竞赛讲座09-圆

合集下载

公开课、竞赛课课件 圆

公开课、竞赛课课件 圆
A B
O
C
练习 如图,劣弧有:__________ 如图,优弧有:______________ 还有其他弧吗? 还有半圆
A B
O
C
练习 如图,请正确的方式表示出以点A为端点的优弧及劣弧.
优弧
劣弧
练习 如图,圆中有____1____条直径,____3_____条弦,圆中以 A 为 一个端点的优弧有____4______条,劣弧有___4______条 .
练习 1.如何在操场上画一个半径是5m的圆?说出你的理由.
运动的观点 在一个平面内,线段OA绕它固定的一个端点O旋转一周, 另一个端点A所形成的图形叫做圆.
画一画
已知AB=3cm,作图说明满足下列要求的图形: (1)到点A的距离等于2cm的所有点组成的图形. (2)到点B的距离等于2cm的所有点组成的图形. (3)到点A和B的距离都等于2cm的所有点组成的图形.
圆的历史
到了陶器时代,许多陶器都是圆的, 圆的陶器是将泥土放在一个转盘上制成的.
圆的历史 我国古代,半坡人就已经会造圆形的房顶了.
圆的历史
大约在同一时代,美索不达米亚人做出 了 世界上第一个轮子——圆的木轮。
圆的历史
很早之前,人们将圆的木轮固定在木架上 , 这样就成了最初的车子.
圆的历史
2 000 多年前,墨子给出圆的定义“一中同长也”, 意思是说,圆有一个圆心,圆心到圆周的长都相等. 这个定义比古希腊数学家欧几里得给圆下的定义要早很多年.
例题
矩形ABCD的对角线AC,BD相交于点O.
求证:A,B,C,D四个点在以O为圆心的同一个圆
上证.明:∵四边形ABCD为矩形

D
C
O
A
B

九年级数学竞赛讲座圆的基本性质附答案

九年级数学竞赛讲座圆的基本性质附答案

【例题求解】【例1】在半径为1的⊙O 中,弦AB 、AC 的长分别为3和2,则∠BAC 度数为 . 作出辅助线,解直角三角形,注意AB 与AC 有不同的位置关系.注: 由圆的对称性可引出许多重要定理,垂径定理是其中比较重要的一个,它沟通了线段、角与圆弧的关系,应用的一般方法是构造直角三角形,常与勾股定理和解直角三角形知识结 合起来.圆是一个对称图形,注意圆的对称性,可提高解与圆相关问题周密性.【例2】 如图,用3个边长为1的正方形组成一个对称图形,则能将其完全覆盖的圆的最小半径为( ) A .2 B .25C .45D .16175思路点拨 所作最小圆圆心应在对称轴上,且最小圆应尽可能通过圆形的某些顶点,通过设未知数求解.【例3】 如图,已知点A 、B 、C 、D 顺次在⊙O 上,AB=BD ,BM ⊥AC 于M ,求证:AM=DC+CM .思路点拨 用截长(截AM)或补短(延长DC)证明,将问题转化为线段相等的证明,证题的关键是促使不同量的相互转换并突破它.【例4】 如图甲,⊙O 的直径为AB ,过半径OA 的中点G 作弦C E ⊥AB ,在CB 上取一点D ,分别作直线CD 、ED ,交直线AB 于点F ,M . (1)求∠COA 和∠FDM 的度数; (2)求证:△FDM ∽△COM ;(3)如图乙,若将垂足G 改取为半径OB 上任意一点,点D 改取在EB 上,仍作直线CD 、ED ,分别交直线AB 于点F 、M ,试判断:此时是否有△FDM ∽△COM? 证明你的结论. 思路点拨 (1)在Rt △COG 中,利用OG=21OA=21OC ;(2)证明∠COM=∠FDM ,∠CMO= ∠FMD ;(3)利用图甲的启示思考.⌒ ⌒⌒⌒注:善于促成同圆或等圆中不同名称的相互转化是解决圆的问题的重要技巧,此处,要努力把圆与直线形相合起来,认识到圆可为解与直线形问题提供新的解题思路,而在解与圆相关问题时常用到直线形的知识与方法(主要是指全等与相似).【例5】 已知:在△ABC 中,AD 为∠BAC 的平分线,以C 为圆心,CD 为半径的半圆交BC 的延长线于点E ,交AD 于点F ,交AE 于点M ,且∠B=∠CAE ,EF :FD =4:3. (1)求证:AF =DF ; (2)求∠AED 的余弦值;(3)如果BD =10,求△ABC 的面积. 思路点拨 (1)证明∠ADE =∠DAE ;(2)作AN ⊥BE 于N ,cos ∠AED =AEEN,设FE=4x ,FD =3x ,利用有关知识把相关线段用x 的代数式表示;(3)寻找相似三角形,运用比例线段求出x 的值.注:本例的解答,需运用相似三角形、等腰三角形的判定、面积方法、代数化等知识方法思想,综合运用直线形相关知识方法思想是解与圆相关问题的关键.学历训练1.D 是半径为5cm 的⊙O 内一点,且OD =3cm ,则过点D 的所有弦中,最小弦AB= . 2.阅读下面材料:对于平面图形A ,如果存在一个圆,使图形A 上的任意一点到圆心的距离都不大于这个圆的半径,则称图形A 被这个圆所覆盖.对于平面图形A ,如果存在两个或两个以上的圆,使图形A 上的任意一点到其中某个圆的圆心的距离都不大于这个圆的半径,则称图形A 被这些圆所覆盖.例如:图甲中的三角形被一个圆所覆盖,图乙中的四边形被两个圆所覆盖.回答下列问题:(1)边长为lcm的正方形被一个半径为r的圆所覆盖,r的最小值是 cm;(2)边长为lcm的等边三角形被一个半径为r的圆所覆盖,r的最小值是 cm;(3)长为2cm,宽为lcm的矩形被两个半径都为r的圆所覆盖,r的最小值是 cm.(2003年南京市中考题)3.世界上因为有了圆的图案,万物才显得富有生机,以下来自现实生活的图形中都有圆:它们看上去多么美丽与和谐,这正是因为圆具有轴对称和中心对称性.(1)请问以下三个图形中是轴对称图形的有,是中心对称图形的有(分别用下面三个图的代号a,b,c填空).(2)请你在下面的两个圆中,按要求分别画出与上面图案不重复的图案(草图) (用尺规画或徒手画均可,但要尽可能准确些,美观些).a.是轴对称图形但不是中心对称图形.b.既是轴对称图形又是中心对称图形.4.如图,AB是⊙O的直径,CD是弦,若AB=10cm,CD=8cm,那么A、B两点到直线CD的距离之和为( ) A.12cm B.10cm C. 8cm D.6cm5.一种花边是由如图的弓形组成的,ACB 的半径为5,弦AB =8,则弓形的高CD 为( )A .2B .25 C .3 D .3166.如图,在三个等圆上各自有一条劣弧AB 、CD 、EF ,如果AB+CD=EF ,那么AB+CD 与E 的大小关系是( )A .AB+CD =EFB .AB+CD=FC . AB+CD<EFD .不能确定7.电脑CPU 芯片由一种叫“单晶硅”的材料制成,未切割前的单晶硅材料是一种薄形圆片,叫“晶圆片”.现为了生产某种CPU 芯片,需要长、宽都是1cm 的正方形小硅片若干.如果晶圆片的直径为10.05cm ,问:一张这种晶圆片能否切割出所需尺寸的小硅片66张?请说明你的方法和理由(不计切割损耗).8.如图,已知⊙O 的两条半径OA 与OB 互相垂直,C 为AmB 上的一点,且AB 2+OB 2=BC 2,求∠OAC 的度数. 9.不过圆心的直线l 交⊙O 于C 、D 两点,AB 是⊙O 的直径,AE ⊥l ,垂足为E ,BF ⊥l ,垂足为F . (1)在下面三个圆中分别补画出满足上述条件的具有不同位置关系的图形;(2)请你观察(1)中所画图形,写出一个各图都具有的两条线段相等的结论(不再标注其他字母,找结论的过程中所连辅助线不能出现在结论中,不写推理过程); (3)请你选择(1)中的一个图形,证明(2)所得出的结论.⌒ ⌒ ⌒ ⌒ ⌒⌒ ⌒10.以AB 为直径作一个半圆,圆心为O ,C 是半圆上一点,且OC 2=AC ×BC , 则∠CAB= .11.如图,把正三角形ABC 的外接圆对折,使点A 落在BC 的中点A ′上,若BC=5,则折痕在△ABC 内的部分DE 长为 .12.如图,已知AB 为⊙O 的弦,直径MN 与AB 相交于⊙O 内,MC ⊥AB 于C ,ND ⊥AB 于D ,若MN=20,AB=68,则MC —ND= .13.如图,已知⊙O 的半径为R ,C 、D 是直径AB 同侧圆周上的两点,AC 的度数为96°,BD 的度数为36°,动点P 在AB 上,则CP+PD 的最小值为 .14.如图1,在平面上,给定了半径为r 的圆O ,对于任意点P ,在射线OP 上取一点P ′,使得OP ×OP ′=r 2,这种把点P 变为点P ′的变换叫作反演变换,点P 与点P ′叫做互为反演点.(1)如图2,⊙O 内外各有一点A 和B ,它们的反演点分别为A ′和B ′,求证:∠A ′=∠B ;(2)如果一个图形上各点经过反演变换得到的反演点组成另一个图形,那么这两个图形叫做互为反演图形. ①选择:如果不经过点O 的直线与⊙O 相交,那么它关于⊙O 的反演图形是( )A .一个圆B .一条直线C .一条线段D .两条射线②填空:如果直线l 与⊙O 相切,那么它关于⊙O 的反演图形是 ,该图形与圆O 的位置关系⌒⌒是 .15.如图,已知四边形ABCD 内接于直径为3的圆O ,对角线AC 是直径,对角线AC 和BD 的交点为P ,AB=BD ,且PC=0.6,求四边形ABCD 的周长.16.如图,已知圆内接△ABC 中,AB>AC ,D 为BAC 的中点,DE ⊥AB 于E ,求证:BD 2-AD 2=AB ×AC .17.将三块边长均为l0cm 的正方形煎饼不重叠地平放在圆碟内,则圆碟的直径至少是多少?(不考虑其他因素,精确到0.1cm)18.如图,直径为13的⊙O ′,经过原点O ,并且与x 轴、y 轴分别交于A 、B 两点,线段OA 、OB(OA>OB)的长分别是方程0602=++kx x 的两根. (1)求线段OA 、OB 的长;(2)已知点C 在劣弧OA 上,连结BC 交OA 于D ,当OC 2=CD ×CB 时,求C 点坐标;(3)在⊙O ,上是否存在点P ,使S △POD =S △ABD ?若存在,求出P 点坐标;若不存在,请说明理由.⌒ ⌒参考答案。

初中奥林匹克数学竞赛知识点总结及训练题目-圆

初中奥林匹克数学竞赛知识点总结及训练题目-圆

初中数学竞赛辅导讲义---圆与圆圆与圆的位置关系有外离、外切、相交、内切、内含五种情形,判定两圆的位置关系有如下三种方法:1.通过两圆交点的个数确定;2.通过两圆的半径与圆心距的大小量化确定;3.通过两圆的公切线的条数确定.为了沟通两圆,常常添加与两圆都有联系的一些线段,如公共弦、共切线、连心线,以及两圆公共部分相关的角和线段,这是解圆与圆位置关系问题的常用辅助线.熟悉以下基本图形、基本结论:【例题求解】【例1】如图,⊙O l与半径为4的⊙O2内切于点A,⊙O l经过圆心O2,作⊙O2的直径BC 交⊙O l于点D,EF为过点A的公切线,若O2D=22,那么∠BAF= 度.思路点拨直径、公切线、O2的特殊位置等,隐含丰富的信息,而连O2O l必过A点,先求出∠D O2A的度数.注:(1)两圆相切或相交时,公切线或公共弦是重要的类似于“桥梁”的辅助线,它可以使弦切角与圆周角、圆内接四边形的内角与外角得以沟通.同时,又是生成圆幂定理的重要因素.(2)涉及两圆位置关系的计算题,常作半径、连心线,结合切线性质等构造直角三角形,将分散的条件集中,通过解直角三角形求解.【例2】如图,⊙O l与⊙O2外切于点A,两圆的一条外公切线与⊙O1相切于点B,若AB 与两圆的另一条外公切线平行,则⊙O l 与⊙O2的半径之比为( )A.2:5 B.1:2 C.1:3 D.2:3思路点拨添加辅助线,要探求两半径之间的关系,必须求出∠CO l O2 (或∠DO2O l)的度数,为此需寻求∠CO1B、∠CO1A、∠BO1A的关系.【例3】如图,已知⊙O l与⊙O2相交于A、B两点,P是⊙O l上一点,PB的延长线交⊙O2于点C,PA交⊙O2于点D,CD的延长线交⊙O l于点N.(1)过点A作AE∥CN交⊙O l l于点E,求证:PA=PE;(2)连结PN,若PB=4,BC=2,求PN的长.思路点拨(1)连AB,充分运用与圆相关的角,证明∠PAE=∠PEA;(2)PB·PC=PD·PA,探寻PN、PD、PA对应三角形的联系.【例4】如图,两个同心圆的圆心是O,AB是大圆的直径,大圆的弦与小圆相切于点D,连结OD并延长交大圆于点E,连结BE交AC于点F,已知AC=24,大、小两圆半径差为2.(1)求大圆半径长;(2)求线段BF的长;(3)求证:EC与过B、F、C三点的圆相切.思路点拨(1)设大圆半径为R,则小圆半径为R-2,建立R的方程;(2)证明△EBC∽△ECF;(3)过B、F、C三点的圆的圆心O′,必在BF上,连OˊC,证明∠O′CE=90°.注:本例以同心圆为背景,综合了垂径定理、直径所对的圆周角为直角、切线的判定、勾股定理、相似三角形等丰富的知识.作出圆中基本辅助线、运用与圆相关的角是解本例的关键.【例5】 如图,AOB 是半径为1的单位圆的四分之一,半圆O 1的圆心O 1在OA 上,并与弧AB 内切于点A ,半圆O 2的圆心O 2在OB 上,并与弧AB 内切于点B ,半圆O 1与半圆O 2相切,设两半圆的半径之和为x ,面积之和为y . (1)试建立以x 为自变量的函数y 的解析式; (2)求函数y 的最小值.思路点拨 设两圆半径分别为R 、r ,对于(1),)(2122r R y +=π,通过变形把R 2+r 2用“x =R+r ”的代数式表示,作出基本辅助线;对于(2),因x =R+r ,故是在约束条件下求y 的最小值,解题的关键是求出R+r 的取值范围.注:如图,半径分别为r 、R 的⊙O l 、⊙O 2外切于C ,AB ,CM 分别为两圆的公切线,O l O 2与AB 交于P 点,则: (1)AB=2r R ;(2) ∠ACB=∠O l M O 2=90°; (3)PC 2=PA ·PB ; (4)sinP=rR rR +-; (5)设C 到AB 的距离为d ,则dR r 211=+.学力训练1.已知:⊙O l 和⊙O 2交于A 、B 两点,且⊙O l 经过点O 2,若∠AO l B=90°,则∠A O 2B 的度数是 .2.矩形ABCD 中,AB=5,BC=12,如果分别以A 、C 为圆心的两圆相切,点D 在圆C 内,点B 在圆C 外,那么圆A 的半径r 的取值范围 . (2003年上海市中考题)3.如图;⊙O l 、⊙O 2相交于点A 、B ,现给出4个命题:(1)若AC 是⊙O 2的切线且交⊙O l 于点C ,AD 是⊙O l 的切线且交⊙O 2于点D ,则AB 2=BC ·BD ;(2)连结AB 、O l O 2,若O l A=15cm ,O 2A=20cm ,AB=24cm ,则O l O 2=25cm ;(3)若CA 是⊙O l 的直径,DA 是⊙O 2 的一条非直径的弦,且点D 、B 不重合,则C 、B 、D 三点不在同一条直线上,(4)若过点A 作⊙O l 的切线交⊙O 2于点D ,直线DB 交⊙O l 于点C ,直线CA 交⊙O 2于点E ,连结DE ,则DE 2=DB ·DC ,则正确命题的序号是 (写出所有正确命题的序号) .4.如图,半圆O 的直径AB=4,与半圆O 内切的动圆O l 与AB 切于点M ,设⊙O l 的半径为y ,AM 的长为x ,则y 与x 的函数关系是 ,自变量x 的取值范围是 .5.如图,施工工地的水平地面上,有三根外径都是1米的水泥管两两相切摞在一起,则其最高点到地面的距离是( )A .2B .221+C .231+D .231+6.如图,已知⊙O l 、⊙O 2相交于A 、B 两点,且点O l 在⊙O 2上,过A 作⊙O l l 的切线AC交B O l 的延长线于点P ,交⊙O 2于点C ,BP 交⊙O l 于点D ,若PD=1,PA=5,则AC 的长为( )A .5B .52C .52+D .537.如图,⊙O l 和⊙O 2外切于A ,PA 是内公切线,BC 是外公切线,B 、C 是切点①PB=AB ;②∠PBA=∠PAB ;③△PAB ∽△O l AB ;④PB ·PC=O l A ·O 2A . 上述结论,正确结论的个数是( )A .1B .2C .3D .48.两圆的半径分别是和r (R>r),圆心距为d ,若关于x 的方程0)(222=-+-d R rx x 有两个相等的实数根,则两圆的位置关系是( )A.一定内切B.一定外切C.相交D.内切或外切9.如图,⊙O l和⊙O2内切于点P,过点P的直线交⊙O l于点D,交⊙O2于点E,DA与⊙O2相切,切点为C.(1)求证:PC平分∠APD;(2)求证:PD·PA=PC2+AC·DC;(3)若PE=3,PA=6,求PC的长.10.如图,已知⊙O l和⊙O2外切于A,BC是⊙O l和⊙O2的公切线,切点为B、C,连结BA并延长交⊙O l于D,过D点作CB的平行线交⊙O2于E、F,求证:(1)CD是⊙O l的直径;(2)试判断线段BC、BE、BF的大小关系,并证明你的结论.11.如图,已知A是⊙O l、⊙O2的一个交点,点M是O l O2的中点,过点A的直线BC垂直于MA,分别交⊙O l、⊙O2于B、C.(1)求证:AB=AC;(2)若O l A切⊙O2于点A,弦AB、AC的弦心距分别为d l、d2,求证:d l+d2=O1O2;(3)在(2)的条件下,若d l d2=1,设⊙O l、⊙O2的半径分别为R、r,求证:R2+r2= R2r2.12.已知半径分别为1和2的两个圆外切于点P,则点P到两圆外公切线的距离为.13.如图,7根圆形筷子的横截面圆半径为r,则捆扎这7根筷子一周的绳子的长度为.14.如图,⊙O l和⊙O2内切于点P,⊙O2的弦AB经过⊙O l的圆心O l,交⊙O l于C、D,若AC:CD:DB=3:4:2,则⊙O l与⊙O2的直径之比为( )A.2:7 B.2:5 C.2:3 D.1:315.如图,⊙O l与⊙O2相交,P是⊙O l上的一点,过P点作两圆的切线,则切线的条数可能是( )A.1,2 B.1,3 C.1,2,3 D.1,2,3,416.如图,相等两圆交于A、B两点,过B任作一直线交两圆于M、N,过M、N各引所在圆的切线相交于C,则四边形AMCN有下面关系成立( )A.有内切圆无外接圆B有外接圆无内切圆C.既有内切圆,也有外接圆D.以上情况都不对17.已知:如图,⊙O与相交于A,B两点,点P在⊙O上,⊙O的弦AC切⊙P于点A,CP及其延长线交⊙P P于点D,E,过点E作EF⊥CE交CB的延长线于F.(1)求证:BC是⊙P的切线;(2)若CD=2,CB=22,求EF的长;(3)若k=PE:CE,是否存在实数k,使△PBD恰好是等边三角形?若存在,求出是的值;若不存在,请说明理由.18.如图,⊙A和⊙B是外离两圆,⊙A的半径长为2,⊙B的半径长为1,AB=4,P为连接两圆圆心的线段AB上的一点,PC切⊙A于点C,PD切⊙B于点D.(1)若PC=PD,求PB的长;(2)试问线段AB上是否存在一点P,使PC2+PD2=4?,如果存在,问这样的P点有几个?并求出PB的值;如果不存在,说明理由;(3)当点F在线段AB上运动到某处,使PC⊥PD时,就有△APC∽△PBD.请问:除上述情况外,当点P在线段AB上运动到何处(说明PB的长为多少,或PC、PD 具有何种关系)时,这两个三角形仍相似;并判断此时直线CP与OB的位置关系,证明你的结论.19.如图,D、E是△ABC边BC上的两点,F是BA延长线上一点,∠DAE=∠CAF.(1)判断△ABD的外接圆与△AEC的外接圆的位置关系,并证明你的结论;(2)若△ABD的外接圆半径是△AEC的外接圆半径的2倍,BC=6,AB=4,求BE的长.20.问题:要将一块直径为2cm的半圆形铁皮加工成一个圆柱的两个底面和一个圆锥的底面.操作:方案一:在图甲中,设计一个使圆锥底面最大,半圆形铁皮得以最充分利用的方案(要求,画示意图) .方案二;在图乙中,设计一个使圆柱两个底面最大,半圆形铁皮得以最充分利用的方案(要求:画示意图);,探究:(1)求方案一中圆锥底面的半径;(2)求方案二中圆锥底面及圆柱底面的半径;(3)设方案二中半圆圆心为O,圆柱两个底面的圆心为O1、O2,圆锥底面的圆心为O3,试判断以O1、O2、O3、O为顶点的四边形是什么样的特殊四边形,并加以证明.参考答案。

部编六年级数学《圆》谢竞PPT课件 一等奖新名师优质课获奖比赛公开北京

部编六年级数学《圆》谢竞PPT课件 一等奖新名师优质课获奖比赛公开北京

你能想办法求到正方形与 圆的面积之比么?
正方形的面积:圆的面积=4:π
精品PPT课件
那这个正方形与圆的面积之 比呢?
正方形的面积:圆的面积=2:π
精品PPT课件
那大正方形与小正方形的面 积之比呢?
S大正方形:S小正方形=2:1
圆就是正无数边形
精品PPT课件
5个学生站在正方形的边上,往 正方形的中心内投篮,他们怎 样站,才公平?
精品PPT课件
圆 的 周长 = 直径 × 圆周率 =d ×π
= πd
圆 的 周长 = 2×半径 × 圆周率 = 2× r × π
= 2πr
精品PPT课件
圆 的 面 积 = 半圆周长 × 半径 = πr × r = π r2
精品PPT课件


圆柱体积=底面积×高
精品PPT课件
V=sh
精品PPT课件
圆——复习课
中海学校 谢竞
钟面上的分针长12厘米
1.经过15分钟,分针的针尖走了多少路程?
23.1412 1 =18.84cm 4
2.经过15分钟,分针扫过的面积是多少?
12 3.14
2 1 =113.04cm2 4
精品PPT课件
精品PPT课件
方法一:绕绳法
方法二:滚动法 0cm
10
20
பைடு நூலகம்
30
精品PPT课件
本课件共有13张PPT, 课件播放完毕!谢谢你 的观看!

初中数学竞赛专题-第七章九点圆定理及应用

初中数学竞赛专题-第七章九点圆定理及应用

第七章九点圆定理及应用【基础知识】九点圆定理三角形三条高的垂足、三边的中点,以及垂心与顶点的三条连接线段的中点,这九点共圆. 如图7-1,设ABC △三条高AD ,BE ,CF 的垂足分别为D ,E ,F ;三边BC ,CA ,AB 的中点分别为L ,M ,N ;又AH ,BH ,CH 的中点分别为P ,Q ,R .求证:D ,E ,F ,L ,M ,N ,P ,Q ,R 九点共圆.证法1连PQ ,QL ,LM ,MP ,则知12LM BA QP ∥∥,即知LMPQ 为平行四边形.又LQ CH BP LM ⊥∥∥,知LMPQ 为矩形.从而L ,M ,P ,Q 四点共圆,且圆心V 为PL 与QM 的交点.同理,MNQR 为矩形,从而L ,M ,N ,P ,Q ,R 六点共圆,且PL ,QM ,NR 均为这个圆的直径.由90PDL QEM RFN ∠=∠=∠=︒,知D ,E ,F 三点也在这个圆上.故D ,E ,F ,L ,M ,N ,P ,Q ,R 九点共圆.证法2设ABC △的外心为O ,取OH 的中点并记为V ,连AO ,以V 为圆心,12AO 为半径作V ,如图71-.由12VP OA ∥,知P 在V 上.同理,Q ,R 也在V 上.由12OL AH ∥(可由延长AO 交ABC △的外接圆于K ,得HBKC 为平行四边形,此时L 为KH 的中点,则OL 为AKH △的中位线即得),知OL PH ∥.又OV VH =,知OLV HPV △△≌,从而1=2VL VP OA =,且L ,V ,P 共线,故L 在V 上. 同理,M ,N 在V 上.由L ,V ,P 共线知LP 为V 的一条直径.又90LDP ∠=︒,90MEQ ∠=︒,90NFR ∠=︒,知D ,E ,F 在V 上, 故D ,E ,F ,L ,M ,N ,P ,Q ,R 九点共圆.上述圆通常称为九点圆,也有人叫费尔巴哈圆或欧拉圆,显然,正三角形的九点圆即为其内切圆. 证法3由Rt Rt CBF ABD △∽△,有BC BABF BD=.注意到L 、N 分别为BC 、BA 的中点, 则BL BNBF BD=,即BL BD BF BN ⋅=⋅,这表明L 、D 、F 、N 四点共圆(或者联结NL 、DF ,则由BDF BAC BNL ∠=∠=∠知L 、D 、F 、N 四点共圆).同理,L 、D 、E 、M 及E 、M 、F 、N 分别四点共圆.由戴维斯定理,即知L 、D 、E 、M 、F 、N 六点共圆于Γ.又Rt Rt CHD CBF △∽△,有CH CB CD CF =,注意R 、L 分别为CH 、CB 中点,则CR CLCD CF=,知R 、F 、L 、D 共圆,即点R 在圆Γ上.同理,点P 、Q 也在圆Γ上,故九点均在圆Γ上.注戴维斯定理指的是:三角形每边所在直线有一对点(可以重合),若每两对点同在一个圆上,则三对点(六点)均在同一圆上. 事实上,若所说三个圆不重合.则由根轴共点或平行推得三条边共点或平行,这是不可能的,所以三个圆非重合不可,特别地,三角形内切圆是其特殊情形. 由上述定理及其证明,我们可得如下一系列推论:推论1ABC △九点圆的圆心是其外心与垂心所连线段的中点,九点圆的半径是ABC △的外接圆半径的12. 注意到PQR △与ABC △是以垂心H 为外位似中心的位似形,位似比是12H P H A =∶∶,因此,可得 推论2三角形的九点圆与其外接圆是以三角形的垂心为外位似中心,位似比是12∶的位似形;垂心与三角形外接圆上任一点的连接线段被九点圆截成相等的两部分. 注意到欧拉定理(欧拉线),又可得推论3ABC △的外心O ,重心G ,九点圆圆心V ,垂心H ,这四点(心)共线,且12OG GH =∶∶,13GV VH =∶∶,或O 和V 对于G 和H 是调和共轭的,即OG OHGV HV=. 推论4ABC △的九点圆与ABC △的外接圆又是以ABC △的重心G 为内位似中心,位似比为12∶的位似形.事实上,因G 为两相似三角形LMN △与ABC △的相似中心,而LMN △的外接圆即ABC △的九点圆. 推论5一重心组的四个三角形有一个公共的九点圆;已知圆以已知点为垂心的所有内接三角形有共同的九点圆.【典型例题与基本方法】例1如图72-,设H 为ABC △的垂心,L 为BC 边的中点,P 为AH 的中点.过L 作PL 的垂线交AB 于G ,交AC 的延长线于K .求证:G ,B ,K ,C 四点共圆.A证明设ABC △的外心为O ,连OH ,取OH 的中点V , 则V 为ABC △九点圆的圆心.连AO ,则AO PV ∥,从而AO GK ⊥.设N 为AB 的中点,连ON ,则ON AG ⊥,由此知AON AGL ∠=∠. 又ACL AON ∠=∠,则ACL AGL ∠=∠.从而BGL BGK KCL KCB ∠=∠=∠=∠.故B ,K ,C ,G 四点共圆.例2试证:ABC △的垂心H 与其外接圆上的点的连线被其九点圆平分. 证明如图73-,过垂心H 作ABC △外接圆的两条弦DE ,FG ,连DF ,EG .E图7-3STG DAM HCN F B设M ,N ,S ,T 分别为HD ,HE ,HF ,HG 的中点,则 FDH SMH ∠=∠,EGH NTH ∠=∠. 又FDH EGH ∠=∠,则SMH NTH ∠=∠. 故M ,S ,T ,N 四点共圆,由DE ,FG 的任意性,得H 与ABC △外接圆上任意点连线的中点在同一圆上,由于这个圆过HA ,HB ,HC 的中点,故这个圆就是ABC △的九点圆,从而命题获证.例3如图74-,ABC △中,O 为外心,三条高AD ,BE ,CF 交于点H ,直线ED 和AB 交于点M ,FD 和AC 交于点N .求证:(1)OB DF ⊥,OC DE ⊥;(2)OH MN ⊥.(2001年全国高中联赛题)A证明(1)设ABC △的外接圆半径为R ,由相交弦定理,有 22R OF AF FB -=⋅,22R OD BD DC -=⋅,从而22OF OD BD DC AF FB -=⋅-⋅.由A ,F ,D ,C 四点共圆,有BD BC BF BA ⋅=⋅,即()()BD BD DC BF BF FA ⋅+=+,亦即2222BF BD BD DC AF FB OF OD -=⋅-⋅=-,故OB DF ⊥.同理,OC DE ⊥.(2)由九点圆定理的推论1,知OH 的中点V 为DEF △的外心.又由D ,E ,A ,B 及D ,F ,A ,C 分别四点共圆,有M D M E M B M A ⋅=⋅,ND NF NC NA ⋅=⋅.由此,即知M ,N 对ABC △的外接圆与DEF △的外接圆的幂相等,从而M ,N 在这两个外接圆的根轴上,即有MN OV ⊥,故MN OH =. 【解题思维策略分析】1.注意题中九点圆的显现形式例4如图75-,ABC △中,O 为外心,H 是垂心,作CHB △,CHA △和AHB △的外接圆,依次记它们的圆心为1A ,1B ,1C ,求证:111ABC A B C △△≌,且这两个三角形的九点圆重合.(IMO 31-预选题)图7-5M HK OAB A 1B 1C 1C证明由于()18090(90)180CHB B C B C A ∠=︒-︒-∠-︒-∠=∠+∠=︒-∠,知CHB △外接圆的半径和 CAB △外接圆的半径相等,从而,有1A 是O 关于BC 的对称点.设M 是BC 中点,则知2AH OM =,即1AH OA =.又1AH OA ∥,则连1AA 与OH 的交点K 为平行四边形1AHAO 的中心,即1AA 与OH 互相平分于K . 同理,1BB ,1CC 也经过K 且被它平分,从而111A B C △与ABC △关于K 中心对称,故111A B C ABC △△≌. 显然,K 是ABC △九点圆的圆心.因此,这个圆关于K 作中心对称时不变,它也是111A B C △的九点圆. 例5如图76-,在ABC △中,AD 是BC 边上的高,M ,N 分别是CA ,AB 两边的中点,设直线l 通过A 点,且BC 在l 上的射影为B C '',连B N '与C M '交于点P .求证:B ',C ',D ,P 四点共圆,且其圆心O 与P 点均在ABC △的九点圆上.P O NMDBAC '21l 图7-6B'C证明BB ',CC ',ND ,MD .在Rt AB B '△中,N 为斜边AB 的中点,令1BAB '∠=∠,则1NB A '∠=∠. 同理,NAD NDA ∠=∠, MAD MDA ∠=∠.令2CAC '∠=∠,则2MC A '∠=∠.于是,12NB A MC A ''∠+∠=∠+∠180A =︒-∠, 故()180MPN NB A MC A ''∠=︒-∠+∠180(180)A A =︒-︒-∠=∠NAD DAM NDA ADM MDN =∠+∠=∠+∠=∠.由此,知D ,M ,N ,P 四点共圆.而MND △的外接圆即为ABC △的九点圆,即点P 在ABC △的九点圆上. 由A ,B ',B ,D 四点共圆,连B D ',则知901B DA B BA ''∠=∠=︒-∠.同理,902C DA C CA ''∠=∠=︒-∠. 于是,18012B DC B DA C DA A MPN B PC ''''''∠=∠+∠=︒-∠-∠-∠=∠=∠, 故B ',C ',D ,P 四点共圆.由题设,B C DP ''的圆心为O ,连DO ,PO ,则2DOP DB P '∠=∠. 由于A ,B ',B ,D 四点共圆且以N 为其圆心,则知NB ND '=. 于是,有2DNP DB P '∠=∠,DOP DNP ∴∠=∠,D ∴,O ,P ,N 四点共圆.O ∴在DPN 上,即O 在ABC △的九点圆上,故命题获证. 2.注意题中九点圆的隐含形式例6如图77-,锐角ABC △中,角A 的等分线与三角形的外接圆交于另一点1A ,点1B ,1C 与此类似.直线1AA 与B ,C 两角的外角等分线交于0A ,点0B ,0C 与此类似.求证:A 0A 1IC 0B 1C 1B 0图7-7C AB(1)000A B C △的面积是六边形111AC BACB 面积的二倍;(2)000A B C △的面积至少是ABC △面积的四倍. (IMO 30-试题)证明(1)令ABC △的内心为I 000()I AA BB CC =∩∩.则I 又是000A B C △的垂心(内、外角平分线互相垂直).显然,ABC △的外接圆是000A B C △的九点圆,即知1A ,1B ,1C 分别为0A I ,0B I ,0C I 的中点,于是得012A BI A BI S S =△△,012A CI A CI S S =△, 从而012A BIC A BIC S S =四边形四边形.同理,012B CIA B CIA S S =四边形四边形,012C AIB C AIB S S =四边形四边形, 故0001112A B C AC BA CB S S =六边形. (2)由(1),有()1110002=2A BC B CA C ABA B C ABCABCS S S S S S +++△△△△△△故只要证1111A BC B CA C ABABCS S S k S ++=△△△△≥.记2BAC α∠=,2ABC β∠=,2BCA γ∠=,则 ()12111sin 1802sin sin sin 2sin 21sin 2sin 2sin sin 2sin 2sin 22A BC ABCA B AC S S AB AC αααααγβαβγα⋅⋅︒-⋅⋅===⋅⋅⋅⋅⋅△△ 同理,12sin sin 2sin 2B CA ABCS S βαγ=⋅△△,1sin sin 2sin 2C AB ABC S S γαβ2=⋅△△. 于是,2222sin sin sin sin 2sin 2sin 2sin sin 2sin 2k αβγβγαγαβ=++⋅⋅⋅()233cos cos cos 4αβγ-⋅⋅≥ 223cos cos cos 3cos 14343αβγαβγ--++++⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭≥≥. 例7如图78-,123A A A △是一非等腰三角形,它的边长分别为以1a ,2a ,3a ,其中i a 是i A 的对边(123i =,,),i M 是边i a 的中点,123A A A △的内切圆I 切边i a 于i T 点,i S 是i T 关于i A ∠角平分线的对称点(123)i =,,.求证:11M S ,22M S ,33M S 三线共点.(IMO 23-试题)311图7-8证明由题设,知1221M M A A ∥,下面证1121S S A A ∥, 由1T 和1S ,2T 和3T 分别关于直线1A I 对称,有1231TT T S =. 同理,1232TT T S =.故有3132T S T S =,即3T 是等腰312T S S △的顶点,有312T I S S ⊥,从而1221S S A A ∥. 同理,2332S S A A ∥,3113S S A A ∥.又1221M M A A ∥,2332M M A A ∥,3113M M A A ∥,于是123M M M △和123S S S △的对应边两两平行,故这两个三角形或全等或位似.由于123S S S △内接于ABC △的内切圆,而123M M M △内接于ABC △的九点圆,且123A A A △不为正三角形,故其内切圆与九点圆不重合,所以123S S S △与123M M M △位似,这就证明了11M S ,22M S ,32M S 共点(于位似中心).例8过锐角ABC △的顶点A ,B ,C 的三条高线分别交其对边于点D ,E ,F ,过点D 平行于EF 的直线分别交AC ,AB 于点Q 和R ,EF 交BC 于点P .证明:PQR △的外接圆过BC 的中点.(IMO 38-预选题)证明由题设,点P 的存在意味着AB AC ≠.由对称性,可设AB AC >,则P 在射线BC 上,如图79-.PQLR DCFA EB图7-9取BC 的中点L ,我们证明Q ,P ,R ,L 四点共圆⇔DR DQ DP DL ⋅=⋅①因BE AC ⊥于E ,CF AB ⊥于F ,则B ,C ,E ,F 共圆,于是知CEP ABC ∠=∠. 又EF QR ∥,有CEP CQD ∠=∠,则知B ,Q ,C ,R 四点共圆,从而DR DQ DB DC ⋅=⋅ 设BL CL a ==,CP c =,DL b =,则证①式等价于证明DB DC DP DL ⋅=⋅,即()()()a b a b a c b b +⋅-=+-⋅,亦即()2a b a c =+.由九点圆定理,知D ,E ,F ,L 四点共圆,有PE PF PD PL ⋅=⋅.注意到B ,C ,E ,F 四点共圆,有PE PF PC PB ⋅=⋅,故得PC PB PD PL ⋅=⋅,即 ()()()2c a c a c b b a +=+-⋅+,亦即()2a b a c =+.故有DB DC DP DL ⋅=⋅,亦有DR DQ DP DL ⋅=⋅.亦即Q ,P ,R ,L 四点共圆,即PQR △的外接圆过BC 的中点.注 由例8可演变得如下第8届台湾数学奥林匹克试题:己知过锐角ABC △的顶点A ,B ,C 的垂线分别交对边于D ,E ,F ,AB AC >,直线EF 交直线BC 于P ,过点D 且平行于EF 的直线分别交直线AC ,AB 于Q ,R ,N 是BC 上的一点,且180NQP NRP ∠+∠<︒.求证:BN CN >.事实上,同例8,取BC 的中点L ,关键是证明Q ,P ,R ,L 四点共圆,又等价地证明DR DQ DP DL ⋅=⋅.而当Q ,P ,R ,L 四点共圆时,180LQP LRP ∠+∠=︒,参见图79-,若180NQP NRP ∠+∠<︒,则N 点在QPRL 的内部,又因N 是BC 上的一点,则N 在点L 的右侧,于是BN CN >. 【模拟实战】习题A1.试证:圆的直径两端点对ABC △的西姆松线垂直相交,且相交于此三角形的九点圆上. 2.设G 为ABC △的重心,P 为ABC △外接圆上任一点,连PG 并延长至点Q ,使12PQ PG =.求证:点Q 在ABC △的九点圆上.3.试证:ABC △的九点圆与它的内切圆及三个旁切圆相切.4.给定非退化的ABC △,设外心为O ,垂心为H ,外接圆的半径为R .求证:3OH R <.(1994年亚太地区奥林匹克题)5.试证:三角形的三个切圆(内切或旁切)的圆心构成一个三角形,此新三角形的外心对于已知三角形的外心为另外一个切圆圆心的对称点.习题B 1.设A I ,B I ,C I 分别为ABC △的切BC ,CA ,AB 边的旁切圆的圆心.试证:(1)A B C I I I △的九点圆为ABC △的外接圆;(2)过点A I ,B I ,C I 分别作BC ,CA ,AB 边的垂线,则这三条垂线共点.2.试证:圆周上任意四点,过其中任意三点作三角形,则这四个三角形的九点圆的圆心共圆.第七章九点圆定理及应用习题A1.设POP '是ABC △的外接圆(圆心为O )的直径,关于P 点的西姆松线为1l ,关于P '点的西姆松线为2l 因为1l 与2l 的交角可以12PP '度量,从而1l 与2l 的交角为直角.设H 为ABC △的垂心,则1l 和2l 分别经过PH ,PH'的中点Q ,Q ',而Q 和Q '在ABC △的九点圆上,H 点是三角形的九点圆和外接圆的外 位似中心,线段QQ '是线段PP '的位似图形,从而QQ '是九点圆的直径,故1l 与2l 的交点在ABC △的九点圆上.2.连AG 并延长交BC 于L ,则A 在ABC △的外接圆上,L 在ABC △的九点圆上,又G 是ABC △的外接圆与九点圆的内位似中心,且位似此为21∶.而21PG GQ =∶∶,且P 点在外接圆上,则Q 点必在九点圆上.3.设I ,O ,H ,V 分别为ABC △的内心、外心、垂心及九点圆圆心,R ,r ,ρ分别为ABC △外接圆、内切圆、九点圆的半径,A I ,A ρ分别为在BC 边外侧相切的旁切圆圆心和半径,则由心距公式,有222OI R Rr =-,2222IH r R ρ=-,224OH R R ρ=-.注意到V 为OH 的中点,由斯特瓦尔特定理的推论(即三角形中线长公式),有()2222222111242VI VI HI VH R Rr r R r ⎛⎫=+-=-+=- ⎪⎝⎭,即12VI R r =-.故九点圆与内切圆相内切.同理,222AA OI R R ρ=+,得22112A VI R ρ⎛⎫=+ ⎪⎝⎭,即有112VI R ρ=-,故九点圆与此旁切圆相外切.同理,可证九点圆与其他两个旁切圆相外切.4.设G 是ABC △的重心,V 是九点圆的圆心,O 和V 对于G 和H 是共线且调和共轭的,考察以O 点 为起点的向量,则33332OA OB OC OH OG OA OB OC ⎛⎫==++=++ ⎪ ⎪⎝⎭.因此3OH OA OB OC R ++=≤,仅当A B C ==时等号成立,这是不可能的.故3OH R <.5.设O ,H 分别为ABC △的外心与垂心,I ,1I ,2I ,3I 分别为ABC △的内心和三个旁心,由于H ,A ,B ,C 构成一老垂心组(四点中,任一点是另三点构成的三角形的垂心,此四点为垂心组);I 与1I ,2I ,3I 构成一新垂心组,又ABC △的外接圆是123I I I △的九点圆,从而123I I I △的外心O '是关于O 的I 的对称点. 其余以此类似地推证,从而新垂心组各点与老垂心组各点关于123I I I △的九点圆的圆心对称.习题B1.(1)设E ,F 分别是边BA 的延长线,CA 的延长线上的点,由旁心的定义,知A I A 平分BAC ∠,B I A平分CAE ∠,C I A 平分BAF ∠.又BAF CAE ∠=∠,从而有B I ,A ,C I 三点共线,且A B C I A I I ⊥. 同理,B A C I B I I ⊥,C A B I C I I ⊥.故ABC △为A B C I I I △的垂足三角形,故ABC △的外接圆即为A B C I I I △ 的九点圆.(2)设O '为A B C I I I △的外心,则()()11180180222B C B C B A C O I I I O I I I I ''∠=︒-∠︒-∠=.由A I ,C I ,A ,C 四点共圆,知B B A C I AC I I I ∠=∠,从而90B C B O I I I AC '∠+<∠=︒,即B I O AC '⊥. 同理,A I O BC '⊥,B I O BA '⊥.故三条垂线共点于O '.2.设11()A x y ,,22()B x y ,,33()C x y ,,44()D x y ,是单位圆上任意四点,则()2211234i i x y i +==,,,. 由九点圆圆心是三角形外心与垂心连线的中点,得△ABC,△ABD,△BCD,△ACD 九点圆圆心坐标分别为1231231,22x x x y y y O ++++⎛⎫ ⎪⎝⎭,1241242,22x x x y y y O ++++⎛⎫ ⎪⎝⎭, 2342343,22x x x y y y O ++++⎛⎫ ⎪⎝⎭,1341344,22x x x y y y O ++++⎛⎫ ⎪⎝⎭. 考虑点12341234,22x x x x y y y y G ++++++⎛⎫⎪⎝⎭,则 12221234123123412312222x x x x x x x y y y y y y y O G ⎡⎤++++++++++⎛⎫⎛⎫=-+-⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎣⎦224412x y =+12=. 同理,23412O G O G O G ===故1O ,2O ,3O ,4O 在以G 力圆心,12为半径的圆上.。

初中奥林匹克数学竞赛知识点总结及训练题目-圆的基本性质

初中奥林匹克数学竞赛知识点总结及训练题目-圆的基本性质

初中数学竞赛辅导讲义---圆的基本性质到定点(圆心)等于定长(半径)的点的集合叫圆,圆常被人们看成是最完美的事物,圆的图形在人类进程中打下深深的烙印.圆的基本性质有:一是与圆相关的基本概念与关系,如弦、弧、弦心距、圆心角、圆周角等;二是圆的对称性,圆既是一个轴对称图形,又是一中心对称图形.用圆的基本性质解题应注意:1.熟练运用垂径定理及推论进行计算和证明;2.了解弧的特性及中介作用;3.善于促成同圆或等圆中不同名称等量关系的转化.熟悉如下基本图形、基本结论:【例题求解】【例1】在半径为1的⊙O 中,弦AB 、AC 的长分别为3和2,则∠BAC 度数为 .作出辅助线,解直角三角形,注意AB 与AC 有不同的位置关系.注: 由圆的对称性可引出许多重要定理,垂径定理是其中比较重要的一个,它沟通了线段、角与圆弧的关系,应用的一般方法是构造直角三角形,常与勾股定理和解直角三角形知识结 合起来.圆是一个对称图形,注意圆的对称性,可提高解与圆相关问题周密性.【例2】 如图,用3个边长为1的正方形组成一个对称图形,则能将其完全覆盖的圆的最小半径为( )A .2B .25C .45D .16175思路点拨 所作最小圆圆心应在对称轴上,且最小圆应尽可能通过圆形的某些顶点,通过设未知数求解.【例3】 如图,已知点A 、B 、C 、D 顺次在⊙O 上,AB=BD ,BM ⊥AC 于M ,求证:AM=DC+CM .思路点拨 用截长(截AM)或补短(延长DC)证明,将问题转化为线段相等的证明,证题的关键是促使不同量的相互转换并突破它.【例4】 如图甲,⊙O 的直径为AB ,过半径OA 的中点G 作弦C E ⊥AB ,在CB 上取一点D ,分别作直线CD 、ED ,交直线AB 于点F ,M .(1)求∠COA 和∠FDM 的度数;(2)求证:△FDM ∽△COM ; (3)如图乙,若将垂足G 改取为半径OB 上任意一点,点D 改取在EB 上,仍作直线CD 、ED ,分别交直线AB 于点F 、M ,试判断:此时是否有△FDM ∽△COM? 证明你的结论.思路点拨 (1)在Rt △COG 中,利用OG=21OA=21OC ;(2)证明∠COM=∠FDM ,∠CMO= ∠FMD ;(3)利用图甲的启示思考.注:善于促成同圆或等圆中不同名称的相互转化是解决圆的问题的重要技巧,此处,要努力把圆与直线形相合起来,认识到圆可为解与直线形问题提供新的解题思路,而在解与圆相关问题时常用到直线形的知识与方法(主要是指全等与相似).【例5】 已知:在△ABC 中,AD 为∠BAC 的平分线,以C 为圆心,CD 为半径的半圆交BC 的延长线于点E ,交AD 于点F ,交AE 于点M ,且∠B=∠CAE ,EF :FD =4:3.(1)求证:AF =DF ;(2)求∠AED 的余弦值;(3)如果BD =10,求△ABC 的面积.思路点拨 (1)证明∠ADE =∠DAE ;(2)作AN ⊥BE 于N ,cos ∠AED =AEEN ,设FE=4x ,FD =3x ,利用有关知识把相关线段用x 的代数式表示;(3)寻找相似三角形,运用比例线段求出x 的值.⌒ ⌒ ⌒ ⌒注:本例的解答,需运用相似三角形、等腰三角形的判定、面积方法、代数化等知识方法思想,综合运用直线形相关知识方法思想是解与圆相关问题的关键.学历训练1.D是半径为5cm的⊙O内一点,且OD=3cm,则过点D的所有弦中,最小弦AB= .2.阅读下面材料:对于平面图形A,如果存在一个圆,使图形A上的任意一点到圆心的距离都不大于这个圆的半径,则称图形A被这个圆所覆盖.对于平面图形A,如果存在两个或两个以上的圆,使图形A上的任意一点到其中某个圆的圆心的距离都不大于这个圆的半径,则称图形A被这些圆所覆盖.例如:图甲中的三角形被一个圆所覆盖,图乙中的四边形被两个圆所覆盖.回答下列问题:(1)边长为lcm的正方形被一个半径为r的圆所覆盖,r的最小值是cm;(2)边长为lcm的等边三角形被一个半径为r的圆所覆盖,r的最小值是cm;(3)长为2cm,宽为lcm的矩形被两个半径都为r的圆所覆盖,r的最小值是cm.(2003年南京市中考题)3.世界上因为有了圆的图案,万物才显得富有生机,以下来自现实生活的图形中都有圆:它们看上去多么美丽与和谐,这正是因为圆具有轴对称和中心对称性.(1)请问以下三个图形中是轴对称图形的有,是中心对称图形的有(分别用下面三个图的代号a,b,c填空).(2)请你在下面的两个圆中,按要求分别画出与上面图案不重复的图案(草图) (用尺规画或徒手画均可,但要尽可能准确些,美观些).a .是轴对称图形但不是中心对称图形.b .既是轴对称图形又是中心对称图形.4.如图,AB 是⊙O 的直径,CD 是弦,若AB=10cm ,CD =8cm ,那么A 、B 两点到直线CD 的距离之和为( )A .12cmB .10cmC . 8cmD .6cm5.一种花边是由如图的弓形组成的,ACB 的半径为5,弦AB =8,则弓形的高CD 为( )A .2B .25C .3D .316 6.如图,在三个等圆上各自有一条劣弧AB 、CD 、EF ,如果AB+CD=EF ,那么AB+CD 与E 的大小关系是( )A .AB+CD =EFB .AB+CD=FC . AB+CD<EFD .不能确定7.电脑CPU 芯片由一种叫“单晶硅”的材料制成,未切割前的单晶硅材料是一种薄形圆片,叫“晶圆片”.现为了生产某种CPU 芯片,需要长、宽都是1cm 的正方形小硅片若干.如果晶圆片的直径为10.05cm ,问:一张这种晶圆片能否切割出所需尺寸的小硅片66张?请说明你的方法和理由(不计切割损耗).8.如图,已知⊙O 的两条半径OA 与OB 互相垂直,C 为AmB 上的一点,且AB 2+OB 2=BC 2,求∠OAC 的度数.9.不过圆心的直线l 交⊙O 于C 、D 两点,AB 是⊙O 的直径,AE ⊥l ,垂足为E ,BF ⊥l ,垂足为F .(1)在下面三个圆中分别补画出满足上述条件的具有不同位置关系的图形;(2)请你观察(1)中所画图形,写出一个各图都具有的两条线段相等的结论(不再标注其他字母,找结论的过程中所连辅助线不能出现在结论中,不写推理过程);(3)请你选择(1)中的一个图形,证明(2)所得出的结论.⌒ ⌒ ⌒ ⌒ ⌒ ⌒ ⌒10.以AB 为直径作一个半圆,圆心为O ,C 是半圆上一点,且OC 2=AC ×BC , 则∠CAB=.11.如图,把正三角形ABC 的外接圆对折,使点A 落在BC 的中点A ′上,若BC=5,则折痕在△ABC 内的部分DE 长为 .12.如图,已知AB 为⊙O 的弦,直径MN 与AB 相交于⊙O 内,MC ⊥AB 于C ,ND ⊥AB 于D ,若MN=20,AB=68,则MC —ND= .13.如图,已知⊙O 的半径为R ,C 、D 是直径AB 同侧圆周上的两点,AC 的度数为96°,BD 的度数为36°,动点P 在AB 上,则CP+PD 的最小值为 .14.如图1,在平面上,给定了半径为r 的圆O ,对于任意点P ,在射线OP 上取一点P ′,使得OP ×OP ′=r 2,这种把点P 变为点P ′的变换叫作反演变换,点P 与点P ′叫做互为反演点.(1)如图2,⊙O 内外各有一点A 和B ,它们的反演点分别为A ′和B ′,求证:∠A ′=∠B ;(2)如果一个图形上各点经过反演变换得到的反演点组成另一个图形,那么这两个图形叫做互为反演图形.①选择:如果不经过点O 的直线与⊙O 相交,那么它关于⊙O 的反演图形是( )A .一个圆B .一条直线C .一条线段D .两条射线②填空:如果直线l 与⊙O 相切,那么它关于⊙O 的反演图形是 ,该图形与圆O 的位置关系是 .15.如图,已知四边形ABCD 内接于直径为3的圆O ,对角线AC 是直径,对角线AC 和BD 的交点为P ,AB=BD ,且PC=0.6,求四边形ABCD 的周长.16.如图,已知圆内接△ABC 中,AB>AC ,D 为BAC 的中点,DE ⊥AB 于E ,求证:BD 2-AD 2=AB×AC .⌒ ⌒ ⌒17.将三块边长均为l0cm 的正方形煎饼不重叠地平放在圆碟内,则圆碟的直径至少是多少?(不考虑其他因素,精确到0.1cm)18.如图,直径为13的⊙O ′,经过原点O ,并且与x 轴、y 轴分别交于A 、B 两点,线段OA 、OB(OA>OB)的长分别是方程0602=++kx x 的两根.(1)求线段OA 、OB 的长; (2)已知点C 在劣弧OA 上,连结BC 交OA 于D ,当OC 2=CD ×CB 时,求C 点坐标;(3)在⊙O ,上是否存在点P ,使S △POD =S △ABD ?若存在,求出P 点坐标;若不存在,请说明理由.⌒参考答案。

【竞赛题】人教版小学五年级下册数学第09讲《立体几何》竞赛试题(含详解)

【竞赛题】人教版小学五年级下册数学第09讲《立体几何》竞赛试题(含详解)

第九讲立体几何- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -首先,我们来学习一下长方体、正方体的体积与表面积的计算方法.练一练.1.一个正方体的棱长总和是72厘米,它的一个面是边长_______厘米的正方形,它的表面积是_______平方厘米,体积是_______立方厘米.2.一个长方体的长是5分米,宽是45厘米,高是24厘米,它的表面积是_______平方厘米,体积是_______立方厘米.3.做一个长8分米,宽4分米,高6分米的长方体玻璃鱼缸,至少需要_______平方分米的玻璃.4.有一块棱长是10厘米的正方体的铁块,现在要把它熔铸成一个横截面积是20平方厘米的长方体,这个长方体的长是_______厘米.如果要求这个长方体每条棱的长度都是整数厘米,它的表面积最小是_______平方厘米.相信同学们对于这些公式都很熟悉,但是对于较复杂的立体图形,往往我们并不能直接应用公式进行计算,这个时候又该怎么办呢?- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -例题1.有30个边长为1米的正方体,如图所示堆成一个四层的立体图形.请问:该立体图形的表面积等于多少平方米?分析:所谓表面积,就是立体图形露在外面的总面积.我们可以从上、下、左、右、前、后6个不同的方向去考虑这个立体图形,把每个方向露出的面积加在一起就行了.练习1.用14个棱长是1厘米的立方块拼成如右图所示的立体图形,问该图形的表面积是多少平方厘米?在观察物体的时候,我们往往可以从不同的角度进行观察.角度不同,看到的风景就会不同.比如:我们可以从正面看,上面看,左面看,看到的图形分别称为正视图,俯视图和左视图.并且容易发现:正面看和后面看,上面看和下面看,左面看和右面看得到的图形是相同的.对于较复杂的立体图形,通过三视图法往往可以很方便地计算出表面积.例题2.一个正方体被切成24个大小形状相同的小长方体(见下图),这些小长方体的表面积之和为162平方厘米,那么原正方体的体积是多少立方厘米?分析:我们先来分析一下切成小块的过程中,图形的表面积是如何变化的.同学们请看下图:一刀下去,正方体被一分为二.表面积和原来比,正好多出了A,B两个面.不难看出,这两个面的面积都等于原正方体6个面中1个面的面积.按这种方法,每切一刀,增加的都是两个面的面积.同学们可以计算一下,按如图的方式切了6刀后,表面积究竟增加了多少?练习2.一个正方体被切成36个大小形状相同的小长方体(见下图),这些小长方体的表面积之和为500平方厘米,那么原正方体的体积是多少立方厘米?例题3.如图,有一个边长为30厘米的大正方体,分别在它的角上、棱上、面上各挖掉一个大小相同的小正方体后,表面积变为5496平方厘米,那么挖掉的小正方体的棱长是多少厘米?分析:挖去小正方体后,表面积会发生变化.如果挖的位置,最终结果会有区别吗?练习3.一个正方体棱长10厘米,在它的表面上挖去一个棱长3厘米的小正方体.请求出剩下立体图形表面积的所有可能.除了长方体、正方体之外,圆柱和圆锥在我们的生活中也特别常见.如图,圆柱的两个圆面叫做底面;周围的面叫做侧面;两个底面之间的距离叫做高. 圆锥的圆面叫做底面;尖点叫做顶点;顶点到底面的距离叫做高,顶点到底面圆周上任意一点的连线叫做母线.关于圆锥的内容,我们不作深入的学习,同学们只需要学会如何计算它的体积即可.大家可以把圆柱想象成一个底面是圆形的柱子,那其他柱体也就是底面是其他图形的柱子.如图,所有“上下一般粗”的图形都称为柱体,图中的两个图形分别叫做三棱柱和四棱柱,它们的体积计算公式都是:V =⨯底面积高例题4.(1)如下左图,是长为8,宽为4的长方形,以长方形的长为轴旋转一周,求所形成的立体图形的体积和表面积是多少. (2)如下右图,是直角边分别为3和4的直角三角形,以边长为4的直角边为轴旋转一周,求所形成的立体图形的体积.分析:圆柱体的底面半径和高与长方形的长和高有什么关系?圆锥体呢?练习4.有一个圆柱和一个圆锥,它们的高和底面直径如图所示.圆柱体积及表面积分别是多少?圆锥的体积是多少?(π取3.14)6例题5.下图是一个棱长为4厘米的正方体,分别在前、后、左、右、上、下各面的中心位置挖去一个棱长1厘米的正方体,做成一种玩具.该玩具的表面积是多少平方厘米?如果把这些洞都打穿,表面积又变成了多少平方厘米?分析:打穿以后,表面积的计算有点复杂.想想都有哪些面是露在外面的?例题6.如图,一个底面长20分米,宽8分米,高15分米的长方形水池,存有三分之二池水.将一个高50分米,体积400立方分米的长方体竖直放入池中,那么长方体被水浸湿的部分有几分米高?分析:很明显长方体没有被水浸没,还有一部分在外面.水的体积没有变化过,但是形状发生了变化.原来是一个长方体,后来是什么样的形状?-正多面体正多面体,指各面都是全等的正多边形且每一个顶点所接的面数都是一样的凸多面体.一共有五种正多面体,分别是正四面体、正六面体(正方体)、正八面体、正十二面体和正二十面体.这些正多面体的作法都收录在了《几何原本》的第13卷中.柏拉图认为世界万物都是由火、气、水、土四元素构成的,其形状如正多面体中的四个.➢火的热令人感到尖锐和刺痛,好像小小的正四面体.➢空气是用正八面体制的,可以粗略感受到,它极细小的结合体十分顺滑.➢当水放到人的手上,它会自然流出,那它就应该是由很多小球所组成,好像正二十面体.➢土与其他的元素相异,因为它可以被堆栈,正如立方体.剩下没有用的正多面体——正十二面体,柏拉图以不清晰的语调写道:“神使用正十二面体以整理整个天空旳星座.”柏拉图的学生亚里士多德添加了第五个元素——以太,并认为天空是用此组成,但他没有将以太和正十二面体联系起来.约翰内斯·开普勒依随文艺复兴建立数学对应的传统,将五个正多面体对应五个行星——水星、金星、火星、木星和土星,同时它们本身亦对应了五个古典元素.在立体图形中,正多面体非常对称.除了正多面体之外,还有很多图形也具有非常漂亮的对称性.下面就是一些例子,不过要注意,它们可不是正多面体哦.作业1.如图所示,一个正方体被切成16个大小形状相同的小长方体,这些小长方体的表面积之和为256平方厘米,那么原正方体的体积是多少?作业2.一个正方体棱长8厘米,在它的表面上挖去一个棱长为2厘米的小正方体.则剩下的立体图形表面积可能是多少?作业3.如图,有一个边长为20厘米的大正方体,分别在它的角上、棱上、面上各挖掉一个大小相同的小正方体后,表面积变为2454平方厘米,那么挖掉的小正方体的边长是多少?作业4.图中的立体图形中,每个小正方形的边长都是1.那么这个立体图形的表面积和体积分别是多少?作业5.正方形的边长为4,按照图中所示的方式旋转,那么得到的旋转体的体积和表面积分别是多少?(π取3)俗话说,兴趣是最好的老师。

初三圆复习公开课获奖课件百校联赛一等奖课件

初三圆复习公开课获奖课件百校联赛一等奖课件

相离
直线和圆没有 公共点
3、直线和圆旳位置关系
设⊙O旳半径为r,圆心 O到直线l旳距离为d, 那么
(1)直线l和⊙O相交⇔____d_<_r__ (2)直线l和⊙O相切⇔___d_=_r___ (3)直线l和⊙O相离⇔___d_>_r___
3、直线和圆旳位置关系旳鉴定
令圆心o到直线l旳距离为d,圆旳半径为r
第35课时┃ 京考探究
解法一:联结 BE,
S△ABG=12AB·BG=12AG·BE,
∴BE=130. 在 Rt△BEG 中, BE2+EG2=BG2,
即1302+EG2=52,解得
EG=5
3
5 .
第35课时┃ 京考探究
解法二:∵∠DAE=∠EGC,∠AED=∠CEG, ∴△ADE∽△GCE, ∴AD=AE,
4、切线鉴定定理
过半径外端且垂直于半径旳直线是圆旳切线.
∵AB是⊙O旳直径(半径),直线CD经过A点, B
且CD⊥AB,
∴ CD是⊙O旳切线.
●O
这个定理实际上就是
d=r 直线和圆相切 旳另一种说法.
C
A
D
1、如图,AB是⊙O旳弦,点C为半径OA旳中 点,过点C作CD⊥OA交弦AB于点E,连接BD ,且DE=DB.(1)判断BD与⊙O旳位置关 系,并阐明理由;
2个全等旳直角三角形
F
.O
AOG BOG 180
R
n
设正多边形旳边长为a,边数为n, A
G
圆旳半径为R,它旳周长为L=na.
边心距r
R
2( a
2
) ,
2
面积S 1 L • 边心距(r) 1 na • 边心距(r)

圆的学问专题培训市公开课金奖市赛课一等奖课件

圆的学问专题培训市公开课金奖市赛课一等奖课件
请用动画将题意演示出来,先出现: 出现半圆,再半圆转动。成下图样子。 点击页面可重复播放题意动画。
点击依次出现:
S=SA B′半圆+ S B′A B扇形-SA B半圆
SS==SAn
B′半圆
πR2=
60
×3.14×32=4.71(平方厘米)
360
360
第11页
出示随堂演练:
图为跑马场平面图,个圆弧被围住,留个圆弧长开 口以便马匹能自由出入。若围场内外均长满青草,圆 半径为5米,既有一匹马拴在圆心处,绳长为10米, 则该马食草范围最大为多少? (正三角形面积公式按S=0.433a2计算,a表示三角 形边长)
接上后能否把圆O3周长围住?
点击依次出现各步所求分别为: C1=2π厘米 C2=2π×2=4π厘米 C3=2π×3=6π厘 C1+C2=C3
第7页
题目与上页相同,只是问题换成第二个。 (2)圆O1和圆O2能否把圆O3完全盖住?
点击依次出现各步所求分别为: S1=π S2=4π S3=9π S1+S2<S3
第8页
出示例题
如图所表示,水平面上一个正三角形ABC,其边长 为10厘米。现做下面变动,先绕B点转动一次, 接着再绕C点转动一次,问两次转动后A点所经 过路程是多少?此时A点离原出发点距离是多少?
请用动画将题意演示出来:先出现三角形ABC,然后按题 意出现,最后画面是上图样子。点击页面就可重复播放 动画。
( )圈。
此题做成填空题,正确答案是4圈。 当填入4时,出现奖励画面!
第16页
5、在一个圆形桌面上做下列游戏,甲、乙两人轮流 在桌面上放置1角面值硬 币,规则是甲放一枚, 则乙放一枚轮流 放下去,到最后谁没有地方放置 谁就输。问有无获胜策略?怎么放?若把圆桌 中心挖去一小孔,问有无获胜策略?怎么放?

圆复习课市公开课一等奖百校联赛获奖课件

圆复习课市公开课一等奖百校联赛获奖课件
第24章圆知识体系复习
第1页
学习目标: 1、系统熟悉圆相关概念。 2、巩固相关圆一些性质和定理。 3、深入掌握应用圆相关知识处理一些数 学问题。
第2页
本章知识结构图
圆基本性质
与圆相关位置关系

正多边形和圆
圆对称性 弧、弦圆心角之间关系
同弧上圆周角与圆心角关系
点和圆位置关系
三角形外接圆
直线和圆位置关系 切线 三角形内切圆
2
第12页
圆周角性质(2)
在同圆或等圆中,同弧或等弧所正确全部圆 周角相等.相等圆周角所正确弧相等.
D
E
∵∠ADB与∠AEB 、∠ACB 是同弧所对圆周角
C
O
∴∠ADB=∠AEB =∠ACB
A B
第13页
圆周角性质:
性质 3:半圆或直径所对圆周角都相等,都等于900(直角).
性质4: 900圆周角所正确弦是圆直径.
第34页
基础题:
1.现有外接圆,又内切圆平行四边形是__正__方__形. 2.直角三角形外接圆半径为5cm,内切圆半径为1cm,
则此三角形周长是____2_2_c_m. 3.⊙O边长为2cm正方形ABCD内切圆,E、F切⊙O
于P点,交AB、BC于E、F,则△BEF周长是___2_c_m.
G E
FH
(3)在一个圆中,如果弦相等,那么它所对弧相等,所对圆心角相等.
︵ ︵ D ∵ ∠COD =∠AOB
O
∴ AB = CD
C ∴AB=CD
A
B
第8页
1、如图,已知⊙O半径OA长为5, 弦AB长8,OC⊥ABA于CC=,B则COC长 为 _______. 3
O
半径

高考数学复习竞赛专题讲座 圆

高考数学复习竞赛专题讲座 圆

2008高考数学复习竞赛专题讲座09 圆基础知识如果没有圆,平面几何将黯然失色.圆是一种特殊的几何图形,应当掌握圆的基本性质,垂线定理,直线与圆的位置关系,和圆有关的角,切线长定理,圆幂定理,圆和圆的位置关系,多边形与圆的位置关系.圆的几何问题不是独立的,它与直线形结合起来,将构成许多丰富多彩的、漂亮的几何问题,“三角形的心”,“几何著名的几何定理”,“共圆、共线、共点”,“直线形” 将构成圆的综合问题的基础.本部分着重研究下面几个问题:1.角的相等及其和、差、倍、分;2.线段的相等及其和、差、倍、分;3.二直线的平行、垂直;4.线段的比例式或等积式;5.直线与圆相切;6.竞赛数学中几何命题的等价性.命题分析例1.已知A 为平面上两个半径不等的⊙1O 和⊙2O 的一个交点,两圆的外公切线分别为2121,Q Q P P ,1M 、2M 分别为11Q P 、22Q P 的中点,求证:2121AM M AO O ∠=∠. 例2.证明:唯一存在三边长为连续整数且有一个角为另一个角的两倍的三角形. 例3.延长AB 至D ,以AD 为直径作半圆,圆心为H ,G 是半圆上一点,ABG ∠为锐角.E 在线段BH 上,Z 在半圆上,EZ ∥BG ,且2EZ ED EH =⋅,BT ∥HZ .求证:ABG TBG ∠=∠31. 例4.求证:若一个圆外切四边形有两条对边相等,则圆心到另外两边的距离相等. 例5.设A ∠是△ABC 中最小的内角,点B 和C 将这个三角形的外接圆分成两段弧,U 是落在不含A 的那段弧上且不等于B 与C 的一个点,线段AB 和AC 的垂直平分线分别交线段AU 于V 和W ,直线BV 和CW 相交于T .证明:TC TB AU +=.例6.菱形ABCD 的内切圆O 与各边分别切于H G F E ,,,,在⌒EF 与⌒GH 上分别作⊙O 切线交AB 于M ,交BC 于N ,交CD 于P ,交DA 于Q ,求证:MQ ∥NP . 例7.⊙1O 和⊙2O 与△ABC 的三边所在直线都相切,H G F E ,,,为切点,并且FH EG ,的延长线交于点P .求证:直线PA 与BC 垂直.例8.在圆中,两条弦CD AB ,相交于E 点,M 为弦AB 上严格在E 、B 之间的点.过M E D ,,的圆在E 点的切线分别交直线BC 、AC 于G F ,.已知t AB AM =,求EFCE (用t 表示). 例9.设点D 和E 是△ABC 的边BC 上的两点,使得CAE BAD ∠=∠.又设M 和N 分别是△ABD 、△ACE 的内切圆与BC 的切点.求证:NENC MD MB 1111+=+. 例10.设△ABC 满足︒=∠90A ,C B ∠<∠,过A 作△ABC 外接圆W 的切线,交直线BC 于D ,设A 关于直线BC 的对称点为E ,由A 到BE 所作垂线的垂足为X ,AX 的中点为Y ,BY 交W 于Z 点,证明直线BD 为△ADZ 外接圆的切线. 例11.两个圆1Γ和2Γ被包含在圆Γ内,且分别现圆Γ相切于两个不同的点M 和N .1Γ经过2Γ的圆心.经过1Γ和2Γ的两个交点的直线与Γ相交于点A 和B ,直线MA 和直线MB 分别与1Γ相交于点C 和D .求证:CD 与2Γ相切.例12.已知两个半径不相等的⊙1O 和⊙2O 相交于M 、N 两点,且⊙1O 、⊙2O 分别与⊙O 内切于S 、T 两点.求证:MN OM ⊥的充要条件是S 、N 、T 三点共线.例13.在凸四边形ABCD 中,AB 与CD 不平行,⊙1O 过A 、B 且与边CD 相切于点P ,⊙2O 过C 、D 且与边AB 相切于点Q .⊙1O 和⊙2O 相交于E 、F ,求证:EF 平分线段PQ 的充要条件是BC ∥AD .例14.设凸四边形ABCD 的两条对角线AC 与BD 互相垂直,且两对边AB 与CD 不平行.点P 为线段AB 与CD 的垂直平分线的交点,且在四边形的内部.求证:A 、B 、C 、D 四点共圆的充要条件为PCD PAB S S ∆∆=.训练题1.△ABC 内接于⊙O ,︒<∠90BAC ,过B 、C 两点⊙O 的切线交于P ,M 为BC 的中点,求证:(1)BAC APAM ∠=cos ;(2)PAC BAM ∠=∠. 2.已知C B A ''',,分别是△ABC 外接圆上不包含C B A ,,的弧⌒⌒⌒AB CA BC ,,的中点,BC 分别和A C ''、B A ''相交于M 、N 两点,CA 分别和B A ''、C B ''相交于P 、Q 两点,AB 分别和C B ''、A C ''相交于R 、S 两点.求证:RS PQ MN ==的充要条件是△ABC 为等边三角形.3.以△ABC 的边BC 为直径作半圆,与AB 、CA 分别 交于点D 和E ,过D 、E 作BC的垂线,垂足分别为F 、G .线段DG 、EF 交于点M .求证:BC AM ⊥.4.在△ABC 中,已知B ∠内的旁切圆与CA 相切于D ,C ∠内的旁切圆与AB 相切于E ,过DE 和BC 的中点M 和N 作一直线,求证:直线MN 平分△ABC 的周长,且与A ∠的平分线平行.5.在△ABC 中,已知,过该三角形的内心I 作直线平行于AC 交AB 于F .在BC 边上取点P 使得BC BP =3.求证:B BFP ∠=∠21. 6.半圆圆心为O ,直径为AB ,一直线交半圆于D C ,,交AB 于M (MD MC MA MB <<,).设K 是△AOC 与△DOB 的外接圆除点O 外之另一交点.求证:MKO ∠为直角 .7.已知,AD 是锐角△ABC 的角平分线,α=∠BAC ,β=∠ADC ,且βα2c o s c o s =.求证:DC BD AD ⋅=2.8.M 为△ABC 的边AB 上任一点,r r r ,,21分别为△AMC 、△BMC 、△ABC 的内切圆半径;ρρρ,,21分别为这三个三角形的旁切圆半径(在ACB ∠内部). 求证:ρρρr r r =⋅2211.9.设D 是△ABC 的边BC 上的一个内点,AD 交△ABC 外接圆于X ,P 、Q 是X 分别到AB 和AC 的垂足,O 是直径为XD 的圆.证明:PQ 与⊙O 相切当且仅当AC AB =.10.若AB 是圆的弦,M 是AB 的中点,过M 任意作弦CD 和EF ,连DE CD ,分别交AB 于Y X ,,则MY MX =.11.设H 为△ABC 的垂心,P 为该三角形外接圆上的一点,E 是高BH 的垂足,并设PAQB 与PARC 都是平行四边形,AQ 与BR 交于X .证明:EX ∥AP .12.在△ABC 中,C ∠的平分线分别交AB 及三角形的外接圆于D 和K ,I 是内切圆圆心.证明:(1)CI IK ID 111=-;(2)1=-IK ID ID CI .。

竞赛讲座9-圆

竞赛讲座9-圆

竞赛讲座09-圆基础知识如果没有圆,平面几何将黯然失色.圆是一种特殊的几何图形,应当掌握圆的基本性质,垂线定理,直线与圆的位置关系,和圆有关的角,切线长定理,圆幂定理,圆和圆的位置关系,多边形与圆的位置关系. 圆的几何问题不是独立的,它与直线形结合起来,将构成许多丰富多彩的、漂亮的几何问题,“三角形的心”,“几何著名的几何定理”,“共圆、共线、共点”,“直线形” 将构成圆的综合问题的基础.本部分着重研究下面几个问题:1.角的相等及其和、差、倍、分;2.线段的相等及其和、差、倍、分;3.二直线的平行、垂直;4.线段的比例式或等积式;5.直线与圆相切;6.竞赛数学中几何命题的等价性.命题分析例1.已知A 为平面上两个半径不等的⊙1O 和⊙2O 的一个交点,两圆的外公切线分别为2121,Q Q P P ,1M 、2M 分别为11Q P 、22Q P 的中点,求证:2121AM M AO O ∠=∠.例2.证明:唯一存在三边长为连续整数且有一个角为另一个角的两倍的三角形. 例3.延长AB 至D ,以AD 为直径作半圆,圆心为H ,G 是半圆上一点,ABG ∠为锐角.E 在线段BH 上,Z 在半圆上,EZ ∥BG ,且2EZ ED EH =⋅,BT ∥HZ .求证:ABG TBG ∠=∠31.例4.求证:若一个圆外切四边形有两条对边相等,则圆心到另外两边的距离相等. 例5.设A ∠是△ABC 中最小的内角,点B 和C 将这个三角形的外接圆分成两段弧,U 是落在不含A 的那段弧上且不等于B 与C 的一个点,线段AB 和AC 的垂直平分线分别交线段AU 于V 和W ,直线BV 和CW 相交于T .证明:TC TB AU +=.例6.菱形ABCD 的内切圆O 与各边分别切于H G F E ,,,,在⌒EF 与⌒GH 上分别作⊙O 切线交AB 于M ,交BC 于N ,交CD 于P ,交DA 于Q ,求证:MQ ∥NP .例7.⊙1O 和⊙2O 与△ABC 的三边所在直线都相切,H G F E ,,,为切点,并且FH EG ,的延长线交于点P .求证:直线PA 与BC 垂直.例8.在圆中,两条弦CD AB ,相交于E 点,M 为弦AB 上严格在E 、B 之间的点.过M E D ,,的圆在E 点的切线分别交直线BC 、AC 于G F ,.已知t AB AM =,求EF CE (用t 表示). 例9.设点D 和E 是△ABC 的边BC 上的两点,使得CAE BAD ∠=∠.又设M 和N 分别是△ABD 、△ACE 的内切圆与BC 的切点.求证:NENC MD MB 1111+=+. 例10.设△ABC 满足︒=∠90A ,C B ∠<∠,过A 作△ABC 外接圆W 的切线,交直线BC 于D ,设A 关于直线BC 的对称点为E ,由A 到BE 所作垂线的垂足为X ,AX 的中点为Y ,BY 交W 于Z 点,证明直线BD 为△ADZ 外接圆的切线.例11.两个圆1Γ和2Γ被包含在圆Γ内,且分别现圆Γ相切于两个不同的点M 和N .1Γ经过2Γ的圆心.经过1Γ和2Γ的两个交点的直线与Γ相交于点A 和B ,直线MA 和直线MB 分别与1Γ相交于点C 和D .求证:CD 与2Γ相切.例12.已知两个半径不相等的⊙1O 和⊙2O 相交于M 、N 两点,且⊙1O 、⊙2O 分别与⊙O 内切于S 、T 两点.求证:MN OM ⊥的充要条件是S 、N 、T 三点共线.例13.在凸四边形ABCD 中,AB 与CD 不平行,⊙1O 过A 、B 且与边CD 相切于点P ,⊙2O 过C 、D 且与边AB 相切于点Q .⊙1O 和⊙2O 相交于E 、F ,求证:EF 平分线段PQ 的充要条件是BC ∥AD .例14.设凸四边形ABCD 的两条对角线AC 与BD 互相垂直,且两对边AB 与CD 不平行.点P 为线段AB 与CD 的垂直平分线的交点,且在四边形的内部.求证:A 、B 、C 、D 四点共圆的充要条件为PCD PAB S S ∆∆=.训练题1.△ABC 内接于⊙O ,︒<∠90BAC ,过B 、C 两点⊙O 的切线交于P ,M 为BC 的中点,求证:(1)BAC APAM ∠=cos ;(2)PAC BAM ∠=∠. 2.已知C B A ''',,分别是△ABC 外接圆上不包含C B A ,,的弧⌒⌒⌒AB CA BC ,,的中点,BC 分别和A C ''、B A ''相交于M 、N 两点,CA 分别和B A ''、C B ''相交于P 、Q 两点,AB 分别和C B ''、A C ''相交于R 、S 两点.求证:RS PQ MN ==的充要条件是△ABC 为等边三角形.3.以△ABC 的边BC 为直径作半圆,与AB 、CA 分别 交于点D 和E ,过D 、E 作BC 的垂线,垂足分别为F 、G .线段DG 、EF 交于点M .求证:BC AM ⊥.4.在△ABC 中,已知B ∠内的旁切圆与CA 相切于D ,C ∠内的旁切圆与AB 相切于E ,过DE 和BC 的中点M 和N 作一直线,求证:直线MN 平分△ABC 的周长,且与A ∠的平分线平行.5.在△ABC 中,已知,过该三角形的内心I 作直线平行于AC 交AB 于F .在BC 边上取点P 使得BC BP =3.求证:B BFP ∠=∠21.6.半圆圆心为O ,直径为AB ,一直线交半圆于D C ,,交AB 于M (MD MC MA MB <<,).设K 是△AOC 与△DOB 的外接圆除点O 外之另一交点.求证:MKO ∠为直角 . 7.已知,AD 是锐角△ABC 的角平分线,α=∠BAC ,β=∠ADC ,且βα2cos cos =.求证:DC BD AD ⋅=2.8.M 为△ABC 的边AB 上任一点,r r r ,,21分别为△AMC 、△BMC 、△ABC 的内切圆半径;ρρρ,,21分别为这三个三角形的旁切圆半径(在ACB ∠内部). 求证:ρρρr r r =⋅2211.9.设D 是△ABC 的边BC 上的一个内点,AD 交△ABC 外接圆于X ,P 、Q 是X 分别到AB 和AC 的垂足,O 是直径为XD 的圆.证明:PQ 与⊙O 相切当且仅当AC AB =.10.若AB 是圆的弦,M 是AB 的中点,过M 任意作弦CD 和EF ,连DE CD ,分别交AB 于Y X ,,则MY MX =.11.设H 为△ABC 的垂心,P 为该三角形外接圆上的一点,E 是高BH 的垂足,并设PAQB 与PARC 都是平行四边形,AQ 与BR 交于X .证明:EX ∥AP .12.在△ABC 中,C ∠的平分线分别交AB 及三角形的外接圆于D 和K ,I 是内切圆圆心.证明:(1)CI IK ID 111=-;(2)1=-IK IDID CI .。

2021年公开课大赛《圆》一等奖教案 (1)

2021年公开课大赛《圆》一等奖教案 (1)

按照新课程标准要求,学科核心素养作为现代教育体系的核心理论,提高学生的兴趣、学习的主动性,是当前教育教学研究所注重的重要环节之一。

2021年4月,教育部发布文件,对教育机构改革进行了深入和细致的解读。

从中我们不难看出,作为一线教师,教育教学手段和理论知识水平是下一步需要进一步提高的重要能力。

本课作为课本中比较重要的一环,对核心素养进行了贯彻,将课堂环节设计进行了细致剖析,力求达到学生乐学,教师乐教的理想状态。

圆一、教学目标1、理解圆的描述定义,了解圆的集合定义.2、经历探索点与圆的位置关系的过程,以及如何确定点和圆的三种位置关系二、教学重点和难点重点:点与圆的位置关系难点:用集合的观点研究圆的概念三、教学过程(一)情境引入:一些学生正在做投圈游戏,他们呈“一”字排开.思考:这样的队形对每一人都公平吗?你认为他们应当排成什么样的队形?(二)探究新知:【探究一】圆的定义及相关概念1. 请大家用自己的方式在学案上画一个圆.2. 尝试给圆下一个准确的定义,写下来.定义1:当一条线段绕着在平面内旋转一周时,它的另一个端点所形成的图形就是一个圆。

定义2:圆可以看成是到的距离等于的所有点组成的图形。

就是圆心,就是半径,以O为圆心的圆记作,读作3.相关概念:弦、弧、直径、半径、半圆、等圆的相关概念半径:.连接圆心和圆上的的线段叫做半径,例如上图中的都叫做半圆例如【探究二】点和圆的位置关系⊙O 是一个半径为r 的圆 ,在圆内、圆上、圆外分别取一点,(1)在平面内任意取一点P ,点与圆有几种位置关系?分别是什么?答:有_________种,分别是_______________ ___(2)若⊙O 的半径为r ,点P 到圆心O 的距离为d ,那么:点P 在圆 d r 点P 在圆 d r点P 在圆d r(三)尝试与交流已知线段PQ=2cm ,画图说明满足下列要求的图形:⑴到点P 的距离等于1cm 的所有点组成的图形;⑵到点Q 的距离等于1.5cm 的所有点组成的图形⑶到点P 、Q 的距离都等于1cm 的所有点组成的图形⑷到点P 、Q 的距离都等于1.5cm 的所有点组成的图形⑸到点P 、Q 的距离都小于1.5cm 的所有点组成的图形⑹到点P 的距离小于2cm ,且到点Q 的距离大于2cm 的所有点组成的图形(四)巩固训练1、小明和小华正在练习投铅球,小明投了5.2m ,小华投了6.7m ,他们投的球分别 落在下图中哪个区域内? ⇔⇔⇔Q P Q QPQ Q QD A C B 02、已知⊙0的面积为25π。

九年级数学竞赛辅导系列讲座九圆练习(无答案)(2021年整理)

九年级数学竞赛辅导系列讲座九圆练习(无答案)(2021年整理)

浙江省绍兴县杨汛桥镇九年级数学竞赛辅导系列讲座九圆练习(无答案)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(浙江省绍兴县杨汛桥镇九年级数学竞赛辅导系列讲座九圆练习(无答案))的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为浙江省绍兴县杨汛桥镇九年级数学竞赛辅导系列讲座九圆练习(无答案)的全部内容。

数学竞赛辅导系列讲座九--圆1、如图,已知P 是边长为a 的正方形ABCD 内一点,△PBC 是等边三角形,则△PAD 的外接圆半径是( )A 、aB 、 2 aC 、错误!aD 、错误!a2、如图,在矩形ABCD 中,AB=3,BC=2,以BC 为直径在矩形内作半圆,自点A 作半圆的切线AE ,则Sin ∠CBE=( )A 、,63B 、错误!C 、错误!D 、错误!3、如图,圆心在原点,半径为2的圆内有一点P(错误!,错误!),过P 点作弦AB 与劣弧AB 组成一个弓形,则该弓形面积的最小值为( )A 、π-1B 、π-2C 、错误!π-1D 、错误!π-错误!4、如图,在平面直角坐标系中,点P 在第一象限,⊙P 与x 轴切与点Q ,与y 轴交于点M (0,2),N(0,8),则点P 的坐标是( ) A 、(5,3)B 、(3,5)C 、(5,4)D 、(4,5)5、在底面直径是2,母线长为4的圆锥,若一只小虫子以点A 出发,绕侧面一周又回到点A ,则它爬行的最短路线长是( )A 、2πB 、 4错误!C 、4错误!D 、56、如果一个三角形的面积和周长都被一直线所平分,则这条直线必经过这个三角形的( )A 、内心B 、外心C 、重心D 、垂心DACPDEYXAOP ByxN MOPQ7、如图,⊙O 与Rt △ABC 的斜边AB 切于点D ,与直角边AC 交于点E 且,DE ∥BC ,已知AE=2错误!,AC=3错误!,BC=6,则⊙O 的半径是( )A 、3B 、4C 、4 3D 、2错误!8、如图,正方形ABCD 内接于⊙O ,点P 在劣弧AB 上,联结DP ,DP 交AC 于点Q ,若QP=QO ,则错误!=( ) A 、2错误!-1B 、2错误!C 、错误!+错误!D 、错误!+29、如图,AB 是半圆O 的直径,半圆O 的内接正方形CDEF 的边长为1,AD=m ,DB=n ,那么m nn m+的值为________.10、如图,AD 是半圆的直径,AD=4,B 、C 为半圆上的两点,弦AB=BC=1,则弦CD 的长为__________. 11、已知半径分别为1和2的两个圆外切于点P,则点P 到两圆的外公切线的距离为___________.12、如图,从⊙O 外一点M 作圆的切线MA ,切点为A ,再作割线MBC ,交⊙O 于B 、C 两点,∠AMC 的平分线交于AC 于E,交AB 于D ,则DB EC+的值等于______.13、如图,在△ABC ,AB=AC= 5 ,BC=2,以AB 为直径的⊙O 分别交AC 、BC 于点D 、E,则△CDE 的面积为_______.CEOQBDO ACD FO A BC EBCDEBOAMCDOB EAO 2O 3O 4O 5O 114、已知O 为△ABC 的外心,AD 为BC 边上的高,∠CAB=66°,∠ABC=44°,则∠OAD=_________. 15、P 是⊙O 的直径AB 的延长线上一点,PC 与⊙O 相切于点C ,∠APC 的平分线交AC 于Q ,则∠PQC=_______.16、2008年8月8日,第29届奥运会在北京举行,奥运五环旗象征着全世界人民的大团结,五环旗中,五个大小相等的环形环环相扣,三个环在上,两个环在下,五个环的中心联结成一个等腰梯形,构成一个喜庆、和谐、优美的轴对称图形.如图,假设O 2O 4=a ,O 1O 5=2a,∠O 1= ,则等腰梯形O 1O 2O 4O 5的对角线O 1O 4的长为____________.17、如图,OB 是以(0,a )为圆心,a 为半径的弦,过点B 作⊙O 1的切线,P 为劣弧OB 上的任一点,且过P 分别作OB 、AB 、AO 的垂线 (1)求证:PD 2=PE ·PF ;(2)当∠BOC=30°,点P 为弧OB 的中点时,求D 、E 、F 、P 四点坐标于S △DEF .18、只用圆规,把一个已知圆的圆心四等分.19、如图,四边形ABCD 内接于圆,AB=AD,其对角线交于点E ,点F 在线段AC 上,使得∠BFC=∠BAD ,若∠BAD=2∠DFC ,求错误!的值.yxFDEAOO 1BP E DBF20、如图,已知AB 是⊙O 的弦,过O 作AB 的平行线交⊙O 于点C,交⊙O 过点B 的切线于D ,求证:∠ACB=∠D .21、如图,AB 是半圆O 的直径,C 是弧AB 的中点,M 是弦AC 的中点,CH ⊥BM,垂足为H ,求证:CH 2=AH ·OH .22、AB 是⊙O 的一条弦,它的中点为M ,过点M 作一条非直径的弦CD ,过点C 和D 做⊙O 的两条切线分别与直线交于P 、Q 两点,求证PA=QB .23、如图,AB 是⊙O 的直径,AB=d,过点A 作⊙O 的切线并在其上取一点C ,使AC=AB ,联结OC 交⊙O 于D,BD 的延长线交AC 于E ,求AE .DCOBAHMEDO A24、如图,P 为⊙O 外一点,过P 作⊙O 的两条切线,切点分别为A 、B ,过A 作PB 的平行线交⊙O 于点C ,联结PC 交⊙O 于点E ,联结AE 并延长AE 交PB 于K ,求证:PE ·AC=CE ·KB .25、在半径为r 的⊙O 中,AB 为直径,C 为弧AB 的中点,D 为弧BC 的三分之一分点,且弧DB 的长度是弧CD 长的两倍,连结AD 并延长交⊙O 的切线CE 于点E (C 为切点),求AE 的长.27、在锐角△ABC ,中,AD ⊥BC ,D 为垂足,DE ⊥AC ,E 为垂足,DF ⊥A B ,F 为垂足,O 为△ABCKEAO B的外心,求证(1)△AEF ∽△ABC ; (2)AO ⊥EF . 28、29。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

竞赛讲座09 -圆
基础知识
如果没有圆,平面几何将黯然失色.
圆是一种特殊的几何图形,应当掌握圆的基本性质,垂线定理,直线与圆的位置关系,和圆有关的角,切线长定理,圆幂定理,圆和圆的位置关系,多边形与圆的位置关系.
圆的几何问题不是独立的,它与直线形结合起来,将构成许多丰富多彩的、漂亮的几何问题,“三角形的心”,“几何著名的几何定理”,“共圆、共线、共点”,“直线形” 将构成圆的综合问题的基础.
本部分着重研究下面几个问题: 1.角的相等及其和、差、倍、分;
2.线段的相等及其和、差、倍、分; 3.二直线的平行、垂直; 4.线段的比例式或等积式; 5.直线与圆相切;
6.竞赛数学中几何命题的等价性.
命题分析
例1.已知A 为平面上两个半径不等的⊙1O 和⊙2O 的一个交点,两圆的外公切线分别为2121,Q Q P P ,1M 、2M 分别为11Q P 、22Q P 的中点,求证:2121AM M AO O ∠=∠.
例2.证明:唯一存在三边长为连续整数且有一个角为另一个角的两倍的三角形. 例3.延长AB 至D ,以AD 为直径作半圆,圆心为H ,G 是半圆上一点,ABG ∠为锐角.E 在线段BH 上,Z 在半圆上,EZ ∥BG ,且2EZ ED EH =⋅,BT ∥HZ .求证:ABG TBG ∠=
∠3
1.
例4.求证:若一个圆外切四边形有两条对边相等,则圆心到另外两边的距离相等. 例5.设A ∠是△ABC 中最小的内角,点B 和C 将这个三角形的外接圆分成两段弧,U 是落在不含A 的那段弧上且不等于B 与C 的一个点,线段AB 和AC 的垂直平分线分别交线段AU 于V 和W ,直线BV 和CW 相交于T .证明:TC TB AU +=.
例6.菱形ABCD 的内切圆O 与各边分别切于H G F E ,,,,在⌒
EF 与⌒
GH 上分别作⊙O 切线交AB 于M ,交BC 于N ,交CD 于P ,交DA 于Q ,求证:MQ ∥NP .
例7.⊙1O 和⊙2O 与△ABC 的三边所在直线都相切,H G F E ,,,为切点,并且
FH EG ,的延长线交于点P .求证:直线PA 与BC 垂直.
例8.在圆中,两条弦CD AB ,相交于E 点,M 为弦AB 上严格在E 、B 之间的点.过
M E D ,,的圆在E 点的切线分别交直线BC 、AC 于G F ,.已知t AB
AM =,
求EF
CE (用t 表
示).
例9.设点D 和E 是△ABC 的边BC 上的两点,使得CAE BAD ∠=∠.又设M 和N 分别是△ABD 、△ACE 的内切圆与BC 的切点.求证:
NE
NC
MD
MB
1111+
=
+

例10.设△ABC 满足︒=∠90A ,C B ∠<∠,过A 作△ABC 外接圆W 的切线,交直线BC 于D ,设A 关于直线BC 的对称点为E ,由A 到BE 所作垂线的垂足为X ,AX
的中点为Y ,BY 交W 于Z 点,证明直线BD 为△ADZ 外接圆的切线.
例11.两个圆1Γ和2Γ被包含在圆Γ内,且分别现圆Γ相切于两个不同的点M 和N .1
Γ经过2Γ的圆心.经过1Γ和2Γ的两个交点的直线与Γ相交于点A 和B ,直线MA 和直线MB 分别与1Γ相交于点C 和D .求证:CD 与2Γ相切.
例12.已知两个半径不相等的⊙1O 和⊙2O 相交于M 、N 两点,且⊙1O 、⊙2O 分别与⊙O 内切于S 、T 两点.求证:MN OM ⊥的充要条件是S 、N 、T 三点共线.
例13.在凸四边形ABCD 中,AB 与CD 不平行,⊙1O 过A 、B 且与边CD 相切于点P ,⊙2O 过C 、D 且与边AB 相切于点Q .⊙1O 和⊙2O 相交于E 、F ,求证:EF 平分线段PQ 的充要条件是BC ∥AD .
例14.设凸四边形ABCD 的两条对角线AC 与BD 互相垂直,且两对边AB 与CD 不平行.点P 为线段AB 与CD 的垂直平分线的交点,且在四边形的内部.求证:A 、B 、C 、
D 四点共圆的充要条件为PCD PAB S S ∆∆=.
训练题
1.△ABC 内接于⊙O ,︒<∠90BAC ,过B 、C 两点⊙O 的切线交于P ,M 为BC 的中点,求证:(1)
BAC AP
AM ∠=cos ;(2)PAC BAM ∠=∠.
2.已知C B A ''',,分别是△ABC 外接圆上不包含C B A ,,的弧⌒


AB CA BC ,,
的中点,BC 分别和A C ''、B A ''相交于M 、N 两点,CA 分别和B A ''、C B ''相交于P 、Q 两点,AB 分别和C B ''、A C ''相交于R 、S 两点.求证:RS PQ MN ==的充要条件是△ABC
为等边三角形.
3.以△ABC 的边BC 为直径作半圆,与AB 、CA 分别 交于点D 和E ,过D 、E 作
BC 的垂线,垂足分别为F 、G .线段DG 、EF 交于点M .求证:BC AM ⊥.
4.在△ABC 中,已知B ∠内的旁切圆与CA 相切于D ,C ∠内的旁切圆与AB 相切于E ,过DE 和BC 的中点M 和N 作一直线,求证:直线MN 平分△ABC 的周长,且与A ∠的平分线平行.
5.在△ABC 中,已知,过该三角形的内心I 作直线平行于AC 交AB 于F .在BC 边上取点P 使得BC BP =3.求证:B BFP ∠=
∠21.
6.半圆圆心为O ,直径为AB ,一直线交半圆于D C ,,交AB 于M (MD MC MA MB <<,).设K 是△AOC 与△DOB 的外接圆除点O 外之另一交点.求证:MKO ∠为直角 .
7.已知,AD 是锐角△ABC 的角平分线,α=∠BAC ,β=∠ADC ,且
βα2
c o s c o s =.求证:DC BD AD
⋅=2

8.M 为△ABC 的边AB 上任一点,r r r ,,21分别为△AMC 、△BMC 、△ABC 的内切圆半径;ρρρ,,21分别为这三个三角形的旁切圆半径(在ACB ∠内部).
求证:
ρ
ρρr
r r =⋅2
2
11

9.设D 是△ABC 的边BC 上的一个内点,AD 交△ABC 外接圆于X ,P 、Q 是X 分别到AB 和AC 的垂足,O 是直径为XD 的圆.证明:PQ 与⊙O 相切当且仅当
AC AB =.
10.若AB 是圆的弦,M 是AB 的中点,过M 任意作弦CD 和EF ,连DE CD ,分别交AB 于Y X ,,则MY MX =.
11.设H 为△ABC 的垂心,P 为该三角形外接圆上的一点,E 是高BH 的垂足,并设PAQB 与PARC 都是平行四边形,AQ 与BR 交于X .证明:EX ∥AP .
12.在△ABC 中,C ∠的平分线分别交AB 及三角形的外接圆于D 和K ,I 是内切圆圆心.证明:(1)CI
IK
ID
111=-;(2)
1=-
IK
ID ID
CI .。

相关文档
最新文档