点线面位置关系知识点小结(可编辑修改word版)

合集下载

(完整word版)空间点线面之间位置关系知识点总结,推荐文档

(完整word版)空间点线面之间位置关系知识点总结,推荐文档

高中空间点线面之间位置关系知识点总结第一章 空间几何体(一)空间几何体的结构特征(1)多面体——由若干个平面多边形围成的几何体.旋转体——把一个平面图形绕它所在平面内的一条定直线旋转形成的封闭几何体。

其中,这条定直线称为旋转体的轴。

(2)柱,锥,台,球的结构特征1.1棱柱——有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体叫做棱柱。

1.2圆柱——以矩形的一边所在的直线为旋转轴,其余各边旋转而形成的曲面所围成的几何体叫圆柱.2.1棱锥——有一个面是多边形,其余各面是有一个公共顶点的三角形,由这些面所围成的几何体叫做棱锥。

2.2圆锥——以直角三角形的一直角边所在的直线为旋转轴,其余各边旋转而形成的曲面所围成的几何体叫圆锥。

3.1棱台——用一个平行于底面的平面去截棱锥,我们把截面与底面之间的部分称为棱台. 3.2圆台——用平行于圆锥底面的平面去截圆锥,底面与截面之间的部分叫做圆台.4.1球——以半圆的直径所在直线为旋转轴,半圆旋转一周形成的旋转体叫做球体,简称球. (二)空间几何体的三视图与直观图1.投影:区分中心投影与平行投影。

平行投影分为正投影和斜投影。

2.三视图——正视图;侧视图;俯视图;是观察者从三个不同位置观察同一个空间几何体而画出的图形;画三视图的原则: 长对齐、高对齐、宽相等3.直观图:直观图通常是在平行投影下画出的空间图形。

4.斜二测法:在坐标系'''x o y 中画直观图时,已知图形中平行于坐标轴的线段保持平行性不变,平行于x 轴(或在x 轴上)的线段保持长度不变,平行于y 轴(或在y 轴上)的线段长度减半。

重点记忆:直观图面积=原图形面积 (三)空间几何体的表面积与体积 1、空间几何体的表面积①棱柱、棱锥的表面积: 各个面面积之和②圆柱的表面积 ③圆锥的表面积2S rl r ππ=+④圆台的表面积22Srl r Rl R ππππ=+++ ⑤球的表面积24S R π=⑥扇形的面积公式213602n R S lr π==扇形(其中l 表示弧长,r 表示半径) 2、空间几何体的体积①柱体的体积 V S h =⨯底 ②锥体的体积 13V S h =⨯底③台体的体积 1)3V S S S S h =++⨯下下上上( ④球体的体积343V R π=第二章 直线与平面的位置关系2.1空间点、直线、平面之间的位置关系2.1.11 平面含义:平面是无限延展的2 平面的画法及表示(1)平面的画法:水平放置的平面通常画成一个平行四边形,锐角画成450,且横边画成邻边的2倍长(如图)(2)平面通常用希腊字母α、β、γ等表示,如平面α、平面β等,也可以用表示平面的平行四边形的四个顶点或者相对的两个顶点的大写字母来表示,如平面AC 、平面ABCD 等。

(完整版)点、直线、平面之间的位置关系知识点总结,推荐文档

(完整版)点、直线、平面之间的位置关系知识点总结,推荐文档

点、直线、平面之间的位置关系一、线、面之间的平行、垂直关系的证明书中所涉及的定理和性质可分为以下三类:1、平行关系与平行关系互推;2、垂直关系与垂直关系互推;线面垂直判定定理线面垂直的定义两平面的法线垂直则两平面垂直面面垂直判定定理线面平行判定定理线面平行性质定理线面平行转化面面平行判定定理面面平行性质定理3、平行关系与垂直关系互推。

以线或面为元素,互推的本质是以某一元素为中介,通过另外两元素与中介元素的垂直或平行关系,推导出该两元素的关系,总共有21种情况,能得出结论的有以下9种情况。

线线平行传递性:;b c c a b a //////⇒⎭⎬⎫面面平行传递性:;γαβγβα//////⇒⎭⎬⎫线面垂直、线面垂直线面平行:;⇒ααββα//a a a ⇒⎪⎭⎪⎬⎫⊄⊥⊥线面垂直线线平行(线面垂直性质定理):;⇒b a b a //⇒⎭⎬⎫⊥⊥αα线面垂直面面平行:;⇒βαβα//⇒⎭⎬⎫⊥⊥a a 线面垂直、面面平行线面垂直:;⇒βαβα⊥⇒⎭⎬⎫⊥a a //线线平行、线面垂直线面垂直:;⇒αα⊥⇒⎭⎬⎫⊥b a b a //线面垂直、线面平行面面垂直:。

⇒βααβ⊥⇒⎭⎬⎫⊥a a //备注:另外证明平行关系时可以从最基本的定义交点入手,证明垂直关系时可以从最基本的定义角度入手。

符号化语言一览表①线面平行;;;ααα////a a b b a ⇒⎪⎭⎪⎬⎫⊄⊂αββα////a a ⇒⎭⎬⎫⊂ααββα//a a a ⇒⎪⎭⎪⎬⎫⊄⊥⊥②线线平行:;;;;////a a a b b αβαβ⎫⎪⊂⇒⎬⎪=⎭ b a b a //⇒⎭⎬⎫⊥⊥αα////a a b b αβαγβγ⎫⎪=⇒⎬⎪=⎭b c c a b a //////⇒⎭⎬⎫③面面平行:;;;,////,//a b a b O a b αααβββ⊂⊂⎫⎪=⇒⎬⎪⎭βαβα//⇒⎭⎬⎫⊥⊥a a γαβγβα//////⇒⎭⎬⎫④线线垂直:;b a b a ⊥⇒⎭⎬⎫⊂⊥αα⑤线面垂直:;;,,a b a b O l l a l b ααα⊂⊂⎫⎪=⇒⊥⎬⎪⊥⊥⎭,l a a a l αβαββα⊥⎫⎪=⇒⊥⎬⎪⊂⊥⎭ ;;βαβα⊥⇒⎭⎬⎫⊥a a //αα⊥⇒⎭⎬⎫⊥b a b a //⑥面面垂直:二面角900; ;;βααβ⊥⇒⎭⎬⎫⊥⊂a a βααβ⊥⇒⎭⎬⎫⊥a a //二、立体几何中的重要方法1、求角:(步骤-------Ⅰ找或作角;Ⅱ求角)⑴异面直线所成角的求法:①平移法:平移直线,构造三角形;②补形法:补成正方体、平行六面体、长方体等,发现两条异面直线间的关系.注:还可用向量法,转化为两直线方向向量的夹角.⑵直线与平面所成的角:①直接法(利用线面角定义);②先求斜线上的点到平面距离h ,与斜线段长度作比,得sin ;③三线三角公式.θ12cos cos cos θθθ=注:还可用向量法,转化为直线的方向向量与平面法向量的夹角.⑶二面角的求法:①定义法:在二面角的棱上取一点(特殊点),作出平面角,再求解;②垂面法:作面与二面角的棱垂直; ③投影法(三垂线定理);④面积摄影法.注:对于没有给出棱的二面角,应先作出棱,然后再选用上述方法;还可用向量法,转化为两个班平面法向量的夹角.2、求距离:(步骤-------Ⅰ找或作垂线段;Ⅱ求距离)⑴两异面直线间的距离:一般先作出公垂线段,再进行计算;或转化为线面距离、点面距离;⑵点到直线的距离:一般用三垂线定理作出垂线段,再求解;⑶点到平面的距离:①垂面法:借助面面垂直的性质作垂线段(确定已知面的垂面是关键),再求解;②等体积法;还可用向量法:.||n d =3、证明平行、垂直的理论途径:①证明直线与直线的平行的思考途径:(1)转化为判定共面二直线无交点(定义);(2)转化为两直线同与第三条直线平行;(3)转化为线面平行;(4)转化为线面垂直;(5)转化为面面平行.②证明直线与平面的平行的思考途径:(1)转化为直线与平面无公共点(定义);(2)转化为线线平行;(3)转化为面面平行.③证明平面与平面平行的思考途径:(1)转化为判定两平面无公共点(定义);(2)转化为线面平行;(3)转化为线面垂直.④证明直线与直线的垂直的思考途径:(1)转化为相交垂直;(2)转化为线面垂直.⑤证明直线与平面垂直的思考途径:(1)转化为该直线与平面内任一直线垂直(定义);(2)转化为该直线与平面内相交的两条直线垂直;(3)转化为该直线与平面的一条垂线平行;(4)转化为该直线垂直于另一个平行平面;(5)转化为该直线与两个垂直平面交线垂直.⑥证明平面与平面的垂直的思考途径:(1)转化为判断二面角是直二面角;(2)转化为线面垂直.。

空间点线面之间位置关系知识点总结

空间点线面之间位置关系知识点总结

(3)直线在平面平行 —— 没有公共点
指出:直线与平面相交或平行的情况统称为直线在平面外,可用 a α来表示
L
p α

a
∩α =A
a
∥α
2.2. 直线、平面平行的判定及其性质
2.2.1 直线与平面平行的判定
1、直线与平面平行的判定定理:平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行。
高中空间点线面之间位置关系知识点总结
第一章 空间几何体
(一)空间几何体的结构特征
(1)多面体——由若干个平面多边形围成的几何体 .
旋转体——把一个平面图形绕它所在平面内的一条定直线旋转形成的封闭几何体。其中,这条定直线
称为旋转体的轴。
(2)柱,锥,台,球的结构特征
1.1 棱柱——有两个面互相平行, 其余各面都是四边形, 并且每相邻两个四边形的公共边都互相平行, 由这
2
当 D 2 E 2 4F 当 D2 E2 4F
0 时,方程表示一个点
D ,
E
.
22
0 时,方程无图形(称虚圆) .
注:(1 )方程 Ax 2 Bxy Cy 2 Dx Ey F 0 表示圆的充要条件是: B 0 且 A C 0 且 D 2 E 2 4 AF 0 .
a∥α a β a ∥b α∩β= b 作用:利用该定理可解决直线间的平行问题。 2、定理:如果两个平面同时与第三个平面相交,那么它们的交线平行。 符号表示: α∥β α∩γ= a a ∥b β∩γ= b
作用:可以由平面与平面平行得出直线与直线平行
2.3 直线、平面垂直的判定及其性质
2、判定定理:一条直线与一个平面内的两条相交直线都垂直,则该直线与此平面垂直。
共面直线

点线面间的位置关系知识点总结(含题)(

点线面间的位置关系知识点总结(含题)(

点线面间的位置关系知识点总结一、三个公理公理1如果一条直线上的两点在一个平面内,那么_________________________________________公理2:过________________________ 的三个点,有且只有一个平面公理3:如果两个不重合的平面有一个公共点,那么它们有且只有_____________________________二、空间两条直线间的位置关系分类为:______________ , ______________ ,_______________ ;其中__________ , _________ 合称为______________三、空间直线与平面间的位置关系分类为:__________________ ,____________ ,__________________ ;其中__________ , _________ 合称为______________四、空间平面与平面间的位置关系分类为:______________ ,当两个平面成90。

时,属于____________ 关系常用证明技巧一、线面平行列1 (2IH1年怀化楓蝌)如图所示*已知几0是单位止方WABCn-A^.C^的面A^BA和面』肮2>的中心*求证:卩总〃平面ncr^n.练习1. 正方形ABCD与正方形ABEF所在平面相交于AB,在AE、BD上各有一点P、Q且AP = DQ. 求证:PQ//平面BCE.2・妇匿,四棱链/一乩噸一平面所裁*截面为平厅四边形吕他求证,m/zz面日捌3* (加10年彌考■陕丙雜)如图’在四棱饰P ABCD中.底血ABCD^矩形「只4 丄平SLUJC/h .lP-.Ltf, BP-IiC-1, E, F分别&l f B T PC 的中点.门)证明* EF//平血知";卩)求二棱锥E—.【号「的休枳匚(2)1/3二、线面垂直1、(2006年北京卷)如图,在底面为平行四边形的四棱锥P ABCD中,AB 点E是PD的中点•(I)求证:AC PB ; (n)求证:PB〃平面AEC ;2、( 2006年浙江卷)如图,在四棱锥P-ABCD中,底面为直角梯形BAD=90 ° ,PA丄底面ABCD,且PA= AD=AB=2BC,M、N 分别为PC、PB 求证:PB丄DM;3、(2006年福建卷)如图,四面体ABCD中,0、E分别是BD、BC的中点,CA(I)求证:AO 平面BCD;AC , PA 平面ABCD,且PA AB , CB CD BD 2, AB AD . 2.,AD // BC, /的中点•ADOE4、( 2006年重庆卷)如图,在四棱锥P—ABCD中,PA 底面ABCD, PC、DAB 为直角,AB II CD,AD=CD=24B,E、F 分另U为CD的中点.(I)试证:CD 平面BEF;5、(全国H ?理?9题)如图,在四棱锥SCS-ABCD中,底面ABCD为正方形,侧棱SD丄底面ABCD , E、F分别是AB、的中点。

(完整word版)点线面之间的位置关系的知识点总结,推荐文档

(完整word版)点线面之间的位置关系的知识点总结,推荐文档

高中空间点线面之间位置关系知识点总结第二章 直线与平面的位置关系2.1空间点、直线、平面之间的位置关系2.1.11 平面含义:平面是无限延展的2 平面的画法及表示(1)平面的画法:水平放置的平面通常画成一个平行四边形,锐角画成450,且横边画成邻边的2倍长(如图)(2)平面通常用希腊字母α、β、γ等表示,如平面α、平面β等,也可以用表示平面的平行四边形的四个顶点或者相对的两个顶点的大写字母来表示,如平面AC 、平面ABCD 等。

3 三个公理:(1)公理1:如果一条直线上的两点在一个平面内,那么这条直线在此平面内 符号表示为A ∈LB ∈L => L α A ∈α B ∈α公理1作用:判断直线是否在平面内(2)公理2:过不在一条直线上的三点,有且只有一个平面。

符号表示为:A 、B 、C 三点不共线 => 有且只有一个平面α, 使A ∈α、B ∈α、C ∈α。

公理2作用:确定一个平面的依据。

(3)公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线。

符号表示为:P ∈α∩β =>α∩β=L ,且P ∈L 公理3作用:判定两个平面是否相交的依据2.1.2 空间中直线与直线之间的位置关系1 空间的两条直线有如下三种关系:相交直线:同一平面内,有且只有一个公共点;平行直线:同一平面内,没有公共点;异面直线: 不同在任何一个平面内,没有公共点同一条直线的两条直线互相平行。

符号表示为:设a 、b 、c 是三条直线 a ∥b 。

2 公理4:平行于 c ∥b强调:公理4实质上是说平行具有传递性,在平面、空间这个性质都适用。

公理4作用:判断空间两条直线平行的依据。

3 等角定理:空间中如果两个角的两边分别对应平行,那么这两个角相等或互补4 注意点:① a'与b'所成的角的大小只由a 、b 的相互位置来确定,与O 的选择无关,为简便,点O 一般取在两直线中的一条上; ② 两条异面直线所成的角θ∈(0, );③ 当两条异面直线所成的角是直角时,我们就说这两条异面直线互相垂直,记作a ⊥b ;④ 两条直线互相垂直,有共面垂直与异面垂直两种情形;D CBAα LA ·α C ·B·A · α P· αLβ 共面直线=>a ∥c2⑤计算中,通常把两条异面直线所成的角转化为两条相交直线所成的角。

点线面位置关系定理总结

点线面位置关系定理总结

培优辅导,陪你更优秀!
//a b //a b
1.线面平行判定定理:如果平面外一条直线和这个平面内的一条直线平行,那么这条直线和这个平面平行。

(简述为线线平行线面平行) 表述及图示
2.线面平行性质定理:如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线就和交线平行。

(简述为线面平行线线平行)
//a a b
α
β
αβ⊂⋂= 3.平面平行判定定理:如果一个平面内的两条相交直线都平行于另一个平面,那么这两个平面平行。

////a b a b a b P
β
β
αα
⊂⊂⋂=//αβ
4.平面平行性质定理:如果两个平行平面都和第三个平面相交,那么它们的交线平行
//a b
αβ
γαγβ⋂=⋂=
5.线面垂直的判定定理:一条直线与一个平面内的两条相交直线都垂直,那么这条直线就垂直于这个
平面。

a b
a c
b c A b c α
α
⊥⊥⋂=⊂⊂a α⊥
6.线面垂直性质定理:垂直于同一平面的两条直线平行。

a b α
α⊥⊥ 7.面面垂直判定定理:如果一个平面经过另一个平面的一条垂线,那么这两个平面互相垂直。

简述为“线面垂直,则面面垂直”。

a a αβ
⊂⊥αβ⊥ 8.面面垂直性质定理:如果两个平面互相垂直,那么在一个平面内垂直于它们交线的直线垂直于另一个平面。

l a a l αβ
αβα
⊥⋂=⊂⊥αβ⊥ //a b a b α
α⊄
⊂//a
α
//a
b。

空间点线面之间位置关系知识点总结

空间点线面之间位置关系知识点总结

高中空间点线面之间位置关系知识点总结第一章 空间几何体(一)空间几何体的结构特征(1)多面体——由若干个平面多边形围成的几何体.旋转体——把一个平面图形绕它所在平面内的一条定直线旋转形成的封闭几何体。

其中,这条定直线称为旋转体的轴。

(2)柱,锥,台,球的结构特征1.1棱柱——有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体叫做棱柱。

1.2圆柱——以矩形的一边所在的直线为旋转轴,其余各边旋转而形成的曲面所围成的几何体叫圆柱.2.1棱锥——有一个面是多边形,其余各面是有一个公共顶点的三角形,由这些面所围成的几何体叫做棱锥。

2.2圆锥——以直角三角形的一直角边所在的直线为旋转轴,其余各边旋转而形成的曲面所围成的几何体叫圆锥。

3.1棱台——用一个平行于底面的平面去截棱锥,我们把截面与底面之间的部分称为棱台. 3.2圆台——用平行于圆锥底面的平面去截圆锥,底面与截面之间的部分叫做圆台.4.1球——以半圆的直径所在直线为旋转轴,半圆旋转一周形成的旋转体叫做球体,简称球. (二)空间几何体的三视图与直观图1.投影:区分中心投影与平行投影。

平行投影分为正投影和斜投影。

2.三视图——正视图;侧视图;俯视图;是观察者从三个不同位置观察同一个空间几何体而画出的图形;画三视图的原则: 长对齐、高对齐、宽相等3.直观图:直观图通常是在平行投影下画出的空间图形。

4.斜二测法:在坐标系'''x o y 中画直观图时,已知图形中平行于坐标轴的线段保持平行性不变,平行于x 轴(或在x 轴上)的线段保持长度不变,平行于y 轴(或在y 轴上)的线段长度减半。

重点记忆:直观图面积=原图形面积 (三)空间几何体的表面积与体积 1、空间几何体的表面积①棱柱、棱锥的表面积: 各个面面积之和②圆柱的表面积 ③圆锥的表面积2S rl r ππ=+④圆台的表面积22Srl r Rl R ππππ=+++ ⑤球的表面积24S R π=⑥扇形的面积公式213602n R S lr π==扇形(其中l 表示弧长,r 表示半径) 2、空间几何体的体积①柱体的体积 V S h =⨯底 ②锥体的体积 13V S h =⨯底③台体的体积1)3V S S h =+⨯下上( ④球体的体积343V R π=第二章 直线与平面的位置关系2.1空间点、直线、平面之间的位置关系 2.1.11 平面含义:平面是无限延展的2 平面的画法及表示(1)平面的画法:水平放置的平面通常画成一个平行四边形,锐角画成450,且横边画成邻边的2倍长(如图)(2)平面通常用希腊字母α、β、γ等表示,如平面α、平面β等,也可以用表示平面的平行四边形的四个顶点或者相对的两个顶点的大写字母来表示,如平面AC 、平面ABCD 等。

高中数学空间点线面之间的位置关系的知识点总结(供参考)

高中数学空间点线面之间的位置关系的知识点总结(供参考)
符号表示:


a∩b = Pβ∥α
a∥α
b∥α
2、判断两平面平行的方法有三种:
(1)用定义;
(2)判定定理;
(3)垂直于同一条直线的两个平面平行。
2.2.3—
1、定理:一条直线与一个平面平行,则过这条直线的任一平面与此平面的交线与该直线平行。
简记为:线面平行则线线平行。
符号表示:
a∥α
aβa∥b
高中空间点线面之间位置关系知识点总结
第二章直线与平面的位置关系
2.1空间点、直线、平面之间的位置关系
2.1.1
1平面含义:平面是无限延展的
2平面的画法及表示
(1)平面的画法:水平放置的平面通常画成一个平行四边形,锐角画成450,且横边画成邻边的2倍长(如图)
(2)平面通常用希腊字母α、β、γ等表示,如平面α、平面β等,也可以用表示平面的平行四边形的四个顶点或者相对的两个顶点的大写字母来表示,如平面AC、平面ABCD等。
4注意点:
①a'与b'所成的角的大小只由a、b的相互位置来确定,与O的选择无关,为简便,点O一般取在两直线中的一条上;
②两条异面直线所成的角θ∈(0,);
③当两条异面直线所成的角是直角时,我们就说这两条异面直线互相垂直,记作a⊥b;
④两条直线互相垂直,有共面垂直与异面垂直两种情形;
⑤计算中,通常把两条异面直线所成的角转化为两条相交直线所成的角。
α∩β= b
作用:利用该定理可解决直线间的平行问题。
2、定理:如果两个平面同时与第三个平面相交,那么它们的交线平行。
符号表示:
α∥β
α∩γ= a a∥b
β∩γ= b
作用:可以由平面与平面平行得出直线与直线平行

点线面的位置关系知识点

点线面的位置关系知识点

点线面的位置关系知识点在几何学中,点、线和面是三个基本的几何概念,它们之间存在着一系列的位置关系。

这些位置关系的理解对于解决几何问题以及应用几何知识有着重要的意义。

本文将介绍点线面的位置关系的几个重要知识点。

一、点与直线的位置关系1. 在直线上:当一个点恰好位于一条直线上时,我们可以说这个点在直线上。

例如,点A在直线AB上。

2. 在直线的两侧:如果一个点既不在直线上,也不在直线的延长线上,我们可以说这个点在直线的两侧。

例如,点C在直线AB的两侧。

3. 在直线的延长线上:如果一个点不在直线上,但位于直线的延长线上,我们可以说这个点在直线的延长线上。

例如,点D在直线AB的延长线上。

4. 平行于直线:如果一条直线与给定直线没有任何交点,我们可以说这条直线平行于给定直线。

例如,直线CD平行于直线AB。

二、点与平面的位置关系1. 在平面上:当一个点位于一个平面内部时,我们可以说这个点在平面上。

例如,点A在平面P上。

2. 不在平面上:如果一个点既不在平面上,也不在平面的延长线上,我们可以说这个点不在平面上。

例如,点B不在平面P上。

3. 在平面的延长线上:如果一个点不在平面上,但位于平面的延长线上,我们可以说这个点在平面的延长线上。

例如,点C在平面P的延长线上。

4. 垂直于平面:如果一条直线与给定平面的任意一条线都垂直,我们可以说这条直线垂直于给定平面。

例如,直线EF垂直于平面P。

三、直线与平面的位置关系1. 相交于一点:当一条直线与平面有且仅有一个交点时,我们可以说这条直线与平面相交于一点。

例如,直线L与平面P相交于点A。

2. 平行于平面:如果一条直线与给定平面的任意一条线都平行,我们可以说这条直线平行于给定平面。

例如,直线M平行于平面P。

3. 包含于平面:当一条直线上的所有点都位于给定平面上时,我们可以说这条直线被包含于给定平面中。

例如,直线N被包含于平面P 中。

4. 相交于一条线:当一条直线与平面有无穷多个交点时,我们可以说这条直线与平面相交于一条线。

点线面关系知识总结

点线面关系知识总结

//a α//a b点线面位置关系总复习知识梳理一、直线与平面平行 1.判定方法(1)定义法:直线与平面无公共点。

(2)判定定理:(3)其他方法://a αββ⊂2.性质定理://a a bαβαβ⊂⋂=二、平面与平面平行 1.判定方法(1)定义法:两平面无公共点。

(2)判定定理:////a b a b a b Pββαα⊂⊂⋂= //αβ(3)其他方法:a a αβ⊥⊥ //αβ; ////a γβγ//αβ 2.性质定理://a bαβγαγβ⋂=⋂=三、直线与平面垂直(1)定义:如果一条直线与一个平面内的所有直线都垂直,则这条直线和这个平面垂直。

(2)判定方法 ① 用定义.//a b a b αα⊄⊂//a α//a b//a b ② 判定定理:a b a cb c A b c αα⊥⊥⋂=⊂⊂ a α⊥③ 推论://a a bα⊥ b α⊥ (3)性质 ①a b αα⊥⊂ a b ⊥ ②a b αα⊥⊥四、平面与平面垂直(1)定义:两个平面相交,如果它们所成的二面角是直线二面角,就说这两个平面互相垂直。

(2)判定定理a a αβ⊂⊥ αβ⊥ (3)性质①性质定理la a lαβαβα⊥⋂=⊂⊥ αβ⊥② l P P A A αβαβαβ⊥⋂=∈⊥垂足为 A l ∈④ l P PA αβαβαβ⊥⋂=∈⊥ PA α⊂“转化思想”面面平行 线面平行 线线平行 面面垂直 线面垂直 线线垂直线面平行证明题求证:空间四边形相邻两边中点的连线,平行于经过另外两边的平面。

已知:如图空间四边形ABCD 中,E 、F 分别是AB 、AD 的中点。

求证:EF∥平面BCD 证明:连结BD AE =EB⇒EF ∥BDAF =FD EF ⊄平面BCD ⇒EF ∥平面BCD BD ⊂平面BCD评析:要证EF ∥平面BCD ,关键是在平面BCD中找到和EF 平行的直线,将证明线面平行的问题转化为证明直线的平行如图,空间四边形ABCD 被一平面所截,截面EFGH 是一矩形。

点线面之间的位置关系的知识点总结

点线面之间的位置关系的知识点总结

高中空间点线面之间位置关系知识点总结第二章 直线与平面的位置关系2.1空间点、直线、平面之间的位置关系2.1.11 平面含义:平面是无限延展的2 平面的画法及表示(1)平面的画法:水平放置的平面通常画成一个平行四边形,锐角画成450,且横边画成邻边的2倍长(如图)(2)平面通常用希腊字母α、β、γ等表示,如平面α、平面β等,也可以用表示平面的平行四边形的四个顶点或者相对的两个顶点的大写字母来表示,如平面AC 、平面ABCD 等。

3 三个公理:(1)公理1:如果一条直线上的两点在一个平面内,那么这条直线在此平面内 符号表示为A ∈LB ∈L => L α A ∈α B ∈α公理1作用:判断直线是否在平面内(2)公理2:过不在一条直线上的三点,有且只有一个平面。

符号表示为:A 、B 、C 三点不共线 => 有且只有一个平面α, 使A ∈α、B ∈α、C ∈α。

公理2作用:确定一个平面的依据。

(3)公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线。

符号表示为:P ∈α∩β =>α∩β=L ,且P ∈L 公理3作用:判定两个平面是否相交的依据2.1.2 空间中直线与直线之间的位置关系1 空间的两条直线有如下三种关系:相交直线:同一平面内,有且只有一个公共点;平行直线:同一平面内,没有公共点;异面直线: 不同在任何一个平面内,没有公共点同一条直线的两条直线互相平行。

符号表示为:设a 、b 、c 是三条直线 a ∥b 。

2 公理4:平行于 c ∥b强调:公理4实质上是说平行具有传递性,在平面、空间这个性质都适用。

公理4作用:判断空间两条直线平行的依据。

3 等角定理:空间中如果两个角的两边分别对应平行,那么这两个角相等或互补4 注意点:① a'与b'所成的角的大小只由a 、b 的相互位置来确定,与O 的选择无关,为简便,点O 一般取在两直线中的一条上; ② 两条异面直线所成的角θ∈(0, );③ 当两条异面直线所成的角是直角时,我们就说这两条异面直线互相垂直,记作a ⊥b ; ④ 两条直线互相垂直,有共面垂直与异面垂直两种情形;D CBAα LA ·α C ·B·A · α P· αLβ 共面直线=>a ∥c2⑤计算中,通常把两条异面直线所成的角转化为两条相交直线所成的角。

点线面位置关系总结

点线面位置关系总结

点线面位置关系总结在几何学中,点、线和面是最基本的几何图形。

它们之间的位置关系非常重要,可以帮助我们更好地理解和描述空间中的对象。

本文将对点线面位置关系进行总结,并探讨其应用。

一、点与线的位置关系1. 点在直线上:当一个点位于某条直线上时,我们可以说该点在直线上。

一个直线可以有无限个点。

2. 点在线段的内部:如果一个点位于一个线段的两个端点之间,我们可以说该点在线段的内部。

一个线段上可以有无限个点。

3. 点在线段的延长线上:如果一个点位于一个线段的延长线上,我们可以说该点在线段的延长线上。

延长线上也可以有无限个点。

4. 点在线段的外部:如果一个点既不在线段上,也不在线段的延长线上,我们可以说该点在线段的外部。

5. 点垂直于线:当一个点与一条直线垂直相交时,我们可以说该点垂直于线。

此时,点到直线的距离是最短的。

6. 点平行于线:当一个点与一条直线平行时,我们可以说该点平行于线。

此时,点到直线的距离是不变的。

二、点与面的位置关系1. 点在平面上:当一个点位于一个平面上时,我们可以说该点在平面上。

一个平面可以有无限个点。

2. 点在平面内部:如果一个点位于一个平面的边界之内,我们可以说该点在平面的内部。

一个平面内部可以有无限多个点。

3. 点在平面外部:如果一个点不在平面上,也不在平面的边界之内,我们可以说该点在平面的外部。

三、线与面的位置关系1. 线在平面上:当一条直线完全位于一个平面上时,我们可以说该线在平面上。

一条直线可以有无限个点。

2. 线与平面相交:当一条直线与一个平面相交时,我们可以说该线与平面相交。

相交点有可能是一个点、一条线或者空集。

3. 线平行于平面:当一条直线与一个平面平行时,我们可以说该线平行于平面。

此时,线上的所有点到平面的距离是相等的。

4. 线垂直于平面:当一条直线与一个平面垂直相交时,我们可以说该线垂直于平面。

此时,线上的所有点到平面的距离是最短的。

四、面与面的位置关系1. 平行面:当两个平面之间的夹角为0度时,我们可以说这两个平面是平行的。

空间点线面之间位置关系知识点总结

空间点线面之间位置关系知识点总结
3.直观图:直观图通常是在平行投影下画出的空间图形。
4.斜二测法:在坐标系 中画直观图时,图形中平行于坐标轴的线段保持平行性不变,平行于x轴〔或在x轴上〕的线段保持长度不变,平行于y轴〔或在y轴上〕的线段长度减半。 重点记忆:直观图面积= 原图形面积
(三)空间几何体的外表积与体积
1、空间几何体的外表积
— 2.1.4 空间中直线与平面、平面与平面之间的位置关系
1、直线与平面有三种位置关系:
〔1〕直线在平面内 —— 有无数个公共点
〔2〕直线与平面相交 —— 有且只有一个公共点
〔3〕直线在平面平行 —— 没有公共点
指出:直线与平面相交或平行的情况统称为直线在平面外,可用a α来表示
a α a∩α=A a∥α
2 平面的画法及表示
〔1〕平面的画法:水平放置的平面通常画成一个平行四边形,锐角画成450,且横边画成邻边的2倍长〔如图〕
〔2〕平面通常用希腊字母α、β、γ等表示,如平面α、平面β等,也可以用表示平面的平行四边形的四个顶点或者相对的两个顶点的大写字母来表示,如平面AC、平面ABCD等。
3 三个公理:
如果直线L与平面α内的任意一条直线都垂直,我们就说直线L与平面α互相垂直,记作L⊥α,直线L叫做平面α的垂线,平面α叫做直线L的垂面。如图,直线与平面垂直时,它们唯一公共点P叫做垂足。
L
p
α
2、判定定理:一条直线与一个平面内的两条相交直线都垂直,那么该直线与此平面垂直。
注意点: a)定理中的“两条相交直线〞这一条件不可无视;
4 注意点:
① a'与b'所成的角的大小只由a、b的相互位置来确定,与O的选择无关,为简便,点O一般取在两直线中的一条上;
② 两条异面直线所成的角θ∈(0,);

根据点线面之间的相对位置关系的知识点总结

根据点线面之间的相对位置关系的知识点总结

根据点线面之间的相对位置关系的知识点
总结
在几何学中,点、线和面是最基本的几何概念。

它们之间的相对位置关系对于理解和解决几何问题至关重要。

以下是根据点线面之间的相对位置关系的一些重要知识点的总结:
1. 点和线的关系:
- 直线上的每个点都在同一条直线上;
- 直线外的点不存在于同一条直线上。

2. 点和平面的关系:
- 平面可以由无数个点组成;
- 平面上的每个点都在同一平面上;
- 平面外的点不存在于同一平面上。

3. 线和平面的关系:
- 一条直线在平面上可以有三种不同的相交情况:
- 直线和平面相交于一个点;
- 直线和平面平行,不相交;
- 直线包含在平面内。

4. 线和线的关系:
- 直线和直线可能相交于一个点,此时它们称为交线;
- 直线和直线可能平行,不相交。

5. 面和面的关系:
- 两个平面可以平行,不相交;
- 两个平面可以相交于一条直线;
- 两个平面可以相交于一点。

6. 直线、平面和点的关系:
- 一条直线可能与一个点相交;
- 一条直线可能与一个平面相交;
- 一个平面可能与一个点相交。

以上是根据点线面之间的相对位置关系的一些重要知识点的总结。

通过理解和掌握这些知识点,你将能够更好地解决几何问题和分析几何结构。

空间几何点线面知识点总结

空间几何点线面知识点总结

空间几何点线面知识点总结一、点1. 点的定义在空间中,点是最基本的几何要素,他是一个没有大小的有位置的对象。

点通常用大写字母来表示,比如A、B、C等。

2. 点到点的距离两个点之间的距离是两个点之间的直线段的长度,可以使用勾股定理求解。

3. 点的坐标在空间中,点的位置可以用坐标来表示。

常用的坐标系有直角坐标系、极坐标系和球坐标系。

比如直角坐标系中的点A(x,y,z),其中x、y、z分别表示点A在X轴、Y轴、Z轴上的投影。

4. 点的映射点在空间的位置可以通过平移、旋转、对称等方式进行映射,从而得到新的点。

5. 点的分类在空间中,点可以根据其位置的不同进行分类,包括同一平面上的点、在同一直线上的点、在同一球面上的点等。

二、线1. 线的定义在空间几何中,线是由一系列无限多的点组成的集合,它没有长度、宽度和厚度。

可以用一对点来确定一条直线的位置。

2. 直线的方程在直角坐标系中,可以用一元一次方程或者参数方程来表示一条直线。

3. 线段直线上的两个点之间的部分称为线段,线段有固定的长度。

4. 平行线和垂直线在空间几何中,平行线是指不相交的两条直线,它们的斜率相同;垂直线是指两条直线相交成直角的情况。

5. 直线的位置关系在空间中,两条直线可以有不同的位置关系,例如相交、平行、重合等。

三、面1. 面的定义在空间几何中,面是由一系列无限多的点组成的集合,它没有厚度,但有长度和宽度。

可以用三个点或者一对直线来确定一个平面。

2. 平面的方程在直角坐标系中,可以用一元一次方程或者参数方程来表示一个平面。

3. 平面的位置关系在空间中,两个平面可以有不同的位置关系,例如相交、平行、重合等。

4. 平面与直线的位置关系在空间中,一条直线可以与一个平面有不同的位置关系,包括相交、平行、垂直等。

5. 空间图形的投影在三维空间中,我们经常需要将三维图形的投影在二维平面上,这是空间几何中的重要概念。

四、空间几何的分析方法1. 空间几何的分析方法包括向量法、坐标法和解析几何等。

(完整)空间点线面之间位置关系知识点总结,推荐文档

(完整)空间点线面之间位置关系知识点总结,推荐文档

2.1.3 — 2.1.4 空间中直线与平面、平面与平面之间的位置关系
①柱体的体积 V S底 h
②锥体的体积
V
1 3 S底
h
③台体的体积
V 13(S上上 S S下下 S ) h
④球体的体积V 4 R3 3
1、直线与平面有三种位置关系: (1)直线在平面内 —— 有无数个公共点 (2)直线与平面相交 —— 有且只有一个公共点 (3)直线在平面平行 —— 没有公共点 指出:直线与平面相交或平行的情况统称为直线在平面外,可用 a
画三视图的原则: 长对齐、高对齐、宽相等
2.1.2 空间中直线与直线之间的位置关系 1 空间的两条直线有如下三种关系:
相交直线:同一平面内,有且只有一个公共点;
β
P
α ·L
3.直观图:直观图通常是在平行投影下画出的空间图形。
共面直 平行直线:同一平面内,没有公共点;
4.斜二测法:在坐标系 x 'o ' y ' 中画直观图时,已知图形中平行于坐标轴的线段保持平行性不变,平行于 x
的四个顶点或者相对的两个顶点的大写字母来表示,如平面 AC、平面 ABCD 等。
(1)多面体——由若干个平面多边形围成的几何体.
3 三个公理:
旋转体——把一个平面图形绕它所在平面内的一条定直线旋转形成的封闭几何体。其中,这条定直 (1)公理 1:如果一条直线上的两点在一个平面内,那么这条直线在此平面内
(1)若 A1B2 A2B1 0 ,两直线相交;
(2)若 A1B2 A2B1 0 ,两直线平行或重合;
(3)若 A1A2 B1B2 0 ,若两直线垂直。
10.点 (x1, y1)和(的x2中, y点2 ) 坐标是

空间点线面之间位置关系知识点总结(新)

空间点线面之间位置关系知识点总结(新)

所谓的光辉岁月,并不是以后,闪耀的日子,而是无人问津时,你对梦想的偏执。

高中空间点线面之间位置关系知识点总结第一章 空间几何体(一)空间几何体的结构特征(1)多面体——由若干个平面多边形围成的几何体.旋转体——把一个平面图形绕它所在平面内的一条定直线旋转形成的封闭几何体。

其中,这条定直线称为旋转体的轴。

(2)柱,锥,台,球的结构特征1.1棱柱——有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体叫做棱柱。

1.2圆柱——以矩形的一边所在的直线为旋转轴,其余各边旋转而形成的曲面所围成的几何体叫圆柱.2.1棱锥——有一个面是多边形,其余各面是有一个公共顶点的三角形,由这些面所围成的几何体叫做棱锥。

2.2圆锥——以直角三角形的一直角边所在的直线为旋转轴,其余各边旋转而形成的曲面所围成的几何体叫圆锥。

3.1棱台——用一个平行于底面的平面去截棱锥,我们把截面与底面之间的部分称为棱台. 3.2圆台——用平行于圆锥底面的平面去截圆锥,底面与截面之间的部分叫做圆台.4.1球——以半圆的直径所在直线为旋转轴,半圆旋转一周形成的旋转体叫做球体,简称球. (二)空间几何体的三视图与直观图1.投影:区分中心投影与平行投影。

平行投影分为正投影和斜投影。

2.三视图——正视图;侧视图;俯视图;是观察者从三个不同位置观察同一个空间几何体而画出的图形;画三视图的原则: 长对齐、高对齐、宽相等3.直观图:直观图通常是在平行投影下画出的空间图形。

4.斜二测法:在坐标系'''x o y 中画直观图时,已知图形中平行于坐标轴的线段保持平行性不变,平行于x 轴(或在x 轴上)的线段保持长度不变,平行于y 轴(或在y 轴上)的线段长度减半。

重点记忆:直观图面积=原图形面积 (三)空间几何体的表面积与体积 1、空间几何体的表面积①棱柱、棱锥的表面积: 各个面面积之和②圆柱的表面积 ③圆锥的表面积2S rl r ππ=+④圆台的表面积22S rl r Rl R ππππ=+++ ⑤球的表面积24S R π=⑥扇形的面积公式213602n R S lr π==扇形(其中l 表示弧长,r 表示半径) 2、空间几何体的体积①柱体的体积 V S h =⨯底 ②锥体的体积 13V S h =⨯底③台体的体积 1)3V S S S S h =++⨯下下上上( ④球体的体积343V R π=第二章 直线与平面的位置关系2.1空间点、直线、平面之间的位置关系2.1.11 平面含义:平面是无限延展的2 平面的画法及表示(1)平面的画法:水平放置的平面通常画成一个平行四边形,锐角画成450,且横边画成邻边的2倍长(如图)(2)平面通常用希腊字母α、β、γ等表示,如平面α、平面β等,也可以用表示平面的平行四边形的四个顶点或者相对的两个顶点的大写字母来表示,如平面AC 、平面ABCD 等。

点线面位置关系学习知识点梳理及经典例题带解析

点线面位置关系学习知识点梳理及经典例题带解析

【知识梳理】( 1)四个公义公义 1:假如一条直线上的两点在一个平面内,那么这条直线在此平面内。

符号语言: A l , B l ,且 A, B l。

公义 2:过不在一条直线上的三点,有且只有一个平面。

三个推论:①经过一条直线和这条直线外一点,有且只有一个平面② 经过两条订交直线,有且只有一个平面③ 经过两条平行直线,有且只有一个平面公义它给出了确立一个平面的依照。

3:假如两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线(两个平面的交线)。

符号语言:P , 且 P l , P l 。

公义 4:(平行线的传达性)平行与同向来线的两条直线相互平行。

符号语言: a // l ,且 b // l a // b 。

( 2)空间中直线与直线之间的地点关系1.观点异面直线及夹角:把不在任何一个平面内的两条直线叫做异面直线。

已知两条异面直线a, b ,经过空间随意一点O 作直线a // a,b // b ,我们把 a 与 b 所成的角(或直角)叫异面直线 a,b 所成的夹角。

(易知:夹角范围0 90 )定理:空间中假如一个角的两边分别与另一个角的两边分别平行,那么这两个角相等或互补。

(注意:会画两个角互补的图形)共面直线订交直线:同一平面内,有且只有一个公共点;平行直线:同一平面内,没有公共点;2. 地点关系:异面直线:不一样在任何一个平面内,没有公共点( 3)空间中直线与平面之间的地点关系直线在平面内( l )有无数个公共点直线与平面的地点关系有三种:直线与平面订交(l A)有且只有一个公共点直线在平面外直线与平面平行(l / / )没有公共点( 4)空间中平面与平面之间的地点关系两个平面平行(/ / )没有公共点平面与平面之间的地点关系有两种:l)有一条公共直线两个平面订交(直线、平面平行的判断及其性质1.内容概括总结( 1)四个定理定理定理内容直线与平面平面外的一条直线与平面内的一条直线平行,则该直平行的判断线与此平面平行平面与平面一个平面内的两条订交直线与另一个平面平行,则这平行的判断两个平面平行一条直线与一个平面平行,符号表示a, b ,且 a // b a//a,b,a b P, a //, b ////剖析解决问题的常用方法在已知平面内“找出”一条直线与已知直线平行便可以判断直线与平面平行。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

点线面位置关系知识点小结
a
α
α
考纲要求
了解空两条直线的位置关系,掌握两条直线平行与垂直的判定定理和性质定理,掌握两条直线所成的角和距离的概念
了解空间直线和平面的位置关系,掌握直线和平面平行的判定定理 和性质定理,理解直线和平面垂直的判定定理和性质定理,掌握斜线 在平面上的射影、直线和平面所成的角、直线和平面的距离的概念, 了解三垂线定理及其逆定理
了解平面与平面的位置关系,掌握两个平面平行的判定定理和性质定理。

掌握二面角、二面角的平面角、两个平面间的距离的概念,掌握两个平面垂直的判定定理和性质定理
(1) 空间中直线与平面、平面与平面之间的位置关系
a
a ⊂, a
= A , a //
a
α
A
a
⎬ ⎭
(2) 直线与平面平行判定定理:平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行。

简记为:线线平行,则线面平行。

a α
符号表示:
b β => a∥α
a∥b
两个平面平行的判定定理:一个平面内的两条交直线与另一个平面平行,则这两个平面平行。

符号表示:
a β
b β a∩b = a∥ α b∥α0
β∥α
(3) 直线与平面、平面与平面平行性质
〖直线与平面平行的性质定理〗
一条直线与一个平面平行,则过这条直线的任一平面与此平面的交线与该直线平行.
a //
a ⊂
⎫ ⎪
⇒ a // b
= b ⎪
平面与平面平行的性质定理:当两个平行平面和第三个平面都相交时,两条交线平行。

简言之,“面面平行,则线线平行.” 用符号语言表示性质定理:
/ /
}
⇒ a / /b
α b
P ⋂= a ,⋂= b

(4) 直线与平面垂直、平面与平面垂直的判定
直线和平面垂直的判定定理:
一条直线与一个平面内的两条相交直线都垂直,则该直线与此平面垂直. 符号表示:
m ⊂, n ⊂⎫
m n = P l ⊥ m , l ⊥ n ⎪
⇒ l ⊥


二面角的定义: 从一条直线出发的两个半平面所组成的图形叫做二面角.这条直线叫做二面角的棱,这两个半平面叫做二面角的面.
二面角的平面角
平面与平面垂直的定义
一般地,两个平面相交,如果它们所成的二面角是直二面角,就说这两个平面互相垂 直
.
l
直线与直线平行
直线与平面平行
平面与平面平行
直线与直线垂直
直线与平面垂直
(5) 直线与平面垂直、平面与平面垂直的性质
垂直于同一个平面的两条直线平行. 符号语言:
a ⊥,
b ⊥⇒ a / /b
平面与平面垂直的性质定理
两个平面垂直,则一个平面内垂直于交线的直线与另一个平面垂直. 符号表示:
α⊥β ⎫ α∩β= CD ⎪ AB α ⎪ ⊥β
AB ⊥ C D ⇒ AB


AB ∩CD= B ⎭
本章小结
1、刻画平面的三个公理是立体几何公理体系的基石,是研究空间图形问题,进行逻辑推理的基础。

公理 1——判定直线是否在平面内的依据; 公理 2——提供确定平面最基本的依据; 公理 3——判定两个平面交线位置的依据; 公理 4——判定空间直线之间平行的依据。

平面与平面垂直
2、空间问题解决的重要思想方法:化空间问题为平面问题;
3、空间平行、垂直之间的转化与联系:
4、观察和推理是认识世界的两种重要手段,两者相辅相成,缺一不可。

相关文档
最新文档