第二章不等式课件

合集下载

新教材人教B版高中数学必修第一册 第二章 等式与不等式 精品教学课件(共196页)

新教材人教B版高中数学必修第一册 第二章 等式与不等式 精品教学课件(共196页)

2.1.1 等式的性质与方程的解集
【知识导学】 知识点一 等式的性质 (1)如果 a=b,那么 a±c=b±c. (2)如果 a=b,那么 a·c=b·c,ac=bc(c≠0). (3)如果 a=b,b=c,那么 a=c.
知识点二 恒等式 一般地,含有 字母
的等式,如果其中的字母取任意实数 时等
答案ቤተ መጻሕፍቲ ባይዱ
用因式分解法解一元二次方程的关键是把方程分解为两个一次因式的 积,并令每个因式分别为 0,即可得一元二次方程的解集.
[跟踪训练2] (1)因式分解: ①x2-xy-2y2; ②3x2+2xy-y2; (2)求一元二次方程的解集: ①x2-4x+3=0; ②2(x-3)=3x(x-3).
解 (1)①原式=(x-2y)(x+y). ②原式=(x+y)(3x-y). (2)①方程可化为(x-1)(x-3)=0, 解得 x=1 或 x=3,即方程的解集为{1,3}. ②原式可化为 2(x-3)-3x(x-3)=0, 得(x-3)(2-3x)=0, 解得 x=3 或 x=23,即方程的解集为3,23.
(3)解方程 t2x+1=x+t(t 为任意实数).
答案 (1)B (2)A (3)解 原方程变形为(t2-1)x=t-1. ①当 t≠±1 时,x=t+1 1,因此方程的解集为t+1 1; ②当 t=-1 时,方程无解; ③当 t=1 时,方程的解集为 R.
答案
题型一 一元二次方程的解集
例 1 (1)把方程 3x+2x-3 1=3-x+2 1去分母,正确的是(
式都成立,则称其为恒等式,也称等式两边恒等.
知识点三 方程的解集 所有解
一般地,把一个方程
组成的集合称为这个方程的解集.
【新知拓展】 1.恒等式的证明 一般可以把恒等式的证明分为两类: (1)无附加条件的恒等式证明; (2)有附加条件的恒等式证明. 2.因式分解法解一元二次方程 (1)常用的方法主要是提公因式法、运用平方差公式、完全平方公式等分 解因式.

四川省中等职业学校对口升学考试数学总复习《第二章不等式》课件

四川省中等职业学校对口升学考试数学总复习《第二章不等式》课件

(2)零点分段讨论法:通常用于解含有两个或两个以上的绝对值符号的不等式.
(3)利用不等式的性质:|x|<a(a>0)⇔-a<x<a;|x|>a(a>0)⇔x<-a或x>a.
(4)两边平方法:|f(x)|<a⇔f2(x)<a2;|f(x)|>a⇔f2(x)>a2.

典例解析
例1 一元一次不等式3x+9>0的解集是(
R
ax2+bx+c<0
(a>0)的解集
{x| x<x<x2}



知识清单
3.解一元二次不等式的步骤
(1)看二次项系数是否为正,若为负,则将二次项系数化为正数.
(2)写出相应的方程ax2+bx+c=0(a>0),计算判别式Δ.
①当Δ>0时,求出两根x1,x2,且x1<x2(注意灵活运用因式分解和配方法).

真题在线
1.(2017年·四川对口升学)不等式|x-2|≤5的整数解有(
A.11个
B.10个
C.9个
D.7个
).
2.(2018年·四川对口升学)一元二次不等式x2-1<0的解集为(
A.(-∞,-1)∪(1,+∞)
B.(-∞,-1)∪(1,+∞)
C.(-1,1)
D.(-1,1)
3.(2019年·四川对口升学)绝对值不等式|x-3|<4的解集为(
解集为(-∞,-3)∪(5,+∞).
(3)由|x|+3<0得|x|<-3,与绝对值为非负矛盾,所以原不等式解集为⌀.
【技巧点拨】 首先判断是否为标准形式的绝对值不等式,再将绝对值不等式进行等价转

2.2 基本不等式(课件)

2.2 基本不等式(课件)

数学 必修 第一册 A
返回导航
第二章 一元二次函数、方程和不等式
方法二:由2x+3y=2 得,3x+2y=2xy, ∵x>0,y>0,∴3x+2y≥2 6xy,等号在 3x=2y 时成立,
∴2xy≥2 6xy,∴xy≥6.
3x=2y 由2x+3y=2
,得yx==32 .
∴xy 的最小值为 6.
数学 必修 第一册 A
数学 必修 第一册 A
返回导航
第二章 一元二次函数、方程和不等式
探究二 利用基本不等式求最值
已知 x>0,y>0,且1x+9y=1,求 x+y 的最小值. 解 方法一:(1 的代换)∵1x+9y=1,∴x+y=(x+y)·1x+9y=10+yx+9yx. ∵x>0,y>0,∴yx+9yx≥2 yx·9yx=6. 当且仅当yx=9yx,即 y=3x 时,取等号. 又1x+9y=1,∴x=4,y=12,∴x+y≥16. ∴当 x=4,y=12 时,x+y 取最小值 16.
数学 必修 第一册 A
返回导航
第二章 一元二次函数、方程和不等式
知识点2 应用基本不等式求最值
已知x,y都是正数,则 (1)如果积xy等于定值P,那么当____x_=__y_____时,和x+y有最小值__2___P_____. (2) 如 果 和 x + y 等 于 定 值 S , 那 么 当 ___x_=__y______ 时 , 积 xy 有 最 大 值 ___14_S_2_______. [微思考] 利用基本不等式求最值时应注意哪几个条件?若求和(积)的最值时,一般要确 定哪个量为定值? 提示:三个条件是:一正,二定,三相等.求和的最小值,要确定积为定值; 求积的最大值,要确定和为定值.
数学 必修 第一册 A

人教版高中数学必修一第二章一元二次函数方程和不等式全套PPT课件

人教版高中数学必修一第二章一元二次函数方程和不等式全套PPT课件
[解析] , ,又 , ,即 .又 , ,即 .故 , .
【变式探究】
已知 且 ,求 的取值范围.
[解析] 令 , ,则 , .由 解得 ,又 , , , .
方法总结 不等式具有可加性(需同向)与可乘性(需同正),但不能相减或相除,应用时要充分利用所给条件进行适当变形来求范围,注意等价变形.
方法总结 应用基本不等式时,注意下列常见变形中等号成立的条件:
第二章 一元二次函数、方程和不等式
2.1 等式性质与不等式性质
学习目标
1.会用不等式(组)表示实际问题中的不等关系.(数学建模)
2.会运用作差法比较两个数或式子的大小.(数学运算)
3.梳理等式的性质,掌握不等式的性质,会用不等式的性质证明不等式或解决范围问题.(逻辑推理)
自主预习·悟新知
合作探究·提素养
(2)已知 , .求证: .

[解析] (1)对于①,若 , , , ,则 ,①错误;对于②,对于正数 , , ,若 ,则 ,所以 ,所以 ,又 ,所以 ,②正确.综上,正确结论的序号是②.(2)因为 ,所以 .所以 .又因为 ,所以 .所以 ,即 ,所以 .
探究2 重要不等式
设 , ,记 , , 分别为 , 的算术平均数、几何平均数、调和平均数.古希腊数学家帕波斯于公元4世纪在其名著《数学汇编》中研究过 时, , , 的大小关系.
问题1:.你能探究 , , 的大小关系吗?
[答案] 能,因为 , , ,所以 ,即 ; ,即 .所以 .所以 , , 中最大的为 ,最小的为 .
问题1:.小明的说法正确吗?用什么性质判断小明的说法是否正确?
[答案] 不正确,用等式的性质.当 时, 一定成立,反过来,当 时,不能推出 ,如当 时, 成立, 不成立.故“ 是 成立的充要条件”是错误的.

第二章 一元二次函数、方程和不等式 课件(共62张PPT)高一数学上学期期末考点(人教A版2019)

第二章 一元二次函数、方程和不等式 课件(共62张PPT)高一数学上学期期末考点(人教A版2019)

y
3
2x
1 x
的最大值是(

A.3
B.3 2 2
C.32 3
D. 1
【答案】B
【详解】因为 x 0 ,则 2x 1 2 2x 1 2 2 ,
x
x
当且仅当 2x 1 ,即 x 2 时,等号成立,
x
2
可得
y
3
2x
1 x
3
2x
1 x3ຫໍສະໝຸດ 22,所以
y
3
2x
1 x
的最大值是
3
2
2.
3 典型例题讲与练
A.若 m n ,则 x y
C.
b a
m m
1
a b
n n
B.若 m n ,则 x y
【详解】由 a b 0,m 0 ,则 b m b , am a
D.当 时, . m n
bm an am bn
若 b m x, b n yn 0 ,
am an

m
n
,则
x
y
b a
当且仅当 x 8 x时,即 x 4 时,等号成立,所以 x8 x 的最大值为4 . 故选:B.
3 典型例题讲与练
考点02:基本不等式的应用
【期末热考题型1】和定,求积的最值
【典例 2】(2023 上·河南省直辖县级单位·高一济源市第四中学校考阶段练习)
已知正数 a,b 满足 a 2b 2 ,则 ab的最大值为
考点02:基本不等式的应用
【期末热考题型2】积定,求和的最值
【典例
2】(2023
上·上海普陀·高一校考期中)已知:
x
1,则
x
1
4 x 1

第2章 不等式

第2章 不等式

第2章 不等式考点解读1.不等式的性质(1)实数的大小比较与实数运算性质之间的关系0a b a b >⇔->;0a b a b <⇔-<;0a b a b =⇔-=(2)不等式的基本性质性质1.(传递性)如果,a b b c >>,那么a c > 性质2.(加法性质)如果a b >,那么a c b c +>+性质3.(乘法性质)如果a b >,0c >,那么ac bc >;如果a b >,0,c <那么ac bc < (3)从不等式的基本性质出发,还可以得到哪些有用的推论?推论1. ,a b c d a c b d >>+>+如果那么; 推论2. ,a b c d a c b d ><->-如果那么 推论3. 0,0a b c d ac bd >>>>>如果那么; 推论4. 110,a b a b>><如果那么 推论5. 0,0a ba b d c c d>>>>>如果那么; 推论6. *0,()n n a b a b n N >>>∈如果那么 推论7. 110,nna b a b >>>如果那么*(,1)n N n ∈>(4)如何比较不等式的大小?①作差法 ②作商法2. 解不等式 (1)一元一次不等式的解集的讨论: 2.不等式的性质(1)不等式ax b >的解集:当0a >时,解集为{|}bx x a >;当0a <时,解集为{|}b x x a<; 当0a =且0b <时,解集为R ;当0a =且0b ≥时,解集为∅. (2)一元二次不等式的解集的讨论:一元二次不等式解集如表所示:(当方程方程2+0ax bx c +=的两个不相等的实根时,不妨设为12,x x ,且12x x <)判别式24b ac ∆=-0∆> 0∆= 0∆<2y ax bx c =++()0a >的图像20ax bx c ++=()0a >的根有两相异实根12,x x ()12x x <有两相等实根122bx x a==-没有实根20ax bx c ++>()0a >的解集{}12x x x x x <>或2b x x a ⎧⎫≠-⎨⎬⎩⎭R20ax bx c ++<()0a >的解集{}12x xx x <<∅ ∅【总结】 不等式证明的常用方法:(1)作差:作差后通过分解因式、配方等手段判断差的符号得出结果; (2)作商(常用于分数指数幂的代数式); (3)分析法; (4)平方法;(5)分子(或分母)有理化; (6)利用函数的单调性; (7)寻找中间量或放缩法 ; (8)图象法.其中比较法(作差、作商)是最基本的方法.(3)分式不等式的解法同解变形法(分式不等式⇔整式不等式⇔一次、二次不等式)①() ()()()()()()()()0000f x f xf xg x f x g xg x g x><><(或)与·或·同解;②()()()()00f x f xg x g x⎛⎫⎪⎪⎝⎭≥或≤与不等式组()()()()()()0000f xg x f x g xg x g x⎛⎫⎧⎧⎪⎪⎪⎨⎨⎪≠≠⎪⎪⎩⎩⎝⎭·≥·≤或同解.(4)一元高次不等式的解法——标根法其步骤是:(1)分解成若干个一次因式的积,并使每一个因式中最高次项的系数为正;(2)将每一个一次因式的根标在数轴上,从最大根的右上方依次通过每一点画曲线;并注意奇穿过偶弹回;(3)根据曲线显现()f x的符号变化规律,写出不等式的解集.若naaaa<<<<Λ321,则不等式0)())((21>---naxaxaxΛ或0)())((21<---naxaxaxΛ的解法如下图(即“数轴标根法”):(5)绝对值不等式的解法方法一:应用分类讨论思想去绝对值(最后结果应取各段的并集);方法二:应用数形结合思想;方法三:应用化归思想等价转化.①最简单的绝对值不等式的同解变形,x a a x a<⇔-<<;,ax b c c ax b c+<⇔-<+<;x a x a>⇔<-或,x a>;cbaxcbax-<+⇔>+或,ax b c+>.②关于绝对值不等式的常见类型有下列的同解变形()()()()()f xg x g x f x g x≤⇔-≤≤;()()()()f xg x f x g x≥⇔≤-或()()f xg x≥;22()()()()f xg x f x g x≤⇔≤.【提醒】标根法主要用于简单的一元高次不等式题型,因为上海高考不作要求,可以简单的了解.(5)含参不等式的解法求解的通法是“定义域为前提,函数增减性为基础,分类讨论是关键.”3.常用的基本不等式(1)如果,a b R ∈,那么222a b ab +≥(当且仅当a =b 时等号成立); (2)如果,a b R +∈,那么ba +≥ab (当且仅当a =b 时等号成立).(1)比较法 ①作差比较法 A.理论依据0a b a b ->⇔> 0a b a b -=⇔= 0a b a b -<⇔<B.证明步骤:I:作差:对要比较大小的两个数(或式)作差;II :变形:对差进行因式分解或配方成几个数(或式)的完全平方和; III :判断:结合变形的结果及题设条件判断差的符号.②作商比较法 A.理论依据当a b R +∈,时, 1,1,1a a aa b a b a b b b b>⇔><⇔<=⇔=. B.证明步骤:I:判断(判断能否作商);II :作商;III :变形;IV: 下结论. (2)综合法证题时,从已知条件入手,经过逐步的逻辑推导,运用已知的定义、定理、公式等,最终达到要证结论,这是一种常用的方法(由因导果). (3)分析法从要证明的结论出发,一步一步地推导,最后达到命题的已知条件(可明显成立的不等式、已知不等式等),其每一步的推导过程都必须可逆(执果索因).2.1不等式的基本性质例题精讲【例1】(1)设x 、y 是不全为零的实数,试比较222y x +与xy x +2的大小;(2)设c b a ,,为正数,且1222=++c b a ,求证:3)(2111333222≥++-++abc c b a cb a . 【参考答案】(1)解法1:222222243)2()(2y y x xy y x xy x y x +-=-+=+-+ 因为x 、y 是不全为零的实数,所以043)2(22>+-y y x ,即xy x y x +>+2222 解法2:当0<xy 时, 22222y x x xy x +<<+;当0>xy 时,作差:02)(222222>=-≥-+=+-+xy xy xy xy y x xy x y x ; 因为x 、y 是不全为零的实数,所以当0xy >时,xy x y x +>+2222. 综上,xy x y x +>+2222(2)证明:当c b a ==时,取得等号3. 作差比较:3)(2111333222-++-++abc c b a c b a =3)(2333222222222222-++-++++++++abc c b a c c b a b c b a a c b a=222222222222111111()()()2()a b c a b c b c a c a b bc ac ab+++++-++ =0)11()11()11(222222>-+-+-ba c ac b cb a所以,3)(2111333222≥++-++abc c b a cb a 【例2】已知41,145ac a c -≤-≤--≤-≤,试求9a c -的取值范围. 【参考答案】把9a c -用a c -,4a c -来表示,再利用a c -,4a c -的范围得出9a c -的取值范围.1[(4)()]3a a c a c =---1[(4)4()]3c a c a c =---∴9a c -=3[(4)()]a c a c ----1[(4)4()]3a c a c ---85(4)()33a c a c =---由已知得8840-(4)333a c ≤-≤,5520()333a c ≤--≤∴85-1(4)()2033a c a c ≤---≤,即1920a c -≤-≤注意:这类题的常见错误是,由41441a c a c -≤-≤-⎧⎨-≤-≤⎩,从而得: 03a ≤≤,17c ≤≤,所以: 7926a c -≤-≤,即: 7(3)26f -≤≤,错误根源在于,a b c d ≥≥是a b b c -≥-充分但不是必要条件,因此必须从考虑9a c -与a c -,4a c -的关系去解此题.过关演练1. 若c b a >>,则一定成立的不等式是( ).A c b c a > .B ac ab > .C c b c a ->- .D cb a 111<< 2. 已知:,,0a b e f c >>>,求证:bc e ac f --<. 3. 已知11a -<<,比较1a -和11a+的大小. 4. 对于实数c b a ,,,给出下列命题:①22,bc ac b a >>则若; ②b a bc ac >>则若,22; ③22,0b ab a b a >><<则若; ④ba b a 11,0<<<则若; ⑤baa b b a ><<则若,0; ⑥b a b a ><<则若,0; ⑦bc ba c ab ac ->->>>则若,0; 其中正确的命题是 .5. 已知11x y -≤+≤,13x y ≤-≤,则3x y -的取值范围是 .6. 若11αβ-<<<,则下面各式中成立的是( ).A 20αβ-<-< .B 21αβ-<-<- .C 10αβ-<-< .D 11αβ-<-<7. 设a 和b 都是非零实数,求不等式b a >和ba 11>同时成立的充要条件.8. 下列几个不等式中(1)22a b a a b b +>+ (2)222211b b a a +>+ (3)11a b a b+>+ (4)a b a a > 其中恒成立的不等式个数是( ).A 0 .B 1 .C 2 .D 39. 若a < b <0,则下列结论中正确的是 ( ).A 不等式||1||111b a b a >>和均不成立 .B 不等式||1||111b a a b a >>-和均不成立 .C 不等式22)1()1(11a b b a a b a +>+>-和均不成立 .D 不等式22)1()1(||1||1ab b a b a +>+>和均不成立 10. 若二次函数)(x f 的图像关于y 轴对称,且2)1(1≤≤f ,4)2(3≤≤f ,求)3(f 的范围. 11. 已知c b a >>,且,0=++c b a 求ac的取值范围.2.2一元二次不等式的解法 例题精讲【例1】解关于x 的不等式2(2)20mx m x +-->,并写出解集【参考答案】m =0时,不等式为-2x-2>0,不等式的解集为--1∞(,); m ≠0时,可得2)(1)0,m x x m +>(-若m>0,则201m >>-, 此时不等式的解集为2--1+m∞⋃∞(,)(,) 若m<0,则不等式同解于不等式2)(1)0x x m+<(- 当-2<m<0时,不等式的解集为2-1m (,);当m<-2时不等式的解集为2-m (1,); 当m=-2时,不等式的解集为∅.注意:对字母m 分类讨论时,先要讨论二次项的系数,以区分是一次不等式还是二次不等式,还要注意化简后不等式的同解形式.【例2】有一批影碟机(DVD)原售价为800元,在甲,乙两家商场均有销售,甲商场用如下方法促销,买一台单价为国为780元,买两台单价为760元,依此类推,每多买一台,则所买各台单价均减少20元,但每台最低不能低于440元,乙商场一律都按原价75%销售,某单位需购买一批此类影碟机,应去哪家商场购买?【参考答案】设此单位需购买x 台影碟机,在甲商场购买共需花费1y 元,在乙商场购买共需花费2y ,由题意, 80020440,18x x -≥∴≤*1*(80020),118,440,18,x x x x N y x x x N⎧-≤≤∈⎪=⎨>∈⎪⎩ *280075%600,1,y x x x x N =⨯=≥∈,设此单位在甲,乙两家商场购货的差价为y,则2*21*(80020)60020020,118,440600,18,x x x x x x x N y y y x x x x N⎧--=-≤≤∈⎪=-=⎨->∈⎪⎩ 当118x ≤≤时,由220020y x x =->0得:0<x<10, 所以*110,x x N ≤<∈;由220020y x x =-=0得x=10,由220020y x x =->0得x>10, 所以*1018,x x N <≤∈;当x >18时,y <0答:若购买少于10台影碟机,则应去乙商场购买,若买10台,去甲乙均可,若购买超过计划10台,则应去甲商场购买.过关演练1. 若不等式022<+-a bx x 的解集为}51|{<<x x ,则a 为 .2. 求下列不等式的解集:⑴解不等式22350x x -++>;⑵解不等式24410x x -+>;⑶解不等式2230x x -+->.3.已知关于x 的不等式(1)(1)0ax x -+<的解集是()1,1,a ⎛⎫-∞⋃-+∞ ⎪⎝⎭,求实数a 的取值范围. 4. 解关于x 的不等式0)(322>++-a x a a x .5. 关于x 的不等式20ax bx c ++>的解集为(1,2)-,则不等式20cx bx a ++<的解集为 .6. 已知关于x 的不等式组2122kx x k ≤++≤有唯一实数解,则实数k 的取值集合是 .7. 对于任意实数x ,不等式22(2)0ax ax a +-+<恒成立,则实数a 的取值范围是( ) .A 10a -≤≤.B 10a -≤< .C 10a -<≤ .D 10a -<<8. a 为实数,关于x 的二次方程27(13)220x a x a -+++=有两个实数根分别介于0与1之间以及1与2之间,求a 的取值范围.9. 解不等式: ()()220x ax --> .10. 如果集合2{|10}A x ax ax =-+<=∅,则实数a 的取值范围是 .11. 111222,,,,,a b c a b c 均为非零实数,不等式21110a x b x c ++>和22220a x b x c ++>的解集分别为集合M 和N ,那么“111222a b c a b c ==”是“M N =”的( ) .A 充分非必要条件.B 必要非充分条件 .C 充要条件 .D 既非充分又非必要条件12. 函数()2(2)2(2)4f x a x a x =-+--,若()1,3x ∈时,()7f x mx <-恰成立,求,a m 的值.13. 关于x 的方程2(1)10x m x +-+=在区间()0,2上有实根,求实数m 的取值范围. 14. 若不等式)1(122->-x m x 对满足2≤m 的所有m 都成立,求x 的取值范围.15. 某公园举办雕塑展览吸引着四方宾客,旅游人数x 与人均消费t (元)的关系如下: 121600(1050,)61300(50200,)t t t x t t t -+≤≤∈⎧=⎨-+<≤∈⎩N N , (1)若游客客源充足,那么当天接待游客多少人时,公园的旅游收入最多?(2)若公园每天运营成本为5万元(不含工作人员的工资),还要上缴占旅游收入20%的税收,其余自负盈亏.目前公园的工作人员维持在40人.要使工作人员平均每人每天的工资不低于100元,并维持每天正常运营(不负债),每天的游客人数应控制在怎样的合理范围内?(注:旅游收入=旅游人数×人均消费)2.3其他不等式的解法 例题精讲【例1】k 为何值时,下式恒成立:13642222<++++x x k kx x 【参考答案】原不等式可化为:0364)3()26(222>++-+-+x x k x k x ,而03642>++x x ∴原不等式等价于0)3()26(22>-+-+k x k x由0)3(24)26(2<-⨯⨯--=∆k k 得1< k <3【例2】解不等式210.122x x --< 【参考答案】这个绝对值不等式的绝对值符号内是一个分式,若先去绝对值符号,就变成一个形式上是分式的不等式:210.10.122x x --<-<,这样就为解题制造了障碍,但是如果我们不急于去绝对值符号,而是先将绝对值符号内的表达式进行化简,就可以得到212212222x x x x x x x -----===-. 所比不等式的解集为{}1010x x x ><-或【例3】若不等式()11m x x ≤++-的解集为全集,求实数m 的求值范围.【参考答案】利用绝对值和的几何意义求解简捷、快速.2m ≤本题是一道恒成立问题,分离常数后,转化为求最小值问题.过关演练1. 若x R ∈,则()()110x x -+>的解集是( ).A {}01x x ≤< .B {0x x <且1}x ≠- .C {}11x x -<< .D {1x x <且1}x ≠- 2. 不等式2601x x x --->的解集为 ( ) .A {}23x x x <->或 .B {}23x x x <-<<或1.C {}213x x x -<<>或 .D {}213x x x -<<<<或1 3. 求下列不等式的解集:⑴解不等式4321x x ->+;⑵解不等式22xxx x >++;⑶解不等式4|23|7x <-≤; ⑷解不等式123x x ->-; ⑸解不等式125x x -++<.4. 若不等式|32||2|x x a +≥+对x R ∈恒成立,求实数a 的取值范围.5. 解关于x 的不等式:242mx m x +<+.6. 不等式242+<-x x 的解集为 .7. 已知关于x 的不等式23x x m -+-<的解集为非空集合,则实数m 的取值范围是().A 1m < .B 1m ≤ .C 1m > .D 1m ≥8. 若不等式102x m x m -+<-成立的一个充分非必要条件是1132x <<,则实数m 的取值范围是( ) .A 14,,43⎛⎤⎡⎫-∞+∞ ⎪⎥⎢⎝⎦⎣⎭U .B 14,43⎡⎤⎢⎥⎣⎦ .C 13,62⎡⎤⎢⎥⎣⎦ .D 以上结论都不对 9. 已知关于x 的不等式21<++ax x 的解集为P ,若P ∉1,则实数a 的取值范围为( ) .A ),0[]1,(+∞--∞Y .B ]0,1[- .C ),0()1,(+∞--∞Y .D ]0,1(-10. 设全集U R =,解关于x 的不等式: 110x a -+->()x R ∈.11. 解不等式2(1)(2)0x x -+≥.12. 设关于x 的不等式4|4|2+≤+-x m x x 的解集为A ,且A A ∉∈2,0,则实数m 的取值范围是 . 13. 不等式组⎪⎩⎪⎨⎧+->+->|22|330xx x x x 的解集是( ) .A {|02}x x <<.B {|0 2.5}x x << .C {|0x x <<.D {|03}x x << 14. 对任何实数x ,若不等式12x x k +-->恒成立,则实数k 的取值范围为( ).A 3k < .B 3k <- .C 3k ≤ .D 3k ≤-15.2x <+.16. 解关于x 的不等式(1)1(1)2a x a x ->≠-. 17. 已知关于x 的不等式052<--ax ax 的解集为M . (1) 当1=a 时,求集合M ;(2) 当M M ∉∈53且时,求实数a 的范围.2.4基本不等式及其应用例题精讲【例1】已知54x <,求541-+x x 的最大值. 【参考答案】45)45(41)45(541+-+-=-+x x x x ,由于54x <,045<-x , 所以1)45(41)45(-≤-+-x x ,4145)45(41)45(≤+-+-x x , 当且仅当)45(4145-=-x x 即43=x 时取等号. 【例2】求2710(1)1x x y x x ++=>-+的最小值. 【参考答案】方法一:当1->x 时,9514114)1(5)1(110722≥++++=+++++=+++x x x x x x x x , 当且仅当111+=+x x 即1=x 时取等号. 方法二:设)0(1>+=t x t ,则1-=t x ,原式9544510)1(7)1(22≥++=++=+-+-=tt t t t t t t 当且仅当tt 4=即1,2==x t 时取等号.【例3】某村计划建造一个室内面积为2800m 的矩形蔬菜温室,在温室内,沿左右两侧与后侧内墙各保留1m 宽的通道,沿前侧内墙保留3m 宽的空地,当矩形室的变长各为多少时,蔬菜的种植面积最大,最大种植面积时多少?【参考答案】温室左侧变长2max 40,20,648a m b m S m ===过关演练1. 已知3>x ,则6211-++x x 的最小值是 . 2. 已知,,9a b R ab +∈=,则a b +的最小值是 .3. 下列不等式一定成立的是 ( ).A xy y x 2≥+ .B 21≥+x x .C xy y x 222≥+ .D xyxy y x 12≥+ 4. 已知,,,a b c R ∈求证222a b c ab bc ca ++≥++.5. 为了提高产品的年产量,某企业拟在2010年进行技术改革.经调查测算,产品当年的产量x 万件与投入技术改革费用m 万元(m ≥0)满足31k x m =-+ (k 为常数).如果不搞技术改革,则该产品当年的产量只能是1万件.已知2010年生产该产品的固定投入为8万元,每生产1万件该产品需要再投入16万元.由于市场行情较好,厂家生产的产品均能销售出去.厂家将每件产品的销售价格定为每件产品生产成本的1.5倍(生产成本包括固定投入和再投入两部分资金).(1)将2010年该产品的利润y 万元(利润=销售金额-生产成本-技术改革费用)表示为技术改革费用m 万元的函数;(2)该企业2010年的技术改革费用投入多少万元时,厂家的利润最大?6. 已知0,0x y >>,且191x y+=,则x y +的最小值为 . 7. 已知0,0a b >>,以下三个结论:①22ab a b a b +≤+,②2222a b a b ++≤ ③22b a a b a b+≥+,其中正确的个数是( ) .A 0 .B 1.C 2 .D 38. 已知b a ,为正实数,302=++a ab b ,求函数ab y 1=的最小值.9. 已知关于x 的不等式227x x a+≥-在(),x a ∈+∞上恒成立,求实数a 的最小值.10. 某单位用木料制作如图所示的框架,框架的下部是边长分别为x 、y (单位:m )的矩形,上部是等腰直角三角形,要求框架围成的总面积为8 m 2,问x 、y 分别为多少时用料最省?(精确到0.001m )x y11. 已知1,0>>y x ,且2)1(=-y x , 则y x +2的最小值为 . 12. xzy z y x R z y x 2,032*,,,=+-∈的最小值为 . 13. 1,0,=+>y x y x ,且a y x ≤+恒成立, 则a 的最小值为( )A .22 B .22 C .2 D .2 14. 已知a 、b 、()0,c ∈+∞且1a b c ++=,求证:1111118a b c ⎛⎫⎛⎫⎛⎫---≥ ⎪⎪⎪⎝⎭⎝⎭⎝⎭. 15. 三个同学对问题“关于x 的不等式232255x x x ++-ax ≥在[1,12]上恒成立,求实数a 的取值范围”提出各自的解题思路.甲说:“只须不等式左边的最小值不小于右边的最大值”.乙说:“把不等式变形为左边含变量x 的函数,右边仅含常数,求函数的最值”.丙说:“把不等式两边看成关于x 的函数,作出函数图像”.参考上述解题思路,你认为他们所讨论的问题的正确结论,求出a 的取值范围.2.5不等式的证明例题精讲【例1】设,,a b R ∈求证:221a b ab a b +++>+.【参考答案】()22222211()221212a b ab a b a ab b a a b b +++-+=+++-++-+Q ()()()22211102a b a b ⎡⎤=++-+->⎣⎦ 221a b ab a b ∴+++>+【例2】已知0,0a b >>,求证:1111222222a b a b b a ⎛⎫⎛⎫+≥+ ⎪ ⎪⎝⎭⎝⎭ . 【参考答案】(分析法)要证明1111222222a b a b b a ⎛⎫⎛⎫+≥+ ⎪ ⎪⎝⎭⎝⎭,由于0,0a b >>所以11220a b > 只需要证明111122221122a b a b a b b a ⎛⎫⎛⎫ ⎪+≥+ ⎪ ⎪⎝⎭⎝⎭.即证 331111222222a b a b a b ⎛⎫+≥+ ⎪⎝⎭即证 1111111122222222a b a a b b a b a b ⎛⎫⎛⎫⎛⎫+-+≥+ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭即证1122a a b b -+1122a b ≥,即证211220a b ⎛⎫+≥ ⎪⎝⎭ 211220a b ⎛⎫+≥ ⎪⎝⎭显然成立,所以原不等式成立.过关演练1. 求证:(1)()()221x x x +<+;(2)设0>>b a ,求证:a b b a b a b a >.2. 已知0=++c b a ,求证: 0ab bc ca ++≤.3. 3725<.4. 已知,,a b m 都是正数,并且a b <,求证:a m ab m b +>+. 5. 设,,,,a b x y R ∈且22221,1,a b x y +=+=试证:||1ax by +≤.6. 实数,,x y z 满足1xy yz zx ++=-,求证:222584x y z ++≥.7. 已知正数a 、b 、c 满足2a b c +<,求证:22c c ab a c c ab -<<-8. 设a >0,b >0,求证: 111122222a b a b b a 2⎛⎫⎛⎫+≥+ ⎪ ⎪⎝⎭⎝⎭.9. 已知a 、b 、c 为正实数,1a b c ++=.求证:(1) 22213a b c ++≥; (2)232323+++++c b a ≤6.10. 若,0x y >,且2x y +>,求证:1y x +和1x y +中至少有一个小于2.11. 证明不等式n n2131211<++++Λ ()n N *∈.直击高考一、填空题1.(2009年高考理文3)若行列式4513789x x 中,元素4的代数余子式大于0,则x 满足的条件是 .2. (2010年春季高考4)已知集合1{|||2},{|0}1A x x B x x =<=>+,则A B ⋂= . 3.(2010年高考理2文1)不等式204x x ->+的解集是 . 4.(2012年春季高考12)若不等式210x kx k -+->对()1,2x ∈恒成立,则实数k 的取值范围是 .5.(2012年春季高考13)已知等差数列{}n a 的首项及公差均为正数,令n b n a =2012n a -+(,2012)n N n *∈<,当k b 是数列{}n b 的最大项时,k = .6.(2013年高考理12)设a 为实常数,()y f x =是定义在R 上的奇函数,当0x <时,2()97a f x x x=++.若()1f x a ≥+对一切0x ≥成立,则a 的取值范围为 . 7.(2013年高考文13)设常数0a >,若291a x a x+≥+对一切正实数x 成立,则a 的取值范围为 . 二、选择题8.(2010年春季高考16)已知)1,0(,21∈a a ,记1,2121-+==a a N a a M ,则M 与N的大小关系是( ).A N M < .B N M >; .C N M = .D 不确定9.(2011年高考理15文16)若,a b R ∈,且0ab >,下列不等式中,恒成立的是( ).A 222a b ab +> .B 2a b ab +≥ .C 11a b ab+> .D 2b a a b +≥ 10.(2013年春季高考17)如果0a b <<,那么下列不等式成立的是( ).A 11a b < .B 2ab b < .C 2ab a -<- .D 11a b-<- 11.(2013年高考理15文16)设常数a R ∈,集合{|A x =(1)(x x -)a -0}≥,{|1}B x x a =≥-.若A B R =U ,则a 的取值范围为( ).A (,2)-∞ .B (,2]-∞ .C (2,)+∞ .D [2,)+∞三、解答题12.(2009年高考文19)已知复数z a bi =+(,a b R +∈)(i 是虚数单位)是方程2450x x -+=的根 ,复数3w u i =+(u R ∈)满足25w z -<,求u 的取值范围.13.(2010年高考理文22)若实数x 、y 、m 满足m y m x ->-,则称x 比y 远离m .(1)若21x -比1远离0,求x 的取值范围;(2)对任意两个不相等的正数a 、b ,证明:33a b +比22a b ab +远离2ab 14.(2011年春季高考22)定义域为R ,且对任意实数1x 、2x 都满足不等式()()121222f x f x x x f ++⎛⎫≤ ⎪⎝⎭的所有函数()f x 组成的集合记为M .例如,函数()f x kx b M =+∈.(1)已知函数()0102x x f x x x ⎧≥⎪=⎨<⎪⎩.证明:()f x M ∈;(2)写出一个函数()f x ,使得()f x M ∉,并说明理由.15.(2011年春季高考23)对于给定首项)300x a a >>,由递推式()112n n n a x x n N x +⎛=+∈ ⎝得到数列{}n x ,且对于任意的n N ∈,都有3n x a >{}n x 3a 的近似值.(1)取05,100x a ==,计算123,,x x x 的值(精确到0.01);归纳出1,n n x x +的大小关系;(2)当n≥l 时,证明:()1112n n n n x x x x +--<-.16.(2012年春季高考20)某环线地铁按内、外环线同时运行,内、外环线的长均为30千米(忽略内、外环线长度差异).(1)当9列列车同时在内环线上运行时,要使内环线乘客最长候车时间为10分钟,求内环线列车的最小平均速度;(2)新调整的方案要求内环线列车平均速度为25千米/小时,外环线列车平均速度为30千米/小时.现内、外环线共有18列列车全部投入运行,要使内外环线乘客的最长候车时间之差不超过1分钟,向内、外环线应各投入几列列车运行?17.(2012年高考理文21)海事救援船对一艘失事船进行定位:以失事船的当前位置为原点,以正北方向为y 轴正方向建立平面直角坐标系(以1海里为单位长度),A 处,如图.现假设:①失事船的移动路径可视为抛物线21249y x =; ②定位后救援船即刻沿直线匀速前往救援;③救援船出发t 小时后,失事船所在位置的横坐标为7t .(1)当0.5t =时,写出失事船所在位置P 的纵坐标. 若此时两船恰好会合,求救援船速度的大小和方向;(2)问救援船的时速至少是多少海里才能追上失事船?18.(2013年高考理20)甲厂以x 千克/小时的速度匀速生产某种产品(生产条件要求110x ≤≤),每一小时可获得的利润是310051x x ⎛⎫+- ⎪⎝⎭元. (1)要使生产该产品2小时获得的利润不低于3000元,求x 的取值范围;(2)要使生产900千克该产品获得的利润最大,问:甲厂应该选取何种生产速度?并求此最大利润.。

新教材高中数学第二章等式与不等式2.2.4均值不等式及其应用(第1课时)均值不等式课件新人教B版必修第一册

新教材高中数学第二章等式与不等式2.2.4均值不等式及其应用(第1课时)均值不等式课件新人教B版必修第一册

【解】 (1)依题意得,y=t+1t -4≥2 t·1t -4=-2,等号成 立时 t=1,即函数 y=t2-4tt+1(t>0)的最小值是-2. (2)因为实数 x,y 满足 2x+y=1, 所以 y=1-2x, 所以 xy=x(1-2x)=-2x2+x=-2x-142+18≤18, 当 x=14,y=12时取等号,最大值是18.
应用均值不等式时的三个关注点
给出下列条件:①ab>0;②ab<0;③a>0,
b>0;④a<0,b<0.其中能使ba+ab≥2 成立的条件有( )
A.1 个
B.2 个
C.3 个
D.4 个
解析:选 C.当ba,ab均为正数时,ba+ab≥2,故只需 a,b 同号即 可,所以①③④均可以.故选 C.
利用均值不等式直接求最值 (1)已知 t>0,求 y=t2-4tt+1的最小值; (2)若实数 x,y 满足 2x+y=1,求 xy 的最大值.
以 x-2y>0,即 x>2y,故选 B.
已知 0<x<1,则 x(1-x)的最大值为________,此时 x= ________.
解 析 : 因 为 0 < x < 1 , 所 以 1 - x > 0 , 所 以 x(1 -
x)≤x+(21-x)2=122=14,当且仅当 x=1-x,即 x=12时
“=”成立,即当 x=12时,x(1-x)取得最大值14.
答案:14
1 2
对均值不等式的理解 下列结论正确的是( ) A.若 x∈R,且 x≠0,则4x+x≥4 B.当 x>0 时, x+ 1x≥2 C.当 x≥2 时,x+1x的最小值为 2 D.当 0<x≤2 时,x-1x无最大值
【解析】 对于选项 A,当 x<0 时,4x+x≥4 显然不成立;对 于选项 B,符合应用均值不等式的三个基本条件“一正,二定, 三相等”;对于选项 C,忽视了验证等号成立的条件,即 x=1x, 则 x=±1,均不满足 x≥2;对于选项 D,x-1x在 0<x≤2 的范 围内单调递增,有最大值 2-12=32. 【答案】 B

高中数学 第二章 等式与不等式 2.2.1 不等式及其性质课件 b必修第一册b高一第一册数学课件

高中数学 第二章 等式与不等式 2.2.1 不等式及其性质课件 b必修第一册b高一第一册数学课件
12/7/2021
第二十九页,共三十八页。
1.若-1<α<β<1,则下列各式中恒成立的是( )
A.-2<α-β<0
B.-2<α-β<-1
C.-1<α-β<0
D.-1<α-β<1
解析:选 A.由-1<α<1,-1<β<1,
得-1<-β<1,
所以-2<α-β<2.
又因为 α<β,故-2<α-β<0.
12/7/2021
第二章 等式(děngshì)与不等 式(děngshì)
2.2 不等式
2.2.1 不等式及其性质
12/7/2021
第一页,共三十八页。
第二章 等式(děngshì)与不等 式(děngshì)
考点
学习目标
会运用作差法比较两个数 数(式)大小比较
或式的大小
掌握不等式的性质,会用
不等式的性质 不等式的性质证明不等式
12/7/2021
第十八页,共三十八页。
【解】 (1)①中,c 的正、负或是否为 0 未知,因而判断 ac 与
bc 的大小缺乏依据,故①不正确.
②中,由 ac2>bc2,知 c≠0,故 c2>0,所以 a>b 成立,故②正
确.
③中,a<b,⇒a2>ab,a<b,⇒ab>b2,所以 a2>ab>b2,故③
a<0
b<0
正确.故填②③.
12/7/2021
第十九页,共三十八页。
(2)证明:因为 a>b>0⇒-a<-b⇒c-a<c-b. 因为 c>a,所以 c-a>0.所以 0<c-a<c-b. 上式两边同乘(c-a)1(c-b),得c-1 a>c-1 b>0. 又因为 a>b>0,所以c-a a>c-b b.

第二章考点一元二次不等式及其解法完整版课件

第二章考点一元二次不等式及其解法完整版课件

(x-1)·(3x-2)≥0⇒x≤
∴原不等式的解集为
x
|23x或 23x≥或x1,1
.
第19页,共54页
典例剖析 例1 变1 例2 变2 例3 变3 例4 变4 例5 变5
(2)2x(x+1)>3x2-3; 解:2x(x+1)>3x2-3⇒x2-2x-3<0⇒(x-3)(x+1)<0⇒ -1<x<3, ∴原不等式的解集为{x|-1<x<3}.
2.不等式x2-2 022x-2 023>0的解集为( D )
A.x |-2 023<x<1
B.x | x 1或x 2023
C.x | 1 x 2023
D.x | x 1或x 2023
【提示】 x2-2 022x-2 023>0⇒(x+1)(x-2 023)>0⇒x<-1或 x>2 023.
(4)(x-2)(3-x)≥3-x. 解:原不等式可化为(x-3)(3-x)≥0,即(x-3)2≤0,解 得x=3, ∴原不等式的解集为{3}.
第22页,共54页
典例剖析 例1 变1 例2 变2 例3 变3 例4 变4 例5 变5
例3 已知关于x的不等式ax2+4x+b<0的解集为 (-∞,-2)∪(6,+∞),求实数a,b的值. 【思路点拨】 此类题一般通过“构造方程”或“构造不等式 ”来求解.
解:由题意得,方程ax2-bx+3=0的两个根为x1=1,
x2=
3 2
,根据韦达定理得
1
3 2
b a
,
1
3 2
3 a
,
解得
a 2, b 5.
第25页,共54页
典例剖析 例1 变1 例2 变2 例3 变3 例4 变4 例5 变5

人教版高中数学B版必修一《第二章 等式与不等式——一元二次方程的解集及其根与系数的关系》课件

人教版高中数学B版必修一《第二章 等式与不等式——一元二次方程的解集及其根与系数的关系》课件



课前篇 自主预习
2.填空
方程 ax2+bx+c=a
x+2������������
2+4������������-������2(a≠0),
4������
(1)当 Δ=b2-4ac>0 时,方程的解集为
-������+
������2-4������������ 2������
,
-������-
������2-4������������ 2������
么可得 x=± ������或 mx+n=± ������,从而通过降次转化为一元一次方程. (2)配方法: 用配方法解一元二次方程的一般步骤是: ①化二次项系数为1:用二次项系数去除方程两边,将方程化为 x2+px+q=0的形式; ②移项:把常数项移至方程右边,将方程化为x2+px=-q的形式; ③配方:方程两边同时加上“一次项系数一半的平方”,使方程左边成 为含有未知数的完全平方形式,右边是一个常数,把方程化为 (x+m)2=n(n≥0)的形式; ④用直接开平方法解变形后的方程.
=
4������������ 4������.
(2)原方程等价于(x-2)(x+1)=0,
∴方程的两根为 x1=2,x2=-1.
x1+x2=1,x1x2=-2.
课前篇 自主预习
-8-
-9-
课堂篇 探究学习
探究一
探究二
思维辨析 当堂检测
反思感悟 一元二次方程的常见解法 (1)开平方法:如果方程能化成 x2=p 或(mx+n)2=p(p≥0)的形式,那
x1+x2= 2������ + 2������

第2章 一元二次函数、方程和不等式 课件(1)(共28张PPT)

第2章 一元二次函数、方程和不等式 课件(1)(共28张PPT)

x 1
x 1
则当且仅当x+1= a 时取等号,
x 1
此时x= a-1<0(不合题意),因此,上式等号取不到.
设x1>x2≥0,则
f(x1)-f(x2)=x1+
a x1
1
x2
x
a 2
1[1(x-1
x2
)
∵x1>x2≥0,∴x1-x2>0,x1+1>1,x2+1≥1,
],
a
x1 1(x2 1)
∴(x1+1)(x2+1)>1,而0<a<1,
方法二:令g(x)=x2-2ax+2-a,
由已知,得x2-2ax+2-a≥0在[-1,+∞)上恒成立,
0,
即Δ=4a2-4(2-a)≤0或 a 1解, 得-3≤a≤1.
g 1 0.
即所求a的取值范围为[-3,1].
利用基本不等式求最值 【名师指津】 利用基本不等式求最值的方法
基本不等式通常用来求最值问题:一般用a+b≥ 2 ab (a>0, b>0)解“定积求和,和最小”问题,用ab≤ (a b)2 解
程思想.
【例6】 已知不等式ax2+bx+c>0的解集为(α,β),且
0<α<β,求不等式cx2+bx+a<0的解集.
【审题指导】审题时要明确不等式的解集与方程的根的关系,
以及根与系数的关系的应用.
【规范解答】由已知不等式可得a<0,且α、β为方程
ax2+bx+c=0的两根,
∴由根与系数的关系可得
人教2019A版必修 第一册

人教B版高中数学必修第一册精品课件 第2章 等式与不等式 2.2.1 第1课时 不等式的性质

人教B版高中数学必修第一册精品课件 第2章 等式与不等式 2.2.1 第1课时 不等式的性质
0 ≤ ≤ 4,
1 ≤ + ≤ 5,
所以,由
不是等价变形,要使能成为等价变形,

-1 ≤ ≤ 3
-1 ≤ - ≤ 3
只能保持a+b,a-b各为一个整体.
正解:设 3a-2b=m(a+b)+n(a-b),
+ = 3,

解得
- = -2,
1
= 2,
5
= 2.
1
5
∴-6≤3a-2b≤14.
以上解答过程中都有哪些错误?出错的原因是什么?你如何改正?你如何防
范?
提示:在1≤a+b≤5,-1≤a-b≤3中,a,b是通过这两个式子相互制约的变量,而由
此两式推出0≤a≤4,-1≤b≤3后,a,b不再具有彼此的制约关系,而是分别取各自
区间的值,自然就导致了取值范围的扩大.例如:当a=4,b=3时,a+b=7.
形;(3)确定符号;(4)得出结论.
对差的变形可考虑配方或因式分解的方法.
【变式训练1】 设m≠n,x=m4-m3n,y=n3m-n4,比较x与y的大小.
解:x-y=(m4-m3n)-(n3m-n4)=m3(m-n)-n3(m-n)=(m-n)(m3-n3)
=(m-n)2(m2+mn+n2).
∵m≠n,
a-b<0⇔ a<b ;
a-b=0⇔ a=b ;
a-b>0⇔ a>b .
3.通过比较两式之差的符号来判断两式的大小,这种方法通常称为作差法.
4.已知M=x2-3x+7,N=-x2+x+1,则(
A.M<N
B.M>N
C.M=N

《不等式》等式与不等式-PPT标准课件(第3课时一元二次不等式的解法)

《不等式》等式与不等式-PPT标准课件(第3课时一元二次不等式的解法)
栏目 导引
第二章 等式与不等式
不等式(xx-+15)2≥2 的解是(
)
A.-3,12
B.-12,3
C.12,1∪(1,3]
D.-12,1∪(1,3]
解析:选
D.
x+5 (x-1)2

2⇔
x+5≥2(x-1)2, x-1≠0
⇔-12≤x≤3,所以 x≠1,
x∈-12,1∪(1,3].
栏目 导引
第二章 等式与不等式
栏目 导引
第二章 等式与不等式
法二:不等式-2x2+x+3<0 可化为 2x2-x-3>0,因为 Δ= (-1)2-4×2×(-3)=25>0,所以方程 2x2-x-3=0 的两根为 x1=-1,x2=32,又二次函数 y=2x2-x-3 的图像开口向上, 所以不等式-2x2+x+3<0 的解集是xx<-1或x>32,故选 D.
第二章 等式与不等式
)
A.{x|x<-1}
3 B.xx>2
C.x-1<x<32
D.xx<-1或x>32
解析:选 D.法一:因为-2x2+x+3=-(2x2-x-3)=-(x+
1)(2x-3),
所以-(x+1)(2x-3)<0,即(x+1)(2x-3)>0,
所以 x>32或 x<-1,
所以不等式的解集为x|x>32或x<-1.
栏目 导引
第二章 等式与不等式
(2)原不等式可化为23x--41x-1>0,即34xx--23<0. 等价于(3x-2)(4x-3)<0. 所以23<x<34. 所以原不等式的解集为x|23<x<34.

含有绝对值的不等式课件(共17张PPT)

含有绝对值的不等式课件(共17张PPT)
解 (1)这个不等式等价于 -5<2x-3<5,
-5+3<2x-3+3<5+3, -2<2x<8,
把x的系数化为1,得 -1<x<4,
因此,原不等式的解集为(-1,4).
巩固练习,提升素养 在活初动中3,我们用过“自然数集”“有理数集”等表述,这里的“集”就是集合的简称,那么什么是集合呢?
(2)原不等式等价于
数学
基础模块(上册)
第二章 不等式
2.2.4 含有绝对值的不等式
人民教育出版社
第二章 不等式 2.2.4 含有绝对值的不等式
学习目标
知识目标 能力目标
理解含有绝对值的不等式概念及其解集的学习,掌握含有绝对值的不等式的 解题方法
学生运用分组探讨、合作学习,掌握含有绝对值的不等式的解题方法,提高 运用含有绝对值的不等式知识解决实际问题能力
一般地,一元二次不等式可以通过配方化为x2>m2和 x2<m2(m>0)的形式,于是,我们可以将一元二次不等 式化为含有绝对值的不等式进行求解. 试一试
(1)x≤3;
(2) 2 x -1>3
分析 将不等式化成x≤m或>m的形式后求解.
解 (1)原不等式的解集为[-3,3];
(2)这个不等式可化>2,故其解集为
(- ,- 2)U(2,+ )。
巩固练习,提升素养 在活初动中3,我们用过“自然数集”“有理数集”等表述,这里的“集”就是集合的简称,那么什么是集合呢?
2x-3≥5,


2x-3≤-5,

不等式①的解集为[4,+ ),不等式②的解集为(- ,-1].
因此,原不等式的解集为(- ,-1]∪[4,+ ).
探索研究 用配方法求解一元二次不等式.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档