模式识别理论(483)_教学课件_w104918_聚类分析1

合集下载

模式识别聚类分析

模式识别聚类分析

x1 ,
(
( x1
x2旳值。可用下列递推
k ) xi ) /( N1(k ) 1)
x(k 1) 2
(k)
x2
(k)
(x2
xi
)
/(
N
(k 2
)
1)
x1 (k ) , x2 (k )是第k步对分时两类均值,
x1(k 1) , x2(k 1)是下一次对分时把xi从G1(k )
划到G2(k)时的两类均值
所以x1 Z1(1)
再继续进行第二,第三次迭代… 计算出 E(2) , E(3) , …
次数 1 2 3 4 5 6 7 8 9
10 11
G1 G2
x21 x20 x18 x14 x15 x19
x11 x13 x12 x17 x16
E值 56.6 79.16 90.90 102.61 120.11 137.15 154.10 176.15 195.26 213.07 212.01
Ni为第i类的样本数.
离差平方和增量:设样本已提成ωp,ωq两类, 若把ωp,ωq合为ωr类,则定义离差平方:
Dp2q Sr (S p Sq )
其中S p , Sq分别为 p类于q类的离差平方和, S r为 r 类的离差平方和
增量愈小,合并愈合理。
聚类准则
Jw Min
类内距离越小越好 类间距离越大越好
体积与长,宽,高有关;比重与材料,纹理,颜 色有关。这里低、中、高三层特征都有了。
措施旳有效性
特征选用不当 特征过少 特征过多 量纲问题
主要聚类分析技术
谱系法(系统聚类,层次聚类法) 基于目旳函数旳聚类法(动态聚类) 图论聚类法 模糊聚类分析法
2.2模式相同度度量

模式识别(国家级精品课程讲义).ppt

模式识别(国家级精品课程讲义).ppt
模式判定: 是一种集合运算。用隶属度将模糊集合划分
为若干子集, m类就有m个子集,然后根据择近原 则分类。
29
1.1 概述-模式识别的基本方法
理论基础:模糊数学 主要方法:模糊统计法、二元对比排序法、推理法、
模糊集运算规则、模糊矩阵 主要优点:
由于隶属度函数作为样本与模板间相似程度的度量, 故往往能反映整体的与主体的特征,从而允许样本有 相当程度的干扰与畸变。 主要缺点: 准确合理的隶属度函数往往难以建立,故限制了它的 应用。
式中,p(xi )是 X 的第 i 个分量的 边缘
密度。随机矢量 X 的均值矢量 的各
分量是相应的各随机分量的均值。
47
1.3 随机矢量的描述
(二)随机矢量的数字特征:
⑵ 条件期望
在模式识别中,经常 以类别 i 作为条件,在这
种情况下随机矢量 X 的条件期望矢量定义为
i E[ X | i ] X n xp(x | i )dx
34
1.1 概述-模式识别的发展简史
1929年 G. Tauschek发明阅读机 ,能够阅 读0-9的数字。
30年代 Fisher提出统计分类理论,奠定了 统计模式识别的基础。
50年代 Noam Chemsky 提出形式语言理论— —傅京荪提出句法/结构模式识别。
60年代 L.A.Zadeh提出了模糊集理论,模糊 模式识别方法得以发展和应用。
模式(Pattern):对客体(研究对象)特征的描 述(定量的或结构的描述),是取自客观世界 的某一样本的测量值的集合(或综合)。
概念

特征(Features):能描述模式特性的量(测
量值)。在统计模式识别方法中,通常用一
个矢量
x

模式识别第二章ppt课件

模式识别第二章ppt课件
2.2.2 聚类准则
• 试探方法
凭直观感觉或经验,针对实际问题定义一种 相似性测度的阈值,然后按最近邻规则指定 某些模式样本属于某一个聚类类别。
– 例如对欧氏距离,它反映了样本间的近邻性,但 将一个样本分到不同类别中的哪一个时,还必须 规定一个距离测度的阈值作为聚类的判别准则。
精选ppt课件2021
• 特征选择的维数
在特征选择中往往会选择一些多余的特征,它增加了 维数,从而增加了聚类分析的复杂度,但对模式分类 却没有提供多少有用的信息。在这种情况下,需要去 掉相关程度过高的特征(进行降维处理)。
• 降维方法
– 结论:若rij->1,则表明第i维特征与第j维特征所反 映的特征规律接近,因此可以略去其中的一个特
– 距离阈值T对聚类结果的影响
精选ppt课件2021
17
2.3 基于试探的聚类搜索算法
2.3.2 最大最小距离算法
• 基本思想:以试探类间欧氏距离为最大 作为预选出聚类中心的条件。
• 病人的病程
– 名义尺度:指定性的指标,即特征度量时没有数量
关系,也没有明显的次序关系,如黑色和白色的关
系,男性和女性的关系等,都可将它们分别用“0”
和“1”来表示。
• 超过2个状态时,可精选用pp多t课个件2数021值表示。
8
2.2 模式相似性的测度和
聚类准则
2.2.1 相似Βιβλιοθήκη 测度• 目的:为了能将模式集划分成不同的类别,必须定义 一种相似性的测度,来度量同一类样本间的类似性和 不属于同一类样本间的差异性。
12
2.2 模式相似性的测度和
聚类准则
2.2.2 聚类准则
• 聚类准则函数法
– 依据:由于聚类是将样本进行分类以使类别间可 分离性为最大,因此聚类准则应是反映类别间相 似性或分离性的函数;

模式识别培训教程PPT(94张)

模式识别培训教程PPT(94张)

线条透视
结构密度
遮盖关系
(二)建构性知觉理论 (Constructive perception)
知觉是一个积极的和建构的过程
知觉并不是由刺激输入直接引起的,而 是所呈现刺激与内部假设、期望、知识以 及动机和情绪因素交互作用的产物
知觉有时可受到不正确的假设和期望影 响,因而也会发生错误
邻近物 体大小 对大小 知觉的 影响
现代观点则认为,知觉是主动 和富有选择性的构造过程。
黄希庭:“知觉是直接作用于感觉器 官的事物的整体在脑中的反映,是人对感 觉信息的组织和解释的过程。”
梁宁建:“知觉是人脑对客观事物的 各种属性、各个部分及其相互关系的综合 的整体的反映,它通过感觉器官,把从环 境中得到的各种信息,如光、声音、味道 等转化为对物体、事件等的经验的过程。”
2. “泛魔堂”模型(“魔城”模型)
通过特征分析识别一个字母R
3.特征分析的生理学依据
1981年诺贝尔医学奖获得者:Hubel & Wiesel
4.特征分析的行为学证据
Neisser(1964)英文字母扫描实验 固定影像与静止影像的实验
5.特征分析说的评论 优点:避开预加工、减轻记忆负担、带有学习
由有关知觉对象的一般知识开始的加工, 由此可以形成期望或对知觉对象形成假 设,这种期望或假设制约着加工的所有 阶段或水平。又称之为概念驱动加工 (Concept-Driven Processing)
•Tulving, Mandler & Baumal的实验
自变量
上下文情况:无上下文、4字上下文、8字上下文 (考察自上而下加工)
1982年他在《科学》杂志上原创性地提出 了“拓扑性质初期知觉”的理论,向半个世纪 以来占统治地位的理论提出了挑战。随后20多 年的时间里,在与国际上持不同学术观点的学 者的争论与交流中,他以令人信服的系列科学 实验不断地完善和论证着这一假说,使之成为 被越来越多的国际同行所接受的学说,进而成 为有国际影响力的理论,他的成果也被《科 学》、《美国科学院院报》等著名学术刊物多 次刊登。2004年,著名知觉杂志《Visual Cognition》以专辑的形式刊载了陈霖教授的 成果并配发了大量国际著名学者的评论性文章。

模式识别及其分类课件

模式识别及其分类课件
模式识别及其分类课件
目录
• 引言 • 模式识别的基本概念 • 模式识别的分类方法 • 模式识别的应用案例 • 模式识别的未来趋势与挑战 • 总结与展望
01
引言
什么是模式识别
• 模式识别是指通过计算机自动识别和分类对象的技术。它通过 收集、处理和分析数据,从中提取出对象的特征和模式,并对 这些模式进行分类和识别。模式识别技术广泛应用于图像识别 、语音识别、自然语言处理等领域。
的挑战。
06
总结与展望
回顾模式识别的历史与成就
01 02 03
模式识别概念的起源
模式识别是指对输入的图像、声音、文本等数据进行分析 ,从中提取出有用的信息,并对其进行分类和识别的过程 。这个概念最早可以追溯到20世纪初,当时科学家们就开 始研究如何通过机器来识别和理解图像和声音等数据。
模式识别技术的发展历程
语音识别技术主要基于信号处理和机 器学习技术。通过对语音信号进行特 征提取和学习,实现语音识别。其中 ,关键的技术包括声学模型、语言模 型、解码器等。
发展趋势
随着深度学习技术的不断发展,语音 识别技术的准确性和稳定性不断提高 。未来,语音识别技术将更加注重隐 私保护和安全性,同时,也将与自然 语言处理等技术进一步融合,推动智 能化应用的发展。
手写数字识别
应用场景
手写数字识别技术主要用于银行支票、快递单据等手写文字的识别,以及各种需要手写输 入的应用场景。
技术原理
手写数字识别技术主要基于图像处理和机器学习技术。通过对手写数字图像进行特征提取 和学习,实现对手写数字的识别。其中,关键的技术包括特征提取、模型训练、数字识别 等。
发展趋势
随着深度学习技术的不断发展,手写数字识别技术的准确性和稳定性不断提高。未来,手 写数字识别技术将更加注重实时性和鲁棒性,同时,也将与自然语言处理等技术进一步融 合,推动智能化应用的发展。

模式识别培训教程PPT课件( 94页)

模式识别培训教程PPT课件( 94页)

启动效应(priming effects)
指先前呈现的刺激项目对随后该刺激项目或与 其相关的刺激项目进行某种加工所产生的易化 现象,表现为启动刺激(prime)对目标刺激 (target)在反应时上的促进作用。
启动效应的分类
启动效应按照启动词和目标词间字形、语音、 语义间的相似程度分为重复启动和相似启动。
依据对语义加工的依赖程度和是否具有知 觉特异性效应(perceptual-specific effects),分为物体(知觉)启动和语义(概 念)启动。
语义启动 (semantic priming)
指先前的语义加工使得随后的语义性任务 操作的反应时间缩短、准确率提高。
例如,在词汇判断任务中,将“医院” 作为启动刺激时,它会促进被试对目标刺 激“医生”的判断反应。又如:当前面呈现 的词是“面包”时,比是“护士”时对目 标词“黄油”的反应要快。
由有关知觉对象的一般知识开始的加工, 由此可以形成期望或对知觉对象形成假 设,这种期望或假设制约着加工的所有 阶段或水平。又称之为概念驱动加工 (Concept-Driven Processing)
•Tulving, Mandler & Baumal的实验
自变量
上下文情况:无上下文、4字上下文、8字上下文 (考察自上而下加工)
二、知觉理论
(一) 直接知觉理论( Direct perception )
以Gibson为代表,认为环境可提供的信息足以产生 知觉,知觉并不需要内部过程和表征的参与。
刺激眼睛的光线模式是一个结构性的光 学分布;
这种分布能提供空间中目标分布特征 的明确或恒定信息;
知觉在很少或没有信息加工参与的 情况下,可以通过共振直接从光学 分布中提取各种丰富信息。

《模式识别导论》课件

《模式识别导论》课件

结构模式识别
01
结构模式识别是通过分析模式的结构特性来进行识别
的方法,主要应用于具有明显结构特征的模式。
02
结构模式识别方法主要包括基于规则和基于图的方法
,如决策树、有限状态机等。
03
结构模式识别方法在语法分析、文本分类、化学分子
结构解析等领域有广泛应用。
模糊模式识别
模糊模式识别是利用模糊逻辑 和模糊集合理论进行模式识别 的方法,能够处理不确定性和
详细描述
人脸识别技术广泛应用于安全、门禁 、考勤、移动支付等领域,通过与数 据库中存储的人脸图像进行比对,实 现快速、准确的身份验证。
手写数字识别
总结词
手写数字识别是指利用计算机技术自动识别手写数字的能力,是模式识别领域的 一个重要分支。
详细描述
手写数字识别技术广泛应用于邮政编码、支票、银行票据等领域的自动化处理, 提高数据录入效率和准确性。
03
大数据与模式识别的结合有助于推动各行业的智能化进程,如智能交通、智能 安防、智能医疗等领域。未来,随着大数据技术的不断发展,模式识别的应用 场景将更加广泛。
隐私与安全问题
随着模式识别技术的广泛应用,隐私和安全问题逐渐凸显出来。在人脸 识别、生物特征识别等领域,个人隐私容易被泄露和滥用。因此,需要 加强隐私保护和安全管理,确保个人信息安全。
大数据与模式识别
01
大数据为模式识别提供了丰富的数据资源,有助于提高识别的准确率和可靠性 。通过对大数据的分析和处理,可以挖掘出更多有价值的信息,推动模式识别 技术的发展。
02
大数据时代对模式识别提出了更高的要求,需要处理海量数据、提高计算效率 、降低存储成本等。因此,需要不断优化算法和计算架构,以满足大数据时代 的需求。

模式识别培训课程课件

模式识别培训课程课件
整模型参数。
04
语音模式识别
语音信号的预处理
噪声抑制
去除语音信号中的环境噪声,如 风、电气噪声等,提高语音信号
的清晰度和可懂度。
标准化
将语音信号的幅度和时间尺度进行 归一化处理,以消除不同说话人之 间的差异,提高识别系统的鲁棒性 。
分帧
将语音信号分割成短小的片段,通 常为20-30毫秒,以便于特征提取 和模式分类。
04 空间特征
提取图像中的空间特征,
反映图像中目标之间的空
间关系。
分类器的选择与优化
分类器选择
根据不同的应用场景 选择合适的分类器, 如支持向量机、神经
网络等。
参数优化
通过调整分类器的参 数,提高分类器的准 确率和泛化能力。
模型训练
使用训练数据集训练 分类器,并评估其性
能。
模型验证
使用验证数据集验证 分类器的性能,并调
模式识别培训课程课 件
目录
• 模式识别概述 • 模式识别的基本理论 • 图像模式识别 • 语音模式识别 • 文字识别 • 模式识别技术的发展趋势与挑战
01
模式识别概述
什么是模式识别
模式识别是指通过计算机或人工手段对自然界或人造的 复杂对象进行自动识别、分类、解释、理解或预测。它 涉及对输入数据的研究和分析,以识别出有用的信息, 并对其做出决策或判断。
基于光学原理的文字识别
01
02
03
光学原理
通过光学原理,将文本图 像转化为可识别的数字化 信息。
扫描仪
利用扫描仪对文档进行扫 描,将纸质文档转化为电 子文档。
OCR技术
光学字符识别(OCR)技 术可以将文本图像转化为 可编辑和搜索的文本。

模式识别课件-模式识别导论本(四)-PPT精品文档

模式识别课件-模式识别导论本(四)-PPT精品文档
2 1 d x m C x m t
4 2 3
其中m为均值向量,C 为协方差矩阵 欧氏距离和马氏距离之间的差别:
第二类
欧氏距离来说应该是属于第一类
模式识别导论
例子:二维两类问题,设都服从正态分布,协方差 矩阵一样
, 均值向量为 0 0 3 3 1 2
总体散布矩阵为
S x m x m T
t
n
4 2 12
可以推出
S S S T W B
4 2 1
模式识别导论
推导过程如下:
S T
x 整个样本集 T
xxxmmxmm
T T T T
x 整个样本集
xm xm
在进行某些数值分析后重新确定阈值和起始点。这种方法对于只需要某种
粗略聚类的问题来说,是简单快速的方法
模式识别导论
二、最大的最小距离算法
这种方法以类间欧氏距离最大作为选择聚类中心的条件。下面 以图为例,说明其基本思想。
C
J x m i
i 1 x i
2
4 2 6
m 是 类的均值向量 i i
当J最小时,认为聚类合理。在各类样本密集,类别间分离明显 时,最宜采用这一准则
模式识别导论
与最小方差有关的准则
J N iS i
i 1 C
427 428
式中, N S i是 i类的样本数, i是相似性系数: 1 2 S xx' i 2 N i x i x' i
可见,给定的向量和第一类的中心比较近。但如果从 欧氏距离类看,则是相反的,下图
22 0.82

模式识别理论 ppt课件

模式识别理论 ppt课件
• 最小(大)生成树法—Minimun(Max) Spanning Tree Method
• K均值聚类法—K-means Clustering Method
• 模糊聚类法—Fuzzy clustering method • PCA投影分类法等等
60
主成分分析的数学 与几何意义示意图
61
16个脑组织试样进行分析,在色谱图中
uxy yt x 12
判别阈值可取两个类心在u方向上轴的投影连线的
中点作为阈值,即:
yt
m~1 m~2 2
49
50
(7) 计算m~ i。
m ~iN 1i j y(ji)N 1i j u x(ji)u m i
(8)
计算yt 。 yt
m~1 m~2 2
(9) 对未知模式x判定模式类。
uxy yt x 12
11
模式识别常用术语
• 特征抽提(Feature Extraction) • 训练集(Training Set) • 识别率(Recognition Rate) • 预测能力(Predictive Ability)
12
注意事项
训练集的数据一定要可靠。 训练集的样本数目要足够多,样本数m与模
式空间维数n 的比值至少应满足m/n≥3,最好 m/n≥10。 模式空间特征的选择是成败的关键,要选取与 样本分类有关的特征,如果不能包括与分类有 关的主要特征,模式识别就不会有好的效果。
4
什么是模式识别
• 模式识别包括两个阶段,即学习阶段和实现阶段, 前者是对样本进行特征选择,寻找分类的规律, 后者是根据分类规律对未知样本集进行分类和识 别。
• 广义的模式识别属计算机科学中智能模拟的研究 范畴,内容非常广泛,包括声音和语言识别、文 字识别、指纹识别、声纳信号和地震信号分析、 照片图片分析、化学模式识别等等。计算机模式 识别实现了部分脑力劳动自动化。

模式识别-聚类分析

模式识别-聚类分析
的函数。 ➢ d(x,y) ≥0,对于任意的x,y∈P; ➢ d(x,y)=0 ,当且仅当x=y; ➢ d(x,y) =d(y,x),对于任意的x,y∈P; ➢ d(x,y) ≤d(x,z)+d(z,y),对于任意的x,y,z∈P;
2023/12/12
6
1. 欧氏距离(Euclid,欧几里德) ——简称距离 设X1、X2为两个n维模式样本, X1 [x11, x12 ,...., x1n ]T X 2 [x21, x22 ,...., x2n ]T
G1(n 1), G2 (n 1),
3)计算合并后新类别之间的距离,得D(n+1)。
4)跳至第2步,重复计算及合并。
结束条件: 1)取距离阈值T,当D(n)的最小分量超过给定值 T 时,算法停
止。所得即为聚类结果。 2)或不设阈值T,一直将全部样本聚成一类为止,输出聚类的分
级树。
2. 问题讨论:类间距离计算准则
④ 用全体模式对三个聚 类中心计算最小距离中 的最大值,无>T 情况, 停止寻找中心。
结果:Z1=X1;Z2=X6;
x1
Z3=X7 。
⑤ 聚类
本讲内容
▪ 聚类分析概念 ▪ 相似性测度和聚类准则 ▪ 基于距离阈值的聚类算法 ▪ 系统聚类法
2023/12/12
27
2.4 层次聚类法
(Hierarchical Clustering Method) (系统聚类法、分级聚类法)
正确分类
错误分类
课程思政:聚类分析在电商新经 济业态上的应用
▪ 谁经常光顾商店,谁买什么东西,买多少?
▪ 按用户卡记录的光临次数、光临时间、性别、 年龄、职业、购物种类、金额等变量分类
▪ 这样商店可以….

《模式识别与分类》课件

《模式识别与分类》课件
总结词
图像分类是一种基于深度学习技术的模式识别应用,用于自动分类和标注图像。
图像分类技术通过训练深度神经网络,学习图像中的特征,实现自动分类和标注。该技术广泛应用于图像检索、社交媒体自动标记等领域。
详细描述
总结词
总结与展望
05
深度学习:随着神经网络的深入研究,深度学习在模式识别中扮演着越来越重要的角色。然而,如何设计更有效的神经网络结构和训练算法,以及解决深度学习中的过拟合和泛化能力等问题,仍是需要面对的挑战。
人脸识别技术通过捕捉和比较人脸特征,如眼睛、鼻子、嘴巴等部位的形状、大小、位置等信息,实现身份识别。该技术广泛应用于安全监控、门禁系统、移动支付等领域。
VS
声音识别是一种基于语音处理技术的模式识别应用,用于语音识别和语音合成。
详细描述
声音识别技术通过分析语音信号的波形、频谱等特征,实现语音到文本的转换。同时,语音合成技术可以将文本转换为语音信号,实现语音输出。该技术广泛应用于语音助手、智能客服等领域。
优点
神经网络分类能够处理复杂的非线性数据,具有较强的泛化能力,且能够自动提取特征,减少人工干预。
缺点
神经网络分类的训练过程需要大量的数据和计算资源,且参数调整较为复杂,容易陷入局部最优解。
模式识别与分类的应用实例
04
总结词
人脸识别是一种基于计算机视觉技术的模式识别应用,用于身份验证和识别。
详细描述
详细描述
SVM具有较强的泛化能力,能够处理非线性可分的数据集,且在多分类问题中表现良好。
优点
SVM对于大规模数据集的处理效率较低,且对于非线性可分的数据集需要采用核函数等技术进行处理,参数选择较为复杂。
缺点
总结词
基于人工神经网络的分类方法

模式识别--聚类分析41页PPT

模式识别--聚类分析41页PPT


31、只有永远躺在泥坑里的人,才不会再掉进坑里。——黑格尔 32、希望的灯一旦熄灭,生活刹那间变成了一片黑暗。——普列姆昌德 33、希望是人生的乳母。——科策布 34、形成天才的决定因素应该是勤奋。——郭沫若 35、学到很多东西的诀窍,就是一下子不要学很多。——洛克
1、不要轻言放弃,否则对不起自己。
2、要冒一次险!整个生命就是一场冒险。走得最远的人,常是愿意 去做,并愿意去冒险的人。“稳妥”之船,从未能从岸边走远。-戴尔.卡耐基。
梦 境
3、人生就像一杯没有加糖的咖啡,喝起来是苦涩的,回味起来却有 久久不会退去的余香。
模式识别--聚类分析4、守业的最好办法就是不断的发展。 5、当爱不能完美,我宁愿选择无悔,不管来生多么美丽,我不愿失 去今生对你的记忆,我不求天长地久的美景,我只要生生世世的轮 回里有你。

模式识别讲义--聚类分析

模式识别讲义--聚类分析
xi p x j q
• 最长距离 :两类中相距最远的两个样本间的距离。
D pq max d ij
xi p x j q
• 中间距离:设ω1类和ω2 ω3类间的最短距离为d12,最长距 离为d13, ω2 ω3类的长度为d23, 3 2 d 23 则中间距离为:
1 2 1 1 2 d d12 d13 d 23 2 2 4
软件教研室
聚类的准则函数—类内距离
待分类模式集{x1 , x2 ,..., x N }, 被分为C类, {
x
c
( j)
i
, j 1,2,..., c; i 1,2, n j }, j表示类别,i表示序号

1 n j N,m j nj j 1

i 1
nj
xi( j ) , j 1,2,..., c
dij xi z j , j 1,2; di mindi1 , di 2 , i 1,2,..., N
(4) 若d l max mind i1 , d i 2 z1 z 2
i
z3 xl , 转5,否则转6
软件教研室
最大最小距离算法
(5)设存在k个聚类中心,计算未作为聚类中心的各模式Xi到各聚类中心 的距离dij,并算出
软件教研室
类间距离定义(续)
• 平均距离:两类中各个元素两两之间的距离平方相 加后取平均值
D
2
pq
1 2 d ij , N p N q x i p
x j q

N p : p样本数,N q : q 样本数 np nq 2 2 2 Dkl Dkp Dkq , 设l p q n p nq n p nq

模式识别 第二章 聚类分析课件

模式识别 第二章 聚类分析课件
青蛙
蜥蜴,蛇, 麻雀,海
金鱼
鸥,青蛙
羊,狗, 猫,
鲨鱼
(c) 生存环境
(d)繁衍后代的方式和是否存在肺
6
2.1 聚类的基本概念
2.1.5 距离测度对聚类结果的影响
数据的粗聚类是两类,细聚类为4类
72.2 ຫໍສະໝຸດ 式相似性测度2.2.1 距 离 测 度 2.2.2 相 似 测 度 2.2.3 匹 配 测 度
r(x1, x2 )
18
(3) 指数相关系数
e(x, y) 1 n exp[ 3 (xi yi )2 ]
n i1
4
2 i
这里假设 x 和 y 的维数n相同、概率分布相同。
2是第i个分量的方差。
i
性质:不受量纲变化的影响。
19
(三) 匹 配 测 度
若特征只有两个状态: 0 => 有此特征;1 => 无此特征。称之为二值特征。
注意,这里只考虑(1-1)匹配,而不考虑(0-0)匹配。 21
(三) 匹 配 测 度
(2) Rao测度
(1-1)匹配特征数目与特征总数之比
s(x, y)
a
x'y
abce n
(3) 简单匹配系数 (1-1)匹配+(0-0)匹配/特征总数
m(x, y) a e n
(4) Dice系数
只对(1-1)匹配加权
取决于分类算法和特征点分布情况的匹配。
x2
x2
w1
w2
W1
b
w1
W2
W1
w2
w3
W2
W3
1.特征选取不当使分类无效。
x1
4
2.特征选取不足可能使不同 类别的模式判为一类。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
n j =1
with respect to z; we have a sample mean minimizer z=
n j =1
xj
n
:
(2)
||xj − z ||2
(1)
Here, the distance measure between xj and center z is the Euclidean norm. This method of ÿnding estimators in statistic is called the least-squares (LS) method. An artiÿcial data set {3; 4; 4:4; 4:7; 4:9; 5; 5:1; 5:3; 5:6; 6; 7} is tested using this procedure. This data set is tight in the data point 5 and the estimate of z is 5 by solving Eq. (2). However, when we add a noisy point in the data set with the value 30, this procedure obtains its estimate as z = 7:08; which is outside the original data range. This is obviously not robust because the result is heavily a ected by the noisy point. These results are shown in Figs. 1(a) and (c). The curve in Fig. 1 is made with the values of Eq. (1) with respective to the estimate z . The location of the minimizer is calculated with Eq. (2). Obviously, the minimizer in Fig. 1(c) is a ected by the noise and is quite di erent from the original estimate 5 with its new estimate 7.08.
∗ Corresponding author. Tel.: +886-3-456-3171x3119; fax: +886-3-456-3160. E-mail address: msyang@.tw (M.-S. Yang).
c-means (HCM). FCM has been shown to have better performance than HCM. FCM has become the most well-known and powerful method in cluster analysis. However, these FCM algorithms have considerable trouble in a noisy environment and inaccuracy with a large number of di erent sample sized clusters. A good clustering algorithm should be robust and able to tolerate these situations that often happen in real application systems. In this paper we propose a new metric. The robustic property of this new metric is discussed based on the statistical point of view with the in uence function. This proposed metric is more robust than the common-used Euclidean norm. We then replace the Euclidean norm with the new metric in c-means clustering. Thus, we created two new clustering methods called the alternative hard c-means (AHCM) and alternative fuzzy c-means (AFCM) clustering algorithms. These proposed algorithms actually improve the weaknesses in HCM and FCM. In Section 2 the new metric is presented and its properties are discussed. We then claim that the proposed new metric is more robust than the Euclidean norm on the basis of the robust statistic and the in uence function. In Section 3, based on the new metric, we propose the AHCM clustering algorithm and create the AFCM in Section 4. Numerical examples and comparisons between these
Abstract In this paper we propose a new metric to replace the Euclidean norm in c-means clustering procedures. On the basis of the robust statistic and the in uence function, we claim that the proposed new metric is more robust than the Euclidean norm. We then create two new clustering methods called the alternative hard c-means (AHCM) and alternative fuzzy c-means (AFCM) clustering algorithms. These alternative types of c-means clustering have more robustness than c-means clustering. Numerical results show that AHCM has better performance than HCM and AFCM is better than FCM. We recommend AFCM for use in cluster analysis. Recently, this AFCM algorithm has successfully been used in segmenting the magnetic resonance image of Ophthalmology to di erentiate the abnormal tissues from the normal tissues. ? 2002 Pattern Recognition Society. Published by Elsevier Science Ltd. All rights reserved.
-3203/02/$22.00 ? 2002 Pattern Recognition Society. Published by Elsevier Science Ltd. All rights reserved. PII: S 0 0 3 1 - 3 2 0 3 ( 0 1 ) 0 0 1 9 7 - 2
2268
K.-L. Wu, M.-S. Yang / Pattern Recognition 35 (2002) 2267 – 2278
algorithms are made. Finally, we make conclusions in Section 5. 2. A new metric The concept of a metric space is basic and important in Mathematics. Di erent metric functions construct di erent metric spaces. Based on these metric spaces, mathematical theorems will be studied and applied in various areas of applications. The performance of these application is always a ected by di erent chosen metrics. The Euclidean norm is well known and commonly used as a metric. However, the parameter estimate resulting from an objective function based on this Euclidean metric may not be robust in a noisy environment. Suppose that X = {x1 ; : : : ; x n } is a data set where xj is a feature vector in m-dimensional Euclidean space Rm , a good estimate of the center z can be acquired using a minimum mean square error procedure. Thus, minimizing
相关文档
最新文档