2008年全国初中数学联赛四川初赛试卷
一道2008全国初中数学联赛试题的背景分新、推广与拓展
= 。 于 是 推 论 2等 价 于 若 ( — .
) (、 , )
+ )
等价于( 一 s
Y (2一Y+ )s )=
) y一√ 二 )=k , ( _ 则 =Y 即为结 .此
论 2 .
[. —Y ] S —Y ]: s 一( )[ +( )
+ ): , 则 +
y 则 = ,
.
k ,
+ 一 )[ ( m1
+一) ( n】
由命 题 1 一m+( )=0, i / 知 一n 即 n+i=0 .所
以 『二
=
证 明 令 :
2
_
+
『 二
:0
r
=
,
k 2
,
且 …
0.
所 以
于是 (
把 结论 3中的等式拓 展为不 等式得 到 :
l2
( l
一Hale Waihona Puke 2 命题 2 已知( 雨 +
1 则有 +Y≥ 0 , .
)y+ (
~ )≥
二
4 ; s s
± :
一
: 0
证明 设
,+ . =。
S ,
_+ =s则 雨 f ,
一 =
4 。 r
推论 4 若(
,
+ 一y (/ + + ) 、 )≥ / y
车 (r一1 [ s ) (r+1 ( ) S+r 一4 r ) s]≥ 0
则 Y≤ .
牟 (r—1 [rs+r +( 5 ) s( ) s—r )]≥ 0
r 1 因为 >0, ≥ ( r>0 ) ( / +1+ (、 +1+ 、 ) / )≥ 1 .
2008年四川初中数学联赛(初二组)初赛试题 参考解答及评分细则
2008年四川初中数学联赛(初二组)初赛试题参考解答及评分细则一、选择题(本题满分42分,每小题7分)1、若b a ,为实数,满足b a b a +=-111,则ba ab -的值是( D ). (A )1- (B )0 (C )21(D )1解:由题设条件知ab a b =-22,两边同时除以ab ,得1=-ba ab .故答案选D.2、下面4种说法:(1)一个有理数与一个无理数的和一定是无理数; (2)一个有理数与一个无理数的积一定是无理数; (3)两个无理数的和一定是无理数; (4)两个无理数的积一定是无理数. 其中,正确的说法种数为( A ). A .1 B .2 C .3 D .4 解:在上述四种说法中(1)正确;(2)、(3)、(4)错误.故答案选A.3、已知一次函数b kx y +=,其中0>kb .则所有符合条件的一次函数的图象一定通过( B ).A.第一、二象限 B.第二、三象限 C.第三、四象限 D.第一、四象限解:因为0>kb ,故b k 、同号.当b k 、同为正数时,则一次函数的图象通过第一、二、三象限;当b k 、同为负数时,则一次函数的图象通过第二、三、四象限.所以,符合条件的一次函数的图形一定通过第二、三象限.故答案选B.4、在凸四边形ABCD 中,H G F E 、、、分别为DA CD BC AB 、、、的中点,EG 与FH 相交于O ,设四边形CGOF BFOE AEOH 、、的面积分别为3、4、5,则四边形DHOG 的面积为( C )A .215B .415C .4D .6解:如图,连结OD OC OB OA ,,,,则BEO AEO S S ∆∆=,CFO BFO S S ∆∆=,DGO CGO S S ∆∆=,AHO DHO S S ∆∆=.于是D H O G BFO E CFO G AEO H S S S S +=+, 所以4453=-+=DH OG S .故答案选C.5、20082007=x ,则x 除以10的余数是( A ).A.1 B. 3 C.7 D.9 解:x 除以10的余数等于20087除以10的余数.又 、、、、、543277777除以10的余数分别为 、、、、、71397.它们以4为周期.又45022008⨯=,于是20087除以10的余数为1,即x 除以10的余数是1.故答案选A .6、已知c b a ,,为互不相同的有理数,满足)2)(2()2(2++=+c a b .则符合条件的c b a ,,的组数共有( A )A.0组 B.1组 C.2组 D.4组解:因为)2)(2()2(2++=+c a b ,即2)(22222c a ac b b +++=++,则2b ac =,b c a 2=+.于是ac b c a ac c a 44)(22222==+=++.所以0)(2=-c a ,故c a =,这与条件矛盾.故答案选A.二、填空题(本题满分28分,每小题7分)1、关于x 的不等式:6|12|<-x 的所有非负整数解的和为 .解:原不等式等价于⎩⎨⎧->-<-612612x x ,解得2725<<-x .于是,符合条件的所有非负整数解为3210,,,=x .所以,所有非负整数解的和为6. 故答案填6. 2、已知321+=x ,321-=y ,则=++3312y xy x .解:32-=x ,32+=y ,则4=+y x .于是64)()(31233333=+=+++=++y x y x xy y x y xy x .故答案填64.3、用三种边长相等的正多边形地砖铺地,其顶点拼在一起,刚好能完全铺满地面.已知正多边形的边数为z y x 、、,则zy x 111++的值为 . 解:依题意,有360180218021802=⨯-+⨯-+⨯-zz y y x x ,化简得21111=++z y x .故答案填21.4、如图,在梯形ABCD 中,AB ∥DC ,AC AB =,DB DA =,90=∠ADB , 则ACD ∠的度数等于 .解:如图,过A 作CD AE ⊥交CD 延长线于E ,过D 作AB DF ⊥于F .由DB DA =,90=∠ADB 知ADB ∆为等腰直角三角形. 故45=∠=∠DAF DBA .因为AB ∥DC ,故45=∠ADE . 因为AB DF ⊥,则AB DF 21=, 45=∠ADF . 于是90=∠FDE ,即CD FD ⊥.又CD AE ⊥,故AE ∥FD .又AF ∥ED ,故AFDE 为平行四边形. 从而AC AB DF AE 2121===.所以, 30=∠ACD .故答案填 30.三、(本大题20分)如图,在梯形ABCD 中,AD ∥BC ,DB AC ⊥,5=AC , 30=∠DBC .(1)求对角线BD 的长度; (2)求梯形ABCD 的面积. 解:(1)如图,过A 作AE ∥DB 交CB 延长线于E∵ DB AC ⊥,AE ∥DB .∴ AE AC ⊥,30=∠=∠DBC AEC .∴90=∠EAC ,即EAC ∆为直角三角形. ∴ 102==ACEC . ∴ 355102222=-=-=AC EC AE .∵ AD ∥BC 且AE ∥DB . ∴ 四边形AEBD 为平行四边形. ∴ 35==AE DB .(2)记梯形ABCD 的面积为S ,过A 作BC AF ⊥于F ,则AFE ∆为直角三角形. ∵30=∠AEF . ∴ 23521==AE AF ,即梯形ABCD 的高235=AF .∵ 四边形AEBD 为平行四边形. ∴ EB AD =. ∴475235352121)(21=⨯⨯=⨯=⨯+=AF EC AF BC AD S .四、(本大题25分) 设实数x 满足:1013536324213--≥---x x x . 求|4||1|2++-x x 的最小值.解:原不等式两边同乘以30,得:39)36(6)24(10)13(15--≥---x x x 化简得:6231-≥-x .解得:2≤x .记|4||1|2++-=x x y(1)当4-≤x 时,23)4()1(2--=+---=x x x y . 所以,y 的最小值都为102)4()3(=--⨯-,此时4-=x . (2)当14≤≤-x 时,6)4()1(2+-=++--=x x x y . 所以,y 的最小值为5,此时1=x .(3)当21≤≤x 时,23)4()1(2+=++-=x x x y . 所以,y 的最小值为5,此时1=x .综上所述,|4||1|2++-x x 的最小值为5,在1=x 时取到. 五、(本大题25分)已知正整数c b a ,,满足:c b a <<,且a b c ca bc ab =++.求所有符合条件的c b a ,,.解:由c b a <<≤1知bc ca bc ab abc 3<++=,所以3<a .故1=a 或者2=a .(1)当1=a 时,有bc c bc b =++,即0=+c b ,这与c b ,为正整数矛盾. (2)当2=a 时,有bc c bc b 222=++,即022=--c b bc . 所以4)2)(2(=--c b .又因为c b <<2,故220-<-<c b . 于是42,12=-=-c b .即6,3==c b .所以,符合条件的正整数仅有一组:6,3,2===c b a .。
2008年全国 初中数学联赛(含答案)
12008年全国初中数学联合竞赛试题参考答案及评分标准说明:评阅试卷时,请依据本评分标准.第一试,选择题和填空题只设7分和0分两档;第二试各题,请按照本评分标准规定的评分档次给分.如果考生的解答方法和本解答不同,只要思路合理,步骤正确,在评卷时请参照本评分标准划分的档次,给予相应的分数.第一试一、选择题(本题满分42分,每小题7分)本题共有6小题,每题均给出了代号为A ,B ,C ,D 的四个答案,其中有且仅有一个是正确的.将你所选择的答案的代号填在题后的括号内.每小题选对得7分;不选、选错或选出的代号字母超过一个(不论是否写在括号内),一律得0分.1.设213a a +=,213b b +=,且a b ≠,则代数式2211a b+的值为 ( ) A .5 B .7 C .9 D .11.【答案】B【解析】 由题设条件可知2310a a -+=,2310b b -+=,且a b ≠,所以a ,b 是一元二次方程2310x x -+=的两根,故3a b +=,1ab =,因此222222222211()23217()1a b a b ab a b a b ab ++--⨯+====. 故选B 2.如图,设AD ,BE ,CF 为三角形ABC 的三条高,若6AB =,5BC =,3EF =,则线段BE 的长为( )EFDCBA2A .185B .4C .215D .245【答案】D【解析】 因为AD ,BE ,CF 为三角形ABC 的三条高,易知B ,C ,E ,F 四点共圆,于是AEF ABC △∽△,故35AF EF AC BC ==,即3cos 5BAC ∠=,所以4sin 5BAC ∠=. 在Rt ABE △中,424sin 655BE AB BAC =∠=⨯=.故选D3.从分别写有数字1,2,3,4,5的5张卡片中任意取出两张,把第一张卡片上的数字作为十位数字,第二张卡片上的数字作为个位数字,组成一个两位数,则所组成的数是3的倍数的概率是 ( )A .15B .310C .25D .12. 【答案】C【解析】 能够组成的两位数有12,13,14,15,21,23,24,25,31,32,34,35,41,42,43,45,51,52,53,54,共20个,其中是3的倍数的数为12,15,21,24,42,45,51,54,共8个.所以所组成的数是3的倍数的概率是82205=.故选C 4.在ABC △中,12ABC ∠=o ,132ACB ∠=o ,BM 和CN 分别是这两个角的外角平分线,且点M ,N 分别在直线AC 和直线AB 上,则 ( )3A .BM CN >B .BM CN =C .BM CN <D .BM 和CN 的大小关系不确定【答案】B【解析】 ∵12ABC ∠=o ,BM 为ABC ∠的外角平分线,∴1(18012)842MBC ∠=-=o o o.又180********BCM ACB ∠=-∠=-=o o o o ,∴180844848BMC ∠=--=o o o o ,∴BM BC =.又11(180)(180132)2422ACN ACB ∠=-∠=-=o o o o,∴18018012()BNC ABC BCN ACB ACN ∠=-∠-∠=--∠+∠o o o 168(13224)=-+o o o12ABC ==∠o ,∴CN CB =. 因此,BM BC CN ==.故选B5.现有价格相同的5种不同商品,从今天开始每天分别降价10%或20%,若干天后,这5种商品的价格互不相同,设最高价格和最低价格的比值为r ,则r 的最小值为 ( )A .398T ⎛⎫ ⎪⎝⎭.B .498⎛⎫ ⎪⎝⎭.C .598⎛⎫⎪⎝⎭. D .98.【答案】B.【解析】 容易知道,4天之后就可以出现5种商品的价格互不相同的情况.设5种商品降价前的价格为a ,过了n 天. n 天后每种商品的价格一定可以表示为4()()98110%120%1010kn kkn ka a --⎛⎫⎛⎫⋅-⋅-=⋅⋅ ⎪⎪⎝⎭⎝⎭,其中k 为自然数,且0k n ≤≤.要使r 的值最小,五种商品的价格应该分别为:981010in ia -⎛⎫⎛⎫⋅⋅ ⎪⎪⎝⎭⎝⎭,1188(1010i n i a +--⎛⎫⎛⎫⋅⋅ ⎪ ⎪⎝⎭⎝⎭,22991010i n i a +--⎛⎫⎛⎫⋅⋅ ⎪ ⎪⎝⎭⎝⎭,33981010i n i a +--⎛⎫⎛⎫⋅⋅ ⎪⎪⎝⎭⎝⎭,44981010i n i a +--⎛⎫⎛⎫⋅⋅ ⎪⎪⎝⎭⎝⎭,其中i 为不超过n 的自然数.所以r 的最小值为44498910108981010i n i i n ia a +---⎛⎫⎛⎫⋅⋅ ⎪ ⎪⎛⎫⎝⎭⎝⎭= ⎪⎝⎭⎛⎫⎛⎫⋅⋅ ⎪ ⎪⎝⎭⎝⎭.故选B . 6.已知实数x ,y 满足(22200820082008x x y y --=,则223233x y x y -+-2007-的值为( )A .2008-B .2008C .1-D .1.【答案】D .【解析】 ∵(22200820082008x x y y --=,∴222200820082008x x y y y y -=---222200820082008y y x x x x -=---由以上两式可得x y =.所以(2220082008x x -=,解得22008x =,所以522222323320073233200720071x y x y x x x x x -+--=-+--=-=.故选D .二、填空题(本题满分28分,每小题7分)1.设51a -,则5432322a a a a a a a +---+=- . 【答案】 2-【解析】 ∵2251351a a --==-⎝⎭,∴21a a +=, ∴()()32325432322222a a a a a a a a a a a a a a a a+--+++---+=-⋅- ()()333322212111(11)211a a a a a a a a a a a--+--===-=-++=-+=-⋅----. 2.如图,正方形ABCD 的边长为1,M ,N 为BD 所在直线上的两点,且5AM 135MAN ∠=o ,则四边形AMCN 的面积为 .【答案】 52【解析】 设正方形ABCD 的中心为O ,连AO ,则AO BD ⊥,2AO OB = ()222223252MO AM AO ⎛⎫-- ⎪ ⎪⎝⎭O MND CBA6∴2MB MO OB =-又135ABM NDA ∠=∠=o ,13590NAD MAN DAB MAB MAB ∠=∠-∠-∠=--∠o o 45MAB AMB =-∠=∠o ,所以ADN MBA △∽△,故AD DN MB BA =,从而212AD DN BA MB =⋅=. 根据对称性可知,四边形AMCN 的面积1122522222222MAN S S MN AO ==⨯⨯⨯=⨯⨯+=⎝△. 3.已知二次函数2y x ax b =++的图象与x 轴的两个交点的横坐标分别为m ,n ,且1m n +≤.设满足上述要求的b 的最大值和最小值分别为p ,q ,则p q += .【答案】 12【解析】 根据题意,m ,n 是一元二次方程20x ax b ++=的两根,所以m n a +=-,mn b =.∵1m n +≤,∴1m n m n ++≤≤,1m n m n -+≤≤.∵方程20x ax b ++=的判别式240a b ∆=-≥,∴22()1444a m nb +=≤≤. 22244()()()11b mn m n m n m n ==+--+--≥≥,故14b -≥,等号当且仅当12m n =-=时取得;22244()()1()1b mn m n m n m n ==+----≤≤,故14b ≤,等号当且仅当12m n ==时取得.7所以14p =,14q =-,于是12p q +=.4.依次将正整数1,2,3,…的平方数排成一串:149162536496481100121144…,排在第1个位置的数字是1,排在第5个位置的数字是6,排在第10个位置的数字是4,排在第2008个位置的数字是 .【答案】 1【解析】 21到23,结果都只各占1个数位,共占133⨯=个数位;24到29,结果都只各占2个数位,共占2612⨯=个数位;210到231,结果都只各占3个数位,共占32266⨯=个数位;232到299,结果都只各占4个数位,共占468272⨯=个数位;2100到2316,结果都只各占5个数位,共占52171085⨯=个数位;此时还差2008(312662721085)570-++++=个数位.2317到2411,结果都只各占6个数位,共占695570⨯=个数位.所以,排在第2008个位置的数字恰好应该是2411的个位数字,即为1.第二试 (A )一.(本题满分20分)8已知221a b +=,对于满足条件01x ≤≤的一切实数x ,不等式(1)(1)()0a x x ax bx b x bx ------≥ ①恒成立.当乘积ab 取最小值时,求a ,b 的值.【解析】 整理不等式①并将221a b +=代入,得2(1)(21)0a b x a x a ++-++≥ ②在不等式②中,令0x =,得0a ≥;令1x =,得0b ≥.易知10a b ++>,21012(1)a ab +<<++,故二次函数2(1)(21)y a b x a x a =++-++的图象(抛物线)的开口向上,且顶点的横坐标在0和1之间.由题设知,不等式②对于满足条件01x ≤≤的一切实数x 恒成立,所以它的判别式2(21)4(1)0a a b a ∆=+-++⋅≤,即14ab ≥.由方程组221,14a b ab ⎧+=⎪⎨=⎪⎩ ③ 消去b ,得42161610a a -+=,所以223a -或223a +=. 又因为0a ≥,所以62a -或62a +,9于是方程组③的解为6262a b ⎧-=⎪⎪⎨+⎪=⎪⎩或6262a b ⎧+⎪⎪⎨-⎪=⎪⎩所以ab 的最小值为14,此时,a b 的值有两组,分别为 62a -,62b +和62a +=,62b -=.二.(本题满分25分)如图,圆O 与圆D 相交于,A B 两点,BC 为圆D 的切线,点C 在圆O 上,且AB BC =.⑴ 证明:点O 在圆D 的圆周上.⑵ 设△ABC 的面积为S ,求圆D 的的半径r 的最小值.【解析】 ⑴ 连OA ,OB ,OC ,AC ,因为O 为圆心,AB BC =,所以△OBA ∽△OBC ,从而OBA OBC ∠=∠.因为OD AB ⊥,DB BC ⊥,所以9090DOB OBA OBC DBO ∠=-∠=-∠=∠o o ,所以DB DO =,因此点O 在圆D 的圆周上.⑵ 设圆O 的半径为a ,BO 的延长线交AC 于点E ,易知CE OABD10BE AC ⊥.设2AC y =(0)y a <≤,OE x =,AB l =,则222a x y =+,()S y a x =+,22222222()2222()aSl y a x y a ax x a ax a a x y=++=+++=+=+=. 因为22ABC OBA OAB BDO ∠=∠=∠=∠,AB BC =,DB DO =,所以BDO ABC △∽△,所以BD BOAB AC=,即2r a l y =,故2al r y =.所以322222224422a l a aS S a S r y y y y ⎛⎫==⋅=⋅ ⎪⎝⎭≥,即2S r 其中等号当a y =时成立,这时AC是圆O 的直径.所以圆D 的的半径r 2S三.(本题满分25分)设a 为质数,b 为正整数,且()()2925094511a b a b +=+①求a ,b 的值.【解析】 ①式即2634511509509a b a b++⎛⎫= ⎪⎝⎭,设63509a b m +=,4511509a b n +=,则 509650943511m a n ab --== ②故351160n m a -+=,又2n m =,所以2351160m m a -+=③由①式可知,2(2)a b +能被509整除,而509是质数,于是2a b +能被509整除,故m 为整数,即关于m 的一元二次方程③有整数根,所以它的判别式251172a ∆=-为完全平方数.11不妨设2251172a t ∆=-=(t 为自然数),则2272511(511)(511)a t t t =-=+-.由于511t +和511t -的奇偶性相同,且511511t +≥,所以只可能有以下几种情况:①51136,5112,t a t +=⎧⎨-=⎩两式相加,得3621022a +=,没有整数解.②51118,5114,t a t +=⎧⎨-=⎩两式相加,得1841022a +=,没有整数解. ③51112,5116,t a t +=⎧⎨-=⎩两式相加,得1261022a +=,没有整数解. ④5116,51112,t a t +=⎧⎨-=⎩两式相加,得6121022a +=,没有整数解.⑤5114,51118,t a t +=⎧⎨-=⎩两式相加,得4181022a +=,解得251a =. ⑥5112,51136,t a t +=⎧⎨-=⎩两式相加,得2361022a +=,解得493a =,而4931729=⨯不是质数,故舍去.综合可知251a =.此时方程③的解为3m =或5023m =(舍去). 把251a =,3m =代入②式,得5093625173b ⨯-⨯==.第二试 (B )12一.(本题满分20分)已知221a b +=,对于满足条件1x y +=,0xy ≥的一切实数对()x y ,,不等式220ay xy bx -+≥ ①恒成立.当乘积ab 取最小值时,求a ,b 的值.【解析】 由1x y +=,0xy ≥可知01x ≤≤,01y ≤≤.在①式中,令0x =,1y =,得0a ≥;令1x =,0y =,得0b ≥.将1y x =-代入①式,得22(1)(1)0a x x x bx ---+≥,即()()21210a b x a x a ++-++≥ ②易知10a b ++>,21012(1)a ab +<<++,故二次函数2(1)(21)y a b x a x a =++-++的图象(抛物线)的开口向上,且顶点的横坐标在0和1之间.由题设知,不等式②对于满足条件01x ≤≤的一切实数x 恒成立,所以它的判别式2(21)4(1)0a a b a ∆=+-++⋅≤,即14ab ≥由方程组221,14a b ab ⎧+=⎪⎨=⎪⎩ ③ 消去b ,得42161610a a -+=,所以223a -或223a +=,13又因为0a ≥,所以62a -或62a +. 于是方程组③的解为6262ab ⎧-=⎪⎪⎨+⎪=⎪⎩或6262a b ⎧+⎪⎪⎨-⎪=⎪⎩所以满足条件的a ,b 的值有两组,分别为62a -=,62b +和62a +,62b -= 二.(本题满分25分)题目和解答与(A )卷第二题相同.三.(本题满分25分)题目和解答与(A )卷第三题相同.第二试 (C )一.(本题满分20分)题目和解答与(B )卷第一题相同.二.(本题满分25分)题目和解答与(A )卷第二题相同.三.(本题满分25分)设a 为质数,b ,c 为正整数,且满足29(22)509(41022511)2a b c a b c b c ⎧+-=+-⎨-=⎩①②14求()a b c +的值.【解析】 ①式即266341022511509509a b c a b c+-+-⎛⎫=⎪⎝⎭, 设663509a b c m +-=,41022511509a b cn +-=,则5096509423511m a n ab c ---== ③ 故351160n m a -+=,又2n m =,所以2351160m m a -+= ④由①式可知,2(22)a b c +-能被509整除,而509是质数,于是22a b c +-能被509整除,故m 为整数,即关于m 的一元二次方程④有整数根,所以它的判别式251172a ∆=-为完全平方数.不妨设2251172a t ∆=-=(t 为自然数),则2272511(511)(511)a t t t =-=+-.由于511t +和511t -的奇偶性相同,且511511t +≥,所以只可能有以下几种情况:①51136,5112,t a t +=⎧⎨-=⎩两式相加,得3621022a +=,没有整数解. ②51118,5114,t a t +=⎧⎨-=⎩两式相加,得1841022a +=,没有整数解.③51112,5116,t a t +=⎧⎨-=⎩两式相加,得1261022a +=,没有整数解. ④5116,51112,t a t +=⎧⎨-=⎩两式相加,得6121022a +=,没有整数解.15⑤5114,51118,t a t +=⎧⎨-=⎩两式相加,得4181022a +=,解得251a =. ⑥5112,51136,t a t +=⎧⎨-=⎩两式相加,得2361022a +=,解得493a =,而4931729=⨯不是质数,故舍去.综合可知251a =,此时方程④的解为3m =或5023m =(舍去). 把251a =,3m =代入③式,得50936251273b c ⨯-⨯-==,即27c b =-.代入②式得(27)2b b --=,所以5b =,3c =,因此()251(53)2008a b c +=⨯+=.。
2008年全国初中数学联赛四川初赛试卷
A.叶 6 c O +>
6 .已知 、 是 i个非负 实数 ,满  ̄ 3+ yz 5 H z2 若 : .x 2 += , -= ,
S 2 + 一 . 的 最 大 值 与最 小 值 的 和 为 ( : x 3 则5
A.5 B.6 C.7
)
D.8
●
●●●●__^_^_^__●●________ 一
1 若一 ≤ . ≤lⅡ 式了、 丽 ,! l /
2
4 .如 图3 △‘B 内接 于 OD, 曰 C, , 4 C 且A 直径AD交B 于E, C )
B.5 C.2 + x 3 D. x 3 4+
等于 (
A.— 3 4十
解得 盟 ±
2
7 三 .
4
3 115 .( )0 g
( )0 ,6 g 24 % 3 0k
当
一 / 时。 一、
2
8 1n 一 2 3 .( )> 1( )
9 1 1 0 ( ) 9 .( ) 0 2 2 2 8 5 1 . 2 . 1 m 0 长 8 m 宽 4c c
4 .61: 2 10
(在 标 + , 3) 3 , 为3 丁 - )坐 1 存 + V
或 3 x 3- ! 一/ ,三
2
因 为x+ x d- 的 根 是b d 2c + - O 和 .
所 以6 — b- c. d d =
1由. , 略 理
( ) 一 若d≠0 则 由6 知易 l , d =
的 内心 是 , △A
求 证 :1A2,、 、 ( ) I2 3 、 , A 四点 共 圆 ;2 /1 := 0 . ( ) 厶 9 。
图 1
2008年全国初中数学竞赛试题参考答案.doc
中国教育学会中学数学教学专业委员会“《数学周报》杯”2008年全国初中数学竞赛试题参考答案一、选择题(共5小题,每小题6分,满分30分. 以下每道小题均给出了代号为A ,B ,C ,D 的四个选项,其中有且只有一个选项是正确的. 请将正确选项的代号填入题后的括号里. 不填、多填或错填都得0分)1.已知实数x y ,满足 42424233y y x x -=+=,,则444y x+的值为( ).(A )7 (B )(C ) (D )5 【答】(A )解:因为20x >,2y ≥0,由已知条件得21x ==, 2y ==, 所以 444y x +=22233y x++- 2226y x =-+=7. 2.把一枚六个面编号分别为1,2,3,4,5,6的质地均匀的正方体骰子先 后投掷2次,若两个正面朝上的编号分别为m ,n ,则二次函数2y x mx n =++的图象与x 轴有两个不同交点的概率是( ).(A )512 (B )49 (C )1736 (D )12【答】(C )解:基本事件总数有6×6=36,即可以得到36个二次函数. 由题意知∆=24m n ->0,即2m >4n .通过枚举知,满足条件的m n ,有17对. 故1736P =. 3.有两个同心圆,大圆周上有4个不同的点,小圆周上有2个不同的点,则这6个点可以确定的不同直线最少有( ).(A )6条 (B ) 8条 (C )10条 (D )12条(第3题)【答】(B )解:如图,大圆周上有4个不同的点A ,B ,C ,D ,两两连线可以确定6条不同的直线;小圆周上的两个点E ,F 中,至少有一个不是四边形ABCD的对角线AC 与BD 的交点,则它与A ,B ,C ,D的连线中,至少有两条不同于A ,B ,C ,D 的两两连线.从而这6个点可以确定的直线不少于8条.当这6个点如图所示放置时,恰好可以确定8条直线.所以,满足条件的6个点可以确定的直线最少有8条.4.已知AB 是半径为1的圆O 的一条弦,且1AB a =<.以AB 为一边在圆O 内作正△ABC ,点D 为圆O 上不同于点A 的一点,且DB AB a ==,DC 的延长线交圆O 于点E ,则AE 的长为( ).(A)2a (B )1 (C)2 (D )a 【答】(B )解:如图,连接OE ,OA ,OB . 设D α∠=,则120ECA EAC α∠=︒-=∠.又因为()1160180222ABO ABD α∠=∠=︒+︒- 120α=︒-,所以ACE △≌ABO △,于是1AE OA ==.5.将1,2,3,4,5这五个数字排成一排,最后一个数是奇数,且使得其中任意连续三个数之和都能被这三个数中的第一个数整除,那么满足要求的排法有( ).(A )2种 (B )3种 (C )4种 (D )5种【答】(D )解:设12345a a a a a ,,,,是1,2,3,4,5的一个满足要求的排列.首先,对于1234a a a a ,,,,不能有连续的两个都是偶数,否则,这两个之后都是偶数,与已知条件矛盾.(第4题)又如果i a (1≤i ≤3)是偶数,1i a +是奇数,则2i a +是奇数,这说明一个偶数后面一定要接两个或两个以上的奇数,除非接的这个奇数是最后一个数.所以12345a a a a a ,,,,只能是:偶,奇,奇,偶,奇,有如下5种情形满足条件:2,1,3,4,5; 2,3,5,4,1; 2,5,1,4,3;4,3,1,2,5; 4,5,3,2,1.二、填空题(共5小题,每小题6分,满分30分)6.对于实数u ,v ,定义一种运算“*”为:u v uv v *=+.若关于x 的方程1()4x a x **=-有两个不同的实数根,则满足条件的实数a 的取值范围是 .【答】0a >,或1a <-. 解:由1()4x a x **=-,得 21(1)(1)04a x a x ++++=, 依题意有 210(1)(1)0a a a +≠⎧⎨∆=+-+>⎩,,解得,0a >,或1a <-.7.小王沿街匀速行走,发现每隔6分钟从背后驶过一辆18路公交车,每隔3分钟从迎面驶来一辆18路公交车.假设每辆18路公交车行驶速度相同,而且18路公交车总站每隔固定时间发一辆车,那么发车间隔的时间是 分钟.【答】4.解:设18路公交车的速度是x 米/分,小王行走的速度是y 米/分,同向行驶的相邻两车的间距为s 米.每隔6分钟从背后开过一辆18路公交车,则s y x =-66. ①每隔3分钟从迎面驶来一辆18路公交车,则s y x =+33. ②由①,②可得 x s 4=,所以4=xs . 即18路公交车总站发车间隔的时间是4分钟. 8.如图,在△ABC 中,AB =7,AC =11,点M 是BC的中点, AD 是∠BAC 的平分线,MF ∥AD ,则FC 的长为 .【答】9.解:如图,设点N 是AC 的中点,连接MN ,则MN ∥AB .又//MF AD ,所以 FMN BAD DAC MFN ∠=∠=∠=∠, 所以 12FN MN AB ==. 因此 1122FC FN NC AB AC =+=+=9. 9.△ABC 中,AB =7,BC =8,CA =9,过△ABC 的内切圆圆心I 作DE ∥BC ,分别与AB ,AC 相交于点D ,E ,则DE 的长为 . 【答】163. 解:如图,设△ABC 的三边长为a ,b ,c ,内切圆I 的半径为r ,BC 边上的高为a h ,则11()22a ABC ah S abc r ==++△, 所以 a r a h a b c=++. 因为△ADE ∽△ABC ,所以它们对应线段成比例,因此a a h r DE h BC -=, 所以 (1)(1)a a a h r r a DE a a a h h abc -=⋅=-=-++ ()a b c a b c+=++, (第8题) (第8题答案) (第8题答案图)(第9题答案)故 879168793DE ⨯+==++(). 10.关于x ,y 的方程22208()x y x y +=-的所有正整数解为 .【答】481603232.x x y y ==⎧⎧⎨⎨==⎩⎩,,, 解:因为208是4的倍数,偶数的平方数除以4所得的余数为0,奇数的平方数除以4所得的余数为1,所以x ,y 都是偶数.设2,2x a y b ==,则22104()a b a b +=-,同上可知,a ,b 都是偶数.设2,2a c b d ==,则2252()c d c d +=-,所以,c ,d 都是偶数.设2,2c s d t ==,则2226()s t s t +=-,于是 22(13)(13)s t -++=2213⨯, 其中s ,t 都是偶数.所以222(13)213(13)s t -=⨯-+≤2222131511⨯-<. 所以13s -可能为1,3,5,7,9,进而2(13)t +为337,329,313,289,257,故只能是2(13)t +=289,从而13s -=7.于是62044s s t t ==⎧⎧⎨⎨==⎩⎩,,;,因此 481603232.x x y y ==⎧⎧⎨⎨==⎩⎩,,, 三、解答题(共4题,每题15分,满分60分)11.在直角坐标系xOy 中,一次函数b kx y +=0k ≠()的图象与x 轴、y 轴的正半轴分别交于A ,B 两点,且使得△OAB 的面积值等于3OA OB ++.(1) 用b 表示k ;(2) 求△OAB 面积的最小值.解:(1)令0=x ,得0y b b =>,;令0=y ,得00b x k k=-><,. 所以A ,B 两点的坐标分别为0)(0)b A B b k-(,,,,于是,△OAB 的面积为 )(21kb b S -⋅=. 由题意,有3)(21++-=-⋅b kb k b b , 解得 )3(222+-=b b b k ,2b >. ……………… 5分(2)由(1)知21(3)(2)7(2)10()222b b b b b S b k b b +-+-+=⋅-==--21027)72b b =-++=++-≥1027+,当且仅当1022b b -=-时,有S =102+=b ,1-=k 时,不等式中的等号成立. 所以,△OAB 面积的最小值为1027+.……………… 15分12.已知a b ,为正整数,关于x 的方程220x ax b -+=的两个实数根为12x x ,,关于y 的方程220y ay b ++=的两个实数根为12y y ,,且满足11222008x y x y -=.求b 的最小值.解:关于x 的方程220x ax b -+=的根为a ,关于y 的方程220y ay b ++=的根为a -.t =,则当1212x a t x a t y a t y a t =+=-=-+=--,;,时,有11220x y x y -=,不满足条件;当1212x a t x a t y a t y a t =-=+=--=-+,;,时,有11220x y x y -=,不满足条件;当1212x a t x a t y a t y a t =-=+=-+=--,;,时,得11224x y x y at -=;当1212x a t x a t y a t y a t =+=-=--=-+,;,时,得11224x y x y at -=-.由于0t =>,于是有502at =.……………… 10分又由于a 为正整数,得知t 是有理数,从而t 是整数.由502at =,得2512a t ==,,即b 取最小值为22b a t =-=22251262997-=.所以,b 的最小值为62997.……………… 15分13.是否存在一个三边长恰是三个连续正整数,且其中一个内角等于另一个内角2倍的△ABC ?证明你的结论.解:存在满足条件的三角形.当△ABC 的三边长分别为6=a ,4=b ,5=c 时,B A ∠=∠2.……………… 5分 如图,当B A ∠=∠2时,延长BA 至点D ,使b AC AD ==.连接CD ,则△ACD 为等腰三角形.因为BAC ∠为△ACD 的一个外角,所以2BAC D ∠=∠.由已知,2BAC B ∠=∠,所以D B ∠=∠.所以△CBD 为等腰三角形. 又D ∠为△ACD 与△CBD 的一个公共角,有△ACD ∽△CBD ,于是BD CD CD AD =, 即 cb a a b +=, 所以 ()c b b a +=2.而264(45)=⨯+,所以此三角形满足题设条件,故存在满足条件的三角形.……………… 15分说明:满足条件的三角形是唯一的.若B A ∠=∠2,可得()c b b a +=2.有如下三种情形:(第13(A )题答案)(i )当b c a >>时,设1+=n a ,n c =,1-=n b (n 为大于1的正整数), 代入()c b b a +=2,得()()()21121n n n +=--,解得5=n ,有6=a ,4=b ,5=c ; (ⅱ)当b a c >>时,设1+=n c ,n a =,1-=n b (n 为大于1的正整数), 代入()c b b a +=2,得()n n n 212⋅-=,解得 2=n ,有2=a ,1=b ,3=c ,此时不能构成三角形;(ⅲ)当c b a >>时,设1+=n a ,n b =,1-=n c (n 为大于1的正整数), 代入()c b b a +=2,得()()1212-=+n n n ,即 0132=--n n ,此方程无整数解. 所以,三边长恰为三个连续的正整数,且其中一个内角等于另一个内角的2倍的三角形存在,而且只有三边长分别为4,5,6构成的三角形满足条件.14.从1,2,…,9中任取n 个数,其中一定可以找到若干个数(至少一个,也可以是全部),它们的和能被10整除,求n 的最小值.解:当n =4时,数1,3,5,8中没有若干个数的和能被10整除.……………… 5分当n =5时,设125a a a ,,,是1,2,…,9中的5个不同的数.若其中任意若干个数,它们的和都不能被10整除,则125a a a ,,,中不可能同时出现1和9;2和8;3和7;4和6.于是125a a a ,,,中必定有一个数是5.若125a a a ,,,中含1,则不含9.于是不含4(4+1+5=10),故含6;于是不含3(3+6+1=10),故含7;于是不含2(2+1+7=10),故含8.但是5+7+8=20是10的倍数,矛盾.若125a a a ,,,中含9,则不含1.于是不含6(6+9+5=20),故含4;于是不含7(7+4+9=20),故含3;于是不含8(8+9+3=10),故含2.但是5+3+2=10是10的倍数,矛盾.综上所述,n 的最小值为5. ……………… 15分情感语录1.爱情合适就好,不要委屈将就,只要随意,彼此之间不要太大压力2.时间会把最正确的人带到你身边,在此之前,你要做的,是好好的照顾自己3.女人的眼泪是最无用的液体,但你让女人流泪说明你很无用4.总有一天,你会遇上那个人,陪你看日出,直到你的人生落幕5.最美的感动是我以为人去楼空的时候你依然在6.我莫名其妙的地笑了,原来只因为想到了你7.会离开的都是废品,能抢走的都是垃圾8.其实你不知道,如果可以,我愿意把整颗心都刻满你的名字9.女人谁不愿意青春永驻,但我愿意用来换一个疼我的你10.我们和好吧,我想和你拌嘴吵架,想闹小脾气,想为了你哭鼻子,我想你了11.如此情深,却难以启齿。
2008年全国初中数学联赛四川初赛试卷
2008年全国初中数学联赛四川初赛试卷(3月21日下午2:30━4:30或3月22日上午9:00━11:00)学校___________________年级___________班 姓名_________________一、选择题(本大题满分42分,每小题7分) 1、若121≤≤-x ,则式子1449612222++++-++-x x x x x x 等于( ) (A )-4x +3 (B )5 (C )2x +3 (D )4x +32、用三种边长相等的正多边形地砖铺地,其顶点拼在一起,刚好能完全铺满地面.已知正多边形的边数为x 、y 、z ,则zy x 111++的值为( ) (A )1 (B )32 (C )21 (D )313、已知a 为非负整数,关于x 的方程0412=+---a x a x 至少有一个整数根,则a 可能取值的个数为( )(A )4 (B )3 (C )2 (D ) 14、如图,设△ABC 和△CDE 都是正三角形,且∠EBD =62o ,则∠AEB 的度数是( ) (A )124o (B )122o (C )120o (D )118o5、如图,直线x =1是二次函数y =ax 2+bx +c 的图象的对称轴,则有( ) (A )a +b +c >0 (B )b >a +c(C )abc <0 (D )c >2b6、已知x 、y 、z 是三个非负实数,满足3x +2y +z =5,x +y -z =2,若S =2x +y -z ,则S 的最大值与最小值的和为( ) (A )5 (B )6 (C )7 (D )8二、填空题(本大题满分28分,每小题7分)1、已知a 是方程x 2-5x +1=0的一个根,则44-+a a 的个位数字为_____________. 2、在凸四边形ABCD 中,对角线AC 、BD 交于O 点,若S △OAD =4,S △OBC =9,则凸四边形ABCD 面积的最小值为__________________.3、实数x 、y 满足x 2-2x -4y =5,记t =x -2y ,则t 的取值范围为___________________.4、如图,△ABC内接于⊙O,且AB=AC,直径AD交BC于E,F是OE的中点.如果BD//CF,BC=25,则线段CD的长度为__________________.三、(本大题满分20分)已知方程x2+ax-b=0的根是a和c,方程x2+cx+d=0的根是b和d.其中,a、b、c、d为不同实数,求a、b、c、d的值.四、(本大题满分25分)如图,四边形A1A2A3A4内接于一圆,△A1A2A3的内心是I1,△A2A3A4的内心是I2,△A3A4A1的内心是I3.求证:(1)A2、I1、I2、A3四点共圆;(2)∠I1I2I3=90o.五、(本大题满分25分)如图,将3枚相同硬币依次放入一个4×4的正方形格子中(每个正方形格子只能放1枚硬币).求所放的3枚硬币中,任意两个都不同行且不同列的概率.2008年全国初中数学联赛四川初赛试卷参考答案及评分细则一、选择题(本题满分42分,每小题7分)1、B2、C3、B4、B5、D6、A 二、填空题(本大题满分28分,每小题7分) 1、7 2、25 3、29≤t 4、6 三、(本大题20分)解:∵方程x 2+ax -b =0的根是a 和c ,∴a +c =-a ,ac =-b ∵x 2+cx +d =0的根是b 和d ,∴b +d =-c ,bd =d ······································· 5分 (一)若d ≠0,则由bd =d 知b =1由a +c =-a 知c =-2a ,由ac =-b 知-2a 2=-1,解得22±=a ················· 10分 当22=a 时,2-=c 得d =-c -b =12-; ········································· (1) 当22-=a 时2=c ,得d =-c -b =12--. ······································· (2) 经验证,22±=a ,b =1,2 =c ,d =12-±是符合条件的两组解. ······· 15分 (二)若d =0,则b =-c ,由a +c =-a 知c =-2a ,由ac =-b 知ac =c 若c =0,则a =0,这与a 、b 、c 、d 是不同的实数矛盾. 若c ≠0,则a =1,再由c =-2a 知c =-2,从而b =-c =2 经验证,a =1,b =2,c =-2,d =0也是符合条件的解. ································ 20分 四、(本大题25分) 证明:(1)如图,连结I 1A 1,I 1A 2,I 1A 3,I 2A 2和I 2A 3∵I 1是△A 1A 2A 3的内心,∴∠I 1A 1A 2=∠I 1A 1A 3=21∠A 2A 1A 3 ∠I 1A 2A 1=∠I 1A 2A 3=21∠A 1A 2A 3,∠I 1A 3A 1=∠I 1A 3A 2=21∠A 1A 3A 2 ···················· 5分延长A 1I 1交四边形A 1A 2A 3A 4外接圆于P ,则∠A 2I 1A 3=∠A 2I 1P +∠PI 1A 3=∠I 1A 1A 2+∠I 1A 2A 1+∠I 1A 1A 3+∠I 1A 3A 1 =21(∠A 2A 1A 3+∠A 1A 2A 3+∠A 2A 3A 1)+21∠A 2A 1A 3=90o +21∠A 2A 1A 3 ··············· 10分同理∠A 2I 2A 3=90o +21∠A 2A 4A 3,又∵四边形A 1A 2A 3A 4内接于一圆 ∴∠A 2A 1A 3=∠A 2A 4A 3,∴∠A 2I 1A 3=∠A 2I 2A 3.∴A 2、I 1、I 2、A 3四点共圆.········ 15分 (2)又连结I 3A 4,则由(1)知A 3、I 2、I 3、A 4四点共圆∴∠I 1I 2A 3=180o -∠I 1A 2A 3=180o -21∠A 1A 2A 3 同理∠I 3I 2A 3=180o -∠I 3A 4A 3=180o -21∠A 1A 4A 3 ··········································· 20分∴∠I 1I 2I 3=360o -(∠I 1I 2A 3+∠I 3I 2A 3)=21(∠A 1A 2A 3+∠A 1A 4A 3)=90o ················· 25分五、(本大题25分)解:1、计算总的放法数N :第一枚硬币放入16个格子有16种放法;第二枚硬币放入剩下的15个格子有15种放法;第三枚硬币放入剩下的14个格子有14种放法.所以,总的放法数N =16×15×14=3360. ············································ 10分2、计算满足题目要求的放法数m :第一枚硬币放入16个格子有16种放法,与它不同行或不同列的格子有9个.因此,与第一枚硬币不同行或不同列的第二枚硬币有9种放法.与前两枚硬币不同行或不同列的格子有4个,第三枚硬币放入剩下的4个格子有4种放法.所以,满足题目要求的放法数m =16×9×4=576. ·································· 20分所求概率P =3561415164916=⨯⨯⨯⨯=N m . ·················································· 25分。
2008年四川省初中数学联赛初赛初二
2008年四川省初中数学联赛初赛(初二) 一、选择题(每小题7分,共42分)1.若a 、b 为实数,满足1a -1b =1a +b ,则b a -ab的值是( ).(A )-1 (B )0 (C )12 (D )12.下面四种说法:①一个有理数与一个无理数的和一定是无理数;②一个有理数与一个无理数的积一定是无理数;③两个无理数的和一定是无理数;④两个无理数的积一定是无理数.其中,正确的说法种数为( ).(A )1(B )2(C )3(D )43.已知一次函数y =kx +b ,其中kb >0.则所有符合条件的一次函数的图像一定通过( ).(A )第一、二象限(B )第二、三象限(C )第三、四象限(D )第一、四象限4.在凸四边形ABCD 中,E 、F 、G 、H 分别为AB 、BC 、CD 、DA 的中点,EG 与FH 交于点O .设四边形AEOH 、BFOE 、CGOF 的面积分别为3、4、5.则四边形DHOG 的面积为( ).(A )152 (B )154 (C )4 (D )65.已知x =20072008.则x 除以10的余数是( ).(A )1(B )3(C )7(D )96.设a 、b 、c 为互不相同的有理数,满足(b +2)2=(a +2)(c +2).则符合条件的a 、b 、c 共有( )组.(A )0(B )1(C )2(D )4二、填空题(每小题7分,共28分)1.关于x 的不等式|2x -1|<6的所有非负整数解的和为.2.已知x =12+3,y =12-3.则x 3+12xy +y 3=.3.用三种边长相等的正多边形地砖铺地,其顶点拼在一起,刚好能完全铺满地面.设正多边形的边数为x 、y 、z .则1x+1y+1z的值为.4.如图1,在梯形ABCD 中,AB ∥DC ,AB =AC ,DA =DB ,∠ADB =90°.则∠ACD 的度数等于.图1图2三、(20分)如图2,在梯形ABCD 中,AD ∥BC ,AC ⊥DB ,AC =5,∠DBC =30°.(1)求对角线BD 的长度;(2)求梯形ABCD 的面积.四、(25分)设实数x 满足3x -12-4x -23≥6x -35-1310.求2|x -1|+|x +4|的最小值.五、(25分)已知正整数a 、b 、c 满足a <b <c ,且ab +bc +ca =abc .求所有符合条件的a 、b 、c .参考答案一、1.D.由题设条件知b 2-a 2=ab .两边同时除以ab 得b a -a b=1.2.A.题目的四种说法中,①对,②、③、④错.3.B.由kb >0,知k 、b 同号.522008年第11期当k 、b 同为正数时,一次函数的图像通过第一、二、三象限;当k 、b 同为负数时,一次函数的图像通过第二、三、四象限.所以,符合条件的一次函数的图像一定通过第二、三象限.4. C.图3如图3,联结OA 、OB 、OC 、OD .则S △AEO =S △B EO , S △B FO =S △CFO , S △CG O =S △DG O , S △DH O =S △AH O .故S 四边形AEOH +S 四边形CFOG=S 四边形B FOE +S 四边形DH OG .所以,S 四边形DH OG =3+5-4=4.5.A.x 除以10的余数等于72008除以10的余数.又7,72,73,74,75,…除以10的余数分别为7,9,3,1,7,….它们以4为周期.又2008=502×4,于是,72008除以10的余数为1,即x 除以10的余数是1.6.A.因为(b +2)2=(a +2)(c +2),即b 2+2+22b =ac +2+(a +c )2,则 ac =b 2,a +c =2b .故a 2+c 2+2ac =(a +c )2=4b 2=4ac .所以,(a -c )2=0.因此,a =c ,与题设矛盾.二、1.6.原不等式等价于2x -1<6,2x -1>-6.解得-52<x <72.于是,符合条件的所有非负整数解为x =0,1,2,3.因此,所有非负整数解的和为6.2.64.易知x =2-3,y =2+ 3.于是,x +y =4.则x 3+12xy +y 3=x 3+y 3+3xy (x +y )=(x +y )3=64.3.12.依题意有x -2x×180°+y -2y×180°+z -2z×180°=360°.化简得1x+1y+1z=12.4.30°.图4如图4,过A 作AE ⊥CD 交CD 的延长线于E ,过D 作DF ⊥AB 于F .由DA =DB ,∠ADB =90°,知△ADB 为等腰直角三角形.故∠DBA =∠DAF =45°.因为AB ∥DC ,所以,∠ADE =45°.又DF ⊥AB ,则DF =12AB ,∠ADF =45°.所以,∠FDE =90°,即FD ⊥CD .由AE ⊥CD ,得AE ∥FD .又AF ∥ED ,故四边形AFDE 为平行四边形.从而,AE =DF =12AB =12AC .所以,∠ACD =30°.图5三、(1)如图5,过A 作AE ∥DB 交CB 的延长线于E .由AC ⊥DB , AE ∥DB]AC ⊥AE , ∠AEC =∠DBC =30°]∠EAC =90°,即△EAC 为直角三角形]EC =2AC =10]AE =EC 2-AC 2=102-52=5 3.又AD ∥BC 且AE ∥DB ,则四边形AEBD 为平行四边形.从而,DB =AE =5 3.(2)记梯形ABCD 的面积为S .过A 作AF 62中等数学⊥BC于F,则△AFE为直角三角形.因为∠AEF=30°,所以,AF=12AE=532,即梯形ABCD的高AF=532.又四边形AEBD为平行四边形,因此,AD=EB.故S=12(AD+BC)AF=12EC・AF=12×10×532=2532.四、原不等式两边同乘以30得15(3x-1)-10(4x-2)≥6(6x-3)-39.解得x≤2.记y=2|x-1|+|x+4|.(1)当x≤-4时,y=-2(x-1)-(x+4)=-3x-2.所以,y的最小值为(-3)×(-4)-2= 10,此时x=-4.(2)当-4≤x≤1时,y=-2(x-1)+(x+4)=-x+6.所以,y的最小值为5,此时x=1.(3)当1≤x≤2时,y=2(x-1)+(x+4)=3x+2.所以,y的最小值为5,此时x=1.综上所述,2|x-1|+|x+4|的最小值为5,在x=1时取到.五、由1≤a<b<c,知abc=ab+bc+ca<3bc.所以,a<3.故a=1或a=2.(1)当a=1时,有b+bc+c=bc,即b+c=0,这与b、c为正整数矛盾.(2)当a=2时,有2b+bc+2c=2bc,即bc-2b-2c=0.所以,(b-2)(c-2)=4.又2<b<c,则0<b-2<c-2.于是,b-2=1,c-2=4.从而,b=3,c=6.所以,符合条件的正整数仅有一组:a=2,b=3,c=6.(四川省数学竞赛委员会 提供)2008年全国高中数学联赛江苏赛区复赛第一试一、选择题(每小题6分,共36分)1.函数f(x)=cos4x+sin2x(x∈R)的最小正周期是( ).(A)π4(B)π2(C)π(D)2π2.已知平面上点的集合M={(x,y)|y=2x-x2},N={(x,y)|y=k(x+1)}.当M∩N≠ 时,k的取值范围是( ).(A)-33,33(B)0,33(C)-33,0(D)33,+∞3.“x2+y2<4”是“xy+4>2x+2y”成立的( ).(A)充分但不必要条件(B)必要但不充分条件(C)既不充分也不必要条件(D)充分必要条件4.已知关于x的方程x2-2ax+a2-4a =0至少有一个模为3的复数根.则实数a 的所有取值为( ).(A)1,9(B)-1,9,2-13(C)1,9,2+13(D)1,9,2-13图15.设f(x)是一个三次函数,f′(x)为其导函数.图1所示的是y=xf′(x)的图像的一部分.则f(x)的极大值与极722008年第11期。
初中数学全国联赛试卷
一、选择题(每题5分,共50分)1. 若一个等差数列的前三项分别为2、5、8,则该数列的公差是:A. 1B. 2C. 3D. 42. 下列函数中,是反比例函数的是:A. y = 2x + 3B. y = 3/xC. y = x^2D. y = √x3. 在直角坐标系中,点A(2,3)关于x轴的对称点是:A.(2,-3)B.(-2,3)C.(2,-3)D.(-2,-3)4. 一个长方体的长、宽、高分别为4cm、3cm、2cm,则该长方体的体积是:A. 24cm³B. 48cm³C. 60cm³D. 72cm³5. 若等腰三角形的底边长为10cm,腰长为8cm,则该三角形的面积是:A. 40cm²B. 50cm²C. 60cm²D. 80cm²6. 在下列图形中,面积最大的是:A. 正方形B. 长方形C. 等腰梯形D. 等边三角形7. 若一个等差数列的第n项为2n+1,则该数列的前10项和为:A. 110B. 120C. 130D. 1408. 下列方程中,有唯一解的是:A. 2x + 3 = 5B. 2x + 3 = 5xC. 2x + 3 = 5x + 2D. 2x + 3 = 5x - 29. 若a、b、c是等差数列的连续三项,且a + b + c = 18,则b的值为:A. 6B. 7C. 8D. 910. 下列命题中,正确的是:A. 平行四边形的对角线互相平分B. 所有等腰三角形都是等边三角形C. 矩形的对边平行且相等D. 所有圆的半径都相等二、填空题(每题5分,共50分)11. 若等差数列的第n项为an,且a1=2,d=3,则an=______。
12. 函数y = -x² + 4x - 3的图像与x轴的交点坐标为______。
13. 在直角坐标系中,点P(-2,5)关于原点的对称点是______。
14. 一个正方体的表面积为96cm²,则其棱长为______cm。
奥赛经典
奥赛经典——初中数学竞赛中的数论问题第一章 整数的封闭性运算【典型例题与基本方法】例1 (1995年全国联赛题)方程组⎩⎨⎧=+=+2363yz xz yz xy 的正整数解的组数是( ). A.1 B.2 C.3 D.4 例2 (2007年天津市竞赛题)八年级二班的同学参加社区公益活动——收集废旧电池,其中甲组同学平均每人收集17个,乙组同学平均每人收集20个,丙组同学平均每人收集21个.若这三个小组共收集了233个废旧电池,则这三个小组共有学生( )人.A.12B.13C.14D.15例3 (2002年“我爱数学”初中生夏令营竞赛题)如果一个正整数等于它的各位数字之和的4倍,那么,我们就把这个正整数叫做四合数.所有四合数的总和等于 .【解题思维策略分析】1.注意整数乘积或幂中的特殊因数例5 (2008年青少年数学国际城市邀请赛题)已知n 为正整数,使得()()()k n n n n n n 2621211=--+-++(k 是正整数).求所有可能的n 值的总和. 2.注意整数运算的封闭性例6 (2007年“新知杯”上海市竞赛题)求满足下列条件的正整数n 的所有可能值:对这样的n ,能找到实数a ,b ,使得函数()b ax x n x f ++=21对任意整数x ,()x f 都是整数. 3.注意在分数不等式中取整数的条件例7 已知n ,k 均为正整数,且满足不等式4396371<+-<k n k n .若对于某一给定的正整数n ,只有唯一的一个正整数k 使不等式成立.求所有符合要求的正整数n 中的最大值和最小值.【模拟实战】A 组1.若满足不等式137158<+<k n n 的整数k 只有一个,则正整数n 的最大值为( ). A.100 B.112 C.120 D.1502.若12032+m 是整数,则所有满足条件的正整数m 的和为( ).A.401B.800C.601D.12033.若直角三角形的一条直角边长为12,另两条边长均整数,则符合这样条件的直角三角形共有( )个.A.1B.6C.4D.无数多4.2009是一个具有如下性质的年号:它的各位数码之和为11.那么,自古至今,这种四位数的年号共出现过______次.5.(2005年全国联赛题)不超过100的自然数中,将凡是3或5的倍数的数相加,其和为_____.B 组1.(2008年四川省竞赛题)已知正整数a 、b 、c 满足c b a <<,且abc ca bc ab =++.求所有符合条件的a 、b 、c .2.(2009年南昌市竞赛题)已知n 是大于1的整数.求证:3n 可以写成两个正整数的平方差.3.(第4届中国趣味数学决赛题)有20堆石子,每堆都有2006粒石子.从任意19堆中各取一粒放入另一堆,称为一次操作.经过不足20次操作后,某一堆中有1990粒石子,另一堆石子数在2080到2100之间,这一堆石子有______粒.4.(1995年全国联赛(民族卷)题)已知正整数a 、b 、c 满足下列条件:c b a >>,()()()72=---c a c b b a ,且100<abc ,求a ,b ,c .5.(2006年全国联赛题)2006个都不等于119的正整数200621,,a a a Λ排成一行,其中任意连续若干项之和都不等于119,求200621a a a +++Λ的最小值.6.(第13届日本奥数决赛题)平太给大介出了一道计算题(A ,B 各代表两位数中各位上的数字,相同的字母代表相同的数字):=⨯BA AB .大介:“得数是2872.”平太:“不对”.大介:“个位的数字对吗?”平太:“对”.大介:“其它位的数字有对的吗?”平在:“这是保密的.但你调换一下四位数2872中4个数字的位置,就能得出正确答案.” 请求出正确答案.第二章 正整数的多项式表示及应用【典型例题与基本方法】例1 将()102010化为下列进位制的数:⑴二进位制的数;⑵八进位制的数.例2 试证:形如abcabc 的六位数总含有7,11,13的因数.例3 一个三位数xyz (其中x ,y ,z 互不相等),将其各个数位的数字重新排列,分别得到的最大数和最小数仍是三位数.若所得到的最大三位数与最小三位数之差是原来的三位数,求这个三位数.例4 设两个三位数xyz ,zyx 的乘积为一个五位数xzyyx (其中x ,y ,z 互不相等),求x ,y ,z.【解题思维策略分析】1.善于运用正整数的十进位制的多项式表示解题例5 若一个首位数字是1的六位数abcde 1乘以3所得的积是一个末位数字为1的六位数1abcde ,求原来的六位数.例6 有一个若干位的正整数,它的前两位数字相同,且它与它的反序数(011a a a a n n Λ-与n n a a a a 110-Λ互为反序数,其中00≠a ,0≠n a )之和为10879,求原数.2.会利用非十进位制多项式表示解题例7 设在三进位置中,数N 的表示是20位数:12112211122211112222.求N 在九进位制中表示最左边的一位数字.例8 设1987可以在b 进位制中写成三位数xyz ,且7891+++=++z y x ,试确定出所有可能的x ,y ,z 和b .【模拟实战】A 组1.M 表示一个两位数,N 表示一个三位数,如果把M 放在N 的左边,组成一个五位数,那么这个五位数是( ).A. M+NB. MNC. 10000M+ND. 1000M+N2.一个两位数,它是本身数字和的k 倍,将个位数字与十位数字交换位置后,组成一个新数,则新数为其数字和的( ).A.()1-k 倍B.()k -11倍C.()k -10倍D.()k -9倍3.在大于10、小于100的正整数中,数字变换位置后所得的数比原数增加9的数的个数为_____.4.一个两位数,它的各位数字和的3倍与这个数加起来所得的和恰好是原数的两个数字交换了位置所得的两位数,这样的两位数有____个.5.已知ab 为两位数,且满足bbb ab b a =⋅⋅,求这个两位数.6.求一个最小的正整数n ,它的个位数字为6,将6移到首位,所得的新数是原数的4倍.B 组1.已知一个四位数的各位数字的和与这个四位数相加等于2010,试求这个四位数.2.有一种室内游戏,魔术师要求某参赛者想好一个三位数abc ,然后,魔术师再要求他记下五个数acb 、bac 、bca 、cab 、cba ,并把这五个数加起来求出和N ,只要讲出N 的大小,魔术师就能说出原数abc 是什么.如果3194=N ,请你确定abc .3.两位数ab (个位数字与十位数字不同)的平方等于三位数xyz ;而这两位数ba 的平方恰好等于三位数zyx ,求上述两位属于三位数.4.(2008年全国联赛(江西卷)题)一本书共有61页,顺次编号1,2,...,61.某人在将这个数相加时,有两个两位数页码都错把个位数与十位数弄反了(形如ab 的两位数被当成了两位数ba ),结果得到的总和是2008.那么,书上这两个两位数页码之和的最大值是多少?5.(1998年“中小学数学杯”竞赛题)把()21101001.0化为十进制小数.6.(1998年长春市竞赛题)证明:1218-能被7整除.7.(江西省第4届“八一杯”竞赛题)求证:12222222101112131415-++-+-+-Λ能被5整除.8.(第5届沈阳市竞赛题)若m ,n 是两个自然数,且2>n ,那么12+m 不能被12-n 整除,试说明理由.9.(江西省第2届探索与应用能力竞赛题)将十进制数2002化成二进制数.10.(1997年广州市竞赛题)化()1084375.53为二进制小数.11.有一个写成7进制的三位数,如果把各位数码按相反顺序写出,并把它看成是九进制的三位数,且这两数相等,求这个数.12.在哪种进位制中,16324是125的平方?13.N 是整数,它的b 进制表示是777.求最小的正整数b ,使得N 是十进制整数的4次方.14.在哪种进制中,100134=⋅?15.(2007年“卡西欧杯”武汉市竞赛题)军训基地购买苹果慰问学员.已知苹果总数用八进位制表示为abc ,七进位制表示为cba .那么,苹果的总数用十进位制表示为_____.16.(1998年“中小学数学杯”竞赛题)化()81325为二进制数.17.(1995年“祖冲之”邀请赛决赛题)求证:对于任意进位制的数,10201都是合数.18.(第2届华杯赛决赛题)下面是两个1989位整数相乘:321Λ321Λ119891198911111111个个⨯. 问:乘积的数字和是多少?19.(第10届《中小学生数学报》邀请赛题)计算:⑴()()22101101111011010+;⑵()()2210101101101101-;⑶()()()222101101100111000000--.。
奥赛经典
奥赛经典——初中数学竞赛中的数论问题第一章 整数的封闭性运算【典型例题与基本方法】例1 (1995年全国联赛题)方程组⎩⎨⎧=+=+2363yz xz yz xy 的正整数解的组数是( ).例2 (2007年天津市竞赛题)八年级二班的同学参加社区公益活动——收集废旧电池,其中甲组同学平均每人收集17个,乙组同学平均每人收集20个,丙组同学平均每人收集21个.若这三个小组共收集了233个废旧电池,则这三个小组共有学生( )人.例3 (2002年“我爱数学”初中生夏令营竞赛题)如果一个正整数等于它的各位数字之和的4倍,那么,我们就把这个正整数叫做四合数.所有四合数的总和等于 .【解题思维策略分析】1.注意整数乘积或幂中的特殊因数例5 (2008年青少年数学国际城市邀请赛题)已知n 为正整数,使得()()()k n n n n n n 2621211=--+-++(k 是正整数).求所有可能的n 值的总和. 2.注意整数运算的封闭性例6 (2007年“新知杯”上海市竞赛题)求满足下列条件的正整数n 的所有可能值:对这样的n ,能找到实数a ,b ,使得函数()b ax x n x f ++=21对任意整数x ,()x f 都是整数. 3.注意在分数不等式中取整数的条件例7 已知n ,k 均为正整数,且满足不等式4396371<+-<k n k n .若对于某一给定的正整数n ,只有唯一的一个正整数k 使不等式成立.求所有符合要求的正整数n 中的最大值和最小值.【模拟实战】A 组1.若满足不等式137158<+<k n n 的整数k 只有一个,则正整数n 的最大值为( ).2.若12032+m 是整数,则所有满足条件的正整数m 的和为( ).3.若直角三角形的一条直角边长为12,另两条边长均整数,则符合这样条件的直角三角形共有( )个.D.无数多是一个具有如下性质的年号:它的各位数码之和为11.那么,自古至今,这种四位数的年号共出现过______次.5.(2005年全国联赛题)不超过100的自然数中,将凡是3或5的倍数的数相加,其和为_____.B 组1.(2008年四川省竞赛题)已知正整数a 、b 、c 满足c b a <<,且abc ca bc ab =++.求所有符合条件的a 、b 、c .2.(2009年南昌市竞赛题)已知n 是大于1的整数.求证:3n 可以写成两个正整数的平方差.3.(第4届中国趣味数学决赛题)有20堆石子,每堆都有2006粒石子.从任意19堆中各取一粒放入另一堆,称为一次操作.经过不足20次操作后,某一堆中有1990粒石子,另一堆石子数在2080到2100之间,这一堆石子有______粒.4.(1995年全国联赛(民族卷)题)已知正整数a 、b 、c 满足下列条件:c b a >>,()()()72=---c a c b b a ,且100<abc ,求a ,b ,c .5.(2006年全国联赛题)2006个都不等于119的正整数200621,,a a a 排成一行,其中任意连续若干项之和都不等于119,求200621a a a +++ 的最小值.6.(第13届日本奥数决赛题)平太给大介出了一道计算题(A ,B 各代表两位数中各位上的数字,相同的字母代表相同的数字):=⨯BA AB .大介:“得数是2872.”平太:“不对”.大介:“个位的数字对吗”平太:“对”.大介:“其它位的数字有对的吗”平在:“这是保密的.但你调换一下四位数2872中4个数字的位置,就能得出正确答案.” 请求出正确答案.第二章 正整数的多项式表示及应用【典型例题与基本方法】例1 将()102010化为下列进位制的数:⑴二进位制的数;⑵八进位制的数.例2 试证:形如abcabc 的六位数总含有7,11,13的因数.例3 一个三位数xyz (其中x ,y ,z 互不相等),将其各个数位的数字重新排列,分别得到的最大数和最小数仍是三位数.若所得到的最大三位数与最小三位数之差是原来的三位数,求这个三位数.例4 设两个三位数xyz ,zyx 的乘积为一个五位数xzyyx (其中x ,y ,z 互不相等),求x ,y ,z.【解题思维策略分析】1.善于运用正整数的十进位制的多项式表示解题例5 若一个首位数字是1的六位数abcde 1乘以3所得的积是一个末位数字为1的六位数1abcde ,求原来的六位数.例6 有一个若干位的正整数,它的前两位数字相同,且它与它的反序数(011a a a a n n -与n n a a a a 110- 互为反序数,其中00≠a ,0≠n a )之和为10879,求原数.2.会利用非十进位制多项式表示解题例7 设在三进位置中,数N 的表示是20位数:1112222.求N 在九进位制中表示最左边的一位数字.例8 设1987可以在b 进位制中写成三位数xyz ,且7891+++=++z y x ,试确定出所有可能的x ,y ,z 和b .【模拟实战】A组1.M表示一个两位数,N表示一个三位数,如果把M放在N的左边,组成一个五位数,那么这个五位数是().A. M+NB. MNC. 10000M+ND. 1000M+N2.一个两位数,它是本身数字和的k倍,将个位数字与十位数字交换位置后,组成一个新数,则新数为其数字和的().A.()1-k倍B.()k-10倍 D.()k-9倍11倍 C.()k-3.在大于10、小于100的正整数中,数字变换位置后所得的数比原数增加9的数的个数为_____.4.一个两位数,它的各位数字和的3倍与这个数加起来所得的和恰好是原数的两个数字交换了位置所得的两位数,这样的两位数有____个.5.已知ab为两位数,且满足bbba=⋅,求这个两位数.⋅bab6.求一个最小的正整数n,它的个位数字为6,将6移到首位,所得的新数是原数的4倍.B组1.已知一个四位数的各位数字的和与这个四位数相加等于2010,试求这个四位数.2.有一种室内游戏,魔术师要求某参赛者想好一个三位数abc,然后,魔术师再要求他记下五个数acb、bac、bca、cab、cba,并把这五个数加起来求出和N,只要讲出N的大小,魔术师就能说出原数abc是什么.如果3194N,请你确定abc.=3.两位数ab(个位数字与十位数字不同)的平方等于三位数xyz;而这两位数ba的平方恰好等于三位数zyx,求上述两位属于三位数.4.(2008年全国联赛(江西卷)题)一本书共有61页,顺次编号1,2,...,61.某人在将这个数相加时,有两个两位数页码都错把个位数与十位数弄反了(形如ab的两位数被当成了两位数ba),结果得到的总和是2008.那么,书上这两个两位数页码之和的最大值是多少5.(1998年“中小学数学杯”竞赛题)把()2.0化为十进制小数.11010016.(1998年长春市竞赛题)证明:1218-能被7整除.7.(江西省第4届“八一杯”竞赛题)求证:12222222101112131415-++-+-+- 能被5整除.8.(第5届沈阳市竞赛题)若m ,n 是两个自然数,且2>n ,那么12+m 不能被12-n 整除,试说明理由.9.(江西省第2届探索与应用能力竞赛题)将十进制数2002化成二进制数.10.(1997年广州市竞赛题)化()1084375.53为二进制小数.11.有一个写成7进制的三位数,如果把各位数码按相反顺序写出,并把它看成是九进制的三位数,且这两数相等,求这个数.12.在哪种进位制中,16324是125的平方13.N 是整数,它的b 进制表示是777.求最小的正整数b ,使得N 是十进制整数的4次方.14.在哪种进制中,100134=⋅15.(2007年“卡西欧杯”武汉市竞赛题)军训基地购买苹果慰问学员.已知苹果总数用八进位制表示为abc ,七进位制表示为cba .那么,苹果的总数用十进位制表示为_____.16.(1998年“中小学数学杯”竞赛题)化()81325为二进制数.17.(1995年“祖冲之”邀请赛决赛题)求证:对于任意进位制的数,10201都是合数.18.(第2届华杯赛决赛题)下面是两个1989位整数相乘:119891198911111111个个⨯. 问:乘积的数字和是多少19.(第10届《中小学生数学报》邀请赛题)计算:⑴()()22101101111011010+;⑵()()2210101101101101-;⑶()()()222101101100111000000--.。
2008年全国初中数学联赛四川初赛试卷及参考答案
2008年全国初中数学联赛四川初赛试卷(3月21日下午2:30━4:30或3月22日上午9:00━11:00)学校___________________年级___________班 姓名_________________题 号 一 二 三 四 五 合计 得 分 评卷人 复核人一、选择题(本大题满分42分,每小题7分) 1、若121≤≤−x ,则式子1449612222++++−++−x x x x x x 等于( ) (A )-4x +3 (B )5 (C )2x +3 (D )4x +32、用三种边长相等的正多边形地砖铺地,其顶点拼在一起,刚好能完全铺满地面.已知正多边形的边数为x 、y 、z ,则zy x 111++的值为( ) (A )1 (B )32 (C )21 (D )31 3、已知a 为非负整数,关于x 的方程0412x 少有一个整数根,则a 可能取值的个数为( )=+−−−a x a 至____________.2、,对角线AC 、BD 交于O 点,若S △OAD =4,S △OBC =9,则凸四边形ABCD3、,则t 的取值范围为___________________.(A )4(B )3 (C )2 (D ) 14、如图,设△ABC 和△CDE 都是正三角形,且∠EBD =62o ,则∠AEB 的度数是( ) (A )124o (B )122o(C )120o (D )118o5、如图,直线x =1是二次函数y =ax 2+bx +c 的图象的对称轴,则有( ) (A )a +b +c >0 (B )b >a +c (C )abc <0 (D )c >2b6、已知x 、y 、z 是三个非负实数,满足3x +2y +z =5,x +y -z =2,若S =2x +y -z ,则S 的最大值与最小值的和为( ) (A )5 (B )6 (C )7 (D )8二、填空题(本大题满分28分,每小题7分)1、已知a 是方程x 2-5x +1=0的一个根,则a 的个位数字为_在凸四边形ABCD 中44−+a 面积的最小值为__________________.实数x 、y 满足x 2-2x -4y =5,记t =x -2y4、如图,△ABC内接于⊙O,且AB=AC,直径AD交BC于E,F是OE的中点.如果BD//CF,BC=25,则线段CD的长度为__________________.三、(本大题满分20分)已知方程x2+ax-b=0的根是a和c,方程x2+cx+d=0的根是b和d.其中,a、b、c、d为不同实数,求a、b、c、d的值.四、(本大题满分25分)如图,四边形A1A2A3A4内接于一圆,△A1A2A3的内心是I1,△A2A3A4的内心是I2,△A3A4A1的内心是I3.求证:(1)A2、I1、I2、A3四点共圆;(2)∠I1I2I3=90o.五、(本大题满分25分)如图,将3枚相同硬币依次放入一个4×4的正方形格子中(每个正方形格子只能放1枚硬币).求所放的3枚硬币中,任意两个都不同行且不同列的概率.2008年全国初中数学联赛四川初赛试卷参考答案及评分细则一、选择题(本题满分42分,每小题7分)1、B2、C3、B4、B5、D6、A 二、填空题(本大题满分28分,每小题7分) 1、7 2、25 3、29≤t 4、6 三、(本大题20分)解:∵方程x 2+ax -b =0的根是a 和c ,∴a +c =-a ,ac =-b∵x 2+cx +d =0的根是b 和d ,∴b +d =-c ,bd =d ······················································5分 (一)若d ≠0,则由bd =d 知b =1由a +c =-a 知c =-2a ,由ac =-b 知-2a 2=-1,解得22±=a ····························10分 当22=a 时,2−=c 得d =-c -b =12−;······················································(1) 当22−=a 时2=c ,得d =-c -b =12−−.···················································(2) 经验证,22±=a ,b =1,2∓=c ,d =12−±是符合条件的两组解.··········15分 (二)若d =0,则b =-c ,由a +c =-a 知c =-2a ,由ac =-b 知ac =c 若c =0,则a =0,这与a 、b 、c 、d 是不同的实数矛盾. 若c ≠0,则a =1,再由c =-2a 知c =-2,从而b =-c =2经验证,a =1,b =2,c =-2,d =0也是符合条件的解.·········································20分 四、(本大题25分) 证明:(1)如图,连结I 1A 1,I 1A 2,I 1A 3,I 2A 2和I 2A 3∵I 1是△A 1A 2A 3的内心,∴∠I 1A 1A 2=∠I 1A 1A 3=21∠A 2A 1A 3 ∠I 1A 2A 1=∠I 1A 2A 3=21∠A 1A 2A 3,∠I 1A 3A 1=∠I 1A 3A 2=21∠A 1A 3A 2··························5分延长A 1I 1交四边形A 1A 2A 3A 4外接圆于P ,则∠A 2I 1A 3=∠A 2I 1P +∠PI 1A 3=∠I 1A 1A 2+∠I 1A 2A 1+∠I 1A 1A 3+∠I 1A 3A 1 =21(∠A 2A 1A 3+∠A 1A 2A 3+∠A 2A 3A 1)+21∠A 2A 1A 3=90o +21∠A 2A 1A 3····················10分同理∠A 2I 2A 3=90o +21∠A 2A 4A 3,又∵四边形A 1A 2A 3A 4内接于一圆 ∴∠A 2A 1A 3=∠A 2A 4A 3,∴∠A 2I 1A 3=∠A 2I 2A 3.∴A 2、I 1、I 2、A 3四点共圆.···········15分 (2)又连结I 3A 4,则由(1)知A 3、I 2、I 3、A 4四点共圆 ∴∠I 1I 2A 3=180o -∠I 1A 2A 3=180o -21∠A 1A 2A 3同理∠I 3I 2A 3=180o -∠I 3A 4A 3=180o -21∠A 1A 4A 3························································20分∴∠I 1I 2I 3=360o -(∠I 1I 2A 3+∠I 3I 2A 3)=21(∠A 1A 2A 3+∠A 1A 4A 3)=90o ·······················25分五、(本大题25分)解:1、计算总的放法数N :第一枚硬币放入16个格子有16种放法;第二枚硬币放入剩下的15个格子有15种放法;第三枚硬币放入剩下的14个格子有14种放法.所以,总的放法数N =16×15×14=3360.··························································10分2、计算满足题目要求的放法数m :第一枚硬币放入16个格子有16种放法,与它不同行或不同列的格子有9个.因此,与第一枚硬币不同行或不同列的第二枚硬币有9种放法.与前两枚硬币不同行或不同列的格子有4个,第三枚硬币放入剩下的4个格子有4种放法.所以,满足题目要求的放法数m =16×9×4=576.············································20分所求概率P =3561415164916=××××=N m.·································································25分。
2008年全国初中数学联赛试题及标准答案(修正版)
2008年全国初中数学联赛试卷(第一试)一、选择题1.设a2+1=3a,b2+1=3b,且a≠b,则代数式\f(1,a2)+\f(1,b2)的值为()(A) 5. (B)7.(C) 9.(D)11.2.如图,设AD,BE,CF为三角形ABC的三条高,若AB=6,BC=5,EF=3,则线段BE的长为()(A)185. (B) 4. (C)错误!. (D) 错误!.3.从分别写有数字1,2,3,4,5的5张卡片中依次取出两张,把第一张卡片上的数字作为十位数字,第二张卡片上的数字作为个位数字,组成一个两位数,则所组成的数是3的倍数的概率是( )(A)错误!. (B) 错误!.(C) 错误!. (D) 12.4.在△ABC中,∠ABC=12°,∠ACB=132°,BM和CN分别是这两个角的外角平分线,且点M,N分别在直线AC和直线AB上,则()(A)BM>CN. (B) BM=CN.(C) BM<CN.(D) BM和CN的大小关系不确定.5.现有价格相同的5种不同商品,从今天开始每天分别降价10%或20%,若干天后,这5种商品的价格互不相同,设最高价格和最低价格的比值为r,则r的最小值为( )(A)(错误!)3.(B) (错误!)4. (C) (错误!)5. (D) 98.6.已知实数x,y满足(x-错误!)(y-错误!)=2008,则3x2-2y2+3x-3y-2007的值为()(A) -2008.(B) 2008. (C)-1.(D)1.二、填空题1.设a=错误!,则错误!= _________.2.如图,正方形ABCD的边长为1,M,N为BD所在直线上的两点,且AM=错误!,∠MAN=135°,则四边形AMCN的面积为___________.3.已知二次函数y=x2+ax+b的图象与x轴的两个交点的横坐标分别为m,n,且│m│+│n│<1. 设满足上述要求的b的最大值和最小值分别为p,q,则│p│+│q│=__________.4.依次将正整数1,2,3,…的平方数排成一串:149162536496481100121144…,排在第1个位置的数字是1,排在第5个位置的数字是6,排在第10个位置的数字是4,排在第2008个位置的数字是___________.第二试一、已知a2+b2=1,对于满足条件0≤x≤1的一切实数x,不等式a(1-x) (1-x-ax)-bx(b-x-bx)≥0恒成立.当乘积ab取最小值时,求a,b的值.二、如图,圆O与圆D相交于A,B两点,BC为圆D的切线,点C在圆O上,且AB=BC.(1)证明:点O在圆D的圆周上.(2)设△ABC的面积为S,求圆D的的半径r的最小值.三、设a为质数,b为正整数,且9(2a+b)2=509(4a+511b)求a,b的值.。
2008年四川省初中数学联赛初赛(初二)
2008年四川省初中数学联赛初赛(初二)
四川省数学竞赛委员会
【期刊名称】《《中等数学》》
【年(卷),期】2008(000)011
【总页数】3页(P25-27)
【作者】四川省数学竞赛委员会
【作者单位】四川省数学竞赛委员会
【正文语种】中文
【中图分类】G4
【相关文献】
1.2009年全国初中数学联赛四川省初赛 [J], 四川省数学竞赛委员会
2.2008年全国初中数学联赛浙江赛区初赛 [J],
3.2008年四川省初中数学联赛决赛(初二) [J], 四川省数学竞赛委员会
4.2007年四川省初中数学联赛初赛(初二) [J], 许清华
5.2008年全国初中数学联赛四川省初赛 [J], 四川省数学竞赛委员会
因版权原因,仅展示原文概要,查看原文内容请购买。
全国初中数学竞赛四川赛区初赛试题及参考答案
20XX 年全国初中数学联赛四川初赛试卷(3月21日下午2:30━4:30或3月22日上午9:00━11:00)1、若121≤≤-x ,则式子1449612222++++-++-x x x x x x 等于( ) (A )-4x +3 (B )5 (C )2x +3 (D )4x +32、用三种边长相等的正多边形地砖铺地,其顶点拼在一起,刚好能完全铺满地面.已知正多边形的边数为x 、y 、z ,则zy x 111++的值为( ) (A )1 (B )32 (C )21 (D )31 3、已知a 为非负整数,关于x 的方程0412=+---a x a x 至少有一个整数根,则a 可能取值的个数为( )(A )4 (B )3 (C )2 (D ) 14、如图,设△ABC 和△CDE 都是正三角形,且∠EBD =62o ,则∠AEB 的度数是( )(A )124o (B )122o(C )120o (D )118o5、如图,直线x =1是二次函数y =ax 2+bx +c 的图象的对称轴,则有( )(A )a +b +c >0 (B )b >a +c(C )abc <0 (D )c >2b6、已知x 、y 、z 是三个非负实数,满足3x +2y +z =5,x +y -z =2,若S =2x+y -z ,则S 的最大值与最小值的和为( )(A )5 (B )6(C )7 (D )8二、填空题(本大题满分28分,每小题7分)1、已知a 是方程x 2-5x +1=0的一个根,则44-+a a 的个位数字为_____________.2、在凸四边形ABCD 中,对角线AC 、BD 交于O 点,若S △OAD =4,S △OBC =9,则凸四边形ABCD 面积的最小值为__________________.3、实数x 、y 满足x 2-2x -4y =5,记t =x -2y ,则t 的取值范围为___________________.4、如图,△ABC 内接于⊙O ,且AB =AC ,直径AD 交BC 于E ,F 是OE 的中点.如果BD //CF ,BC =25,则线段CD 的长度为__________________.三、(本大题满分20分)已知方程x 2+ax -b =0的根是a 和c ,方程x 2+cx +d =0的根是b 和d .其中,a 、b 、c 、d 为不同实数,求a 、b 、c 、d 的值.四、(本大题满分25分)如图,四边形A 1A 2A 3A 4内接于一圆,△A 1A 2A 3的内心是I 1,△A 2A 3A 4的内心是I 2,△A 3A 4A 1的内心是I 3.求证:(1)A 2、I 1、I 2、A 3四点共圆; (2)∠I 1I 2I 3=90o .五、(本大题满分25分)如图,将3枚相同硬币依次放入一个4×4的正方形格子中(每个正方形格子只能放1枚硬币).求所放的3枚硬币中,任意两个都不同行且不同列的概率.20XX 年全国初中数学联赛四川初赛试卷参考答案及评分细则一、选择题(本题满分42分,每小题7分)1、B2、C3、B4、B5、D6、A二、填空题(本大题满分28分,每小题7分)1、72、253、29≤t 4、6三、(本大题20分)解:∵方程x 2+ax -b =0的根是a 和c ,∴a +c =-a ,ac =-b∵x 2+cx +d =0的根是b 和d ,∴b +d =-c ,bd =d ······································· 5分(一)若d ≠0,则由bd =d 知b =1由a +c =-a 知c =-2a ,由ac =-b 知-2a 2=-1,解得22±=a ················· 10分 当22=a 时,2-=c 得d =-c -b =12-; ········································· (1) 当22-=a 时2=c ,得d =-c -b =12--. ······································ (2) 经验证,22±=a ,b =1,2 =c ,d =12-±是符合条件的两组解. ······· 15分 (二)若d =0,则b =-c ,由a +c =-a 知c =-2a ,由ac =-b 知ac =c若c =0,则a =0,这与a 、b 、c 、d 是不同的实数矛盾.若c ≠0,则a =1,再由c =-2a 知c =-2,从而b =-c =2经验证,a =1,b =2,c =-2,d =0也是符合条件的解. ······························· 20分四、(本大题25分)证明:(1)如图,连结I 1A 1,I 1A 2,I 1A 3,I 2A 2和I 2A 3∵I 1是△A 1A 2A 3的内心,∴∠I 1A 1A 2=∠I 1A 1A 3=21∠A 2A 1A 3 ∠I 1A 2A 1=∠I 1A 2A 3=21∠A 1A 2A 3,∠I 1A 3A 1=∠I 1A 3A 2=21∠A 1A 3A 2 ··················· 5分 延长A 1I 1交四边形A 1A 2A 3A 4外接圆于P ,则∠A 2I 1A 3=∠A 2I 1P +∠PI 1A 3=∠I 1A 1A 2+∠I 1A 2A 1+∠I 1A 1A 3+∠I 1A 3A 1 =21(∠A 2A 1A 3+∠A 1A 2A 3+∠A 2A 3A 1)+21∠A 2A 1A 3=90o +21∠A 2A 1A 3 ··············· 10分 同理∠A 2I 2A 3=90o +21∠A 2A 4A 3,又∵四边形A 1A 2A 3A 4内接于一圆 ∴∠A 2A 1A 3=∠A 2A 4A 3,∴∠A 2I 1A 3=∠A 2I 2A 3.∴A 2、I 1、I 2、A 3四点共圆. ······· 15分(2)又连结I 3A 4,则由(1)知A 3、I 2、I 3、A 4四点共圆∴∠I 1I 2A 3=180o -∠I 1A 2A 3=180o -21∠A 1A 2A 3 同理∠I 3I 2A 3=180o -∠I 3A 4A 3=180o -21∠A 1A 4A 3 ·········································· 20分 ∴∠I 1I 2I 3=360o -(∠I 1I 2A 3+∠I 3I 2A 3)=21(∠A 1A 2A 3+∠A 1A 4A 3)=90o ················· 25分五、(本大题25分)解:1、计算总的放法数N :第一枚硬币放入16个格子有16种放法;第二枚硬币放入剩下的15个格子有15种放法;第三枚硬币放入剩下的14个格子有14种放法.所以,总的放法数N =16×15×14=3360. ············································ 10分2、计算满足题目要求的放法数m :第一枚硬币放入16个格子有16种放法,与它不同行或不同列的格子有9个.因此,与第一枚硬币不同行或不同列的第二枚硬币有9种放法.与前两枚硬币不同行或不同列的格子有4个,第三枚硬币放入剩下的4个格子有4种放法.所以,满足题目要求的放法数m =16×9×4=576. ································· 20分所求概率P =3561415164916=⨯⨯⨯⨯=N m . ················································· 25分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2008年全国初中数学联赛四川初赛试卷(3月21日下午2:30━4:30或3月22日上午9:00━11:00)学校___________________年级___________班 姓名_________________一、选择题(本大题满分42分,每小题7分) 1、若121≤≤-x ,则式子1449612222++++-++-x x x x x x 等于( ) (A )-4x +3 (B )5 (C )2x +3 (D )4x +32、用三种边长相等的正多边形地砖铺地,其顶点拼在一起,刚好能完全铺满地面.已知正多边形的边数为x 、y 、z ,则zy x 111++的值为( ) (A )1(B )32 (C )21 (D )313、已知a 为非负整数,关于x 的方程0412=+---a x a x 至少有一个整数根,则a 可能取值的个数为( )(A )4 (B )3 (C )2 (D ) 14、如图,设△ABC 和△CDE 都是正三角形,且∠EBD =62o ,则∠AEB 的度数是( ) (A )124o (B )122o (C )120o (D )118o5、如图,直线x =1是二次函数y =ax 2+bx +c 的图象的对称轴,则有( ) (A )a +b +c >0 (B )b >a +c(C )abc <0 (D )c >2b6、已知x 、y 、z 是三个非负实数,满足3x +2y +z =5,x +y -z =2,若S =2x +y -z ,则S 的最大值与最小值的和为( ) (A )5 (B )6 (C )7 (D )8二、填空题(本大题满分28分,每小题7分)1、已知a 是方程x 2-5x +1=0的一个根,则44-+a a 的个位数字为_____________.2、在凸四边形ABCD 中,对角线AC 、BD 交于O 点,若S △OAD =4,S △OBC =9,则凸四边形ABCD 面积的最小值为__________________.3、实数x 、y 满足x 2-2x -4y =5,记t =x -2y ,则t 的取值范围为___________________.4、如图,△ABC内接于⊙O,且AB=AC,直径AD交BC于E,F是OE的中点.如果BD//CF,BC=25,则线段CD的长度为__________________.三、(本大题满分20分)已知方程x2+ax-b=0的根是a和c,方程x2+cx+d=0的根是b和d.其中,a、b、c、d为不同实数,求a、b、c、d的值.四、(本大题满分25分)如图,四边形A1A2A3A4内接于一圆,△A1A2A3的内心是I1,△A2A3A4的内心是I2,△A3A4A1的内心是I3.求证:(1)A2、I1、I2、A3四点共圆;(2)∠I1I2I3=90o.五、(本大题满分25分)如图,将3枚相同硬币依次放入一个4×4的正方形格子中(每个正方形格子只能放1枚硬币).求所放的3枚硬币中,任意两个都不同行且不同列的概率.2008年全国初中数学联赛四川初赛试卷参考答案及评分细则一、选择题(本题满分42分,每小题7分)1、B2、C3、B4、B5、D6、A 二、填空题(本大题满分28分,每小题7分) 1、7 2、25 3、29≤t 4、6 三、(本大题20分)解:∵方程x 2+ax -b =0的根是a 和c ,∴a +c =-a ,ac =-b ∵x 2+cx +d =0的根是b 和d ,∴b +d =-c ,bd =d ·················································· 5分 (一)若d ≠0,则由bd =d 知b =1由a +c =-a 知c =-2a ,由ac =-b 知-2a 2=-1,解得22±=a ······················ 10分 当22=a 时,2-=c 得d =-c -b =12-; ····················································· (1) 当22-=a 时2=c ,得d =-c -b =12--. ················································· (2) 经验证,22±=a ,b =1,2 =c ,d =12-±是符合条件的两组解. ········· 15分 (二)若d =0,则b =-c ,由a +c =-a 知c =-2a ,由ac =-b 知ac =c 若c =0,则a =0,这与a 、b 、c 、d 是不同的实数矛盾. 若c ≠0,则a =1,再由c =-2a 知c =-2,从而b =-c =2 经验证,a =1,b =2,c =-2,d =0也是符合条件的解. ········································ 20分 四、(本大题25分) 证明:(1)如图,连结I 1A 1,I 1A 2,I 1A 3,I 2A 2和I 2A 3∵I 1是△A 1A 2A 3的内心,∴∠I 1A 1A 2=∠I 1A 1A 3=21∠A 2A 1A 3 ∠I 1A 2A 1=∠I 1A 2A 3=21∠A 1A 2A 3,∠I 1A 3A 1=∠I 1A 3A 2=21∠A 1A 3A 2 ························· 5分延长A 1I 1交四边形A 1A 2A 3A 4外接圆于P ,则∠A 2I 1A 3=∠A 2I 1P +∠PI 1A 3=∠I 1A 1A 2+∠I 1A 2A 1+∠I 1A 1A 3+∠I 1A 3A 1 =21(∠A 2A 1A 3+∠A 1A 2A 3+∠A 2A 3A 1)+21∠A 2A 1A 3=90o +21∠A 2A 1A 3 ···················· 10分同理∠A 2I 2A 3=90o +21∠A 2A 4A 3,又∵四边形A 1A 2A 3A 4内接于一圆 ∴∠A 2A 1A 3=∠A 2A 4A 3,∴∠A 2I 1A 3=∠A 2I 2A 3.∴A 2、I 1、I 2、A 3四点共圆. ·········· 15分 (2)又连结I 3A 4,则由(1)知A 3、I 2、I 3、A 4四点共圆∴∠I 1I 2A 3=180o -∠I 1A 2A 3=180o -21∠A 1A 2A 3 同理∠I 3I 2A 3=180o -∠I 3A 4A 3=180o -21∠A 1A 4A 3 ······················································· 20分∴∠I 1I 2I 3=360o -(∠I 1I 2A 3+∠I 3I 2A 3)=21(∠A 1A 2A 3+∠A 1A 4A 3)=90o ······················· 25分五、(本大题25分)解:1、计算总的放法数N :第一枚硬币放入16个格子有16种放法;第二枚硬币放入剩下的15个格子有15种放法;第三枚硬币放入剩下的14个格子有14种放法.所以,总的放法数N =16×15×14=3360. ························································· 10分2、计算满足题目要求的放法数m :第一枚硬币放入16个格子有16种放法,与它不同行或不同列的格子有9个.因此,与第一枚硬币不同行或不同列的第二枚硬币有9种放法.与前两枚硬币不同行或不同列的格子有4个,第三枚硬币放入剩下的4个格子有4种放法.所以,满足题目要求的放法数m =16×9×4=576. ··········································· 20分所求概率P =3561415164916=⨯⨯⨯⨯=N m . ······························································· 25分。