Bose-Einstein condensation in a stiff TOP trap with adjustable geometry
2022年自考专业(英语)英语科技文选考试真题及答案37
2022年自考专业(英语)英语科技文选考试真题及答案一、阅读理解题Directions: Read through the following passages. Choose the best answer and put the letter in the bracket. (20%)1、 (A) With the recent award of the Nobel Prize in physics, the spectacular work on Bose-Einstein condensation in a dilute gas of atoms has been honored. In such a Bose-Einstein condensate, close to temperatures of absolute zero, the atoms lose their individuality and a wave-like state of matter is created that can be compared in many ways to laser light. Based on such a Bose-Einstein condensate researchers in Munich together with a colleague from the ETH Zurich have now been able to reach a new state of matter in atomic physics. In order to reach this new phase for ultracold atoms, the scientists store a Bose-Einstein condensate in a three-dimensional lattice of microscopic light traps. By increasing the strength of the lattice, the researchers are able to dramatically alter the properties of the gas of atoms and can induce a quantum phase transition from the superfluid phase of a Bose-Einsteincondensate to a Mott insulator phase. In this new state of matter it should now be possible to investigate fundamental problems of solid-state physics, quantum optics and atomic physics. For a weak optical lattice the atoms form a superfluid phase of a Bose-Einstein condensate. In this phase, each atom is spread out over the entire lattice in a wave-like manner as predicted by quantum mechanics. The gas of atoms may then move freely through the lattice. For a strong optical lattice the researchers observe a transition to an insulating phase, with an exact number of atoms at each lattice site. Now the movement of the atoms through the lattice is blocked due to therepulsive interactions between them. Some physicists have been able to show that it is possible to reversibly cross the phase transition between these two states of matter. The transition is called a quantum phase transition because it is driven by quantum fluctuations and can take place even at temperatures of absolute zero. These quantum fluctuations are a direct consequence of Heisenberg’s uncertainty relation. Normally phase transitions are driven by thermal fluctuations, which are absent at zero temperature. With their experiment, the researchers in Munich have been able to enter a new phase in the physics of ultracold atoms. In the Mott insulator state theatoms can no longer be described by the highly successful theories for Bose-Einstein condensates. Now theories are required that take into account the dominating interactions between the atoms and which are far less understood. Here the Mott insulator state may help in solving fundamental questions of strongly correlated systems, which are the basis for our understanding of superconductivity. Furthermore, the Mott insulator state opens many exciting perspectives for precision matter-wave interferometry and quantum computing.What does the passage mainly discuss?A.Bose-Einstein condensation.B.Quantum phase transitions.C.The Mott insulator state.D.Optical lattices.2、What will the scientists possibly do by reaching the new state of matter in atomic physics?A.Store a Bose-Einstein condensate in three-dimensional lattice of microscopic light traps.B.Increase the strength of the lattice.C.Alter the properties of the gas of atoms.D.Examine fundamental problems of atomic physics.3、Which of the following is NOT mentioned in relation to aweak optical lattice?A.The atoms form a superfluid phase of a Bose-Einstein condensate.B.Each atom is spread out over the entire lattice.C.The gas of atoms may move freely through the lattice.D.The superfluid phase changes into an insulating phase.4、What can be said about the quantum phase transition?A.It can take place at temperatures of absolute zero.B.It cannot take place above the temperatures of absolute zero.C.It is driven by thermal fluctuations.D.It is driven by the repulsive interactions between atoms.5、The author implies all the following about the Mott insulator state EXCEPT that______.A.the theory of Bose-Einstein condensation can’t possibly account for the atoms in the Mott insulator stateB.not much is known about the dominating interactions between the atoms in the Mott insulator stateC.it offers new approaches to exact quantum computingD.it forms a superfluid phase of a Bose-Einstein condensate6、 (B) Gene therapy and gene-based drugs are two ways we would benefit from our growing mastery of genetic science. But therewill be others as well. Here is one of the remarkable therapies on the cutting edge of genetic research that could make their way into mainstream medicine in the c oming years. While it’s true that just about every cell in the body has the instructions to make a complete human, most of those instructions are inactivated, and with good reason: the last thing you want for your brain cells is to start churning out stomach acid or your nose to turn into a kidney. The only time cells truly have the potential to turn into any and all body parts is very early in a pregnancy, when so-called stem cells haven’t begun to specialize. Most diseases involve the death of healthy cells—brain cells in Alzheimer’s, cardiac cells in heart disease, pancreatic cells in diabetes, to name a few; if doctors could isolate stem cells, then direct their growth, they might be able to furnish patients with healthy replacement tissue. It was incredibly difficult, but last fall scientists at the University of Wisconsin managed to isolate stem cells and get them to grow into neural, gut, muscle and bone cells. The process still can’t be controlled, and may have unforeseen limitations; but if efforts to understand and master stem-cell development prove successful, doctors will have a therapeutic tool of incredible power. The same applies to cloning, whichis really just the other side of the coin; true cloning, as first shown, with the sheep Dolly two years ago, involves taking a developed cell and reactivating the genome within, resenting its developmental instructions to a pristine state. Once that happens, the rejuvenated cell can develop into a full-fledged animal, genetically identical to its parent. For agriculture, in which purely physical characteristics like milk production in a cow or low fat in a hog have real market value, biological carbon copies could become routine within a few years. This past year scientists have done for mice and cows what Ian Wilmut did for Dolly, and other creatures are bound to join the cloned menagerie in the coming year. Human cloning, on the other hand, may be technically feasible but legally and emotionally more difficult. Still, one day it will happen. The ability to reset body cells to a pristine, undeveloped state could give doctors exactly the same advantages they would get from stem cells: the potential to make healthy body tissues of all sorts. And thus to cure disease.That could prove to be a true “miracle cu re”.What is the passage mainly about?A.Tomorrow’s tissue factory.B.A terrific boon to medicine.C.Human cloning.D.Genetic research.7、 According to the passage, it can be inferred that which of the following reflects the author’s opinion?A.There will inevitably be human cloning in the coming year.B.The potential to make healthy body tissues is undoubtedly a boon to human beings.C.It is illegal to clone any kind of creatures in the world.D.It is legal to clone any kind of creatures in the world except human.8、Which of the following is NOT true according to the passage?A.Nearly every cell in the human brain has the instructions to make a complete human.B.It is impossible for a cell in your nose to turn into a kidney.C.It is possible to turn out healthy replacement tissues with isolated stem cells.D.There will certainly appear some new kind of cloned animal in the near future.9、All of the following are steps involved in true cloning EXCEPT_______.A.selecting a stem cellB.taking a developed cellC.reactivating the genome within the developed cellD.resetting the developmental instructions in the cell to its original state10、The word “rejuvenated” in para. 5 is closest in meaning to_______.A.rescuedB.reactivatedC.recalledD.regulated参考答案:【一、阅读理解题】1~5CDDAD6~10DBBA。
波色爱因斯坦凝聚
Bose-Einstein condensation (BEC)玻色-爱因斯坦凝聚(BEC)是科学大师在70年前预言的一种新物态。
那个地址的“凝聚” 与日常生活中的凝聚不同,它表示原先不同状态的原子突然“凝聚”到同一状态(一样是基态)。
即处于不同状态的原子“凝聚”到了同一种状态。
形象地说,这就像让无数原子“齐声歌唱”,其行为就仿佛一个玻色子的放大,能够想象着给咱们明白得微观世界带来了什么。
这一物质形态具有的专门性质,在芯片技术、周密测量和纳米技术等领域都有美好的应用前景。
此刻全世界已经有数十个室验室实现了8种元素的BEC。
主若是碱金属,还有氦原子和钙等。
玻色-爱因斯坦冷凝态常温下的气体原子行为就象台球一样,原子之间和与器壁之间相互碰撞,其彼此作用遵从经典力学定律;低温的原子运动,其彼此作用那么遵从量子力学定律,由德布洛意波来描述其运动,现在的德布洛意波波长λdb小于原子之间的距离d,其运动由量子属性自旋量子数来决定。
咱们明白,自旋量子数为整数的粒子为玻色子,而自旋量子数为半整数的粒子为费米子。
玻色子具有整体特性,在低温时集聚到能量最低的同一量子态(基态);而具有相互排斥的特性,它们不能占据同一量子态,因此其它的费米子就得占据能量较高的量子态,原子中的电子确实是典型的费米子。
早在1924年玻色和爱因斯坦就从理论上预言存在另外的一种物质状态——玻色爱因斯坦冷凝态,即当温度足够低、原子的运动速度足够慢时,它们将集聚到能量最低的同一量子态。
现在,所有的原子就象一个原子一样,具有完全相同的物理性质。
依照量子力学中的德布洛意关系,λdb=h/p。
粒子的运动速度越慢(温度越低),其物质波的波长就越长。
当温度足够低时,原子的德布洛意波长与原子之间的距离在同一量级上,现在,物质波之间通过彼此作用而达到完全相同的状态,其性质由一个原子的波函数即可描述;当温度为时,现象就消失了,原子处于理想的玻色爱因斯坦冷凝态。
在理论提出70年以后,2001年的诺贝尔物理学奖取得者就从实验上实现了这一现象(在1995年)。
玻色-爱因斯坦凝聚的超快动力学研究
玻色-爱因斯坦凝聚的超快动力学研究玻色-爱因斯坦凝聚的超快动力学研究引言玻色-爱因斯坦凝聚(Bose-Einstein condensation,简称BEC)是一种量子现象,在低温条件下,大量玻色子聚集成一个整体,共同处于基态,具有量子统计效应。
自从1995年首次在钠原子中实现BEC以来,BEC已经成为冷原子物理学的热门研究领域。
本文将重点介绍玻色-爱因斯坦凝聚的超快动力学研究。
1. 玻色-爱因斯坦凝聚的起源与性质BEC的概念最早由爱因斯坦于1924年提出,他预言了一种基于波动统计效应的新形态物质。
经过几十年的发展,1995年Cornell 和 Wieman以及Ketterle团队终于分别在钠原子气体和铷原子气体中实现了BEC。
玻色-爱因斯坦凝聚的一个显著特征是凝聚态的宏观量子性质,如超流性和相干性。
2. 玻色-爱因斯坦凝聚的动力学过程玻色-爱因斯坦凝聚的动力学过程包括形成、演化和衰减。
形成过程中,原子被冷却到低温且高密度条件下,经过玻色-爱因斯坦凝聚相变形成凝聚态。
演化过程中,凝聚态系统的时间演化受到外界条件和内部相互作用的影响,研究这种演化对于理解系统的性质和操控有重要意义。
衰减过程中,凝聚态的稳定性受到热和非线性失谐等因素的影响,研究这种衰减可以揭示系统的耗散机制和相干性的损失等现象。
3. 超快动力学研究方法超快动力学研究手段是通过利用超快激光技术,可以实现对凝聚态系统的快速激发和探测。
其中,脉冲激光的瞬态响应可以提供有关凝聚态的丰富信息,包括激发波包传播和扩展的速度、时间尺度等。
同时,通过调制脉冲的时间和强度,可以研究凝聚态的非平衡动力学行为和相互作用效应。
这些超快动力学研究方法在实验和理论上为研究BEC的性质和应用提供了重要的突破口。
4. 超快动力学研究的应用超快动力学研究不仅可以深入了解玻色-爱因斯坦凝聚体系的基本性质,还能为其他领域的研究提供新的思路和方法。
例如,通过超快激光技术可以实现对凝聚态系统的操控,包括精确调控凝聚态的形成、演化和衰减过程,并通过调制超快激光的时域和频域特性,实现对凝聚态相干性和超流性的精确控制。
Bose-Einstein condensation
Bose-Einstein condensationShihao LiBJTU ID#:13276013;UW ID#:20548261School of Science,Beijing Jiaotong University,Beijing,100044,ChinaJune1,20151What is BEC?To answer this question,it has to begin with the fermions and bosons.As is known,matters consist of atoms,atoms are made of protons,neutrons and electrons, and protons and neutrons are made of quarks.Also,there are photons and gluons that works for transferring interaction.All of these particles are microscopic particles and can be classified to two families,the fermion and the boson.A fermion is any particle characterized by Fermi–Dirac statistics.Particles with half-integer spin are fermions,including all quarks,leptons and electrons,as well as any composite particle made of an odd number of these,such as all baryons and many atoms and nuclei.As a consequence of the Pauli exclusion principle,two or more identical fermions cannot occupy the same quantum state at any given time.Differing from fermions,bosons obey Bose-Einstein statistics.Particles with integer spin are bosons,such as photons,gluons,W and Z bosons,the Higgs boson, and the still-theoretical graviton of quantum gravity.It also includes the composite particle made of even number of fermions,such as the nuclei with even number ofnucleons.An important characteristic of bosons is that their statistics do not restrict the number of them that occupy the same quantum state.For a single particle,when the temperature is at the absolute zero,0K,the particle is in the state of lowest energy,the ground state.Supposing that there are many particle,if they are fermions,there will be exactly one of them in the ground state;if they are bosons,most of them will be in the ground state,where these bosons share the same quantum states,and this state is called Bose-Einstein condensate (BEC).Bose–Einstein condensation(BEC)—the macroscopic groundstate accumulation of particles of a dilute gas with integer spin(bosons)at high density and low temperature very close to absolute zero.According to the knowledge of quantum mechanics,all microscopic particles have the wave-particle duality.For an atom in space,it can be expressed as well as a wave function.As is shown in the figure1.1,it tells the distribution but never exact position of atoms.Each distribution corresponds to the de Broglie wavelength of each atom.Lower the temperature is,lower the kinetic energy is,and longer the de Broglie wavelength is.p=mv=h/λ(Eq.1.1)When the distance of atoms is less than the de Broglie wavelength,the distribution of atoms are overlapped,like figure1.2.For the atoms of the same category,the overlapped distribution leads to a integral quantum state.If those atoms are bosons,each member will tend to a particular quantum state,and the whole atomsystem will become the BEC.In BEC,the physical property of all atoms is totally identical,and they are indistinguishable and like one independent atom.Figure1.1Wave functionsFigure1.2Overlapped wave functionWhat should be stressed is that the Bose–Einstein condensate is based on bosons, and BEC is a macroscopic quantum state.The first time people obtained BEC of gaseous rubidium atoms at170nK in lab was1995.Up to now,physicists have found the BEC of eight elements,most of which are alkali metals,calcium,and helium-4 atom.Always,the BEC of atom has some amazing properties which plays a vital role in the application of chip technology,precision measurement,and nano technology. What’s more,as a macroscopic quantum state,Bose–Einstein condensate gives a brand new research approach and field.2Bose and Einstein's papers were published in1924.Why does it take so long before it can be observed experimentally in atoms in1995?The condition of obtaining the BEC is daunting in1924.On the one hand,the temperature has to approach the absolute zero indefinitely;on the other hand,the aimed sample atoms should have relatively high density with few interactions but still keep in gaseous state.However,most categories of atom will easily tend to combine with others and form gaseous molecules or liquid.At first,people focused on the BEC of hydrogen atom,but failed to in the end. Fortunately,after the research,the alkali metal atoms with one electron in the outer shell and odd number of nuclei spin,which can be seen as bosons,were found suitable to obtain BEC in1980s.This is the first reason why it takes so long before BEC can be observed.Then,here’s a problem of cooling atom.Cooling atom make the kinetic energy of atom less.The breakthrough appeared in1960s when the laser was invented.In1975, the idea of laser cooling was advanced by Hänsch and Shallow.Here’s a chart of the development of laser cooling:Year Technique Limit Temperature Contributors 1980~Laser cooling of the atomic beam~mK Phillips,etc. 19853-D Laser cooling~240μK S.Chu,etc. 1989Sisyphus cooling~0.1~1μK Dalibard,etc. 1995Evaporative cooling~100nK S.Chu,etc. 1995The first realization of BEC~20nK JILA group Until1995,people didn’t have the cooling technique which was not perfect enough,so that’s the other answer.By the way,the Nobel Prize in Physics1997wasawarded to Stephen Chu,Claude Cohen-Tannoudji,and William D.Phillips for the contribution on laser cooling and trapping of atoms.3Anything you can add to the BEC phenomena(recent developments,etc.)from your own Reading.Bose–Einstein condensation of photons in an optical microcavity BEC is the state of bosons at extremely low temperature.According to the traditional view,photon does not have static mass,which means lower the temperature is,less the number of photons will be.It's very difficult for scientists to get Bose Einstein condensation of photons.Several German scientists said they obtained the BEC of photon successfully in the journal Nature published on November24th,2011.Their experiment confines photons in a curved-mirror optical microresonator filled with a dye solution,in which photons are repeatedly absorbed and re-emitted by the dye molecules.Those photons could‘heat’the dye molecules and be gradually cooled.The small distance of3.5 optical wavelengths between the mirrors causes a large frequency spacing between adjacent longitudinal modes.By pumping the dye with an external laser we add to a reservoir of electronic excitations that exchanges particles with the photon gas,in the sense of a grand-canonical ensemble.The pumping is maintained throughout the measurement to compensate for losses due to coupling into unconfined optical modes, finite quantum efficiency and mirror losses until they reach a steady state and become a super photons.(Klaers,J.,Schmitt,J.,Vewinger, F.,&Weitz,M.(2010).Bose-einstein condensation of photons in an optical microcavity.Nature,468(7323), 545-548.)With the BEC of photons,a brand new light source is created,which gives a possible to generate laser with extremely short wavelength,such as UV laser and X-ray laser.What’s more,it shows the future of powerful computer chip.Figure3.1Scheme of the experimental setup.4ConclusionA Bose-Einstein condensation(BEC)is a state of matter of a dilute gas of bosons cooled to temperatures very close to absolute zero.Under such conditions,a large fraction of bosons occupy the lowest quantum state,at which point macroscopic quantum phenomena become apparent.This state was first predicted,generally,in1924-25by Satyendra Nath Bose and Albert Einstein.And after70years,the Nobel Prize in Physics2001was awarded jointly to Eric A.Cornell,Wolfgang Ketterle and Carl E.Wieman"for theachievement of Bose-Einstein condensation in dilute gases of alkali atoms,and for early fundamental studies of the properties of the condensates".This achievement is not only related to the BEC theory but also the revolution of atom-cooling technique.5References[1]Pethick,C.,&Smith,H.(2001).Bose-einstein condensation in dilute gases.Bose-Einstein Condensation in Dilute Gases,56(6),414.[2]Klaers J,Schmitt J,Vewinger F,et al.Bose-Einstein condensation of photons in anoptical microcavity[J].Nature,2010,468(7323):545-548.[3]陈徐宗,&陈帅.(2002).物质的新状态——玻色-爱因斯坦凝聚——2001年诺贝尔物理奖介绍.物理,31(3),141-145.[4]Boson(n.d.)In Wikipedia.Retrieved from:</wiki/Boson>[5]Fermion(n.d.)In Wikipedia.Retrieved from:</wiki/Fermion>[6]Bose-einstein condensate(n.d.)In Wikipedia.Retrieved from:</wiki/Bose%E2%80%93Einstein_condensate>[7]玻色-爱因斯坦凝聚态(n.d.)In Baidubaike.Retrieved from:</link?url=5NzWN5riyBWC-qgPhvZ1QBcD2rdd4Tenkcw EyoEcOBhjh7-ofFra6uydj2ChtL-JvkPK78twjkfIC2gG2m_ZdK>。
高温超导机制的解析
高温超导机制的解析引言:超导现象是指在一定温度以下某些物质的电阻突然归零的现象。
超导材料具有很多重要应用,如磁共振成像、电力输送等。
在早期研究中,人们发现超导材料只能在极低温度下发生。
然而,20世纪80年代,高温超导现象的发现引起了巨大的轰动。
本文将对高温超导机制进行解析。
一、历史回顾:高温超导现象的发现始于1986年,由罗杰·巴内特及其团队在铋钡铊钙铜氧(Bi-Ba-Sr-Ca-Cu-O)系列化合物中首次观察到了超导转变温度超过液氮温度(77K)的现象。
这一发现引起了全球科学界的广泛兴趣和探索。
之后,人们又相继在其他化合物中发现了高温超导现象,如镧钡铜氧(La-Ba-Cu-O)系列化合物等。
二、BCS理论与高温超导:传统的超导理论是由约翰·巴丁、约兼·库珀和约翰·罗伯茨等人于1957年提出的,即巴丁-库珀-罗伯茨(BCS)理论。
BCS理论解释了低温下超导现象的发生机制,即电子通过库珀对的形成来共同传递电荷,并且在超导体中形成了一个电子-晶格耦合的准粒子谱。
然而,BCS理论无法解释高温超导现象,因为高温下热涨落对超导性的影响显著增强。
三、BCS-Bose-Einstein准粒子共存理论:为了解释高温超导现象,科学家提出了BCS-Bose-Einstein准粒子共存理论。
该理论认为,在高温下,BCS准粒子会形成布洛赫波与库珀对的新结合态,即BCS-BEC(Bose-Einstein condensation)准粒子。
这些BCS-BEC准粒子能够在相对较高的温度下发生超导。
四、电子相关效应:高温超导材料中的电子相关效应也是实现高温超导的重要因素。
电子相关效应意味着电子之间的相互作用在超导转变温度附近达到最大值。
这种电子相关性可以通过掺杂和施加外部压力来调控。
五、晶格畸变与电荷传输:超导体中晶格畸变也与高温超导现象密切相关。
晶格畸变是指晶格结构的变形,可能是由离子的不均匀分布引起的。
玻色-爱因斯坦凝聚的有关研究
玻色-爱因斯坦凝聚的相关研究The related research on Bose-Einsteincondensation化学与分子工程学院98级应用化学系刘睿摘要本文对玻色-爱因斯坦凝聚中的唯里关系及分子凝聚进行了研究。
在综述里本文先阐明玻色-爱因斯坦凝聚的基本概念,介绍相关的实验进展。
在第二章里我们对二维空间涡流状态束缚的零温玻色-爱因斯坦凝聚的Gross Pitaevskii方程用唯里能量关系进行详细的分析并对其数值解进行讨论。
第三章对分子态的玻色-爱因斯坦凝聚的形成及性质开展了探讨。
AbstractThe purpose of this dissertation is to deeply understand the virial-relationship in Bose-Einstein condensation and the molecularBose-Einstein condensate. A comprehensive review of the basic concepts of Bose-Einstein condensation, including its theory, experiments and technical skills is presented. We test the result of the Gross Pitaevskii equation of the trapped zero temperature Bose Einstein condensed atomic gases with Virial theorem in the two dimensional space of the vortex state. The numerical solution of virial relationship of the system is analyzed in detail. We also discuss the formation and properties of MBEC (molecular Bose-Einstein condensation).一、 BEC 理论和实验概述(一)、玻色-爱因斯坦凝聚的基本理论形成BEC 的条件是(1)其中T Mk h B πλ2/=是热波长(chermal wavelength ), 它和粒子的德布罗意波长同数量级,V 是粒子所占体积,N 是粒子数。
量子力学索引英汉对照
21-centimeter line, 21厘米线AAbsorption, 吸收Addition of angular momenta, 角动量叠加Adiabatic approximation, 绝热近似Adiabatic process, 绝热过程Adjoint, 自伴的Agnostic position, 不可知论立场Aharonov-Bohm effect, 阿哈罗诺夫—玻姆效应Airy equation, 艾里方程;Airy function, 艾里函数Allowed energy, 允许能量Allowed transition, 允许跃迁Alpha decay, α衰变;Alpha particle, α粒子Angular equation, 角向方程Angular momentum, 角动量Anomalous magnetic moment, 反常磁矩Antibonding, 反键Anti-hermitian operator, 反厄米算符Associated Laguerre polynomial, 连带拉盖尔多项式Associated Legendre function, 连带勒让德多项式Atoms, 原子Average value, 平均值Azimuthal angle, 方位角Azimuthal quantum number, 角量子数BBalmer series, 巴尔末线系Band structure, 能带结构Baryon, 重子Berry's phase, 贝利相位Bessel functions, 贝塞尔函数Binding energy, 束缚能Binomial coefficient, 二项式系数Biot-Savart law, 毕奥—沙法尔定律Blackbody spectrum, 黑体谱Bloch's theorem, 布洛赫定理Bohr energies, 玻尔能量;Bohr magneton, 玻尔磁子;Bohr radius, 玻尔半径Boltzmann constant, 玻尔兹曼常数Bond, 化学键Born approximation, 玻恩近似Born's statistical interpretation, 玻恩统计诠释Bose condensation, 玻色凝聚Bose-Einstein distribution, 玻色—爱因斯坦分布Boson, 玻色子Bound state, 束缚态Boundary conditions, 边界条件Bra, 左矢Bulk modulus, 体积模量CCanonical commutation relations, 正则对易关系Canonical momentum, 正则动量Cauchy's integral formula, 柯西积分公式Centrifugal term, 离心项Chandrasekhar limit, 钱德拉赛卡极限Chemical potential, 化学势Classical electron radius, 经典电子半径Clebsch-Gordan coefficients, 克—高系数Coherent States, 相干态Collapse of wave function, 波函数塌缩Commutator, 对易子Compatible observables, 对易的可观测量Complete inner product space, 完备内积空间Completeness, 完备性Conductor, 导体Configuration, 位形Connection formulas, 连接公式Conservation, 守恒Conservative systems, 保守系Continuity equation, 连续性方程Continuous spectrum, 连续谱Continuous variables, 连续变量Contour integral, 围道积分Copenhagen interpretation, 哥本哈根诠释Coulomb barrier, 库仑势垒Coulomb potential, 库仑势Covalent bond, 共价键Critical temperature, 临界温度Cross-section, 截面Crystal, 晶体Cubic symmetry, 立方对称性Cyclotron motion, 螺旋运动DDarwin term, 达尔文项de Broglie formula, 德布罗意公式de Broglie wavelength, 德布罗意波长Decay mode, 衰变模式Degeneracy, 简并度Degeneracy pressure, 简并压Degenerate perturbation theory, 简并微扰论Degenerate states, 简并态Degrees of freedom, 自由度Delta-function barrier, δ势垒Delta-function well, δ势阱Derivative operator, 求导算符Determinant, 行列式Determinate state, 确定的态Deuterium, 氘Deuteron, 氘核Diagonal matrix, 对角矩阵Diagonalizable matrix, 对角化Differential cross-section, 微分截面Dipole moment, 偶极矩Dirac delta function, 狄拉克δ函数Dirac equation, 狄拉克方程Dirac notation, 狄拉克记号Dirac orthonormality, 狄拉克正交归一性Direct integral, 直接积分Discrete spectrum, 分立谱Discrete variable, 离散变量Dispersion relation, 色散关系Displacement operator, 位移算符Distinguishable particles, 可分辨粒子Distribution, 分布Doping, 掺杂Double well, 双势阱Dual space, 对偶空间Dynamic phase, 动力学相位EEffective nuclear charge, 有效核电荷Effective potential, 有效势Ehrenfest's theorem, 厄伦费斯特定理Eigenfunction, 本征函数Eigenvalue, 本征值Eigenvector, 本征矢Einstein's A and B coefficients, 爱因斯坦A,B系数;Einstein's mass-energy formula, 爱因斯坦质能公式Electric dipole, 电偶极Electric dipole moment, 电偶极矩Electric dipole radiation, 电偶极辐射Electric dipole transition, 电偶极跃迁Electric quadrupole transition, 电四极跃迁Electric field, 电场Electromagnetic wave, 电磁波Electron, 电子Emission, 发射Energy, 能量Energy-time uncertainty principle, 能量—时间不确定性关系Ensemble, 系综Equilibrium, 平衡Equipartition theorem, 配分函数Euler's formula, 欧拉公式Even function, 偶函数Exchange force, 交换力Exchange integral, 交换积分Exchange operator, 交换算符Excited state, 激发态Exclusion principle, 不相容原理Expectation value, 期待值FFermi-Dirac distribution, 费米—狄拉克分布Fermi energy, 费米能Fermi surface, 费米面Fermi temperature, 费米温度Fermi's golden rule, 费米黄金规则Fermion, 费米子Feynman diagram, 费曼图Feynman-Hellman theorem, 费曼—海尔曼定理Fine structure, 精细结构Fine structure constant, 精细结构常数Finite square well, 有限深方势阱First-order correction, 一级修正Flux quantization, 磁通量子化Forbidden transition, 禁戒跃迁Foucault pendulum, 傅科摆Fourier series, 傅里叶级数Fourier transform, 傅里叶变换Free electron, 自由电子Free electron density, 自由电子密度Free electron gas, 自由电子气Free particle, 自由粒子Function space, 函数空间Fusion, 聚变Gg-factor, g—因子Gamma function, Γ函数Gap, 能隙Gauge invariance, 规范不变性Gauge transformation, 规范变换Gaussian wave packet, 高斯波包Generalized function, 广义函数Generating function, 生成函数Generator, 生成元Geometric phase, 几何相位Geometric series, 几何级数Golden rule, 黄金规则"Good" quantum number, “好”量子数"Good" states, “好”的态Gradient, 梯度Gram-Schmidt orthogonalization, 格莱姆—施密特正交化法Graphical solution, 图解法Green's function, 格林函数Ground state, 基态Group theory, 群论Group velocity, 群速Gyromagnetic railo, 回转磁比值HHalf-integer angular momentum, 半整数角动量Half-life, 半衰期Hamiltonian, 哈密顿量Hankel functions, 汉克尔函数Hannay's angle, 哈内角Hard-sphere scattering, 硬球散射Harmonic oscillator, 谐振子Heisenberg picture, 海森堡绘景Heisenberg uncertainty principle, 海森堡不确定性关系Helium, 氦Helmholtz equation, 亥姆霍兹方程Hermite polynomials, 厄米多项式Hermitian conjugate, 厄米共轭Hermitian matrix, 厄米矩阵Hidden variables, 隐变量Hilbert space, 希尔伯特空间Hole, 空穴Hooke's law, 胡克定律Hund's rules, 洪特规则Hydrogen atom, 氢原子Hydrogen ion, 氢离子Hydrogen molecule, 氢分子Hydrogen molecule ion, 氢分子离子Hydrogenic atom, 类氢原子Hyperfine splitting, 超精细分裂IIdea gas, 理想气体Idempotent operaror, 幂等算符Identical particles, 全同粒子Identity operator, 恒等算符Impact parameter, 碰撞参数Impulse approximation, 脉冲近似Incident wave, 入射波Incoherent perturbation, 非相干微扰Incompatible observables, 不对易的可观测量Incompleteness, 不完备性Indeterminacy, 非确定性Indistinguishable particles, 不可分辨粒子Infinite spherical well, 无限深球势阱Infinite square well, 无限深方势阱Inner product, 内积Insulator, 绝缘体Integration by parts, 分部积分Intrinsic angular momentum, 内禀角动量Inverse beta decay, 逆β衰变Inverse Fourier transform, 傅里叶逆变换KKet, 右矢Kinetic energy, 动能Kramers' relation, 克莱默斯关系Kronecker delta, 克劳尼克δLLCAO technique, 原子轨道线性组合法Ladder operators, 阶梯算符Lagrange multiplier, 拉格朗日乘子Laguerre polynomial, 拉盖尔多项式Lamb shift, 兰姆移动Lande g-factor, 朗德g—因子Laplacian, 拉普拉斯的Larmor formula, 拉摩公式Larmor frequency, 拉摩频率Larmor precession, 拉摩进动Laser, 激光Legendre polynomial, 勒让德多项式Levi-Civita symbol, 列维—西维塔符号Lifetime, 寿命Linear algebra, 线性代数Linear combination, 线性组合Linear combination of atomic orbitals, 原子轨道的线性组合Linear operator, 线性算符Linear transformation, 线性变换Lorentz force law, 洛伦兹力定律Lowering operator, 下降算符Luminoscity, 照度Lyman series, 赖曼线系MMagnetic dipole, 磁偶极Magnetic dipole moment, 磁偶极矩Magnetic dipole transition, 磁偶极跃迁Magnetic field, 磁场Magnetic flux, 磁通量Magnetic quantum number, 磁量子数Magnetic resonance, 磁共振Many worlds interpretation, 多世界诠释Matrix, 矩阵;Matrix element, 矩阵元Maxwell-Boltzmann distribution, 麦克斯韦—玻尔兹曼分布Maxwell’s equations, 麦克斯韦方程Mean value, 平均值Measurement, 测量Median value, 中位值Meson, 介子Metastable state, 亚稳态Minimum-uncertainty wave packet, 最小不确定度波包Molecule, 分子Momentum, 动量Momentum operator, 动量算符Momentum space wave function, 动量空间波函数Momentum transfer, 动量转移Most probable value, 最可几值Muon, μ子Muon-catalysed fusion, μ子催化的聚变Muonic hydrogen, μ原子Muonium, μ子素NNeumann function, 纽曼函数Neutrino oscillations, 中微子振荡Neutron star, 中子星Node, 节点Nomenclature, 术语Nondegenerate perturbationtheory, 非简并微扰论Non-normalizable function, 不可归一化的函数Normalization, 归一化Nuclear lifetime, 核寿命Nuclear magnetic resonance, 核磁共振Null vector, 零矢量OObservable, 可观测量Observer, 观测者Occupation number, 占有数Odd function, 奇函数Operator, 算符Optical theorem, 光学定理Orbital, 轨道的Orbital angular momentum, 轨道角动量Orthodox position, 正统立场Orthogonality, 正交性Orthogonalization, 正交化Orthohelium, 正氦Orthonormality, 正交归一性Orthorhombic symmetry, 斜方对称Overlap integral, 交叠积分PParahelium, 仲氦Partial wave amplitude, 分波幅Partial wave analysis, 分波法Paschen series, 帕邢线系Pauli exclusion principle, 泡利不相容原理Pauli spin matrices, 泡利自旋矩阵Periodic table, 周期表Perturbation theory, 微扰论Phase, 相位Phase shift, 相移Phase velocity, 相速Photon, 光子Planck's blackbody formula, 普朗克黑体辐射公式Planck's constant, 普朗克常数Polar angle, 极角Polarization, 极化Population inversion, 粒子数反转Position, 位置;Position operator, 位置算符Position-momentum uncertainty principles, 位置—动量不确定性关系Position space wave function, 坐标空间波函数Positronium, 电子偶素Potential energy, 势能Potential well, 势阱Power law potential, 幂律势Power series expansion, 幂级数展开Principal quantum number, 主量子数Probability, 几率Probability current, 几率流Probability density, 几率密度Projection operator, 投影算符Propagator, 传播子Proton, 质子QQuantum dynamics, 量子动力学Quantum electrodynamics, 量子电动力学Quantum number, 量子数Quantum statics, 量子统计Quantum statistical mechanics, 量子统计力学Quark, 夸克RRabi flopping frequency, 拉比翻转频率Radial equation, 径向方程Radial wave function, 径向波函数Radiation, 辐射Radius, 半径Raising operator, 上升算符Rayleigh's formula, 瑞利公式Realist position, 实在论立场Recursion formula, 递推公式Reduced mass, 约化质量Reflected wave, 反射波Reflection coefficient, 反射系数Relativistic correction, 相对论修正Rigid rotor, 刚性转子Rodrigues formula, 罗德里格斯公式Rotating wave approximation, 旋转波近似Rutherford scattering, 卢瑟福散射Rydberg constant, 里德堡常数Rydberg formula, 里德堡公式SScalar potential, 标势Scattering, 散射Scattering amplitude, 散射幅Scattering angle, 散射角Scattering matrix, 散射矩阵Scattering state, 散射态Schrodinger equation, 薛定谔方程Schrodinger picture, 薛定谔绘景Schwarz inequality, 施瓦兹不等式Screening, 屏蔽Second-order correction, 二级修正Selection rules, 选择定则Semiconductor, 半导体Separable solutions, 分离变量解Separation of variables, 变量分离Shell, 壳Simple harmonic oscillator, 简谐振子Simultaneous diagonalization, 同时对角化Singlet state, 单态Slater determinant, 斯拉特行列式Soft-sphere scattering, 软球散射Solenoid, 螺线管Solids, 固体Spectral decomposition, 谱分解Spectrum, 谱Spherical Bessel functions, 球贝塞尔函数Spherical coordinates, 球坐标Spherical Hankel functions, 球汉克尔函数Spherical harmonics, 球谐函数Spherical Neumann functions, 球纽曼函数Spin, 自旋Spin matrices, 自旋矩阵Spin-orbit coupling, 自旋—轨道耦合Spin-orbit interaction, 自旋—轨道相互作用Spinor, 旋量Spin-spin coupling, 自旋—自旋耦合Spontaneous emission, 自发辐射Square-integrable function, 平方可积函数Square well, 方势阱Standard deviation, 标准偏差Stark effect, 斯塔克效应Stationary state, 定态Statistical interpretation, 统计诠释Statistical mechanics, 统计力学Stefan-Boltzmann law, 斯特番—玻尔兹曼定律Step function, 阶跃函数Stem-Gerlach experiment, 斯特恩—盖拉赫实验Stimulated emission, 受激辐射Stirling's approximation, 斯特林近似Superconductor, 超导体Symmetrization, 对称化Symmetry, 对称TTaylor series, 泰勒级数Temperature, 温度Tetragonal symmetry, 正方对称Thermal equilibrium, 热平衡Thomas precession, 托马斯进动Time-dependent perturbation theory, 含时微扰论Time-dependent Schrodinger equation, 含时薛定谔方程Time-independent perturbation theory, 定态微扰论Time-independent Schrodinger equation, 定态薛定谔方程Total cross-section, 总截面Transfer matrix, 转移矩阵Transformation, 变换Transition, 跃迁;Transition probability, 跃迁几率Transition rate, 跃迁速率Translation,平移Transmission coefficient, 透射系数Transmitted wave, 透射波Trial wave function, 试探波函数Triplet state, 三重态Tunneling, 隧穿Turning points, 回转点Two-fold degeneracy , 二重简并Two-level systems, 二能级体系UUncertainty principle, 不确定性关系Unstable particles, 不稳定粒子VValence electron, 价电子Van der Waals interaction, 范德瓦尔斯相互作用Variables, 变量Variance, 方差Variational principle, 变分原理Vector, 矢量Vector potential, 矢势Velocity, 速度Vertex factor, 顶角因子Virial theorem, 维里定理WWave function, 波函数Wavelength, 波长Wave number, 波数Wave packet, 波包Wave vector, 波矢White dwarf, 白矮星Wien's displacement law, 维恩位移定律YYukawa potential, 汤川势ZZeeman effect, 塞曼效应。
5解释玻色——爱因斯坦凝聚现象
5解释玻色——爱因斯坦凝聚现象
玻色-爱因斯坦凝聚(Bose-Einstein condensation)是一种在极低温下发生的物质状态,它是由印度物理学家萨提亚德拉·玻色(Satyendra Nath Bose)和阿尔伯特·爱因斯坦在20世纪早期预
测的。
在这种凝聚态中,大量的玻色子(一类特殊的基本粒子,如
光子、重子等)聚集在能级的最低态,形成一种凝聚体,这种状态
在经典物理学中是不可能出现的。
当物质被冷却到接近绝对零度时,粒子的波长开始增大,使得它们开始表现出波动性,多个粒子开始
占据同一个量子态,最终形成玻色-爱因斯坦凝聚。
玻色-爱因斯坦凝聚具有一些独特的物理特性,例如超流动和相
干性。
超流动是指在凝聚体中,粒子不受粘滞力的限制,可以自由
地流动而不损失能量。
相干性则意味着凝聚体中的粒子具有相同的
相位,表现出统一的波动行为。
这些特性使得玻色-爱因斯坦凝聚成
为研究量子现象和开发新型激光器、原子钟等技术的重要工具。
玻色-爱因斯坦凝聚的研究对于理解凝聚态物理学和量子物理学
有着深远的影响。
它不仅为我们提供了一种新的物质状态,也为研
究低温物理学和量子信息领域提供了新的途径和实验平台。
因此,
玻色-爱因斯坦凝聚现象在物理学和相关领域中具有重要的意义。
超冷原子体系中的玻色爱因斯坦凝聚
南京师范大学泰州学院毕业论文题目超冷体系中的玻色-爱因斯坦凝聚学生姓名房杨学号专业物理学(师范)班级物1101指导教师朱庆利2015 年 5 月摘要所谓超冷原子体系中的玻色-爱因斯坦凝聚,就是当温度降到临界温度以下时,所有原子占据同一个量子态的现象。
由于玻色-爱因斯坦凝聚具有非常奇妙的性质,对其进行研究有助于人们理解和揭示量子力学中的重要问题。
近年来,物理学界取得了很大的进步在玻色-爱因斯坦凝聚的理论和实验研究中。
也有许多关于非线性结构的调查在玻色-爱因斯坦凝聚这个新的话题中展开,如暗孤子、亮孤子,漩涡和冲击波,这是现在热门的研究话题。
本论文简单介绍了超冷原子的概念、BEC的由来和发展过程。
然后对BEC的理论基础进行了详细介绍,紧接着介绍了BEC中的涡旋级涡旋的量子反射相关的知识点。
最后对BEC的发展和展望进行了简要分析。
关键词:涡旋;玻色-爱因斯坦凝聚;量子反射AbstractThe so-called system of ultracold atoms in Bose - Einstein condensate , is that when the temperature drops below the critical temperature , all atoms occupy the same quantum state phenomenon . Because of its unique properties , the investigation of BECs has unanticipated impact for people to understand and exploit the important and fundamental issue in quantum mechanics . In recent years , great progress has been made in the theoretical and experimental studies of Bose –Einstein condensation . There are also many investigations about the nonlinear structures in Bose –Einstein condensation , such as dark soliton , bright soliton , vortices and shock wave , which are hot research topics nowadays .This paper first introduces the concept of ultracold atoms , the origin of the BEC and development process . Theoretical basis of BEC and then carried on the detailed introduction , and then introduces the knowledge point of vortices and quantum reflection with vortices . Finally , the development and a outlook of the BEC is briefly analyzed .Keywords: vortex; Bose-Einstein condensation; quantum reflection目录摘要 (I)Abstract (II)第一章绪论 (1)第二章玻色-爱因斯坦凝聚(BEC)简介 (2)2.1B E C的概念 (2)2.2B E C的由来 (2)2.3 BEC实现的曲折性 (2)2.4 BEC实现后的重大进展 (3)第三章玻色-爱因斯坦凝聚(BEC)的基础理论 (4)3.1 BEC的统计性质 (4)3.2 BEC的平均场理论 (6)第四章玻色-爱因斯坦凝聚(BEC)中的涡旋 (8)4.1 BEC中的涡旋 (8)4.2涡旋-反涡旋相干叠加态的产生 (9)4.3没有涡旋的态 (11)第五章涡旋的量子反射 (12)5.1 对量子反射的背景简单介绍 (12)5.2 涡旋的量子反射 (13)第六章玻色-爱因斯坦凝聚(BEC)的发展和展望 (16)6.1 BEC的应用前景及其研究意义 (16)6.2 总结与展望 (16)结束语 (18)参考文献 (19)致谢 (21)第一章绪论玻色-爱因斯坦凝聚(BEC)是自然界中奇特而有趣的一种物理现象。
量子主方程及其求解的若干方法
接下来介绍了主方程应用于量子光学和凝聚态物理的三个例子。我们用Zwanzig方法 推导辐射场与物质相互作用的Dicke模型的主方程,用Lawande稳态解方法求解超辐射和 共振荧光的主方程;分析了激光产生的机制,用Louisell方法导出激光场的主方程,并求 出该主方程的稳态解;介绍了稀薄量子Bose气体的模型,导出Bose—Einstein凝聚的量子运 动的主方程。
given,we can simply put down an analytic expression to the reduced density operator at anytime.
At the end of this thesis,we give an application of ME in quantum information theory,
Fokker—Planck equations in P representation,Q representation,Wigner function represen—
tation and general P representation.
Thirdly,we introduce three examples of MEs in quantum optics and condense matter physits.First of all,we use the Zwanzig’S method in deriving the ME of Dicke model for
一类非线性薛定谔方程的孤子解
云南大学学报(自然科学版),2004,26(2):132~133CN53-1045/N ISSN0258-7971 Journal of Yunnan University*一类非线性薛定谔方程的孤子解刘良桂,李云德(云南大学物理系,云南昆明650091)摘要:研究了具有V(x,t)=f1(t)x+f2(t)x2形式的外部势的非线性薛定谔方程的单一孤立子解.结果表明:当孤立子的中心满足带有势V(x,t)的牛顿方程,孤立子的内部结构由/体固定0坐标系决定.孤立子的结构与f1(t)无关.若f2(t)与t无关,孤立子是固定的.原则上,若f2(t)剧烈变化,则孤立子将扩散.但数值计算表明,在一定条件下,孤立子还是经得起f2(t)的剧烈变化.关键词:玻色-爱因斯坦凝聚;非线性薛定谔方程;孤立子解;牛顿方程中图分类号:O413;O414文献标识码:A文章编号:0258-7971(2004)02-0132-02在诺贝尔奖设立百年之际,2001年诺贝尔奖授予了3位科学家,瑞典皇家科学院称颂他们得奖的原因是:/由于在碱性原子的稀薄气体中获得了玻色-爱因斯坦凝聚(BEC)和对这类凝聚体特性的早期基础研究0.一时间,这项世界上/最冷0的研究领域成了最热的话题.BEC的实验上的进展极大地推动了理论上努力预测这一宏观量子系统的性质.预测的起点往往是带有谐和捕获势的Gross-Pitaevskii方程.这是个非线性薛定谔方程,假设它对于零温度的稀薄气体(na3n1,这里n为平均密度,a为S波散射长度)也成立,这里量子和热涨落可以忽略.很多文献[1~4]已经讨论了该方程的解.但对于带有和时间有关的线性谐和势的非线性薛定谔方程的孤立子的情况却鲜有文章报道.本文讨论1+1维外部势具有二次形式V(x,t)=V1(x,t)+V2(x,t),V n(x,t)S f n(t)x n的非线性薛定谔方程的孤立子行为和结构,并导出相关结论.1方法和举例考虑非线性薛定谔方程i 9W9t=-12m92W9x2-g|W|2W+V(x,t)W,(1)其中W=W(x,t),m为/质量0,g>0,为一常数,V(x,t)为外部势.将W归一化,Q]-]|W(x,t)|2d x=1.外部势具有二次形式V(x,t)=V1(x,t)+V2(x,t),V n(x,t)S f n(t)x n,(2)其中f1(t),f2(t)均为t的函数,只是f2(t)还要满足下面将要讨论的条件.在缺少外部势的情况下,V(x,t)=0,方程(1)的单孤立子解为[5]W(x,t)=A0(x-M t)e i[m M x-(E0+m M2/2)t],(3)A0(x)=(J/2)1/2sech(J x),(4)E0=-J22m,J=12mg,(5)其中A0(x)决定了/自由0孤立子的形状,是与时间无关的方程-12m A0x x-gA30=E0A0(6)的束缚态解.运用Husimi变换[6],x c=x-N(t),(7)这里,x c为关于运动原点N(t)的坐标,后面,把N(t)看成孤立子的质心,将W(x,t)改写为W(x,t)=U(x c,t)e i m N#x c,(8)*收稿日期:2003-04-08基金项目:国家自然科学基金资助项目(10347011).作者简介:刘良桂(1976-),男,江西人,硕士,主要从事理论物理研究.其中N#=d N(t)/d t.可得W(x,t)=V(x c,t)ex p i m N#x c+i Q L(t c)d t c,(9)L(t)=12m N#2-V(N,t),(10)i V t=-12mV x c x c-g|V|2V+V2(x c,t)V.(11)(11)式与(1)式有2点不同:¹(1)式是对/实验室0系而言,而(11)式是对运动系而言,其原点定在x=N(t);º(11)式少了V1项,且关于x c的宇称是好量子数.由º可知(11)式具有束缚态解,且有Q]-]|V(x c,t c)|2x c d x c=0.束缚态结构由(11)式决定,且与N(t)无关.束缚态的质心位于x c=0,亦即x=N(t).x c坐标系是束缚态的/体固定0系.当g=0,f2(t)>0时,(11)式显然有束缚态解.当添加引力非线性项时,这些束缚态仍存在.非线性相互作用强烈影响着最低态,孤立子由此形成.若f2(t)<0,则V2(x,t)为一反转谐振子势;若g=0,则(11)式不允许束缚态存在.若g>0,即使f2(t)<0,仍存在束缚孤立子态.(Ñ)线性势V(x,t)=V1(x,t)=m A(t)x,(12)由V2=0,可知:A(x)=A0(x),E=E0.N(t)由m N=-A(t)决定.由N(t)可求出W(x,t).(Ò)谐振子模式V(x)=V2(x)=12m X2x2,(13)其中X为常数,式(18)变为-12mA x x-gA3+12m X2x2A=E A.(14)对非线性自相互作用,外部势相对强度可用(m X)1/2/J度量,这里J=12mg.系统的能量由下式给出E=Q]-]-12m(A x)2-12gA4+12m X2x2A2d x.(15)(Ó)反转谐振子模型V(x)=V2(x)=-12m X2x2,(16)W(x,t)可仿(Ò)求出.若非线性项-gA3不存在,则没有束缚态.设想一个定位在原点周围的函数A,该函数产生一有效的引力势-gA2.若对A 退定域,则系统能量增加.若进一步对A在原点之外退定域,则能量开始下降.若采用参量K来量度A的定域化度,则能量作为K的函数将有局域最小值,亦即意味着束缚态的存在.(Ô)受迫的谐振子模型V(x,t)=12m X2x2-m X2F(t)x,(17)这里m X2F(t)x是附加的微扰.由牛顿方程,可知N(t)=X Q]-]F(t c)sin[X(t-t c)]d t c.(18)可在式(18)右边加上类似N0cos X t的项.振幅函数A(x-N)与(Ò)中的相同.由(18)可求出W(x,t).无论F(t)变化多剧烈,该解仍保持有效. 2结语总而言之,对带有式(2)所示的与时间有关的二次势的非线性薛定谔方程所描写的孤立子而言,它的内部结构可从孤立子的质心运动分离出来.对质心而言,方程(1)可化简为牛顿方程m N##= -V N(N,t),对于孤立子的结构而言,方程(1)又可化简为式(11).孤立子结构与线性项V1(x,t)无关,因此孤立子经得起f1(t)的剧烈变化.原则上,若f2(t)剧烈变化,则孤立子将扩散.但数值计算表明,孤立子经得起f2(t)的剧烈变化.详细地讨论了V(x,t)为反转谐振子势(即f2(t)<0)时的孤立子行为.参考文献:[1]EDWAR DS M,DODD R J,CLA RK C W,et al.Proper-ties of a Bose-Einstein condensate in an anisotropic har-monic pot ential[J].Phys Rev A,1996,53(4):1950)1953.[2]BAYM G,PETHICK C.Ground-State properties of mag-netically trapped Bose-Condensed rubidium gas[J].PhysR ev L ett,1996,76(1):6)9.[3]HOL LAN D M,COOPER J.Ex pansion o f a Bose-Ein-stein condensate in a harmonic potential[J].Phys RevA,1996,53(4):1954)1957.[4]RU PRECHT P A,HOL LA ND M J,BU RNET T K,etal.Rea-l T ime Bose-Einstein condensationin a finite vo-lume w ith a discrete spectrum[J].Ibid,1995,51(3):4704)4708.(下转第138页)133第2期刘良桂等:一类非线性薛定谔方程的孤子解Preparation of matrix of quantum dots using AAO template by PLDCH EN Da-peng1,YANG Ru-i ming1,ZHANG Peng-x iang1,2,FANG Yan2,YANG Zhi2(1.Institute of Advanced M ater ials for Photoelectronics,K unming Universityof Science and T echnology,Kunming650051,China;2.L aboratory o f N ano-P hotoelectro nics of Beijing,Capital Nor mal University,Beijing10053,China;3.Department of Chemistry,Yunnan N ormal U niversity,Kunming650092,China)Abstract:M atrix of quantum dots is fabricated using anodic aluminum ox ide(AAO)tem plate and pulsed laser deposition(PLD).The cylindrical pore array structure of AAO serves as a template for the preparation of the quantum dots.T he morphology of the matrix of dots and AAO template are characterized by scanning elec-tron microscope,the luminescence spectra of the dots and target materials are recorded by a m icro-Ram an spec-trometer.The structure and photoluminescence of the dots are discussed,w hich demonstrates that one can make m atrix of quantum dots by this method.It is proofed that this method can fabricate the m atrix of a quan-tum dots of the other materials in the future.Key words:anodic alum inum ox ide template;nanostucture system;fluorescence materials;pulsed laser de-position;quantum dots********************************* (上接第133页)[5]刘良桂,李云德.一维Bose-Einstein凝聚中的孤波[J].云南大学学报(自然科学版),2003,25(4):332)334.[6]CH EN H H,L IU C S.No nlinear w ave and soliton prop-agation in media w ith arbitrary inhomog eneities[J].P hys Fluids,1978,21(3):377)380.Soliton solution of certain nonlinear SchrÊdinger equationLIU Liang-gui,LI Yun-de(Depar tment of Physics,Y unnan U niv ersity,Kunming650091,China)Abstract:The one-soliton solution of the nonlinear SchrÊdinger equation w ith an external potential of the form of V(x,t)=f1(t)x+f2(t)x2is ex amined.It is show n that,w hile the center of the soliton obeys Newton.s equation w ith the potential V(x,t),the internal structure of the soliton is determined by the NLSE of the/body-fix ed0coordinate system.The soliton structure is found to be independent of f1(t).In principle,the soliton can be diffused if f2(t)varies rapidly.Through num erical method,how ever,that the sol-i ton is ex tremely tenacious against rapid variations of f2(t).Key words:Bose-Einstein condensate;nonlinear SchrÊdinger equation;soliton solution;New ton.s equation 138云南大学学报(自然科学版)第26卷。
玻色-爱因斯坦凝聚:量子宏观现象
玻色-爱因斯坦凝聚:量子宏观现象玻色-爱因斯坦凝聚(Bose-Einstein condensation,简称BEC)是一种量子宏观现象,最早由印度物理学家萨蒂扬德拉·纳特·玻色和德国物理学家阿尔伯特·爱因斯坦在1924年独立提出。
BEC是指在极低温下,一群玻色子(具有整数自旋的粒子)会聚集在能量最低的量子态,形成一个宏观量子态。
这种凝聚态具有许多奇特的性质,对于研究量子力学和凝聚态物理有着重要的意义。
玻色-爱因斯坦凝聚的基本原理玻色-爱因斯坦凝聚的基本原理可以通过统计力学和量子力学的理论来解释。
根据波尔兹曼分布和玻色-爱因斯坦统计,当温度趋近绝对零度时,粒子会趋向于占据能量最低的状态。
对于费米子(具有半整数自旋的粒子),由于泡利不相容原理的限制,不同粒子不能占据相同的量子态。
而对于玻色子,由于它们可以占据相同的量子态,当温度趋近绝对零度时,大量玻色子会聚集在能量最低的量子态,形成一个凝聚态。
玻色-爱因斯坦凝聚的实验观测玻色-爱因斯坦凝聚最早是在1995年由美国科学家埃里克·科尔曼和卡尔·韦曼等人在铷原子气体中实现的。
他们通过使用激光冷却和磁场操控技术,将铷原子冷却到极低温度,并将其限制在一个磁性陷阱中。
当温度足够低时,铷原子会进入玻色-爱因斯坦凝聚态,形成一个超流体。
这一实验观测为玻色-爱因斯坦凝聚的研究奠定了基础。
随后的实验中,科学家们还在其他物质中观测到了玻色-爱因斯坦凝聚现象,包括钠、锂、氢等原子气体,以及凝聚态固体中的激子和极化子等。
这些实验观测进一步验证了玻色-爱因斯坦凝聚的普适性和重要性。
玻色-爱因斯坦凝聚的应用玻色-爱因斯坦凝聚不仅在基础物理研究中具有重要意义,还在其他领域有着广泛的应用。
量子计算与量子通信玻色-爱因斯坦凝聚可以作为实现量子计算和量子通信的基础。
由于玻色-爱因斯坦凝聚具有宏观量子态的特性,可以用来存储和处理大量的量子信息。
玻色爱因斯坦凝聚的临界温度
玻色爱因斯坦凝聚的临界温度一、引言玻色爱因斯坦凝聚(Bose-Einstein Condensation,BEC)是物理学中的一个重要现象,它描述了低温下玻色子系统从热力学气体到凝聚态的转变。
这个现象是爱因斯坦在1925年预测的,并且通过实验在20世纪90年代得到了证实。
临界温度是玻色爱因斯坦凝聚的一个重要参数,它决定了系统从气体到凝聚态的转变温度。
本文将详细介绍玻色爱因斯坦凝聚的定义、临界温度以及相关的实验研究,并探讨其应用前景。
二、玻色爱因斯坦凝聚的定义玻色爱因斯坦凝聚是指玻色子气体在低温下经历一个从热力学气体到凝聚态的转变过程。
在这个转变过程中,系统中的粒子会逐渐聚集在同一个量子态上,形成一个宏观的凝聚体。
这种凝聚体的出现是因为玻色子具有相同的量子态,它们之间的相互作用使得粒子聚集在一起。
三、玻色爱因斯坦凝聚的临界温度玻色爱因斯坦凝聚的临界温度是指系统从热力学气体转变为凝聚态所需的最低温度。
这个温度是由玻色子的特性以及粒子之间的相互作用决定的。
在实验中,人们通常通过降低系统的温度来观察这个转变过程。
当温度降至某个特定的临界温度以下时,系统就会进入玻色爱因斯坦凝聚状态。
四、玻色爱因斯坦凝聚的实验研究自20世纪90年代以来,人们通过多种实验手段研究了玻色爱因斯坦凝聚现象。
其中最著名的实验是在JILA实验室和Cornell大学的超冷原子实验室中进行的。
在这些实验中,人们使用了超低温气体、磁光陷阱、光频迁跃等技术来降低原子气的温度,并通过观察其特征来验证玻色爱因斯坦凝聚的存在。
此外,人们还研究了不同种类的玻色子气体(如钠原子、钾原子等)在低温下的行为,以及不同相互作用强度下的玻色爱因斯坦凝聚现象。
这些实验不仅验证了理论的预测,还为人们提供了深入了解玻色爱因斯坦凝聚的机会。
五、玻色爱因斯坦凝聚的应用前景由于玻色爱因斯坦凝聚具有独特的性质和潜力,它在许多领域都具有广泛的应用前景。
例如,在原子钟、量子计算和量子通信等领域中,人们可以利用玻色爱因斯坦凝聚现象来提高设备的性能和精度。
玻色因结构式范文
玻色因结构式范文玻色因结构式(Bose-Einstein condensation)是指由玻色子组成的系统中,当温度降至绝对零度时,大部分玻色子将占据相同的最低能级,产生了一种特殊的凝聚态现象。
这种凝聚态现象首次被印度物理学家萨蒂扬德拉·纳特·玻色于1924年提出并得到实验证实,因而得名。
在玻色因结构式中,玻色子是一类具有整数自旋的粒子。
相反,费米子是一类具有半整数自旋的粒子。
由于玻色子的特殊性质,温度足够低时,它们趋向于占据相同的最低能级,形成一个集体行为。
这个最低能级通常称为玻色子的凝聚态,而玻色粒子本身被称为玻色-爱因斯坦凝聚(Bose-Einstein condensate,BEC)。
为了更好地理解玻色因结构式,让我们来具体了解一下凝聚态的形成过程。
当温度很高时,玻色子以独立的粒子存在,它们遵循玻尔兹曼统计,分布在不同的能级上。
然而,当温度逐渐降低时,玻色子的可用能级数量减少,而低能级的密度却开始增加。
这使得玻色子趋向于占据最低能级,形成一个凝聚态。
对于玻色-爱因斯坦凝聚来说,最低能级的占据就是整个系统中的主要特征。
当温度足够低,玻色子几乎全部占据最低能级时,系统将表现出一种新的集体行为。
这种集体行为可以通过凝聚态的宏观性质来描述,例如它们的动量、能量和相干性。
研究玻色-爱因斯坦凝聚需要将物质冷却到非常低的温度。
目前,常用的方法是使用镭或其他稀土元素的气体来实现这种冷却。
通过激光冷却和蒸发冷却技术,科学家能够将气体冷却到超低温,使玻色子趋向于凝聚。
这为实验研究提供了一种新的凝聚态系统。
玻色-爱因斯坦凝聚的研究对于理解量子统计和冷原子物理学具有重要意义。
这种凝聚态现象不仅有助于揭示玻色粒子的统计行为,还有助于研究超流性和相干性等量子效应。
此外,玻色因结构式的研究还为研究其他凝聚态系统,如费米子凝聚以及凝聚态物理学的其他方面提供了新的思路和方法。
总之,玻色因结构式是一种将玻色子冷却到绝对零度并形成集体行为的凝聚态现象。
单峰s型玻色因
单峰S型玻色因简介单峰S型玻色因(Monomodal S-shaped Bose-Einstein Condensate)是一种具有特殊形状的玻色爱因斯坦凝聚态。
在冷原子物理学领域,玻色爱因斯坦凝聚(Bose-Einstein Condensation, BEC)是一种低温下凝聚态物质的状态,其特点是大量的玻色子聚集在同一个量子态中。
单峰S型玻色因的研究对于理解和探索量子物理现象以及开发新型量子器件具有重要意义。
本文将介绍单峰S型玻色因的定义、特性以及相关研究进展。
定义单峰S型玻色因是指在三维空间中具有一个明显的主要波包形状,呈现出S形曲线的一种BEC。
与传统的球对称或椭圆对称的BEC不同,单峰S型玻色因在某个方向上具有明显压缩和延伸效应,呈现出类似字母”S”形状。
特性1. 形状特征单峰S型玻色因的主要特征是其独特的形状。
通过适当的外场调控和相互作用调节,可以实现单峰S型玻色因的产生。
在某个方向上,原子云呈现出明显的压缩和延伸效应,形成一个S形曲线。
2. 能量特征单峰S型玻色因具有不同于传统BEC的能量特征。
由于其形状的非球对称性,单峰S型玻色因在不同方向上具有不同的能量分布。
这种非均匀能量分布可用来进行一些特殊的量子操作和调控。
3. 动力学特征单峰S型玻色因的动力学行为也与传统BEC有所区别。
由于其非球对称形状,单峰S型玻色因在外场调控下表现出复杂的运动模式,如扭转、震荡等。
4. 相干性特征与传统BEC相比,单峰S型玻色因具有更高的相干性。
这是由于其形状导致了原子之间更强的相互作用,并且减少了相位扩展。
研究进展近年来,对于单峰S型玻色因的研究逐渐受到关注,并取得了一系列的重要进展。
1. 形成机制研究人员通过调控外场和相互作用,成功实现了单峰S型玻色因的形成。
例如,利用磁场梯度和光束干涉技术,可以在玻色准粒子系统中实现单峰S型玻色因的产生。
2. 特殊量子操作单峰S型玻色因的非均匀能量分布为进行特殊的量子操作提供了机会。
Bose-Einsteindistribution
Modern Physics notes–Spring2007Paul Fendley********************Lecture13•Emission and absorption of photons•Bose-Einstein distribution•Superconductivity and Bose-Einstein condensation•Feynman,4.3-4.5•Fowler,“Blackbody radiation”Bose-Einstein distributionA blackbody is a box which contains photons and atoms,so that none can get out.The atoms are in thermal equilibrium with the photons.What this means is that we can have transitions which create and annihilate photons,but that the rate at which the photons are being created is the same as the rate at which they’re being annihilated.Let’s consider just two levels of the atom,with energy difference∆E.We’ll call these the ground state and the excited state.The photon emitted when the atom goes from the excited state to the ground state has frequency ν=∆E/h.Likewise,if an atom in the ground state absorbs a photon of frequencyν,it jumps to the excited states.Statistical mechanics is the study of the large number of particles.One doesn’t study each one individually,of course,but can derive things about their aggregate properties from a few basic assumptions.For example,all the laws of thermodynamics you learned about in chemistry or other physics classes can be derived from statistical mechanics.A central issue is how to define temperature.The answer is in comparing the relative numbers of different particles which are in thermodynamic equilibrium.If in thermodynamic equilibrium we have N g particles in the ground state,and N e in the excited state,then the temperature T is defined asN e=e−∆E/k B T=e− ω/k B TN gwhere k is a fundamental constant called Boltzmann’s constant;k B=1.38×10−23J/K.(k B is simply related to the ideal gas constant:the ideal gas law P V=nRT written in terms of Boltzmann’s constant is P V=Nk B T,where N is the total number of particles and n the number of moles.Thus k B=R/N a,where N a is Avogadro’s number6.02×1023.)1In thermal equilibrium,photons are being created and annihilated constantly.One would expect that the higher the temperature,the more photons one will have.This is because the atoms have more energy and so collide with each other more often,allowing more energy to be transferred around in the form of photons.The definition of temperature above allows us is very useful for blackbodies–it allows us tofind how the average number of photons in the box n depends on temperature.So let’s use this with our enhancement calculation.Let n be the average number of photons with frequency ofω(so it’s a function ofω).Then our enhancement result says that the absorption rate from this state isN g n|a|2It’s multiplied by N g because you can have a transition upward in any atom which is in the ground state.The emission rate into this state isN e(n+1)|a|2The definition of thermal equilibrium is that these two are bining these with the relation between N g and N e givesnn+1=e−hν/(k B T)Solving for n givesn=1e hν/k B T−1This is an amazing result.From these simple laws of quantum mechanics and statistical me-chanics,we know the average number of photons of a frequencyνin the box.Particles which obey this formula are said to have“Bose-Einstein statistics”,and are called of course“bosons”.Superconductivity and Bose-Einstein condensationOne remarkable thing about bosons is that it is possible to get a macroscopic number of them in the same quantum state.A laser is one example of this.Here’s another way:just cool a gas of bosons enough,and our results above show that most or all of the particles will fall in to ground state of the system.We derived the formula for n for a specific system,but in fact it holds for any bosons in thermal equilibrium in any system.We have in generaln(E,T)∝1e E/k B T−1as the average number of bosons n of energy E at temperature T.Notice that as the temperature T→0(absolute zero),this goes to zero unless E=0.Thus at low enough temperature,all the particles of the system will be in the E=0ground state.This is called Bose-Einstein condensation.2Sounds easy,but it wasfirst done only about10years ago(by a guy I went to grad school with!)One needs to cool the atoms down to a mind-bogglingly small temperature,which is done by many clever tricks involving lasers.Now it’s done downstairs in this building!Although BEC was only seen by this method recently,it’s been seen in fermionic systems for nearly a century!It’s called superconductivity,which happens in some materials at low enough temperatures(but far higher than the BEC I mentioned above).Electrons are fermions,and moreover,they repel each other because of the Coulomb interaction.In these materials,however, at low enough temperatures they develop an attractive interaction because of their interacions with the lattice of atoms.The electrons then can pair up into what are called“Cooper pairs”.A pair of electrons makes a boson,so it can then occupy the ground state with other pairs.A remarkable property of this state is that current is carried without resistance.Not just a small resistance,but literally zero.This happens because they are bosons–the Cooper pairs are all in the same state.There is an non-zero energy difference(a gap)between this state and the lowest-lying excited state. If the temperature is low enough,there is not enough energy to break up the pairs.As long as starting a small current also does not heat up the sample enough to excite it and break up the pairs.People have started a current in a superconducting ring,removed the battery,and watched it run for years.All you need to do is keep the material cold enough.A related phenomenon Feynman mentions is superfluidity.This seems to occur only in ually,if you cool something enough,it turns into a solid.But when you cool offhelium,it forms a liquid but never a solid.You can then under the right conditions get a macroscopic number of atoms in the ground state,and end up with a superfluid.Helium-3is a fermion,and so it needs to form pairs to become a superfluid(which it does).But even BEC is so10-years ago.In the last few years,people have succeeded in cooling down fermionic atoms to the same mind-bogglingly small temperatures.Then one can hopefully study superconductivity in these systems,where the interactions are small,and can be controlled much better than in a typical material.3。
+全国2009年4月高等教育自学考试英语科技文选
英语科技文选试题课程代码:00836PART A: VOCABULARYI. Directions: Add the affix to each word according to the given Chinese, making changes when necessary. (8%)1. artificial 人工制品 1. __________________2. fiction 虚构的 2. __________________3. coincide 巧合 3. __________________4. organic 无机的 4. __________________5. sphere 半球 5. __________________6. technology 生物技术 6. __________________7. formid 可怕的7. __________________8. harmony 和谐的8. __________________II. Directions: Fill in the blanks, each using one of the given words or phrases below in its proper form.(12%)stand for exposure to at work on the edge of short ofend up focus on a host of give off a sense ofin memory of comply with9. We were on a hill, right _________ the town.10. UNESCO _________ United Nations Educational, Scientific and Cultural Organization.11. I am a bit _________ cash right now, so I can’t lend you anything.12. The milk must be bad, it’s _________ a nasty smell.13. The traveler took the wrong train and _________ at a country village.14. The material will corrode after prolonged _________ acidic gases.15. _________ problems may delay the opening of the conference.16. The congress opened with a minute’s silence _________ those who died in the struggle for the independence of their country.17. Tonight’s TV program _________ homelessness.18. He promised to _________ my request.19. Farmers are _________ in the fields planting.20. She doesn’t sleep enough, so she always has _________ of fatigue.III. Directions: Fill in each blank with a suitable word given below.(10%)birth to unmarried had premature among were between such pastThe more miscarriages or abortions a woman has,the greater are her chances of giving birth to a child that is underweight or premature in the future,the research shows.Low birthweight (under 2500g) and premature birth(less than 37 weeks)are two of the major contributors to deaths 21 newborn babies and infants. Rates of low birthweight and 22 birth were highest among mothers who 23 black, young or old, poorly educated, and 24 . But there was a strong association 25 miscarriage and abortion and an early or underweight 26 , even after adjusting for other influential factors, 27 as smoking, high blood pressure and heavy drinking. Women who had 28 one, two, or three or more miscarriages or abortions in the 29 were almost three, five, and nine times as likely to give birth 30 an underweight child as those without previous miscarriages or abortions.21. _________ 22. _________ 23. _________ 24. _________ 25. _________26. _________ 27. _________ 28. _________ 29. _________ 30. _________PART B: TRANSLATIONIV. Directions: Translate the following sentences into English, each using one of the given words or phrases below.(10%)precede replete with specialize in incompatible with suffice for31.上甜食前,每个用餐者都已吃得很饱了。
bose-einstein_statistic_博斯-爱因斯坦统计量
bose-einstein statistic 博斯-爱因斯坦统计量1. 引言1.1 概述博斯-爱因斯坦统计量是一种描述粒子在量子力学体系中分布情况的统计方法。
它是由印度物理学家博斯和奥地利物理学家爱因斯坦在20世纪早期提出的,用于研究玻色子(Bosons)这类具有整数自旋的基本粒子。
1.2 文章结构本文将依次介绍博斯-爱因斯坦统计量的相关概念和原理,探讨其在凝聚态物理、超冷原子系统以及光子和声子系统中的应用,并深入讨论实验验证与实现方法。
最后,对整篇文章进行总结和结论。
1.3 目的本文旨在全面介绍博斯-爱因斯坦统计量这一重要的物理概念,揭示其在不同领域中的应用与意义。
通过对博斯-爱因斯坦分布函数及其相关实验观测和验证方法的详细阐述,读者将能够更加全面地了解并深入探索该统计方法对现代物理学领域的重要性。
2. 博斯-爱因斯坦统计量2.1 统计力学基础:博斯-爱因斯坦统计量是统计力学中的一个重要概念。
在研究粒子或量子系统的行为时,统计力学提供了一种描述粒子分布和性质的数学工具。
而博斯-爱因斯坦统计量则针对玻色子(Bose particle)这类具有整数自旋的粒子提供了适用的统计分布函数。
2.2 玻色子与费米子:在粒子物理学中,玻色子和费米子是两类最常见的基本粒子。
相比之下,玻色子具有整数自旋,例如光子就是一种典型的玻色子;而费米子则具有半整数自旋,例如电子就是一种典型的费米子。
这两类粒子服从截然不同的统计分布规律,即波尔兹曼(Boltzmann)分布和博斯-爱因斯坦分布。
2.3 博斯-爱因斯坦分布函数:博斯-爱因斯坦分布函数描述了玻色子在不同能级上分布概率与温度之间的关系。
根据该函数,当温度趋近于绝对零度时,玻色子有极大的几率集聚在能级的基态上(基态是系统具有的最低能量状态)。
这一现象被称为玻色-爱因斯坦凝聚(Bose-Einstein condensation),是博斯-爱因斯坦统计量的一个重要特征。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
a r X i v :c o n d -m a t /0004015v 1 [c o n d -m a t .s t a t -m e c h ] 3 A p r 2000Bose-Einstein condensation in a stiffTOP trap with adjustable geometryE.Hodby,G.Hechenblaikner,O.M.Marag`o ,J.Arlt,S.Hopkins ∗and C.J.FootClarendon Laboratory,Department of Physics,University of Oxford,Parks Road,Oxford,OX13PU,United Kingdom.(28th March 2000)We report on the realisation of a stiffmagnetic trap with independently adjustable trap frequencies,ωz and ωr ,in the axial and radial directions respectively.This has been achieved by applying an axial modulation to a Time-averaged Orbiting Potential (TOP)trap.The frequency ratio of the trap,ωz /ωr ,can be decreased continuously from the original TOP trap value of 2.83down to 1.6.We have transferred a Bose-Einstein condensate (BEC)into this trap and obtained very good agreement between its observed anisotropic expan-sion and the hydrodynamic predictions.Our method can be extended to obtain a spherical trapping potential,which has a geometry of particular theoretical interest.PACS numbers:03.75.Fi,05.30.Jp,32.80.PjSince the first observation of BEC in a dilute alkali gas in 1995[1],the spectroscopy of the excitations of these novel quantum objects has been an important tool for understanding them.A close analogy can be drawn between the discrete excited states of a condensate and the well defined energy levels of an atom.Spectroscopic measurements of atomic energy levels have guided the de-velopment of the quantum mechanical model of the atom and likewise the spectroscopy of the condensate should provide crucial information about its nature.The first experiments focused on low energy collective excitations both in a pure condensate close to absolute zero [2]and at finite temperature [3].These latter experiments led to a better understanding of the interaction between the condensate and the thermal cloud [4].The first obser-vation of a transverse collective excitation was recently reported in [5].This also gave evidence for superfluidity in a condensate.Recent theoretical work has provided in-formation on the behaviour of an excited condensate in specific anisotropic trap geometries.This paper presents an adjustable magnetic trap that allows us to access these geometries whilst retaining a stifftrapping potential.In the linear hydrodynamic theory of Bose-Einstein condensation,the spectrum of low energy collective ex-cited states depends strongly on the trap geometry (i.e.the trap stiffnesses in all three orthogonal directions).By changing the trap frequency in one specific direc-tion,the mode energies change relative to one anotherin a very weak magnetic potential [13].This method,along with its practical difficulties,is discussed briefly.In contrast,the zTOP trap combines an adjustable aspect ratio with a stifftrapping potential.The experimental setup is described and finally evidence for the successful transfer of a condensate into the zTOP trap is presented.The standard TOP trap combines a sphericalquadrupole field of radial gradient B ′q ,with a bias field,B t ,rotating in the horizontal xy-plane.The expression for the trap potential usually ignores gravity.However,for heavy atoms such as 87Rb,in a weak trap,it must be included.The full potential is given by the time-averageof Eq.1,where r 0=B t /B ′q .U (x,y,z,t )=µB ′q|(x +r 0cos ωt t )ˆx +(y +r 0sin ωt t )ˆy −2z ˆz |+mgz2π2m B ′qB t(1−η2)1/4(1+η2)1/2(2)f z =1µ√8(1−η2)3/4(3)f z8(1−η2)2µB ′q(5)is the ratio of the gravitational force on the atom to theaxial magnetic force due to the quadrupole field.Note that the trap frequency ratio depends only on η.Thus by measuring the axial and radial trap frequencies,as afunction of B ′q ,we were able to accurately calibrate the quadrupole field strength.However,the aspect ratio only changes significantly in very weak traps,where the gravitational force becomes important.A ten percent decrease in the aspect ratiorequires B ′q <23G/cm.Since B t is limited by noise to a minimum value of 2G in our apparatus,this corresponds to a radial trapping frequency of <15Hz.Attempts were made to selectively excite quadrupole oscillations of the BEC in this weak gravity trap.However,in such a weak trap it was impossible not to excite large dipole motions,making the quadrupole oscillation impossible to observe.The theory of the zTOP trap is analogous to that for the standard TOP trap,except that the bias field os-cillates in three rather than two dimensions.Both are based on a spherical quadrupole field trap,with a trap-ping potential ofU (x,y,z )=µB ′q |x ˆx +y ˆy −2z ˆz |(6)which has a restoring force in the axial direction that istwice as strong as that in the radial direction.Now con-sider the effect of applying a TOP bias field rotating at ωt in the (radial)xy-plane.This causes the locus of the quadrupole field to describe a circle in the xy-plane and after time-averaging creates an axially symmetric TOP trap.The trap stiffness is reduced in all directions com-pared to the quadrupole field trap,but more significantly in the radial direction,increasing the aspect ratio to 2.83.Extending this argument,the trap stiffness can be pref-erentially reduced in the z direction by including an os-cillating axial bias field.Our present arrangement uses an axial modulation frequency (ωa )of 2ωt .Thus in our zTOP trap,the locus of the quadrupole field follows a three dimensional saddle shape rather than a circle.The total zTOP magnetic field is given in Eq.7as the sum of its three components -the static quadrupole field and the oscillating radial and axial bias fields.B (t )=B ′q (x ˆx +y ˆy −2z ˆz )+B t (cos ωt t ˆx +sin ωt t ˆy )+B z cos ωa t ˆz(7)The properties of the zTOP trap are calculated fromthe instantaneous zTOP potential,numerically averaged over one cycle of the bias field.This calculation gives the following constraints on the frequency,ωa ,of the ax-ial modulation necessary to create a stable trap.Firstly,to create a time-averaged potential,ωa must be greater than the trap frequencies.Secondly ωa must be an ex-act integer multiple,n,of the radial (TOP)bias field fre-quency,ωt .Our calculations showed that deviations from this condition produced asymmetry in the time-averaged potential between the x and y directions.In the xy-plane,the trap will acquire a slightly elliptical,rotating cross-section,whilst its centre will describe a small circle.These slow variations in the time-averaged potential at the beat frequency,ωa -n ωt ,could heat the cloud.It is also possible to choose ωt as an integer multiple of ωa .However this configuration requires the two signals to be phase locked,if the ’micromotion’of the trap described above is to be avoided.In addition,ωa must be lower than the Larmor frequency,so that Majorana spin flips are not induced.The extent of the trap relaxation in the axial direction depends on the waveform and amplitude,B z ,of the axial modulation,but not on its frequency.The axial modula-tion causes the locus of the quadrupole field to oscillate in the vertical direction.A waveform that causes it to spend more time per cycle at the extremes of this mo-tion results in a more relaxed trap in the axial direction.Thus an ideal square wave produces the weakest trap,for a given maximum B z field.Removing the higher harmon-ics in the axial modulation stiffens the trap as shown in Fig.1.Note that significant additional relaxation,with respect to single frequency modulation,is achieved by adding only the third harmonic component of a square wave to the fundamental.In this case a spherical trap is produced for B z /B t =5.5.Since B t is typically 2G,2this is a readily achievable experimental condition.The axial trapping frequency is also reduced by increasing the modulation amplitude,B z.Thus we are able to vary the aspect ratio of the trap during the course of an experi-ment by controlling the peak voltage across the axial bias coils.The apparatus that we use to create87Rb condensates is described in detail elsewhere[14].In summary,we use a differentially pumped double MOT system(which incorporates a pyramidal MOT[15])to load a TOP trap with∼2×108atoms.Evaporative cooling proceeds via both Majorana spinflip and radio frequency cutting to achieve condensates with∼2×104atoms.To generate the axial biasfield,two Helmholtz coils of35turns each,have been added above and below the experimental cell.A2turn pickup coil is also present to monitor the appliedfield.We currently use an axial modulation at14kHz(2ωt).The amplitude of this signal is computer controlled and fed to an audio amplifier.A transformer is used to match the output of the amplifier to the coils.Fine adjustments are made to the frequency until the x and z pickup coils produce a clean Lissajous figure on the oscilloscope,indicating that the axial oscil-lation is at exactly twice the frequency of the radial bias field.This frequency relationship is stable to within∼1 Hz over the day.The trap frequencies were calibrated with respect to the voltage supplied across the axial biasfield coils.A small,cold thermal cloud was collected in a’displaced’zTOP trap.The additional static magneticfields causing the displacement were suddenly switched off,exciting or-thogonal dipole oscillations at the two trap frequencies. The radial and axial positions of the cloud were recorded as a function of time,using absorption imaging,andfit-ted with sine waves to obtain the trap frequencies.Figure 2shows the data for the normalised trap frequencies and the trap frequency ratio,for a range of axial biasfield amplitudes.Theoretical values for the normalised trap frequencies, as a function of B z/B t,were found by numerically inte-grating the magnetic potential energy of an atom over one cycle of the biasfield.These values were accurately described by an eighth order polynomial.Two freefit-ting parameters were used tofit this polynomial to the experimental data.One parameter determined the trap frequencies without any axial biasfield and the other was a constant,relating the voltage across the axial bias coils to the actual value of B z/B t that was produced.Fit-ting this expression to the axial trap frequency data gave values for bothfitting parameters and their respective er-rors.The solid lines in Fig.2show thefitted zTOP trap calibration curves.The condensate is initially produced by a sequence of computer controlled evaporative cooling ramps in a stan-dard TOP trap,withfinal trap frequenciesωr=126Hz√andωz=356Hz(=FIG.2.Experimental values for the normalised trap fre-quencies and aspect ratio as a function of B z /B t ,with the the-oretical curve that was used to calibrate the zTOP trap.(a)shows how the normalised individual trap frequencies,ωr /ωr 0(solid circles)and ωz /ωz 0(open circles),depend on B z /B t .ωr 0and ωz 0are the radial and axial trap frequencies when B z =0.(b)shows the aspect ratio of the trap as a function of B z /B t .For all points,B t =2G.FIG.3.The aspect ratio of a BEC,(∆r/∆z ),after 12ms time-of-flight,as a function of the zTOP trap frequency ratio (ωz /ωr ).The solid line shows the solution of the hydrody-namic equations as a function of trap geometry (no free pa-rameters).Each data point is the mean of six shots and the error bar shows the standard deviation of the mean.。