )=12πσ1σ21‒ρ2e‒12(1‒ρ2){(x ‒μ1)2σ12‒2ρ(x ‒μ1)(y ‒μ2)σ1σ2+(y ‒μ2)2σ22}∵E (X )=0,E (Y )=0∴μ1=0, μ2=0,∵D(X)=16, D(Y)=25∴σ1=4,σ2=5∵Cov(X,Y)=12∴ρ=Cov (X,Y )D(X)D(Y)=124∗5=35∴f (x,y )=132πe‒2532(x 216‒3xy 50+y 225)5. 证明D(X-Y)=D(X)+D(Y)-2Cov(X,Y).证:D (X ‒Y )=E [X ‒Y ‒E (X ‒Y )]2=E [(X ‒E (X ))‒(Y ‒E (Y ))]2=E [(X ‒E (X ))2]‒2E [X ‒E (X )]∙E [Y ‒E (Y )]+E [(Y ‒E (Y ))2]=D (X )+D (Y )‒2Cov(X,Y)6. 设(X,Y)的协方差矩阵为,求X 与Y 的相关系数ρxy.C =(4‒3‒39)解:∵C =(4‒3‒39)∴Cov (X,Y )=‒3, D (X )=4,D (Y )=9∴ρxy =Cov (X,Y )D(X)D(Y)=‒32∗3=‒12自测题4一、 选择题1.设随机变量X 服从参数为0.5的指数分布,则下列各项中正确的是 B .A. E(X)=0.5, D(X)=0.25 B. E(X)=2, D(X)=4C. E(X)=0.5, D(X)=4 D. E(X)=2, D(X)=0.25解: 指数分布的E (X )=1λ, D (X )=1λ22. 设随机变量X,Y 相互独立,且X~B(16,0.5),Y 服从参数为9的泊松分布,则D(X-2Y+1)= C.A.-14B. 13C. 40D. 41解: D (X )=npq =16∗0.5∗0.5=4, D (Y )=λ=9D (X ‒2Y +1)=D (X )+4D (Y )+D (1)=4+4∗9+0=403. 已知D(X)=25,D(Y)=1, ρxy=0.4, 则D(X-Y)= B .A.6B. 22C. 30D. 464. 设(X,Y)为二维连续随机变量,则X 与Y 不相关的充分必要条件是 C .A. X 与Y 相互独立B. E(X+Y)=E(X)+E(Y)C. E(XY)= E(X)E(Y)D. (X,Y)~N()μ1,μ2,σ12,σ22,0解: ∵X 与Y 不相关∴ρxy =0, ∴Cov (X,Y )=0∴E(XY)= E(X)E(Y)5.设二维随机变量(X,Y)~N(),则Cov(X,Y)= B .1,1,4,9,12A. B. 3C. 18D. 3612解: ∵ρxy =12=Cov (X,Y )D(X)D(Y)=Cov (X,Y )2*3, ∴Cov (X,Y )=36.已知随机变量X 与Y 相互独立,且它们分别在区间[-1,3]和[2,4]上服从均匀分布,则E(XY)= A .A. 3B. 6C. 10D. 12解: ∵X~U (‒1,3),Y~U (2,4)∴E (X )=a +b 2=‒1+32=1, E (Y )=2+42=3E (XY )= E (X )E (Y )=1∗3=37.设二维随机变量(X,Y)~N(),Ø(x)为标准正态分布函数,则下列结论中错误的是 C .0,0,1,1,0A. X 与Y 都服从N(0,1)正态分布 B. X 与Y 相互独立C. Cov(X,Y)=1 D. (X,Y)的分布函数是Φ(x)∙Φ(y)二、 填空题1.若二维随机变量(X,Y)~N(),且X 与Y 相互独立,则ρ= 0 .μ1,μ2,σ12,σ22,0解:Cov(X,Y)=0∵2.设随机变量X 的分布律为 3 .X -1012P0.10.20.30.4令Y=2X+1,则E(Y)= 3 .解: E(2X+1)=(2*-1+1)*0.1+(2*0+1)*0.2+(2*1+1)*0.3+(2*2+1)*0.4=33.已知随机变量X 服从泊松分布,且D(X)=1,则P{X=1}= .e ‒1解: ∵ D (X )=λ=1∴P {X =1}=λ1e ‒λ1!=e ‒14.设随机变量X 与Y 相互独立,且D(X)= D(Y)=1,则D(X-Y) =2 .5.已知随机变量X 服从参数为2的泊松分布,= 6.E (X 2)解: ∵E (X )=λ=2,D (X )=λ=2,∴ E (X 2)=E 2(X )+D (X )=4+2=66.设X为随机变量,且E(X)=2, D(X)=4,则= 8 .E(X2)7.已知随机变量X的分布函数为F(x)={0, x<0x4, 0≤x<41, x≥4则E(X) = 2 .解: f(x)=F'''"(x)={14, 0≤x<40, 其他E(X)=∫40x4dx=08.设随机变量X与Y相互独立,且D(X)=2, D(Y)=1,则D(X-2Y+3)= 6 .三、设随机变量X的概率密度函数为f(x)={32x2, ‒1≤x≤1,0, 其他试求: (1)E(X), D(X); (2).P{|X‒E(X)|<2D(X)}解:(1) E(X)=∫1‒132x3dx=0D(X)=E(X2)‒E2(X)=∫1‒132x4=32∙x55|1‒1=35(2)P{|X‒E(X)|<2D(X)}=P{|X|<65}=∫65‒65f(x)dx=∫1‒132x2dx=1四、设随机变量X的概率密度为f(x)={x 0≤x≤12‒x, 1≤x<20, 其他试求: (1)E(X), D(X); (2),其中n为正整数.E(X n)解:(1)E(X)=∫1x2dx+∫21x(2‒x)dx=13+13=1D(X)=E(X2)‒E2(X)=∫10x3dx+∫21x2(2‒x)‒1=14+(143‒154)‒1=16(2)E(X n)=∫1x n+1dx+∫21x n(2‒x)=2(2n+1‒1)(n+1)(n+2)五、 设随机变量X 1与X 2相互独立,且X 1~N(), X 2~N().令X= X 1+X 2, Y= X 1-X 2.μ,σ2μ,σ2求: (1)D(X), D(Y); (2)X 与Y 的相关系数ρxy.解:(1)D (X )=D (X 1+X 2)=D (X 1)+D (X 2)=σ2+σ2=2σ2D (Y )=D (X 1‒X 2)=D (X 1)+D (X 2)=2σ2(2) Cov (X,Y )=E (XY )‒E (X )E (Y )=0ρxy =Cov (X,Y )D(X)D(Y)=0六、 设随机变量X 的概率密度为f (x )={2e ‒2x, x >0, 0, x ≤0.(1)求E(X),D(X);(2)令,求Y 的概率密度f Y (y).Y =X ‒E(X)D(X)解:(1)E (X )=∫+∞2xe ‒2x dx =12D (X )=E (X 2)‒E 2(X )=∫+∞02x 2e ‒2x dx ‒14=12‒14=14(2)Y =X ‒E(X)D(X)=X ‒1212=2X ‒1由Y=2X-1得, X’=X =Y +1212=∴f Y (y )={2e‒2(Y +12)∙12,Y +12>00, Y +12≤0{e ‒(y +1), y >‒10, y ≤‒1七、 设二维随机变量(X,Y)的概率密度为f (x,y )={2, 0≤x≤1,0≤y ≤x,0, 其他求: (1)E(X+Y); (2)E(XY); (3). P{X +Y ≤1}解:(1)E (X +Y )=∫10dx ∫x 02(x +y )dy =∫102x 2+x 2dx =1(2)E(XY)=∫1dx∫x2xy dy=∫1x3dx=14(3) P{X+Y≤1}=∬x+y≤1f(x,y)dxdy=∫12(∫1‒yy2dx)dy=∫122‒4ydy=12八、设随机变量X的分布律为X-101P 131313记Y=X2,求: (1)D(X), D(Y); (2) ρxy.解:(1)E(X)=(‒1)∗13+0∗13+1∗13=0D(X)=(‒1‒0)2∗13+(0‒0)2∗13+(1‒0)2∗13=23 E(Y)=(‒1)2∗13+0∗13+12∗13=23D(Y)=(1‒23)2∗13+(0‒23)2∗13+(1‒23)2∗13=29E(XY)=(0∙‒1)∙9+(1∙‒1)∙29+(0∙0)∙19+(0∙1)∙29+(1∙0)∙19+(1∙1)∙29=0Cov(X,Y)=E(XY)‒E(X)E(Y)=0‒0∗23=0ρxy=Cov(X,Y)D(X)D(Y)=0。
概率论第4-6章课后习题答案
概率论第4-6章课后习题答案(总29页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--习题四1.设随机变量X 的分布律为X 1 0 12P 1/8 1/2 1/81/4求E (X 【解】(1)11111()(1)012;82842E X =-⨯+⨯+⨯+⨯= (2)2222211115()(1)012;82844E X =-⨯+⨯+⨯+⨯= (3) 1(23)2()32342E X E X +=+=⨯+=2.已知100个产品中有10个次品,求任意取出的5个产品中的次品数的数学期望、方差.X 0 1 2 3 4 5P 5905100C 0.583C = 1410905100C C 0.340C = 2310905100C C 0.070C = 3210905100C C 0.007C = 4110905100C C 0C = 5105100C 0C =故 ()0.58300.34010.07020.00730405E X =⨯+⨯+⨯+⨯+⨯+⨯ 0.501,=520()[()]i ii D X x E X P ==-∑222(00.501)0.583(10.501)0.340(50.501)00.432.=-⨯+-⨯++-⨯=3.X 1 01P p1 p2 p3且已知E (【解】因1231PP P ++=……①, 又12331()(1)010.1E X PP P P P =-++=-=……②, 222212313()(1)010.9E X P P P P P =-++=+=……③由①②③联立解得1230.4,0.1,0.5.PP P === 4.袋中有N 只球,其中的白球数X 为一随机变量,已知E (X )=n ,问从袋中任取1球为白球的概率是多少【解】记A={从袋中任取1球为白球},则0(){|}{}Nk P A P A X k P X k ===∑全概率公式001{}{}1().NNk k k P X k kP X k NN n E X NN ========∑∑5.设随机变量X 的概率密度为f (x )=⎪⎩⎪⎨⎧≤≤-<≤.,0,21,2,10,其他x x x x 求E (X ),D (X ). 【解】12201()()d d (2)d E X xf x x x x x x x+∞-∞==+-⎰⎰⎰21332011 1.33x x x ⎡⎤⎡⎤=+-=⎢⎥⎢⎥⎣⎦⎣⎦122232017()()d d (2)d 6E X x f x x x x x x x +∞-∞==+-=⎰⎰⎰故221()()[()].6D X E X E X =-= 6.设随机变量X ,Y ,Z 相互独立,且E (X )=5,E (Y )=11,E (Z )=8,求下列随机变量的数学期望. (1) U=2X+3Y+1; (2) V=YZ 4X. 【解】(1) [](231)2()3()1E U E X Y E X E Y =++=++ 25311144.=⨯+⨯+=(2) [][4][]4()E V E YZ X E YZ E X =-=-,()()4()Y Z E Y E Z E X -因独立1184568.=⨯-⨯=7.设随机变量X ,Y 相互独立,且E (X )=E (Y )=3,D (X )=12,D (Y )=16,求E (3X 2Y ),D (2X 3Y ).【解】(1) (32)3()2()3323 3.E X Y E X E Y -=-=⨯-⨯=(2)22(23)2()(3)412916192.D X Y D X DY -=+-=⨯+⨯= 8.设随机变量(X ,Y )的概率密度为f (x ,y )=⎩⎨⎧<<<<.,0,0,10,其他x y x k 试确定常数k ,并求E (XY ). 【解】因101(,)d d d d 1,2xf x y x y x k y k +∞+∞-∞-∞===⎰⎰⎰⎰故k=210()(,)d d d 2d 0.25xE XY xyf x y x y x x y y +∞+∞-∞-∞===⎰⎰⎰⎰.9.设X ,Y 是相互独立的随机变量,其概率密度分别为fX (x )=⎩⎨⎧≤≤;,0,10,2其他x x fY (y )=(5)e ,5,0,.y y --⎧>⎨⎩其他求E (XY ).【解】方法一:先求X 与Y 的均值102()2d ,3E X x x x ==⎰ 5(5)500()ed 5e d e d 51 6.z y y zz E Y y yz z z +∞+∞+∞=-----=+=+=⎰⎰⎰令由X 与Y 的独立性,得2()()()6 4.3E XY E X E Y ==⨯=方法二:利用随机变量函数的均值公式.因X 与Y 独立,故联合密度为(5)2e ,01,5,(,)()()0,,y X Y x x y f x y f x f y --⎧≤≤>==⎨⎩其他 于是11(5)2(5)552()2ed d 2de d 6 4.3y y E XY xy x x y x xy y +∞+∞----===⨯=⎰⎰⎰⎰10.设随机变量X ,Y 的概率密度分别为fX (x )=⎩⎨⎧≤>-;0,0,0,22x x x e fY (y )=⎩⎨⎧≤>-.0,0,0,44y y y e求(1) E (X+Y );(2) E (2X 3Y2). 【解】22-200()()d 2e d [e ]e d x x xX X xf x x x x x x+∞+∞+∞--+∞-∞==-⎰⎰⎰201e d .2x x +∞-==⎰401()()d 4e dy .4y Y E Y yf y y y +∞+∞--∞==⎰⎰22242021()()d 4e d .48y Y E Y y f y y y y +∞+∞--∞====⎰⎰从而(1)113()()().244E X Y E X E Y +=+=+= (2)22115(23)2()3()23288E X Y E X E Y -=-=⨯-⨯=11.设随机变量X 的概率密度为f (x )=⎪⎩⎪⎨⎧<≥-.0,0,0,22x x cx x k e求(1) 系数c;(2) E (X );(3) D (X ).【解】(1) 由2220()d e d 12k x cf x x cx x k +∞+∞--∞===⎰⎰得22c k =.(2)222()()d()2ed k x E X xf x x x k x x+∞+∞--∞==⎰⎰22220π2e d .2k x k x x k +∞-==⎰(3)222222201()()d()2e .kxE X x f x x x k x k +∞+∞--∞==⎰⎰故222221π4π()()[()].4D X E X E X k k -=-=-=⎝⎭12.袋中有12个零件,其中9个合格品,3个废品.安装机器时,从袋中一个一个地取出(取出后不放回),设在取出合格品之前已取出的废品数为随机变量X ,求E (X )和D (X ).【解】设随机变量X 表示在取得合格品以前已取出的废品数,则X 的可能取值为0,1,2,3.为求其分布律,下面求取这些可能值的概率,易知9{0}0.750,12P X === 39{1}0.204,1211P X ==⨯= 329{2}0.041,121110P X ==⨯⨯= 3219{3}0.005.1211109P X ==⨯⨯⨯=X 0 1 2 3P由此可得()00.75010.20420.04130.0050.301.E X =⨯+⨯+⨯+⨯=22222222()075010.20420.04130.0050.413()()[()]0.413(0.301)0.322.E X D X E X E X =⨯+⨯+⨯+⨯==-=-=13.一工厂生产某种设备的寿命X (以年计)服从指数分布,概率密度为 f (x )=⎪⎩⎪⎨⎧≤>-.0,0,0,414x x xe为确保消费者的利益,工厂规定出售的设备若在一年内损坏可以调换.若售出一台设备,工厂获利100元,而调换一台则损失200元,试求工厂出售一台设备赢利的数学期望.【解】厂方出售一台设备净盈利Y 只有两个值:100元和200元/41/411{100}{1}e d e 4x P Y P X x +∞--==≥==⎰1/4{200}{1}1e .P Y P X -=-=<=- 故1/41/41/4()100e (200)(1e )300e 20033.64E Y ---=⨯+-⨯-=-= (元). 14.设X1,X2,…,Xn 是相互独立的随机变量,且有E (Xi )=μ,D (Xi )=σ2,i=1,2,…,n ,记∑==n i i S X n X 12,1,S2=∑=--n i i X X n 12)(11.(1) 验证)(X E =μ,)(X D =n 2σ;(2) 验证S2=)(11122∑=--ni i X n X n ;(3) 验证E (S2)=σ2.【证】(1) 1111111()()().n nn i i i i i i E X E X E X E X nu u n n n n ===⎛⎫===== ⎪⎝⎭∑∑∑ 22111111()()n nni i i ii i i D X D X D X X DXn nn ===⎛⎫== ⎪⎝⎭∑∑∑之间相互独立2221.n n n σσ==(2) 因222221111()(2)2nnnniii iii i i i XX X X X X X nX X X ====-=+-=+-∑∑∑∑2222112nnii i i X nX X nX X nX===+-=-∑∑故22211()1ni i S X nX n ==--∑.(3) 因2(),()i i E X u D X σ==,故2222()()().i i i E X D X EX u σ=+=+ 同理因2(),()E X u D X n σ==,故222()E X u nσ=+.从而222221111()()[()()]11n ni i i i E s E X nX E X nE X n n ==⎡⎤=-=-⎢⎥--⎣⎦∑∑ 221222221[()()]11().1n i i E X nE X n n u n u n n σσσ==--⎡⎤⎛⎫=+-+=⎢⎥⎪-⎝⎭⎣⎦∑15.对随机变量X 和Y ,已知D (X )=2,D (Y )=3,Cov(X,Y)=1,计算:Cov (3X 2Y+1,X+4Y 3).【解】Cov(321,43)3()10Cov(,)8()X Y X Y D X X Y D Y -++-=+- 3210(1)8328=⨯+⨯--⨯=-(因常数与任一随机变量独立,故Cov(X,3)=Cov(Y,3)=0,其余类似). 16.设二维随机变量(X ,Y )的概率密度为f (x ,y )=221,1,π0,.x y ⎧+≤⎪⎨⎪⎩其他试验证X 和Y 是不相关的,但X 和Y 不是相互独立的.【解】设22{(,)|1}D x y x y =+≤. 2211()(,)d d d d πx y E X xf x y x y x x y +∞+∞-∞-∞+≤==⎰⎰⎰⎰2π1001=cos d d 0.πr r r θθ=⎰⎰ 同理E(Y)=0.而Cov(,)[()][()](,)d d X Y x E x y E Y f x y x y+∞+∞-∞-∞=--⎰⎰222π1200111d d sin cos d d 0ππx y xy x y r r r θθθ+≤===⎰⎰⎰⎰,由此得0XY ρ=,故X 与Y 不相关.下面讨论独立性,当|x|≤1时,1()X f x y当|y|≤1时,1()Y f y x .显然()()(,).X Y f x f y f x y ≠故X 和Y 不是相互独立的.17. 1 0 11 0 1 验证X 和Y 【解】联合分布表中含有零元素,X 与Y 显然不独立,由联合分布律易求得X ,Y 及XY 111由期望定义易得E (X )=E (Y )=E (XY )=0. 从而E(XY)=E(X)·E(Y),再由相关系数性质知ρXY=0, 即X 与Y 的相关系数为0,从而X 和Y 是不相关的.又331{1}{1}{1,1}888P X P Y P X Y =-=-=⨯≠==-=-从而X 与Y 不是相互独立的.18.设二维随机变量(X ,Y )在以(0,0),(0,1),(1,0)为顶点的三角形区域上服从均匀分布,求Cov (X ,Y ),ρXY.【解】如图,SD=12,故(X ,Y )的概率密度为题18图2,(,),(,)0,x y D f x y ∈⎧=⎨⎩其他.()(,)d d DE X xf x y x y =⎰⎰1101d 2d 3xxx y -==⎰⎰22()(,)d d DE X x f x y x y =⎰⎰11201d 2d 6x x x y -==⎰⎰从而222111()()[()].6318D X E X E X ⎛⎫=-=-= ⎪⎝⎭ 同理11(),().318E Y D Y == 而 1101()(,)d d 2d d d 2d .12xDDE XY xyf x y x y xy x y x xy y -====⎰⎰⎰⎰⎰⎰所以1111Cov(,)()()()123336X Y E XY E X E Y =-=-⨯=-.从而11362()()111818XY D X D Y ρ-===-⨯19.设(X ,Y )的概率密度为f (x ,y )=1ππsin(),0,0,2220.x y x y ,⎧+≤≤≤≤⎪⎨⎪⎩其他 求协方差Cov (X ,Y )和相关系数ρXY.【解】π/2π/21π()(,)d d d sin()d .24E X xf x y x y x xx y y +∞+∞-∞-∞==+=⎰⎰⎰⎰ππ2222201ππ()d sin()d 2.282E X x x x y y =+=+-⎰⎰从而222ππ()()[()] 2.162D X E X E X =-=+-同理 2πππ(),() 2.4162E Y D Y ==+-又π/2π/2π()d sin()d d 1,2E XY x xy x y x y =+=-⎰⎰故2ππππ4Cov(,)()()()1.2444X Y E XY E X E Y -⎛⎫⎛⎫=-=--⨯=- ⎪ ⎪⎝⎭⎝⎭ 222222π4Cov(,)(π4)π8π164.πππ8π32π8π32()()2162XY X Y D X D Y ρ-⎛⎫- ⎪--+⎝⎭===-=-+-+-+-20.已知二维随机变量(X ,Y )的协方差矩阵为⎥⎦⎤⎢⎣⎡4111,试求Z1=X 2Y 和Z2=2X Y 的相关系数.【解】由已知知:D(X)=1,D(Y)=4,Cov(X,Y)=1. 从而12()(2)()4()4Cov(,)1444113,()(2)4()()4Cov(,)414414,D Z D X Y D X D Y X Y D Z D X Y D X D Y X Y =-=+-=+⨯-⨯==-=+-=⨯+-⨯= 12Cov(,)Cov(2,2)Z Z X Y X Y =--2Cov(,)4Cov(,)Cov(,)2Cov(,)2()5Cov(,)2()215124 5.X X Y X X Y Y Y D X X Y D Y =--+=-+=⨯-⨯+⨯=故121212513.26()()134Z Z D Z D Z ρ===⨯21.对于两个随机变量V ,W ,若E (V2),E (W2)存在,证明:[E (VW )]2≤E (V2)E (W2). 这一不等式称为柯西许瓦兹(Couchy Schwarz )不等式.【证】令2(){[]},.g t E V tW t R =+∈ 显然22220()[()][2]g t E V tW E V tVW t W ≤=+=++222[]2[][],.E V t E VW t E W t R =++∀∈ 可见此关于t 的二次式非负,故其判别式Δ≤0,即2220[2()]4()()E VW E W E V ≥∆=-2224{[()]()()}.E VW E V E W =- 故222[()]()()}.E VW E V E W ≤ 22.假设一设备开机后无故障工作的时间X 服从参数λ=1/5的指数分布.设备定时开机,出现故障时自动关机,而在无故障的情况下工作2小时便关机.试求该设备每次开机无故障工作的时间Y 的分布函数F (y ).【解】设Y 表示每次开机后无故障的工作时间,由题设知设备首次发生故障的等待时间X~E(λ),E(X)=1λ=5.依题意Y=min(X,2). 对于y<0,f(y)=P{Y≤y}=0. 对于y≥2,F(y)=P(X≤y)=1.对于0≤y<2,当x≥0时,在(0,x)内无故障的概率分布为 P{X≤x}=1e λx,所以F(y)=P{Y≤y}=P{min(X,2)≤y}=P{X≤y}=1e y/5.23.已知甲、乙两箱中装有同种产品,其中甲箱中装有3件合格品和3件次品,乙箱中仅装有3件合格品.从甲箱中任取3件产品放乙箱后,求:(1)乙箱中次品件数Z 的数学期望;(2)从乙箱中任取一件产品是次品的概率. 【解】(1) Z 的可能取值为0,1,2,3,Z 的概率分布为33336C C {}C k k P Z k -==, 0,1,2,3.k =Z=k 0 1 2 3 Pk120 920 920 120因此,19913()0123.202020202E Z =⨯+⨯+⨯+⨯=(2) 设A 表示事件“从乙箱中任取出一件产品是次品”,根据全概率公式有30(){}{|}k P A P Z k P A Z k ====∑191921310.202062062064=⨯+⨯+⨯+⨯= 24.假设由自动线加工的某种零件的内径X (毫米)服从正态分布N (μ,1),内径小于10或大于12为不合格品,其余为合格品.销售每件合格品获利,销售每件不合格品亏损,已知销售利润T (单位:元)与销售零件的内径X 有如下关系T=⎪⎩⎪⎨⎧>-≤≤<-.12,5,1210,20,10,1X X X 若若若问:平均直径μ取何值时,销售一个零件的平均利润最大 【解】(){10}20{1012}5{12}E T P X P X P X =-<+≤≤->{10}20{1012}5{12}(10)20[(12)(10)]5[1(12)]25(12)21(10) 5.P X u u P u X u u P X u u u u u u u u =--<-+-≤-≤--->-=-Φ-+Φ--Φ---Φ-=Φ--Φ-- 故2/2d ()125(12)(1)21(10)(1)0(()e ),d 2x E T u u x u ϕϕϕπ-=-⨯---⨯-= 令这里得 22(12)/2(10)/225e21e u u ----=两边取对数有2211ln 25(12)ln 21(10).22u u --=--解得 125111ln 11ln1.1910.91282212u =-=-≈(毫米)由此可得,当u=毫米时,平均利润最大.25.设随机变量X 的概率密度为f(x)=⎪⎩⎪⎨⎧≤≤.,0,0,2cos 21其他πx x 对X 独立地重复观察4次,用Y 表示观察值大于π/3的次数,求Y2的数学期望. (2002研考)【解】令π1,,3(1,2,3,4)π0,3i X Y i ⎧>⎪⎪==⎨⎪≤⎪⎩X .则41~(4,)i i Y Y B p ==∑.因为ππ{}1{}33p P X P X =>=-≤及π/30π11{}cos d 3222x P X x ≤==⎰,所以111(),(),()42,242i i E Y D Y E Y ===⨯= 2211()41()()22D Y E Y EY =⨯⨯==-,从而222()()[()]12 5.E Y D Y E Y =+=+= 26.两台同样的自动记录仪,每台无故障工作的时间Ti(i=1,2)服从参数为5的指数分布,首先开动其中一台,当其发生故障时停用而另一台自动开启.试求两台记录仪无故障工作的总时间T=T1+T2的概率密度fT(t),数学期望E (T )及方差D (T ).【解】由题意知:55e ,0,()0,0t i t f t t -⎧≥=⎨<⎩. 因T1,T2独立,所以fT(t)=f1(t)*f2(t).当t<0时,fT(t)=0;当t≥0时,利用卷积公式得55()5120()()()d 5e 5e d 25e tx t x tT f t f x f t x x x t +∞-----∞=-==⎰⎰故得525e ,0,()0,0.t T t t f t t -⎧≥=⎨<⎩ 由于Ti ~E(5),故知E(Ti)=15,D(Ti)=125(i=1,2)因此,有E(T)=E(T1+T2)=25.又因T1,T2独立,所以D (T )=D (T1+T2)=225.27.设两个随机变量X ,Y 相互独立,且都服从均值为0,方差为1/2的正态分布,求随机变量|X Y|的方差.【解】设Z=X Y ,由于22~0,,~0,,22X N Y N ⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭ 且X 和Y 相互独立,故Z~N (0,1). 因22()()(||)[(||)]D X Y D Z E Z E Z -==-22()[()],E Z E Z =-而22/21()()1,(||)||e d 2πz E Z D Z E Z z z +∞--∞===⎰2/2022e d π2πz z z +∞-==⎰, 所以2(||)1πD X Y -=-.28.某流水生产线上每个产品不合格的概率为p(0<p<1),各产品合格与否相互独立,当出现一个不合格产品时,即停机检修.设开机后第一次停机时已生产了的产品个数为X ,求E (X )和D (X ). 【解】记q=1p,X 的概率分布为P{X=i}=qi 1p,i=1,2,…,故12111()().1(1)i ii i q p E X iq p p q p q q p ∞∞-=='⎛⎫'===== ⎪--⎝⎭∑∑ 又221211121()()i i i i i i E X i q p i i q p iq p∞∞∞---=====-+∑∑∑2232211()12112.(1)ii q pq q pq p q p pq q p q p p p ∞=''⎛⎫''=+=+⎪-⎝⎭+-=+==-∑所以22222211()()[()].p pD XE X E X p p p --=-=-=题29图29.设随机变量X 和Y 的联合分布在点(0,1),(1,0)及(1,1)为顶点的三角形区域上服从均匀分布.(如图),试求随机变量U=X+Y 的方差. 【解】D(U)=D(X+Y)=D(X)+D(Y)+2Cov(X,Y) =D(X)+D(Y)+2[E(XY)E(X)·E(Y)].由条件知X 和Y 的联合密度为2,(,),(,)0,0.x y G f x y t ∈⎧=⎨<⎩ {(,)|01,01,1}.G x y x y x y =≤≤≤≤+≥ 从而11()(,)d 2d 2.X xf x f x y y y x +∞-∞-===⎰⎰因此11122300031()()d 2d ,()2d ,22X E X xf x x x x E X x x =====⎰⎰⎰22141()()[()].2918D X E X E X =-=-=同理可得31(),().218E Y D Y == 1115()2d d 2d d ,12xGE XY xy x y x x y y -===⎰⎰⎰⎰541Cov(,)()()(),12936X Y E XY E X E Y =-=-=- 于是1121()().18183618D U D X Y =+=+-=30.设随机变量U 在区间[2,2]上服从均匀分布,随机变量X=1,1,1,1,U U -≤-⎧⎨>-⎩ Y=1,1,1, 1.U U -≤⎧⎨>⎩若试求(1)X 和Y 的联合概率分布;(2)D (X+Y ).【解】(1) 为求X 和Y 的联合概率分布,就要计算(X ,Y )的4个可能取值(1,1),(1,1),(1,1)及(1,1)的概率. P{x=1,Y=1}=P{U≤1,U≤1}112d d 1{1}444x x P U ---∞-=≤-===⎰⎰ P{X=1,Y=1}=P{U≤1,U>1}=P{∅}=0,P{X=1,Y=1}=P{U>1,U≤1}11d 1{11}44x P U -=-<≤==⎰21d 1{1,1}{1,1}{1}44x P X Y P U U P U ===>->=>=⎰.故得X 与Y 的联合概率分布为(1,1)(1,1)(1,1)(1,1)(,)~1110424X Y ----⎡⎤⎢⎥⎢⎥⎣⎦.(2) 因22()[()][()]D X Y E X Y E X Y +=+-+,而X+Y 及(X+Y )2的概率分布相应为202~111424X Y -⎡⎤⎢⎥+⎢⎥⎣⎦, 24()~1122X Y ⎡⎤⎢⎥+⎢⎥⎣⎦.从而11()(2)20,44E X Y +=-⨯+⨯=211[()]042,22E X Y +=⨯+⨯=所以22()[()][()] 2.D X Y E X Y E X Y +=+-+=31.设随机变量X 的概率密度为f(x)=x -e 21,(∞<x<+∞)(1) 求E (X )及D (X );(2) 求Cov(X,|X|),并问X 与|X|是否不相关 (3) 问X 与|X|是否相互独立,为什么 【解】(1)||1()e d 0.2x E X xx +∞--∞==⎰2||201()(0)e d 0e d 2.2x x D X x x x x +∞+∞---∞=-==⎰⎰(2) Cov(,|)(||)()(||)(||)X X E X X E X E X E X X =-=||1||e d 0,2x x x x +∞--∞==⎰所以X 与|X|互不相关.(3) 为判断|X|与X 的独立性,需依定义构造适当事件后再作出判断,为此,对定义域∞<x<+∞中的子区间(0,+∞)上给出任意点x0,则有0000{}{||}{}.x X x X x X x -<<=<⊂< 所以000{||}{} 1.P X x P X x <<<<< 故由00000{,||}{||}{||}{}P X x X x P X x P X x P X x <<=<><<得出X 与|X|不相互独立.32.已知随机变量X 和Y 分别服从正态分布N (1,32)和N (0,42),且X 与Y 的相关系数ρXY=1/2,设Z=23Y X +. (1) 求Z 的数学期望E (Z )和方差D (Z );(2) 求X 与Z 的相关系数ρXZ ;(3) 问X 与Z 是否相互独立,为什么【解】(1) 1().323X Y E Z E ⎛⎫=+= ⎪⎝⎭()2Cov ,3232XY X Y D Z D D ⎛⎫⎛⎫⎛⎫=++⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ 11119162Cov(,),9432X Y =⨯+⨯+⨯⨯而1Cov(,)()()3462XY X Y D X D Y ρ⎛⎫==-⨯⨯=- ⎪⎝⎭所以 1()146 3.3D Z =+-⨯=(2) 因()()11Cov(,)Cov ,Cov ,Cov ,3232X Y X Z X X X X Y ⎛⎫=+=+ ⎪⎝⎭ 119()(6)3=0,323D X =+⨯-=-所以 0.()()XZ D X D Z ρ==(3) 由0XZρ==,得X 与Z 不相关.又因1~,3,~(1,9)3Z N X N ⎛⎫⎪⎝⎭,所以X 与Z 也相互独立.33.将一枚硬币重复掷n 次,以X 和Y 表示正面向上和反面向上的次数.试求X 和Y 的相关系数XY ρ.【解】由条件知X+Y=n ,则有D (X+Y )=D (n )=0.再由X~B(n,p),Y~B(n,q),且p=q=12,从而有()()4nD X npq D Y ===所以 0()()()2()()XY D X Y D X D Y D X D Y ρ=+=++2,24XY n nρ=+ 故XY ρ=1.34.设随机变量X 和Y 的联合概率分布为1 0 11试求X 和Y 的相关系数ρ.【解】由已知知E(X)=,E(Y)=,而XY 的概率分布为YX 1 01P所以E (XY )=+= Cov(X,Y)=E(XY)E(X)·E(Y)=×=0 从而 XY ρ=035.对于任意两事件A 和B ,0<P(A)<1,0<P(B)<1,则称ρ=())()()()()()(B P A P B P A P B P A P AB P ⋅-为事件A 和B 的相关系数.试证:(1) 事件A 和B 独立的充分必要条件是ρ=0; (2) |ρ|≤1.【证】(1)由ρ的定义知,ρ=0当且仅当P(AB)P(A)·P(B)=0.而这恰好是两事件A 、B 独立的定义,即ρ=0是A 和B 独立的充分必要条件. (2) 引入随机变量X 与Y 为1,,0,A X A ⎧⎪=⎨⎪⎩若发生若发生; 1,,0,B Y B ⎧⎪=⎨⎪⎩若发生若发生.由条件知,X 和Y 都服从01分布,即01~1()()X P A P A ⎧⎨-⎩ 01~1()()Y P B P B ⎧⎨-⎩ 从而有E(X)=P(A),E(Y)=P(B), D(X)=P(A)·P(A ),D(Y)=P(B)·P(B ),Cov(X,Y)=P(AB)P(A)·P(B)所以,事件A 和B 的相关系数就是随机变量X 和Y 的相关系数.于是由二元随机变量相关系数的基本性质可得|ρ|≤1. 36. 设随机变量X 的概率密度为fX(x)=⎪⎪⎪⎩⎪⎪⎪⎨⎧<≤<<-.,0,20,41,01,21其他x x令Y=X2,F (x,y )为二维随机变量(X ,Y )的分布函数,求: (1) Y 的概率密度fY(y);Y X(2) Cov(X,Y);(3)1(,4)2F -.解: (1) Y 的分布函数为2(){}{}Y F y P Y y P X y =≤=≤.当y≤0时, ()0Y F y =,()0Y f y =; 当0<y <1时,(){{0}{0Y F y P X P X P X =≤≤=<+≤≤=,()Y f y =;当1≤y<4时,1(){10}{02Y F y P X P X =-≤<+≤≤=()Y f y =;当y≥4时,()1Y F y =,()0Y f y =. 故Y 的概率密度为1,()04,0,.Y y f y y <<=≤<⎪⎩其他 (2)210111()()d d d 244+X E X =xf x x x x x x ∞∞=+=⎰⎰⎰--,2222210115()()()d d d )246+X E Y =E X =x f x x x x x x ∞∞=+=⎰⎰⎰--,2233310117()()()d d d 248+X E XY =E Y =x f x x x x x x ∞∞=+=⎰⎰⎰--, 故 Cov(X,Y) =2()()()3E XY E X E Y =⋅-.(3) 2111(,4){,4}{,4}222F P X Y P X X -=≤-≤=≤-≤11{,22}{2}22P X X P X =≤--≤≤=-≤≤-11{1}24P X =-≤≤-=. 37.习题五1.一颗骰子连续掷4次,点数总和记为X.估计P{10<X<18}. 【解】设i X 表每次掷的点数,则41ii X X ==∑22222221111117()123456,666666211111191()123456,6666666i i E X E X =⨯+⨯+⨯+⨯+⨯+⨯==⨯+⨯+⨯+⨯+⨯+⨯= 从而22291735()()[()].6212i i i D X E X E X ⎛⎫=-=-= ⎪⎝⎭ 又X1,X2,X3,X4独立同分布.从而44117()()()414,2i i i i E X E X E X =====⨯=∑∑44113535()()()4.123i i i i D X D X D X =====⨯=∑∑ 所以235/3{1018}{|14|4}10.271,4P X P X <<=-<≥-≈2. 假设一条生产线生产的产品合格率是.要使一批产品的合格率达到在76%与84%之间的概率不小于90%,问这批产品至少要生产多少件【解】令1,,0,i i X ⎧⎨⎩若第个产品是合格品其他情形. 而至少要生产n 件,则i=1,2,…,n,且X1,X2,…,Xn 独立同分布,p=P{Xi=1}=. 现要求n,使得1{0.760.84}0.9.nii XP n=≤≤≥∑即10.8{}0.90.80.20.80.20.80.2ni i X n P n n n =-≤≤≥⨯⨯⨯⨯⨯⨯∑由中心极限定理得0.9,0.160.16n n Φ-Φ≥ ⎪ ⎪⎝⎭⎝⎭整理得0.95,n ⎛⎫Φ≥ ⎪ ⎪⎝⎭查表 1.64,n ≥n≥, 故取n=269.3. 某车间有同型号机床200部,每部机床开动的概率为,假定各机床开动与否互不影响,开动时每部机床消耗电能15个单位.问至少供应多少单位电能才可以95%的概率保证不致因供电不足而影响生产.【解】要确定最低的供应的电能量,应先确定此车间同时开动的机床数目最大值m ,而m 要满足200部机床中同时开动的机床数目不超过m 的概率为95%,于是我们只要供应15m 单位电能就可满足要求.令X 表同时开动机床数目,则X~B (200,),()140,()42,E X D X ==0.95{0}().42P X m P X m =≤≤=≤=Φ ⎪⎝⎭ 查表知 1.64,42= ,m=151.所以供电能151×15=2265(单位).4. 一加法器同时收到20个噪声电压Vk (k=1,2,…,20),设它们是相互独立的随机变量,且都在区间(0,10)上服从均匀分布.记V=∑=201k kV,求P{V >105}的近似值.【解】易知:E(Vk)=5,D(Vk)=10012,k=1,2,…,20由中心极限定理知,随机变量201205~(0,1).10010020201212kk VZ N =-⨯==⨯⨯∑近似的于是105205{105}1010020201212P V P ⎧⎫⎪⎪-⨯⎪>=>⎨⎬⎪⎪⨯⨯⎪⎪⎩ 1000.3871(0.387)0.348,102012V P ⎧⎫⎪⎪-⎪⎪=>≈-Φ=⎨⎬⎪⎪⨯⎪⎪⎩⎭即有 P{V>105}≈5. 有一批建筑房屋用的木柱,其中80%的长度不小于3m.现从这批木柱中随机地取出100根,问其中至少有30根短于3m 的概率是多少 【解】设100根中有X 根短于3m ,则X~B (100,) 从而{30}1{30}11000.20.8P X P X ≥=-<≈-Φ⨯⨯ 1(2.5)10.99380.0062.=-Φ=-=6. 某药厂断言,该厂生产的某种药品对于医治一种疑难的血液病的治愈率为.医院检验员任意抽查100个服用此药品的病人,如果其中多于75人治愈,就接受这一断言,否则就拒绝这一断言.(1) 若实际上此药品对这种疾病的治愈率是,问接受这一断言的概率是多少 (2) 若实际上此药品对这种疾病的治愈率是,问接受这一断言的概率是多少【解】1,,1,2,,100.0,.i i X i ⎧==⎨⎩第人治愈其他令1001.i i X X ==∑(1) X~B(100,,1001{75}1{75}11000.80.2i i P X P X =>=-≤≈-Φ⨯⨯∑ 1( 1.25)(1.25)0.8944.=-Φ-=Φ= (2) X~B(100,,1001{75}1{75}11000.70.3i i P X P X =>=-≤≈-Φ⨯⨯∑1(1(1.09)0.1379.21=-Φ=-Φ=7. 用Laplace中心极限定理近似计算从一批废品率为的产品中,任取1000件,其中有20件废品的概率.【解】令1000件中废品数X,则p=,n=1000,X~B(1000,,E(X)=50,D(X)=.故130{20}6.895 6.895P Xϕ⎛⎫===-⎪⎝⎭61304.510.6.895 6.895ϕ-⎛⎫==⨯⎪⎝⎭8. 设有30个电子器件.它们的使用寿命T1,…,T30服从参数λ=[单位:(小时)-1]的指数分布,其使用情况是第一个损坏第二个立即使用,以此类推.令T 为30个器件使用的总计时间,求T超过350小时的概率.【解】11()10,0.1iE Tλ===21()100,iD Tλ==()1030300,E T=⨯=()3000.D T=故{350}111(0.913)0.1814.P T>≈-Φ=-Φ=-Φ=9. 上题中的电子器件若每件为a元,那么在年计划中一年至少需多少元才能以95%的概率保证够用(假定一年有306个工作日,每个工作日为8小时).【解】设至少需n件才够用.则E(Ti)=10,D(Ti)=100,E(T)=10n,D(T)=100n.从而1{3068}0.95,niiP T=≥⨯=∑即0.05.≈Φ故0.95, 1.64272.n=Φ=≈所以需272a元.10. 对于一个学生而言,来参加家长会的家长人数是一个随机变量,设一个学生无家长、1 名家长、2名家长来参加会议的概率分别为,,.若学校共有400名学生,设各学生参加会议的家长数相与独立,且服从同一分布.(1)求参加会议的家长数X超过450的概率(2)求有1名家长来参加会议的学生数不多于340的概率.【解】(1)以Xi(i=1,2,…,400)记第i个学生来参加会议的家长数.则Xi的分布律为Xi2P易知E (Xi=),D(Xi)=,i=1,2, (400)而400ii X X =∑,由中心极限定理得400400 1.1400 1.1~(0,1).4000.19419iiXX N -⨯-⨯=⨯⨯∑近似地于是450400 1.1{450}1{450}1419P X P X -⨯⎛⎫>=-≤≈-Φ ⎪⨯⎝⎭ 1(1.147)0.1357.=-Φ=(2) 以Y 记有一名家长来参加会议的学生数.则Y~B(400,由拉普拉斯中心极限定理得{340(2.5)0.9938.4000.80.2P Y ≤≈Φ=Φ= ⎪⨯⨯⎝⎭11. 设男孩出生率为,求在10000个新生婴儿中女孩不少于男孩的概率【解】用X 表10000个婴儿中男孩的个数,则X~B (10000,)要求女孩个数不少于男孩个数的概率,即求 P{X≤5000}. 由中心极限定理有{5000}(3)1(3)0.00135.100000.5150.485P X ≤≈Φ=Φ-=-Φ=⨯⨯12. 设有1000个人独立行动,每个人能够按时进入掩蔽体的概率为.以95%概率估计,在一次行动中:(1)至少有多少个人能够进入 (2)至多有多少人能够进入【解】用Xi 表第i 个人能够按时进入掩蔽体(i=1,2,...,1000). 令 Sn=X1+X2+ (X1000)(1) 设至少有m 人能够进入掩蔽体,要求P{m≤Sn≤1000}≥,事件{}.10000.90.190nn m S ≤=≤⨯⨯ 由中心极限定理知:{}1{}10.95.10000.90.1n n P m S P S m ≤=-<≈-Φ≥⨯⨯ 从而 0.05,90Φ≤故 9001.65,90m -=-所以 m==≈884人(2) 设至多有M 人能进入掩蔽体,要求P{0≤Sn≤M}≥.{}0.95.90n P S M ≤≈Φ= ⎪⎝⎭查表知90=,M=900+=≈916人. 13. 在一定保险公司里有10000人参加保险,每人每年付12元保险费,在一年内一个人死亡的概率为,死亡者其家属可向保险公司领得1000元赔偿费.求: (1) 保险公司没有利润的概率为多大;(2) 保险公司一年的利润不少于60000元的概率为多大【解】设X 为在一年中参加保险者的死亡人数,则X~B (10000,).(1) 公司没有利润当且仅当“1000X=10000×12”即“X=120”. 于是所求概率为{120}100000.0060.994100000.0060.994P X ϕ=≈⎪⨯⨯⨯⨯⎝⎭21(60/59.64)230.1811e 59.6459.64259.640.0517e 0ϕπ--== ⎪⎝⎭=⨯≈(2) 因为“公司利润≥60000”当且仅当“0≤X≤60”于是所求概率为{060}100000.0060.994100000.0060.994P X ≤≤≈Φ-Φ⨯⨯⨯⨯ (0)0.5.59.64⎛=Φ-Φ≈ ⎝14. 设随机变量X 和Y 的数学期望都是2,方差分别为1和4,而相关系数为试根据契比雪夫不等式给出P{|X-Y|≥6}的估计. (2001研考) 【解】令Z=X-Y ,有()0,()()()()2()() 3.E Z D Z D X Y D X D Y D X D Y ρ==-=+-=所以2()31{|()|6}{||6}.63612D X Y P Z E Z P X Y --≥=-≥≤==15. 某保险公司多年统计资料表明,在索赔户中,被盗索赔户占20%,以X 表示在随机抽查的100个索赔户中,因被盗向保险公司索赔的户数. (1) 写出X 的概率分布;(2) 利用中心极限定理,求被盗索赔户不少于14户且不多于30户的概率近似值.(1988研考)【解】(1) X 可看作100次重复独立试验中,被盗户数出现的次数,而在每次试验中被盗户出现的概率是,因此,X~B(100,,故X 的概率分布是100100{}C 0.20.8,1,2,,100.kk k P X k k -===(2) 被盗索赔户不少于14户且不多于30户的概率即为事件{14≤X≤30}的概率.由中心极限定理,得{1430}P X ≤≤≈Φ-Φ (2.5)( 1.5)0.994[9.33]0.927.=Φ-Φ-=--=16. 一生产线生产的产品成箱包装,每箱的重量是随机的.假设每箱平均重50千克,标准差为5千克,若用最大载重量为5吨的汽车承运,试利用中心极限定理说明每辆车最多可以装多少箱,才能保障不超载的概率大于.【解】设Xi (i=1,2,…,n )是装运i 箱的重量(单位:千克),n 为所求的箱数,由条件知,可把X1,X2,…,Xn 视为独立同分布的随机变量,而n 箱的总重量Tn=X1+X2+…+Xn 是独立同分布随机变量之和,由条件知: ()50,i E X =5,= ()50,n E T n ==依中心极限定理,当n~(0,1)N 近似地,故箱数n 取决于条件{5000}n P T P ≤=≤0.977(2).≈Φ>=Φ2>解出n<,即最多可装98箱.习题六1.设总体X~N (60,152),从总体X 中抽取一个容量为100的样本,求样本均值与总体均值之差的绝对值大于3的概率. 【解】μ=60,σ2=152,n=100~(0,1)X Z N =即60~(0,1)15/10X Z N -=(|60|3)(||30/15)1(||2)P X P Z P Z ->=>=-< 2[1(2)]2(10.9772)0.0456.=-Φ=-=2.从正态总体N (,52)中抽取容量为n 的样本,若要求其样本均值位于区间(,)内的概率不小于,则样本容量n 至少取多大 【解】~(0,1)5/X Z N n -=2.2 4.2 6.2 4.2(2.2 6.2)()55P X P n Z n --<<=<<2(0.4)10.95,n =Φ-= 则Φn =,故n >,即n>,所以n 至少应取253.设某厂生产的灯泡的使用寿命X~N (1000,σ2)(单位:小时),随机抽取一容量为9的样本,并测得样本均值及样本方差.但是由于工作上的失误,事后失去了此试验的结果,只记得样本方差为S2=1002,试求P (X >1062). 【解】μ=1000,n=9,S2=10021000~(8)100/3/X X t t S n -==10621000(1062)()( 1.86)0.05100/3P X P t P t ->=>=>=4.从一正态总体中抽取容量为10的样本,假定有2%的样本均值与总体均值之差的绝对值在4以上,求总体的标准差. 【解】~(0,1)/X Z N n σ=,由P(|X -μ|>4)=得P|Z|>4(σ/n)=,故410210.02⎡⎤-Φ=⎢⎥⎢⎥⎝⎭⎣⎦,即4100.99.Φ=⎝⎭查表得 4102.33,=所以5.43.σ==5.设总体X~N (μ,16),X1,X2,…,X10是来自总体X 的一个容量为10的简单随机样本,S2为其样本方差,且P (S2>a )=,求a 之值.【解】2222299~(9),()0.1.1616S a P S a P χχχ⎛⎫=>=>= ⎪⎝⎭查表得 914.684,16a=所以14.6841626.105.9a ⨯==6.设总体X 服从标准正态分布,X1,X2,…,Xn 是来自总体X 的一个简单随机样本,试问统计量Y=∑∑==-ni ii i XX n 62512)15(,n >5服从何种分布【解】2522222211~(5),~(5)inii i i X X X n χχχ====-∑∑且12χ与22χ相互独立.所以2122/5~(5,5)/5X Y F n X n =--7.求总体X~N (20,3)的容量分别为10,15的两个独立随机样本平均值差的绝对值大于的概率.【解】令X 的容量为10的样本均值,Y 为容量为15的样本均值,则X ~N(20,310), Y ~N(20,315),且X 与Y 相互独立.则33~0,(0,0.5),1015X Y N N ⎛⎫-+= ⎪⎝⎭那么~(0,1),X YZ N =所以(||0.3)||2[1(0.424)]P X Y P Z Φ⎛->=>=- ⎝ 2(10.6628)0.6744.=-=8.设总体X~N (0,σ2),X1,…,X10,…,X15为总体的一个样本.则Y=()21521221121022212X X X X X X ++++++ 服从 分布,参数为 .【解】~(0,1),iX N σi=1,2, (15)那么122210152222111~(10),~(5)i i i i X X χχχχσσ==⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭∑∑且12χ与22χ相互独立,所以222110122211152/10~(10,5)2()/5X X X Y F X X X ++==++所以Y~F 分布,参数为(10,5).9.设总体X~N (μ1,σ2),总体Y~N(μ2,σ2),X1,X2,…,1n X 和Y1,Y2,…,2n X 分别来自总体X 和Y 的简单随机样本,则⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-+-+-∑∑==2)()(21121221n n Y Y X X E n j j n i i = .【解】令 1222212111211(),(),11n n i i i j S X X S Y Y n n ===-=---∑∑则 122222112211()(1),()(1),n n ij i j XX n S y y n S ==-=--=-∑∑又2222221122112222(1)(1)~(1),~(1),n S n S n n χχχχσσ--=-=-那么1222112222121212()()1()22n n i j i j X X Y Y E E n n n n σχσχ==⎡⎤-+-⎢⎥⎢⎥=+⎢⎥+-+-⎢⎥⎣⎦∑∑2221212221212[()()]2[(1)(1)]2E E n n n n n n σχχσσ=++-=-+-=+-10.设总体X~N (μ,σ2),X1,X2,…,X2n (n≥2)是总体X 的一个样本,∑==ni i X n X 2121,令Y=∑=+-+ni i n i X X X 12)2(,求E(Y).【解】令Zi=Xi+Xn+i, i=1,2,…,n.则Zi~N(2μ,2σ2)(1≤i≤n),且Z1,Z2,…,Zn 相互独立.令 2211, ()/1,nni i i i Z Z S Z Z n n ====--∑∑则 21111,222nn i ii i X X Z Z n n =====∑∑故 2Z X = 那么22211(2)()(1),nni n i i i i Y X X X Z Z n S +===+-=-=-∑∑所以22()(1)2(1).E Y n ES n σ=-=-11. 设总体X 的概率密度为f(x)=x-e21 (-∞<x<+∞),X1,X2,…,Xn 为总体X 的简单随机样本,其样本方差为S2,求E(S2). 解: 由题意,得1e , 0,2()1e ,0,2xx x f x x -⎧<⎪⎪=⎨⎪≥⎪⎩于是2222222()()()()1()()d e d021()()d e d e d2,2xx xE S D X E X E XE X xf x x x xE X x f x x x x x x+∞+∞--∞-∞+∞+∞+∞---∞-∞==-=======⎰⎰⎰⎰⎰所以2()2E S=.31。
概率论第四章习题解答
1第四章随机变量的数字特征I 教学基本要求1、理解随机变量的数学期望与方差的概念,掌握它们的性质与计算,会求随机变量函数的数学期望;2、掌握两点分布、二项分布、泊松分布、均匀分布、指数分布、正态分布的数学期望与方差;3、了解切比雪夫不等式及应用;4、掌握协方差、相关系数的概念与性质,了解矩和协方差矩阵的概念;5、了解伯努利大数定理、切比雪夫大数定律、辛钦大数定理;6、了解林德伯格-列维中心极限定理、棣莫弗―拉普拉斯中心极限定理,掌握它们在实际问题中的应用.II 习题解答A 组1、离散型随机变量X 的概率分布为X -2 0 2 p0.400.300.30求()E X 、(35)E X +、2()E X ?解:()(2)0.4000.3020.300.2E X =-⨯+⨯+⨯=-;(35)3()5 4.4E X E X +=+=;2222()(2)0.4000.3020.30 1.8E X =-⨯+⨯+⨯=.2、某产品表面瑕疵点数服从参数0.8λ=的泊松分布,规定若瑕疵点数不超过1个为一等品,每个价值10元,多于4个为废品,不值钱,其它情况为二等品,每个价值8元求产品的平均价值?解:设X 为产品价格,则0X =、8、10.通过查泊松分布表可知其相应概率分布为X 0 8 10 p0.00140.80880.1898则()80.1898100.80889.61E X =⨯+⨯≈(元).3、设随机变量X 的分布函数为00()/40414x F x x x x ≤⎧⎪=<≤⎨⎪>⎩.求()E X ?解:由分布函数知X 的密度函数为1/404()0x f x <≤⎧=⎨⎩其它则4()()24x E X xf x dx dx +∞-∞===⎰⎰.4、设随机变量X 服从几何分布,即1()(1)k p X k p p -==-(1,2,)k = ,其中01p <<是常数.求()E X ?解:1111()(1)(1)k k k k E X kp p pk p +∞+∞--===-=-∑∑由级数2121123(1)k x x kx x -=+++++- (||1)x <,知 211()[1(1)]E X p p p =⨯=--.5、若随机变量X 服从参数为λ的泊松分布,即的泊松分布,即()!kp X k e k λλ-== (0,1,2,)k =求()E X 、2()E X ?解:1()!(1)!kk k k E X k ee ee k k λλλλλλλλλ-+∞+∞---======-∑∑;12201(1)()[]!(1)!!kk kk k k k k E X keee k k k λλλλλλλλ-+∞+∞+∞---===+===-∑∑∑1210[]()(1)!!k kk k e e e e k k λλλλλλλλλλλλ-+∞+∞--===+=+=+-∑∑. 6、某工程队完成某项工程的时间X (单位:月)服从下述分布X 10 11 12 13 p0.40.30.20.1(1) 求该工程队完成此项工程的平均时间;(2) 设该工程队获利50(13)Y X =-(万元).求平均利润? 解:(1)()100.4110.3120.2130.111E X =⨯+⨯+⨯+⨯=(月);(2) ()[50(13)]65050()100E Y E X E X =-=-⨯=(万元). 7、若随机变量X 服从区间[,]a b 上的均匀分布,即1()a x b f x b a ⎧≤≤⎪=-⎨⎪⎩其它求()E X 、2()E X ?解:()()2bax a b E X xf x dx dx b a +∞-∞+===-⎰⎰;22222()()3baxa ab b E X x f x dx dx b a +∞-∞++===-⎰⎰. 8、若随机变量X 服从参数为λ的指数分布,即的指数分布,即0()0x ex f x x λλ-⎧>=⎨≤⎩0求()E X 、2()E X ?解:0()()xxE X xf x dx x edxxdeλλλ+∞+∞+∞---∞===-⎰⎰⎰1xxxeedxλλλ+∞+∞--=-+=⎰;2222202()()2xxxE X x f x dxx edxx exedxλλλλλ+∞+∞+∞+∞----∞-∞===-+=⎰⎰⎰.9、离散型随机变量X 的概率分布为X 0 2 6 p3/12 4/12 5/12求()E X 、[ln(2)]E X +?解:34519()0261212126E X =⨯+⨯+⨯=;34513[ln(2)]ln(02)ln(22)ln(62)ln 21212126E X +=+⨯++⨯++⨯=.10、设2~(,)X N μσ,求(||)E X μ-?解:22()21(||)||2x E X x e dx μσμμπσ--+∞-∞-=-⎰令x t μσ-=,由偶函数性质有222022(||)()2t t E X e d μσσππ+∞--==⎰.11、设某商品需求量(10,30)X U ,销售商进货量n 在(10,30)之间,是一个整数.每销售一件商品获利500(元),若供小于求,每件产品亏损100(元).若供大于求,则从外地调运,每件商品可获利300(元).为使利润期望值不少于9280(元),进货量最少应为多少?解:按题意利润Y 与X 、n 的关系为500300()1030500100()1030n X n n X Y X n X X n +-≤<≤⎧=⎨--≤<≤⎩则利润平均值为10101()[[500100()][500300()]20n n E Y X n X dx n X n dx =--++-⎰⎰ 27.53505250n n =-++由题意知27.535052509280n n -++≥解得62263n ≤≤,则最少进货量为21.12、某保险公司规定,如果一年内顾客投保事件A 发生,则赔偿顾客a 元.以往资料表明事件A 发生的概率为p .为使公司收益期望值为0.1a ,则应向顾客收取都少保费?解:设应向顾客收取x 元保费,公司的收益为Y 元则Yx x a - p1p -p按题意()(1)()0.1E Y x p x a p a =-+-= 解得0.1x ap a =+.13、设随机变量X 的密度函数为1cos0()220x x f x π⎧≤≤⎪=⎨⎪⎩其它.对X 进行独立重复观测4次,Y 表示观测值大于/3π的次数,求2Y 的数学期望?解:显然~(4,)Y b p ,其中p 是(/3)X π>的概率,故31()cos 0.5322xp p Xdx πππ=>==⎰所以44()0.50.5kkkp Y k C -==⨯ (0,1,2,3,4)k =则有42244()0.50.55k kkk E Y k C -==⨯=∑.14、设随机变量X 、Y 相互独立,且都服从标准正态分布求22Z X Y =+的数学期望?解:由题意知X 、Y 的联合密度函数为2221(,)2x y f x y eπ+-=于是22222221()(,)2x y E Z x y f x y dxdy x y edxdy π++∞+∞+∞+∞--∞-∞-∞-∞=+=+⎰⎰⎰⎰令cos x r θ=、sin y r θ=得222222201()22r r E Z r e drd r e drππθπ+∞+∞--===⎰⎰⎰.15、已知(,)X Y 的分布如下,令max{,}Z X Y =,求()E Z ?YX0 5 10 15 0 0.02 0.06 0.02 0.10 5 0.04 0.15 0.20 0.10 100.010.150.140.01解:由题设可得Z 的分布为Z 0 510 15 p 0.020.25 0.52 0.21()00.0250.25100.52150.219.6E Z =⨯+⨯+⨯+⨯=.16、设(,)X Y 的联合密度函数为21201(,)0yy x f x y ⎧≤≤≤=⎨⎩其它求()E X 、()E Y 、()E XY 、22()E X Y +?解:12004()(,)125xE X xf x y dxdydx xy dy+∞+∞-∞-∞-∞===⎰⎰⎰⎰; 1303()(,)125x E Y yf x y dxdy dx y dy +∞+∞-∞-∞===⎰⎰⎰⎰;;131()(,)122xE XY xyf x y dxdy dx xy dy +∞+∞-∞-∞-∞===⎰⎰⎰⎰; 122222220016()()(,)()15xE XY xy f x y dxdydx xy y dy+∞+∞-∞-∞-∞+=+=+=⎰⎰⎰⎰. 17、设随机变量(,)X Y 的密度函数为1()02,02(,)8x y x y f x y ⎧+≤≤≤≤⎪=⎨⎪⎩其它求()E X ?解:22007()(,)()88xE X xf x y dxdyxy dxdy+∞+∞-∞-∞==+=⎰⎰⎰⎰. 18、甲乙二人相约在12:00~13:00之间会面,设X 、Y 分别表示甲乙到达时间,且相互独立已知X 、Y 的密度函数为2301()0x x f x ⎧<<=⎨⎩其它、201()0y y f y <<⎧=⎨⎩其它求先到达者需要等待时间的数学期望?解:等待时间可以表示为||X Y -,由于X 、Y 的联合密度函数为2601,01(,)0x y x y f x y ⎧<<<<=⎨⎩其它11200(||)||6E X Y x y x ydxdy ⇒-=-⎰⎰112200001()6()|64xyx y x ydydx y xx ydxdy =-+-=⎰⎰⎰⎰.19、设二维随机变量(,)X Y 在曲线2y x =、2y x =+所围区域G 内服从均匀分布,内服从均匀分布,求求数学期望()E X 、()E Y ?解:设(,)X Y 的联合密度函数为(,)(,)0(,)c x y G f x y x y G∈⎧=⎨∉⎩,由密度函数性质解出9/2c =下面分别求出边沿密度函数当12x -≤≤时,有22222()(2)99x X xf x dy x x +==+-⎰,故此 22(2)12()90X x x x f x ⎧+--≤≤⎪=⎨⎪⎩其它 当01y ≤≤时,有24()99y Y y f y dx y--==⎰当14y <≤时,有222()(2)99y Y y f y dx y y --==+-⎰,所以 40192()(2)1490Y y y f y y y y ⎧≤≤⎪⎪⎪=+-<≤⎨⎪⎪⎪⎩其它从而22121()()(2)92XE X xfx dx x x x dx +∞-∞--==+-=⎰⎰; 1401428()()(2)995Y E Y yf y dy y yd y y y dy +∞-∞-∞==++-=⎰⎰⎰. 20、离散型随机变量X 的概率分布为X -2 0 2 p0.40 0.30 0.30求()D X ?解:由题意易知()0.2E X =-、2() 1.8E X =,所以22()()[()] 1.80.04 1.76D X E X E X =-=-=.21、设随机变量X 的分布函数为00()/40414x F x x x x ≤⎧⎪=<≤⎨⎪>⎩.求()D X解:由题意易知X 的密度函数为1/404()0x f x <≤⎧=⎨⎩其它,且()2E X=,则242(2)4()(())()43x D X x E X f x dx dx +∞-∞-=-==⎰⎰. 22、若随机变量X 服从参数为λ的泊松分布,求()D X ? 解:由题意易知()E X λ=、22()E X λλ=+,故22()()[()]D X E X E X λ=-=.23、设随机变量(,)X Y 的密度函数为1()02,02(,)80x y x y f x y ⎧+≤≤≤≤⎪=⎨⎪⎩其它求()D X ?解:由题意易知7()8E X =,故2222001711()[()](,)()()8636D X x E X f x y dxdy x x y dxdy +∞+∞-∞-∞-∞=-=-+=⎰⎰⎰⎰. 24、设二维随机变量(,)X Y 在曲线2y x =、2y x =+所围区域G 内服从均匀分布,内服从均匀分布,求求方差()D X 、()D Y ?解:由题意易知22(2)12()90X x x x f x ⎧+--≤≤⎪=⎨⎪⎩其它、40192()(2)1490Y yy f y y y y ⎧≤≤⎪⎪=+-<≤⎨⎪⎪⎪⎩其它1()2E X =、8()5E Y =22222127()()(2)910X E X x f x dx x x x dx+∞-∞--==+-=⎰⎰14222214247()()(2)9914Y E Yy f y dyy ydyy y dy +∞-∞-∞==++-=⎰⎰⎰229()()[()]20D X E X E X =-=;22279()()[()]350D YE Y E Y =-=.25、设10只同种元件中由2只是坏的,装配仪器时,从中任取1只,如果是不合格品,则扔掉后重取1只,求取出合格品前取出次品数的方差?只,求取出合格品前取出次品数的方差?解:设X 表示取出合格品前已取出次品的数目,则X0 1 2 p8/10 16/90 2/90故2()9E X =、24()15E X =所以2288()()[()]405D XE X E X =-=.26、设随机变量X 的密度函数为||1()2x f x e -=.求()E X 、()D X ?解:||1()()02x E X xf x dx x e dx+∞+∞--∞-∞===⎰⎰; 222||2011()(())()222x xD XE X E X x f x dx x e dx x e dx +∞+∞+∞---∞-∞=-====⎰⎰⎰.27、设X 为随机变量,证明:对任意常数C ,有2()()D X E X C ≤-,当()C E X =时等号成立.证明:22222()(2)()2()E X C E X CX C E X CE X C -=-+=-+22222()[()]{[()]2())}()[()]E X E X E X CE X C D X E X C =-+-+=+-由于2[()]E X C -非负,从而有2()()D X E X C ≤-,且当()C E X =时2()()D X E X C =-.28、设U 服从(-2,2)上的均匀分布,定义X 、Y 如下1111U X U -<-⎧=⎨>-⎩、1111U Y U -<⎧=⎨>⎩求()D X Y +?解:先求X Y +的分布(2)(1,1)(1,1)(1)1/4p X Y p X Y p U U p U +=-==-=-=<-<=<-= (2)(1,1)(1,1)(1)1/4p X Y p X Y p U U p U +=====≥-≥=≥= (0)1(2)(2)1/2p X Y p X Y p X Y +==-+=-+=-=所以()0E X Y +=,从而2()()2D X Y E X Y +=+=.29、已知()750E X =、2()15D X =.请估计概率(700800)p X <<? 解:由切比雪夫不等式有2215(700800)(|750|50)10.9150p X p X <<=-<≥-≈.30、设()2E X =-、()1D X =、()2E Y =、()4D Y =、0.5XY ρ=-,利用由切比雪夫不等式估计概率(||6)p X Y +≥的上限?解:因为()0E X Y +=、()()()2(,)3D X Y D X D Y Cov X Y +=++=,所以,所以2()1(||6)(|()()|6)612D X Y p X Y p X YE X Y ++≥=+-+≥≤=. 31、设()4D X =、()9D Y =、0.5XY ρ=,求(23)D X Y -? 解:(,)()()3XY Cov X Y D X D Y ρ==(23)4()9()2(2,3)16813661D X Y D X D Y Cov X Y -=++-=+-=.32、设(,)X Y 的联合密度函数为21201(,)0yy x f x y ⎧≤≤≤=⎨⎩其它求(,)Cov X Y ?解:由题意易知4()5E X =、3()5E Y =、1()2E XY =,故 1431(,)()()()25550Cov X Y E XY E X E Y ⨯=-=-=⨯. 33、设二维随机变量(,)X Y 在曲线2y x =、2y x =+所围区域G 内服从均匀分布,内服从均匀分布,求求协方差(,)Cov X Y 与相关系数XY ρ?解:由题意易知1()2E X =、8()5E Y =、9()20D X =、279()350D Y =2221225()994x x G E XY xy dxdy xdx ydy +-===⎰⎰⎰⎰所以9(,)()()()20Cov X Y E XY E X E Y =-=; (,)0.751()()XYCov X Y D X D Y ρ=≈.34、设二维随机变量(,)X Y 的联合分布为YX-1 0 1 00.07 0.18 0.15 100.080.320.20求22(,)Cov X Y解:先求2X 、2Y 、22X Y 的分布2(0)0.4p X ==、2(1)0.6p X == 2(0)0.5p Y ==、2(1)0.5p Y == 22(0)0.72p X Y ==、22(1)0.28p X Y ==所以2()0.6E X =、2()0.5E Y =、22()0.28E X Y =,由此得222222(,)()()()0.02Cov X Y E X Y E X E Y =-=-.35、随机变量(,)X Y 的密度函数为201,11(,)0x x y f x y ≤≤-≤≤⎧=⎨⎩其它求()D X Y +?解:当01x <<时,有11()22X x f x d y x -==⎰;当01y <<时,有11()22Y y f y d x y -==⎰,故2()()3E X E Y ==、1()()18D X D Y == 由于(,)()()X Y f x y f x f y ≠,即X 与Y 不独立.所以11015()212xE XY xydxdy -==⎰⎰541(,)()()()12936Cov X Y E XY E X E Y =-=-=- 1()()()2ov(,)18D X Y D X D Y C X Y +=++=.36、将1枚硬币抛n 次,以X 、Y 分别表示正面向上与反面向上的次数,求(,)Cov X Y 、XY ρ解:由于X Y n+=,即Y n X=-,于是1XYρ=-;又因~(,0.5)X b n 、~(,,0.5)Y b n ,所以()()/4D X D Y n ==,故(,)(,)(,)()/4Cov X Y Cov X n X Cov X X D X n =-=-==.37、设X 与Y 独立,且都服从参数为λ的泊松分布,令2U X Y =+、2V X Y =-求U 与V 的相关系数?解:由于()(2)4()()5D U D X Y D X D Y λ=+=+= ()(2)4()()5D V D X Y D X D Y λ=-=+=所以(,)(2,2)Cov U V Cov X Y X Y =+-4()(,2)(2,)()3D X Cov Y X Cov X Y D Y λ=+--=由此得(,)35(),()XYCov X Y D X D Y ρ==. 38、设二维随机变量(,)X Y 的联合密度函数为1||0,01(,)0y x f x y <<<⎧=⎨⎩其它判断X 与Y 之间的相关性与独立性.解:由于12()3x xE X xdydx -==⎰⎰、、10()0x xE Y ydydx -==⎰⎰、10()0xxE XY xydydx -==⎰⎰,则(,)()()()0Cov X Y E X E Y E XY =-=故X 与Y 之间不相关;又因当01x <<时,有()2xXxf x dy x-==⎰,即201()0X x x f x <<⎧=⎨⎩其它同理可以求出110()1010X y y f x y y +-<<⎧⎪=-<<⎨⎪⎩其它由于(,)()()X Y f x y f x f y ≠,故X 与Y 之间不独立.39、设a 为区间(0,1)上一定点,随机变量(0,1)X U ,Y 是X 到a 的距离.问a 为何值时X 与Y 是不相关?解:由题设知()0.5E X =、||Y X a =-,所以11201()||()()2aaE Y x a dx a x dx x a dx a a =-=-+-=-+⎰⎰⎰3101()()()323a a a a E XY x a x dx x x a dx =-+-=-+⎰⎰31(,)3212a aCov X Y =-+令31(,)03212a a Cov X Y =-+=,可得方程2(21)(221)0a a a ---=在(0,1)内解得0.5a =,即0.5a =时,X 与Y 不相关. 40、设计算器进行加法计算时,所有舍入误差相互独立且在(0.5,0.5)-上服从均匀分布.(1) 将1500个数相加,问误差总和的绝对值超过15的概率是多少;(2) 最多可以有几个数相加,其误差总和的绝对值小于10的概率不小于0.90? 解:设第i 个数的舍入误差为i X (1,,)i n = ,故()0i E X =、()1/12i D X = (1,,)i n =记1ni i X X ==∑(1) 由林德伯格-列维中心极限定理有15001150001515000(||15)(||)15001/1215001/12i i x p X p =-⨯-⨯>=>∑151[2()1]0.180215001/12≈-Φ-=;(2) 由林德伯格-列维中心极限定理有1100100.90(||10)(||)2()11/121/121/12ni i x n n p X p n n n =-⨯-⨯≤<=≤≈Φ-∑即10()0.951/12n Φ≥,由于(1.645)0.95Φ=,则101.6451/12n ≥因此443.45n £,再由n 为整数得满足题意的个数为443.41、一批木材中有80%的长度不小于3m ,从中任取100根,求其中至少有30根长度短于3m 的概率?解:以X 表示100根木材中长度短于3m 的数目,则~(100,0.2)X b ,于是()20E X =,()16D X =.由于100n =较大,则由中心极限定理,近似有2~(20,4)X N ,由此有20302010(30)1(30)1()1()0.0062444X p X p X p --≥=-<=-<≈-Φ-=. 42、某商店出售价格分别为1(元)、1.2(元)、1.5(元)的3种蛋糕,种蛋糕,每种蛋糕被购买的概每种蛋糕被购买的概率分别为0.3、0.2、0.5.若某天售出300只蛋糕,(1) 求这天收入为400(元)的概率;(2) 求这天售出价格为1.2(元)蛋糕多于60只的概率?解:(1) 设第i 只蛋糕价格为iX (1,,300)i = .则i X的分布为i X1 1.2 1.5 p0.30.20.5于是可得() 1.29i E X =、2() 1.713iE X =、()0.0489i D X =令3001i i X X ==∑表示总收入,则由林德伯格-列维中心极限定理有300 1.29400300 1.29(400)()1(3.39)0.00033000.04893000.0489X p X p -⨯-⨯≥=>≈-Φ=⨯⨯;(2) 记Y 为300只蛋糕中售价为1.2(元)的蛋糕数目,则~(300,0.2)Y b ,于是()60E Y =、()48D Y =,由中心极限定理,近似有~(60,48)X N ,由此有606060(60)1()1(0)0.54848Y p Y p --≥=-<≈-Φ=.43、进行独立重复试验,每次试验中事件A 发生的概率为0.25.问能以95%的把握保证1000次试验中事件A 发生的频率与概率相差多少?此时A 发生的次数在什么范围内?解:设X 为1000次试验中事件A 发生的次数,则~(1000,0.25)X b ,由二项分布的性质知()250E X =、()187.5D X =,而事件A 发生的频率为/1000X .根据题意,可得如下不等式(|0.25|)0.951000X p ε-≤≥即(|250|1000)0.95p X ε-≤≥,由棣莫弗―拉普拉斯定理有25010001000(||)2()10.95187.5187.5187.5X p εε-≤≈Φ-≥即1000()0.975(1.96)187.5εΦ≥=Φ解得0.026ε³,这表明1000次试验中事件A 发生的频率与概率相差不超过0.026,相应的有1000次试验中事件A 发生的次数在224到276之间.44、某车间有同型号车床150台,在1小时内每台车床约有60%的时间在工作.假定各车床工作相互独立,工作时每台车床要消耗电能15kw.问至少要多少电能,才可以有99.5%的可能性保证此车间正常工作?解:以X 表示同时工作的车床数,则~(150,0.6)X b ,于是()90E X =、()36D X =,由题意知x 应使得下式成立(0)0.995p X x ≤≤≥由中心极限定理,近似有~(90,36)X N ,故有090909090(0)()()(15)0.9956666X x x p X x p ----≤≤=<<≈Φ-Φ-≥ 查标准正态分布表得90 2.586x -≥,即105.28x ≥,取整得106x =.故要保证车间有99.5%的可能性正常工作,需供电能151061590⨯=()kw .B 组1、将n 只球(1n 号)随机的装入n 只盒子(1n 号),一只盒子装一只球.若一只球装入的盒子与球同号,称为一个配对.记X 为配对数,求()D X ?解:引入随机变量i X (1,)i n = ,1i X =表示第i 号配对,0i X =表示第i 号不配对,则1n X X X =++ ,且1(1)i p X n ==(1,)i n = 即1()i E X n = (1,)i n =于是1()()1n E X E X X =++=因为i X 之间不独立,所以11111()()2(,)nn ni i i i j ii ij D X D X Cov X X -=====+∑∑∑∑下面考虑i j X X 的分布,由于i j X X 的取值只能是0、1,且1(1)(1,1)(1)i j i j p X X p X X n n =====- 所以1()(1)i j E X X n n =-,因此 21()()()()(1)i j i j i j Cov X X E X X E X E X n n =-=- 2211()21(1)nn D X Cnn n -⇒=+=-.2、设随机变量X 的分布函数为()F x ,其数学期望存在,证明()[1()]()E X F x dx F x dx +∞-∞=--⎰⎰.证明:00()()()()E X xf x dxxf x dxxf x dx +∞+∞-∞-∞==-⎰⎰⎰由于00()()()xxf x dxxdy f x dx +∞-∞=-⎰⎰⎰改变积分次序有00()(())()yxf x dxf x dx dyF y dy +∞-∞-∞-∞=-=-⎰⎰⎰⎰同理有()[1()]xf x dx F y dy +∞+∞=-⎰⎰ 0()[1()]()E X F x dxF x dx +∞-∞⇒=--⎰⎰.3、设随机变量X 的分布函数为0111()arcsin 11211x F x x x x π⎧<-⎪⎪=+-≤<⎨≥⎪⎩求()E X ?解:由上一题结论有()[1()]()E X F x dxF x dx +∞-∞=--⎰⎰111111[1arcsin ](arcsin )022x dx x dx ππ--=---+=⎰⎰.4、设连续随机变量X 的密度函数为()f x 若对任意常数c 有()()f c x f c x +=- (0)x >且()E X 存在.证明()E X c =.证明:令x t c =-则有()()()()()()E X xf x dxc t f c t dtcf c t dttf c t dt +∞+∞+∞+∞-∞-∞-∞-∞==++=+++⎰⎰⎰⎰由密度函数性质有()()cf c t dt cf c t dt c +∞+∞-∞-∞+=+=⎰⎰令u t =-,有()()()()tf c t dttf c t dtuf c u duuf c u du +∞+∞-∞-∞+=-=+=-+⎰⎰⎰⎰故()0tf c t dt +∞-∞+=⎰所以()E X c =.5、证明事件A 在一次试验中发生次数的方差不超过0.25.证明:设X 表示事件A 在一次试验中发生的次数,则(1,)X b p ,其中p 是事件A 发生的概率,则()(1)0D X p p =-≥由均值不等式得,当0.5p =时,()D X 有最大值0.25. 6、设随机变量X 服从几何分布,即1()(1)k p X k p p -==-(1,2,)k = ,其中01p <<是常数.求()D X解:1111()(1)(1)k k k k E X kp p p k p +∞+∞--===-=-∑∑由级数2121123(1)k x x kx x -=+++++- (||1)x <,知211()[1(1)]E X p p p =⨯=--又111[(1)](1)()(1)(1)k k k E X Xk k p Xk pk k p +∞+∞-==+=+==+-∑∑将21(1)x -的展开式两端求导得 1321223(1)(1)k x k kx x -=⋅+⋅++-+- 3222[(1)][1(1)]E X X pp p ⇒+==--222()()[()][(1)][()]D X E X E X E X X X E X ⇒=-=+-- 221[(1)]()[()]p E X X E X E X p-=+--=. 7、一只昆虫所生虫卵X 服从参数为λ的泊松分布,而每个虫卵发育成幼虫的概率为p ,且每个虫卵是否发育成幼虫相互独立,求一只昆虫所生幼虫数Y 的期望与方差?解:由题意知()!np X n en λλ-==(0,1,2,)λ= ,而n 个虫卵发育成k ()k n ≤个幼虫的概率为(|)(1)k kn knp Y k X n C p p -===- (0,1,,)k n =由全概率公式,对任意0,1,,k n = 有()()(|)(1)!nkkn kn n k n k p Y k p X n p Y k X n e C p p n λλ+∞+∞--========-∑∑(1)()[(1)]()()!()!!!k n kk kp pn k p p p p e e e e k n k k k λλλλλλλλ-+∞----=-===-∑即Y服从参数为pλ的泊松分布所以()()E Y D Y p λ==.8、设随机变量X 的密度函数()f x 是偶函数,且2(||)E X <+∞,证明X 与2X 不相关,但不独立.证明:因()f x 是偶函数,所以()xf x 、3()x f x 是奇函数,故此3()()0E X E X ==222(,)()()()0Cov X X E X X E X E X ⇒=⋅-=因而,X 与2X 不相关;选取0a >使得()1p X a ≤<,考察如下特定事件概率22(,)()()()p X a X a p a X a p X a p a X a ≤≤=-≤≤>≤-≤≤ 22()()p X a p X a =≤≤即2222(,)()()p X a X a p X a p X a ≤≤≠≤≤ 故X 与2X 不独立.9、设1X 、…、n X 中任意两个的相关系数都是ρ,试证:11n ρ≥--. 证明:因为111110()()2(,)nnni iiiji i i j D X D X Cov X X-====≤=+∑∑∑∑1111()2()()nni i i j i ij D X D X D X ρ-====+∑∑∑11111()[()()]()[1(1)]n ni ni i j i i i j i D X D X D X D X n ρρ-====≤++=+-∑∑∑∑11n ρ⇒≥--.。
概率论与数理统计第三、四章答案
第三章 习题参考答案1.计算习题二第2题中随机变量的期望值。
解:由习题二第2题计算结果0112{0}={1}=33p p p p ξξ====,得12201333E ξ=⨯+⨯= 一般对0-1分布的随机变量ξ有{1}E p p ξξ===2.用两种方法计算习题二第30题中周长的期望值,一种是利用矩形长与宽的期望计算,另一种是利用周长期望的分布计算。
解:方法一:先按定义计算长的数学期望290.3300.5310.229.9E ξ=⨯+⨯+⨯=和宽的数学期望190.3200.4210.320E η=⨯+⨯+⨯=再利用数学期望的性质计算周长的数学期望(22)229.922099.8E E ζξη=+=⨯+⨯=方法二:利用习题二地30题的计算结果<见下表>,按定义计算周长的数学期望960.09980.271000.351020.231040.0698.8E ξ=⨯+⨯+⨯+⨯+⨯=3.对习题二第31题,〔1〕计算圆半径的期望值;〔2〕(2)E R π是否等于2ER π?〔3〕能否用2()ER π来计算远面积的期望值,如果不能用,又该如何计算?其结果是什么?解〔1〕100.1110.4120.3130.211.6ER =⨯+⨯+⨯+⨯= 〔2〕由数学期望的性质有(2)223.2E R ER πππ==〔3〕因为22()()E R E R ππ≠,所以不能用2()E R π来计算圆面积的期望值。
利用随机变量函数的期望公式可求得222222()()(100.1110.4120.3130.2)135.4E R E R ππππ==⨯+⨯+⨯+⨯= 或者由习题二第31题计算结果,按求圆面积的数学期望1000.11210.41440.31690.2)135.4E ηπππ=⨯+⨯+⨯+⨯=4. 连续随机变量ξ的概率密度为,01(,0)()0,a kx x k a x ϕ⎧<<>=⎨⎩其它又知0.75E ξ= ,求k 和a 的值 解 由1010()11324a a kx dx kx dx a k E kx x dx a ϕξ+∞-∞===+=⋅==+⎰⎰⎰解得2,3a k ==5.计算服从拉普拉斯分布的随机变量的期望和方差〔参看习题二第16题〕。
《概率论与数理统计》习题 第四章 大数定律和中心极限定理
第四章 大数定律和中心极限定理一. 填空题1. 设Y n 是n 次伯努利试验中事件A 出现的次数, p 为A 在每次试验中出现的概率, 则对任意 ε > 0, 有=⎪⎭⎫ ⎝⎛≥-∞→ε||lim p n Y P n n __________. 解. =⎪⎭⎫ ⎝⎛≥-∞→ε||lim p n Y P n n 1-011||lim =-=⎪⎭⎫ ⎝⎛<-∞→εp n Y P n n 2. 设随机变量X 和Y 的数学期望是2, 方差分别为1和4, 而相关系数为0.5, 则根据切比雪夫不等式P(|X -Y| ≥ 6) ≤ _______.解. E(X -Y) = E(X)-E(Y) = 2-2 = 0D(X -Y) = D(X) + D(Y)-)()(2Y D X D XYρ= 1 + 4-2×0.5×1×2 = 3 所以 1213636)()6|(|2==-≤≥-Y X D Y X P二. 选择题1. 设随机变量n X X X ,,,21 相互独立, n n X X X S +++= 21, 则根据列维-林德伯格(Levy-Lindberg)中心极限定理, n S 近似服从正态分布, 只要n X X X ,,,21 ( A ) 有相同的数学期望 ( B ) 有相同的方差( C ) 服从同一指数分布 ( D ) 服从同一离散型分布解. 列维-林德伯格(Levy-Lindberg)中心极限定理要求n X X X ,,,21 既有相同的数学期望, 又有相同的方差, 因此( A ) 、( B )、 ( D )都不是答案, ( C )为答案.三. 计算题1. 某厂有400台同型机器, 各台机器发生故障的概率均为0,02, 假如各台机器相互独立工作, 试求机器出现故障的台数不少于2台的概率.解. 假设X 表示400台机器中发生故障的台数, 所以X ~B(400, 0.02)由棣莫佛-拉普拉斯定理:)(2198.002.040002.0400lim 22x dt e x X P x t n Φ==⎪⎭⎫ ⎝⎛≤⨯⨯⨯-⎰∞--∞→π 所以 ⎪⎭⎫ ⎝⎛⨯⨯-≤⨯⨯--=≤-=≥98.002.0400798.002.040081)1(1)2(X P X P X P ≈ 1-Φ(-2.5) = Φ(2.5) = 0.9938.2. 设供电网中有10000盏灯, 夜晚每一盏灯开着的概率都是0.7, 假设各灯开、关时间彼此无关, 计算同时开着的灯数在6800与7200之间的概率.解. 假设X 表示10000盏灯中开着的灯数, 所以X ~B(10000, 0.7)由棣莫佛-拉普拉斯定理:)(217.03.010*******lim 22x dt e x X P xt n Φ==⎪⎭⎫ ⎝⎛≤⨯⨯-⎰∞--∞→π所以 )72006800(≤≤X P ⎪⎭⎫ ⎝⎛⨯⨯-≤⨯⨯-≤⨯⨯-=7.03.010000700072007.03.010********.03.01000070006800X P ≈ Φ(4.36)-Φ(-4.36) = 2Φ(4.36)-1 = 2×0.999993-1 = 0.999.。
概率论与数理统计第四章课后习题及参考答案
E( X 2 ) 700E( X ) 3502 122686 . 10. A ,B 两台机床同时加工零件,每生产一批较大的产品时,出次品的概率如
下表所示:
3
A 机床
次品数 X
0
1
2
3
概率 P
0.7
0.2
0.06
0.04
B 机床
次品数 X
0
1
2
3
概率 P
0.8
0.06
0.04
0.10
问哪一台机床加工质量较好.
5.设离散型随机变量 X
的分布列为 P( X
(1)k
2k ) k!
1 2k
,k
1,2,,
问 X 是否有数学期望.
解:因为 (1)k
k 1
2k k
1 2k
1 发散, k 1 k
所以 X 的数学期望不存在. 6.设随机变量 X 具有密度函数
f
(x)
2
cos2
x, 2
x
2
,
0, 其他.
空测量的误差随机变量 X 的分布列为
X (m) 30
20
10
0
10
20
30
P
0.05 0.08 0.16 0.42 0.16 0.08 0.05
而场地边长随机变量Y 等于边长的数学期望与测量误差之和,即Y 350 X ,
求场地面积的数学期望.
解:设场地面积为 S ,则 S Y 2 ,
E( X ) 30 0.05 (20) 0.08 (10) 0.16 0 0.42 10 0.16
12 2
7.设随机变量 X 具有密度函数 x, 0 x 1,
f (x) 2 x, 1 x 2, 0, 其他.
概率论与数理统计第四章大数定理与中心极限定理习题(含答案)
其中 为标准正态分布函数.
3.设 , ,其中 、 为常数,且 ,则 ( ).
; ;
;
4.设某地区成年男子的身高 ,现从该地区随机选出 名男子,则这 名男子身高平均值的方差为( ).
; ; ; .
二、填空题
1.已知离散型随机变量X服从参数为 的泊松分布,利用切比雪夫不等式估计概率
.
2.已知随机变量X存在数学期望 和方差 ,且数学期望 , ,利用切比雪夫不等式估计概率 .
; ; ; .
解:C
二、填空题
1.已知离散型随机变量X服从参数为 的泊松分布,利用切比雪夫不等式估计概率
.
解:由 知,
5.已知随机变量X存在数学期望 和方差 ,且数学期望 , ,利用切比雪夫不等式估计概率 .
解:
6.已知随机变量X的方差为4,则由切比雪夫不等式估计概率 .
解:
7.伯努利(Bernoulli)大数定理表明:当试验次数 很大时,随机事件 在这 次试验中发生的频率 与随机事件 的概率 有较大偏差的可能性很.
解:小。
三、计算题
1.投掷一枚均匀硬币1000次,试利用切比雪夫不等式估计出现正面次数在450次~550次之间的概率.
解:
2.已知连续型随机变量X服从区间 的均匀分布,试利用切比雪夫不等式估计事件 发生的概率.
解:
3.设随机变量 和 的数学期望分别是 和 ,方差分别是 和 ,而相关系数为 .
⑴ 求 及 ;
3.已知随机变量X的方差为4,则由切比雪夫不等式估计概率 .
4.伯努利(Bernoulli)大数定理表明:当试验次数 很大时,随机事件 在这 次试验中发生的频率 与随机事件 的概率 有较大偏差的可能性很.
概率论第四章习题答案
第四章复习题答案一、单项选择1.设随机变量X 具有分布P{X=k}=51,k=1,2,3,4,5,则E (X )=( B ) A.2 B.3 C.4D.52.设随机变量X 与Y 相互独立,X 服从参数为2的指数分布,Y ~B (6,21),则E(X-Y)=( A )A .-1B .21C .2D .5 3.设二维随机变量(X ,Y )的协方差Cov(X ,Y )=61,且D (X )=4,D (Y )=9,则X 与Y 的相关系数XY ρ为( B )()(),XY Cov X Y D X D Y ρ=A .2161 B .361 C .61 D .1 4. 设随机变量X 和Y 独立同分布,X ~N (μ,σ2),则( B ) A.2X ~N (2μ,2σ2) B.2X -Y ~N (μ,5σ2) C.X +2Y ~N (3μ,3σ2)D.X -2Y ~N (3μ,5σ2)5.设EX 2=8,DX =4,则E (2X )=( D ) A.1 B.2 C.3 D.46.对任意两个随机变量X 和Y ,由D (X +Y )=D (X )+D (Y )可以推断( A ) A.X 和Y 不相关B.X 和Y 相互独立C.X 和Y 的相关系数等于-1D.D (XY )=D (X )D (Y )7.已知随机变量X 服从参数为2的泊松分布,则随机变量X 的方差为( D ) A .-2 B .0 C .21D .2 8.设随机变量X 与Y 相互独立,且X ~B (16,0.5),Y 服从参数为9的泊松分布,则D (X -2Y +3)=( C )A.-14B.-11C.40D.439.已知随机变量X 服从参数为2的指数分布,则随机变量X 的期望为( D )A .-21B .0C .21D .2 二、填空1.设随机变量X 服从正态分布N (2,4),Y 服从均匀分布U (3,5),则E (2X-3Y )= ___-8___. 2.设随机变量X 与Y 相互独立,其分布律分别为则E (XY )=__2______.3.设X ,Y 为随机变量,已知协方差Cov(X ,Y )=3,则Cov(2X ,3Y )=____18___. 4.设X~N (0,1),Y~B (16,21),且两随机变量相互独立,则D(2X+Y)= __8______ 5.设随机变量X 的概率密度为⎩⎨⎧≤≤=,,0;10,2)(其他x x x f 则E (X )=__23______.6.已知E (X )=2,E (Y )=2,E (XY )=4,则X ,Y 的协方差Cov (X,Y )=____0_____. 7.设随机变量X ~N (0,4),则E (X 2)=_____4____.8.设X ~N (0,1),Y =2X -3,则D (Y )=____4__. 三、计算1.某柜台做顾客调查,设每小时到达柜台的顾额数X 服从泊松分布,则X~P (λ),若已知P (X=1)=P (X=2),且该柜台销售情况Y (千元),满足Y=21X 2+2.试求:(1)参数λ的值;21!2!e e λλλλ--=,=2λ.(2)一小时内至少有一个顾客光临的概率;{}{}21101-P X P X e -≥=-== (3)该柜台每小时的平均销售情况E (Y ). ()==2E Y λ2. 2021年东京奥运会即将召开,某射击队有甲、乙两个射手,他们的射击技术可用下表给出。
概率论与数理统计》课后习题答案第四章
习题4.11.设10个零件中有3个不合格. 现任取一个使用,若取到不合格品,则丢弃重新抽取一个,试求取到合格品之前取出的不合格品数X 的数学期望.解 可得X 的概率分布为0123~77711030120120X ⎡⎤⎢⎥⎢⎥⎣⎦于是X 的数学期望为7771()012310301201204531208E X =⨯+⨯+⨯+⨯==2..某人有n 把外形相似的钥匙,其中只有1把能打开房门,但他不知道是哪一把,只好逐把试开.求此人直至将门打开所需的试开次数X 的数学期望.解 可得X 的概率分布为12~111n X nn n ⎡⎤⎢⎥⎢⎥⎣⎦于是X 的数学期望为111()121(1)122E X n n n nn n n n =⨯+⨯++⨯++==3.设5次重复独立试验中每次试验的成功率为0.9,若记失败次数为X ,求X 的数学期望。
解 由题意~(5,0.1)X B ,则X 的数学期望为 ()50.10.E X =⨯= 4.设某地每年因交通事故死亡的人数服从泊松分布.据统计,在一年中因交通事故死亡一人的概率是死亡两人的概率的21,求该地每年因交通事故死亡的平均人数。
解 设该地每年因交通事故死亡的人数为X ,由题意X 服从泊松分布() (0)P λλ>.因1{1}{2}2P X P X === 即121 41!22!ee λλλλλ--=⇒= 于是X 的数学期望为()4E X λ== 所以地每年因交通事故死亡的平均人数为4人。
5.设随机变量X 在区间(1,7)上服从均匀分布,求2{()}P X E X <. 解 因X 在区间(1,7)上服从均匀分布,故X 的数学期望为17()42E X +== 于是22{()}{4}1 {22}6P X E X P X P X <=<=<-<<=6.设连续型随机变量X 的概率密度为01() (,0)0 b ax x p x a b ⎧<<=>⎨⎩其它又知()0.75E X =,求,a b 的值解 由密度函数的性质可得()1p x dx +∞-∞=⎰即1111b aax dx b =⇒=+⎰又由()0.75E X =,可得1()0.75b xp x dx x ax dx +∞-∞=⋅=⎰⎰即0.752ab =+ 求解110.752ab a b ⎧=⎪⎪+⎨⎪=⎪+⎩可得 3,2a b ==.7.设随机变量X 的概率密度为0<1()2 120 x x p x x x <⎧⎪=-≤<⎨⎪⎩其它求数学期望()E X解1201331221()() (2) ()133E X xp x dxx xdx x x dx x x x +∞-∞==⋅+⋅-=+-=⎰⎰⎰8.设随机变量X 的概率分布为X -2 -1 0 1 P 0.2 0.3 0.1 0.4 求 (1)(21)E X -;(2)2()E X .解 (1) (21)2()1E X E X -=- 其中()20.210.3010.40.3E X =-⨯-⨯++⨯=-则(21)2()12(0.3)1 1.6E X E X -=-=⨯--=-(2)22222()0.2(2)0.3(1)0.100.41 1.5E X =⨯-+⨯-+⨯+⨯=9.假设一部机器在一天内发生故障的概率为0.2,机器发生故障时全天停止工作。
概率论与数理统计(I)第四章答案
第四章 大数定律及中心极限定理导 学——极限论在概率研究中的应用本章是承前启后的一章:明晰了“频率与概率的关系”,这是一个遗留问题。
并将《概率论》部分划上了一个句号,这是承前;说它启后,有定理设定:⋯⋯,21,,,n X X X 独立同分布,这一设定在《数理统计》部分一直沿用了下去。
全章由四节组成,§1节特征函数,§2节大数定律,讲了三个定理, §3节随机变量序列的两种收敛性,§4节中心极限定理。
三个定理。
“大数”及“极限”均要求+∞→n ,在实际问题中,n 充分大即可。
§2节主要研究对象为:算术平均值()n X X nX +⋯+=11;§4节的主要研究对象为: nni i X X X +⋯+=∑=11,比n X 1少了。
§2节的学习,不妨先从复习入手。
第二、三章已熟悉了()()⋅⋅D E 及,先推算出21)(,)(σμnX D X E =⋯==⋯=这是核心推导之一,后面学《数理统计》会反复使用,再由契比雪夫不等式及夹逼原理,可推出定理一,其中NX D 2)(σ=中的n1很宝贵。
定理二是由定理一推得的,关键点为:n A X X X n +⋯++=21及X X n n n ni i A ==∑=11,于是可用定理一了。
推导本身是一件很愉快的事。
§2节的三个定理可在比对中学习。
定理一(契)不要求⋯⋯,21,,,n X X X 一定为同分布,(贝)是由定理一(契)的特例。
定理二(马)不要求⋯⋯,21,,,n X X X 独立或同分布。
定理三(辛)不要求)(X D 一定存在,“契”“马”与“辛”的结论均为:μ−→−PX ,即算术平均值依概率收敛于数学期望。
“贝”的结论为:p nn PA −→−,即频率依概率收敛于概率。
这个结论很精致,十分简单了。
翻开§4节,一堆一堆的符号映入眼中,让人头大。
其实,若标准化方法娴熟,这一节并不难。
中北大学概率统计练习册答案详解
第一章 随机事件与概率1、〔1〕{3,4,,18}Ω=,{4,6,,18}A =;〔2〕Ω={〔正,反〕,〔正,正〕,〔反,正〕,〔反,反〕},B ={〔正,反〕,〔正,正〕}。
2、〔1〕表示三门炮中至少有一门炮击中目标 〔2〕表示三门炮中至少有两门炮击中目标 〔3〕表示三门炮都击不中目标〔4〕表示三门炮中至少有一门击不中目标 或表示三门炮中至多有两门炮击中目标 〔5〕ABC ABC ABC ++ 〔6〕ABC ABC ABC ++ 〔7〕ABC〔8〕A B C ++ 3、〔1〕18〔2〕16 〔3〕724〔4〕344、m n5、〔1〕0.00539〔2〕0.037956、⑴1221146252212P C C C C C C ==3316 〔2〕33177、8541999n n nn n n --+8、172510、〔1〕0.2; 〔2〕0.4; 〔3〕0.8; 〔4〕0.7。
12、178013、2112mm M m m C C C C -+或222mM M mC C C -- 14、〔1〕22p p +;〔2〕21p p +;〔3〕2322p p -15、(1) 512〔2〕82517、设A =“甲机床需要看管〞;B =“乙机床需要看管〞;C =“丙机床需要看管〞;A B C 、、相互独立, 〔1〕0.003;18、独立 19、20、 (1) D ; (2) D ; (3) C ; (4) B 21、(提示:先求出击不沉的概率)1283/1296 22、150010.9980.95-≈第二章 随机变量与其概率分布2、〔1〕17C =;〔2〕67。
3、〔1〕0,11/3,14()1/2,465/6,6101,10x x F x x x x <⎧⎪≤<⎪⎪=≤<⎨⎪≤<⎪≥⎪⎩(2){26}P X <≤12=;{4}P X <13=;{15}P X ≤<12=。
概率论与数理统计第四章习题答案
ξ
n
≤ 0.84) = P (0.76n ≤ ξ ≤ 0.84n) = P ( ξ − 0.8n ≤ 0.04n) ≥ 1− Dξ 100 = 1− 2 n (0.04n)
由题意 所以
P (0.76 ≤ 1−
ξ
n
≤ 0.84) ≥ 0.9
100 ≥ 0.9,从而 n ≥ 1000 n 故,至少应生产1000件产品。
c , r , s , t , u 的值。
3⎞ ⎟ c⎟ ⎠ − ∞ < x < −1 −1≤ x < 0 0≤ x<1
2
乐山师范学院化学学院
解:P (ξ = 1.2) = F (1.2) − F (1.2 − 0) =
1 1 − =0 2 2
1 2 = 3 3 0 = P (ξ = −1) = F ( −1) − F ( −1 − 0) = r − 0 = r ∴ r = 0 1 1 = P (ξ = 0) = F (0) − F (0 − 0) = s − r = s ∴ s = 3 3 1 1 1 a = P (ξ = 1) = F (1) − F (1 − 0) = − s = ∴a = 2 6 6 1 1 2 = P (ξ = 2) = F ( 2) − F ( 2 − 0) = t − ∴t = 6 2 3 又 x ≥ 3时,F ( x ) = 1, ∴u = 1 2 1 1 c = P (ξ = 3) = F ( 3) − F ( 3 − 0) = 1 − = ∴c = 3 3 3 1 1 而 ∑ p i = 1, 从而 + a + b + + c = 1, ∴ b = 0 3 6 i 1 1 1 2 因此, a = ,b = 0,c = ,r = 0,s = ,t = ,u = 1. 6 3 3 3 P (ξ > 0.5) = 1 − P (ξ ≤ 0.5) = 1 − P (ξ = 0) = 1 −
概率论与数理统计答案第四章
概率论与数理统计答案第四章第四章 大数定律与中心极限定理4.1 设)(x D 为退化分布:⎩⎨⎧≤>=0001)(x x x D讨论下列分布函数列的极限是否仍是分布函数?,2,1},01({)3()};1({)2()};({)1(=-++n n x D n x D n x D 其中解:(1)(2)不是;(3)是。
4.2 设分布函数)(x F n 如下定义:⎪⎩⎪⎨⎧>≤<-+-≤=nx nx n n nx n x x F n 120)(问)(lim )(x F x F n n ∞→=是分布函数吗?解:不是。
4.3设分布函数列)}({x F n 弱收敛于分布函数)(x F ,且)(x F 为连续函数,则)}({x F n 在),(∞-∞上一致收敛于)(x F 。
证:对任意的0>ε,取M 充分大,使有M x x F M x x F -≤∀<≥∀<-,)(;,)(1εε对上述取定的M ,因为)(x F 在],[M M -上一致连续,故可取它的k 分点:Mx x x M x k k =<<<<-=-121 ,使有ki x F x F i i <≤<-+1,)()(1ε,再令∞=-∞=+10,k x x ,则有10,)()(1+<≤<-+k i x F x F i i ε (1)这时存在N ,使得当N n >时有10,|)()(|+≤≤<-k i x F x F i i n ε (2)成立,对任意的),(∞-∞∈x ,必存在某个)0(k i i ≤≤,使得),(1+∈i i x x x ,由(2)知当N n >时有ε+<≤++)()()(11i i n n x F x F x F (3)ε->≥)()()(i i n n x F x F x F (4)由(1),(3),(4)可得εεε2)()()()()()(11<+-≤+-<-++i i i n x F x F x F x F x F x F , εεε2)()()()()()(1->--≥-->-+i i i n x F x F x F x F x F x F ,即有ε2)()(<-x F x F n 成立,结论得证。
中北大学概率统计习题册第四章完整答案(详解)教学内容
中北大学概率统计习题册第四章完整答案(详解)仅供学习与交流,如有侵权请联系网站删除 谢谢- 15 -1. 填空1)设~(,)X B n p ,则EX =np ,DX =npq 。
2)设~()X P λ,则EX =λ,DX =λ。
3)设~()X E λ,则EX =1λ,DX =21λ。
4)设[]~,X U a b ,则EX =2a b+,DX =()212b a -。
5)设2~(,)X N μσ,则EX =μ,DX =2σ。
6)设(,)~(1,1;2,9;0.5)X Y N ,则EX =1,DX = 1 ,EY = 2,DY = 9 ,(,)Cov X Y = 1.5 。
7)已知螺钉的重量服从()250, 2.5N ,则100个螺钉总重量服从分布()5000,625N 。
2. 已知在一定工序下,生产某种产品的次品率0.001。
今在同一工序下,独立生产5000件这种产品,求至少有2件次品的概率。
解:设X 表示5000件产品中的次品数,则()~5000,0.001X B 。
50000.0015λ=⨯=,则()()()2100P X P X P X ≥=-=-=5000499910.99950000.0010.999=--⨯⨯01555510!1!e e--≈--10.006740.033690.95957=--=注:实际上5000499910.99950.9990.95964--⨯=3. 设某商店中每月销售某种商品的数量服从参数为7的泊松分布,问在月初进货时应至少进多少件此种商品,才能保证当月不脱销的概率为0.999。
解:设进货数件数为N ,当月销售需求为X ,则由题意知()~7X P ,且{}707e 0.999!k Nk P X N k -=≤=≥∑查泊松分布的数值表,可得16N ≥. 4 . 地下铁道列车的运行间隔时间为五分钟,一个旅客在任意时刻进入月台,求候车时间的数学期望与方差。
解:设旅客在地铁进站之前的X 时刻到达,即旅客候车时间也为X ;其数学期望和 分别为()~[0,5]X U ,52EX =;2512DX =。
概率论与数理统计课后标准标准答案
第四章 大数定律与中心极限定理4.1设D(x)为退化分布:讨论下列分布函数列地极限是否仍是分布函数?1 1(1){D(x n)}; (2){D(x )}; (3){D(x - 0},其中 n =1,2,…n n解:(1)( 2)不是;(3)是. 4.2设分布函数F n (x)如下定义:x 兰- nl /、 x +nF n (x)=」 ---- 一 n c x 兰 n2n 1 x > n1J问F(x) =lim F n (x)是分布函数吗?n _jpc解:不是•4.3设分布函数列{F n (x)}弱收敛于分布函数 F(x),且F(x)为连续函数,则 {F n (x)}在(」:,::)上一致收敛于F(x).证:对任意地;.0,取M 充分大,使有1 —F(x) :: ;,—x_M;F(x) :: ;,—x ^-M对上述取定地 M ,因为F(x)在[-M,M ]上一致连续,故可取它地 k 分点:& 二-M :: X2 :: ::: X2 :: X k 二 M ,使有 F(X j .J - F(xJ ::;,仁 i :: k ,再令X o - -::,Xk T =3,则有F(x 「) —F(xJ :: ;,0G k 1这时存在N ,使得当n • N 时有|F n (X i )-F(X i" ;,0G Ek 1(2)成立,对任意地x •(-::,::),必存在某个i(0 _ i 一 k),使得(X j ,X j 』,由(2) 知当n •N 时有F n (X)乞 F n (X i1) ::F(X i1);D(x)x 0X _0(1)(3)F n (X)一 F n (Xj • F(X)一 ;(4)由( 1), (3), (4)可得F n (x) —F(x):: F(X i 1)—F(x) , F(X i ) — F(X i) — 2;, F n (x)-F(x) F(X i )-F(x)- ; _F(X i )_F(X i i)_ ; —2;,即有|Fn(x)-F(x)| c 2g 成立,结论得证•4.5设随机变量序列 同时依概率收敛于随机变量 •与,证明这时必有P( = ) =1.4.6设随机变量序列^n -In 1分别依概率收敛于随机变量•与,证明:(1)_nn即;■ n J'成立.(2 )先证明这时必有7—^ 2 .对任给地;0^0取M 足够大8<1 i ,使有^|> MT 〕£ §成立,对取定地M ,存在N ,当n> N 时有 lM 丿 < 2丿即对任意地名>0有P (E 」Mg )=0成立,于是有P G^n)=P |U 吐一H 兰丄卩 <z P 工丄1=02 n从而P 「二)"成立,结论得证.证:对任意地;0有'->-卜 P 乍n 冷? |T 0,n T 0 2丿l 2丿证:(1)因为仁+口_監』n | |D n |沁A)u2 _P QE n -E 对)兰P Q -耳色上成立这时有I M 丿P fg +q >M 洋卩忤-匕+|2勺>M ) =p 鸥乂 +|2卩M 小為—q <i »P{(l n - I |2 | . M) - (I n - |-1)} < P(| r I ■ M 一 1)P(| n 一 |一1) ::2、・P(I n - "k J=P(|「|| n |- 0 = P{(| n - || n |- )- (| n #M)}P{(| 卄 || n |-)^ (| n | M)}乞 P(| n - |) P(| n | M)::3.MP2 n n =(: ■ n )^ n - n >C ■)^-^2'故;n P 「,结论成立.1 1 设随机变量序列©n ― T a ,a 0是一个常数,且:n式0,证明T -------- J —-na从而有P由;「•地任意性知;22,由前述(1)有4.7 不妨设a 0对任意地0 :::;::: a ,当< Z 时有;a =a 2 +a(£ _a)兰a2-a ;,n -a\a-;n.于是有J巴—a[n aTTn -a2-<Pl a 结论成立.兰名+P (^n —a KgH O, n T°o因而丿l a、 x ( 1证:充分性,令 f (x) , x 0,则 f (x)20, x 0,故 f (x)是 x(x -0)1 + X(1 + X)地单调上升函数,因而 L 止(启〉丘j ,于是有1 + E E F n _,| 0 兰 --- E ——t 0,n T 凶1半—匕|对任意地;.0成立,充分性得证.必要性,对任给地名>0,令A =仏:J -匕 > 計,因为©n ―J 匕,故存在 E- 充分大地N 使得当n 一 N 时有P (A ;):::;,于是有4.10设随机变量n 按分布收敛于随机变量■,又数列a n > a ,b n > b ,证明a n n ' b n 也按分布收敛于a b.证:先证明a n 按分布收敛于a . ^0时为显然,不妨设a 0( a ::: 0时地 修改为显然),若a , ',a n , n 地分布函数分别记作F a • •,F ,F an -与 F n •,则F a * X = F £」x,当x 是F a …地连续点时,%是F …地连续点,于是有 a ab5E2RGbCAP⑺ 〔X 、n m F a 缶(X )二 n m Fn 匕广广 F a©(X )PP4.9证明随机变量序列 I n [依概率收敛于随机变量 地充要条件为:住n 」|―;0,n -;::由;地任意性知 E一;0,nr ::, 结论为真.< P (A ;) ; ::成立,结论为真.由 4.12 知=(an -a)—;0,再由 4.6(1)知\(a^a) bn—;b ,于是由前述结论及4.11知\a n b^a;-佝-a)「b n按分布收敛于a:b ,结论得证.4.11设随机变量序列{;}按分布收敛于随机变量,随机变量序列{n}依概率收敛于常数a,证明n按分布收敛于:a.证:记「n地分布函数分别为F(x),F n(x),贝r - a地分布函数为F(x—a),设x是F (x 一a)地连续点,则对任给地;• 0 ,存在0,使当0 :::;厂时有| F(x - a _ ;) -F(x - a)卜:(1)现任取0 :::;1 :::;2 :::-,使得x-a,;1,x-a - ;2都是F ()地连续点,这时存在N,当n _弘时有I F (x - a * 詁)-F n (x - a * 詁)| ::>(2)|F(X-a - 二)- F n(X-a - ;2)|::;(3)对取定地,,存在N2,当n _ N2时有P(I n -a|_ ;1)::;(4)于是当n Xmax(N「N2)时,由(1),(2),(4)式有P(n n -a) *a)= P{(n n—a::x — a)-(|n—a|「1)} P{(n n—a::x — a)-(|n—a|_;1)} MP (n ::x—a ;1)P(| n —a|—;1):: F(x — a) 3;⑸又因为P(n ::X-a- ;2)=P{[ n n -(n -a)::X- ;2]「(| nT卜:;2)}+ P{(©n £X-am —a^2)}于是由(1),(3),(4)式有P(n n —a ::X-a) -P{[ n n -(n - 司::X - 叨「(| 厂&卜:;2)}他(6)-P(n ::X - a - ;2)一p(| n 一 a |- ;2 - F(X - a) - 3 ;由(5), (6)两式可得|P( n n — a ::x—a) —F(x—a)|::3;由;地任意性即知;n按分布收敛于:a ,结论得证.4.12设随机变量序列{ n}按分布收敛于,随机变量序列{ n}依概率收敛于0,证明P'n n >0.证:记',n地分布函数分别为F(x),F n(x),对任给地;弋,取a 0,b 0足够大,使—a,b是F(x)地连续点且1 —F(b) :::;,F(_a):::;W因为F n(x) > F(x),故存在N i,当n 一N i时有1 — F n(b)::2,F n(—a)::2P令M =max(a,b),因为厂0,故存在 2,当n _ N2时有P(l n | 八M而P(| n n | ;) = P{(| n n | ;厂[(—a ^ n 小厂(| n | )]}MP{(| n n | •;) 一[(中空n 小)一(| n | )]} = h 丨2M其中^=0,当n 一max(N「N2)时有P{(| n n | 厂(—a 乞n ::b)}乞P{^^ n < b)}二P{( n —a) 一( n - b)}二F n(-a) [1-F n(b)]P因而P(「n n | • J = J :::5 ;,由;地任意性知;n >0,结论为真•4.13设随机变量;服从柯西分布,其密度函数为P n(x)二n二(1 n2x2)这时有nP( n -x ^ii P( i 一)二[1 —F(x)]n =e 利xv),x ai=i对任意地;• 0,有证:对任意地; ■ 0,有已 庄 n 胆 1P(| n 匡;)r^dx21,n r ::4.14设{ n }为一列独立同分布随机变量,其密度函数为_P _其中:• 0为常数,令n =max (「I ,…,n ),证明n —;证:对任意地n ,0 ::: n ::: '■为显然,这时有P ( n :::nnx 1 xx W.i P( i <x W.i 0=dx =(—)n ,0 ::: x :::: y y P PP( n :: X)二 0,X 乞 0; P( n ::: X)=1,X _ :对任意地;• 0( ; ::: 1),有P(| n - J •;)二 P( n - ;)=(^-)n > 0, nP故n 》-成立,结论得证•4.15设{ ;}为一列独立同分布随机变量,其密度函数为x^a P (x )=」i0x vaP令 n 二 mi n(l ,2「;n ),证明 n 2.证:设i 地分布函数为F (x ),有F(x)■:P故 n 0, n _•:.0 :: x :::P(| n - a ;) = P( n - a _ ;) =0, n“ ::P故n 》a 成立,结论得证•4.17设{ n }为一列独立同分布随机变量,都服从(0,1)上地均匀分布,若n1Pn =([丨;)n,证明n 》C(C 为常数),并求出C.k 4证:这时{In n }也是独立同分布随机变量序列,且1E n = °ln xdx = -11 nP由辛钦大数定律知{In n }服从大数定理,即有—'T n 11,令f(x)二e x,则n y结论成立.2 n P 证明 一2k k )a.n(n 1) k^2 / ka = a n(n 1)心4J “2門2 —2 kn (n 1)心对任给地;・0,由契贝晓夫不等式有2协1 协1 4Q 2P(| n -a|- ;)2 D n 2 0,n::.n 1P故n 》a ,结论得证.4.19设{ n }为一列独立同分布随机变量,且 D ^-2存在,数学期望为零,证f (x)是直线上地连续函数,由 4.8题知n (II i :—1 i )nnln i P土 —;e J = c4.18设{ n }为一列独立同分布随机变量, 每个随机变量地期望为a ,且方差存在,证:已知E n = a ,记D ^-2,令n2n(n 1)数定律(马尔柯夫大数定律) 证:由契贝晓夫不等式即得.4.26在贝努里试验中,事件 A 出现地概率为p ,令1,若在第n 次及第n+1次实验中A 出现 O 其它证明{ n }服从大数定律.证:{ n }为同分布随机变量序列,且E E 'n= p 2 ,因而D ;二P 2(1- P 2)叮,n P明-Zn k 4证:这时{ ;}仍独立同分布,且E SD ; ::,由辛钦大数定律知结论成立.4.21设随机变量序列{ n }按分布收敛于随机变量,又随机变量序列{ n }依概率收敛于常数a(a = 0), n =0,则{ n 按分布收敛于a.证:由4.7题知丄 -- --- J 0,于是由4.12题有-n (―an*1布收敛于一(见4.10题地证明),因而由4.11题知a按分布收敛于一,结论成立.a4.22设{;}为独立同N(0,1)分布地随机变量序列,证明ni 地分布函数k4弱收敛于N(0,1)分布.证:这时{ '}也为独立同分布随机变量序列,且 E 'n=1,由辛钦大数定律知 na i 2—P》1,又n 1服从N(0,1)分布,当然弱收敛于 n i 1N(0,1)分布,由4.21题即知n 按分布收敛于N(0,1)分布,结论得证.plEanqFDPw4.23如果随机变量序列{ n },当n > -> 0,证明{ n }服从大又当|i-j|_2时,i与j独立,由4.24知{n}服从大数定律,结论得证•Q Q4.28设{n}为一列独立同分布随机变量,方差存在,又'a n为绝对收敛级数,n 4令n二n - i,则{a n n}服从大数定律.i 4证:不妨设E ^0.否则令:「n -E n,并讨论{n}即可•记E :=于,又:: n n i n nc — |a n 卜:::.因为 7 a i i - 7 a i (V - W aj,故有n 4 i =4 i 4 k =4 k4i 土1 n 1 n . n CT2 n n C%2D(1 a i i)2E{1 "(二a i)] 牙"(二a i)0,n r ::n i土n k A i土n 心甘n由4.23知{a n n}服从大数定律,结论得证.4.30设{n}为一列独立同分布随机变量,共同分布为弹 2 1P( n 2) F ,k=1,2,k 2试问{n}是否服从大数定律?答:因为E n存在,由辛钦大数定律知{n}服从大数定律.4.31设{n}为一列独立同分布随机变量,共同分布为弹 cP(n"莎而,5旳 1其中C=( 2 P)',问{n}是否服从大数定律?k=2 k log k答:因为E n存在,由辛钦大数定律知{n}服从大数定律.4.32如果要估计抛掷一枚图钉时尖头朝上地概率,为了有95鸠上地把握保证所观察到地频率与概率P地差小于P10,问至少应该做多少次试验?DXDiTa9E3d 解:令n-(- p)— P|:: P) =P(| V k 1 np10 Jnpq 10 F q 1 一彳 _e 2dx _ 0.95故应取 1 np= 2,即n =400$,但图钉底部重,尖头轻,由直观判断有p_〕,10、q p2因而q<1,故可取 n =400.p4.33 一本书共有一百万个印刷符号,排版时每个符号被排错地概率为 0.0001,校对时每个排版错误被改正地概率为 0.9,求在校对后错误不多于 15个地概 率.RTCrpUDGiT解:令戶‘1第i 个印刷符号被排错且校 对后仍错误 厂:0 其它因为排版与校对是两个独立地工序,因而P = P( j =1) =0.0001 0.1 =10二P( j =0) =q =1 - pn{ i }是独立同分布随机变量序列,E j = p ,令n = ' i ,其中n = 106,由中心im极限定理有p( n 汨5) = P (—匸叩 J 5二np =b)、1Jnpq pnpqv 2其中b '5:1.58,查N (0,1)分布表即可得P( n 汨5) : 0.94,即在校对后错误.10不多于15个地概率.‘1第n 次试验时图钉的尖头朝上其它据题意选取试验次数n 应满足 nz 耳P(|^^ - Pl 2)_ 0.95,因为n 比较大,由中心n10极限定理有n ' iP(ln1 np 10, q_• 1 np 2刁0「24.34在一家保险公司里有10000个人参加保险,每人每年付12元保险费,在一年里一个人死亡地概率为 0.006,死亡时家属可向保险公司领得1000元,问:5PCzVD7HxA(1) 保险公司亏本地概率多大?(2) 保险公司一年地利润不少于 40000元,60000元,80000元地概率各为多大? 解:保险公司一年地总收入为120000元,这时 (1) 若一年中死亡人数 120,则公司亏本; (2) 若一年中死亡人数<80,则利润中死亡人数_ 40000元;若一年中死亡人数<60,则利润中死亡人数> 60000元;若一年中死亡人数<40,则利润中死亡人数_ 80000元; 令¥‘1第i 个人在一年内死亡巴=丿 i0第i 个人在一年内活着n则P ( i =1)=0.006二p ,记n =7爲n=10000已足够大,于是由中心极限定理i 吕 可得欲求事件地概率为 (1)同理可求得 (2)P ( n 岂 80) : 0.995 (对应的 b 2.59) P (n ^60) : 0.5 (对应的 b = 0)P^n >120) =1 _P (苹/ J 20_n pJnpq 」pqx 21b —60,——「e 2dx 畑0(其中b 畑P ( n 乞 40) : 0.005 (对应的b ” -2.59)4.35有一批种子, 其中良种地比例与其中良种占1,从中任取6000粒,问能以0.99地概率保证61相差多少? jLBHrnAlLg6解:令1第i 粒为良种0第i 粒不是良种则P (〔ni,其中n = 6000,据题意即要求:使满足i An P(|」 1人 n.Z --卜?) 一 0.99.令q =1-p,b ----- ,因为n 很大,由中心极限定理有6n :npq1 n — np: ) = P(—bm —n — p mb) 6. nipq 由N(0,1)分布表知当b =2.60时即能满足上述不等式,于是知b ___ 1a =-J npq ".25x10,,即能以0.99地概率保证其中良种地比例与相差不超n6过1.25 10巴4.36若某产品地不合格率为0.005,任取10000件,问不合格品不多于70件地 概率等于多少? 解:令尹_;1第i 件为不合格品 _i ="0 第i 件为合格品贝U p =P( i =1) =0.005,记 q =1_p, “ = J i ,其中 n = 10000,记 b = 70二np , y J npq由中心极限定理有—x 2叮—np1 bP( n 乞 70) =P(—nb) e 2dx : 0.998.npq2-即不合格品不多于70件地概率约等于0.998.4.37某螺丝钉厂地不合格品率为0.01,问一盒中应装多少只螺丝钉才能使其中 含有100只合格品地概率不小于0.95 ? XHAQX74J0X 解:令£_ ;1 第i 只是合格品 _i ="0第i 只是不合格品=1) =0.99,记 q=1 —p,b = 100二np,Jn pq应满足P( n :: 100) < 0.05,由中心极限定理有十 S 一 npP( n ::100) =P(—n ——b):J npq 寸2兀查N(0,1)分布表可取b =-1.65,由此求得n =103,即在一盒中应装103只螺丝 钉才能使其中含有100只合格品地概率不小于0.95. LDAYtRyKfE4.39用特征函数地方法证明“二项分布收敛于普哇松分布”地普哇松定理.证:设{ i }」』独立同二项分布,即P(|-n- n 21 b _; ---- e 2dx _ 0.99 2 u则 p 二 P( i n二:h ,其中n 尚待确定,它i =12b 丄_e 2 dx 乞0.05P( ' =1) = P n,P( 「=0) =q n =1 一P n,1 S 乞nn(q nP n e"),记n 八i n , n 地特征函数记作:n (t),因为i 1二- o(-), qn =1 - 一 o(-),于是有n1 it.二[1 — ■ (e -1)o(—)]n —e ,n r ::而e ,(eH A)是参数为■地普哇松分布地特征函数,由特征函数地逆极限定理即知定 理成立,证毕.4.40设随机变量I .服从丨---分布,其分布密度为■二 地分布函数弱收敛于N (0,1)分布. Jot证:l 地特征函数为,()=(1-殳厂〉,易知 」地特征函数为t 2故lim _g :.(t) =e _2,所以相应地分布函数弱收敛于 N (0,1)分布,命题得证.Ct —JpC4.41设{ ;}为一列独立同分布随机变量,且 ;服从(-n,n)上地均匀分布,证明 对{ n }成立中心极限定理.in地特征函数为 nP n 》’,故 P nn (t) =4P n" =(1e K o(1))nn nn a, it八仁帀乜)(1n P (x)=丨(:)X~e 「X x 0(, m 0)x _0证:当=时, g,t) =e 八(1-it-i -t r :ln(1 )=e■因而有ln(1 -+ 0(^^))t 2T -— a T2,.23t1 ito2 2nx , ndx ,于是」2n 3nnk 21B "2;Dk ;§=!8n (n1)(2n1)r对任意地「0,存在N ,使当n-N 时有亍」,因而B.n ,即林德贝尔格条件满足,所以对{ ;}成立中心极限定理,结论得证•4.42设{ ;},{ n }皆为独立同分布随机变量序列,且 { n } 与{ n }独立,其中1 1 nE?n =0,DE n =1; PC =±1) = ,n= 1,2,…,证明:s n=〒送 和地分布函数弱2 P n i 二收敛于正态分布N(0,1).证:这时{ ; n }仍是独立同分布随机变量序列,易知有E( n n ) ",D( n n ) = E( n nt = E ;=1分布N(0,1),结论得证.4.45利用中心极限定理证明: f n k 、 .Z ——b T —,n T k!丿 2证:设{ n }是独立同分布随机变量序列,共同分布为 ■ =1地Poisson 分布,故nE n =D n -1, Bn =、' D k = n ,由林德贝尔格---勒维中心极限定理知kJ证:易知E n3 2故 B n从而当n K N ,LX^Bn Tx 2dF k (x) = 0,若 k <n ,由此知lim 12"B ; k4n送爲/2dF k (x )=0由林德贝尔格---勒维中心极限定理知:S n\ i 地分布函数弱收敛于正态广nZ (J -EL)k-1B nn由Poisson 分布地可加性知;服从参数为n 地Poisson 分布,因而k 4nn」n *n nP(v k ::: n) ■ —e 』,但 一e J — 0 (n —;),所以 k 4 k ^o k! n!成立,结论得证版权申明本文部分内容,包括文字、图片、以及设计等在网上搜集整理 .版权为个人所有This articlein eludes someparts, in cludi ng text, pictures,and desig n. Copyright is pers onal own ership.zzz6ZB2Ltk用户可将本文地内容或服务用于个人学习、 研究或欣赏,以及其 他非商业性或非盈利性用途,但同时应遵守著作权法及其他相关法律 地规定,不得侵犯本网站及相关权利人地合法权利.除此以外,将本文任何内容或服务用于其他用途时,须征得本人及相关权利人地书面 许可,并支付报酬.dvzfvkwMIlUsers may use the contents or services of this articlefor pers onal study, research or appreciati on, and other non-commercial or non-profit purposes, but at the same time, they shall abide by the provisi ons::0::n)nnn!e 』r 1,n_ 二 2of copyright law and other releva nt laws, and shall n ot infringe upon the legitimaterights of this website and its releva nt obligees. In additi on, when any content or service of this article is used for other purposes, writte n permissi on and remun erati on shall be obta ined from the pers on concerned and the releva ntobligee. rqyn14ZNXI转载或引用本文内容必须是以新闻性或资料性公共免费信息为使用目地地合理、善意引用,不得对本文内容原意进行曲解、修改,并自负版权等法律责任• EmxvxOtOcoReproducti on or quotatio n of the content of this articlemust be reas on able and good-faith citati on for the use of n ews or in formative public free in formatio n. It shall notmisinterpret or modify the original intention of the contentof this article, and shall bear legal liability such ascopyright. SixE2yXPq5。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
中北大学概率统计习题册第四章完整答案
(详解)
1. 填空
1)设~(,)X B n p ,则EX =np ,DX =
npq 。
2)设~()X P λ,则EX =λ,
DX =λ。
3)设~()X E λ,则EX =
1λ
,DX =
2
1
λ。
4)设[]~,X U a b ,则EX =
2
a b
+,DX =
()
2
12
b a -。
5)设2~(,)X N μσ,则EX =μ,
DX =2σ。
6)设(,)~(1,1;2,9;0.5)X Y N ,则
EX =1,DX = 1 ,EY = 2,DY = 9 ,(,)Cov X Y = 1.5 。
7)已知螺钉的重量服从()250, 2.5N ,则100个螺钉总重量服从分布()5000,
625N 。
2. 已知在一定工序下,生产某种产品的次品率0.001。
今在同一工序下,独立生产5000件这种产品,求至少有2件次品的概率。
解:设X 表示5000件产品中的次品数,则
()~5000,0.001X B 。
50000.0015λ=⨯=,则
()()()2100P X P X P X ≥=-=-=
5000499910.99950000.0010.999=--⨯⨯
0155
5510!1!
e e
--≈--10.006740.033690.95957=--=
注:实际上
5000499910.99950.9990.95964--⨯=
3. 设某商店中每月销售某种商品的数量服从参数为7的泊松分布,问在月初进货时应至少进多少件此种商品,才能保证当月不脱销的概率为0.999。
解:设进货数件数为N ,当月销售需求为X ,则由题意知()~7X P ,且
{}7
07e 0.999!
k N
k P X N k -=≤=≥∑
查泊松分布的数值表,可得16N ≥. 4 . 地下铁道列车的运行间隔时间为五分钟,一个旅客在任意时刻进入月台,求候车时间的数学期望与方差。
解:设旅客在地铁进站之前的X 时刻到达,即旅客候车时间也为X ;其数学期望和 分别为()~[0,5]X U ,
52EX =
;2512
DX =。
5.设(){
}3.02010,,10~2=<<X P N X σ 求:(1) (10)P X <;
解:
()1010(10)00.5
P X σ-⎛⎫
<=Φ=Φ= ⎪⎝⎭
;
(2) )100(<<X P ; 由 {}1020P X <<
20101010σσ--⎛⎫⎛⎫=Φ-Φ ⎪ ⎪⎝⎭⎝⎭
100.5σ⎛⎫
=Φ- ⎪⎝⎭
=0.3
得 100.8σ⎛⎫
Φ= ⎪⎝⎭
所以()10(010)0P X σ⎛⎫
<<=Φ-Φ- ⎪⎝⎭
100.510.3σ⎛⎫
=-+Φ= ⎪⎝⎭
(3) (0)P X <。
(0)P X <=101010.2σσ⎛⎫⎛⎫
=Φ-=-Φ= ⎪ ⎪⎝⎭⎝⎭
注:直接由()f x 关于x=10对称,也可
求得相关结果。
6.设随机变量2~(1,3)X N ,
2~(0,4)Y N ,31Z X Y =--
(1)若X 与Y 相互独立,试求,EZ DZ
与XZ ρ; 解:
1,()0,EX E Y ==()9,D X =()16D Y =,
X 与Y 相互独立 ()3112E Z ∴=⨯-= ()9()()97D Z D X D Y =+= (,)(,31)Cov X Y Cov X X Y =-- 3()(,)27D X Cov X Y =-=
,X Z ρ=
(2) 若XY ρ=0.2,求(,)Cov X Y ,
,EZ DZ 。
解:(,)340.2 2.4Cov X Y =⨯⨯= ()3112E Z =⨯-=
()9()()2(3,)D Z D X D Y Cov X Y =+-
9()()6(,)D X D Y Cov X Y =+- 82.6=
7.若2~(,)X N μσ,求证:
)1,0(~N X σ
μ
-。
证明:由2,EX DX μσ==得
0X EX E μμσσ--⎛⎫=
= ⎪⎝⎭ 21X DX
D μσσ
-⎛⎫== ⎪⎝⎭
由于正态分布的线性函数仍服从正态分布,所以
)1,0(~N X σ
μ
-。
证法2:由2~(,)X N μσ得X 的概率密度函数为(
)()2
2
2x X f x μσ--
=
,再由
x y μ
σ-=得()x h y y μσ==+,从而有X Y μ
σ
-=
的概率密度函数为
()()()Y X f y h y f y μσ'=+
(
)2
2
2
22y y μσμσ
σ
+--
-==
即()~0,1Y N 。
8.某种电池的寿命X 服从正态分布
2(,)N a σ,其中a =300(小时),σ=35
求:(1)电池寿命在250小时以上的概率;
(2)x 至少为多少才能使寿命X 在
x a -与x a +之间的概率不小于0.9。
解:(1)
250300(250)135P X -⎛⎫
>=-Φ ⎪⎝⎭
101010.9234
77⎛⎫⎛⎫
=-Φ-=Φ≈ ⎪ ⎪⎝⎭⎝⎭
(2)()3535x x P a x X a x ⎛⎫⎛⎫
-<<+=Φ-Φ- ⎪ ⎪
⎝⎭⎝⎭
210.9,35x ⎛⎫
=Φ-≥ ⎪⎝⎭则
()0.95 1.64535x ⎛⎫
Φ≥=Φ ⎪⎝⎭
解得x ≥ 57.575
9. 假设随机变量X 服从参数为2的指数分布,证明:X e Y 21--=在区间[]10,上服从均匀分布。
证明:X 的概率密度函数为
()22e 0
x
X x f x x -⎧>=⎨
<⎩ 21e x y -=-是严格单调可微函数 ,并
且当()0,x ∈+∞时()0,1y ∈;又由
21e x y -=-得()()1
ln 12
x y h y =--@,所
以,随机变量21e X Y -=-的概率密度函数为
()()()()01
0X
Y f h y h y y f y ⎧'<<⎪=⎨⎪⎩
其它 ()()11ln 1012210X f y y y ⎧⎛⎫--<<⎪ ⎪
-=⎝⎭⎨⎪⎩
其它 ()()ln 11
2e 01210y y y -⎧<<⎪-=⎨
⎪⎩
其它 101
0y <<⎧⎨
⎩
=其它 即21e X Y -=-在区间[]10,上服从均匀分
布。
10.设二维随机变量(,X Y )在区域
01,03x y ≤≤≤≤内服从均匀分布,
求:(1)联合密度函数(,)f x y ; 解:区域01,03x y ≤≤≤≤的面积为3,所以(,X Y )的联合概率密度函数为
()101,03
,3
x y f x y ⎧≤≤≤≤⎪
=⎨⎪⎩其他
(2)()P X Y <; 解:()P X Y <=1
3
01536
x dx dy =⎰⎰
(3) 记0
1
X Y U X Y
<⎧=⎨
≥⎩,
0212X Y
V X Y <⎧=⎨
≥⎩
求(,)U V 的联合分布律及U V +的分布
律。
解:5(0,0)()6
P U V P X Y ===<=
(0,1)(,2)0P U V P X Y X Y ===<>=
(1,0)(2)P U V P Y X Y ===≤<
=10211
3
12x x dx dy =⎰⎰
1(1,1)(2)12P U V P X Y ===≥=
11X (单位:Kg)服从(60,4)N ,问最多装多少袋水泥使总重量超过2000Kg 的概率不大于0.05。
设最多装n 袋水泥
解:令i X 表示第i 袋水泥的重量,则
~(60,4)i X N ,且相互独立
()1,2,,i n =L
1(60,4)n
i i
Y X N n n ==∑:
{2000}1{2000}P Y P Y >=-≤
10.05=-Φ≤
()0.95 1.645Φ≥=Φ 1.65≥33.0182n ⇒≤
所以最多装33袋水泥。