CP03_2 Lagrange's equation
工程光学英语补充内容和习题
Homework
1. In ancient times the rectilinear propagation of light was used to measure the height of objects by comparing the length of their shadows with the length of the shadow of an object of known length. A staff 2m long when held erect casts a shadow 3.4 m long, while a building’s shadow is 170 m long. How tall is the building?
I''=-I
and the incoming ray, the outgoing ray, and the normal to the surface at the point of intersection all lie in the same plane.
3
4. The Law of Refraction
17
Keywords and concept
2. Nodal points are where no refraction occurs. Whenever the refractive indices on either side of the lens are the same, the nodal points coincide with the principal points. If the refractive indices on the two sides of the lens are different, the N points would move away from the principal planes, toward the side of higher index.
物理专业 词汇L
landau spectrum 朗道谱
landau zener theory 朗道 齐纳理论
lander 着陆七
landspout 陆龙卷
lang camera 兰氏照相机
lang's method 兰氏法
law of conservation of mass 质量守恒定律
law of conservation of momentum 动量守恒定律
law of indestructibility of matter 物质不灭定律
law of large numbers 大数定律
law of mass action 质量酌定律
large hadron collider 大型强子碰撞型加速装置
large scale fractal structure 大尺度分形结构
large scale integrated circuit 大规模集成电路
large scale magnetic field in galaxies 大尺度银河磁场
lanthanides 镧族稀土元素
lanthanum 镧
laplace integral 拉普拉斯积分
laplace transformation 拉普拉斯变换
laplace's demon 拉普拉斯妖
laplacian 拉普拉斯算符
laplacian equation 拉普拉斯方程
lambda particle 粒子
lambda point 点
lambda transition 跃迁
法国数学家拉格朗日著作《解析函数论》英文名
法国数学家拉格朗日著作《解析函数论》英文名全文共10篇示例,供读者参考篇1"Hey guys! Today let's talk about this really cool book called 'Analytic Functions Theory' by French mathematician Lagrange. It's super interesting and has a lot of cool stuff in it!So, in this book, Lagrange talks about a bunch of different math stuff like functions and calculus. He explains how to analyze functions and how they work, which is really helpful for solving math problems. He also talks about things like complex numbers and series, which can be a bit tricky but are super important in math.Lagrange was a really smart guy and he made a lot of important contributions to math. His book 'Analytic Functions Theory' is one of his most famous works and is still studied by math students and researchers today.If you're into math and want to learn more about functions and calculus, I definitely recommend checking out 'Analytic Functions Theory' by Lagrange. It's a challenging read, but super rewarding if you stick with it.So yeah, that's a little introduction to Lagrange's book'Analytic Functions Theory'. I hope you guys found it interesting and maybe even want to check it out for yourselves. Happy math-ing!"篇2Once upon a time, there was a super cool French mathematician named Lagrange. He was so smart and wrote a really awesome book called "Analytic Functions of a Complex Variable." It's like a super fancy title, right?So, in this book, Lagrange talks about all these super cool things like functions and complex numbers. He explains how you can use math to understand how different things work together and solve problems. He even talks about things like calculus and equations. It's like he's teaching us a secret code to unlock the mysteries of the universe!One of the coolest things Lagrange talks about in his book is how you can use functions to describe all kinds of crazy things, like how a roller coaster moves or how a rocket flies through the sky. It's like he's showing us how to use math to understand the world around us in a whole new way.So, if you ever want to learn more about math and how it can help us understand the world, you should definitely check out Lagrange's book. It's like a magical journey into the world of numbers and equations, and it will definitely make you feel like a math wizard!篇3Once upon a time, there was a really smart French mathematician named Lagrange. He was super duper good at math and he wrote this really cool book called "Analytic Number Theory". It's like a super duper advanced math book for big kids who are really good at numbers.In this book, Lagrange talks about all these super cool things like complex numbers and functions. He explains how they work and how you can use them to solve really hard math problems. It's like magic but with numbers!One of the things Lagrange talks about in his book is series and sequences. This is when you have a bunch of numbers lined up in a row and you add them all together. It's like anever-ending puzzle that you have to figure out. Lagrange shows us how to solve these puzzles and find patterns in the numbers.Another thing Lagrange talks about is limits. This is when you get really close to a number but you never actually reach it. It's like trying to touch the end of a rainbow but it keeps moving further away. Lagrange helps us understand how to work with limits and see what happens when you get really really close to a number.Overall, Lagrange's book is super duper awesome and it's full of all these amazing math ideas that will make your brain explode (in a good way!). So if you love math and you want to learn more about numbers and functions, you should definitely check out "Analytic Number Theory" by the one and only Lagrange. It's a book that will make your inner math nerd happy!篇4Hey guys, today I want to tell you about a super cool book by a French mathematician called Lagrange. His book is called "Analytic Theory of Functions" in English.So, basically, Lagrange was a really smart guy who figured out a lot of stuff about functions and how they work. In his book, he talks about all the different ways you can analyze functions and make sense of them. It's kind of like a math puzzle book where you have to figure out how to solve different functions.One of the really cool things that Lagrange talks about in his book is how you can break down functions into smaller pieces and analyze how they change. It's kind of like taking apart a puzzle and figuring out how each piece fits together to make the whole picture.Lagrange also talks about how you can use functions to solve real-world problems, like figuring out how things change over time or how to predict what will happen in the future. It's like using math to solve everyday mysteries!So, if you're into math and you love solving puzzles, you should definitely check out Lagrange's book "Analytic Theory of Functions". It's a really fun read and you'll learn a lot about how functions work. Who knows, maybe you'll even discover a new way to solve math problems just like Lagrange did!篇5Once upon a time, there was a super smart French math guy named Lagrange. He wrote this super cool book called "Analytic Function Theory". I know, it sounds super fancy, but basically it's all about how numbers work and stuff.Lagrange was a total math genius. He figured out all these crazy math problems and even invented new ways to solve them. He was like a math superhero!In his book, "Analytic Function Theory", Lagrange talks about how numbers can be broken down and analyzed in a super cool way. It's like he's shining a spotlight on all the secrets of math and showing us how everything fits together.It's kind of like solving a puzzle. You have to figure out how all the pieces fit together and then you can see the big picture. That's what Lagrange did with numbers in his book.So next time you're struggling with math homework, just think of Lagrange and his awesome book. He's like your math mentor, guiding you through the world of numbers and showing you all the cool secrets along the way.And who knows, maybe you'll be the next math superhero just like Lagrange! Just keep practicing and studying, and one day you'll be solving math problems like a pro.篇6Once upon a time, there was a super smart mathematician from France named Lagrange. He wrote a super cool book called"Analytic Function Theory". It's a big book with lots of fancy words and symbols, but don't worry, I'll explain it in a way that's easy to understand.Okay, so here's the deal - Lagrange was really good at math and he wanted to explain how functions work. Functions are like machines that take in numbers and give out other numbers. In his book, Lagrange talked about how functions can be broken down into smaller parts called "analytic functions".Analytic functions are like the building blocks of math. They're super important because you can use them to create all sorts of cool math stuff. Lagrange showed how these functions can be used to solve problems in calculus, geometry, and even physics.In "Analytic Function Theory", Lagrange also talked about complex numbers. Complex numbers are a special type of number that have both a real part and an imaginary part. They're like the superheroes of math because they can do things that regular numbers can't.So yeah, that's a brief overview of Lagrange's book. It may sound a bit complicated, but don't worry. Just remember that math is like a puzzle - the more you practice, the better you getat solving it. Who knows, maybe one day you'll write your own math book just like Lagrange!篇7Once upon a time, there was a super smart mathematician from France named Lagrange, or Lagrangian, or Lagragian, I forgot how to spell his name. Anyway, this guy was like a math genius and he wrote this super cool book called "Analytic Function Theory." Yeah, I know, it sounds pretty boring, but trust me, it's actually really interesting.So, in this book, Lagrange talks about all these crazy things like complex numbers and functions and stuff. He basically explains how these things work together to help us understand the world of math better. It's kind of like a magical journey into the world of numbers and equations.One of the coolest things he talks about in the book is something called the Cauchy-Riemann equations. These equations are like the key to unlocking the secrets of analytic functions. They help us understand how to differentiate and integrate complex functions, which is pretty mind-blowing if you ask me.Overall, "Analytic Function Theory" is a really important book in the world of math. It's helped us make sense of some really complex stuff and has paved the way for even more amazing discoveries in the future. So yeah, big shoutout to Lagrange for being such a math wizard and writing this awesome book!篇8Title: "Mr. Lagrange's Book about Fancy Math Stuff"Once upon a time, there was a super smart guy from France named Mr. Lagrange. He was a famous mathematician who wrote a really cool book called "". But don't worry, that's just the fancy English name for it - "Analytical Functions Theory".So, what's this book all about? Well, it's all about a special kind of math called complex analysis. That means dealing with numbers that have a real part and an imaginary part. Sounds pretty fancy, right?In his book, Mr. Lagrange talks about how these complex numbers can be used to study functions. He also talks about things like series, residues, and zeros of functions. It might sound like gibberish to some, but for math lovers like me, it's like reading an exciting adventure story!One of the coolest things Mr. Lagrange talks about in his book is contour integration. It's like drawing a path around a function and using that path to calculate some super complicated stuff. It's like magic, but with math!So, if you're into math and want to learn more about complex analysis, be sure to check out Mr. Lagrange's book "Analytical Functions Theory". Who knows, maybe one day you'll be solving math problems just like him!And that's the end of our story about Mr. Lagrange and his fancy math book. Hope you enjoyed it! Bye bye!篇9Once upon a time, there was a super smart guy named Lagrange, he was a super famous French math guy. He wrote a super cool book called "Analytic Functions Theory". This book is like a super secret math code that helps us understand how functions work. It's like a treasure map to unlock the mysteries of functions.In this book, Lagrange talks about all sorts of cool stuff like derivatives, integrals, and complex numbers. He even talks about things like power series and Cauchy's theorem! It's like a math playground for our brains.One of the coolest things in this book is how Lagrange shows us that functions can be super duper smooth and predictable. He shows us how to break down functions into tiny pieces and study each piece to understand the whole thing. It's like taking apart a puzzle and putting it back together, but in a super smart math way.Lagrange was like a math superhero, using his powers of logic and reasoning to unlock the secrets of functions. His book "Analytic Functions Theory" is like a math superhero comic book, teaching us how to be super smart math detectives.So, next time you see a function, remember Lagrange and his super cool book. You might just unlock a whole world of math mysteries and become a math superhero yourself!篇10Hey guys, today I'm gonna tell you about a super cool book by a French math dude called Lagrange. Wait, that's not quite right... it's actually Lagrange! And his book is all about something called "Analytic Function Theory". Sounds super fancy, right?So, what is this book all about? Well, basically it's a bunch of really smart stuff about functions and how they work. You know, like when you put in a number and the function spits out anothernumber. But these functions are super special because they can be broken down and analyzed in a really cool way.Lagrange was a total math genius and he came up with some super cool ideas in this book. He talked about things like complex numbers and how they can be used to study functions. And he also did some crazy stuff with calculus, which is like super advanced math that you'll learn about when you're older.I know it sounds kinda boring, but trust me, this book is actually really interesting! It's full of puzzles and challenges that will totally blow your mind. And who knows, maybe one day you'll be a math whiz just like Lagrange!So if you're into math and you want to learn some really cool stuff, definitely check out Lagrange's book "Analytic Function Theory". It'll totally make your brain hurt, but in a good way!。
拉格朗日插值公式 程序
拉格朗日插值公式程序This article introduces the principle and programming of Lagrange Interpolation Formula.一、Lagrange插值函数原理Lagrange插值函数,又称拉格朗日插值法,是一种基于给定的函数值,以网格点的形式得到函数的近似计算方法。
它最早由拉格朗日在18,发现,也称拉格朗日插值方程。
Lagrange interpolation is a method of obtaining approximate calculation of a function in the form of grid points based on given function values. It was first discovered by Lagrange in 18. It is also called the Lagrange interpolation equation.它的基本原理是:在给定n+1个数据点(xi,yi),其中xi为给定的点,yi为给定函数yi=f(xi)的值,在它们之间用最低次多项式去近似拟合,用拉格朗日插值法得到的多项式被称为拉格朗日插值多项式.Its basic principle is: given n + 1 data points (xi, yi), where xi is the given point and yi is the given function yi = f (xi) value, approximated with the lowest order polynomial between them, the polynomial obtained by Lagrange interpolation is called the Lagrange interpolation polynomial.二、Lagrange插值函数程序Lagrange插值函数程序基本结构:The basic structure of the Lagrange interpolation program is as follows:1. 定义输入数据1. Define input data2. 计算插值函数2. Calculate interpolation function3. 根据用户输入的数据求函数值3. Calculate the function value according to the user input data4. 输出结果4. Output results以下是一个具体的程序示例:Here is a specific program example:#include <stdio.h>#include <math.h>// 输入的点的个数#define N 10int main(){double x[N]={-0.8, -0.4, 0.0, 0.4, 0.8, 1.2, 1.6, 2.0, 2.4, 2.8};double y[N]={1.0, 0.2, -1.3, -1.4, -0.4, 0.3, 0.7, 0.3, -0.2, -1.0};double xval;int i,j;// 读取要求值的xprintf('请输入要求的值的x:');scanf('%lf',&xval);double fval=0;// 计算插值函数for(i=0;i<N;i++){double temp=y[i];for(j=0;j<N;j++){if(j!=i){temp=temp*(xval-x[j])/(x[i]-x[j]);}}fval+=temp;}// 输出结果printf('当x=%.2lf时,插值函数的值为:f(%.2lf)=%.2lf',xval,xval,fval);return 0;}三、总结以上就是拉格朗日插值法的原理和程序的介绍。
第十七章拉格朗日方程
ri
n
Fi
i 1
( jk1qrij
q
j
kn
) (F
j1 i1
i
ri q j
)q
j
kn
[( X i
j1 i1
xi q j
Yi
yi q j
Z i
zi q j
)]q j
k
Q j q j
j 1
15
ri jk1qrij q j (i1,2, n)
(c)
代入质点系动力学普遍方程,得:
n
n
n
(Fi miai )ri Fi ri miairi 0 (d )
QA Ma QB QBe QBr QBe ma , QBr mar
10
From the general equation of dynamics we have
(QA QBe QBr cos )xA (QBe cos Q sin QBr )sB 0.
The system has two degree of freedom, we can choose xA and sB as independent virtual displacement. Moreover,
generalized coordinates.
Suppose there are n particles in the system and that there are s
constraints which all are ideal ones. The number of degrees of
ri q j
0
( j 1,2 , k) .
(f)
generalized inertial forces
拉格朗日方程
拉格朗日方程 Lagrange’s equations
2012年5月25日 Friday
理论力学CAI
1
§1. 动力学普遍方程
(The general equation of dynamics)
由n个质点组成的理想约束的系统。根据达朗贝尔原理,有
Fi FNi FIi 0 (i 1,2, , n)
δ W ( m 2 g m 2 a 2 ) δ s 2 ( m 1 g m 1 a 1 ) δ s1 0
m2a2 a2 s2 m1g m2g
a1 s1
m1a1
2012年5月25日 Friday
得
a2
4m2 2m1 g 4m2 m1
理论力学CAI
3
§2 拉格朗日方程
代入保守系统的拉格朗日方程
L 0 x L sin m B gl sin m B lx
d L L ( ) 0 j dt q q j
( j 1,2, , f )
系统的运动微分方程:
cos 2 sin 0 m A m B m Bl x cos g sin 0 x l
以过A的水平面为重力的零势能面,则系统的势能为:
V mB glcos
拉格朗日函数
L T V 1 1 2 2 2x cos m B gl cos ( m A m B ) x m B l l 2 2
2012年5月25日 Friday
理论力学CAI
ri q j
ri q j
任一质点的速度对广义坐标的偏导数等于 其矢径对广义坐标的偏导数,再对时间的 一阶导数,称为第二个拉格朗日关系式。
Euler–Lagrange equation
Euler–Lagrange equationFrom Wikipedia, the free encyclopediaJump to: navigation, searchIn calculus of variations, the Euler–Lagrange equation, or Lagrange's equation, is a differential equation whose solutions are the functions for which a given functional is stationary. It was developed by Swiss mathematician Leonhard Euler and Italian mathematician Joseph Louis Lagrange in the 1750s.Because a differentiable functional is stationary at its local maxima and minima, the Euler–Lagrange equation is useful for solving optimization problems in which, given some functional, one seeks the function minimizing (or maximizing) it. This is analogous to Fermat's theorem in calculus, stating that where a differentiable function attains its local extrema, its derivative is zero.In Lagrangian mechanics, because of Hamilton's principle of stationary action, the evolution of a physical system is described by the solutions to the Euler–Lagrange equation for the action of the system. In classical mechanics, it is equivalent to Newton's laws of motion, but it has the advantage that it takes the same form in any system of generalized coordinates, and it is better suited to generalizations (see, for example, the "Field theory" section below).Contents1 History∙ 2 Statement∙ 3 Exampleso 3.1 Classical mechanics▪ 3.1.1 Basic method▪ 3.1.2 Particle in a conservative force field o 3.2 Field theory∙ 4 Variations for several functions, several variables, and higher derivativeso 4.1 Single function of single variable with higherderivativeso 4.2 Several functions of one variableo 4.3 Single function of several variableso 4.4 Several functions of several variableso 4.5 Single function of two variables with higher derivatives ∙ 5 Notes∙ 6 References∙7 See alsoHistoryThe Euler–Lagrange equation was developed in the 1750s by Euler and Lagrange in connection with their studies of the tautochrone problem. This is the problem of determining a curve on which a weighted particle will fall to a fixed point in a fixed amount of time, independent of the starting point.Lagrange solved this problem in 1755 and sent the solution to Euler. The two further developed Lagrange's method and applied it to mechanics, which led to the formulation of Lagrangian mechanics. Their correspondence ultimately led to the calculus of variations, a term coined by Euler himself in 1766.[1]StatementThe Euler–Lagrange equation is an equation satisfied by a function q of a real argument t which is a stationary point of the functionalwhere:∙q is the function to be found:such that q is differentiable, q(a) = x a, and q(b) = x b;∙q′ is the derivative of q:TX being the tangent bundle of X (the space of possible values of derivatives of functions with values in X);L is a real-valued function with continuous first partial derivatives:The Euler–Lagrange equation, then, is the ordinary differential equationwhere L x and L v denote the partial derivatives of L with respect to the second and third arguments, respectively.If the dimension of the space X is greater than 1, this is a system of differential equations, one for each component:Derivation of one-dimensionalEuler-Lagrange equationAlternate derivation of one-dimensionalEuler-Lagrange equationExamplesA standard example is finding the real-valued function on the interval [a, b], such that f(a) = c and f(b) = d, the length of whose graph is as short as possible. The length of the graph of f is:the integrand function being 2'1)',,(y y y x L += evax , y , y ′)= (x , f (x ), f ′(x )).The partial derivatives of L are:By substituting these into the Euler –Lagrange equation, we obtainthat is, the function must have constant first derivative, and thus its graph is a straight line .Classical mechanicsBasic methodTo find the equations of motions for a given system, one only has to follow these steps:∙ From the kinetic energy T , and the potential energy V , compute the Lagrangian L = T − V .∙ Compute .∙ Compute and from it, . It is important that be treated as a complete variable in its own right, and not as a derivative. ∙ Equate. This is, of course, the Euler –Lagrange equation.∙Solve the differential equation obtained in the preceding step. At this point, is treated "normally". Note that the above might bea system of equations and not simply one equation.Particle in a conservative force fieldThe motion of a single particle in a conservative force field (for example, the gravitational force) can be determined by requiring the action to be stationary, by Hamilton's principle. The action for this system iswhere x(t) is the position of the particle at time t. The dot above is Newton's notation for the time derivative: thus ẋ(t) is the particle velocity, v(t). In the equation above, L is the Lagrangian (the kinetic energy minus the potential energy):where:∙m is the mass of the particle (assumed to be constant in classical physics);∙v i is the i-th component of the vector v in a Cartesian coordinate system (the same notation will be used for other vectors);∙U is the potential of the conservative force.In this case, the Lagrangian does not vary with its first argument t. (By Noether's theorem, such symmetries of the system correspond to conservation laws. In particular, the invariance of the Lagrangian with respect to time implies the conservation of energy.)By partial differentiation of the above Lagrangian, we find:where the force is F = −∇U (the negative gradient of the potential, by definition of conservative force), and p is the momentum. By substitutingthese into the Euler–Lagrange equation, we obtain a system of second-order differential equations for the coordinates on the particle's trajectory,which can be solved on the interval [t0, t1], given the boundary values x(t0) and x i(t1). In vector notation, this system readsior, using the momentum,which is Newton's second law.Field theoryThis section contains too much jargon and may need simplification or further explanation. Please discuss this issue on the talk page, and/or remove or explain jargon terms used in the article. Editing help is available. (December 2009)Field theories, both classical field theory and quantum field theory, deal with continuous coordinates, and like classical mechanics, has its own Euler–Lagrange equation of motion for a field,where∙is the field, and∙is a vector differential operator:Note: Not all classical fields are assumed commuting/bosonic variables, (like the Dirac field, the Weyl field, the Rarita-Schwinger field) are fermionic and so, when trying to get the field equations from the Lagrangian density, one must choose whether to use the right or the left derivative of the Lagrangian density (which is a boson) with respect to the fields and their first space-time derivatives which arefermionic/anticommuting objects.There are several examples of applying the Euler–Lagrange equation to various Lagrangians:∙Dirac equation;∙Proca equation;∙electromagnetic tensor;∙Korteweg–de Vries equation;∙quantum electrodynamics.Variations for several functions, several variables, and higher derivativesSingle function of single variable with higher derivatives The stationary values of the functionalcan be obtained from the Euler-Lagrange equation[2]Several functions of one variableIf the problem involves finding several functions () of a single independent variable (x) that define an extremum of the functionalthen the corresponding Euler-Lagrange equations are[2]Single function of several variablesA multi-dimensional generalization comes from considering a function on n variables. If Ω is some surface, thenis extremized only if f satisfies the partial differential equationWhen n = 2 and is the energy functional, this leads to the soap-film minimal surface problem.Several functions of several variablesIf there are several unknown functions to be determined and several variables such thatthe system of Euler-Lagrange equations is[2]Single function of two variables with higher derivativesIf there is a single unknown function to be determined that is dependent on two variables and their higher derivatives such thatthe Euler-Lagrange equation is[2]Notes1.^ A short biography of Lagrange2.^ a b c d Courant, R. and Hilbert, D., 1953, Methods of Mathematical Physics:Vol I, Interscience Publishers, New York.References∙Weisstein, Eric W., "Euler-Lagrange Differential Equation" from MathWorld.∙Calculus of Variations on PlanetMath∙Izrail Moiseevish Gelfand (1963). Calculus of Variations. Dover.ISBN0-486-41448-5.∙Calculus of Variations at Example (Provides examples of problems from the calculus of variations that involve theEuler–Lagrange equations.)See also∙Lagrangian mechanics∙Hamiltonian mechanics∙Analytical mechanics∙Beltrami identity。
拉格朗日方程的三种推导方法
拉格朗日方程的三种推导方法 1 引言拉格朗日方程是分析力学中的重要方程,其地位相当于牛顿第二定律之于牛顿力学。
2 达朗贝尔原理推导达朗贝尔原理由法国物理学家与数学家让•达朗贝尔发现并以其命名。
达朗贝尔原理表明:对于任意物理系统,所有惯性力或施加的外力,经过符合约束条件的虚位移,所作的虚功的总合为零。
即:δW =∑(F i +I i )∙δr i =0i(1)其中I i 为惯性力,I i=−m i a i 。
F i 为粒子所受外力,δr i 为符合系统约束的虚位移。
设粒子 P i 的位置 r i 为广义坐标q 1,q 2,⋯,q n 与时间 t 的函数:r i =r i (q 1,q 2,⋯,q n ,t)则虚位移可以表示为:δr i =∑ðr i ðq jjδq j(2)粒子的速度v i=v i (q 1,q 2,⋯,q n ,q 1,q 2,⋯,q n ,t) 可表示为:取速度对于广义速度的偏微分:(3)首先转化方程 (1) 的加速度项。
将方程 (2) 代入:应用乘积法则:注意到的参数为,而速度的参数为,所以,。
因此,以下关系式成立:(4) 将方程(3) 与(4) 代入,加速度项成为代入动能表达式:,则加速度项与动能的关系为(5) 然后转换方程(1)的外力项。
代入方程(2) 得:(6) 其中是广义力:将方程(5) 与(6) 代入方程(1) 可得:(7) 假设所有的广义坐标都相互独立,则所有的广义坐标的虚位移也都相互独立。
由于这些虚位移都是任意设定的,只有满足下述方程,才能使方程(7) 成立:(8) 这系统的广义力与广义位势之间的关系式为代入得:定义拉格朗日量为动能与势能之差,可得拉格朗日方程:3哈密顿原理推导哈密顿原理可数学表述为:21ttLdtδ=⎰在等时变分情况下,有()dq q dt δδ•=2211()0t t t t Ldt L dt δδ==⎰⎰ (1)由拉格朗日量定义得,在等时变分情况下有L LL q q qqδδδ••∂∂=+∂∂(2)其中第一项可化为:()()()LL d d L d L q q q q dt dt dt q q q q δδδδ•••••∂∂∂∂==•-∂∂∂∂(3)将(3)代入(2)得()()d L d L LL q q qdt dt qq q δδδδ••∂∂∂=•-+∂∂∂ (4)将(4)代入(1)得2121()(())0t t t t L d L L q q q dt dt qqq δδδ••∂∂∂•+-+=∂∂∂⎰(5)在12,t t 处0q δ=,所以(5)变为21(())0t t d L Lq q dt dt qq δδ•∂∂-=∂∂⎰(6)即21[(())]0t t d L Lq dt dt qq δ•∂∂-+=∂∂⎰(7)q 是独立变量,所以拉格朗日方程:4欧拉-拉格朗日方程推导欧拉-拉格朗日方程可以表述为:设有函数和:其中是自变量。
化学及化工专业词汇英语j-o-
化学及化工专业词汇英语翻译j-oj acid j 酸jacket 夹套jacket cooling 套管冷却jacob cell 雅讣电池jacobsen rearrangement 雅可布森重排jade 硬玉jadeite 硬玉jalap 贾拉普japan 黑漆jasmin oil 茉莉花油jasmone 茉莉酮jasper 碧玉javel water 爪维尔水jaw breaker 腭式碎石机jaw crusher 腭式碎石机jelly 凝胶jena glass 耶拿玻璃jervine 介藜芦胺jet 喷射jet blower 喷射式通风机jet compressor 喷气压缩机jet condenser 喷水凝汽器jet fuel 喷气发动机燃料jet pump 喷射泵jewel 宝石jig sieve 振动筛joule 焦耳joule effect 焦耳效应joule thomson effect 焦耳汤姆森效应joule's law 焦耳定律juglone 胡桃酮julian tube 凯撒管junker's calorimeter 容克量热计jute 黄麻juvenile gas 初生气juvenile water 初生水k acid k 酸k meson k 介子kali fusion 钾熔融kalimeter 碳酸计kallikrein 舒血管素kanamycin 卡那霉素kaolin 瓷土kaolin clay 高岭土kaolinite 高岭石kaolinization 高岭土化kapok oil 爪哇木棉油karaya gum 剌梧桐屎karl fischer method 卡尔费歇尔法karl fischer's reagent 费氏试剂karyokinesis 核分裂karyolysis 核溶解karyoplasm 核质kata thermometer 卡他温度计kauri butanol value 贝壳杉脂丁醇值kauri gum 栲里松脂kauri resin 栲里松脂keene's cement 金纳水泥keesom relationship 基朔关系kelp 海草灰kelvin's temperature 开氏温度keratin 角蛋白keratin plastics 角质塑料kermes 胭脂虫粉kermesite 红锑矿kerogen 油母质kerosene 煤油kerosine 煤油ketene 乙烯酮ketene lamp 乙烯酮灯ketimine 酮亚胺keto acid 酮酸keto enol tautomerism 酮烯醇互变异构keto form 酮式ketoadipic acid 酮己二酸ketoalcohol 酮醇ketocapric acid 己酮酸ketoglutaric acid 氧代戊二酸ketoheptose 庚酮糖ketol 酮醇ketone 酮ketone decomposition 酮分解ketone group 酮基ketone musk 香酮ketone resin 酮尸ketonic ester 酮酯ketonisation 酮化ketose 酮糖ketoxime 酮肟key component 限界组分kieselguhr 硅藻土kieserite 水镁矾killed steel 冷静钢kiln 炉kinase 激酶kindling temperature 着火温度kinematic viscosity 运动粘度kinematical theory of diffraction 运动学的衍射论kinescope 显象管kinetic chain length 动力学链长kinetic current 反应电流kinetic energy 动能kinetic friction 动摩擦kinetic molecular theory 分子运动理论kinetic theory 动力学理论kinetic theory of gases 气体分子运动论kinetics of polymerization 聚合动力学kinetin 激动素king's yellow 雄黄kipp's apparatus 基普气发生器kipp's gas generator 基普气发生器kirchhoff's law 基尔霍夫定律kitol 鲸醇kjeldahl flask 基耶达尔氏测氮瓶kjeldahl method 基耶达尔法kjellin furnace 开林电炉kneader 捏和机kneading 捏和knife edge of balance 天平的支棱knock intensity 爆震强度knocking 爆震knoevenagel reaction 诺文葛耳反应knorr synthesis 克诺尔合成法koch's acid 柯赫酸kojic acid 曲酸kolbe schmitt reaction 科尔伯施密特反应korean paper 朝鲜纸kotoite 粒镁硼石kozeny carman's equation 康采尼卡曼方程krafft point 克拉夫特点kraft paper 牛皮纸kraft pulp 牛皮纸浆krypton 氪kyanite 蓝晶石labarraque's solution 拉巴腊克氏溶液labelled atom 示踪原子labile equilibrium 不稳平衡labile form 不稳形lability 不稳定性laboratory 实验室laboratory scale 实验室规模laboratory test 实验室试验lac 紫胶lac dye 紫胶染料lachrymator 催泪剂lacmoid 间苯二酚蓝lacquer 漆lacquer diluent 漆稀释剂lacquer enamel 瓷漆lacquering 涂漆lactacidogen 乳酸精lactalbumin 乳清蛋白lactam 乳胺lactamide 乳酸胺lactase 乳糖酶lactate 乳酸盐lactic acid 乳酸lactic acid bacteria 乳酸菌lactic acid fermentation 乳酸发酵lactic anhydride 乳酸酐lactide 交酯lactim 内酰亚胺lactobutyrometer 乳脂计lactoflavin 乳黄素lactogenic hormone 促乳泌素lactoglobulin 乳球朊lactometer 乳比重计lactone 内酯lactone bond 内酯键lactonic ring 内酯环lactonitrile 乳腈lactonization 内酯化lactophenine 乳吩咛胺lactoscope 乳酪计lactose 乳糖ladder polymer 梯形聚合物lagrange's equation of motion 拉格朗日运动方程lagrange's method of undetermined multipliers 拉格朗日不定乘子法laguerr's polynomial 拉盖尔多项式lake 色淀颜料lake red c 色淀红clalande cell 拉兰电池lambert beer's law 朗伯波特比尔定律lambert's law 朗伯特定律lamella 薄板lamina 薄板laminar film 片状膜laminar flow 层流laminar furnace 层怜laminate 层压材料laminated coal 叠层煤laminated glass 夹层玻璃laminated paper 层压纸laminated wood 胶合板lamination 层压lamp 灯lamp black 灯黑lamp oil 灯油lamp test 灯泡试验lanatoside 毛花甙langbeinite 无水钾镁矾langmuir's adsorption isotherm 朗格缪尔吸附等温线lanolin 羊毛脂lanoline 羊毛脂lanosterol 羊毛醇lanthanide 镧系元素lanthanide contraction 镧系收缩lanthanoid 镧系元素lanthanum 镧lanthanum acetate 乙酸镧lanthanum bromate 溴酸镧lanthanum bromide 溴化镧lanthanum carbonate 碳酸镧lanthanum chloride 氯化镧lanthanum oxide 氧化镧lanthionine 羊毛硫氨酸lap welding 叠式焊接lapachoic acid 拉帕醇lapachol 拉帕醇lapidification 石化酌laplace equation 拉普拉斯方程laplace transformation 拉普拉斯变幻lard 猪脂large aromatic molecule 大芳香族分子large scale gas chromatography 制备级气相色谱法laser 激光last heat of dissolution 溶解终热latence 埋伏latency 埋伏latent catalyst 埋伏催化剂latent heat 潜热latent heat of fusion 熔化潜热latent heat of sublimation 升华热latent image 潜像latent period 埋伏期latent valency 潜化合价lateral axis 横轴线lateral chain 侧链lateral face 侧面lateral magnification 横扩大率lateral secretion 侧分泌laterite 红土latex 胶乳latex cement 胶乳结合剂latex paint 胶乳漆latex thickener 胶乳增稠剂latexometer 胶乳比重计lather 肥皂泡lathering number 起泡值lathering soap 泡沫lattice constant 晶格常数lattice defect 点阵缺陷lattice distance 晶格间距lattice energy 晶格能lattice model 点阵模型lattice plane 晶格面laudanidine 劳丹尼定laudanine 劳丹碱laudanosine 劳丹素laue method 劳厄法laue photograph 劳厄照相laughing gas 笑气laundry soap 家用皂lauraldehyde 月桂醛laurate 月桂酸盐laurel 月桂laurel oil 月桂油lauric acid 月桂酸lauroleate 月桂酸盐lauroleic acid 月桂烯酸lauroyl chloride 月桂酰氯lauroyl peroxide 过氧化月桂酰lauryl alcohol 月桂醇lauryl chloride 月桂基氯lauryl mercaptan 月桂硫醇lauryl methacrylate 甲基丙烯酸月桂酯lava 熔岩lavazeck viscometer 拉巴切克粘度计lavender oil 熏衣草油lavender water 熏衣水law of chemical equivalent 化学当量定律law of conservation and conversion of energy 能量守恒及能量转换定律law of conservation of energy 能量守恒律law of conservation of mass 质量守恒定律law of conservation of momentum 动量守恒定律law of constant proportion 定比律law of corresponding states 对应态原理law of definite proportion 定比律law of equipartition of energy 能量均分律law of gaseous reaction 气体反应定律law of ideal gases 理想气体定律law of independent ionic mobilities 独立离子怜定律law of ionic strength 离子强度定律law of isomorphism 类质同晶定律law of mass action 质量酌定律law of multiple proportions 倍比律law of partition 分配定律law of photochemical equivalent 光化学当量定律law of radioactive decay 放射性蜕变定律law of reciprocal proportion 互比定律law of reciprocity 互反律law of velocity distribution 速度分布定律lawrencium 铹laxative 轻泻剂layer built cell 积层电池layer lattice 层形点阵layer structure 层状构造lazulite 天蓝石le chatelier braun's principle 勒夏特利埃布劳董理leachability 可浸出性leachate 浸出液leaching 浸析leaching agent 溶浸剂lead 铅lead accumulator 铅蓄电池lead acetate 醋酸铅lead arsenate 砷酸铅lead azide 叠氮化铅lead bath 铅浴lead carbonate 碳酸铅lead chamber 铅室lead chamber process 铅室法lead chloride 氯化铅lead chromate 铬酸铅lead compound 铅化合物lead cyanamide 氰氨化铅lead cyanide 氰化铅lead dioxide 二氧化铅lead glance 方铅矿lead glass 铅玻璃lead glaze 铅釉lead hydrogen citrate 氢柠檬酸铅lead hydroxide 氢氧化铅lead lining 铅内衬lead linoleate 亚油酸铅lead molybdate 钼酸铅lead nitrate 硝酸铅lead oxide 氧化铅lead paper 乙酸铅试纸lead peroxide 过氧化铅lead poisoning 铅中毒lead resinate 尸酸铅lead silicate 硅酸铅lead stearate 硬脂酸铅lead storage battery 铅蓄电池lead suboxide 一氧化二铅lead sulfate 硫酸铅lead sulfide 硫化铅lead susceptibility 受铅性lead telluride 碲化铅lead tetraacetate 醋酸高铅lead tetrachloride 四氯化铅lead tungstate 钨酸铅lead vanadate 钒酸铅leaded gasoline 加铅汽油leaf condenser 箔电容器leaf filter 叶片式过滤器leak detector 漏电指示器leak test 泄漏试验leakage 泄漏leakage current 漏电流lean coal 贫煤lean gas 贫气lean lime 贫石灰leather 皮革leather substitute 人造革lecithase 卵磷脂酶lecithin 卵磷脂lecithinase 卵磷脂酯leclanche cell 勒克朗谢电池ledeburite 菜德布尔体lederer manasse reaction 菜德勒曼讷斯反应legumin 豆球蛋白lehre 退火炉lemon oil 柠檬油lemongrass oil 柠檬草油lenacil 环草定length 长度lens 透镜lenticular film 凹凸式胶片leonite 钾镁矾lepidine 勒皮啶lepidolite 鳞云母lethal dose 致死量leucic acid 白氨酸leucine 白氨酸leucite 白榴石leuckart reaction 洛卡特氐反应leucoalizarin 去氧茜素leucobase 路易克碱leucocompound 无色化合物leucocyte 白血球leucocytolysin 白细胞溶素leucoscope 光学高温计leucosol 白色溶胶levan 果聚糖level dyeing 均匀染色level gage 液面计level meter 液面仪leveling 均匀染色leveling agent 匀染剂leveling tube 水准管levigation 水磨levo form 左旋体levo rotary matter 左旋性物质levorotation 左旋性levorotatory compound 左旋化合物levulinaldehyde 乙酰丙醛levulinic acid 乙酰丙酸levulosan 左旋聚糖levulose 果糖lewis langmuir's theory of valency 路易斯兰格穆尔原子价理论lewisite 路易氏气liberation 游离lichen starch 地衣多糖lichenase 地衣聚糖酶lichenin 地衣多糖licopene 茄玉红lidocaine 利多卡因liebermann's reaction 李伯曼反应liebig condenser 李比希氏冷凝器liesegang ring 李四光环life of decay 半衰期lifetime 寿命lift 水头ligancy 配位数ligand 配位体ligand field 配位场ligand field absorption band 配位场汲取带ligand field theory 配位场理论ligand membrane 配位体膜ligand migration reaction 配位体移动反应light alloy 轻合金light burned magnesia 轻质煅烧镁氧light emitting diode 发光二极管light end 轻馏分light fastness 耐光性light filter 滤光器滤光片light fire brick 轻质耐火砖light fog 光灰雾light induced proton pump 光诱致质子泵light metal 轻金属light meter 曝光计light oil 轻油light pressure 光压light quantum 光子light rare earth element 轻稀土元素light resistance 耐光性light ruby silver 淡红银矿light scattering method 光散射法light scattering photometer 光散射光度计light sensitivity 感光度light soils 轻质土light source 光源light velocity 光速light weight concrete 轻质混凝土lignification 木质化lignin 木素lignocaine 利多卡因lignocellulose 木质纤维素lignoceric acid 廿四酸lignosulfonic acid 木素磺酸ligroin 里格苦因lime 石灰lime burning 煅烧石灰lime cream 石灰乳lime hydrate 消石灰lime kiln 石灰窑lime kilning 煅烧石灰lime milk 石灰乳lime mortar 石灰浆lime nitrate 硝酸钙lime nitrogen 石灰氮lime oil 梨莓油lime pozzolanic cement 石灰火山灰水泥lime rosin 石灰松香lime salpeter 硝酸钙lime saturation degree 石灰饱和度lime silica ratio 石灰硅石比lime slag cement 石灰炉渣水泥lime slaker 石灰熟化器lime soap 石灰皂lime sulfur mixture 石硫合剂lime water 石灰水limestone 石灰石liming 用石灰处理limit dextrin 有限糊精limit of error 误差极限limit of identification 证实限度limit of inflammability 可燃限度limiting concentration 极限浓度limiting current 极限电流limiting current density 极限电淋度limiting value 极限值limonene 二戊烯limonite 褐铁矿limpidity 透迷linaloe oil 沉香油linalool 里哪醇linalyl acetate 醋酸里哪酯lindane 林丹linde air liquefier 林德空气液化器line density 线密度line spectrum 线性光谱line width 线宽度linear accelerator 直线加速器linear condensation polymer 线型缩合聚合物linear differential equation 线性微分方程linear expansion 线膨胀linear expansivity 线膨胀性linear macromolecule 线型大分子linear molecule 线型分子linear ordinary differential equation of first order 一阶线性常微分方程linear polymer 线状聚合物linear transformation 线性变幻linear viscoelasticity 线性粘弹性lining 内衬lining brick 砌壁砖linkage 键合linking 键合linnaeite 硫钴矿linoleic acid 亚麻仁油酸linolenic acid 亚麻酸linoleum 油地毡linoleum cement 油毡胶粘剂linoleum oil 漆布油linolic acid 亚麻仁油酸linolin 亚麻精linoxylin 氧化亚麻油linoxyn 氧化亚麻油linseed oil 亚麻子油lint 皮棉linter 棉绒lipase 脂肪酶lipid 脂质lipid metabolism 脂类代谢lipid peroxide 脂类过氧化物lipoamino acid 脂氨基酸lipochrome 脂色素lipoic acid 硫辛酸lipolysis 脂类分解lipoprotein 脂蛋白liposome 脂质体lipoxidase 脂肪氧化酶liquefaction 液化liquefaction of air 空气液化liquefaction of coal 煤的液化liquefied gas 液化气liquefied natural gas 液化天然气liquefied petroleum gas 液化石油气liquid 液体liquid air 液态空气liquid ammonia 液态氨liquid calorimeter 液体量热计liquid carbon dioxide 液态二氧化碳liquid chlorine 液态氯liquid chromatography 液相谱liquid cooling 液体冷却liquid crystal 液晶liquid crystalline polymers 液晶聚合物liquid culture 液体培养liquid cyclone 湿式旋风除尘器liquid drier 液体催干剂liquid drop model 液滴模型liquid fertilizer 液体肥料liquid film technology 液膜技术liquid filter 液体过滤器liquid fuel 液体燃料liquid gold 金水liquid grease 液体钙基脂liquid heat exchanger 液体热交换器liquid hydrocarbon 液烃liquid insulator 液体绝缘体liquid ion exchanger 液体离子交换剂liquid junction cell 液体接界电池liquid junction potential 液体接界电势liquid level indicator 液面仪liquid liquid chromatography 液液色谱法liquid liquid extraction 液液提取liquid liquid partition chromatography 液液分配色谱法liquid manometer 液体压力计liquid medium 液体培养基liquid membrane 液体膜liquid nitrogen 液态氮liquid oxygen 液态氧liquid oxygen explosive 液氧炸药liquid paraffin 液体石蜡liquid phase 液相liquid phase cracking 液相分解liquid phase cracking process 液相过程liquid phase hydrogenation 液相氢化liquid rubber 液态橡胶liquid seal 液封liquid soap 液体肥皂liquid solid chemical reaction 液固化学反应liquid solid equilibrium 固液平衡liquid sulfur dioxide benzene process 液态二氧化硫苯抽提过程liquid thermometer 液体温度计liquidus 液线liquor ratio 液比liquorice 甘草litharge 密陀僧lithia porcelain 氧化锂瓷lithium 锂lithium aluminium hydride 氢化铝锂lithium aluminium hydride reduction 氢化铝锂还原lithium carbonate 碳酸锂lithium chlorate 氯酸锂lithium chloride 氯化锂lithium hydroxide 氢氧化锂lithium nitrate 硝酸锂lithium oxide 氧化锂lithium silicate 硅酸锂lithium sulfate 硫酸锂lithium tartrate 酒石酸锂lithochemistry 岩石化学lithocholic acid 石胆酸lithogeochemistry 岩石地球化学lithographic ink 石印墨lithographic varnish 石印清漆lithography 石印术lithol red 立遂lithophile element 亲岩元素lithopone 立德粉lithosphere 岩石圈litmus 石蕊litmus paper 石蕊纸live steam 直接蒸汽liver oil 肝油living coordination polymerization 活性配位聚合living polymer 活性聚合物lixiviation 浸析load test 负荷试验loading hopper 进料漏斗loading material of rubber 橡胶填料loam 亚粘土lobeline 洛贝林local analysis 局部分析local cell 局部电池local corrosion 局部腐蚀local current 局部电流local equilibrium 局部平衡local magnetic moment 局部磁矩locally limit theorem 局部极限定理lode 矿脉loess 黄土log mean temperature difference 对数平均温差logarithmic function 对数函数logarithmic mean 对数平均logic element 逻辑元件logical circuit 逻辑电路logwood 苏木lone pair 非共有电子对long flame coal 长焰煤long oil varnish 长油性清漆long tube vertical evaporator 长管竖式蒸发器longitudinal flow reactor 纵向连续反应器loop strength ratio 钩接强力比lorentz's force 洛伦兹力lorenz lorentz's formula 洛伦茨洛伦兹公式loretin 试铁灵loss 损失loss angle 损耗角loss of weight 失重lossen reaction 洛森反应lost heat 废热loudness 音量lovibond tintometer 拉维邦德油品色度计low alloy 低合金low angle scattering of x ray x线小角散射low energy neutron 低能中子low expansion glass 低膨胀玻璃low fired porcelain 低温瓷器low frequency induction furnace 低频感应电炉low grade bituminous coal 低级沥青炭low heat cement 低热水泥low melting glass 低熔点玻璃low molecular weight hydrocarbon 低分子量烃low polymer 低聚物low pressure gauge 低压计low pressure molding 低压模塑low pressure resin 低压尸low pressure tyre 低压轮胎low temperature carbonization 低温干馏low temperature coke 低温焦炭low temperature fractionation 低温精馏low temperature polymerization 低温聚合low temperature processing 低温分开法low temperature resistance 耐寒性low temperature tar 低温焦油lower calorific power 低热值lower calorific value 低热值lower homologue 低级同系物lowering of melting point 熔点降低loxygen 液氧lubricant 润滑剂lubricating grease 润滑脂lubricating oil 润滑油lubricating property 润滑性lubrication 润滑lucas reagent 卢卡斯试药luciferase 荧光素酶luciferin 荧虫光素lumen 流luminance temperature 发光温度luminescence 发光luminescence analysis 发光分析luminescence center 发光中心luminescent dye 荧光染料luminescent lamp 荧光灯luminescent plastics 发光塑料luminescent screen 荧光屏luminol 鲁米诺luminophore 发光体luminosity 亮度luminous flame 光焰luminous flux 光束luminous paint 发光油漆luminous pigment 发光颜料lumisterol 光照甾醇lump coal 块煤lump coke 块焦炭lunge's test 伦格试验lupanine 羽扇烷宁lupinidine 司巴丁lurgi low temperature carbonization oven 鲁奇的低温焦化烘炉luster 光泽lusterless paint 无光漆lutecium 镥lutein 叶黄素luteo salt 黄络盐luteol 黄示醇luteolin 黄色素lutetium 镥lutidine 卢剔啶lux 勒克斯luxmeter 照度计lyase 裂合酶lycopene 番茄烯lycopin 番茄烯lycopodium 石松子lycopodium spores 石松子lycoremine 加兰他敏lye 碱液lyogel 液凝胶lyolysis 液解lyophilic 亲液的lyophilic colloid 亲液胶体lyophilic polymer 亲液性聚合体lyophilization 冻干lyophobic 疏水的lyophobic colloid 蔬液胶体lyosol 液溶胶lyotropic liquid crystal 易溶液晶lyotropic series 感胶离子序列lysergic acid 赖瑟酸lysine 赖氨酸lysol 来苏lysosomotropic drug 擒酶体药lysozyme 溶菌酶lysyloxidase 赖氨酰氧化酶lyxonic acid 来苏糖酸lyxose 来苏糖m acid m 酸m.w.分子量macaroni rayon 空心人造丝macassar gum 琼脂mace oil 肉豆蔻油maceration 浸渍machine bleaching 机械漂白machine dyeing 机凭色machine oil 机油machine printing 机啤花macle 双晶macleod gage 麦克劳计maclurin 桑橙素macroanalysis 常量分析macrochemistry 常量化学macrocrystal 大晶体macrogeochemistry 宏观地球化学macroglobulin 巨球蛋白macromolecular chemistry 大分子化学macromolecular colloid 高分子胶质macromolecular compound 高分子化合物macromolecular grating 大分子格子macromolecular rupture 大分子破裂macromolecule 大分子macropolymerization 巨聚合macroscopic structure 宏观结构macrosis 庞大macrostate 宏观状态macrostructure 宏观结构macula lutea 黄斑madder lake 茜草色淀madder red 茜草红magenta 品红色magic mirror 半透玫magma 岩浆magma glassashes 岩浆玻璃灰magmatic assimilation 岩浆同化酌magmatic ore 岩浆矿石magmatic water 岩浆水magnalium 镁铝合金magnesia 氧化镁magnesia brick 镁砖magnesia cement 镁氧水泥magnesia clinker 镁熔块magnesia mixture 镁氧混合剂magnesia porcelain 镁质瓷器magnesia portland cement 氧化镁一般水泥magnesite 菱镁矿magnesite chrome brick 铬镁砖magnesium 镁magnesium acetate 乙酸镁magnesium borate 硼酸镁magnesium calcium carbonate 碳酸镁钙magnesium cell 镁电池magnesium chloride 氯化镁magnesium hydrate 氢氧化镁magnesium hydroxide 氢氧化镁magnesium nitrate 硝酸镁magnesium oxide 氧化镁magnesium peroxide 过氧化镁magnesium powder 镁细粉magnesium sulfate 硫酸镁magneson 试镁灵magnet 磁铁magnetic analysis 磁力分析magnetic anisotropy 磁蛤异性magnetic crystal group 磁晶群magnetic crystal structure 磁晶体结构magnetic field 磁场magnetic filter 磁性过滤器magnetic induction 磁感应magnetic iron ore 磁铁矿magnetic iron oxide 磁性氧化铁magnetic needle 磁针magnetic permeability 磁导率magnetic quantum number 磁量子数magnetic relaxation 磁性弛豫magnetic resonance 磁共振magnetic semiconductor 磁性半导体magnetic separator 磁力分开器magnetic stirrer 磁力搅拌器magnetic substance 磁性体magnetic susceptibility 磁化率magnetism 磁magnetite 磁铁矿magnetization 磁化magnetochemical analysis 磁化学分析magnetochemical investigation 磁化学甸magnetochemistry 磁化学magnetometer 磁强计magneton 磁子magnetosonic wave 磁声波magnetron 磁控管magnification 扩大率magnifier 扩大镜magnifying glass 扩大镜main alloying component 合金稚分main constituent 知组分main fermentation 知发酵酌main group 皱main group element 皱元素main reaction 知反应main valence 汁子价maintenance costs 维持费maize oil 玉米油maize starch 玉米淀粉majolika 马略尔卡陶器make up water 补充水malachite 孔雀石malachite green 孔雀绿malachite green actinometer 孔雀石绿光量计malate 苹果酸盐malathion 马拉松male sex hormone 雄激素maleamic acid 马来酰胺酸maleate 马来酸盐maleic acid 马来酸maleic acid ester 马来酸酯maleic anhydride 马来酐maleic ester resin 马来酯尸maleic hydrazide 马来酰肼maleic resin 马来尸malic acid 苹果酸malleability 展性malleable cast iron 可锻铸铁malonamide 丙二酰胺malonate 丙二酸盐malonic acid 丙二酸malonic ester 丙二酸酯malonic ester synthesis 丙二酸酯合成malonylurea 巴比土酸malt 麦芽malt agar 麦芽琼脂malt extract 麦芽抽出物malt sugar 麦芽糖maltase 麦芽糖酶maltha 软沥青malting 麦芽制造maltol 麦芽醇maltose 麦芽糖malvidin chloride 氯化二甲花翠man made fiber 人造纤维man made rubber 人造橡胶mandarin oil 橘子油mandelic acid 孟德立酸mandelonitrile 扁桃腈mandrel test 心轴试验法manganate 锰酸盐manganese 锰manganese blende 硫锰矿manganese chloride 氯化锰manganese dioxide 二氧化锰manganese sulfate 硫酸锰manganese sulfide 硫化锰manganin 锰镍铜合金manganite 亚锰酸盐mangrove 红树manipulator 操纵器机械手manna 吗哪mannan 甘露聚糖mannich reaction 曼尼期反应manninotriose 甘露三糖mannite 甘露糖醇mannitol 甘露糖醇mannitol hexanitrate 六硝酸甘露醇mannonic acid 甘露糖酸mannose 甘露糖manocryometer 融解压力计manometer 压力计manostat 恒压器manufacture 制造manufacture of common salt 食盐制造法manufactured gas 人造煤气manufacturing cost 造价manufacturing in series 成批生产manufacturing method 制造法manufacturing process 制造法manure 肥料manure salts 肥料盐manuring 施肥maple sugar 槭糖marble 大理石marcasite 白铁矿margarate 十七酸盐margaric acid 十七酸margarine 人造奶油margarite 珍珠云母marine animal oil 海生动物油marine clay 海成粘土marine engine oil 船用机油marine soap 海水皂mariotte bottle 马利欧特瓶marjoram oil 马郁兰油mark 标记marked line 标线market bleach 一般漂白marking ink 打印墨水markovnikov's rule 马尔科夫尼科夫规则marseille soap 马赛皂marsh gas 沼气marsh test 马希氏试验marshall's acid 马歇尔酸martens hardness tester 马氏硬度试验器martens heat resistance test 马腾斯耐热试验martensite 马氏体maser 微波激射器mash 麦芽汁mask 面具masking 掩蔽masking agent 掩蔽剂masking reagent 掩蔽剂mason's hydrated lime 砖石用熟石灰masonry cement 砌筑水泥mass acceleration 质量加速度mass action 质量酌mass balance 物料平衡mass concentration 质量浓度mass defect 质量筐mass number 质量数mass polymerization 本体聚合mass production 大量生产mass radiation 质量辐射mass spectrograph 质谱仪mass spectrometer 质谱仪mass spectrometry 质谱测定法mass spectroscopy 质谱分析mass spectrum 质谱mass stopping power 质量阻止本领mass to charge ratio 质荷比mass transfer 物质传递mass unit 质量单位mass velocity 质量速度massecuite 糖膏massicot 铅黄massive coal 块煤masterbatch 母体混合物mastic 乳香mastication 捏炼masticator 素炼机masut 重油mat finish 消光整理mat glaze 无光泽釉mat gold 消光金mat paint 消光油漆match 火柴material 物质material balance 物料平衡material point 质点material wave 物质波mathematical induction 数学归纳法matrine 苦参碱matrix 基质matrix effect 基体效应matter 物质maturation 成熟酌maturative 催脓药maturing 成熟酌maturing temperature 成熟温度mauvein 苯胺紫maximal dose 极大剂量maximal observable 最大观测量maximal work 最大功maximum and minimum thermometer 最高最低温度计maximum current 最大电流maximum deflection 最大偏转maximum effective work 最大有效功maximum fiber stress 最大纤维应力maximum flexural strength 最大抗挠强度maximum load 最大负荷maximum output 最高产率maximum permissible dose 最大同意剂量maximum phenomenon 极大现象maximum suppressor 畸峰抑制剂maximum thermometer 最高温度计maximum wave 极大波maximum work 最大功maxivalence 最高价maxwell boltzmann statistics 麦克斯韦玻耳兹曼统计maxwell boltzmann's law of energy distribution 麦克斯韦玻耳兹曼能量分布定律maxwell boltzmann's law of velocity distribution 麦克斯韦玻尔兹曼速度分配定律mazout 重油meal 粉状物mean activity 平均活度mean boiling point 平均沸点mean degree of polymerization 平均聚合度mean deviation 平均偏差mean dispersion 平均分散mean error 平均误差mean free path 平均自由程mean life 平均寿命mean temperature difference 均温差mean value 平均值measurable set 可测集measurement 测定measurement deviation 测定偏差measurement error 测量误差measurement of molecular weight 分子量测定measurement of radioactivity 放射能测定measuring 测定measuring accuracy 测量精度measuring apparatus 计量仪器measuring bottle 量瓶measuring cylinder 量筒measuring flask 量瓶measuring glass 量杯measuring instrument 计量仪器measuring pipet 莫尔吸量管measuring tank 量槽mecazine 密哌嗪mechanical draft 机械通风mechanical energy 机械能mechanical equivalent of heat 热功当量mechanical impedance 机械阻抗mechanical mixture 机械混合物mechanical properties 机械性能mechanical pulp 机碎木浆mechanical rectifier 机械整流mechanical scrubber 机械滤净器mechanical test 机械试验mechanical weathering 机械风化mechanization 机械化mechanochemistry 机械化学meconic acid 袂康酸meconine 袂康宁meconium 鸦片mediasilicic rock 中硅质岩medical chemistry 医化学medical durable yeast 医药耐久酵母medicated soap 药用皂medium 介质medium boiler 中沸溶剂medium oil 中油medium oil varnish 中油清漆medium tone 中间色调meker burner 梅克尔灯melamine 蜜胺melamine resin 蜜胺尸melamine resin varnish 三聚氰胺尸清漆melanin 黑素melanogen 黑素原melibiase 蜜二糖酶melibiose 蜜二糖melinite 苦味酸melissic acid 蜂花酸melissyl alcohol 蜂花醇melitose 棉子糖mellic acid 苯六酸mellitate 苯六甲酸酯mellophanic acid 苯偏四甲酸melt 溶融物melt spinning 熔体纺丝melt spinning device 熔融纺丝装置melt viscosity 熔解粘度melting 熔融melting heat 熔化热melting method 熔融法melting point 熔点melting point diagram 熔点线图melting zone 熔化带membrane 隔膜membrane electrode 膜电极membrane equilibrium 膜平衡membrane filter 薄膜过滤器membrane potential 膜电位membrane simulation 膜模拟memory 存储器menadiole 甲萘二酚menadione 甲萘醌mendelev periodic law of elements 门捷列夫元素周期律mendelevium 钔meniscus 弯液面menshutkin reaction 门秀金反应menthadiene 薄荷二烯menthane 薄荷烷menthol 薄荷醇menthone 薄荷酮menthyl acetate 三萜醇乙酸酯mepazine 密哌嗪mephobarbital 普罗米那mephosfolan 二噻磷meralluride 汞鲁来merbromin 汞溴红mercaptal 缩硫醛mercaptan 硫醇mercaptide 硫醇盐mercaptobenzothiazole 巯基苯并噻唑mercaptoethanol 巯基乙醇mercaptol 缩硫醇mercaptopurine 巯基嘌呤mercaptothiazoline 巯基噻唑啉mercerization 丝光处理mercerizing assistant 丝光加工助剂mercerizing machine 丝光处理机mercocresol 汞甲酚剂mercuration 汞化mercurial barometer 水银气压计mercurial column 水银柱mercurial ointment 汞制油膏mercuric arsenate 砷酸汞mercuric chloride 氯化正汞mercuric compound 正汞化合物mercuric cyanide 氰化汞mercuric fluoride 氟化汞mercuric nitrate 硝酸汞mercuric oleate 油酸汞mercuric oxide 氧化汞mercuric oxide electrode 氧化汞电极mercuric salt 正汞盐mercuric stearate 硬脂酸汞mercuric sulfate 硫酸汞mercuric sulfide 硫化汞mercurimetric titration 汞液滴定法mercurimetry 汞液滴定法mercurochrome 汞溴红mercurol 核酸汞mercurometric titration 亚汞滴定法mercurometry 亚汞滴定法mercurous nitrate 硝酸亚汞mercurous salt 亚汞盐mercury 汞mercury arc rectifier 汞汽整流mercury bridge 水银电桥mercury cathode cell 汞阴极电池mercury cell 水银电池mercury chloride 氯化汞mercury cyanide 氰化汞mercury electrode 水银电极mercury fulminate 雷酸汞mercury iodide 碘化汞mercury lamp 水银灯mercury manometer 水银压力计mercury nitrate 硝酸汞mercury oxide 氧化汞mercury pool 水银槽mercury process 水银法mercury pump 水银真空泵mercury rash 汞皮疹mercury thermometer 水银温度表mercury vapour rectifier 汞汽整流mercury volumeter 汞容积计meromyosin 酶解肌球蛋白meroplankton 暂时性浮游生物mesaconic acid 甲基反丁烯二酸mescaline 墨斯卡灵mesh 筛眼mesityl oxide 异丙叉丙酮mesitylene 均三甲基苯meso form 内消旋式mesobilirubin 中胆红素mesobilirubinogen 中胆红原mesobiliverdin 中胆绿素mesochemistry 介子化学mesocolloid 近胶体mesomeric effect 内消旋效应mesomerism 稳变异构mesomorphic phase 中间相mesomorphism 液晶态meson 介子mesophase 中间相mesorcin 均三甲苯二酚mesotartaric acid 内消旋酒石酸mesothorium 新钍mesoxalic acid 中草酸mesoxalylurea 中草酰脲messenger ribonucleic acid 信使核糖核酸meta acid 偏酸metaarsenic acid 偏砷酸metabiosis 后继共生metabolism 代谢酌metabolite 代谢物metaboric acid 偏硼酸metachemistry 超化学metachromasia 异染色metachromasy 异染色metachromatic stain 异染性染料metachromatism 变色现象metadiazine 嘧啶metaisomerism 位变异构现象metal alkyl 金属烷基metal analysis 金属分析metal arc 金属电弧metal bath 金属浴metal carbonyl 羰络金属metal cluster 金属团簇metal complex 金属络合盐metal complex dye 金属配位染料metal encased brick 铁皮砖metal film resistor 金属薄膜电阻器metal fog 金属雾metal glass 金属玻璃metal indicator 金属指示剂metal line 液面线metal mist 金属雾metal nonmetal transition 金属非金属过渡metal plating 金属镀层metal spray gun 金属喷雾器metal spraying 金属喷涂metalation 金属化metaldehyde 多聚乙醛metallic block calorimeter 金属热量计metallic bond 金属键metallic complex salt 金属络合盐metallic element 金属元素metallic luster 金属光泽metallic oxide 金属氧化物metallic paint 金属涂料metallic poison 金属毒metallic powdery pigment 金属粉末颜料metallic soap 金属皂metallic thermometer 金属温度计metallic tin 金属锡metallocene 金属茂络合物metallocycle 金属循环物metalloenzyme 金属酶。
拉格朗日定理英文缩写
拉格朗日定理英文缩写
摘要:
1.拉格朗日定理的英文全称和英文缩写
2.拉格朗日定理的应用领域
3.拉格朗日定理的内容
4.函数的驻点和极大值/极小值
正文:
拉格朗日定理(Lagrange"s Theorem)是微积分中一个关于多元函数的极值问题的定理。
它的英文全称是Lagrange"s Mean Value Theorem,有时也被简称为Mean Value Theorem。
这个定理为我们求解多元函数的极值提供了一个重要的工具,它在微积分、工程、物理等领域有着广泛的应用。
拉格朗日定理的英文缩写为MVT,即Mean Value Theorem。
这个定理的内容是:如果函数f(x) 在闭区间[a, b] 上连续,在开区间(a, b) 上可导,那么在这个区间内至少有一点c,使得f"(c)=0,即函数在这一点的导数等于零。
这个点c 被称为函数的驻点(critical point),而函数在这一点的值被称为函数的极大值或极小值。
拉格朗日定理在求解多元函数极值问题中的应用十分重要,它告诉我们,只要找到函数的驻点,就可以进一步判断函数在这些点处的极值。
拉格朗日动力学方程
position, thus
s
1
n i 1
mi
ri
ri q
n i 1
Fi
ri q
q
0
define
P
n i 1
mi
ri
ri q
Q
n i 1
Fi
ri(GeneralizedF q
orces)
s
so
(P Q )q 0
1
because every q is each other
P
d dt
T q
T q
also is
d dt
T q
T q
Q ,
1, 2,
,s
This is the Basic Lagrange Dynamical Equation. As q=q(t), t is independent variable of q,so the last formula are the s second
2. Basic Lagrange Dynamical Equation
Replacing the coordinates riwhich are not each other independent
with the independent general coordinates q ( 1,2, , s), we can obtain the Lagrange's Dynamical Equation which can be applied to the complete mechanical system with ideal constraints.
order ordinary differential equations of general coordinates q with
分析力学第一次作业解答
1.1 Spherical coordinates. Many of the problems which we will solve will possess spherical symmetry, so that the most natural coordinates are spherical coordinates. We'll need to know how to express the position, velocity, acceleration, and kinetic energy of a particle in this coordinate system.The spherical coordinates (,,)r θφare related to the rectangular coordinates (x, y, z ) through sin cos x r θφ=,sin sin y r θφ=, cos z r θ=. The unit vectors are(a) Draw a careful figure which illustrates the meaning of the spherical coordinates and their relation to the rectangular coordinates.(b) Show that this is indeed on orthogonal coordinate system. In other words, show that 0,0,0r r e e e e e e θφθφ⋅=⋅=⋅=. Also show that each of the vectors,,r e e e θφhas a length of one. Finally, show that the coordinate system is “right-handed”, so that ,,r r r e e e e e e e e e θφθφφθ×=×=×=(c)Use these relations to show that(d) In spherical coordinates the position vector is r =r re . Use your results above to calculate the velocity v = r i, the kinetic energy 2/2T mv =, and the acceleration a = r iof a particle in spherical coordinates.Solution: (b) 22(sin cos sin sin cos )(cos cos cos sin sin )sin cos cos sin cos sin sin cos 0r x y z x y z e e e e e e e e θθφθφθθφθφθθθφθθφθθ=+++−=+−= i isin cos sin sin cos sin cos cos cos cos sin sin x y zr x y e e e e e e e e θφθφθφθφφθφθφθ×==−+=−The others are straightforward. (c)(cos cos sin sin )(cos sin sin cos )sin (cos cos cos sin sin )sin (sin cos )sin r x y zx y z x y e e e e e e e e e e e θφθθθθφφθθφθφφθθθθθθφθθφφφθθφ=−++−=+−+−+=+i i i i i i i i i iThe others are straightforward.(d) This closely follows the derivation in class for cylindrical coordinates. The key point to remember is that the unit vectors are time dependent, so you need to use Eqs.above and the product rule when carrying out the di_erentiations. The results are1.2 Central forces. A central force is a force directed along the line connecting the two interacting particles which only depends on the separation between the particles. Assuming that the center of the force is at the origin (r = 0), then the central force can be written as F (r ) = f (r ) e r , with r the distance from the origin. Important examples of central forces are the gravitational force, the electrostatic force (Coulomb's law), and the force exerted by a spring on a mass.(a) Assume that a particle of mass m is acted upon by a central force. The natural coordinates to describe the motion of the particle are spherical coordinates (,,)r θφ. Separate Newton's Second Law in spherical coordinates, and write down the three equations of motion (one for each component).(b) Show that for any f (r ), a solution of the θand φ components of these equationshas /2θπ=and 2mr l φ=i, with l a constant which is independent of time. What is the physical significance of these results?(c) Use the conditions above to simplify the equation for the radial coordinate r .Show thatSolution:(a) Use the results from Problem 1; using m a = Fin spherical coordinates, we have(b)Taking(independent of time), then; substituting theseresults into Eqs above, we findMultiply both sides by r; we can then write this asSo that , with l a constant (independent of time). If we recognize as the tangential component of the particle momentum, then is the angular momentum about the center of force. Therefore, the condition is simply a statement of conservation of angular momentum about the center of force. The factthat means that the motion occurs in a plane(c)Substitute , , and into, we can get the result1.4 Spherical pendulum. A mass m is attached to the ceiling by an inextensible (i.e. fixed length), massless string of length b, as shown in the figure.(a) Draw a free-body diagram for the mass, showing all forces acting upon it.(b) Use F = m a in spherical coordinates to derive the equations of motion forθand φ(c) Use your equations of motion to show that the quantity(d) Use your result from part (c) to eliminate the dependence upon φin your equation of motion for θ. You should find thatSolution:(a)The figure is below(b)Resolving the forces into components along the unit vectors, we haveUse F = m a and the expression for acceleration in spherical coordinates along with theconstraint that r = b and to obtain the equations of motionAndAs a check, note that when the equation forθiswhich is the equation of motion for the plane pendulum.(c)DifferentiateFactoring sinθfrom this expression, we see that it is indeed zero. The quantity is the angular momentum about the z-axis, which is conserved.(d)The angular momentum is a constant whose value is determined from initialconditions. Usingwe immediately obtain3.1 Lagrangian vs. Newtonian mechanics . Construct the Lagrangians and derive the equations of motion for (a) the spherical pendulum and (b) the bead on the hoop. In both cases compare your results with the results which you obtained in previous assignments using Newton's Second Law. Solution:(a) Let's begin with the spherical pendulum. In spherical coordinates the kinetic energy isThe pendulum string has a constant length R , so r = R and 0r =i. There are twodegrees of freedom, corresponding to the two generalized coordinates θand φ. The kinetic energy is thenSetting the zero of the potential energy to be when the string is horizontal, we haveThe Lagrangian is thenLagrange's equation for θiswhich, after a little rearranging, yieldsFor φ, we see that L is independent of φ, so that φis a cyclic coordinate. Thuswhereis a constant.(b) For the bead on the hoop, we'll use the angle θ(the angle that the line connecting the bead to the center of the hoop makes with the vertical) as our generalized coordinate. The constraint is that r = R so that 0r =i, and that the hoop rotates with a constant angular velocity, so that. There is now only one degree of freedom, so there is one generalized coordinate, which we will choose to be θ. From Equation above, we see that the kinetic energy isIf we choose the potential energy to be zero at , thenThe Lagrangian isLagrange's equation isTaking the derivatives, and rearranging a bit, we obtain the equation of motionNote that in both cases the equations of motion are the same as we obtained using Newton's Second Law. However, using the Lagrangian method we do not obtain the forces of constraint.3.2 Moving pendulum. A plane pendulum of length l has a bob of mass m , which is attached to a cart of mass M which can move on a frictionless, horizontal table.(a) Express the rectangular coordinatesof the pendulum bob in terms of thecoordinates. (b) Using X and θas your generalized coordinates, construct the Lagrangian for this system.(c) Using Lagrange's equations, derive the equations of motion for the coupled pen- dulum and cart system.(d) Find all first integrals of the motion (i.e.,find the conserved quantities)Solution(a) The coordinates of the pendulum bob are and cos b y θ=−the components of the velocity are then(b)The kinetic energy of the bob is thenand the kinetic energy of the cart isThe potential energy of the bob isPulling all of this together, we have for the Lagrangian(c)The equations of motion are obtained from Lagrange's equationsForθwe havewhich after some algebra becomesFor X we haveThe Lagrangian is independent of X (X is a cyclic coordinate), so that is a constant. This is a statement of the conservation of the x-component of the momentum of the system:The value of P x is determined from the initial conditions. We can differentiate this equation again to obtainWe could use this equation to eliminate the fromto get a single,nonlinear second order di_erential equation for θ(d) In addition to the momentum P x, the total energy of the system is conserved:3.3 Pendulum A pendulum consisting of a rigid massless rod of length l with a mass m at one end moves in a uniform gravitational field g. The point of support is notstationary but moves in the vertical direction with a displacement y(t) which is a givenfunction of time.(a) Find the Lagrangian and the equations of motion.(b) Show that the equation is the same as that for pendulum with fixed support, with g replaced by ()eff g t . What is ()eff g t ? Solution:(a) The Lagrangian is given by:221()2m m m L T V m x y mgy =−=+−i iWhere()sin ()()()cos ()m m x t l t y t y t l t θθ==−⇒cos sin m m x l y y l θθθθ==+i iiii⇒2221(2sin )cos 2L m l y l y mgy mgl θθθθ=++−+i i i iNote that there is a single generaliged coordinate, ()t θ(()m x t and ()m y t are notindependent). y(t) is NOT an independent coordinate, The Lagrangian and the equations of motion are20sin cos sin 0d L L d ml ml y ml y mgl dt dt θθθθθθθ∂∂⎛⎞⎡⎤−=⇒+−+=⎜⎟⎢⎥∂∂⎣⎦⎝⎠i i i i sin sin 0l y g θθθ⇒++=iiii(b) Rewrite as: ()sin 0eff g t lθθ+=iiWhere()(1)eff yg t g g=+ii。
三元Lagrange插值正则性问题研究
值问题进行了研 究。提 出了沿空问代数 曲线插值 的基本概念 , 同时通 过使 用代数几 何 中的若 干理论 , 得 到 了构造沿空间代数 曲线及代数曲面插值 正则结点组 的迭加构造 方法 , 该方 法推广 了文献 [ —2 中的 1 ]
某 些 主 要 研 究结 果 。
关 键 词 : 元 插 值 ; 项 式 空 间 ; 则 结 点 组 ; 代 数 曲 面插 值 ; 空 间 代 数 曲线 插 值 三 多 正 沿 沿
o esi t c rsac (o ntn e ln igsr c ,sa ig dt i e oa o n t f h c ni eerh fris c ,be dn uf e ctn a n r l i a d f— t e f i a a t a tp t n i
t g , ocp nLga g t o t na n ae l ba uv ee p d yuig i ) acn et arnei e l i l gas c g ri c rei dvl e .B s n o n r ao o p p ae c s o n
欧拉运动方程
欧拉运动方程
欧拉运动方程(Euler’s Equation of Motion)是一种用于描述物体的运动方程,它可以用来表示物体在特定时刻的加速度与力之间的关系。
它也被称为欧拉-Lagrange 方程,因为它同时引用了欧拉和Lagrange的概念。
欧拉运动方程是一种常用的力学方程,它可以用来描述物体运动的性质。
它是由十九世纪德国数学家Leonhard Euler在1750年发现的,他用它来描述物体在特定时刻的加速度与力之间的关系。
欧拉运动方程可以有多种形式,但其基本原理都是相同的。
它的一般形式如下:
F=ma+v×dv/dt
其中,F是物体上的所有力的合力,m是物体的质量,a是物体的加速度,v是物体的速度,dv/dt是物体速度的变化率。
从上面可以看出,欧拉运动方程将物体的运动分解为力和加速度。
根据物理学原理,力是物体加速度的原因,而加速度是物体速度的变化率。
因此,欧拉运动方程可以用来描述物体的运动,因为它可以表示物体运动的力与加速度之间的关系。
欧拉运动方程有许多用途,它可以用来解决物体运动的问题,包括物体在特定力作用下的运动、物体在多个力作用下的运动、物体在三维空间中的运动等等。
它也可以用来描述物体在地理空间中的运动,以及物体在引力场中的运动。
此外,欧拉运动方程还可以用来解决热力学问题,即物体在不同温度下的运动问题,这对于研究物体的运动性能特别有用。
欧拉运动方程是一种重要的力学方程,它可以用来解决有关物体力学运动的问题,广泛应用于物理、力学和工程领域。
它是一种重要的理论基础,可以用来解决许多有关物体运动的实际问题。
拉格朗日方程
对i求和并移项得
∂ri d ∂ 1 ∂ 1 2 2 mi v i • = ∑[ ( mi vi ) − ( mi vi )] ∑ • ∂qs dt ∂ q 2 ∂qs 2 i i s
•
引入系统动能
T =
∑
i
1 2 m i vi 2
s = 1, 2, • • •, n
dvi ∂ri Qs − ∑ mi • =0 dt ∂qs i
若全部主动力均为有势力,设势能函数为 V(xi,yi,zi),则有
∂V ∂V ∂V ∂V = −( Fi = − i+ j+ k) ∂ri ∂xi ∂ yi ∂zi
∂ri Qs = ∑ Fi • ∂qs i =1
N
s=1,2, …,n 上式即为主动力有势时的广义力表达式。
∂V ∂ri • = −∑ ∂qs i =1 ∂r i
ri = ri(q1, q2, …, qn,t)
i=1,2, … ,N
于是用广义坐标的独立变分表示的虚位移为
δ ri =
∑
s =1
n
∂ ri δqs ∂qs
i
i=1,2, …,N
δW = ∑ Fi • δri
n N ∂ri ∂ri δW = ∑ Fi • ( ∑ δqs ) = ∑ ( ∑ Fi • )δqs ∂qs i =1 s =1 ∂qs s =1 i =1
m φ1 φ2
m
ϕ1 + ϕ 2 2 mr 2 • 2 • 2 cr 2 L= (ϕ1 + ϕ 2 ) − (1 − 2 cos ) 2 2 2
mr 2 • 2 • 2 cr 2 ϕ1 + ϕ 2 2 L= (ϕ1 + ϕ 2 ) − (1 − 2 cos ) 2 2 2
机械振动常用英语词汇
机械振动常用英语词汇Aacceleration 加速度acceleration mobility 加速度导纳accelerometer加速度计adjoint matrix 伴随矩阵admittance 导纳algebraic 代数的algorithm 算法alignment 对中amplifier 放大器amplitude 振幅,幅度amplitude-frequency characteristics 幅频特性amplitude-frequency curve幅频特性曲线amplitude spectrum 幅值谱angular velocity 角速度aperiodic 非周期的appendix 附录argument 自变量autocorrelation 自相关auto-correlation function自相关函数auto-covariance function自协方差函数auto-spectral density自功率谱密度average value 均值axis 轴BBack substitution回代back-to-back mounting背靠背安装backward precession 反进动backward whirl 反向涡动balancing machine平衡机barium钡beam 梁bearing轴承beating 拍belt皮带Bode plot波德图boundary condition 边界条件burst random excitation 猝发随机激励Ccalibrate 校准,标定calibration 校准,标定cantilever 悬臂central difference method中心插分法centrifugal 离心的centrifugal force 离心力characteristic determinant特征行列式characteristic equation 特征方程characteristic matrix 特征矩阵circular frequency 圆频率clamped 固支clamped-hinged 固支-铰支clockwise 顺时针的coefficient系数cofactor 余因子column matrix 列矩阵comparison calibration 比较校准complex frequency response复频响应complex stiffness 复刚度complex amplitude 复数振幅complex modal shape 复振型complex plane 复平面complex vibration 复数振动condition monitoring 状态监测conjugate 共扼converge 收敛converged 收敛的convolution 卷曲,卷积convolution integral 卷积积分convolution theorem 卷积定理column 列coordinate 坐标coulomb damping 库仑阻尼counterclockwise 逆时针的coupling 耦合covariance 协方差crankshaft 曲轴critical speed 临界转速critically damped 临界阻尼的cross correlation 互相关cross-covariance function互协方差函数cross-spectral density 互谱密度cushion 软垫,垫子DDC 直流damper 阻尼器damped natural frequency有阻尼固有频率damping 阻尼damping factor 阻尼系数damping ratio 阻尼比dashpot 阻尼器,缓冲器decay 衰减decibel 分贝decompose 分解deflection 位移,挠度degree of freedom 自由度denominator 分母density 密度deviation 偏差derivative 导数descend order 降阶determinant 行列式diagonal matrix对角矩阵differential 微分的dimensionless 无量纲的discrete 离散的discrete spectrum 离散谱disk 盘displacement 位移dissipate 耗散divide 除DOF 自由度Duhamel’s Integral杜哈美积分Dunkerley’s method 邓克利法dynamic coupling 动力耦合dynamic matrix 动力矩阵Eeccentric mass 偏心质量eccentricity 偏心距effective mass有效质量effective value,RMS value 有效值eigenvalue 特征值eigenvalue matrix 特征值矩阵eigenvector 特征向量elastic body 弹性体element 元素,单元ensemble average 集合平均equal root 等根equilibrium 平衡equivalent viscous damping等效粘性阻尼ergodic process 各态历经过程excursion 行程Expansion Theorem展开定理exponential 指数的Euler equation 欧拉方程even 偶数Ffast Fourier transform快速傅立叶变换factorize 分解因式factorial 阶乘的finite difference method有限差分法finite element method 有限元方法flexibility 柔度flexibility matrix 柔度矩阵flexure-torsion vibration弯-扭振动flexural rigidity 抗弯刚度flutter 颤振flywheel 飞轮forced harmonic vibration强迫简谐振动forced vibration 强迫振动foregoing 在前的, 前述的forward precession正进动forward whirl正向涡动Fourier Series傅里叶级数Fourier spectrum傅立叶谱Fourier transform傅立叶变换free vibration自由振动free-damped vibration有阻尼自由振动free response自由响应frequency ratio频率比frequency response function 频响函数fundamental frequency 基频fundamental frequency vibration基频振动fundamental mode 第一阶模态GGauss elimination高斯消去法Gaussian distribution高斯分布,正态分布general solution 通解generalized coordinates 广义坐标generalized force 广义力generalized mass 广义量generalized stiffness 广义度gravitational force 重力gyroscopic 陀螺的gyroscope 陀螺仪Hhalf-power 半功率half-power bandwidth 半功率带宽half power points 半功率点harmonic 简谐的harmonic force 简谐激振力harmonic motion 简谐运动homogeneous 齐次的homogeneous equation 齐次方程Hooke’s law 虎克定律Holzer Method 霍尔兹法hysteresis damping 迟滞阻尼hysteresis loop 迟滞回线,滞后环Iimpact exciting calibration冲击校准impact hammer 冲击力锤impedance matrix 阻抗矩阵impedance transform 阻抗变换impulse excitation 脉冲激励impulse response function冲击响应函数inch 英寸independent coordinate 独立坐标inertia force 惯性力infinitesimal无穷小的initial condition 初始条件initial phase 初相位initial shock response spectrum初始冲击响应谱in-phase component 同相分量integral 积分的intermediate 中间的interpolation 插值inverse 逆inverse matrix 逆矩阵isotropic 各向同性的iteration 迭代Jjump phenomenon 跃变现象Jacobi diagonalization雅可比对角化Kkinetic energy 动能LLagrange's equation 拉格朗日方程LaPlace transformation拉普拉斯变换Linear 线性的Lissojous Curve 李萨茹图logarithm 对数logarithmic decrement 对数衰减率longitudinal 纵向的lower limit amplitude 幅值下限lumped mass 集中质量Mmagnetic tape recorder 磁带记录仪magnetic pulling exciter磁吸式激振器mass matrix 质量矩阵matrix of transfer function传递函数矩阵matrix iteration 矩阵迭代法maximum shock response spectrum冲击最大响应谱mean square value 均方值mechanical exciter 机械式激振器mechanical shaker 机械式振动台mechanical impedance 机械阻抗mechanical mobility 机械导纳midspan 跨中modal coordinates 模态坐标modal damping ratio 模态阻尼比modal impedance 模态阻抗modal mass 模态质量modal matrix 正则振型矩阵modal mobility 模态导纳modal stiffness 模态刚度modal testing 模态试验mode shape 振型(模态)modulus of elasticity 弹性模量moment 弯矩multi-degree-mf- freedom system 多自由度系统multiply 乘Nnatural frequency 固有频率natural logarithm 自然对数nondimensional 无量纲的nonlinear 非线性的non-proportional viscous damping 非比例粘性阻尼normal force 法向力normalization 正则化normal mode 主振型numerator 分子Ooctave 倍频程odd 奇数off-diagonal element非对角元素oil whirl 油膜涡动oil whip 油膜振荡orientation 方位orthogonal 正交的orthogonal matrix 正交矩阵orthogonality 正交性orthonormal mode 正则振型oscillatory 振动的,摆动的oscillatory motion 振荡运动overdamped 过阻尼的Pparallel 并联,平行Parseval's Theorem 帕斯瓦尔定理partial differential 偏微分particular solution 特解partitioned matrix 分块矩阵peak value 峰值pendulum (钟)摆periodic 周期的periodic motion 周期运动phase 相位phase distortion 相位失真[畸变]phase frequency characteristics相频特性phase frequency characteristics相频特性曲线phase shift 相移phase spectrum 相位谱piezoelectric crystal accelerometer压电晶体加速度计piezoelectric effect 压电效应piezoresistive effect 压阻效应pipe 管道polar moment of inertia极转动惯量polarization 极化polygon 多边形,多角形polynomial 多项式portable vibrometer 便携式测振仪potential energy 势能power 冥(次方),功率power spectral density 功率谱密度premultiply 左乘principal coordinate 主坐标principal frequency 主频率principal mass 主质量principal vibration 主振动principal stiffness 主刚度principle of superposition叠加原理probability 概率probability distribution 概率分布probability density function概率密度函数product 乘积propagation(声波, 电磁辐射等)传播proportional damping 比例阻尼proportional phase shift 比例相移proportional viscous damping比例粘性阻尼pulley 皮带轮,滑轮pulse excitation 脉冲激励Qquasi-periodic vibration准周期振动QR decomposition QR分解quefrency 倒频率quotient 商Rramp 斜面,斜道radial 径向的radial vibration 径向振动radian 弧度random vibration 随机振动Rayleigh method 瑞利法Rayleigh quotient 瑞利商Rayleigh-Ritz Method瑞利-里兹法real symmetric matrix 实对称矩阵recast 改动reciprocal 倒数的reciprocity calibration 互易校准法rectangular pulse 矩形脉冲recurrence formula递推公式, 循环residual amplitude 残余振幅residual shock response spectrum剩余冲击响应谱resolution 分辨率resonance 共振rigid body 刚体rise time 上升时间Ritz method 李兹法rms 均方根rod 杆root mean square 均方根root solving 求根rotation matrix 旋转矩阵rotatingmachine 旋转机械rotor 转子rotor-support system转子支承系统row 行row matrix 行矩阵rudder 舵Ssampling frequency 采样频率sampling interval 采样间隔sampling theorem 采样定理scaling 比例运算seismic 地震的seismometer 地震仪self-excitation vibration 自激振动sensitivity 灵敏度series 串联shaft 轴shaft vibration 轴振动shear 剪力shear modulus of elasticity剪切弹性模量shock excitation 冲击激励shock isolation 振动隔离shock response 冲击响应shock response spectrum击响应谱shock response spectrum analysis 冲击响应谱分析shock testing machine 冲击试验台SI 国际(单位)制sideband 边(频)带signal conditioner 信号处理器simply support 简支singular matrix 降秩(矩)阵single-DOF 单自由度slender 细长的slope 转角,斜率spin 旋转spring 弹簧square root 平方根stabilize 稳定standard deviation 标准偏差standard vibration exciter标准振动台state vector 状态向量static calibration 静态校准static coupling 静力耦合static equilibrium position静平衡位置steady state 稳态step function 阶跃函数stiffness 刚度stiffness influence coefficient刚度影响系数stiffness matrix 刚度矩阵strain 应变stress 应力string 线, 细绳stroboscope 闪光测速仪structural damping 结构阻尼subdiagonal 子对角subscript 下标subsidiary 附属的,次要的successive 接连不断的support motion 支承运动suspend 悬挂suspension 悬挂synthesis 综合,合成synchronous forward precession同步正进动synchronous whirl 同步涡动symmetric matrix 对称矩阵Ttabulate 将列成表tangent 切线,正切tangential 切向的tensile 拉力的,张力的tension 张力,拉力terminology 术语time delay 延时torque 扭矩, 转矩torsion 扭转torsional 扭转的torsional stiffness 抗扭刚度torsional vibration扭转振动TR 传递率trace of the matrix 矩阵的迹transducer 传感器transfer function 传递函数transfer matrix method 传递矩阵法transient response 瞬态响应transient vibration 瞬态振动transmissibility 隔振系数transpose 转置trial 测试,试验triangular matrix 三角矩阵truncation error 截断误差,舍位误差twist 扭,转Uunbalance 不平衡unbalance response 不平衡响应underdamped 欠阻尼的uniformization 归一化unit impulse 单位脉冲unit matrix 单位矩阵unit vector 单位向量unsymmetric 非对称upper limit amplitude 幅值上限upper triangular matrix 上三角阵Vvariance 方差velocity 速度velometer 速度计vertical vibration 垂直振动vibration 振动vibration absorber 吸振器vibration isolation 隔振vibration nomogram 振动诺模图vicinity 在附近virtual work 虚功viscous damping 粘性阻尼Wwaveform 波形wavelength 波长wave reproduction 波形再现wave-shape distortion 波形畸变wedge劈,尖劈,楔子whirl 旋转,涡动,进动Wiener-Khinchin formula维纳-辛钦公式window function 窗函数。
任意拉格朗日欧拉方法
任意拉格朗日欧拉方法拉格朗日欧拉方法(Lagrange-Euler method)是数学中的一种重要的微积分方法。
它被广泛应用于物理学、工程学、控制论、经济学等学科中,用于求解一类特殊的微分方程。
任意拉格朗日欧拉方法(Arbitrary Lagrange-Euler method)是拉格朗日欧拉方法的一种扩展,它可以用于求解更为复杂的微分方程,也可以处理更为复杂的分析问题。
在本文中,我们将介绍这种方法的基本原理,并通过一个实例来展示它的应用。
第一步:构建能量函数任意拉格朗日欧拉方法的第一步是构建能量函数(Energy function)。
能量函数是一个与系统状态变量相关的函数,通常用于描述系统中的物理特性。
根据能量守恒定律,能量函数在系统运动中保持不变,因此我们可以将它作为分析系统的基础。
以一个自由落体为例,我们可以用如下的公式来表示它的能量函数:$E = mgz + \frac{1}{2}mv^2$其中,m代表物体的质量,g代表重力加速度,z表示物体的高度,v表示物体的速度。
这个式子的意义是,物体在不受任何力作用的情况下,它的能量等于动能加势能。
在这个例子中,势能是由物体在高度z 处所受的重力引起的,动能则是由物体的速度所贡献的。
第二步:构建拉格朗日方程任意拉格朗日欧拉方法的第二步是构建拉格朗日方程(Lagrange equation)。
拉格朗日方程是用于描述系统运动的方程,它可以从能量函数中推导出来。
在我们的例子中,拉格朗日方程可以表示为:$\frac{d}{dt}\frac{\partial L}{\partial \dot{z}} -\frac{\partial L}{\partial z} = 0$其中,L表示拉格朗日函数(Lagrangian function),它可以从能量函数中通过如下方式推导得到:$L = \frac{1}{2}mv^2 - mgz$这个式子的意义是,拉格朗日函数代表着系统的运动状态,它是由动能与势能之间的差值所确定的。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Lagrange's Equation (2)∂L d ⎛ ∂L − ⎜ ∂q j dt ⎜ ∂q j ⎝ & ⎞ ⎟=0 ⎟ ⎠pj =∂L & ∂q j& H = ∑ qii∂L −L & ∂qi分析力学的发展历程 光学 天文学牛顿力学变分法虚功原理哈密顿原理拉格朗日方程哈密顿方程History of Classical Mechanics1686 Newton: the Principia 1717 Jean Bernoulli: the Principle of Virtual Work 1743 Jean Le Rond d’Alembert: the D’Alembert Principle 1788 Joseph‐Louis Lagrange: Analytical Mechanics3Find the conserved quantity& F=P& N=L⎞ ⎟=0 ⎟ ⎠∂L d ⎛ ∂L − ⎜ & ∂q j dt ⎜ ∂q j ⎝Generalized Momentum(广义动量)∂L d ⎛ ∂L − ⎜ ∂q j dt ⎜ ∂q j ⎝ & ⎞ ⎟=0 ⎟ ⎠d ⎛ ∂L ⎜ dt ⎜ ∂q j ⎝ & ⎞ ⎟=0 ⎟ ⎠∂L =0 ∂q j• The generalized momentum∂L pj ≡ & ∂q j– canonical (正则) or conjugate(共轭) momentum∂L & = mi xi For simple x-y-z coordinates pix = & ∂xiGeneralized MomentumIn spherical coordinates (球坐标)L = T − V ( r , θ, φ)T= 1 & & & m(r 2 + r 2 θ2 + r 2 sin 2 θφ2 ) 2∂L ∂T & pr = = = mr & & ∂r ∂r∂L pj ≡ & ∂q j∂L ∂T & pθ = & = & = mr 2 θ ∂θ ∂θ角动量∂L ∂T & pφ = & = & = mr 2 sin 2 θφ ∂φ ∂φGeneralized Momentum• Generalized momentum may not look like linear momentum– Form may vary if V depends on velocity• Example: a particle in EM field1 2 L = mv − qφ + qA ⋅ v 2∂L & px = = mx + qAx & ∂x– Dimension (unit) may vary, if qj is not a space coordinate• pjqj always has the dimension of action (= work × time)Conservation Laws• pj is conserved if L does not depend explicitly on qj – Such qj is called ignorable or cyclic coordinatedp j dt − ∂L =0 ∂q j∂L =0 ∂q jdp j dt=0p j = constantThis equation is called first integral or circulatory integralConservation Laws& & mi ( yi2 + zi2 ) L = T −V = ∑ − V ( yi , zi , t ) 2 i∂L =0 ∂x jL= 1 & & m( r 2 + r 2 θ 2 ) − V ( r ) 2& pxj = mx j∂L =0 ∂θ& pθ = mr 2θ例题:圆锥面上质量为m的质点,受重力作用,约束在半顶角为α的圆锥面上运动,求质点的运动微分方程。
z = r ( ctgα )z1 2 2 &2 2 1 2 2 & & & & T = m(r + r θ + z ) = m(r csc α + r2θ 2 ) 2 2 1 cscα = 余割函数 sinαmyrα xV = mgz = mgr ( ctgα )1 & & L = T − V = m ( r 2 csc 2 α + r 2θ 2 ) − mgr ( ctgα ) θ 2 ∂L & pθ = & = mr 2θ = 常量 circulatory integral ∂θ& && − rθ 2 sin 2 α + g sin α cos α = 0 rMethod 2: first integral1 & & L = T − V = ma 2θ 2 + ma 2ω (θ + ω )(1 + cos θ ) 2 ∂L & p = & = ma 2θ + ma 2ω (1 + cos θ ) ∂θ & & & H = pθ 2 − L = ma 2θ + ma 2ω (1 + cos θ ) θ()⎡1 2 &2 2 & + ω )(1 + cos θ ) ⎤ − ⎢ ma θ + ma ω (θ ⎥ ⎣2 ⎦1 & = ma 2θ 2 − ma 2ω 2 (1 + cos θ ) = const . 2&& + ω 2 sin θ = 0 θAn easier way:1 1 2 2 & & & & T = m ( x + y ) = ma 2θ 2 + ma 2ω (θ + ω )(1 + cos θ ) 2 2 2 2 2 & + 1 ma 2θ 2 & = ma ω (1 + cos θ ) + ma ω (1 + cos θ )θ 2= T0 + T1 + T2H = T2 − T0 + V = const1 2 & ma 2θ 2 − ma 2ω( + cos θ)= const 1 2&& θ + ω 2 sin θ = 032[例2]水平面上一斜面B1上有一滑 块B2,质量分别为m1与m2。
斜面倾角为θB2hθvB1设初始时B2在B1的顶点,两物体均无速度,求当滑块B2下 滑离开斜面时 (落差为h), 求B1的速度以及B2相对斜面的速 度[解]牵连坐标 广义坐标 相对坐标牵连速度(平动) 相对速度2 2 2 1& v1 = x1 ′ &′ v 2 = x2x1 ′ x2r y′ x2r ′ y2O1hr ′ v2B2θx1r v2r v1B1′ 2 − 2v1v2 cos θ O ′ v = v + v2&′ &2 & &′ = x22 + x1 − 2 x1 x2 cos θ1 1 2 & &′ &2 & &′ T = m1 x1 + m2 ( x22 + x1 − 2 x1 x2 cos θ ) 2 2′ V = V1 + V2 = − m2 gx2 sin θ1 1 2 & &′ & & &′ T = m1 x1 + m2 ( x22 + x12 − 2 x1 x2 cos θ ) ′ V = − m 2 gx2 sin θ 2 2 1 ′ &2 &′ & &′ L = T − V = ⎡ ( m1 + m2 ) x1 + m2 x22 − 2m2 x1 x2 cos θ ⎤ + m2 gx2 sin θ ⎣ ⎦ 2∂L ∂x1 = 0∂L ∂t = 0x1为循环坐标& p x1 = ∂L ∂x1 = ( m1 + m 2 ) x1 − m 2 x 2 cos θ = c1 & &′H能量守恒H = T2 − T0 + V = c21 1 2 & 1 − m2 x1 x2 cos θ + m2 x22 & &′ &′ T = ( m1 + m2 ) x 2 2均为2次项′ & &′ & &′ ( m1 + m 2 ) x12 + m 2 x22 − 2m 2 x1 x2 cos θ − 2m 2 gx2 sin θ = c2初积分方程& &′ ( m1 + m2 ) x1 − m2 x2 cos θ = c1′ &2 &′ & &′ ( m1 + m2 ) x1 + m2 x22 − 2m2 x1 x2 cos θ − 2m2 gx2 sin θ = c2定常数t=0r yB2′ x2r1 y& x1 = 0 x1 = 0&′ ′ x2 = 0 x2 = 0r1 xO1Δy 2C2c1 = 0动力学方程c2 = 0θOx1B1r x& &′ ( m1 + m2 ) x1 − m2 x2 cos θ = 0 ′ &2 &′ & &′ ( m1 + m2 ) x1 + m2 x22 − 2m2 x1 x2 cos θ − 2m2 gx2 sin θ = 0m2 & &′ x1 = x2 cos θ & &′ ( m1 + m2 ) x1 − m2 x2 cos θ = 0 ( m1 + m2 ) ′ & &′ & &′ ( m1 + m2 ) x12 + m2 x22 − 2m2 x1 x2 cos θ − 2m2 gx2 sin θ = 0m1 + m2 sin 2 θ 2 ′ &′ x2 = 2 gx2 sin θ m1 + m2滑块离开斜面r yB2′ x2r1 yO1h′ x2 = h / sin θr1 xC2滑块相对斜面的速度m1 + m2 sin 2 θ 2 &′ x2 = 2 gh m1 + m2θ′ &′ v 2 = x2 =斜面的速度2 gh( m1 + m2 ) m1 + m2 sin 2 θOx1B1r x2 gh & v1 = x1 = m2 cos θ ( m1 + m2 )( m1 + m2 sin 2 θ )Summary• Discussed conservation laws– Generalized (conjugate) momentum∂L pj ≡ & ∂q j– Energy function∂L & & H ( q, q, t ) ≡ ∑ q j −L & ∂q j j38。