微积分上册期末考试及答案

合集下载

微积分上考试题目及答案

微积分上考试题目及答案

微积分上考试题目及答案一、选择题(每题4分,共20分)1. 函数f(x)=x^3-3x+1的导数为:A. 3x^2-3B. x^2-3x+1C. 3x^2-3xD. 3x^2-3x+1答案:A2. 极限lim(x→0)(sin(x)/x)的值为:A. 0B. 1C. -1D. ∞答案:B3. 以下哪个函数是偶函数?A. f(x) = x^2 + xB. f(x) = x^3 - 2xC. f(x) = cos(x)D. f(x) = sin(x) + x答案:C4. 以下哪个积分是发散的?A. ∫(1/x)dx 从1到∞B. ∫(x^2)dx 从0到1C. ∫(e^(-x))dx 从0到∞D. ∫(sin(x))dx 从0到2π答案:A5. 以下哪个是复合函数的导数?A. (f(g(x)))' = f'(g(x))g'(x)B. (f(g(x)))' = f'(x)g'(x)C. (f(g(x)))' = f(g'(x))g'(x)D. (f(g(x)))' = f'(x)g(x)答案:A二、填空题(每题4分,共20分)6. 函数f(x)=x^2的二阶导数为________。

答案:27. 定积分∫(0到1) x dx的值为________。

答案:1/28. 函数y=ln(x)的反函数为________。

答案:e^y9. 函数f(x)=e^x的不定积分为________。

答案:e^x + C10. 函数f(x)=x^3-3x^2+2x的极值点为________。

答案:x=0, x=2三、计算题(每题10分,共30分)11. 计算极限lim(x→∞) (x^2 - 3x + 2) / (2x^2 + 5x - 3)。

答案:1/212. 计算定积分∫(0到1) (x^2 - 2x + 1) dx。

答案:1/313. 求函数f(x)=x^3-6x^2+11x-6的极值。

《微积分(一)》分级卷样卷解答

《微积分(一)》分级卷样卷解答

《微积分(一)上》期末考试试卷 (分级卷样卷)一、填空题(每小题3分,六个小题共18分);1. 极限 111)2(lim -→-x x x = e /1 .2. 设x x f 3sin ln )(+=π,则微分=)(x df xdx 3cos 3 .3. 定积分=+⎰-dx x x 222sin cos ππ)( π .4. 设函数)(x y y =由方程组⎩⎨⎧+==)1ln(arctan 2t y t x 确定,则 =22dx y d )1(22t + . 5. 不定积分⎰=xdx x arctanC x x x +-+2a r c t a n 212.6. 方程 1+='-''x y y 的通解为____ x xe C C x22221--+ _____.二、单项选择题(每小题3分,四小题共12分)(将正确选项前的字母填入题中的括号内)7. 设函数)(x f y =的导函数在),(+∞-∞上连续。

于是[ D ] A .若有常数a ,使得a x f x =+∞→)(lim ,则 0)(lim ='+∞→x f x ;B .若0)(lim ='+∞→x f x ,则有常数a ,使得 a x f x =+∞→)(lim ;C .若)(x f '是偶函数,则)(x f 是奇函数;D .若)(x f '是奇函数,则)(x f 是偶函数;8. 当0→x 时,下列变量中为无穷小量的是 [ A ] A . xx 1sinB .x xsin 1 C .x -1 D .)cos 1ln(x +9.若⎰+=C x F dx x f )()(, 则⎰=+dx x f )12([ B ]A.C x F ++)12(2B.C x F ++)12(21 C.C x F +)(21 D. C x F +)(210.若一阶线性齐次微分方程0)(=+'y x p y 的一个特解为x y 2cos =,则该方程满足初值条件2)0(=y 的特解为 [ D ]x A 2sin 2. x B sin 2. x C cos 2. x D 2cos 2. 三、(每小题6分,三个小题共18分) 11. 求极限 )1ln(tan lim2x x x x x +-→解:原式3tan lim xxx x -=→22031sec limxx x -=→xx xx x x 22coscos 1lim3cos 1lim+-=→→3132/lim222==→xx x12. 设方程1ln =+y e xy x 确定了函数)(x y y =,求=x dx dy解:于1ln =+y e xy x 两边对x 求导,得0/ln ='+++'y y e y e y y x xx ; 代入0=x ,同时代入e y =,解出 )1()0(e e y +-='13. 求定积分 ⎰+=411xdx I解:作代换x t =,⎰⎰+=+=2141121ttdt xdx I ⎰+=+-=21)32ln1(2)111(2dt t四、(每小题6分,三个小题 共18分)14. 设函数21cos)1(sin )(--=x x x x x f ,确定其间断点,并指明间断点的类型。

微积分期末考试试题及答案

微积分期末考试试题及答案

微积分期末考试试题及答案一、选择题(每题2分,共20分)1. 函数 \( f(x) = x^2 \) 在 \( x = 0 \) 处的导数是()A. 0B. 1C. 2D. -1答案:A2. 曲线 \( y = x^3 - 2x^2 + x \) 在 \( x = 1 \) 处的切线斜率是()A. 0B. 1C. -1D. 2答案:B3. 函数 \( f(x) = \sin(x) \) 的原函数是()A. \( -\cos(x) \)B. \( \cos(x) \)C. \( x - \sin(x) \)D. \( x + \sin(x) \)答案:A4. 若 \( \int_{0}^{1} f(x) \, dx = 2 \),且 \( f(x) = 3x^2 +1 \),则 \( \int_{0}^{1} x f(x) \, dx \) 等于()A. 3B. 4C. 5D. 6答案:C5. 函数 \( g(x) = \ln(x) \) 在 \( x > 0 \) 时的反导数是()A. \( e^x \)B. \( x^e \)C. \( e^{\ln(x)} \)D. \( x \ln(x) - x \)答案:D6. 若 \( \lim_{x \to 0} \frac{\sin(x)}{x} = 1 \),则\( \lim_{x \to 0} \frac{\sin(2x)}{x} \) 等于()A. 2B. 1C. 4D. 0答案:A7. 函数 \( h(x) = e^x \) 的泰勒展开式在 \( x = 0 \) 处的前三项是()A. \( 1 + x + \frac{x^2}{2} \)B. \( 1 + x + \frac{x^2}{2!} \)C. \( 1 + x + \frac{x^3}{3!} \)D. \( 1 + x + \frac{x^2}{3!} \)答案:B8. 若 \( \frac{dy}{dx} = 2y \),且 \( y(0) = 1 \),则 \( y(x) \) 是()A. \( e^{2x} \)B. \( e^{-2x} \)C. \( 2^x \)D. \( 2^{-x} \)答案:A9. 函数 \( F(x) = \int_{0}^{x} e^t \, dt \) 的导数是()A. \( e^x \)B. \( e^0 \)C. \( x \cdot e^x \)D. \( e^0 \cdot x \)答案:A10. 曲线 \( y = x^2 + 3x \) 与直线 \( y = 6x \) 交点的横坐标是()A. 0B. 3C. -1D. 2答案:C二、填空题(每空3分,共15分)11. 若 \( f(x) = 2x - 1 \),则 \( f''(x) \) 等于 _________。

最新微积分(上)期末考试试题A卷(附答案)

最新微积分(上)期末考试试题A卷(附答案)

一、 选择题 (选出每小题的正确选项,每小题2分,共计10分)1.1lim 2xx -→=_________。

(A ) -∞ (B ) +∞ (C ) 0 (D ) 不存在 2.当0x →时,()x xf x x+=的极限为 _________。

(A ) 0 (B ) 1 (C )2 (D ) 不存在 3. 下列极限存在,则成立的是_________。

0()()()lim ()x f a x f a A f a x -∆→+∆-'=∆0()(0)()lim (0)x f tx f B tf x→-'= 0000()()()lim 2()t f x t f x t C f x t →+--'= 0()()()lim ()x f x f a D f a a x →-'=-4. 设f (x )有二阶连续导数,且()0()(0)0,lim1,0()_______x f x f f f x x→'''==则是的。

(A ) 极小值 (B )极大值( C )拐点 (D ) 不是极值点也不是拐点 5.若()(),f x g x ''=则下列各式 成立。

()()()0A f x x φ-=()()()B f x x C φ-=()()()C d f x d x φ=⎰⎰()()()d dD f x dx x dx dx dxφ=⎰⎰ 二、 填空题(每小题3分,共18分)1. 设0(2)()0(0)0,lim1sin x f x f x x f x→===-在处可导,且,那么曲线()y f x =在原点处的切线方程是__________。

2.函数()f x =[0,3]上满足罗尔定理,则定理中的ξ= 。

3.设1(),()ln f x f x dx x'=⎰的一个原函数是那么 。

4.设(),xf x xe -=那么2阶导函数 ()___f x x ''=在点取得极_____值。

微积分考试试题及答案

微积分考试试题及答案

微积分考试试题及答案一、选择题1. 下列哪个是微积分的基本定理?A. 韦达定理B. 牛顿-莱布尼兹公式C. 洛必达法则D. 极限定义答案:B. 牛顿-莱布尼兹公式2. 对于函数$f(x) = 3x^2 - 2x + 5$,求其导数$f'(x)$。

A. $3x^2 - 2x$B. $6x - 2$C. $6x - 2x$D. $6x - 2$答案:D. $6x - 2$3. 已知函数$y = 2x^3 + 4x - 1$,求其在点$(1, 5)$处的切线斜率。

A. 6B. 8C. 10D. 12答案:B. 8二、填空题1. 函数$y = \sin x$在$x = \pi/2$处的导数是\_\_\_\_\_\_。

答案:$1$2. 函数$y = e^x$的导数是\_\_\_\_\_\_。

答案:$e^x$3. 函数$y = \ln x$的导数是\_\_\_\_\_\_。

答案:$\frac{1}{x}$三、简答题1. 请解释一下微积分中的基本概念:导数和积分的关系。

答:导数和积分是微积分的两个基本概念,导数表示函数在某一点上的变化率,而积分表示函数在某一区间上的累积效果。

导数和积分互为逆运算,导数可以用来求解函数的斜率和最值,积分可以用来求解函数的面积和定积分。

2. 为什么微积分在物理学和工程学中如此重要?答:微积分在物理学和工程学中具有重要作用,因为微积分提供了一种精确的方法来描述和分析连续变化的过程。

通过微积分,可以求解物体在运动过程中的速度、加速度、轨迹等物理量,以及工程中涉及到的曲线、曲面、体积等问题。

微积分为物理学和工程学提供了丰富的数学工具,可以更准确地描述和解决实际问题。

四、计算题1. 计算定积分$\int_{0}^{1} x^2 dx$。

答:$\frac{1}{3}$2. 求函数$f(x) = 3x^2 - 2x + 5$在区间$[1, 2]$上的定积分。

答:$\frac{19}{3}$以上就是微积分考试的试题及答案,希望对你的复习有所帮助。

《微积分》期末考试试卷附答案

《微积分》期末考试试卷附答案

《微积分》期末考试试卷附答案一、填空题(共5小题,每小题4分,共20分)1、已知2)(x e x f =,x x f -=1)]([ϕ,且0)(≥x ϕ,则=)(x ϕ2、已知a 为常数,1)12(lim 2=+-+∞→ax x x x ,则=a .3、已知2)1(='f ,则=+-+→xx f x f x )1()31(lim 0 . 4、函数)4)(3)(2)(1()(----=x x x x x f 的拐点数为 . 5、=⎰xx dx 22cos sin .二、选择题(共5小题,每小题4分,共20分)1、设)(x f 为偶函数,)(x ϕ为奇函数,且)]([x f ϕ有意义,则)]([x f ϕ是(A) 偶函数; (B) 奇函数;(C) 非奇非偶函数; (D) 可能奇函数也可能偶函数.2、0=x 是函数⎪⎩⎪⎨⎧=≠-=.0 ,0,0 ,cos 1)(2x x x x x f 的(A) 跳跃间断点; (B) 连续点; (C) 振荡间断点; (D) 可去间断点.3、若函数)(x f 在0x 处不可导,则下列说法正确的是(A) )(x f 在0x 处一定不连续; (B) )(x f 在0x 处一定不可微;(C) )(x f 在0x 处的左极限与右极限必有一个不存在;(D) )(x f 在0x 处的左导数与右导数必有一个不存在.4、仅考虑收益与成本的情况下,获得最大利润的必要条件是:(A) )()(Q C Q R ''>''; (B) )()(Q C Q R ''<''; (C) )()(Q C Q R ''='';(D) )()(Q C Q R '='.5、若函数)(x f '存在原函数,下列错误的等式是: (A) )()(x f dx x f dx d ⎰=; (B) )()(x f dx x f ⎰=';(C) dx x f dx x f d )()(⎰=; (D) C x f x df +=⎰)()(.三、计算题(共4小题,每小题15分,共60分)1、设x x f x x-=--422)2(,求)2(+x f .2、计算)1cos(lim n n n -+∞→.3、求极限)21(lim 222n n n n n n n n ++++++∞→ .4、求极限xx x x cos sec )1ln(lim 20-+→.微积分参考答案:一、填空1. 答案:)1ln(x -2. 答案:13. 答案:44. 答案:25. 答案:C x x +-cot tan二、选择1. A2. D3. B4. D5. B三、计算题1、设x x f x x -=--422)2(,求)2(+x f .答案:42)2(42--=++x x f xx解:令2-=x t ,则 2222)2(2)(48444)2(4)2(222--=+-=+-=---+++-+t t t t f t t t t t t ,于是 42422)2(2)2(44444)2(222--=--=-+-=++-++-+x x x x f x x x x x .2. 计算)1cos(lim n n n -+∞→. 答案:1 解:nn n n n n ++=-+∞→∞→11cos lim )1cos(lim 11010cos 1111cos lim =++=++=∞→nn n .3、求极限)21(lim 222n n n n n n n n ++++++∞→ . 答案:1解:由于1)21(2222222+≤++++++≤+n n n n n n n n n n n n , 而1111lim lim 22=+=+∞→∞→n n n n n n , 1111lim 1lim 222=+=+∞→∞→n n n n n , 所以1)21(lim 222=++++++∞→n n n n n n n n .4、求极限xx x x cos sec )1ln(lim 20-+→. 答案:1 解:x x x xx x x x x x x x x x cos sin 212lim sin )1ln(lim cos lim cos sec )1ln(lim 20220020+=+=-+→→→→ 1sin lim cos )1(1lim020=+=→→x x x x x x .。

微积分上期末试题及答案

微积分上期末试题及答案

微积分上期末试题及答案试题一:1.求函数f(x) = x^3 + 2x^2 - 5x的导数f'(x)。

答案:f'(x) = 3x^2 + 4x - 5。

2.计算极限lim(x->3)[(x^2 - 9)/(x - 3)]。

答案:由分式的定义可知,当x ≠ 3时,(x^2 - 9)/(x - 3) = x + 3,故lim(x->3)[(x^2 - 9)/(x - 3)] = 3 + 3 = 6。

3.已知y = 2x^3 - x^2 + 4x + 7,求dy/dx。

答案:dy/dx = 6x^2 - 2x + 4。

4.求函数f(x) = sin(x)的不定积分∫f(x)dx。

答案:∫f(x)dx = -cos(x) + C(C为常数)。

5.已知直线L的斜率为2,并且过点P(3, 4),求直线L的方程。

答案:直线L的方程为y - 4 = 2(x - 3)。

试题二:1.求曲线y = x^2的切线方程,且该切线通过点P(2, 3)。

答案:曲线y = x^2的导数为2x,斜率为m = 2(2) = 4。

切线方程为y - 3 = 4(x - 2)。

2.计算定积分∫(2x + 1)dx在区间[0, 2]上的值。

答案:∫(2x + 1)dx = x^2 + x + C。

在区间[0, 2]上的定积分值为[(2)^2 + 2 + C] - [(0)^2 + 0 + C] = 6。

3.已知函数f(x) = e^x,求f'(x)。

答案:f'(x) = e^x。

4.求函数f(x) = ln(x)的不定积分∫f(x)dx。

答案:∫f(x)dx = xln(x) - x + C(C为常数)。

5.已知曲线C的方程为y = x^3 - 3x^2 + 2,求曲线C的切线方程在点Q(-1, -2)处的斜率。

答案:曲线C的导数为3x^2 - 6x,点Q(-1, -2)在曲线C上,代入x = -1得到斜率m = 3((-1)^2) - 6(-1) = 3 - 6 = -3。

微积分期末试题及答案

微积分期末试题及答案

微积分期末试题及答案一、选择题(每题4分,共20分)1. 函数y=x^3-3x+2的导数是()。

A. 3x^2 - 3B. x^3 - 3xC. 3x^2 - 3xD. 3x^2 + 3x答案:A2. 极限lim(x→0) (sin x/x)的值是()。

A. 0B. 1C. 2D. -1答案:B3. 曲线y=x^2在点(1,1)处的切线方程是()。

A. y=2x-1B. y=2x+1C. y=x+1D. y=x-1答案:A4. 若f(x)=x^2+3x-2,则f'(-1)的值是()。

A. 0B. 2C. -2D. 4答案:C5. 定积分∫(0 to 1) (2x-1)dx的值是()。

A. 1/2B. 1C. 3/2D. 2答案:B二、填空题(每题4分,共20分)1. 若f(x)=ln(x),则f'(x)=______。

答案:1/x2. 函数y=e^x的原函数是______。

答案:e^x3. 曲线y=x^3与直线y=2x+1在x=1处的交点坐标是______。

答案:(1,3)4. 函数y=x^2-4x+4的极小值点是______。

答案:x=25. 定积分∫(0 to 2) x dx的值是______。

答案:4三、计算题(每题10分,共30分)1. 求函数y=x^2-6x+8的极值点。

答案:函数y=x^2-6x+8的导数为y'=2x-6,令y'=0,解得x=3。

将x=3代入原函数,得到极小值点为(3,-1)。

2. 求定积分∫(0 to 3) (x^2-2x+1)dx。

答案:首先求出原函数F(x)=1/3x^3-x^2+x,然后计算F(3)-F(0)=1/3*27-9+3-0=6。

3. 求曲线y=x^3在点(1,1)处的切线方程。

答案:首先求导得到y'=3x^2,将x=1代入得到y'|_(x=1)=3,切线方程为y-1=3(x-1),即y=3x-2。

四、证明题(每题10分,共30分)1. 证明:若f(x)在[a,b]上连续,则∫(a to b) f(x)dx存在。

大一微积分期末试题附答案

大一微积分期末试题附答案

微积分期末试卷一、选择题(6×2)cos sin 1.()2,()()22()()B ()()D x x f x g x f x g x f x g x C π==1设在区间(0,)内( )。

A是增函数,是减函数是减函数,是增函数二者都是增函数二者都是减函数2x 1n n n n 20cos sin 1n A X (1) B X sin21C X (1) xn e x x n a D a π→-=--==>、x 时,与相比是( )A高阶无穷小 B低阶无穷小 C等价无穷小 D同阶但不等价无价小3、x=0是函数y=(1-sinx)的( )A连续点 B可去间断点 C跳跃间断点 D无穷型间断点4、下列数列有极限并且极限为1的选项为( )n 1X cosn=200000001()5"()() ()()0''( )<0 D ''()'()06x f x X X o B X oC X X X X y xe =<===、若在处取得最大值,则必有( )Af 'f 'f '且f f 不存在或f 、曲线( )A仅有水平渐近线 B仅有铅直渐近线C既有铅直又有水平渐近线 D既有铅直渐近线二、填空题1d 12lim 2,,x d xax ba b →++=xx2211、( )=x+1、求过点(2,0)的一条直线,使它与曲线y=相切。

这条直线方程为:x23、函数y=的反函数及其定义域与值域分别是:2+1x5、若则的值分别为:x+2x-3三、判断题1、 无穷多个无穷小的和是无穷小( )2、 0sin limx xx→-∞+∞在区间(,)是连续函数()3、 0f"(x )=0一定为f(x)的拐点()4、 若f(X)在0x 处取得极值,则必有f(x)在0x 处连续不可导( )5、 设函数f(x)在[]0,1上二阶可导且'()0A '0B '(1),(1)(0),A>B>C( )f x f f C f f <===-令(),则必有四、计算题1用洛必达法则求极限212lim x x x e →2 若34()(10),''(0)f x x f =+求3 24lim(cos )xx x →求极限4 (3y x =-求5 3tan xdx ⎰五、证明题。

大学微积分考试题及答案

大学微积分考试题及答案

大学微积分考试题及答案一、选择题(每题3分,共30分)1. 函数f(x)=x^2的导数是:A. 2xB. x^2C. 1D. 2答案:A2. 曲线y=x^3在x=1处的切线斜率是:A. 0B. 1C. 3D. 2答案:C3. 定积分∫(0到1) x dx的值是:A. 0B. 0.5C. 1D. 2答案:B4. 函数f(x)=sin(x)的不定积分是:A. cos(x)B. -cos(x)C. xD. -x答案:B5. 极限lim(x→0) (sin(x)/x)的值是:A. 0B. 1C. 2D. ∞答案:B6. 曲线y=e^x与直线x=1所围成的面积是:A. e-1B. 1-eC. 1D. e答案:A7. 函数f(x)=ln(x)的反函数是:A. e^xB. x^eC. 10^xD. x^2答案:A8. 函数f(x)=x^3-3x+2的极值点是:A. 1B. -1C. 2D. 0答案:A9. 函数f(x)=x^2-4x+3的顶点坐标是:A. (2, -1)B. (2, 1)C. (-2, 1)D. (-2, -1)答案:A10. 曲线y=x^2与x轴的交点坐标是:A. (0, 0)B. (2, 0)C. (-2, 0)D. (0, 2)答案:A二、填空题(每题4分,共20分)1. 函数f(x)=x^3-6x^2+11x-6的拐点是______。

答案:(2, -2)2. 曲线y=x^2-4x+3与y轴的交点坐标是______。

答案:(0, 3)3. 函数f(x)=x/(x^2+1)的不定积分是______。

答案:(1/2)*ln(x^2+1)+C4. 函数f(x)=cos(x)的泰勒展开式(仅考虑x=0处的前三项)是______。

答案:1 - (x^2)/2! + (x^4)/4!5. 曲线y=ln(x)在x=e处的切线方程是______。

答案:y=1/e*x-1/e三、解答题(每题10分,共50分)1. 求函数f(x)=x^3-3x^2+2x-1在区间[0, 2]上的最大值和最小值。

微积分期末试题及答案

微积分期末试题及答案

微积分期末试题及答案(正文开始)第一部分:选择题(共20题,每题5分,共100分)1. 设函数 f(x) = x^3 - 2x + 1,求 f'(x)。

2. 求函数 f(x) = e^x 的不定积分。

3. 将函数 f(x) = sin(x) 在区间[0, π] 上进行定积分,求结果。

4. 设函数 f(x) = ln(x),求 f'(x)。

5. 求函数 f(x) = 2x^2 + 3x + 1 的定积分,其中积分区间为 [-1, 2]。

6. 设函数f(x) = √(x^2 + 1),求 f'(x)。

7. 求函数 f(x) = 3x^2 - 6 的不定积分。

8. 计算定积分∫(0 to π/2) cos(x) dx 的值。

9. 设函数 f(x) = e^(2x),求 f'(x)。

10. 求函数 f(x) = x^3 - 4x^2 + 5x - 2 的不定积分。

11. 计算定积分∫(0 to 1) x^2 dx 的值。

12. 设函数 f(x) = (sinx + cosx)^2,求 f'(x)。

13. 求函数 f(x) = 2e^x 的不定积分。

14. 计算定积分∫(1 to e) ln(x) dx 的值。

15. 设函数 f(x) = x^2e^x,求 f'(x)。

16. 求函数 f(x) = ln(2x + 1) 的不定积分。

17. 求函数 f(x) = sin^2(x) 在区间[0, π/2] 上的定积分。

18. 设函数 f(x) = e^(3x),求 f'(x)。

19. 求函数f(x) = ∫(1 to x) t^2 dt 的不定积分。

20. 计算定积分∫(0 to π) sin^2(x) dx 的值。

第二部分:计算题(共4题,每题25分,共100分)1. 计算函数f(x) = ∫(0 to x^2) (2t + 1) dt 在区间 [-1, 1] 上的定积分。

大一微积分期末试题附答案

大一微积分期末试题附答案

微积分期末试卷一、选择题(6X2)1•设f(x) 2cosx,g(x) (1严在区间(0,—)内()。

2 2A f (x)是增函数,g (x)是减函数Bf (x)是减函数,g(x)是增函数C二者都是增函数D二者都是减函数2、x 0时,e2x cosx与sinx相比是()A高阶无穷小E低阶无穷小C等价无穷小D同阶但不等价无价小13、x = 0 是函数y = (1 -sinx)啲()A连续点E可去间断点C跳跃间断点D无穷型间断点4、下列数列有极限并且极限为1的选项为( )n 1 nA X n ( 1)B X n sin -n 21 1C X n n (a 1)D X n cosa n5、若f "(x)在X0处取得最大值,则必有()A f /(X。

)o Bf /(X。

)oCf /(X。

)0且f''( X o)<O Df''(X o)不存在或f'(X o) 0、 46、曲线y xe x( )A仅有水平渐近线E仅有铅直渐近线C既有铅直又有水平渐近线D既有铅直渐近线二、填空题11、d ) = -- dxx +12、求过点(2,0 )的一条直线,使它与曲线y= -相切。

这条直线方程为:x三、判断题1、无穷多个无穷小的和是无穷小( )2、lim竺在区间(,)是连续函数()0xX3、f"(x o)=0—定为f(x)的拐点()4、若f(X)在X 0处取得极值,则必有f(x)在X 0处连续不可导( )5、设函数f (x) 在0,1 上二阶可导且f '(x) 0令A f'(0), B f '(1),C f (1) f (0),则必有A>B>C()四、计算题11用洛必达法则求极限limx2e?x 02 若f (x) (x3 10)4,求f ''(0)4I i 23 求极限lim(cos x)xx 05 tan 3xdx五、证明题。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《微积分》大一上学期期末测试卷及答案
相信自己,相信你一定能行!
一、求下列极限(共6小题,每小题3分,满分18分)
1.13lim 32
3+-∞→x x x x 2.)13(lim 22+-++∞
→x x x
3. sin lim ⎪⎭
⎫ ⎝⎛∞→n n n π 4. x x
x x 30tan sin lim -→ 5. ln 1
lim
2
1
x
x x -→ 6. 4
2
0)d )1ln((lim
x t t x
x ⎰+→
二、计算题
(1)21
()arctan ln(12
f x x x x dy =-
+已知),求 (3分)
(2) ysinx-cosx(x-y)=0;求dx
dy
(3分)
(3)2326x xy y y x y -+="已知,确定是的函数,求(5分)
(4)1sin x
y x =求函数 的导数.(5分)
四、求下列不定积分(共4小题,每小题4分,满分16分)
(1)221x dx x +⎰ (2)
(3)ln(1)x x dx +⎰ (4)3
五、求下列定积分(共4小题,每小题4分,满分16分) (1)dx x x x )1
(241
+

(2) dx x ⎰-π202
2cos 1
(3) dx ⎰
+3ln 0
x
x e 1
e (4) dx x x x ⎰+10)1(arctan
六、求微分方程x y dx dy x
sin 2=+,π
π1
)(=y 的通解.(9分)
七、设2ln(1)y x =+,求函数的极值,曲线的拐点。

(7分)
八、抛物线22y x =把圆228x y +=分成两部分,求这两部分面积之比.(7分)
.
九、若函数)(x f 满足1d )2(0
-=-⎰
x
x e t t x f t ,且1)1(=f ,求⎰2
1
d )(x x f .(11分)
参考答案
一、求下列极限
1.3131lim 13lim 11323=+-=+-∞→∞→x x
x x x x x 2. 1
3)
13)(13(lim
)13(lim 2
2
22222
2
+++++++-+=+-++∞
→+∞
→x x x x x x x x x x
01
32lim
2
2
=+++=+∞
→x x x
3. 22
21212112111lim 121lim 11lim e x x x x x x x x
x x
x =⎥⎥⎥⎦
⎤⎢⎢⎢⎣⎡⎪⎭⎫ ⎝⎛-+⎪⎪⎭⎫ ⎝⎛+=⎪⎭⎫ ⎝⎛-+=⎪⎭⎫ ⎝⎛-+--+∞→+∞→+∞→ 4. x x x x 30tan sin lim -→613lim 31cos lim sin lim 2
2
2
102030-=-==-=-=→→→x x x x x x x x x x 5. )1()]
1(1ln[)1(lim ln 1lim 121+-+-=-→→x x x x x x x
=x)1(*1+=2 6.原式= 2
3
2d )1ln(lim
4)
1ln(d )1ln(2lim
x t t x x t t x
x x
x ⎰⎰+=+⋅+→→=4
1
4)1ln(lim
0=+→x x x
二、计算题
(1)
22
()112(arctan )121arctan dy f x dx
x
x x dx x x
xdx
='=+-++= (2)y 'sinx+ycosx+sin(x-y)(1- y ')=0
解得 y (3)
2
222)2)22230
2323(23)(23(22)(26)
(23x y xy y y x y
y x y y x y x y yy y x y
--'+'=-∴'=
--'----'∴''=
-
(4)
1sin
1sin 1
sin ln 1
sin ln 22))1111cos ()ln sin 1111(cos ln sin )
x
x
x x
x x
y x e
e x x x x x x x x x x x
'='='

⎤=-+⎢⎥⎣
⎦=-+((
三、求下列不定积分
(1)2221arctan .11x dx dx dx x x C x x
=-=-+++⎰⎰⎰ (2

2C ==+⎰
(3)2
22111ln(1)ln(1)()ln(1)-2221
x x x dx x d x x x dx x +=+=++⎰⎰⎰
2221111111
ln(1)(1)ln(1)ln(1).2212422
x x x dx x x x x x C x =
+--+=+-+-+++⎰ (4)令2tan ,,sec .2
x t t dx tdt π
=<
=则
3323223tan sec tan sec tan sec (sec 1)sec sec 1sec sec .3t
tdt t tdt td t t d t
t t t C C ∴====-=-+=⎰⎰⎰⎰
五、计算下列定积分 (1)原式=
dx x ⎰
41
2
3

+41
1dx x 4ln 5
62+=
(2)
dx x ⎰
-π20
2
2cos 1=dx x dx x dx x ⎰⎰⎰-=ππππ2020sin sin sin 4cos cos 20=+-=π
ππx x
(3)
dx ⎰+3ln 0
x x e
1 e =2ln )e 1ln()e 1(e 1 13
ln 0x x 3ln 0x =+=++⎰d (4)
dx x x x

+10
)
1(arctan
=x d x x d x x arctan arctan 2)
(1arctan 2
1
10
2
⎰⎰
=+ 16
)
(arctan 2
1
2π=
=x
六、求解下列微分方程 解 将方程改写为
x
x y x dx dy sin 2=+ 这里x x p 2)(=,x
x
x q sin )(=,故由求解公式得
)sin (1sin 22
2⎰⎰+=⎥⎦⎤⎢⎣⎡
⎰+⎰=-
xdx x C x dx e x x C e y dx x dx x
22
sin cos x x
x x x C +-=
由初值条件π
π1
)(=y ,得0=C .
所以初值问题的解为 2
c o s s i n x
x
x x y -=. 七、解:2
201x
y x
'=
=+, 解出0x =,0, 0 ,x y y '<<↓ 0, 0 ,x y y '>>↑ ,极小值(0)0f =
222
2(1)
0(1)
x y x -''==+,解出1x =±,
拐点(1,ln 2),(1,ln2)-
八. 解 抛物线22y x =与圆228x y +=的交点分别为(2,2)与(2,2)-,如图所示5-2所示,抛物线将圆分成两个部分1A ,2A ,记它们的面积分别为1S ,2S ,则有
1S
=22
2)2y dy -⎰=244
88cos 3d π
πθθ--⎰=423π+,218S A π=-=4
63π-,于是
12
S S =4
23463
ππ+-
=3292ππ+-.
九. 解:因为

⎰--========--x x x
s s f s x s
t x t
t x f t 0
2d )()2(2d )2(
所以1d )(d )(222-=-⎰

x x x
x x
e s s
f s s s f x
两边求导数,得x x
x
e x x
f s s f =-⎰
)(d )(22,
取1=x ,21d )(2
1+=⎰e x x f 。

相关文档
最新文档