《3.1 不等关系与不等式》 教学案 2-公开课-优质课(人教A版必修五精品)

合集下载

高二人教A版必修5系列教案:3.1不等关系与不等式2

高二人教A版必修5系列教案:3.1不等关系与不等式2

第一课时 3.1 不等关系与不等式(一)教学要求:了解现实世界和日常生活中存在着的不等关系;会从实际问题中找出不等关系,并能列出不等式与不等式组.教学重点:从实际问题中找出不等关系.教学难点:正确理解现实生活中存在的不等关系.教学过程:一、复习准备:1、提问:你能回顾一下以前所学的不等关系吗?2、讨论:除了书上列举的现实生活中的不等关系,你还能列举出你周围日常生活中的不等关系吗?3、用不等式表示,某地规定本地最底生活保障金不底于300元;二、讲授新课:1、教学用不等式表示不等关系① 在现实生活中,存在着许许多多的不等关系,在数学中,我们用不等式来表示这样的不等关系.② 举例:例如:限速40km/h 的路标,指示司机在前方路段行驶时,应使汽车的速度v 不超过40km/h ,写成不等式就是v ≤40.④ 实数的运算性质与大小顺序之间的关系对于任意两个实数a,b,如果a>b,那么a-b 是正数;如a<b,那么a-b 是负数;如果a-b 等于0.它们的逆命题也正确.即(1)0;(2)0;(3)0a b a b a b a b a b a b >⇔->=⇔-=<⇔-<2、教学例题:①出示例1:日常生活中,在一杯含有a 克糖的b 克糖水中,再加入m 克糖,则这杯糖水变甜了,请根据这一事实提炼出一道不等式。

(浓度=溶质溶液) ②出示例2:某种杂志以每本2.5元的价格销售,可以售出8万本。

据市场调查,若单价每提高0.1元,销量就相应地减少2000本。

若把提价后杂志的定价设为x 元,怎样用不等式表示销售的总收入还不底于20万元呢?(教师示范 → 学生板演 → 小结)3、小结:文字语言与数学语言之间的转换,实数的运算性质与大小顺序之间的关系.三、巩固练习:1.某电脑拥护计划使用不超过500元的资金购买单价分别为60元、70元的单片软件和盒装磁盘,根据需要至少要买3片和2盒,请将购买软件和磁盘所满足的不等关系用不等式表示出来。

高中数学 3.1不等关系与不等式(2)教案 新人教A版必修5

高中数学 3.1不等关系与不等式(2)教案 新人教A版必修5

河北省石家庄市第一中学高中数学 3.1不等关系与不等式(2)教案 新人教A 版必修5教学目标:1.知识与技能:掌握不等式的基本性质,会用不等式的性质证明简单不等式,掌握比较大小的方法.2.过程与方法:通过解决具体问题,学会依据具体问题的实际背景分析问题、解决问题的方法.3.情感、态度与价值观:通过解决具体问题,体会数学在生活中的重要作用,培养严谨的思维习惯.重 点:不等式的概念和比较大小的方法.难 点:比较大小的方法.教学过程:一、不等式的概念1.同向不等式、异向不等式的概念:同向不等式:如:12+>+a a 与32>;45<与7213-<+x x .异向不等式:如:332->+a a 与6213+<+x x .2.数运算性质与大小顺序之间的关系:b a b a >⇔>-0;b a b a =⇔=-0;b a b a <⇔<-0.二、判断实数大小的方法:1.差比法:例1.比较522+b a 与a a ab 422--的大小; 解:()()222524a b ab a a +---()()2222144a b ab a a =-++++ ()()02122≥++-=a ab . 其中等号当且仅当1,2ab a ==-,即,2-=a 21-=b 时成立. 例2.设R c b a ∈,,,比较222c b a ++与ca bc ab ++的大小.方法1:222c b a ++)(ca bc ab ++-0])()()[(21222≥-+-+-=a c c b b a . 方法2:(主元法)bcc b a c b a ca bc ab c b a -+++-=++-++222222)()(04)(3)2(22≥-++-=c b c b a .(也可以证明判别式不大于零). 例3.已知a 是实数,试比较11a-与1a +的大小. 解:∵ 11a --(1)a +21a a=- ∴ 当0a =时,11a=-(1)a +; 当1a <且0a ≠时,11a >-(1)a +;当1a >时,11a<-(1)a +. 练习:比较522+b a 与a a ab 422--的大小.解:()()()()4412425222222++++-=---+a a ab b a a a ab b a ()()02122≥++-=a ab . 其中等号当且仅当2,1==a ab 时成立.即,2-=a 21-=b . 小结:①作差;②变形;③判断差的符号(与两个实数本身的符号无关).2.商比法:例4.设0>>b a ,试比较2222ba b a +-与b a b a +-的大小. 解:.0,0>-∴>>b a b a 又222222222222)(ba b ab a b a b a ba b a b a b a +++=++=+-+-. 022222>+>++b a b ab a ,∴ 上式大于1,∴ 2222ba b a +->b a b a +-. 小结:对任意两个正实数a 、b ,若1>b a ,则a b >;若1=b a ,则a b =;若1<ba ,则ab <;反之亦成立.练习:若0>>b a ,比较b a b a 与a b b a 的大小. 解法一:b a b a b aa b -=()b b a b a b a b a b --=-∵ 0>>b a ,∴ 0,0b b a b >>,0,a b a b a b a b --->>. ∴ a b b a a ba b <. 解法二:b a b a a b b a b a a b b a ba b a -==)()()(. 0>>b a ,1,0a a b b∴>->. 根据函数(1)x y a a =>在R上是增函数,则1)()(0=>-ba b ab a . ∴1>a b ba ba b a 且0>a b b a ,则b a b a <a b b a . 例5.设01x <<,0a >且1a ≠,比较)1(log x a -与)1(log x a +的大小.解法一:110,110,102<-<<-<∴<<x x x . xx x x x x x x x a a +--=--=-=+-∴+++11log )1(log )1(log )1(log )1(log 2)1()1()1( 2(1)1log (1)1x x +=-->. )1(log )1(log x x a a +>-∴. 解法二:lg(1)lg(1)log (1)log (1)lg lg a a x x x x a a-+--+=-[]11lg(1)lg(1)lg(1)lg(1)lg lg x x x x a a=⎡--+⎤=---+⎣⎦ 2l g (1)0lg x a-=-> )1(log )1(log x x a a +>-∴.说明:(1)用求差比较结果时,通常是做因式分解,利用各因式的符号判断,或是配方利用非负数的性质进行判断.(2)用求商比较结果时应注意与1的大小时,通常不等式两边是以积商幂的形式出现,求商时应注意分母必须大于零,且注意研究比值特征,利用函数性质来判断.三、作业:。

高中数学3.1不等关系与不等式教案新人教A版必修5

高中数学3.1不等关系与不等式教案新人教A版必修5

3.1 不等关系与不等式(第一课时)【教课目的】1. 经过详细情境让学生感觉和体验现实世界和平时生活中存在着大批的不等关系,鼓舞学生用数学看法进行察看、概括、抽象,使学生感觉数学、走进数学、改变学生的数学学习态度。

2.成立不等看法,并能用不等式或不等式组表示不等关系。

3.认识不等式或不等式组的实质背景。

4.能用不等式或不等式组解决简单的实质问题。

【要点难点】要点 :1. 经过详细的问题情形,让学生领会不等量关系存在的广泛性及研究的必需性。

2.用不等式或不等式组表示实质问题中的不等关系,并用不等式或不等式组研究含有简单的不等关系的问题。

3.理解不等式或不等式组关于刻画不等关系的意义和价值。

难点 :1.用不等式或不等式组正确地表示不等关系。

2.用不等式或不等式组解决简单的含有不等关系的实质问题。

【方法手段】1.采纳研究法,依据阅读、思虑、沟通、剖析,抽象概括出数学模型,从详细到抽象再从抽象到详细的方法进行启迪式教课。

2.教师供给问题、素材,并实时点拨,发挥老师的主导作用和学生的主体作用。

3.设计教典型的现实问题,激发学生的学习兴趣和踊跃性。

【教课过程】教学教师活动学生活动设计企图环节导平时生活中,同学们发现了哪些实例 1. 某天的天气预告报导,最指引学生想生入数目关系。

你能举出一些例子高气温 35℃,最低气温 29℃。

活中的例子和新吗?实例 2. 若一个数是非负数,则这学过的数学中课个数大于或等于零。

的例子。

在老师实例 3. 两点之间线段最短。

的指引下,学生实例 4. 三角形两边之和大于第一定会迫不及三边,两边之差小于第三边。

待的能说出很多个例子来。

即活跃了讲堂气氛,又激发了学生学习数学的兴趣。

推同学们所举的这些例子联系了同学们仔细观看显示屏幕上老让学生们边看进现实生活,又考虑到数学上常有师所举的例子。

边思虑:生活中新的数目关系,特别好。

并且大家有很多的事情课已经考虑到本节课的标题《不等的描绘能够采关系与不等式》,所举的实例都用不等的数目是反应不等量的关系。

人教A版高中数学必修5《三章 不等式 3.1 不等关系与不等式》优质课教案_11

人教A版高中数学必修5《三章 不等式  3.1 不等关系与不等式》优质课教案_11

不等式的基本性质.一、教学背景分析1.教学内容分析不等式是初中代数的重要内容之一,这是继方程后的又一种代数形式,继承了方程的有关思想,并实现了数形结合的思想,是初中数学教学的重点和难点.而不等式的性质是本章的重点内容之一,是在学生学习了数轴、等式的基本性质、不等式的概念的基础上进行的,是不等式变形的依据,也是学习一元二次方程、函数、高中不等式等知识的基础,是学生后继学习的重要基础和必备技能.2.学生情况分析我所任教的教学班的学生活泼好动,对学习充满兴趣,有一定的合作与探究意识,但基本功不扎实,缺乏毅力和恒心,应多给以鼓励;在知识方面已经学习了有理数大小的比较,等式的基本性质,有一定的认知基础,这些都为自主探究不等式的性质提供了条件.二、教学目标及重难点设计通过等式的性质,探索不等式的性质,初步体会“类比”的数学思想;掌握不等式的基本性质,并会运用不等式的基本性质将不等式变形,发展符号表达能力、代数变形能力;通过观察、猜想、验证、归纳等数学活动,经历从特殊到一般、由具体到抽象的认知过程,感受数学思考过程的条理性,发展思维能力和语言表达能力.重点:不等式的基本性质的应用.难点:不等式的基本性质的灵活应用.三、教学过程与教学资源设计1.教法分析基于“创造性地使用教材”和“真正地以学生为本”的教学理念,我将教材内容沿两条主线展开.第一条主线是探究性质,设计4组活动,分别是:自主探索性质→类比猜想性质→归纳得出性质→比较异同.第二条主线是应用性质,设计(三道例题)和3道巩固性变式训练.2.学法分析本节课在学法上突出学生的“探索发现”,通过观察、类比、猜想、验证等一系列探究活动,积累数学的探究方法和获得新知的经验.3.教学手段及媒体的选用在教学过程中,适时提出问题,引发学生思考.并借助多媒体辅助教学,增强图形的动感效应,增强教学的直观性和实效性.4.教学过程(略)四、学习效果评价设计1.学生在本节课的学习中,能够积极主动的参与学习活动,乐于与他人合作交流,尝试运用类比的方法探索不等式的基本性质,并能够用文字语言和符号语言描述性质;2.在应用性质解决问题的过程中,能够准确的运用性质进行推理;3.在畅谈收获中,能够说出收获和体会,建立学好数学的自信.五、教学设计特色总的来说,本节课呈现出以下三个特点:(1)以学生活动思索为主线——使学生主动建构.。

人教A版高中数学必修5教案3.1不等关系与不等式(2)

人教A版高中数学必修5教案3.1不等关系与不等式(2)
例1:已知 求证:
例2:如果30<x<42,16<y<24,求x+y,x-2y及 的取值范围.
∵30<x<42,16<y<24∴-48<-2y<-32,
∴30+16<x+y<42+24即46<x+y<66;
∴30-48<x-2y<42-32即-18<x-2y<10;
例3.已知 ,求 的取值范围。
(三)随堂练习1、教材P74面第3题
A. B. C. D.
6. ,则 的取值范围是(B)
A. B.
C. D.
(四)小结:不等式的性质及其证明,利用不等式的基本性质证明不等式。
(五)作业:
板书设计:
教学后记:
2、回答下列问题:
(1)如果a>b,c>d,是否可以推出ac>bd?举例说明;
(2)如果a>b,c<d,且c≠0,d≠0,是否可以推出 ?举例说明.
3.若 ,则下列不等式总成立的是(C)
A. B。 C。 D。
4.有以下四个条件: (3) ;(4)
其中能使 成立的有3个
5.若a、b、c ,a>b,则下列不等式成立的是(C)
(1)若a>b,则a+c>b+c,a-c>b-c;
(2)若a>b,c>0,则ac>bc, > ;
(3)若a>b,c<0,则ac<bc, < ..
(二)新授
常用的不等式的基本性质
(1) (对称性)(2) (传递性)
(3) (可加性)
(4) ; (可乘性)
(5) (同向不等式的可乘性)
(6) (可乘方性、们学过的不等式的基本性质是什么?
基本性质1不等式两边都加上(或减去)同一个数或同一个整式,不等号的方向不变.
基本性质2不等式两边都乘(或除以)同一个正数,不等号的方向不变.

人教A版高中数学必修5《三章 不等式 3.1 不等关系与不等式》优质课教案_1

人教A版高中数学必修5《三章 不等式  3.1 不等关系与不等式》优质课教案_1
重点:学习不等式的8条基本性质,从直观到抽象,从证明到探究。
难点:综合利用不等式的性质进行不等式的证明及取值范围的讨论。
四、教学策略选择与设计
讲解和探究相结合,个人探索和小组讨论相结合,直观和抽象相结合。在不等式的性质教学中,学生需要在直观上理解这些不等式的性质(主要是针对正数),然后再突破正数的限制,抽象的思考不等式的建立,这时一切推理都要建立在严格的逻辑基础上。
二、学习者特征分析
1、学生在第一课时已经基本了解了什么是不等式,以及不等式的基本证明方法---作差法,具备了进一步学习不等式性质的能力。
2、学生基本具备了从直观到简单抽象的能力。
3、学生对于基本函数有着充分的理解,可以利用函数性质和图像辅助不等式问题的思考。
4、实验班的学生有着较强的探究精神,需要在教学过程中留白,给学生课堂发挥和课后思考的空间。
(教学流程图)
引入—>认识深化性质讲解辨析—>简单证明取值范围讨论—>能力提升—>小结
七、教学评价设计
八、帮助和总结
利用不等式进行取值范围的讨论(加减和乘除分别设计了两个系列的问题)
问题1和2都是比较简单的,几个变式进行升华。老师需要及时的提问,让学生注意到问题的特征。比如提问“这两个问题有什么区别”
在充分思考的基础上进行演算和答题,并且讲清楚自己的方法。
这个部分的设计可以看成是不等式性质的应用,因为有具体数字,所以会更容易处理。加减法中特别引入了一个对比性问题,引发思考,与下一个阶段的线性规划问题衔接。乘除法中特别引入了负的范围,需要学生综合利用性质和进行系统化思考。在这个过程中,学生进一步强化了对不等式性质的认识。
三、教学目标
以不等式的性质探究和应用为载体,培养学生的语言概括、数学抽象和逻辑推理能力。并且:

高中数学 第三章 不等式 3.1 不等关系与不等式(2)教案 新人教A版必修5(2021年整理)

高中数学 第三章 不等式 3.1 不等关系与不等式(2)教案 新人教A版必修5(2021年整理)

安徽省长丰县高中数学第三章不等式3.1 不等关系与不等式(2)教案新人教A版必修5编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(安徽省长丰县高中数学第三章不等式3.1 不等关系与不等式(2)教案新人教A版必修5)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为安徽省长丰县高中数学第三章不等式3.1 不等关系与不等式(2)教案新人教A版必修5的全部内容。

3。

1。

2 不等关系与不等式(一)一、知识与技能1.利用数轴,数形结合回忆实数的基本理论,并能用实数的基本理论来比较两个代数式的大小与用实数的基本理论来证明不等式的一些性质;2.通过回忆与复习学生所熟悉的等式性质类比得出不等的一些基本性质;3.在了解不等式一些基本性质的基础之上能利用它们来证明一些简单的不等式.二、过程与方法1.采用探究法,按照联想、类比、思考、交流、逻辑分析、抽象应用的方法进行启发式教学;2。

教师提供问题、素材,并及时点拨,发挥老师的主导作用和学生的主体作用;3.设计较典型的具有挑战性的问题,激发学生去积极思考,从而培养他们的数学学习兴趣。

三、情感态度与价值观1。

通过具体问题的解决,让学生去感受、体验现实世界和日常生活中存在着大量的不等量关系并需要从理性的角度去思考,鼓励学生用数学观点进行类比、归纳、抽象,使学生感受数学、走进数学、培养学生严谨的数学学习习惯和良好的思维习惯;2.学习过程中,通过对问题的探究思考,广泛参与,培养学生严谨的思维习惯,主动、积极的学习品质,从而提高学习质量;3.通过对富有挑战性问题的解决,激发学生顽强的探究精神和严肃认真的科学态度,同时去感受数学的应用性,体会数学的奥秘、数学的简洁美、数学推理的严谨美,从而激发学生的学习兴趣。

人教A版高中数学必修五第三章第一节《3.1不等关系与不等式》(第一课时)教学设计

人教A版高中数学必修五第三章第一节《3.1不等关系与不等式》(第一课时)教学设计

教学设计:人教A版高中数学必修五第三章第一节《3.1不等关系与不等式》(第一课时)【教学目标】一知识技能1通过具体问题情境,感受到现实世界和日常生活中存在着大量的不等关系.2会用不等式(组)表示实际问题中的不等关系.二过程与方法通过大量的现实世界和日常生活中例子,使学生感受到不等关系确实处处存在:同时也让学生去认真思考如何用不等式表示现实中的不等关系.三情感、态度与价值观1培养学生数形结合的思想:2培养学生严谨科学的态度:3培育学生的爱国情感和创新意识:4在参与观察、实验、猜想、证明等活动中发展演绎推理能力,培养学生观察问题、提出问题、分析问题、解决问题的科学探究能力.【教学重点】用不等式(组)表示实际问题中的不等关系,并用不等式(组)研究含有不等关系的问题.理解不等式(组)对于刻画不等关系的意义和价值.【教学难点】用不等式(组)正确表示出不等关系.【教学方法】通过让学生观察、思考、交流、讨论、发现现实世界和日常生活中存在着大量的不等关系.【教学手段】多媒体辅助教学.【教学过程】一创设情境,导入课题课前循环播放一组庐山照片,启发学生想到了苏轼的诗:“横看成岭侧成峰,远近高低各不同”.二新授过程,形成认识(一)不等关系:1 诗人苏轼有两句著名的诗句“横看成岭侧成峰,远近高低各不同”,从正面看庐山,它是一道横长的山岭:从侧面看庐山,它是一座高耸的山峰.你再从不同距离、不同高度去看吧,呈现在你眼前的庐山,都是各种互不相同的形象.标注:相对于庐山优美的风景,四川西部山区却是经常有洪灾发生,都江堰就是水利工程的一个典型代表.公元前256年,秦国人李冰作为蜀首,奉命治理岷江,李冰先用了3年的时间勘察水情、调查地形,制订了一整套凝聚着人类智慧与科学的治水方案.)标注:利用ppt播放《都江堰》的视频.让学生通过视频找出里面存在的不等关系,并随时记录在练习本上.(学生回答后出示答案:山区地势高低不同,内江、外江地势高低不同、水量不同、沙石不同(80%外江),水只有高出飞沙堰时,通过飞沙堰流出,有分洪和排沙的作用……)德育教育:都江堰建成后,成都平原的粮食产量成倍增长,这也为秦国统一中国奠定了物质基础.都江堰的设计和改造,最大程度的尊重和保护了自然,即使是2000多年后的今天,仍是水利专家追求的生态水利建设的最高境界.李冰用了3年时间攀登了700多里山路勘察水情、调查地形,他的坚韧不拔的毅力,科学严谨的治学精神, 我们就要应用到学习和生活中.2 (过渡:古代科学家凭借他们坚韧不拔的毅力充分利用了各种不等关系,创造了一个又一个的人类奇迹,在刚刚过去的奥运会上,我国奥运健儿摘金夺银,也取得了巨大的成绩,叶诗文就是其中的一个典型代表.)标注:2012年,伦敦奥运会上16岁的叶诗文以4分28秒43的成绩破世界纪录获得400米女子混合泳冠军,为中国摘得伦敦奥运会第四枚金牌. 随后,在200米女子混合泳的半决赛、决赛中,两次打破奥运会纪录,以2分07秒57夺冠,成为奥运会双冠王,创造中国泳坛历史.德育教育:叶诗文只有16岁,比我们同学都还小,就取得了如此大的成绩,不过同学们也不要不好意思,你们在很多方面比叶诗文还要强.练习1:观察图中存在的不等关系.叶诗文叶诗文与罗切特成绩比较标注:主要看红框中的两个数字和两人的总成绩.德育教育:通过两人成绩的比较,叶诗文在最后50m甚至超过了男子世界冠军的成绩,尽管西方媒体对此提出质疑,但最终的结论证明,她的成绩就是她努力训练的结果,如果要进一步改变西方媒体对中国人的看法,还需要同学们的拼搏努力.(过渡:我们再次回到我国古代)3 材料1:中国最早的一部数学著作——《周髀算经》中记载着在公元前1100年左右,我国古代数学家就已经发现了勾股定理.这比古希腊数学家毕达哥拉斯发现的时间早了500多年.德育教育:这足以说明我们的祖先早已经具有了超人的智慧.世界上最早对勾股定理进行证明的,是我国三国时期吴国的数学家赵爽.赵爽创制了一幅弦图,用形数结合的方法证明了勾股定理.德育教育:中国古代数学家们对于勾股定理的发现和证明,在世界数学史上具有独特的贡献和地位.尤其是其中体现出来的“形数统一”的思想方法,更具有科学创新的重大意义.当代中国数学家吴文俊曾经说过“在中国的传统数学中,数量关系与空间形式往往是形影不离地并肩发展着的......十七世纪笛卡儿解析几何的发明,正是中国这种传统思想与方法在几百年停顿后的重现与继续.”请同学们在赵爽的弦图中寻找一些不等关系.学生口答:直角三角形的三边不等,三个角不等,大小正方形的边长不等……,更重要的是要总结出222+≥.老师要说明这个公式非常重a b ab要,我们以后还要继续学习.练习2:请同学们自己举出现实世界和日常生活中存在的一些不等关系.(二)用不等式表示不等关系(过渡:通过刚才大量的图表和事实,我们可以感受到现实世界和日常生活中存在着大量的不等关系,其中有很多是可以用不等式表示的.)材料2: 观察下表,请同学们说出x、y、z的范围.德育教育:这个表格隐含着的信息很多,2011年GDP是2006年的2倍还多,说明我国经济发展速度很快;另外,据统计我国1978年国民生产总值为3600亿元,而2011年国民生产总值为47.2万亿元,是1978年的130倍左右,这不仅仅是一个不等关系,更是一个巨大的增长,同时这也是改革开放的重大成就,所以我们只有坚持改革开放,才有可能取得如此大的成就.假设以后我国每年的经济增长率按8%计算,那么多少年后GDP总量将超过130万亿元?答案: 47.21.08130x >,解得14x ≥,所以到2025年,我国的GDP 将超过130万亿元.德育教育:如果按照现在美国的经济总量和发展速度计算,到2025年我国将超过美国,成为世界第一经济大国.到那时同学们已经是而立之年,各个事业有成!有的已经是著名的企业家,有的成了科学家,有的成了党政岗位上的重要领导人……但是这一切美好的前景都是建立在同学们努力拼搏的基础之上的.练习3:观察以下图形,写出图片中蕴含的不等关系:(过渡:食品中有不等关系,那么市场中有没有不等关系.)例1 某种杂志原以每本2.5元的价格销售,可以售出8万本.据市场调查,若单价每提高0.1元,销售量就可能相应减少2000本.若把提价后杂志的定价设为x 元,怎样用不等式表示销售的总收入仍不低于20万元呢?(总收入=单价×销售量)答案: 2.58*0.2200.1x x -⎛⎫-≥ ⎪⎝⎭例2 某钢铁厂要把长度为4000mm 的钢管截成500mm 和600mm 的两种.按照生产的要求,600mm 钢管的数量不能超过500mm 钢管的3倍.怎样写出满足上述所有不等关系的不等式呢?解:设截得500mm 钢管x 根,截得600mm 钢管y 根,则:三 检测反馈,巩固知识1用不等式表示右图的不等关系:德育教育:我们在过马路的时候,一定要注意安全,要走人行横道,要走斑马线;如果我们以后开车,也一定按照要求行驶,看看图中,车多人乱,确实很危险!我们应该切实注意自己和他人的安全.(2)某品牌酸奶的质量检查规定,酸奶中的脂肪含量 f 应不少于2.5%,蛋白质的含量 p 应不少于2.3%. 答案: 2.5%2.3%f p ≥⎧⎨≥⎩ (3)如图,在一个面积为3502m 的矩形地基上建造一个仓库,四周是绿地.仓库的长L 大于宽W 的4倍.500600400030x y x y x y +≤⎧⎪≥⎪⎨≥⎪⎪≥⎩【归纳小结】(过渡:请同学自己总结本节课所学内容,先小组讨论,再请一个同学典型发言.)1通过同学们的总结,我们可以发现古今中外日常生活时时、事事、处处都存在着各种不等关系,通过我们的慧眼要发现并利用这些关系,就会取得超出前人的更大的成就.2 我们要善于利用不等式(组)表示实际问题中的不等关系.【作业】1.P75习题3.1A 组 第4、5题:2.课外探究:(1)有一个两位数大于50而小于60,其个位数字比十位数字大2.试用不等关系表示上述关系,并求出这个两位数(用a 和b 分别表示两位数的个位数字和十位数字).(2)一辆汽车原来每天行驶x km,如果这辆汽车每天行驶的路程比原来多19 km,那么8天内它的行程就超过2200 km,写出不等式为_______________:如果它每天行驶的路程比原来少12 km,那么它原来行驶8天的路程就得花9天多的时间,用不等式表示为_______________.(10)(10)3504L W L W++=⎧⎨≥⎩。

高中数学 3.1.1 不等关系与不等式(一优秀教案 新人教A版必修5优秀教案 新人教A版必修5

高中数学 3.1.1 不等关系与不等式(一优秀教案 新人教A版必修5优秀教案 新人教A版必修5

备课资料 备用习题
1.已知x >y >z >0,求证:z x z y x y -->. 分析:证明简单不等式常依据实数的基本性质及直接运用不等式的基本性质及推论,也可作差比较.
证明:∵x>y,∴x -y >0.∴01>y
x -. 又y >z,∴y
x z y x y -->.① ∵y>z,∴-y <-z.∴x -y <x-z.
∴0<x-y <x-z.∴z
x y x --11>. 又z >0,∴z
x z y x z -->.② 由①②得z x z y x z -->. 小结:运用性质证明不等式时,应注意有理有据,严谨细致,还应条理清晰.上述的证明方法采用的证明思路是由条件到结论,也可采用由结论到条件的证明思路去证明,请同学们不妨尝试一下.
2.试判断下列各对整式的大小:(1)m 2-2m+5和-2m+5;(2)a 2-4a +3和-4a +1.
点拨:根据不等式的性质1,我们可以得到另一种比较两个数(或代数式)的大小的方法: 若A -B >0,则A >B ;若A -B =0,则A =B ;若A -B <0,则A <B .
这种比较大小的方法,称为“作差比较法”,简称“比差法”.本例就可以用这种方法.
解:(1)∵(m 2-2m+5)-(-2m+5)
=m 2-2m+5+2m-5
=m 2,
∵m 2≥0,∴(m 2-2m+5)-(-2m+5)≥0.
∴m 2-2m+5≥-2m+5.
(2)∵(a 2-4a +3)-(-4a +1)
=a 2-4a +3+4a -1
=a 2+2,
∵a 2≥0,∴a 2+2≥2>0.
∴a 2-4a +3>-4a +1.。

高中数学人教A版必修5教案-3.1_不等关系与不等式_教学设计_教案_1

高中数学人教A版必修5教案-3.1_不等关系与不等式_教学设计_教案_1

教学准备
1. 教学目标
不等式性质
2. 教学重点/难点
不等式性质
3. 教学用具
4. 标签
教学过程
知识提要
一、不等式性质
3、同向不等式可相加,不可相减
二、不等式证明
比较法(作差法、作商法)、分析法、综合法(综合法—由因导果,分析法—持果索因;一般利用分析法分析思路,再用综合法写出证明过程)、反证法、换元法(三角换元)、放缩法、函数法(利用函数单调性)等
三、不等式解法
1、含绝对值不等式的解法
2、含多个绝对值的不等式:零点区间讨论法
3、高次不等式:数轴标根法
4、分式不等式:整式不等式
5.“a>0且b>0”是“”成立的( )
(A)充分而非必要条件(B)必要而非充分条件
(C)充要条件(D)既非充分又非必要条件
6.甲、乙两车从A地沿同一路线到达B地,甲车一半时间的速度为a,另一半
时间的速度为b;乙车用速度a行走了一半路程,用速度b行走了另一半路程,若a≠b,则两车到达B地的情况是( )
(A)甲车先到达B地(B)乙车先到达B地
(C)同时到达(D)不能判定。

高中数学 3.1不等关系与不等式教案(二)新人教A版必修5

高中数学 3.1不等关系与不等式教案(二)新人教A版必修5

3.1不等关系与不等式(一)一、讲授新课(一)用不等式表示不等关系1.在现实生活中,存在着许许多多的不等关系,在数学中,我们用不等式来表示这样的不等关系.引例1:限速40km/h 的路标,指示司机在前方路段行驶时,应使汽车的速度v 不超过40km/h ,写成不等式就是: 40v ≤引例2:某品牌酸奶的质量检查规定,酸奶中脂肪的含量应不少于 2.5%,蛋白质的含量p 应不少于2.3%,写成不等式组就是——用不等式组来表示2.5%2.3%f p ≤⎧⎨≥⎩(二)实数的运算性质1.实数的运算性质与大小顺序之间的关系对于任意两个实数a,b,如果a>b,那么a-b 是正数;如a<b,那么a-b 是负数;如果a-b 等于0.它们的逆命题也正确.即(1)0;(2)0;(3)0a b a b a b a b a b a b >⇔->=⇔-=<⇔-<2.比较两实数大小的方法——作差比较法:比较两个实数a 与b 的大小,归结为判断它们的差a b -的符号;比较两个代数式的大小,实际上是比较它们的值的大小,而这又归结为判断它们的差的符号.二、问题探究问题1:设点A 与平面α的距离为d,B 为平面α上的任意一点,则||d AB ≤。

问题2:某种杂志原以每本2.5元的价格销售,可以售出8万本。

据市场调查,若单价每提高0.1元,销售量就可能相应减少2000本。

若把提价后杂志的定价设为x 元,怎样用不等式表示销售的总收入仍不低于20万元呢?解:设杂志社的定价为x 元,则销售的总收入为 2.5(80.2)0.1x x --⨯ 万元,那么不等关系“销售的总收入仍不低于20万元”可以表示为不等式 2.5(80.2)200.1x x --⨯≥ 问题3:某钢铁厂要把长度为4000mm 的钢管截成500mm 和600mm 两种。

按照生产的要求,600mm 的数量不能超过500mm 钢管的3倍。

怎样写出满足所有上述不等关系的不等式呢? 解:假设截得500 mm 的钢管 x 根,截得600mm 的钢管y 根。

高中数学 3.1不等关系与不等式教案(4) 新人教A版必修5 教案

高中数学 3.1不等关系与不等式教案(4) 新人教A版必修5 教案

不等关系与不等式(第一课时)【教学目标】让学生感受和体验现实世界和日常生活中存在着大量的不等关系,鼓励学生用数学观点进行观察、归纳、抽象,使学生感受数学、走进数学、改变学生的数学学习态度。

2.建立不等观念,并能用不等式或不等式组表示不等关系。

3.了解不等式或不等式组的实际背景。

4.能用不等式或不等式组解决简单的实际问题。

【重点难点】重点:1.通过具体的问题情景,让学生体会不等量关系存在的普遍性及研究的必要性。

2.用不等式或不等式组表示实际问题中的不等关系,并用不等式或不等式组研究含有简单的不等关系的问题。

3.理解不等式或不等式组对于刻画不等关系的意义和价值。

难点:1.用不等式或不等式组准确地表示不等关系。

2.用不等式或不等式组解决简单的含有不等关系的实际问题。

【方法手段】1.采用探究法,按照阅读、思考、交流、分析,抽象归纳出数学模型,从具体到抽象再从抽象到具体的方法进行启发式教学。

2.教师提供问题、素材,并及时点拨,发挥老师的主导作用和学生的主体作用。

3.设计教典型的现实问题,激发学生的学习兴趣和积极性。

【教学过程】【教学反思】(【设计说明】)本节课内容很多,都是不等式和不等式组的有关问题,还有很多是生活中的实例,学生学习起来很感兴趣,课堂的气氛也很好,大多数学生都能很积极地回答问题,使课堂的学习气氛很浓,确实也做到了愉快教学。

设计是按照老师引导式教学,边讲授边引导,启发学习思考问题及能自己解决问题,锻炼学习能自主的学习能力。

【交流评析】一是课堂容量适中,二是实例很好,接近生活,学生感兴趣。

三是学生回答问题积极踊跃,和老师配合很好。

四是多媒体应用的恰到好处,教学设备很完善,老师也能很熟练的应用。

某某:李春霞学校:四十七中联系方式26918825--5219时间2007-11月。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《3.1 不等关系与不等式》 教学案 2
教学要求
了解不等式与不等式组的实际背景;掌握常用不等式的基本基本性质;会将一些基本性质结合起来应用.
教学重点
理解不等式的性质及其证明.
教学难点
从实际的不等关系中抽象出具体的不等式.
教学过程
一、复习准备:
1. 提问:实数的运算性质与大小顺序之间的关系
2. 设点A与平面∂之间的距离为d ,B为平面∂上任意一点,则点A与平面∂的距离小于或等于A,B两点间的距离,请将上述不等关系写成不等式.
二、讲授新课:
1、教学“作差法”比较两个实数的大小和常用的不等式的基本性质
① 用“作差法”比较两个实数大小的关键是判断差的正负,常采用配方、因式分解、有理化等方法.常用的结论有2200x x ≥-≤≥≤,,|x|0,-|x|0等.
② “作差法”的一般步骤是:①作差;②变形;③判断符号;④得出结论.
③常用的不等式的基本性质
(1),(2)(3),0(4),0a b b c a c a b a c b c
a b c ac bc
a b c ac bc
>>⇒>>⇒+>+>>⇒>><⇒<
2、教学例题:
① 出示例1:已知0,0,a b c >><求证:c
c a b
> (教师讲思路→学生板演→小结方法)
② 出示例2.:比较(3)(5)(2)(4)a a a a +-+-与的大小.
(比较两个数的大小,基本方法是作差,对差的正、负或零做出判断,得出结论) ③变式训练:已知22420(1)1a a a a ≠+++,比较与的大小
④ 出示例3:已知1260,1536,a a b a b b
<<<<-求及的取值范围.
(确定取值范围→利用不等式的性质求解) ⑤ 变式训练:已知31,40,a b c -<<-<<求(a-b).c 的取值范围.
三、 巩固练习:
①.比较233x x +与的大小,其中x R ∈.
②.比较当0a ∉时,
2222(1)(1)(1)(1)a a a a a a ++++-+与的大小. ③. 设实数,,a b c 满足
22643,44,,,b c a a c b a a a b c +=-+-=-+则的大小关系是___
__________.
④.配制,A B 两种药剂需要甲、乙两种原料,已知配一剂A 种药需甲料3毫克,乙料5毫克,配一剂B 药需甲料5毫克,乙料4毫克。

今有甲料20毫克,乙料25毫克,若,A B 两种药至少各配一剂,则,A B 两种药在配制时应满足怎样的不等关系呢?用不等式表示出来.。

相关文档
最新文档