图形的变换与坐标

合集下载

解析几何图形的关键技巧

解析几何图形的关键技巧

解析几何图形的关键技巧几何学是数学的一个重要分支,它研究空间和形状的属性以及它们之间的关系。

在几何学中,解析几何是一种重要的工具,它将代数和几何相结合,通过数学方法来研究图形的性质和变换。

在解析几何中,有一些关键的技巧可以帮助我们更好地理解和分析图形。

一、坐标系的选择在解析几何中,坐标系是非常重要的工具。

通过在平面上引入坐标系,我们可以将点和图形用数学的方式来表示和描述。

选择合适的坐标系对于解析几何的研究是至关重要的。

一般来说,我们可以选择直角坐标系或极坐标系。

直角坐标系适用于研究平面上的图形,而极坐标系则适用于研究圆形和曲线。

二、方程的建立在解析几何中,我们通常通过建立方程来描述和分析图形。

方程可以帮助我们确定图形的性质和特征。

对于直线、圆、椭圆、抛物线和双曲线等图形,我们可以通过建立相应的方程来研究它们的性质。

例如,对于直线,我们可以使用一般式方程或斜截式方程来表示,而对于圆,我们可以使用标准方程或一般方程来表示。

三、图形的性质在解析几何中,了解图形的性质是非常重要的。

通过研究图形的性质,我们可以更好地理解它们的特点和规律。

例如,直线的性质包括斜率、截距和与其他直线的关系等。

圆的性质包括半径、直径、圆心和与其他图形的关系等。

了解这些性质可以帮助我们更好地分析和解决与图形相关的问题。

四、图形的变换在解析几何中,图形的变换是一个重要的研究方向。

通过对图形进行平移、旋转、缩放和镜像等变换,我们可以研究它们的对称性、相似性和等价性等。

例如,通过平移变换,我们可以将一个图形移动到另一个位置,而不改变它的形状和大小。

通过旋转变换,我们可以改变图形的朝向和角度。

通过缩放变换,我们可以改变图形的大小。

通过镜像变换,我们可以在平面上生成图形的镜像。

五、向量的运用在解析几何中,向量是非常重要的工具。

通过向量的运用,我们可以更好地描述和分析图形的运动和变换。

向量可以表示图形的位移和方向。

在解析几何中,我们可以使用向量来表示直线的方向和长度,圆的半径和圆心的位置等。

冀教版八年级数学下册19.4坐标与图形的变化公开课优质教案

冀教版八年级数学下册19.4坐标与图形的变化公开课优质教案

《18.3图形与坐标2》教学案例一、教材说明:1、教材版本:冀教版八年级(上)第十八章第3节《图形与坐标》第2课时。

2、“平面直角坐标系”是学习函数及其图象、的基础,是沟通数与形的桥梁。

这节课是在学习了坐标系与有关几何知识的基础上,进行函数图像在坐标系中变化,,学生在学习平面直角坐标系的概念,继续探究坐标系中点、图形变化的特征,为以后学习图形的平移、函数图像的平移打下基础。

本节内容需3课时,本设计为第2课时,本人大胆尝试,改编教材原有内容,结合学生现有水平,充分运用多媒体课件及导学案,创新编排,由点的平移拓展到图形的平移,符合学生的认知规律。

二、教学目标:(一)知识目标1、感受平面直角坐标系中图形的变化过程;2、探索平面直角坐标系中图形的变化过程及规律。

(二)技能目标1、会正确画出平面直角坐标系中图形的变化过程;2、在给定的平面直角坐标系中,能够根据坐标指出点的位置,并且已知点的位置写出它对应的坐标;3、在给定的条件下,能够根据象限内点的特征与图形变化的特征,解决一些简单的数学问题;4、初步培养学生探索总结规律的能力。

(三)情感目标1、能使学生感受到数学与现实世界的联系,增强学生“用数学”的意识,感受数学之用;2、培养学生严谨朴实的科学态度和勤奋自强的探索精神,以及独立思考与合作交流的学习习惯,感受数学之实。

3、让学生得到尝试、成功的情感体验,感受数学之美。

三、教学重点与难点:1、教学重点:能在给定的平面直角坐标系中,结合图形的变化求相应点的坐标。

2、教学难点:探索象限内图形变化而产生的坐标变化特征,以及它们特征的简单运用。

四、教学媒体和教学技术选用1、提供学习资源:导学案(前一天发给学生自主完成)2、教学媒体:实物投影、多媒体课件五、教学过程:(一)、自学引路:(课前以导学案的形式发给学生,学生独立完成)根据右图完成下列问题: 1、写出图中各点的坐标:点A( )点B( )点C( )点P( )2、将点A向右平移5个单位长度,得到点A1( );3、将点B向左平移2个单位长度,得到点B1( );4、将点P向上平移4个单位长度,得到点P1( ) ;5、将点C向下平移3个单位长度,得到点C1( );归纳总结:根据以上平移过程及结果,你发现了什么变化规律? 想一想,做一做:点C(2,1)经过如何变化得到点C 2(5,4) 点A(-1,-1)经过如何变化得到点A 2(2,3).使用说明:课前教师检查学生完成情况,确定课堂教学任务。

初中数学知识点精讲精析 图形与坐标

初中数学知识点精讲精析 图形与坐标

23.6 图形与坐标学习目标1.会用合适的方法描述物体的位置,用坐标的方法描述图形的运动变换。

2.能运用图形的变换与坐标的内在联系解决一些简单的生活实际问题。

知识详解1.用坐标确定位置有了平面直角坐标系,我们可以毫不费力地在平面上确定一个点的位置。

现实生活中我们能看到许多这种方法的应用:如用经度和纬度来表示一个地点在地球上的位置,电影院的座位用几排几座来表示,国际象棋中竖条用字母表示、横条用数字表示等。

除了用坐标形式表示物体的位置之外,我们还经常用到的还有用一个方向的角度和距离来表示一个点的位置。

建立直角坐标系后,平面上的点可以用坐标来描述,在平面上由于建立的坐标系不同,单位长度选定不同,所以同一个点描述的坐标也可能不同。

平面上的点也可以用一个角度来描述其位置。

2.图形的变换与坐标一个图形沿x轴左、右平移,它们的纵坐标都不变,横坐标有变化。

向右平移几个单位,横坐标就增加几个单位;向左平移几个单位,横坐标就减少几个单位。

关于x轴或y轴成对称的对应点的坐标的关系:关于x轴对称的对称点的横坐标相同,纵坐标互为相反数。

关于y轴对称的对称点的纵坐标相同,横坐标互为相反数。

在同一直角坐标系中,图形经过平移、轴对称、放大、缩小的变化,其对应顶点的坐标也发生了变化。

【典型例题】例1:2008年5月12日,在四川省汶川县发生8.0级特大地震,能够准确表示汶川这个地点位置的是()A.北纬31°B.东经103.5°C.金华的西北方向上D.北纬31°,东经103.5°【答案】D【解析】根据地理上表示某个点的位的方法可知选项D符合条件.例2:如图,小明从点O出发,先向西走40米,再向南走30米到达点M,如果点M的位置用(﹣40,﹣30)表示,那么(10,20)表示的位置是()A.点AB.点BC.点CD.点D【答案】B【解析】根据题意可得:小明从点O出发,先向西走40米,再向南走30米到达点M,如果点M的位置用(﹣40,﹣30)表示,即向西走为x轴负方向,向南走为y轴负方向;则(10,20)表示的位置是向东10,北20;即点B所在位置。

计算机图形学_ 二维图形变换_53 二维图形变换原理及齐次坐标_

计算机图形学_ 二维图形变换_53 二维图形变换原理及齐次坐标_
普通坐标×h→齐次坐标 齐次坐标÷h→普通坐标 当h = 1时产生的齐次坐标称为“规格化坐标”,因为前n个 坐标就是普通坐标系下的n维坐标
为什么要采用齐次坐标?
在笛卡儿坐标系内,向量(x,y)是位于z=0的平面上的点 ;而向量(x,y,1)是位于z=1的等高平面上的点
对于图形来说,没有实质性的差别,但是却给后面矩阵运 算提供了可行性和方便性
假如变换前的点坐标为(x,y),变换后的点坐标为(x*,y* ),这个变换过程可以写成如下矩阵形式:
x*, y*x,
x* a1x b 1 y c1
y•M
x*, y*x
a1
y
1
b 1
c1
a2 b2 c2
上两式是完全等价的。对于向量(x,y,1),可以在几何意义 上理解为是在第三维为常数的平面上的一个二维向量。
这种用三维向量表示二维向量,或者一般而言,用一个n+1维 的向量表示一个n维向量的方法称为齐次坐标表示法
n维向量的变换是在n+1维的空间进行的,变换后的n维结果 是被反投回到感兴趣的特定的维空间内而得到的。
如n维向量(p1,p2,...,pn)表示为(hp1,hp2,...,hpn,h), 其中h称为哑坐标。 普通坐标与齐次坐标的关系为“一对多”:
变换图形就是要变换图形的几何关系,即改变顶点的坐 标;同时,保持图形的原拓扑关系不变
仿射变换(Affine Transformation或 Affine Map)是一 种二维坐标到二维坐标之间的线性变换 (1)“平直性”。即:直线经过变换之后依然是直线
(2)“平行性”。即:平行线依然是平行线,且直线上 点的位置顺序不变)
采用了齐次坐标表示法,就可以统一地把二维线形变换表示 如下式所示的规格化形式:

《第1课时 图形的平移与坐标变化》课件 (同课异构)2022年精品课件

《第1课时 图形的平移与坐标变化》课件 (同课异构)2022年精品课件
了任何一个.
∴PD = PE 〔在角的平分线上的点到这个角的两边的距离相等〕.
判一判:〔1〕∵ 如下左图,AD平分∠BAC〔〕, ∴ BD = CD ,
× ( 在角的平分线上的点到这个角的两边的距离相等 )
B
B
A
D
A
C
(2)∵ 如上右图, DC⊥AC,DB⊥AB 〔〕.
D C
∴ BD = CD ,
5 得到点A1( _3__ , _-3__ );
4
3
2
1
-6 -5 -4 -3 -2 -1-1 O1 2 3 4 5 6 x
-2 A2 A -3
A1 2.将点A(-2,-3)向左平移
-4
2个单位长度,得到点
-5
-6
A2(__-_4_ , __-_3__);
3.将点A(-2,-3)向上平移4个单位长
学习目标
1.会表达角平分线的性质及判定;〔重点〕 2.能利用三角形全等,证明角平分线的性质定理, 理解和掌握角平分线性质定理和它的逆定理,能应 用这两个性质解决一些简单的实际问题;〔难点〕 3.经历探索、猜测、证明的过程,进一步开展学 生的推理证明意识和能力.
导入新课
情境引入
如图,要在S区建一个贸易市场,使它到铁路
例2 如图,在平面直角坐标系中,P(a,b)是△ABC的边AC
上一点,△ABC经平移后点P的对应点为P1(a+6,b+2).
(1)请画出上述平移后的△A1B1C1, 并写出点A、C、A1、C1的坐标;
y
A1
解:〔1〕△A1B1C1如 以下图,各点的坐标分别 B 为A(-3线段AB向上平 移2个单位,作出它的 像A′B′,并写出点A′,B′ 的坐标.
1. 作出线段两个端点平 移后的对应点.

图形的变换与坐标精华版_图文

图形的变换与坐标精华版_图文

段依次连
–3
接,观察.
–4
–5
一、平移
1. 各点横坐标+a(-a)
图形向右(向左) 平移 a个 单位;
2. 各点纵坐标+a(-a)
图形 向上(向下)平移a个单位;
练习:
图形上各点按下列方式进行坐标变化,
所得的图案与原来的图案相比有什么变 化?
(1)(x,y) (x,y +5)
(2)(x,y) (x +1,y)
图形的变换与坐标精华版_图文.ppt
情境导入
• 在同一直角坐标系中,图形 经过平移、旋转、轴对称、 放大或缩小之后,点的坐标 会如何变化呢?
y
描出各点
5
:(0,0)
(5,1) (5,-
2
1) (3,0)
1
0 –1
1
2
3
4
5
6
7
8
9
10
x
(4,-2) (0,0) 用线
–2
四、放大缩小:
(x,y) (k x, ky) 形状不变,放大或缩小k倍;
若k>1,图形整个被放大; 若 0<k<1,图形整个被压缩。
1、将坐标作如下变化时,图形将怎样变 化? 1. (x,y)(x,y+4) 4. (x,y)(3x , y)
2. (x,y)(x,y-2) 5. (x,y)(x , y)
3. (x,y)(x,-y)
6. (x,y)(3x , 3y)
2.将图中的△ABC作下列运动,画出相应的 图形,指出三个顶点的坐标所发生的变化. (1)沿y轴正向平移2个单位; (2)关于y轴对称; (3)以B点为位似中心,放大到2倍.
·

图形的变换与坐标教案

图形的变换与坐标教案

图形的变换与坐标教案第一章:图形的认识与坐标系的建立1.1 平面直角坐标系的认识讲解平面直角坐标系的定义和构成演示坐标轴上的点与实际物体的对应关系让学生通过实例理解坐标系在几何中的应用1.2 坐标与图形的关系解释点的坐标表示方法分析直线、三角形等基本图形在坐标系中的表示让学生通过实例掌握坐标与图形之间的关系第二章:图形的平移变换2.1 平移变换的概念讲解平移变换的定义和特点演示平移变换对图形的影响让学生通过实例理解平移变换的性质2.2 平移变换的坐标表示讲解平移变换的坐标表示方法分析平移变换对点的坐标的影响让学生通过实例掌握平移变换的坐标表示方法第三章:图形的旋转变换3.1 旋转变换的概念讲解旋转变换的定义和特点演示旋转变换对图形的影响让学生通过实例理解旋转变换的性质3.2 旋转变换的坐标表示讲解旋转变换的坐标表示方法分析旋转变换对点的坐标的影响让学生通过实例掌握旋转变换的坐标表示方法第四章:图形的缩放变换4.1 缩放变换的概念讲解缩放变换的定义和特点演示缩放变换对图形的影响让学生通过实例理解缩放变换的性质4.2 缩放变换的坐标表示讲解缩放变换的坐标表示方法分析缩放变换对点的坐标的影响让学生通过实例掌握缩放变换的坐标表示方法第五章:图形变换的应用5.1 图形变换在几何中的应用讲解图形变换在几何问题中的应用分析实例问题,让学生理解图形变换对几何问题的重要性让学生通过练习题巩固图形变换在几何中的应用5.2 图形变换在实际问题中的应用讲解图形变换在实际问题中的应用分析实例问题,让学生理解图形变换在实际问题中的作用让学生通过练习题巩固图形变换在实际问题中的应用第六章:组合图形的变换6.1 组合图形变换的概念讲解组合图形变换的定义和特点演示组合图形变换对图形的影响让学生通过实例理解组合图形变换的性质6.2 组合图形变换的坐标表示讲解组合图形变换的坐标表示方法分析组合图形变换对点的坐标的影响让学生通过实例掌握组合图形变换的坐标表示方法第七章:坐标与图形变换的综合应用7.1 坐标与图形变换在几何问题中的应用讲解坐标与图形变换在几何问题中的应用分析实例问题,让学生理解坐标与图形变换对几何问题的重要性让学生通过练习题巩固坐标与图形变换在几何中的应用7.2 坐标与图形变换在实际问题中的应用讲解坐标与图形变换在实际问题中的应用分析实例问题,让学生理解坐标与图形变换在实际问题中的作用让学生通过练习题巩固坐标与图形变换在实际问题中的应用第八章:计算机辅助几何设计8.1 计算机辅助几何设计的基本概念讲解计算机辅助几何设计的基本概念和特点演示计算机辅助几何设计在图形变换中的应用让学生通过实例理解计算机辅助几何设计的基本原理8.2 计算机辅助几何设计软件的使用讲解计算机辅助几何设计软件的基本操作分析实例问题,让学生掌握计算机辅助几何设计软件的使用方法让学生通过练习题熟练使用计算机辅助几何设计软件第九章:图形变换与坐标系的拓展9.1 非平面直角坐标系中的图形变换讲解非平面直角坐标系中的图形变换方法演示非平面直角坐标系中图形变换对图形的影响让学生通过实例理解非平面直角坐标系中图形变换的性质9.2 变换群与图形变换讲解变换群的基本概念和性质分析变换群在图形变换中的应用让学生通过实例理解变换群与图形变换的关系第十章:复习与拓展10.1 复习本章所学内容复习本章所学的基本概念、方法和技巧分析典型问题,让学生巩固本章所学知识让学生通过练习题检验自己的学习成果10.2 拓展图形变换的应用领域讲解图形变换在其他学科领域中的应用分析实例问题,让学生了解图形变换的广泛应用激发学生对图形变换在实际问题中应用的兴趣重点和难点解析重点环节一:平面直角坐标系的认识重点关注学生对坐标系的理解和实际物体的对应关系。

图形的变换与坐标教案

图形的变换与坐标教案

图形的变换与坐标教案一、教学目标:1. 知识与技能:理解坐标系的概念,掌握坐标系的建立方法。

学习图形的平移、旋转和缩放等基本变换。

能够运用坐标表示和计算图形的变换。

2. 过程与方法:通过实际操作和观察,培养学生的空间想象能力和抽象思维能力。

学会使用坐标系解决实际问题,提高解决问题的能力。

3. 情感态度价值观:培养学生对数学的兴趣,激发学生探索数学问题的热情。

培养学生的团队协作能力和交流表达能力。

二、教学内容:1. 坐标系的概念和建立方法学习直角坐标系的定义和建立方法。

理解坐标轴和坐标点的含义。

2. 图形的平移变换学习图形的平移概念和规律。

掌握图形平移的坐标表示和计算方法。

3. 图形的旋转变换学习图形的旋转概念和规律。

掌握图形旋转的坐标表示和计算方法。

4. 图形的缩放变换学习图形的缩放概念和规律。

掌握图形缩放的坐标表示和计算方法。

5. 实际问题应用通过实际问题,运用坐标系和图形变换解决实际问题。

培养学生的解决问题能力和创新思维能力。

三、教学资源:1. 教学课件和教学素材。

2. 坐标纸和绘图工具。

3. 实际问题案例。

四、教学过程:1. 导入:通过实际例子,引入坐标系的概念,激发学生的兴趣。

2. 教学内容讲解:结合课件和教学素材,讲解坐标系的概念和建立方法,图形的平移、旋转和缩放变换的规律和计算方法。

3. 课堂练习:布置相关的练习题,让学生巩固所学内容。

4. 实际问题应用:给出实际问题案例,引导学生运用坐标系和图形变换解决实际问题。

五、教学评价:1. 课堂练习:通过课堂练习题,评估学生对知识的掌握程度。

2. 实际问题应用:通过实际问题解决情况,评估学生的应用能力和创新能力。

3. 学生互评和自评:鼓励学生进行互评和自评,提高学生的交流和表达能力。

六、教学活动设计:1. 导入活动:通过一个简单的图形变换游戏,让学生感受图形变换的乐趣,引发学生对图形变换的好奇心。

2. 主体活动:引导学生通过合作探究,自主发现图形变换的规律,并通过实际操作验证自己的发现。

北师大数学八年级上册第二章3.3轴对称与坐标变化

北师大数学八年级上册第二章3.3轴对称与坐标变化

3.3轴对称与坐标变化知识精讲图形的平移1.在平面直角坐标系中,图形上各点的纵坐标不变,横坐标分别加上(或减去)一个正数a,则图形沿水平方向向右(或向左)平移a个单位长度,图形形状、大小不变.2.在平面直角坐标系中,图形上各点的横坐标不变,纵坐标分别加上(或减去)一个正数b,则图形向上(或向下)平移b个单位长度,图形形状、大小不变.横坐标(x)纵坐标(y)左右向左移动n个单位长度(n>0),横坐标变为x n-不变向右移动n个单位长度(n>0),横坐标变为x n+上下不变向上移动n个单位长度(n>0),纵坐标变为x n+向下移动n个单位长度(n>0),纵坐标变为x n-割分割,把图形分割成几部分容易求解的图形,分别求解,然后相加即可.补补齐,把图形补成一个容易求解的图形,然后再减去补上的那些部分.三点剖析一.考点:用坐标表示地理位置,坐标系内图形的变换,计算坐标系内图形的面积,坐标找规律.二.重难点:坐标系内图形的变换,计算坐标系内图形的面积,坐标找规律.三.易错点:1.平行移动最关键的是掌握平移的方向与坐标变化之间的关系,可以用口诀形式表示:横坐标,右移加,左移减;纵坐标,上移加,下移减;2.求面积时,优先考虑补的方法,通常补成一个长方形或者梯形,之后再相减求解即可;3.计算坐标系内图形的面积时,平行或垂直于坐标轴直线上的两个点之间的距离,用横坐标之差的绝对值或者纵坐标之差的绝对值表示.用坐标表示地理位置例题1、多多和爸爸、妈妈周末到动物园游玩,回到家后,她利用平面直角坐标系画出了动物园的景区地图,如图所示.可是她忘记了在图中标出原点和x轴、y轴.只知道马场的坐标为(-1,-2),你能帮她建立平面直角坐标系并求出其他各景点的坐标?(图中每个小正方形的边长为1)【答案】两栖动物(6,2);狮子(-2,6);飞禽(5,5)【解析】如图所示:南门(2,1),两栖动物(6,2),狮子(-2,6),飞禽(5,5).随练1、如图是老北京城一些地点的分布示意图.在图中,分别以正东、正北方向为x轴、y轴的正方向建立平面直角坐标系,有如下四个结论:①当表示天安门的点的坐标为(0,0),表示广安门的点的坐标为(-6,-3)时,表示左安门的点的坐标为(5,-6);②当表示天安门的点的坐标为(0,0),表示广安门的点的坐标为(-12,-6)时,表示左安门的点的坐标为(10,-12);③当表示天安门的点的坐标为(1,1),表示广安门的点的坐标为(-11,-5)时,表示左安门的点的坐标为(11,-11);④当表示天安门的点的坐标为(1.5,1.5),表示广安门的点的坐标为(-16.5,-7.5)时,表示左安门的点的坐标为(16.5,-16.5).上述结论中,所有正确结论的序号是()A.①②③B.②③④C.①④D.①②③④【答案】D【解析】①当表示天安门的点的坐标为(0,0),表示广安门的点的坐标为(-6,-3)时,表示左安门的点的坐标为(5,-6),此结论正确;②当表示天安门的点的坐标为(0,0),表示广安门的点的坐标为(-12,-6)时,表示左安门的点的坐标为(10,-12),此结论正确;③当表示天安门的点的坐标为(1,1),表示广安门的点的坐标为(-5,-2)时,表示左安门的点的坐标为(11,-11),此结论正确;④当表示天安门的点的坐标为(1.5,1.5),表示广安门的点的坐标为(-16.5,-7.5)时,表示左安门的点的坐标为(16.5,-16.5),此结论正确.坐标系内图形的变换例题1、把点P(1,1)向右平移3个单位长度,再向上平移2个单位长度后的坐标为________。

中考数学复习专项知识总结—图形的变换(中考必备)

中考数学复习专项知识总结—图形的变换(中考必备)

中考数学复习专项知识总结—图形的变换(中考必备)1、平移(1)定义:把一个图形沿着某一直线方向移动,这种图形的平行移动,简称为平移。

(2)平移的性质:平移后的图形与原图形全等;对应角相等;对应点所连的线段平行(或在同一条直线上)且相等。

(3)坐标的平移:点(x,y)向右平移a个单位长度后的坐标变为(x+a,y);点(x,y)向左平移a个单位长度后的坐标变为(x-a,y);点(x,y)向上平移a个单位长度后的坐标变为(x,y+a);点(x,y)向下平移a个单位长度后的坐标变为(x,y-a)。

2、轴对称(1)轴对称:把一个图形沿着某一条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线成轴对称。

这条直线叫做对称轴,折叠后重合的点是对应点,叫做对称点。

(2)轴对称图形:如果一个平面图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形。

这条直线叫做它的对称轴。

(3)轴对称的性质:关于某条直线对称的图形是全等形。

经过线段中点并且垂直于这条线段的直线,叫做这条线段的垂直平分线。

如果两个图形关于某条直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线。

轴对称图形的对称轴,是任何一对对应点所连线段的垂直平分线。

(4)线段垂直平分线的性质线段垂直平分线上的点到这条线段两个端点的距离相等;与一条线段两个端点距离相等的点,在线段的垂直平分线上。

(5)坐标与轴对称:点(x,y)关于x轴对称的点的坐标是(x,-y);点(x,y)关于y轴对称的点的坐标是(-x,y);3、旋转(1)旋转定义:把一个平面图形绕着平面内某一点O转动一个角度,叫做图形的旋转。

点O叫做旋转中心,转动的角叫做旋转角。

如果图形上的点P经过旋转变为点P′,那么这两个点叫做这个旋转的对应点。

旋转的性质:①对应点到旋转中心的距离相等;①对应点与旋转中心所连线段的夹角等于旋转角;①旋转前后的图形全等。

(2)中心对称定义:把一个图形绕着某一点旋转180°,如果它能够与另一个图形重合,那么就说这两个图形关于这个点对称或中心对称。

图形的变换与坐标教案

图形的变换与坐标教案

图形的变换与坐标教案一、教学目标1. 让学生理解图形变换的概念,掌握图形变换的基本方法。

2. 让学生掌握坐标系中图形的变换规律,能够运用坐标解决实际问题。

3. 培养学生的观察能力、动手操作能力和逻辑思维能力。

二、教学内容1. 图形变换的概念及基本方法2. 坐标系中图形的变换规律3. 实际问题中的坐标变换应用三、教学重点与难点1. 教学重点:图形变换的概念,坐标系中图形的变换规律。

2. 教学难点:图形变换在实际问题中的应用。

四、教学方法1. 采用问题驱动法,引导学生主动探究图形变换的规律。

2. 利用多媒体辅助教学,直观展示图形变换过程。

3. 结合实际例子,让学生动手操作,加深对图形变换的理解。

五、教学准备1. 教学课件:图形变换的动画演示。

2. 教学素材:纸张、剪刀、直尺等。

3. 练习题:巩固所学知识。

教案内容请参考下述示例:教案示例:一、教学目标1. 让学生了解图形变换的概念,掌握图形变换的基本方法。

2. 让学生掌握坐标系中图形的平移和旋转规律。

3. 培养学生的观察能力、动手操作能力和逻辑思维能力。

二、教学内容1. 图形变换的概念及基本方法2. 坐标系中图形的平移和旋转规律3. 实际问题中的坐标变换应用三、教学重点与难点1. 教学重点:图形变换的概念,坐标系中图形的平移和旋转规律。

2. 教学难点:图形变换在实际问题中的应用。

四、教学方法1. 采用问题驱动法,引导学生主动探究图形变换的规律。

2. 利用多媒体辅助教学,直观展示图形变换过程。

3. 结合实际例子,让学生动手操作,加深对图形变换的理解。

五、教学准备1. 教学课件:图形变换的动画演示。

2. 教学素材:纸张、剪刀、直尺等。

3. 练习题:巩固所学知识。

六、教学内容1. 图形缩放的概念及方法2. 坐标系中图形的缩放规律3. 实际问题中的图形缩放应用七、教学重点与难点1. 教学重点:图形缩放的概念,坐标系中图形的缩放规律。

2. 教学难点:图形缩放在实际问题中的应用。

华师大版九年级数学上册《图形的变换与坐标》教学设计范文

华师大版九年级数学上册《图形的变换与坐标》教学设计范文

华师大版九年级数学上册《图形的变换与坐标》教学设计范文一. 教材分析《图形的变换与坐标》是华师大版九年级数学上册的一章重要内容。

本章主要介绍了图形的平移、旋转和坐标系的应用。

通过本章的学习,学生能够理解平移、旋转的性质,掌握坐标系中图形的变换方法,并能够运用坐标解决实际问题。

二. 学情分析九年级的学生已经具备了一定的数学基础,对图形和坐标有一定的了解。

但学生在学习过程中,可能会对图形的变换和坐标系的应用产生困惑,因此需要教师在教学过程中进行细致的讲解和引导。

三. 教学目标1.理解平移、旋转的性质和坐标系的应用。

2.学会用坐标表示平移、旋转后的图形。

3.能够运用坐标解决实际问题。

四. 教学重难点1.平移、旋转的性质。

2.坐标系中图形的变换方法。

3.坐标在实际问题中的应用。

五. 教学方法1.采用问题驱动的教学方法,引导学生通过观察、思考、探究来获得知识。

2.利用多媒体演示和实际操作,帮助学生直观地理解平移、旋转的性质。

3.以小组合作的形式,让学生在探究中互相学习,提高合作能力。

六. 教学准备1.多媒体教学设备。

2.坐标纸、直尺、圆规等学习工具。

3.相关的教学课件和练习题。

七. 教学过程1.导入(5分钟)通过一个简单的图形变换实例,引导学生思考:图形是如何发生变化的?激发学生的学习兴趣,引出本节课的主题。

2.呈现(10分钟)介绍平移、旋转的性质,以及坐标系中图形的变换方法。

通过多媒体演示和实际操作,让学生直观地理解平移、旋转的性质。

3.操练(10分钟)让学生在坐标纸上进行实际操作,尝试完成一些简单的图形变换。

教师巡回指导,解答学生的问题。

4.巩固(10分钟)呈现一些有关平移、旋转的练习题,让学生独立完成。

教师选取部分学生的作业进行讲解,巩固所学知识。

5.拓展(10分钟)引导学生运用坐标系解决实际问题,如计算物体在坐标系中的位置、绘制物体的运动轨迹等。

6.小结(5分钟)对本节课的主要内容进行总结,强调平移、旋转的性质和坐标系的应用。

华东师大版九年级上册数学:图形的变换与坐标(公开课课件)

华东师大版九年级上册数学:图形的变换与坐标(公开课课件)
复习: 点(x,y)关于x轴对称的点 的坐标为( , ); 点(x,y)关于Y轴对称的点 的坐标为( , );
二、合作交流,探究规律
如图,在直角坐标系中,作出下列已知点关于原点O的对称 点,并写出它们的坐标。这些坐标与已知点的坐标有什么关 系? A(4,0),B(0,-3) C(2,1),D(-1,2) E(-3,-4) A’( , ),B’( , ) C’( , ),D’( , ) E’( , ),
2、本节课所利用的数学方法是 _____;
七、课后作业,自我检评 1、《学业评价》P60 1~10; 2、配套练习
四、学以致用,巩固提高
1、如图,平行四边形ABCD的对角线交点 在原点O上,已知A点为(-3,2) 则C点坐标为( ) A、(2,-3) B、(-3,-2) C、(3,-2) D、(3,2)
2、如图,阴影部分组成的图案既是关于x轴 成轴对称的图形又是关于坐标原点O成中心对 称的图形.若点A的坐标是(1,3),则点M 和点N的坐标分别是( )
榄核二中 江汉标
【教学目标】 1、知识目标 学生掌握在直角坐标系中关于原点对称的点的坐标的关 系。 2、能力目标 学生通过经历——猜想——验证的实践过程,积累数学 活动的经验。 3、情感、态度与价值观目标 学生从坐标的角度揭示中心对称与轴对称之间的关系, 培养观察、分析、合作与探究交流的学习习惯,体验事 物的变化之间是有联系的。
【教学重点】复习: 探究关于原点对称的点的坐标的规律
【教学难点】 关于原点对称的点的坐标的规律的运用
【数学方法】 数形结合
【教学过程】
【教学过程】
一、复习引入 1、填空: 点A(3,2)关于轴对称的点的坐标为_____; 点A(3,2)关于轴对称的点的坐标为_____ ; 2、猜想

平面与立体的几何变换

平面与立体的几何变换

平面与立体的几何变换几何变换是指通过一系列操作使得几何图形在平面或者立体空间中发生形状上的变化。

平面与立体的几何变换在数学和计算机图形学中有着广泛的应用。

本文将介绍平面与立体的几何变换的基本概念、常见的变换方式,并探讨其在实际中的应用。

一、平面几何变换1. 平移变换平移变换是指将平面上的图形沿着某个方向进行平行移动的操作。

平移变换可以通过将图形上的每一个点的坐标分别加上相应的平移量来实现。

平移变换不改变图形的形状和大小,只改变其位置。

在二维平面坐标系中,平移变换可以表示为:x' = x + dxy' = y + dy其中,(x, y)为原始图形上的点的坐标,(x', y')为变换后图形上的点的坐标,dx和dy分别为平移的距离。

2. 旋转变换旋转变换是指将平面上的图形绕指定的旋转中心进行旋转的操作。

旋转变换可以通过将图形上的每一个点绕旋转中心按照一定的角度进行旋转来实现。

在二维平面坐标系中,旋转变换可以表示为:x' = x * cosθ - y * sinθy' = x * sinθ + y * cosθ其中,(x, y)为原始图形上的点的坐标,(x', y')为变换后图形上的点的坐标,θ为旋转角度。

3. 缩放变换缩放变换是指将平面上的图形按照一定的比例进行放大或缩小的操作。

缩放变换可以通过将图形上每一个点的坐标按照一定的比例进行扩大或缩小来实现。

在二维平面坐标系中,缩放变换可以表示为:x' = x * sxy' = y * sy其中,(x, y)为原始图形上的点的坐标,(x', y')为变换后图形上的点的坐标,sx和sy分别为沿x轴和y轴的缩放比例。

二、立体几何变换1. 平移变换立体空间中的平移变换与平面几何中的平移变换类似,只是需要将图形的每一个点的三维坐标分别加上相应的平移量。

2. 旋转变换立体空间中的旋转变换与平面几何中的旋转变换类似,只是需要将图形的每一个点的三维坐标按照一定的角度绕旋转中心进行旋转。

图形的变化与旋转

图形的变化与旋转

图形的变化与旋转一、图形的变换1.平移:在平面内,将一个图形上的所有点都按照某个方向作相同距离的移动,这样的图形运动称为平移。

平移不改变图形的形状和大小。

2.旋转:在平面内,将一个图形绕一点按某个方向转动一个角度,这样的图形运动称为旋转。

旋转不改变图形的形状和大小。

二、图形变换的性质1.平移的性质:平移后图形的位置改变,形状、大小、方向不变。

平移不改变图形的长度和角度。

2.旋转的性质:旋转后图形的位置和方向改变,形状、大小不变。

旋转不改变图形的长度和角度。

三、图形的变换与坐标1.平移与坐标:在坐标系中,平移图形时,图形上的点坐标按照平移的方向和距离进行变化。

2.旋转与坐标:在坐标系中,旋转图形时,图形上的点坐标按照旋转的角度和中心点进行变化。

四、图形的变换与应用1.图形的变换在实际生活中的应用:图形的变换在建筑设计、艺术设计、计算机图形学等领域有广泛的应用。

2.图形的变换在学习过程中的应用:通过图形的变换,可以更好地理解图形的性质和特点,提高解决问题的能力。

1.旋转的定义:在平面内,将一个图形绕一点按某个方向转动一个角度,这样的图形运动称为旋转。

2.旋转的性质:旋转后图形的位置和方向改变,形状、大小不变。

旋转不改变图形的长度和角度。

3.旋转的类型:(1)顺时针旋转:图形按照顺时针方向旋转。

(2)逆时针旋转:图形按照逆时针方向旋转。

(3)旋转角度:旋转的角度可以是任意实数,单位通常是度或弧度。

4.旋转的应用:(1)在生活中,旋转现象广泛存在于机械、建筑、艺术等领域。

(2)在数学中,旋转是几何变换的一种,可以用来解决各种问题。

六、图形的旋转1.图形旋转的定义:将一个图形绕一个点旋转一个角度,得到另一个图形,这个过程称为图形旋转。

2.图形旋转的性质:图形旋转时,旋转前后的图形全等,即形状、大小、位置不变,只是位置发生了变化。

3.图形旋转的类型:(1)中心旋转:图形绕一个点旋转。

(2)轴旋转:图形绕一条直线旋转。

计算机图形学第4章图形变换(2)

计算机图形学第4章图形变换(2)

5、使直线回到原来位置,结果图形即为原图形绕 指定直线旋转变换后的图形。
直线回到原来位置需要进行(3)~(1)的逆变换,其中:
图形绕空间任意轴旋转的总变换矩阵是
H = T
4.3.5 三维对称变换
三维对称变换可以是关于给定对称轴的或者 是关于给定对称平面的变换。三维对称矩阵的建 立类似于二维的。关于给定对称轴的对称变换等 价于绕此轴旋转180°,可以直接使用已讨论过 的相对于轴线的旋转变换公式。关于给定对称平 面的对称变换其最简单的是对称于坐标平面的变 换。当对称平面是坐标平面时(x-y,或x-z,y-z), 可以将此变换看成是左手系和右手系之间的转换。
变换过程为 [x' y' z' 1]=[x y z 1]· S(Sx,Sy,Sz) 其中,Sx,Sy,Sz分别为在x,y,z坐标轴方向上的 比例系数。
4.3.3 三维旋转变换
三维旋转变换:是指将物体绕某个坐标轴旋转 一个角度,所得到的空间位置变化。我们规定旋 转正方向与坐标轴矢量符合右手法则,即从坐标 轴正值向坐标原点观察,逆时针方向转动的角度 为正。如图所示。
设用户选定的窗口范围为(wxl,wyl)和(wxr,wyr), 视口范围为(vxl,vyl)和(vxr,vyr)。 将窗口中的图形转为视口中图形的过程: 1、先平移窗口使其左下角与坐标原点重合; 2、再比例变换使其大小与视口相等; 3、最后再通过平移使其移到视口位置。
4.3 三维几何变换
三维几何变换是二维几何变换的扩展。三维齐 次变换可用4×4矩阵表示。 平移变换 - 比例变换 - 旋转变换 - 绕空间任意轴 的旋转变换 - 对称变换 - 错切变换
四、二维观察变换将投影平面上矩形窗内的图形 变换到显示器(或规范化)坐标中的视口内。

图形变换与坐标规律总结

图形变换与坐标规律总结

图形变换与坐标规律总结一、图形变换与坐标变化点的坐标的变化与图形的变换的关系,通过点的坐标的变化可得到图形变换的规律.总结如下:问题:在直角坐标系中描出点(1,2)、(2,6)、(3,2)、(4,6)、(5,2),并将各点用线段依次连接起来,观察所得的图形,你认为它是一个什么图形?解析:通过正确的作图可得,按题目的要求连接后,得到一个图形,如图1所示,这是一个“M”型。

图1 图2变换1:将图1中的点A、B、C、D、E的纵坐标不变,横坐标分别变成原来的2倍,再将所得的点A1、B1、C1、D1、E1按题目中的连接方式连接,所得的图形与原来的图形相比有什么变化?解析:点A1(2,2),B1(4,6),C1(6,2),D1(8,6),E1(10,2),按要求连接起来如图2所示.和原图形比较,M字图被横向拉长为原来的2倍.总结规律:(1)当纵坐标不变,横坐标变为原来的n(n>1)倍时,则图形被横向拉长原来n倍;(2)当横坐标不变,纵坐标变为原来的n(n>1)时,则图形被纵向拉长原来的n倍.(3)当横坐标、纵坐标分别变为原来的n(n>1)倍,则所得图形形状不变,大小变为原来的n2倍.变换2:将图1中的点A,B,C,D,E的点横坐标不变,纵坐标都加上3,再将所得A2,B2,C2,D2,E2点按题目的要求连接,所得的图形与原图形比较有什么变化?解析:点A2(1,5)、B2(2,9)、C2(3,5)、D2(4,9)、E2(5,5).按要求连接后,所得的图形如图3所示,与原来的图形相比,M字形大小、形状不变,而向上平移了3个单位长度.图3总结规律:(1)横坐标不变,纵坐标分别增加(或减少)n个单位长度,则图形向上(或向下)平移了n个单位长度.(n>0);(2)当纵坐标不变,横坐标分别增加(或减少)n个单位长度,则图形向右(或左)平移了n个单位长度.(n>0)变换3:将图1中的点A,B,C,D,E的横坐标,纵坐标都乘以-1,再将所得A3,B3,C3,D3,E3点按题目的要求连接,所得的图形与原图形比较有什么变化?图4解析: A3(-1,-2)、B3(-2,-6)、C3(-3,-2)、D3(-4,-6)、E3(-3,-2).所得的图形如图4所示,与原图形相比,M字形绕O点旋转了180度,即两个图形关于O点成中心对称.总结规律:(1)横、纵坐标分别乘以-1,则所得图形与原图形关于原点成中心对称;(2)当横坐标不变,纵坐标都乘以-1时,所得图形与原图形关于横轴成轴对称;(3)当纵坐标不变,横坐标都乘以-1时,所得的图形与原图形关于纵轴成轴对称.二、图形变换与坐标变化的应用例1如图5,已知△ABC三个顶点的坐标是:A(-2,5)、B(-4,3)、C(-1,2),这三个顶点的纵坐标不变,将横坐标都加上5,得到A′、B′、C′,写出点A′、B′、C′的坐标,并画出△A′B′C′,△A′B′C′与△ABC相比发生了怎样的变化?解析:A(-2,5)、B(-4,3)、C(-1,2)的纵坐标不变,横坐标都加上5,得到对应点的坐标分别是:A′(3,5)、B′(1,3)、C′(4,2),顺次连结A′B′、B′C′、C′A′,即得△A′B′C′.比较△A′C′B′与△ABC可以发现:△ABC向右平移5个单位长度后,得到的△A′B′C′.图5 图6例2如图6,已知△ABC三个顶点A(-2,4),B(-4,2),C(-1,1),将点A、B、C的横坐标,纵坐标都乘以-1,得对应点A′、B′、C′.写出点A′、B′、C′的坐标,并画出△A′B′C′,△A′B′C′与△ABC相比,发生了怎样的变化?解析:A(-2,4),B(-4,2),C(-1,1)的横、纵坐标都乘以-1,得对应点的坐标分别为:A′(2,-4),B′(4,-2),C′(1,-1).作出点A′、B′、C′,顺次连结A′B′、B′C′、C′A′,即得△A′B′C′.比较△A′B′C′与△ABC可以发现:△A′B′C′是由△ABC绕坐标原点顺时针旋转180°后得到.例3如图7,已知△ABC,A(1,4),B(3,1),C(-2,2).将点A、B、C三点的纵坐标都乘以-1,横坐标不变,得对应点A′、B′、C′,写出点A′、B′、C′点的坐标,并画出△A′B′C′,比较△A′B′C′与△ABC,△A′B′C′与△ABC相比发生了怎样的变化?图7解析:A(1,4),B(3,1),C(-2,2)的纵坐标都乘以-1,得A′(1,-4),B′(3,-1),C′(-2,-2).顺次连接A′B′、B′C′、C′A′,得△A′B′C′.比较△A′B′C′与△ABC可以发现:△A′B′C′是由△ABC关于x轴对称得到的.例4已知△ABC各顶点的坐标分别是A(0,2),B(1,3),C(2,-2),各点的纵坐标不变,横坐标都乘以2,所得的对应点分别是A′、B′、C′,写出A′、B′、C′点的坐标,并连接A′B′、B′C′、C′A′,比较所得△A′B′C′与原△ABC,发生了怎样的变化?解析:A(0,2),B(1,3),C(2,-2)各点的横坐标分别乘以2,得对应点的坐标分别是A′(0,2),B′(2,3),C′(4,-2),顺次连结A′B′、B′C′、C′A′,得△A′B′C′′,可以发现△ABC 被横向拉伸了2倍.图8 图9例5 如图9,已知△ABC .各顶点的坐标分别是A (-4,0),B (1,0),C (-1,4),将各点的横坐标不变,纵坐标都乘以21后,得对应点为A ′、B ′、C ′,作出△A ′B ′C ′,将 △A ′B ′C ′与△ABC 比较,发生了怎样的变化? 解析:A (-4,0),B (1,0),C (-1,4)纵坐标乘以21,得对应点的坐标分别为A ′(-4,0),B ′(1,0),C ′(-1,2),顺次连结A ′B ′、B ′C ′、C ′A ′得△A ′B ′C ′,比较△A ′B ′C ′与△ABC ,△ABC 被纵向压缩了21. 试一试身手1、在直角坐标系中,(1)描出下列各点,并将这些点用线段依次连接起来.(-5,0),(-5,4),(-8,7),(-5,6),(-2,8),(-5,4);(2)把(1)中的图案向右平移10个单位,作出平移后的图案.2、如图,在直角坐标系中,第一次将△OAB变换成△OA1B1,第二次将△OA1B1变换成△OA2B2,第三次将△OA2B2变换成△OA3B3……已知:A(1,3),A1(2,3),A2(4,3),A3(8,3),B(2,0),B1(4,0),B2(8,0),B3(16,0).观察每次变换前后的三角形有何变化,按照变换规律,第五次变换后得到的三角形A5的坐标是,B5的坐标是.参考答案1、解析:首先根据题意在下面的坐标系中描出各点,再依次用线段将其连接起来,即可得出坐标系中y轴左边的图形,再依据要求将各点分别向右平移10个单位,并依次连接各点即可得出y轴左边的图形向右平移10个单位后的图形,如下图所示.2、解析:观察给出的各点的坐标可知:对A、A1,A2,A3而言,后面各点的横坐标分别是前面点的横坐标的2倍,为2n(其中n为各点的下标序数).而纵坐标不变都为3;对2 n(其中n为B、B1,B2,B3而言后面各点的横坐标分别是前面点的横坐标的2倍,为1各点的下标序数),纵坐标不变都为0,由此可知第五次变换后A5的坐标为(32,3),B5的坐标为(64,0).。

二维图形变换原理及齐次坐标

二维图形变换原理及齐次坐标

⼆维图形变换原理及齐次坐标⼆维图形变换通过学习【向量分析】和【图形变换】,可以设计出⼀些⽅法来描述我们所遇见的各种⼏何对象,并学会如何把这些⼏何⽅法转换成数字。

⼀、向量从⼏何⾓度看,向量是具有长度和⽅向的实体,但是没有位置。

⽽点是只有位置,没有长度和⽅向。

在⼏何中把向量看成从⼀个点到另⼀个点的位移。

1、向量的基本知识(1)向量的表⽰从P点到Q点的位移⽤向量v=(3,-2)表⽰。

v是从点P到点Q的向量,两个点的差是⼀个向量:v=Q-P换个⾓度,可以说点Q是由点P平移向量v得到的,或者说v偏移P得到Q:Q=P+v(2)向量的基本运算向量的加(减)法可以采⽤“平⾏四边形法则”(3)向量线性组合m个向量v1,v2,...,v m的线性组合具有如下形式的向量:w=a1v1+a2v2+...+a n v n1>仿射组合线性组合的[系数的和等于1],那么它就是仿射组合a1+a2+...+a m=12>向量的凸组合a1+a2+...+a m=1,[a i>=0(i=1,2,...,m)]2、向量的点积和叉积【点积得到⼀个标量,叉积产⽣⼀个新的向量。

】(1)向量的点积a=(a1,a2) b=(b1,b2)点积最重要的应⽤就是计算两个向量的夹⾓,或者两条直线的夹⾓:可知,两个⾮零向量夹⾓与点积的关系:(2)向量的叉积两个向量的叉积是另⼀个三维向量。

【叉积只对三维向量有意义】最常⽤的属性是【它与原来的两个向量都正交】【利⽤叉积求平⾯的法向量】垂直于平⾯的直线所表⽰的向量为该平⾯的法向量。

⼆、图形坐标系坐标系是建⽴图形与数之间对应联系的参考系1、坐标系的分类从维度上看,可分为⼀维、⼆维、三维坐标系。

从坐标轴之间的空间关系来看,可分为直⾓坐标系、极坐标系、圆柱坐标系、球坐标系等。

在计算机图形学中,从物体(场景)的建模,到在不同显⽰设备上显⽰、处理图形时同样使⽤⼀系列的坐标系2、计算机图形学中坐标系的分类(1)世界坐标系描述对象的空间被称为世界坐标系,即场景中物体在实际世界中的坐标。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

学习方法
让学生从机械的“学会”向“会 学”转变,成为学习的真正主人。
教学过程 (一)创设情景,引入新课。 (二)探究新知 (三)小结
(四)板书设计
(五)布置作业
探究一:
1、关于Y轴对称的点的坐标变化有什 么规律? 2、做出一个图形关于Y轴的轴对称图 形,并观察新图形的坐标会发生什么变化?
探究二: 1、是课本78页的思考 2、观察三角形的顶点坐标发生了什么 变化?
教学重难点 教学重点:掌握图形坐标变化与图形 变换之间的关系. 教学难点:图形坐标变化与图形变换的 规律。
教学方法
本节课我采用启发式、探究式、以及讨 论式相结合的教学方法,以问题的提出,问 题的解决为主线,始终在学生知识的“最近 发展区”设置问题,倡导学生主动参与教学。 以独立思考和相互交流的形式,在教师的知 道下发现问题,分析和解决问题,在引导分 析时,给学生留出足够的思考时间和空间, 让学生去思考,探索,从真正意义上完成知 识的自我构建。
课堂小结
通过本节课的学习你收获了什?
板书设计
图形的变换与坐标
图形变换 平移 轴对称 位似
(原点是位似中心)
坐标变换规律 左减右加,下减上加 关于谁对谁不变 原坐标乘以位似比或位似比的相反数
作业布置
必做:78页1、2题 选做:在一次“寻宝”游戏中,寻宝人已经找到 了坐标为A(4,5)和B(-4,5)的两个点, 并且知道藏宝地点坐标为(2,3),除此之外还 不知道2其他信息,如何确定坐标系找到“宝 藏”?画出图形。
华师大版九年级数学(上)24.6.2
图形的变换与坐标
新安县洛新中学:韩玲玲
学习目标
1、知识与技能:理解点或图形的变换引起的 坐标的变化规律,以及图形上的点的坐标的变化 引起的图形变换,并应用于实际问题中。 2、过程与方法:经历图形坐标变化与图形 平移、轴对称、放大、缩小等之间的关系,发展 学生的形象思维。 3、情感态度与价值观:培养数形结合的思 想,感受图形上的点的坐标变化与图形变化之 间的关系,认识其应用价值。
相关文档
最新文档