粉体粒度分析及其测量(一)
显微镜法测试粉体粒度、粒度分布及形貌 (1)-推荐下载
在图 3 中的累积曲线有两条,曲线①称负累积曲线从小于某粒级的含量累 加到最大粒级的含量达到 100%而曲线②称为正累积曲线从大于某一粒级含量 累加粒级最小的百分含量总累积量也为 100%。
在图 2 中峰值对应的直径 A 称为最多径,在图 3 的累积曲线上含量 50%所 对应的直径称作中位径。表示大于或小于该直径的粉末各有一半,若体积计算 表示大于或小于该直径的粉末体积各占一半。
对分散介质要求: (1) 对粉末润湿性好且与所测粉末不起化学作用。 (2) 介质应易挥发且挥发的蒸汽对显微镜镜头无腐蚀性。 对需长期保存的试样可采用有机玻璃或纤维素溶液进行覆盖,待覆盖膜干燥 后颗粒即被固定。 3、观测方法 理想的试样片应便于观测计数,即一个视场内颗粒数不应过多。且各视场颗 粒分布情况应尽量均匀。 实验采用垂直投影法,即所测颗粒在视场内同一个方向移动、顺序地、无选 择地逐个进行测量。当颗粒形状不规则时测量这一方向上的最大尺寸如图 1 所 示。颗粒在视场中作上下运动而且目镜测微尺处于水平位置,测试中注意不要 对某一颗粒重复计数或漏掉某些颗粒。
四、 测试方法
1、显微镜使用前的准备 将目镜测微尺放入所选用的目镜中,并将目镜和物镜安装在显微镜上,将标
准测微尺(每小格 10 微米)置于载物台上通过旋转公降螺钉(注意:不得使物 镜接触载玻片 1),调节焦距标定目镜测微尺一格比代表的长度(u)。 2、样品的制备
粒度分析
激光法向细粉方向移动,细粉含量偏高。 因为其超声分散更彻底。
气体透过法
• 根据流体流经粉体层时的透过性测量粒 度。 • 由达西定律:t秒内通过截面积A,长度L 的粉体层的流量Q与压力降Δp成正比。
Q p B At L
常数B与粉体的比表面积的关系:
g B 2 2 KSV (1 )
平均粒径
算术平均直径
粒径表示形式
1 i di D1 100
几何平均直径 调和平均直径
log Dg i log d i / i
Dh i / i di
平均面积径
Ds
i di
2
/ i
除了平均粒径,还须用偏差系数K偏来 说明粉体的均匀程度。 K偏=σ/D1
第三节 粒度测定方法
方法分类
筛分法 直接观察 散射法
测量仪器
筛子 显微镜 粒度分析仪
所得结果
粒度分布 粒度分布,形状 粒度分布
沉降法
气体透过法
沉降天平
比表面积仪
粒度分布
比表面积
筛分法
• 物理分级方法 • 设备简单,操作容易,误差较大。
• 使用一套筛孔大小不等的筛,经干筛或 湿筛后,称量各筛上的筛余,得到粒度 分布和平均粒径。
3
粉体的比表面积SW(cm2/g)
1 g pAt sw 1 5 LQ sv
3
只需测定Q、 Δp 和t即可求出SW。
• 水泥工业中测定水泥细 度的方法是Blaine气体 透过法。 • 固定Q和 Δp ,测定t ( Δp为平均压力)。 • 当液柱由H2下降到H3, 所花时间为t
D
• 测定范围:0.1~150μ m
粉体工程与设备期末复习题
粉体工程与设备思考题第一章概述1、什么是粉体?粉体是由无数相对较小的颗粒状物质构成的一个集合体.2、粉体颗粒的种类有哪些?它们有哪些不同点?分为原级颗粒、聚集体颗粒、凝聚体颗粒、絮凝体颗粒原级颗粒:第一次以固体存在的颗粒,又称一次颗粒或基本颗粒。
从宏观角度看,它是构成粉体的最小单元。
粉体物料的许多性能与原级颗粒的分散状态有关,它的单独存在的颗粒大小和形状有关。
能够真正的反应出粉体物料的固有特性.聚集体颗粒:由许多原级颗粒靠着某种化学力以及其表面相连而堆积起来的.又称为二级颗粒.聚集体颗粒的表面积小于构成它的原级颗粒的表面积的总和.主要再粉体物料的加工和制造中形成。
凝聚体颗粒:在聚集体颗粒之后形成,又称为三次颗粒。
它是原级颗粒或聚集体颗粒或者两者的混合物。
各颗粒之间以棱和角结合,所以其表面与各个组成颗粒的表面大体相等。
比聚集体颗粒大得多。
也是在物料的加工和制造处理过程中产生的。
原级颗粒或聚集体的粒径越小,单位表面的表面力越大,越易于凝聚。
絮凝体颗粒:在固液分散体系中,由于颗粒间的各种物理力,迫使颗粒松散地结合在一起,所形成的的粒子群。
很容易被微弱的剪切力所解絮。
在表面活性剂作用下自行分解。
颗粒结合的比较:絮凝体<凝聚体<聚集体<原级颗粒3、颗粒的团聚根据其作用机理可分为几种状态?分为三种状态:凝聚体(以面相接的原级粒子)、聚集体(以点、角相接的原级粒子团或小颗粒在大颗粒上的附着)、絮凝体4、在空气中颗粒团聚的主要原因是什么?什么作用力起主要作用?主要原因为颗粒间作用力和空气的湿度。
范德华力、静电力、液桥力。
在空气中颗粒团聚主要是液桥力造成的。
而在非常干燥的条件下则是由范德华力引起的。
空气相对湿度超过65%,主要以液桥力为主.第二章粉体粒度分析及测量1、单颗粒的粒径度量主要有哪几种?各自的物理意义什么?三轴径:颗粒的外接长方体的长l、宽b、高h的某种意义的平均值当量径:颗粒与球或投影圆有某种等量关系的球或投影圆的直径定向径:在显微镜下按一定方向测得的颗粒投影轮廓的长度称为定向径。
粒度和粒度分布的测量
粒度和粒度分布的测量原料药的粒径及粒径分布对制剂的加工性能、稳定性和生物利用度等有重要影响。
本文总结了粒径表征的基本概念,及常见测量手段(筛分、激光散射、图像法和沉降法)的原理、优劣和注意事项。
1、粒径的表征方式对于球形物体,通过直径很容易确定其大小;但对于立方体,则需要更多的参数,如长宽高;而对于形状更为复杂的颗粒体,恐怕没有足够的参数准确描述其大小。
但在实际应用中,只要能够描述其相对大小,指导意义就很大了。
为了采用简单的参数直观描述颗粒的大小,往往采取等效球体的直径来描述颗粒的大小。
这种等效的基础常常是表面积、体积或者投影面积,分别被称为表面积径、体积径或投影径等。
此外,还可以等效为具有相同沉降速度的球形粒子,称为斯托克径。
我们通过各种检测方法获得的测量值一般都是理论等效值。
不同原理的粒度检测设备的使用的等效物理参量不同,在检测同一个不规则颗粒时,得到的测试结果是不相同的,因此将不同测试方法的结果进行比较,可能无法得出具有实际意义的结论。
粉体作为一堆粒子的集合,不同的粒子颗粒大小可能不同,表示粉体粒径的大小可以采用平均粒径。
计算每一个颗粒的某一等效粒径,然后采用粒子数目、长度、表面积或粒子体积等参数作为权重计算平均粒径,从而得到不同的平均等效粒径。
其中在药学中较为重要的平均径包括表面积加权平均粒径(该值与表面积成负相关)和体积加权平均粒径。
平均粒径无法描述各个颗粒的粒径情况。
当就某一粒径范围的粒子数或粒子重量对粒径范围或平均粒径作图,就得到所谓的频率分布曲线,其可以直观的表示粒径分布。
另一种表示分布的方式是将超过或低于某一粒径的累积百分数对粒径作图,得到的曲线往往为S形。
在实践中,粒径分布对API性质的影响可能超过平均粒径,应当给以充分的重视。
2、粒径及粒径分布的测量粒径及其分布的测定基于不同的原理有多种测定方法。
在中国药典和日本药典中描述了显微法(即本文的“图像法”)、筛分法和激光散射法。
粉体粒度及其分布测定
粉体粒度及其分布测定一.实验目的1.掌握粉体粒度测试的原理及方法;2.了解影响粉体粒度测试结果的主要因素,掌握测试样品制备的步骤和注意要点;3.学会对粉体粒度测试结果数据处理及分析。
二.实验原理图1:微纳激光粒度分析仪工作原理框图粉体粒度及其分布是粉体的重要性能之一,对材料的制备工艺、结构、性能均产生重要的影响,凡采用粉体原料来制备材料者,必须对粉体粒度及其分布进行测定。
粉体粒度的测试方法有许多种:筛分法、显微镜法、沉降法和激光法等。
激光粒度测试是利用颗粒对激光产生衍射和散射的现象来测量颗粒群的粒度分布的,其基本原理为:激光经过透镜组扩束成具有一定直径的平行光,照射到测量样品池中的颗粒悬浮液时,产生衍射,经傅氏(傅立叶)透镜的聚焦作用,在透镜的焦平面上形成一中心圆斑和围绕圆斑的一系列同心圆环,圆环的直径随衍射角的大小即随颗粒的直径而变化,粒径越小,衍射角越大,圆环直径亦大;在透镜的后焦平面位置设有一多元光电探测器,能将颗粒群衍射的光通量接收下来,光--电转换信号再经模数转换,送至计算机处理,根据夫朗和费衍射原理关于任意角度下衍射光强度与颗粒直径的公式,进行复杂的计算,并运用最小二乘法原理处理数据,最后得到颗粒群的粒度分布。
激光粒度测试法具有适应广、速度快、操作方便、重复性好的优点,测量范围为:0.1—几百微米。
但当粒径与所用光的波长相当时,夫朗和费衍射理论的运用有较大误差,需应用米氏理论来修正。
三.仪器设备济南微纳颗粒技术有限公司Winner2000Z智能型激光粒度分析仪、微型计算机、打印机。
四.实验步骤4.1测试前的准备工作1.开启激光粒度分析仪,预热10~15分钟。
启动计算机,并运行相对应的软件。
2.清洗循环系统。
首先,进入控制系统的人工模式,不选择自动进水点击排水,把与被测样品相匹配的分散介质加入样品桶,待管路及样品窗中都充满介质后,再点击排水,关闭排水。
其次,按下冲洗,洗完后,自动排出。
粒度分析
粒度分析一:一致性评价-粒度分析方法开发和验证背景介绍一致性评价和仿制药开发过程中,粒度是API、辅料和制剂中间体的粉体学研究重要技术指标之一,传统的粒度测量方法中,以过筛最为常见,常以“目”为单位。
粒度与目数有个快捷换算方法,二者近似乘积为15000。
过筛的方法虽然成本低,但是难以给出具体的粒度分布情况,人为因素影响较大,且“目”的概念相对比较含糊,不同的标准如美国标准、英国标准及泰勒标准还是有细微的差别,这样对沟通操作可能带来一些不便。
随着时代的进步,多种新型的测量仪器的应用也使得对粒度的把握更加准确,如激光衍射粒度分析仪、库尔特计数仪、颗粒图像处理仪器及离心沉降仪等等。
不同设备的测量原理不同,导致结果会有所差异。
例如沉降仪所依据的理论是Stokes公式中球形颗粒的沉降速率与粒径之间的关系,而对不规则颗粒,二者之间的关系是未知的,为此沉降仪所测得的粒径相当于某一球体的大小,称之为沉降速度粒径;库尔特计数器得到的称之为等效电阻粒径;激光粒度仪给出的粒径称之为等效散射光粒径。
因此,只有颗粒为完整的球形时,所有设备测得结果才有可能是相同的。
随着当前对药品质量的要求越来越高,口服固体API和辅料的粒度分布影响着药物的溶出速率甚至是体内吸收,无论是制粒或者粉末直压工艺都需要对粉体颗粒的粒度分布有一个严格控制范围,粒度分布直接影响颗粒的流动性、可压性甚至含量均匀度等等。
本文将对激光衍射粒度仪测量方法的开发进行一个简单的介绍。
激光衍射法精密度、准确度执行标准简单的说,激光衍射粒度仪主要是利用了光的散射原理测量粒径,是基于颗粒体积的计算技术,将不规则颗粒假设为等体积球模型。
颗粒的粒度越小,散射角越大。
图片来源EP0-31Particle size analysis by laser light diffraction2010版和2015版《中国药典》粒度和粒度分布测定法均收录了第三法(光散射法),制剂通则仅对仪器的一般要求和测定法进行了简单介绍,目前CFDA尚无应用第三法进行API 粒度分析方法开发和验证的相关指导原则。
dls粉体粒度测试方法的原理
dls粉体粒度测试方法的原理DLS(dynamic light scattering)是粉体粒度测试中常用的一种方法。
它是基于光散射现象,通过分析光束散射的光学信息,来获取粉体粒子的尺寸分布信息的。
DLS最初应用于分子生物学、胶体化学的研究中,后被应用于粉体粒度测试中。
DLS的粒度测试原理是,当一束激光照射在粉体粒子上时,由于粒子的存在,激光会被散射。
粒子的尺寸越小,散射光的角度越大,因此通过测量散射光的角度以及散射光的强度,可以计算出粒子的平均尺寸和尺寸分布情况。
具体来说,DLS通过测量散射光的相干光强度,获得被测样品的自相关函数。
这里所谓的自相关函数是指,测量一段时间内样品中粒子的几何特性的变化。
比如,当一个较大的粒子移动时,会影响到它周围的其他粒子,从而影响到散射光的强度。
通过对自相关函数进行分析,可以计算出样品中的粒子尺寸分布情况。
需要注意的是,DLS虽然非常便捷,但其仅仅适用于测量粒径在几纳米至几微米的粒子。
同时,DLS只能测量粒子的尺寸分布情况,并无法获得关于粒子形状和表面质量等更详细的信息。
因此,在进行粉体粒度测试时需要综合使用多种测试手段,以获取更全面和准确的粒子信息。
综上所述,DLS的粉体粒度测试原理基于光散射现象,通过测量散射光的角度和强度,来计算出样品的粒子尺寸分布情况。
DLS虽然简单易用,但需要注意其仅适用于粒径较小的粒子,同时并不能提供关于粒子形状和表面质量等更多的信息。
在进行粉体粒度测试时,需要根据实际情况选择合适的测试方法,并结合多种测试手段以获取更全面和准确的粒子信息。
粉体材料的粒度分析
粉体材料的粒度分析一、实验目的1.了解粉体颗粒度的物理意义及其在科研与生产中的作用;2.掌握颗粒度的测试原理及测试方法;3.学会激光法测粒度的基本操作程序。
二、实验原理粒度测试是通过特定的仪器和方法对粉体粒度特性进行表征的一项实验工作。
在的不同应用领域中,对粉体特性的要求是各不相同的,在所有反映粉体特性的指标中,粒度分布是所有应用领域中最受关注的一项指标,所以客观真实地反映粉体的粒度分布是一项非常重要的工作。
1.粒度测试的基本知识(1)颗粒:颗粒是在一定尺寸范围内具有特定形状的几何体,如图1所示。
颗粒不仅指固体颗粒,还有雾滴、油珠等液体颗粒。
由大量不同尺寸的颗粒组成的颗粒群称为粉体。
(2)等效粒径:由于颗粒的形状多为不规则体,因此用一个数值很难描述一个三维几何体的大小。
只有球型颗粒可以用一个数值来描述它的大小,因此引入等效粒径的概念。
等效粒径是指当一个颗粒的某一物理特性与同质的球形颗粒相同或相近时,我们就用该球形颗粒的直径来代表这个实际颗粒的直径,见图2。
那么这个球形颗粒的粒径就是该实际颗粒的等效粒径。
(3)粒度分布:用特定的仪器和方法反映出的不同粒径颗粒占粉体总量的百分数。
有区间分布和累计分布两种形式。
区间分布又称为微分分布或频率分布,它表示一系列粒径区间中颗粒的百分含量。
累计分布也叫积分分布,它表示小于或大于某粒径颗粒的百分含量。
2.粒度测试中的典型数据(1)体积平均径D[4,3]和面积平均径D[3,2]:D[4,3]是一个通过体积分布计算出来的表示平均粒度的数据;D[3,2]是一个通过面积分布计算出来的表示平均粒度的数据。
它们是激光粒度测试中的一个重要的测试结果。
(2)中值:也叫中位径或D50,表示累计50%点的直径(类似的,D10表示累计10%点的直径;D90,表示累计90%点的直径)。
D50准确地将总体划分为二等份,也就是说有50%的颗粒大于此值,50%的颗粒小于此值。
中值被广泛地用于评价样品平均粒度的一个量。
粉末粒度分布的测量
数据报告
根据测量结果编写数据 报告,提供粉末粒度分
布的详细信息。
05 结果分析
数据处理
数据清洗
去除异常值和缺失值,确保数据准确 性。
数据转换
数据统计
计算粒度分布的平均值、中位数、众 数等统计指标,以全面了解粉末的粒 度特征。
将测量数据转换为易于分析的格式, 如粒度分布曲线或表格。
结果解读
激光衍射法
总结词
激光衍射法是一种利用激光衍射原理测量粉末粒度分布的方法。
详细描述
激光衍射法的基本原理是通过激光束照射粉末样品,利用光的衍射效应测量粉末颗粒的粒度分布。当 激光束照射到粉末颗粒上时,会产生衍射光环,通过测量光环的直径可以得到粉末颗粒的粒度大小。 激光衍射法具有快速、准确、非破坏性的优点,适用于各种粒度范围的粉末测量。
详细描述
筛分法的基本原理是将粉末样品置于一系列不同孔径的筛网上,通过振动或手动摇动使粉末通过筛网,然后分别 称量各筛网上截留的粉末质量,从而得到粉末粒度分布。筛分法适用于测量粒度范围较广的粉末,尤其适用于粗 粒度粉末的测量。
显微镜法
总结词
显微镜法是一种通过显微镜观察粉末颗粒,并测量其尺寸的 方法。
详细描述
显微镜法的基本原理是将粉末样品制备成薄片,然后通过显 微镜观察并测量每个颗粒的尺寸,包括长度、宽度和高度。 显微镜法可以提供较为准确的粉末粒度分布数据,尤其适用 于测量形状不规则的粉末颗粒。
沉降法
总结词
沉降法是一种通过观察粉末在液体中的 沉降速度来测量其粒度分布的方法。
VS
详细描述
沉降法的基本原理是将粉末样品置于悬浮 液中,通过搅拌使粉末均匀分散在液体中 ,然后观察粉末颗粒在重力作用下的沉降 速度。通过测量沉降速度,可以推算出粉 末颗粒的粒度分布。沉降法适用于测量较 细的粉末颗粒,但需要较为复杂的实验装 置和数据处理过程。
粉体工程课件 PPT
大家好 26
平均粒径计算公式
• 1.个数长度平均径
• 公式:
Dnl
(nd)
n
(wd2) (wd3)
大家好 27
大家好 50
大家好 51
100
100
筛下累积分布 (%) 筛上累积分布 (%)
75
75
50
50
25
25
D50
0
0
0.5 1.5 2.5 3.5 4.5 5.5 6.5 7.5 8.5 9.5 10.5 11.5 12.5
粒径,微米 图2-5 筛上和筛下累积分布直方图与曲线图
大家好 52
3. 频率分布和累积分布的关系
fi( D p D p ) 2 fi( D p D 5) 2 0
• 式中 DP=d50——平均粒径;
•
σ——分布的标准偏差;
• 它反映分布对于的分散程度。
大家好 63
频率,%
1
0.35
0.3
0.25
0.2
0.15
0.1
0.05
0
0
1
2
3
4
5
6
粒径,(微米) 图 2-7 正态分布的频率分布曲线
(nd2) n
(wd) (wd3)
大家好 31
• 6个数体积平均径 • 公式:
Dnv3
(nd3) n 3
w (wd3)
大家好 32
• 7长度体积平均径 • 公式:
Dlv
(nd3) (nd)
颗粒测试基础知识(一)
等效粒径的定义
实际颗粒 的外形通 常是非球形的 ,当一个颗粒 的某 一物理特性与 同质球形颗粒 相同或相近时 ,我们就用该球形颗
粒 的直径来代表这个实际颗粒的直径 ,称之为等效粒径 。根据不 同的测量方法 ,有不 同的等效粒径 ,如 :
其大小也是很 重要 的。如水泥的水化反应 、涂料 的附着力 、电池材料的充放 电、药物被 人体吸收的程度 、过滤器的过
滤效率 、磁性材料 的磁 导率和矫顽力 、杀虫剂 效力 、大气和环境污染等 ,无不与颗粒 大小有 关。这 也是人们关心颗粒
大小 的 根 本 原 因 。
粒 度和 粒度测试的定义
影面积粒径 。
D ∞、最可几粒径是什么?
D 。 也称 中位径 或中值粒径 ,是指累积分布百分数达到 5 0 %时对应的粒径值 。 这是一个表示粒度大小 的典 型值 ,
该 值准确地 将总体划分为二等份 ,也就是说有 5 0 % 的颗粒粒径 超过此值 ,有 5 0 %的颗粒粒径低于 此值。如果一个 样品的 D 。 = 5 m,说 明在 组成该样 品的所有 粒径 的颗粒 中,粒径大于 5 m 的颗粒 占 5 0 %,小于 5 1 T I 的颗粒也
颗粒 的定 义
颗粒是具 有一定尺寸和形状的微小 物体 ,它 的宏观尺寸通常界定在 l n m 以上和 l mm 以下 。实践 中,单个颗粒是 很难见到 的, 我们 见到 的是无数颗粒 的堆积体 , 也 即常说 的粉体 。 广义地说 , 分散在空气 中的雾滴 、 分散在水 中的油滴、 溶液 中的气泡 、多子 L 体 中的孑 L 等也可看做 “ 颗粒 ”,前两者是液体 的 “ 颗粒 ”,后两者是气体的 “ 颗粒” 。
粒度分析方法
无机粉体材料大作业(粒度分析方法及应用范围)姓名:史磊学号:201341053摘要:粒径是以单个颗粒为对象,表征单颗粒和尺寸的大小,而粒度是以颗粒群为对象,表征所有颗粒在总体上几何尺寸大小的概念。
为了方便,人为规定了一些所谓尺寸的表征方法:三轴径,定向径,当量径。
粒度的测量方法主要包括:直接观察法,筛分法,沉降法,激光法,电感应法,光散射法,吸附法,超声波衍射法等。
[1-7]引言:粒度分析又称“机械分析”,是研究碎屑沉积物(或岩石)中各种粒度的百分含量及粒度分布的一种方法。
对于纳米材料,其颗粒大小和形状对材料的性能起着决定性的作用。
因此,对纳米材料的颗粒大小和形状的表征和控制具有重要的意义。
一般固体材料颗粒大小可以用颗粒粒度概念来描述。
但由于颗粒形状的复杂性,一般很难直接用一个尺度来描述一个颗粒大小。
因此,在粒度大小的描述过程中广泛采用等效粒度的概念。
对于不同原理的粒度分析仪器,所依据的测量原理不同,其颗粒特性也不相同,只能进行等效对比,不能进行横向直接对比。
1颗粒大小及形状表征1.1颗粒大小颗粒的大小和形状是粉体材料最重要的物性特性表征量。
颗粒大小的表征表征方法主要有三种:三轴径:三轴算术平均值、三轴调和平均值、三轴几何平均值;定向径:定方向径、定方向等分径、定向最大径;当量径:等体积球当量径、等表面积球当量径、比表面积球当量径、投影圆当量径、等周长圆当量径;1.2颗粒形状科学地描述颗粒的形状对粉体的应用有很大的帮助。
同颗粒大小相比,描述颗粒形状更加困难些。
为方便和归一化起见,人们规定了某种方法,时形状的描述量化,并且是无量纲的量。
这些形状表征量统称为形状因子,主要由以下几种:球形度、扁平度、延伸度、形状系数等等。
2.粒度分析测量方法2.1直接观察法:显微镜法是一种测定颗粒粒度的常用方法。
根据材料颗粒的不同,既可以采用一般的光学显微镜,也可以采用电子显微镜。
与其他粒度分析方法相比较,显微镜法的优点在于直接测量粒子本身,而不是测定与粒子相关的某些性质,操作者可以直接观察粒子的大小、形状、外观和分散情况。
粒度测定的方法及优缺点
粒度测定的方法及优缺点
粒度测定是粉体工程中的一项重要技术,用于分析颗粒的大小和分布。
目前常用的粒度测定方法有多种,各有其优缺点。
以下是对各种粒度测定方法的简要介绍:
1. 筛分法:
优点:设备简单、直观、成本低,适用于大于40μm的颗粒测定。
缺点:测量范围有限,不能用于40μm以下的颗粒;结果受人为因素和筛孔变形影响较大。
2. 沉降法:
原理:根据斯托克斯定律,利用颗粒在液体中的沉降速度差异来测量粒度分布。
优点:可以测试不同粒径的颗粒。
缺点:动态范围窄;小颗粒沉降速度慢,对非球形颗粒误差较大;受密度一致性影响,不适用于混合物料。
3. 电阻法(库尔特颗粒计数器):
优点:可以实现连续、快速测量,准确度高。
缺点:设备相对复杂,成本较高。
4. 显微镜法(图像法):
优点:直观,可以进行形貌分析。
缺点:操作相对繁琐,测量范围有限。
5. 电镜法:
优点:分辨率高,适用于微米级颗粒分析。
缺点:对样品制备要求较高,操作复杂。
6. 超声波法:
优点:非接触测量,适用于易团聚颗粒的测定。
缺点:受颗粒浓度、粘度等因素影响较大。
7. 透气法:
优点:适用于不同形状和密度的颗粒测定。
缺点:设备相对复杂,操作较为繁琐。
8. 激光衍射法:
优点:测量范围广,准确性高,适用于各种颗粒形态和尺寸的测定。
缺点:设备成本较高,对样品制备要求较高。
总之,各种粒度测定方法各有优缺点,应根据实际需求和条件选择合适的方法。
在实际应用中,有时需要将多种方法相互结合,以获得更准确的粒度分布。
粉体力学与工程-02粉体粒度分析及测量
2/3 V
S
2.3 尺寸(粒度)分布
粒度分布: 颗粒群中大小不同的颗粒所占的分
量;即将颗粒群范围划分为若干级别, 各级别粒子占颗粒群总量的百分数。
2021/7/21
(1)频率分布
在表粉 示体 )D样 的p 品颗12中粒D,(p 某与之一相粒对度应(的D颗)p 粒范个围数内为(用) 在样品中出现的n p百分数(%),即为频率分布。
度为η的无限容积中做沉降运动。
几个假定: 1)颗粒为刚性球体, 2)颗粒沉降时互不干扰, 3)颗粒下降时做层流流动, 4)液体的容器为无限大且不存在温度梯度。
颗粒运动方程:令颗粒在任一瞬间的沉降速度为u 。颗粒沉
降时作用在颗粒上的力有三个,方向向下的重力W,方向向上
的浮力Fa,与沉降速度相反的流体阻力FD,此时颗粒运动的方
2021/7/21
2、筛分法
利用筛孔尺寸由大到小组合的一套筛,借助振动把粉末分成若干等级,称 量各级粉末重量,即可计算用重量百分数表示的粒度组成。 筛分法的度量:
筛孔的孔径和粉末的粒度可以用微米(毫米),或目数表示。 所谓目数是指筛网1英寸(25.4毫米)长度上的网孔数。
m=25.4/(a+b) , m目数, a 网孔尺寸,b丝径。
以个数为基准
1
1
D
nd nd
fnd
fnd
以质量为基准
1
1
D
d 3
d 3
f w d 3
f w d 3
fn和fw分别为个数基准与质量基准的频率分布
2021/7/21
平均粒径中个数基准和质量基准的换算公式?
1
1
nd r nd q
pq
D[3,2]:22.748um
(材料研究方法实验)实验1 粉体的粒度及其分布的测定
实验1 粉体的粒度及其分布的测定粒度分布的测量在实际应用中非常重要,在工农业生产和科学研究中的固体原料和制品,很多都是以粉体的形态存在的,粒度分布对这些产品的质量和性能起着重要的作用。
例如催化剂的粒度对催化效果有着重要影响;水泥的粒度影响凝结时间及最终的强度;各种矿物填料的粒度影响制品的质量与性能;涂料的粒度影响涂饰效果和表面光泽;药物的粒度影响口感、吸收率和疗效等等。
因此在粉体加工与应用的领域中,有效控制与测量粉体的粒度分布,对提高产品质量,降低能源消耗,控制环境污染,保护人类的健康具有重要意义。
一、实验目的1、掌握粉体粒度测试的原理及方法。
2、了解影响粉体粒度测试结果的主要因素,掌握测试样品制备的步骤和注意事项。
3、学会对粉体粒度测试结果数据处理及分析。
二、实验原理粉体粒度及其分布是粉体的重要性能之一,对材料的制备工艺、结构、性能均产生重要的影响,凡采用粉体原料来制备材料者,必须对粉体粒度及其分布进行测定。
粉体粒度的测试方法有许多种:筛分析、显微镜法、沉降法和激光法等。
激光法是用途最广泛的一种方法。
它具有测试速度快、操作方便、重复性好、测试范围宽等优点,是现代粒度测量的主要方法之一。
激光粒度测试时利用颗粒对激光产生衍射和散射的现象来测量颗粒群的粒度分布的,其基本原理为:激光经过透镜组扩束成具有一定直径的平行光,照射到测量样品池中的颗粒悬浮液时,产生衍射,经傅氏(傅里叶)透镜的聚焦作用,在透镜的后焦平面位置设有一多元光电探测器,能将颗粒群衍射的光通量接收下来,光-电转换信号再经模数转换,送至计算机处理,根据夫琅禾费衍射原理关于任意角度下衍射光强度与颗粒直径的公式,进行复杂的计算,并运用最小二乘法原理处理数据,最后得到颗粒群的粒度分布。
三、仪器设备1、制样:超声清洗器、烧杯、玻璃棒、蒸馏水、六偏磷酸钠。
2、测量:Easysizer20激光粒度仪、微型计算机、打印机。
四、实验步骤(一)测试准备1、仪器及用品准备(1)仔细检查粒度仪、电脑、打印机等,看它们是否连接好,放置仪器的工作台是否牢固,并将仪器周围的杂物清理干净。
粉体粒度分布的测定(筛析法)
粒度测定方法有多种,常用的有筛分法、沉降法、激光法、小孔通过法、吸附法等。本实验用筛分法 和沉积天平法测粉体粒度分布。
Ⅰ.筛析法 一.目的意义
筛分法是最简单的也是用得最早和应用最广泛的粒度测定方法,利用筛分方法不仅可以测定粒度分 布,而且通过绘制累积粒度特性曲线,还可得到累积产率 50%时的平均粒度。本实验用筛分法测粉体粒度 分布,实验的目的:
1.设备仪器准备
将需要的套筛一套(或选定目数筛子),脸盆、烘箱准备好。
2.具体操作步骤
l)试样制备:用圆锥四分法缩分取样,将试样放入烘箱中烘干至恒重,准确称取 50 克。 2)将试样放入烧杯中,加水搅拌成泥浆(如果难分散粉料,还需加入适量的分散剂)。 3)将上述泥浆倒入所选号数的筛上或套筛上,然后在盛有清水的脸盆中淘洗或用水冲洗,直至水清为 止,将淘洗过的浊水倒入第二个筛子,再按上法进行淘洗,如此逐个进行,最后将各层筛上的残留物用洗 瓶分别洗到玻璃皿中,放在烘箱内烘干至恒重,称量(准确至 0.1 克)。 4)若直接用泥浆进行测定,则先称 50 克或 100 克泥浆放在烘箱内烘干、称重,测定此泥浆含水含量 后,再计算称取相当于 100 克干粉重的泥浆,按上述步骤测定筛余率或各号筛上的筛余量。
4)小心取出试样,分别称量各筛上和底盘中的试样质量的误差,并记录于表中。 5)检查各层筛面质量总和与原试样质量之误差,误差不应超过 2%,此时可把所损失的质量加在最细 粒级中,若误差超过 2%时实验重新进行。
粉体粒度分布的测定沉降天平法
Ⅱ.沉降天平法一.目的意义沉降法原理简单,操作计算容易,由于它不仅能测定粒度大小,还能测粒度分布,因而得到了广泛的应用,是测定微细物料粒度大小与分布的常用方法之一。
本实验的目的:① 掌握沉降天平法测粉末粒度的原理及方法;② 根据测定结果正确作出沉降曲线;③ 利用沉降曲线计算粉末试样各粒级的颗粒百分数。
二.基本原理1.斯托克斯理论沉降法是在适当的介质中使颗粒进行沉降,再根据沉降速度测定颗粒大小的方法,除了利用重力场进行沉降外,还可利用离心力场测定更细的物料的粒度。
该法的理论依据是众所周知的斯托克斯公式,即球形颗粒在液体中沉降时,其沉降速度v 由式(1)表示:22118)(X g v ηρρ−=(1) 式中 V ——— 颗粒的沉降速度;X ——— 球形颗粒的直径;ρ1——— 粉料的密度; ρ2——— 液体介质的密度; η ——— 液体介质的粘度;g ——— 重力加速度。
由此得到的直径: 2121])(18[gV X ρρη−= (2) X 称为斯托克斯直径。
实际上它是与试样颗粒具有相同沉降速度的球体的直径,因此,用沉降法测得的粒径有时也称为有效直径,颗粒形状不规则时要取适当的形状系数进行修正。
2.测试方法概述按照测定计算方法的不同,重力沉降和离心沉降都可以分为增量法和累积法两种。
增量法是测定距液面某一深度悬浊液的浓度随时间的变化,应用增量法测试的仪器主要有移液管、比重计、光透过仪等。
累积法是测定颗粒在悬浊液中的沉降速度或测量沉降容器底部颗粒的质量随时间的变化,应用累积法的测试仪器有沉降天平、Werner 管(又叫沉降柱)差压计法等。
其中沉降天平法是在不同的时间里称量沉降下来的颗粒重量的方法,它的最大缺点是进行一次分析所需要的时间较长,因为必须等待至悬浮液中大部分粉末沉积到天平盘上为止。
但它可取之处是所需粉末量少(一般约0.5克),这一点对于材料为有毒的或只能得到少量材料的情况是很重要的,且此法很易实现自动化,仪器结构简单、容易操作,因此目前仍在一些实验室中应用。
粉体粒度测试
粉体粒度及其分布的测试设计摘要:粉体材料在国民经济、国防现代化、现代高科技领域中具有非常重要得意义,粉体粒度的测定是粉体研究生产的重要辅助手段。
“粒度”是指一个颗粒的大小。
粒度检测的方法可分为筛分分析法、沉降分析法、电感应式粒度仪、测比表面法和记数法, 常用的检测仪器和设备有标准筛、连续水析器、激光粒度仪、光学显微镜、显微图像仪等。
本文对粒度检测方法进行总结,并对粒度检测系统提出了设计方案。
关键词:粉体,测量,粒度分析,粒度分布Test design of particle size and its distribution(Hongrui Sun, Department of chemical and materials engineeringHefei University)Abstract:Powder material has very important significance in the national economy, national defense modernization and modern high-tech field, and the determination of powder particle size is an important assistant tool for the research of powder. "Grain size" is the size of a particle. Particle size measurement methods can be classified as sieving analysis method, the sedimentation analysis method, measurement than surface method and notation, the commonly used detection instruments and equipment have standard screen, continuous analysis of water capacitor, laser particle size analyzer, optical microscope, micro image analyzer. In this paper, the method of particle size detection is summarized, and the design scheme is presented for the grain size detection system.Keywords: powder, measurement, particle size analysis, particle size distribution一、现代常用的几种典型粒度检测方法1.筛分法筛分法测试粒度分布历史悠久、设备简单、结果直观、易于理解,同时测试样品量大、代表性强,仍被企业广泛应用,许多粉体材料粒度分布指标是筛分法结果。