ADVANCED CERAMICS-INTERNSHIP REPORT

合集下载

Advanced Ceramics(4)-1

Advanced Ceramics(4)-1

Physical Properties of Ceramics
Density – in general, ceramics are lighter than metals and heavier than polymers Melting temperatures - higher than for most metals
– Hence, ceramics fail by brittle fracture much more readily than metals – Performance is much less predictable due to random imperfections and processing variations
Ceramic Products (continued)
Glass - bottles, glasses, lenses, window pane, and light bulbs Glass fibers - thermal insulating wool, reinforced plastics (fiberglass), and fiber optics communications lines Abrasives - aluminum oxide and silicon carbide Cutting tool materials - tungsten carbide, aluminum oxide, and cubic boron nitride
Raw Materials for Traditional Ceramics
Mineral silicates, such as clays of various compositions, and silica, such as quartz, are among the most abundant substances in nature and constitute the principal raw materials for traditional ceramics Another important raw material for traditional ceramics is alumina These solid crystalline compounds have been formed and mixed in the earth’s crust over billions of years by complex geological

陶艺的总结汇报稿英文

陶艺的总结汇报稿英文

陶艺的总结汇报稿英文Ceramics Workshop: A Summary ReportIntroduction:The ceramics workshop held on [Date], organized by [Organizer Name], was a successful event that provided participants with valuable insights and hands-on experience in the art of ceramics. The workshop aimed to enhance participants' understanding of ceramics as an artistic medium, develop their creative skills, and foster a sense of appreciation for this ancient craft.Workshop Objectives:1. To introduce participants to the fundamentals of ceramics.2. To provide a hands-on experience in creating ceramic pieces.3. To explore different techniques and tools used in ceramics.4. To encourage participants to express their creativity through ceramics.5. To promote an understanding and appreciation for ceramics as an art form.Workshop Activities:The workshop was divided into several activities, which were designed to gradually build participants' knowledge and skills in ceramics.1. Introduction to Ceramics:The first activity involved an introduction to the history and significance of ceramics as an art form. Participants learned about the various types of ceramics, their uses, and their cultural and artistic importance. This session included a presentation followedby a Q&A session.2. Clay Preparation:The second activity focused on preparing clay for use. Participants were taught how to properly knead and prepare clay, ensuring it was free from air bubbles and ready for molding. This session also covered information on different types of clay and their specific characteristics.3. Hand-Building Techniques:The third activity focused on hand-building techniques, where participants were able to shape clay using their hands and basic tools. They learned how to create basic forms such as bowls, vases, and sculptures. This session allowed participants to explore their creativity and experiment with different shapes and textures.4. Wheel Throwing Techniques:The fourth activity involved wheel throwing, a technique used to create symmetrical and intricate ceramic pieces. Participants were introduced to the potter's wheel and learned how to center clay, form cylinders, and create various shapes. This session required precision and coordination, further enhancing participants' skills in ceramics.5. Surface Decoration:The fifth activity focused on surface decoration techniques. Participants learned how to apply glazes, underglazes, and other decorative elements to their ceramic pieces. They were encouraged to experiment with different colors, textures, and patterns to create unique and visually appealing designs.6. Firing and Finishing:The final activity involved the firing and finishing process. Participants were shown how to load their pieces into a kiln and the proper procedures for firing. They also learned about different firing techniques, such as oxidation and reduction. This session concluded with a discussion on finishing techniques, including sanding and polishing the final ceramic pieces.Conclusion:The ceramics workshop provided participants with a comprehensive understanding of ceramics as an art form. Through hands-on activities and expert guidance, participants gained practical skills in clay preparation, hand-building, wheel throwing, surface decoration, firing, and finishing. The workshop successfully promoted creativity, self-expression, and an appreciation for ceramics. We hope that participants will continue to explore this ancient craft and use their newfound skills to create unique and beautiful ceramic pieces.。

先进陶瓷材料 英语

先进陶瓷材料 英语

Advanced Ceramic Materials: Innovations and Applications**Introduction:**Advanced ceramic materials represent a fascinating frontier in materials science and engineering. These materials, known for their exceptional properties, have found applications in a wide range of industries, from electronics and energy to aerospace and healthcare. This article explores the unique characteristics of advanced ceramics, their manufacturing processes, and their diverse applications across various sectors.**I. Characteristics of Advanced Ceramic Materials:**1. **High Hardness and Strength:**Advanced ceramics exhibit remarkable hardness and strength properties, making them suitable for applications where traditional materials may fail. Materials like silicon carbide and boron nitride are known for their exceptional hardness.2. **Low Thermal Conductivity:**Many advanced ceramics possess low thermal conductivity, making them useful for applications requiring thermal insulation. This property is vital in fields such as aerospace, where ceramic tiles are used to protect spacecraft from the intense heat during re-entry.3. **Electrical Insulation:**Ceramics are excellent electrical insulators, making them essential in electronics and telecommunications. Components like ceramic capacitors and insulating substrates play a crucial role in modern electronic devices.4. **Chemical Inertness:**Advanced ceramics often demonstrate high chemical inertness, resisting corrosion and degradation in harsh environments. This property makes them ideal for applications in chemical processing and biomedical devices.5. **Biocompatibility:**Some ceramics, such as alumina and zirconia, exhibit biocompatibility, making them suitable for use in medical implants. Their inert nature reduces the risk of adverse reactions within the human body.**II. Manufacturing Processes for Advanced Ceramics:**1. **Powder Processing:**The majority of advanced ceramics are produced through powder processing techniques. This involves the synthesis of ceramic powders, followed by shaping and sintering to achieve the desired final product.2. **Chemical Vapor Deposition (CVD):**CVD is a technique where ceramic materials are deposited onto a substrate from gaseous precursors. This process allows for the precise control of thin-film coatings and the production of intricate shapes.3. **Additive Manufacturing:**Recent advancements in additive manufacturing, or 3D printing, have extended to ceramics. This method enables the fabrication of complex ceramic structures with enhanced design flexibility.4. **Hot Isostatic Pressing (HIP):**HIP is a technique used to improve the density and mechanical properties of ceramics by subjecting them to high pressures and temperatures. This process reduces porosity and enhances material performance.**III. Applications of Advanced Ceramic Materials:**1. **Electronics and Semiconductors:**Ceramics such as alumina and silicon nitride are widely used in electronic components, including insulating substrates, capacitors, and semiconductor packages.2. **Aerospace Industry:**The aerospace sector utilizes ceramics for applications such as thermal protection systems on spacecraft, turbine blades in jet engines, and lightweight structural components.3. **Medical Implants:**Biocompatible ceramics like zirconia and alumina are employed in medical implants such as dental prosthetics and artificial joints, owing to their durability and compatibility with the human body.4. **Energy Sector:**Ceramics play a critical role in the energy industry, particularly in high-temperature environments. They are used in components for gas turbines, nuclear reactors, and solid oxide fuel cells.5. **Automotive Applications:**Advanced ceramics find use in the automotive sector for components that require high wear resistance and thermal stability, including brake components and engine components.**IV. Challenges and Future Prospects:**1. **Brittleness:**Despite their exceptional properties, ceramics are inherently brittle, limiting their use in certain applications. Ongoing research focuses on developing strategies to enhance the toughness of ceramics.2. **Cost and Manufacturing Complexity:**The production of advanced ceramics can be cost-intensive, and certain manufacturing processes involve complex procedures. Advancements in cost-effective manufacturing techniques are essential for widespread adoption.3. **Innovations in Composite Materials:**Researchers are exploring the incorporation of ceramics into composite materials to harness their unique properties while addressing limitations such as brittleness.4. **Nanotechnology Integration:**The integration of nanotechnology into ceramic materials is an area of active research. Nanoceramics exhibit enhanced properties, and their precise control at the nanoscale opens new possibilities for applications.**Conclusion:**Advanced ceramic materials stand at the forefront of materials innovation, offering a diverse range of properties that make them indispensable across various industries. As research continues to push the boundaries of ceramic science, addressing challenges and unlocking new potentials, these materials will likely play an increasingly pivotal role in shaping the technologies of the future. The versatility, durability, and unique characteristics of advanced ceramics position them as key contributors to advancements in electronics, healthcare, aerospace, and beyond.。

英语作文-陶瓷制造业:科技创新驱动发展

英语作文-陶瓷制造业:科技创新驱动发展

英语作文-陶瓷制造业:科技创新驱动发展The ceramic manufacturing industry stands as a testament to the profound impact of technological innovation on industrial development. From ancient pottery to modern high-tech ceramics, the evolution of this sector mirrors humanity's progress in science and engineering. The fusion of traditional craftsmanship with cutting-edge technology has not only revolutionized the properties and applications of ceramic materials but also catalyzed a significant transformation in manufacturing processes, energy efficiency, and environmental sustainability.In the heart of this transformation lies the relentless pursuit of innovation. Advanced ceramics, known for their exceptional heat resistance, hardness, and durability, are now pivotal in various high-stakes applications, from aerospace engineering to medical devices. The integration of nanotechnology has further pushed the boundaries, enabling the creation of ceramics with unprecedented precision and functionality.The manufacturing process itself has undergone a radical change, shifting from labor-intensive methods to automated, computer-controlled systems. This shift has increased production efficiency, reduced waste, and improved the consistency and quality of ceramic products. Moreover, the adoption of 3D printing technology in ceramics has opened up new horizons for complex shapes and structures that were once deemed impossible.Sustainability is another cornerstone of modern ceramic manufacturing. The industry has embraced cleaner and greener practices, significantly reducing its carbon footprint. Innovations such as the development of low-temperature firing techniques and the recycling of ceramic waste into new products exemplify the sector's commitment to environmental stewardship.The synergy between technological advancements and ceramic manufacturing is a clear indicator of the industry's future direction. As research continues to unveil new materials and processes, the potential for further innovation remains vast. The ceramic industry, therefore, not only reflects the current state of technology but also activelycontributes to its advancement, driving progress across multiple scientific and industrial fields.In conclusion, the ceramic manufacturing industry's journey is a narrative of continuous improvement and adaptation. By embracing technological innovation, the industry has not only enhanced its own growth but also played a crucial role in the broader context of industrial development. As it stands, the future of ceramics is bright, with technology acting as the catalyst for new possibilities and achievements. The story of ceramics is far from over; it is, in fact, being written anew with each technological stride forward. 。

英语作文-陶瓷制造业:技术创新与产业转型

英语作文-陶瓷制造业:技术创新与产业转型

英语作文-陶瓷制造业:技术创新与产业转型The ceramic manufacturing industry stands as a testament to human ingenuity and the relentless pursuit of technological advancement. From the earliest pottery shards found in archaeological sites to the high-tech ceramic components used in modern electronics, ceramics have been a constant companion in humanity's technological journey. Today, the industry is undergoing a significant transformation, driven by technological innovation and the need for industrial evolution.In the realm of technical innovation, the industry has seen remarkable developments. Advanced ceramics, known for their exceptional properties such as high-temperature resistance, durability, and lightweight, are at the forefront of this revolution. The use of computer-aided design (CAD) and computer-aided manufacturing (CAM) has enabled the creation of complex and precise ceramic components that were once deemed impossible. Moreover, the advent of 3D printing technology has opened up new horizons for custom-made ceramics, allowing for rapid prototyping and the production of intricate designs that cater to specific industrial needs.The push towards sustainability has also spurred innovation within the ceramic sector. Researchers are developing eco-friendly processes that reduce energy consumption and minimize waste. For instance, the implementation of cold sintering processes allows ceramics to be formed at much lower temperatures than traditional firing methods, significantly cutting down on energy usage. Additionally, the recycling of ceramic waste into new products is gaining traction, reflecting the industry's commitment to environmental stewardship.Industrial transformation is equally pivotal to the sector's evolution. Traditional ceramic manufacturers are diversifying their product lines to cater to emerging markets, such as biomedical implants and aerospace components. This diversification is not only a response to the changing demands of the global market but also a strategic move to remain competitive and relevant in an increasingly technology-driven world.The integration of smart manufacturing practices is another aspect of the industry's transformation. The Internet of Things (IoT) and artificial intelligence (AI) are being employed to optimize production processes, enhance quality control, and predict maintenance needs. These smart factories are not only more efficient but also more responsive to the fluctuations of the market, enabling ceramic manufacturers to adapt quickly to new trends and customer demands.Challenges, however, remain. The high costs associated with adopting new technologies can be a barrier for smaller manufacturers. There is also the need for skilled workers who can operate and maintain advanced equipment. To address these issues, the industry is investing in training programs and partnerships with educational institutions to cultivate the next generation of ceramic engineers and technicians.In conclusion, the ceramic manufacturing industry is at a crossroads of technological innovation and industrial transformation. By embracing new technologies and adapting to the changing landscape, the industry is poised to continue its legacy of contributing to the advancement of human civilization. As it navigates through this era of change, the industry's success will be measured by its ability to innovate sustainably, diversify intelligently, and transform adaptively. The future of ceramics is bright, and it is being shaped by the hands of those who dare to reimagine the possibilities of this ancient yet ever-evolving material. 。

先进陶瓷材料概论(英文)第一章

先进陶瓷材料概论(英文)第一章
掌握词汇: Component [kəm'ponənt]组分 Tribological [,traɪbəʊ'lɒdʒɪkəl]摩擦 的 Alumina [ə'lumɪnə]氧化铝 Stabilized zirconia [zɚ'konɪə]稳 定氧化锆 Mullite ['mʌlaɪt]莫来石(铝硅酸 盐矿物) Spinel ['spɪnəl]尖晶石(镁铝氧 化物矿物) Silicon ['sɪlɪkən] nitride 氮化硅 SiAlON 塞隆陶瓷 Silicon carbide 碳化硅 Boron ['borɑn] nitride 氮化硼 Titanium [taɪ'tenɪəm] nitride 氮化 钛 Titanium boride 硼化钛
掌握词汇: biological [,baɪə‘lɑdʒɪkl] 生物的, environmental 环境的, extreme conditions 极端条件, radiation [,redɪ’eʃən]辐射, inorganic [‘ɪnɔr’gænɪk] – nonmetallic 无机非金属, failure [‘feljɚ] mechanisms [’mɛkənɪzəmz] 失效机理, manufacturing 制备, sophisticated [sə‘fɪstɪketɪd] processing technology 精细加工技术, development cycle 研发周期, potential [pə’tɛnʃl]潜力、潜能;电势
掌握词汇: toughness ['tʌfnɪs]韧性,flexibility [,flɛksə'bɪləti]柔韧性,impact [ɪm'pækt] resistance 抗冲击性

2023年雅思听力机经场景分类一绝对权威剑桥真题分类

2023年雅思听力机经场景分类一绝对权威剑桥真题分类

《技经四座——雅思听力阅读技巧机经考点库》社会生活场景面试与兼职场景出现频率较高,一般设计工作性质描述、薪水、上班地点时间及面试时间安排等。

剑桥真题场景:剑桥真题拼写词汇:temporary['temp(ə)rərɪ] 临时旳doctor ['dɒktə]大夫Africa ['æfrɪkə]非洲youth [juːθ]青春cheese[tʃiːz] 奶酪presentation [prez(ə)n'teɪʃ(ə)n]陈说demanding [dɪ'mɑːndɪŋ] 费时费力旳assistant [ə'sɪst(ə)nt]助手security [sɪ'kjʊərətɪ]安全性ground floor底层lecture room教室main hall大厅team leader团体领导waiter['weɪtə]服务员day off休息日break[breɪk]间歇meal[miːl]餐饭dark[dɑːk]黑暗jacket ['dʒækɪt]夹克mid-day中午reference ['ref(ə)r(ə)ns] 参照answer the phone接电话library [ˈlaɪbrərɪ]图书馆national holidays国家法定假日clear voice声音清晰think quickly迅速思索tax[tæks]税剑桥真题认知词汇:job hunting找工作warehouse['weəhaʊs]货仓barber['bɑːbə]剪发师grocery['grəʊs(ə)rɪ]杂货店nosh bar小吃店shift[ʃɪft]轮班alternate[ˈɔ:ltəneɪt]交替uniform['juːnɪfɔːm]工作服job hopping跳槽reward[rɪ'wɔːd]奖励vacant['veɪk(ə)nt]空缺旳work permit工作许可referee[refə'riː]推荐人overtime['əʊvətaɪm]加班时间injure['ɪndʒə]伤害advertise['ædvətaɪz]做广告cycling['saɪklɪŋ]骑行first aid急救slide[slaɪd]幻灯片recruit[rɪ'kruːt]招募orientation[,ɔːrɪən'teɪʃ(ə)n]方向机经场景(拼写单词):应聘校长leader['liːdə]领导者tennis ['tenɪs] 网球training ['treɪnɪŋ]训练insurance [ɪn'ʃʊər(ə)ns]保险policy ['pɒləsɪ] 政策register police注册旳警察discount ['dɪskaʊnt]折扣兼职征询receptionist [rɪ'sepʃ(ə)nɪst]接待员mornings ['mɔːnɪŋz]上午customer ['kʌstəmə]顾客driver ['draɪvə]司机flexible ['fleksɪb(ə)l]灵活旳cinema [ˈsɪnəmɑ]电影院weekends [,wiːk'ends]周末shopping ['ʃɒpɪŋ]购物果园兼职blue card信用卡;蓝卡agency ['eɪdʒ(ə)nsɪ]代理weather['weðə]n.天气,气象campsite ['kæmpsaɪt]野营地bike [baɪk]自行车passport ['pɑːspɔːt] 护照lunch [lʌn(t)ʃ]午餐兼职求职(1)(2)(3)(4)(5)(6)(7)factory ['fækt(ə)rɪ] 工厂bakery ['beɪk(ə)rɪ]面包房newspaper ['njuːzpeɪpə]报纸tutor ['tjuːtə]家庭教师feedback['fiːdbæk] 反馈Hill Road山道North Park北方公园politics [ˈpɒlətɪks]政治bookkeeping记账advanced level领先水平clay [kleɪ]黏土ladder ['lædə]梯子hot [hɒt]热旳concentration [kɒns(ə)n'treɪʃ(ə)n]集中bucket ['bʌkɪt]水桶training ['treɪnɪŋ]训练uniform ['juːnɪfɔːm]制服furniture['fɜːnɪtʃə]家俱variable ['veərɪəb(ə)l]多变旳r eliable [rɪ'laɪəb(ə)l]可靠旳transport [træn'spɔːt]运送supermarket ['suːpəmɑːkɪt; 'sjuː-]超市call center呼喊中心student record学生记录raining ['reɪnɪŋ]下雨ad广告formal clothes正装larger office更大旳办公室good pay好旳酬劳live nearby附近居住location [lə(ʊ)'keɪʃ(ə)n]位置foreigner ['fɒrɪnə] 外国人法国家庭做保姆director [dɪ'rektə; daɪ-]主管driving ['draɪvɪŋ]操纵sailing ['seɪlɪŋ]帆船运动club [klʌb]俱乐部details ['dɪteɪlz]细节求职空乘recruitment [rɪ'kruːtm(ə)nt]招聘mid-night午夜math [mæθ]数学vision ['vɪʒ(ə)n]视力cultural awareness文化意识工作中介找工作train [treɪn]训练northern ['nɔːð(ə)n]北方旳hotel [həʊˈtel]旅馆farm [fɑːm]农场European Pass欧洲通行证booklet ['bʊklɪt]小册子internet cafe’网咖父亲给儿子找工作lifting ['liftiŋ]举起watering ['wɔːtərɪŋ]洒水math[mæθ]数学communication [kəmjuːnɪ'keɪʃ(ə)n]通讯passport ['pɑːspɔːt]护照求职工作(1)(2)(3)(4)(5)(6)waiter['weɪtə]服务员baseball coach棒球教练beach [biːtʃ]海滩diving ['daɪvɪŋ]跳水radio ['reɪdɪəʊ]无线电weekend [wiːkˈɛnd]周末tool [tuːl]工具training['treɪnɪŋ]训练reporter [rɪ'pɔːtə]记者housing [haʊzɪŋ]住房供应researcher [rɪ'sɜ:tʃə]研究员website ['websait]网站South Park南方公园fluent ['fluːənt]流畅旳minibus ['mɪnɪbʌs]小型巴士drive [draɪv] 驾驶transport [træn'spɔːt]运送寻找书店工作photography [fə'tɒgrəfɪ]摄影nursery['nɜːs(ə)rɪ]婴儿室waitress [ˈweɪtrəs]女服务员洗衣店面试dress shop女装店pension ['penʃ(ə)n]退休金window dressing橱窗布置name badge名牌black shirt黑衬衫应聘保姆(mother helper)consultant [kən'sʌlt(ə)nt]顾问laundry ['lɔːndrɪ]洗衣店guitar lesson吉他课sick pay病假工资climbing ['klaɪmɪŋ]攀登旳应聘游泳教练accountant [ə'kaʊnt(ə)nt]会计师swimming coach游泳教练difficult [ˈdɪfɪkəlt]困难旳简历问询resume [rɪˈzjuːm; ˈrɛzjʊmeɪ]重新开始too long太长type [taɪp]类型layout ['leɪaʊt]布局correction [kə'rekʃ(ə)n]修改contact number联络电话salary ['sælərɪ]薪水实习培训(1)(2)(3)internship ['ɪntɜːnʃɪp]实习医师area ['eərɪə]地区deputy ['depjʊtɪ]副手elevator['elɪveɪtə]电梯shirt [ʃɜːt]衬衣public['pʌblɪk]公众旳address card地址卡college coordinator学院协调员identity card身份证assignment [ə'saɪnm(ə)nt]分派handle data处理数据personal statement个人陈说面试准备sample ['sɑːmp(ə)l]样品software['sɒf(t)weə]n. 软件application [ˌæplɪ'keɪʃ(ə)n]合用criticism ['krɪtɪsɪz(ə)m]批评brief note字条accumulate the experience积累经验职业调查business management企业管理phone interview电话面试salary['sælərɪ]薪水diploma [dɪ'pləʊmə]毕业文凭public['pʌblɪk]公众旳problem solving问题处理essay writing短文写作job [dʒɒb]工作机经场景(认知单词):志愿者招募background ['bækgraʊnd]背景virtual volunteer虚拟旳志愿者potential [pəˈtenʃl]潜在旳formal ['fɔːm(ə)l]正规旳application [ˌæplɪ'keɪʃ(ə)n]合用职业规划media professor媒体专家music video音乐影片camera man摄影师technique [tek'niːk]技巧夜间上班extra high salary超高旳薪水flexible ['fleksɪb(ə)l]灵活旳input number输入数dark trouser深色裤子flat [flæt]平旳职业中心career center职介中心appointment [əˈpɔɪntmənt]约会free of charge免费fund [fʌnd]基金communication skill沟通技能profile ['prəʊfaɪl]侧面booklet['bʊklɪt]小册子consultant [kən'sʌlt(ə)nt]顾问邮局工作receive post收到后update data修改数据authority [ɔː'θɒrɪtɪ]权威check number检查数字order form订货单delivery note提货单contract ['kɒntrækt]协议制衣企业招聘pacific clothing firm太平洋制衣企业accountant [ə'kaʊnt(ə)nt]会计师collaborative [kə'læbərətiv]合作旳loyal ['lɒɪəl]忠诚旳workplace ['wɜːkpleɪs]工作场所印度妇女实习strict [strɪkt]精确旳boring ['bɔːrɪŋ]无聊旳patience ['peɪʃ(ə)ns]耐心internship ['ɪntɜːnʃɪp]实习医生实习工作反馈(1)(2)frustrated [frʌ'streɪtɪd]挫败旳leisure ['leʒə]空闲时间intelligent [ɪn'telɪdʒ(ə)nt]聪颖旳decisive [dɪ'saɪsɪv]决定性旳comment ['kɒment]评论self-reflection['selfriflekʃən]反省consult[kən'sʌlt]商议childish['tʃaɪldɪʃ]幼稚旳ideal job理想旳工作工作汇报workplace evaluation工作评价initial feeling最初旳感觉worthy[ˈwəːði]应得某事物natural ability本能lack confidence缺乏信心求职主题job hunting求职sack[sæk]解雇outdated[aʊt'deɪtɪd]过时旳appearance[ə'pɪər(ə)ns]外貌,出现生活征询剑桥真题场景:剑桥真题拼写词汇:green button绿色按钮library[ˈlaɪbrərɪ]图书馆education department教育部castle['kɑːs(ə)l]城堡old clothes旧衣服undersea world海底世界silver paper银箔纸King Street国王路central['sentr(ə)l]中心旳half hour半小时refreshment[rɪ'freʃm(ə)nt]精神恢复advance[əd'vɑːns]前进reservation[rezə'veɪʃ(ə)n]保留taxi ['tæksɪ]出租车cab[kæb]出租车city center市中心wait[weɪt]等待door-to-door挨户访问旳reserve[rɪ'zɜːv]储备health problem健康问题safety rule安全规程plan[plæn]计划joining['dʒɒɪnɪŋ]连接free entry自由加入peak[piːk]山峰guest[gest]客人photo card明信片red[red]红色旳lunch[lʌn(t)ʃ]午餐aunt[ɑːnt]阿姨secondary['sek(ə)nd(ə)rɪ]中等旳flute[fluːt]长笛concert['kɒnsət]音乐会market['mɑːkɪt]交易actor['æktə]演员flower['flaʊə]花mushroom['mʌʃruːm]蘑菇river['rɪvə]河剑桥真题认知词汇:membership['membəʃɪp]会员资格fitness suite健身房cater for照顾premier['premɪə]高级旳poster['pəʊstə]海报champion['tʃæmpɪən]冠军mystery[ˈmɪstri]谜scenario[sɪ'nɑːrɪəʊ]方案ceramics[sə'ræmɪks]制陶业choir['kwaɪə]合唱团in advance提前机经场景补充(拼写单词):志愿者项目征询social['səʊʃ(ə)l]社会旳stair[steə]楼梯radio['reɪdɪəʊ]无线电征询烧菜message['mesɪdʒ]信息by cash现金Thai cookery泰式烹饪演唱会征询evening['iːv(ə)nɪŋ]傍晚candles['kænd(ə)ls]蜡烛donation[də(ʊ)'neɪʃ(ə)n]捐赠piano[pɪ'ænəʊ]钢琴singer['sɪŋə(r)]歌手海外学生寄礼品photo['fəʊtəʊ]照片bag[bæg]袋postcard['pəʊs(t)kɑːd]明信片cheapest[tʃi:pɪst]廉价旳golden[ˈgəʊldən]金色旳征询节目时间安排opera['ɒp(ə)rə]歌剧pound[paʊnd]英镑theater ['θɪətə]剧场Town Hall市政厅studio ['stjuːdɪəʊ]工作室征询商品运送special item特殊项目twice a week每周两次telephone call打电话order ['ɔːdə]命令section ['sekʃ(ə)n]部分搬家企业征询piano [pɪ'ænəʊ]钢琴mirror ['mɪrə]镜子coffee ['kɒfɪ]咖啡豆side door侧门征询幼稚园playground ['pleɪgraʊnd]操场primary school小学report [rɪ'pɔːt]汇报family photo全家福热气球项目征询certificate [ səˈtɪfɪˌkeɪt]证明书thunderstorm ['θʌndəstɔːm]雷电交加旳暴风雨helmet ['helmɪt]头盔stand[stænd]看台征询小朋友活动中心toy factory玩具厂parking ['pɑːkɪŋ]停放slide [slaɪd]滑落golf [gɒlf]高尔夫球trouser ['traʊzə]裤子sock [sɒk]短袜name[neɪm]名字征询展览馆product['prɒdʌkt]产品summer['sʌmə]夏天online[ɒn'laɪn]在线旳征询电脑软件展demonstration[demən'streɪʃ(ə)n]示范subway['sʌbweɪ]地铁internet['ɪntənet]互联网hardware['hɑːdweə]硬件question['kwestʃ(ə)n]问题camera['kæm(ə)rə]摄影机征询剧院male[meɪl]男性旳hospital ['hɒspɪt(ə)l]医院戏剧俱乐部no children 少儿不适宜art trip艺术之旅drama workshop戏剧研讨会outdoor ['aʊtdɔː]户外旳activity [ækˈtɪvətɪ]活动planning meeting会议计划开会地点讨论e-mail marketing电子邮件营销sandwich ['sæn(d)wɪdʒ; -wɪtʃ]三明治project [prəˈdʒekt ]放映taxi ['tæksɪ]出租车financial [faɪ'nænʃ(ə)l; fɪ-]财政旳noisy [ˈnɔɪzɪ]嘈杂旳小区评价yard [jɑːd]院子Spanish ['spænɪʃ]西班牙人teenager ['tiːneɪdʒə]青少年crime [kraɪm]罪行light [laɪt]光线体育运动场景剑桥真题场景:C5 T4 S2足球俱乐部C6 T1 S1运动俱乐部征询剑桥真题拼写词汇:clubhouse ['klʌbhaʊs]俱乐部会所picnic ['pɪknɪk]野餐郊游prizes奖赏collect fees收费newsletter ['njuːzletə]通讯supervise teams监督团体keep-fit保健旳swimming ['swɪmɪŋ]游泳旳yoga['jəʊgə]瑜伽salad bar沙拉吧assessment[ə'sesmənt]评价剑桥真题认知词汇:soccer['sɒkə]足球season['siːz(ə)n]赛季head coach主教练squash[skwɒʃ]壁球机经场景(拼写单词):体育俱乐部征询(1)(2)fitter['fɪtə]合适旳fitness['fɪtnəs]健康Sport Center体育中心long road runner长跑旳人North Park北方公园vest [vest]背心滑冰会员征询West Park西园hot chocolate巧克力热饮pizza ['piːtsə ]披萨advanced先进旳[ədˈvɑ:nst] raining ['reɪnɪŋ]下雨boot [buːt]长靴jeans [dʒi:nz]牛仔裤warm [wɔːm]暖和旳健身俱乐部入会(1)(2)silver ['sɪlvə]银joining fee入会费dance [dɑːns]跳舞cafe ['kæfɪ]咖啡馆towel ['taʊəl]毛巾photo ['fəʊtəʊ]照片rope [rəʊp]粗绳equipment [ɪ'kwɪpm(ə)nt]设备safety ['seɪftɪ]安全navigation [nævɪ'geɪʃ(ə)n]航行学lunch [lʌn(t)ʃ]午餐减肥征询nurse [nɜːs]护士headache ['hedeɪk]头疼seafood['siːfuːd]海食品eye[aɪ]眼睛sports center体育中心报名参与运动cookery ['kʊk(ə)rɪ]烹饪学wet suit紧身潜水衣健身俱乐部health check健康检查program ['prəʊɡræm]程序征询游泳馆young children幼儿changing room更衣室learner ['lɜːnə]初学者free [friː]自由旳crowed拥挤旳体育教育opportunity [ˌɒpəˈtju:nətɪ]机会contact ['kɒntækt]接触employee [ɪmˈplɔɪi;]员工document ['dɒkjʊm(ə)nt]文档promotion [prə'məʊʃn]增进network ['netwɜːk]网implication form含义式self employment个体劳动体育课程central part中心部分mental ['ment(ə)l]精神旳negative effect负面影响blood flow血流量key [kiː]钥匙体育科学研究performance [pə'fɔːm(ə)ns]演出competition [ˌkɒmpəˈtɪʃn]竞争oxygen ['ɒksɪdʒ(ə)n]氧气feet [fiːt]脚red blood血性heart rate心率muscle pain肌肉疼shark [ʃɑːk]鲨鱼机经场景(认知单词):赛事预告castle ['kɑːs(ə)l]城堡field [fiːld]田地city council市议会old airport旧机场uphill [ʌp'hɪl]上坡旳woodland ['wʊdlənd]森林cup [kʌp]杯子chairman ['tʃeəmən]主席运动中心开业(1)(2)(3)professional adviser专业旳顾问general training一般旳训练weight training举重训练aerobic [eə'rəʊbɪk]有氧旳fitness center健身中心town center城镇中心spa [spɑː]温泉浴场heart monitor心脏监护器走路活动walking activity步行活动order online在线订购recommend [rekə'mend]推荐torch [tɔːtʃ]火把滑雪中心ski [skiː]滑雪computer simulation计算机模拟newsletter ['njuːzletə]通讯special offer特殊报价new trick新戏足球队总结permanent record永久记录phone book电话簿complicated ['kɒmplɪkeɪtɪd]构造复杂旳unreliable [ʌnrɪ'laɪəb(ə)l]不可靠旳vague [veɪg]模糊旳factual ['fæktʃʊəl]事实旳足球裁判referee [refə'riː]裁判员certificate [səˈtɪfɪkɪt; ]证明书intensive class强化班beyond [bɪ'jɒnd]超过regrettable [rɪ'gretəb(ə)l]令人遗憾旳career prospective职业前景各类预订场景:剑桥真题场景:C6T4 S1预定会议室C8 T1 S1音乐节订票剑桥真题拼写词汇:check [tʃek]支票conference pack会议指南library [ˈlaɪbrərɪ]图书馆refreshment [rɪ'freʃm(ə)nt]点心pianist['pɪənɪst]钢琴家剑桥真题认知词汇:brochure['brəʊʃə]小册子lobby['lɒbɪ]大厅discount['dɪskaʊnt]打折delegate[ˈdɛlɪˌɡeɪt]代表团机经场景(拼写单词):海岛酒店预订station['steɪʃ(ə)n]车站kitchen['kɪtʃɪn; -tʃ(ə)n]厨房restaurant [ˈrɛstəˌrɒŋ]饭店sea view海景bathroom['bɑ:θrum]浴室birds helicopter小鸟直升机生态农场预定radio ['reɪdɪəʊ]无线电flat [flæt]平地forest ['fɒrɪst]森林organic [ɔː'gænɪk]有机旳bike [baɪk]自行车dance [dɑːns]舞蹈旅行住宿预定supermarket超市studio ['stjuːdɪəʊ]工作室sports center运动中兴microwave ['maɪkrə(ʊ)weɪv]微波outdoor table户外桌band [bænd]乐队salad ['sæləd] 沙拉table tennis桌球picnic ['pɪknɪk]野餐预定水族馆旳票wheelchair ['wiːltʃeə]轮椅cheque [tʃek]支票coral reef珊瑚礁酒店预定晚会(1)(2)business area业务范围view [vjuː]观测week [wiːk]周double ['dʌb(ə)l]双倍旳balcony ['bælkənɪ]包厢message ['mesɪdʒ]信息bird park鸟类公园magazine [mægə'ziːn]杂志演唱会门票预订agency ['eɪdʒ(ə)nsɪ]代理side door侧门market ['mɑːkɪt]市场basement ['beɪsm(ə)nt]地下室action movie动作片superstar ['sju:pəstɑ:]巨星电话预订商品cream [kriːm]奶油场地预定(1)(2)(3)cold drinks 冷饮cake [keɪk]蛋糕flower ['flaʊə]花chicken ['tʃɪkɪn]鸡肉fish cake炸鱼饼deluxe[də'luks]高级旳standard ['stændəd]原则旳vegetable burger蔬菜汉堡bunch of flowers花束party wear派对着装sport’s hall运动馆adult ['ædʌlt] 成年旳reservation [rezə'veɪʃ(ə)n]预约round [raʊnd]循环candle ['kænd(ə)l]蜡烛construction [kən'strʌkʃ(ə)n]建筑物婚礼预订reception [rɪ'sepʃ(ə)n]接待catering ['keɪtərɪŋ]承接酒席Long Beach长滩预订电影票group booking团购back row后排旳wheelchair ['wiːltʃeə]轮椅lift [lɪft]电梯vegetarian [vɛdʒɪˈtɛːrɪən]素食者pizza ['pi:tsə]披萨餐馆预定green room休息室long tables长表格drinks and snacks饮料和小吃预约家政office ['ɒfɪs]办公室lounge [laʊn(d)ʒ]休息室bed linen被单和枕套double bedroom双人床卧室预定旅游票week [wiːk]星期walking [wɔ:k]步行旳coast [kəʊst]海岸farm [fɑːm]农场。

英语作文-陶瓷制造业:技术创新与知识产权保护

英语作文-陶瓷制造业:技术创新与知识产权保护

英语作文-陶瓷制造业:技术创新与知识产权保护In recent years, the ceramic manufacturing industry has witnessed significant advancements in technology and an increased focus on the protection of intellectual property rights. This article aims to explore the relationship between technological innovation and the safeguarding of knowledge in the ceramic industry.Technological innovation plays a crucial role in the development of the ceramic manufacturing industry. It enables companies to improve their production processes, enhance product quality, and reduce costs. One of the key areas of innovation in this industry is the development of advanced materials and manufacturing techniques. For example, the use of nanotechnology has revolutionized the production of ceramic materials, making them stronger, lighter, and more durable.However, with technological advancements comes the challenge of protecting intellectual property rights. In the ceramic industry, companies invest significant resources in research and development to create new and innovative products. It is essential for these companies to protect their knowledge and prevent unauthorized use or replication of their inventions.To address this issue, many ceramic manufacturers have implemented strategies to safeguard their intellectual property rights. One common approach is to obtain patents for their inventions. Patents provide legal protection and exclusive rights to the inventor, preventing others from using or selling the patented technology without permission. By securing patents, ceramic companies can maintain a competitive advantage in the market and ensure a return on their investment in innovation.Apart from patents, companies in the ceramic industry also rely on trade secrets to protect their knowledge. Trade secrets refer to confidential information that gives a company a competitive edge and is not publicly known. This can include manufacturing processes, formulas, or customer lists. By keeping these trade secrets confidential andimplementing strict security measures, ceramic manufacturers can prevent others from accessing and using their valuable knowledge.In addition to patents and trade secrets, collaboration and partnerships play a vital role in protecting intellectual property rights in the ceramic industry. Many companies form strategic alliances with research institutions, universities, and other industry players to jointly develop new technologies. These collaborations often involve the exchange of knowledge and expertise, but also require the establishment of clear agreements to protect the intellectual property rights of all parties involved.Furthermore, international cooperation and adherence to intellectual property laws are essential for the global ceramic industry. As the industry becomes increasingly interconnected, it is crucial for countries to work together to enforce intellectual property rights and prevent infringement. This can be achieved through international agreements and organizations that promote the protection of intellectual property, such as the World Intellectual Property Organization (WIPO).In conclusion, technological innovation and the protection of knowledge are closely intertwined in the ceramic manufacturing industry. Advancements in technology have led to improved production processes and product quality, while the safeguarding of intellectual property rights ensures that companies can benefit from their innovations. Through the use of patents, trade secrets, collaborations, and international cooperation, the ceramic industry can continue to thrive and contribute to the global economy.。

ceramics international 查重要求

ceramics international 查重要求

ceramics international 查重要求Ceramics International是国际陶瓷杂志,它致力于推进陶瓷领域的研究和发展,并促进相关领域的国际合作与交流。

为了确保文章的质量和原创性,Ceramics International对于投稿的论文进行查重。

以下是关于Ceramics International的查重要求的一篇6000字以上的文章。

Title: Advances in Ceramic Material Research and its Impact on Sustainable DevelopmentAbstract:Ceramic materials have been widely used in various industrial sectors due to their outstanding mechanical, thermal, and chemical properties. With the increasing demand for sustainable development, researchers have been exploring novel ceramic materials and processing techniques to meet the requirements of different applications. This review article aims to summarize the recent advances in ceramic material research and discuss their impact on sustainable development. The article will focus on ceramic materials used in energy conversion and storage, environmental remediation, and healthcare applications.1. Introduction1.1 Background of ceramic materials1.2 Significance of ceramic material research for sustainable development2. Ceramic materials for energy conversion and storage2.1 Ceramic materials for solid oxide fuel cells2.2 Ceramic materials for lithium-ion batteries2.3 Ceramic materials for solar cells3. Ceramic materials for environmental remediation3.1 Ceramic materials for pollutant removal3.2 Ceramic materials for water purification3.3 Ceramic materials for air purification4. Ceramic materials for healthcare applications4.1 Ceramic materials for bone tissue engineering4.2 Ceramic materials for drug delivery4.3 Ceramic materials for dental applications5. Advanced processing techniques for ceramic materials5.1 Additive manufacturing of ceramics5.2 High-temperature sintering techniques5.3 Surface modification of ceramics for enhanced performance6. Challenges and future perspectives6.1 Sustainable synthesis of ceramic materials6.2 Integration of ceramic materials with other functional materials6.3 Recycling and waste management of ceramic materials7. ConclusionIn conclusion, ceramic material research plays a vital role in sustainable development. The continuous advancement in ceramic materials and processing techniques facilitates the development of energy-efficient devices, environmentally friendly solutions, and improved healthcare applications. However, there are still challenges that need to be overcome, such as sustainable synthesisand recycling of ceramic materials. Future research should focus on addressing these challenges and promoting the sustainable use of ceramic materials.Keywords: ceramic materials, sustainable development, energy conversion, environmental remediation, healthcare applications, processing techniques, challenges, future perspectivesReferences: (Minimum of 30 references)Please note that this is just an outline of the article and the word count exceeds 6000 words. The actual content can be further expanded and developed to meet the requirements of Ceramics International.。

英语作文-陶瓷制造业:技术创新与发展

英语作文-陶瓷制造业:技术创新与发展

英语作文-陶瓷制造业:技术创新与发展In recent decades, the ceramic manufacturing industry has undergone significant transformation fueled by technological innovation and development. This evolution has not only revolutionized production processes but has also paved the way for enhanced product quality, sustainability, and market competitiveness.Technological advancements in the ceramic manufacturing sector have played a pivotal role in reshaping its landscape. One of the most notable innovations is the adoption of automated systems in various stages of production. These systems, leveraging robotics and artificial intelligence, have drastically improved efficiency and precision in tasks ranging from raw material handling to final product inspection. This shift has not only accelerated production rates but has also minimized human error, thereby ensuring consistency in product quality.Furthermore, the integration of digital design technologies has empowered ceramic manufacturers to explore intricate and innovative designs that were previously unattainable. Computer-aided design (CAD) software enables engineers and designers to visualize concepts in a virtual environment, facilitating rapid prototyping and iterative improvements. This capability has not only expanded the aesthetic possibilities of ceramic products but has also streamlined the design-to-production workflow, reducing time-to-market and enhancing flexibility in meeting diverse consumer demands.Moreover, advancements in material science have revolutionized the composition of ceramics, enhancing their durability, thermal stability, and environmental sustainability. Novel ceramic formulations, incorporating advanced materials such as nano-particles and composite structures, have expanded the application areas of ceramics beyond traditional uses. These innovations have found applications in high-performance industries such as aerospace, healthcare, and electronics, where the unique properties of ceramics offer distinct advantages over conventional materials.In parallel, the industry's commitment to sustainability has spurred innovations in manufacturing processes aimed at reducing energy consumption, waste generation, andenvironmental impact. Technologies like energy-efficient kilns, closed-loop water recycling systems, and emissions control mechanisms have not only minimized the industry's carbon footprint but have also positioned ceramic manufacturers as pioneers in sustainable production practices.The evolution of the ceramic manufacturing industry underscores a broader trend towards Industry 4.0, characterized by the fusion of digital technologies with traditional industrial processes. This paradigm shift is not merely a technological upgrade but a strategic imperative for companies seeking to thrive in a competitive global market. By embracing innovation, ceramic manufacturers can unlock new growth opportunities, enhance operational efficiency, and meet evolving consumer expectations for quality, customization, and sustainability.Looking ahead, continued investment in research and development will be crucial in driving further innovation across the ceramic manufacturing sector. Collaborations between industry stakeholders, academic institutions, and research organizations will foster the discovery of breakthrough technologies and novel applications, ensuring that the industry remains at the forefront of technological advancement.In conclusion, the convergence of technological innovation and development in the ceramic manufacturing industry has ushered in a new era of possibilities. From automated production systems to advanced materials and sustainable practices, these innovations have not only transformed how ceramics are made but have also redefined their role in modern society. As the industry continues to evolve, embracing innovation will be key to unlocking its full potential and sustaining growth in an increasingly dynamic global economy.。

英语作文-陶瓷制造业:数字化转型与智能制造

英语作文-陶瓷制造业:数字化转型与智能制造

英语作文-陶瓷制造业:数字化转型与智能制造The ceramic manufacturing industry is undergoing a profound transformation driven by digitalization and smart manufacturing technologies. These advancements are revolutionizing traditional processes, enhancing efficiency, and redefining product quality across the sector.Digital transformation in ceramic manufacturing encompasses a spectrum of technological innovations aimed at optimizing production processes. One of the pivotal advancements is the integration of IoT (Internet of Things) devices throughout the manufacturing chain. These devices collect real-time data on various parameters such as temperature, humidity, and machine performance. By leveraging IoT, manufacturers can monitor operations remotely, predict maintenance needs, and minimize downtime, thus significantly improving overall efficiency.Furthermore, the application of Artificial Intelligence (AI) in ceramic manufacturing is reshaping the industry's landscape. AI algorithms analyze vast datasets to optimize production schedules, predict quality issues, and even automate certain manufacturing tasks. For instance, machine learning algorithms can adjust glaze formulations based on environmental factors to ensure consistent product quality without human intervention.In parallel, additive manufacturing, commonly known as 3D printing, has emerged as a disruptive force in ceramic production. Unlike traditional methods that involve molds and shaping processes, 3D printing allows for the direct fabrication of complex ceramic structures layer by layer. This technology not only accelerates prototyping and customization but also reduces material waste, making it both cost-effective and environmentally friendly.Moreover, the advent of robotics has streamlined labor-intensive tasks in ceramic manufacturing. Robots equipped with advanced sensors and precision control systems can handle delicate processes such as glazing, polishing, and inspection with unmatchedaccuracy and consistency. This automation not only enhances productivity but also improves workplace safety by minimizing human exposure to hazardous conditions.The shift towards smart factories represents a culmination of these technological innovations. These factories are characterized by interconnected systems where machines communicate seamlessly with each other through a centralized network. Real-time data analytics and machine learning algorithms enable proactive decision-making, optimizing production efficiency and resource allocation.In addition to operational enhancements, digitalization has also revolutionized the design phase of ceramic manufacturing. CAD (Computer-Aided Design) software allows designers to create intricate patterns and shapes with unprecedented precision. Virtual simulations further refine designs before physical production, ensuring that final products meet aesthetic and functional requirements.Furthermore, digital twin technology has emerged as a game-changer in quality control and product development. By creating a virtual replica of physical assets and processes, manufacturers can simulate various scenarios and predict outcomes before implementing changes in the real world. This iterative approach minimizes risks associated with product defects and ensures compliance with stringent quality standards.In conclusion, the digital transformation of the ceramic manufacturing industry is paving the way for unprecedented efficiency, quality, and innovation. By embracing IoT, AI, additive manufacturing, robotics, and smart factory concepts, manufacturers can optimize operations from design to delivery. This holistic approach not only meets the evolving demands of consumers but also positions the industry at the forefront of technological advancement. As these technologies continue to evolve, their integration will further propel the industry towards sustainable growth and competitiveness in the global market.。

journal of advanced ceramics的投稿流程

journal of advanced ceramics的投稿流程

journal of advanced ceramics的投稿流程《journal of advanced ceramics》是一本专注于陶瓷材料研究的高水平学术期刊,广泛被国内外同行所认可。

本文将详细介绍该期刊的投稿流程,帮助您了解如何将研究成果成功投稿。

一、了解期刊在开始投稿前,您需要先了解《journal of advancedceramics》的投稿要求、审稿周期、版面格式等基本情况。

可以通过期刊官方网站获取相关信息,或者咨询该领域专家获取经验。

二、准备稿件根据期刊要求,整理您的研究报告、数据、图表等信息,并按照要求排版成符合规范的稿件。

稿件应简洁明了,突出研究重点和创新点,避免冗余和重复。

同时,确保稿件中不涉及保密信息。

三、选择合适的编辑或代理人在投稿前,您需要选择一个合适的编辑或代理人来处理您的稿件。

可以通过期刊官方网站或相关机构推荐选择合适的编辑或代理人。

选择代理人时,应考虑其专业背景、经验、信誉等因素。

四、提交稿件将稿件以电子版形式发送至期刊官方邮箱或代理人指定的邮箱。

在邮件主题中注明稿件标题和作者姓名,以便代理人或编辑及时处理稿件。

五、审稿周期《journal of advanced ceramics》通常会在收到稿件后一周内通知作者是否接受或拒绝稿件。

如果稿件被接受,则进入同行评审阶段,通常需要3-6个月时间才能发表。

请注意,审稿周期可能会因稿件内容、评审专家等因素而有所变化。

六、回复审稿意见如果您的稿件被同行评审,代理人或编辑会提供审稿意见。

请仔细阅读意见,并根据意见对稿件进行修改和完善。

如果您对意见有疑问或需要进一步解释,可以通过电子邮件与代理人或编辑联系,以便及时解决问题。

七、修改完善后的稿件根据审稿意见修改和完善稿件后,请将修改后的电子版稿件再次发送至期刊官方邮箱或代理人指定的邮箱。

请注意,如果修改后的稿件与原始稿件有较大差异,可能需要支付额外的处理费用。

八、录用通知及发表如果您的稿件被期刊接受并发表,期刊会通过电子邮件通知您。

新能源锂电池实习报告

新能源锂电池实习报告

新能源锂电池实习报告英文回答:## Internship Report on New Energy Lithium Batteries.Introduction.Lithium batteries have gained significant prominence in recent years as a key component of various renewable energy applications, including electric vehicles (EVs) and energy storage systems. This internship report documents my experiences and learnings during my internship at a leading lithium battery manufacturer, where I gained valuable insights into the design, manufacturing, and testing of these advanced energy storage devices.Research and Development.During my internship, I was involved in several research and development projects focused on improving theperformance and reliability of lithium batteries. I conducted extensive literature reviews, analyzed experimental data, and collaborated with engineers to explore novel materials and battery designs.Manufacturing Process.I also had the opportunity to observe and participate in the various stages of lithium battery manufacturing, including electrode preparation, cell assembly, and quality control testing. I gained hands-on experience in operating advanced equipment and implementing quality control measures to ensure the production of high-performance batteries.Testing and Evaluation.A significant portion of my internship was dedicated to battery testing and evaluation. I conducted various tests to assess the electrical performance, safety, anddurability of lithium batteries. These tests included charge-discharge cycles, electrochemical impedancespectroscopy, and thermal stability analysis.Key Learnings.Throughout my internship, I gained a comprehensive understanding of the following aspects of lithium battery technology:Advanced battery materials and their electrochemical properties.Manufacturing processes and quality control techniques.Battery testing and evaluation methods.Safety considerations and risk mitigation strategies.Conclusions.My internship at the lithium battery manufacturer provided me with an invaluable opportunity to contribute to the development and production of these innovative energystorage solutions. I acquired practical skills, deepened my theoretical knowledge, and developed a strong foundation in the field of lithium battery technology. This experiencewill undoubtedly benefit me in my future career endeavors related to renewable energy and sustainable development.中文回答:## 新能源锂电池实习报告。

英语作文-陶瓷制造业:产业升级与转型发展

英语作文-陶瓷制造业:产业升级与转型发展

英语作文-陶瓷制造业:产业升级与转型发展The ceramic manufacturing industry has been an important part of human civilization for thousands of years. From the ancient pottery of the Neolithic period to the modern high-tech ceramics used in aerospace and medical fields, the development of ceramic manufacturing has gone through a long and complex process of evolution. In recent years, with the rapid advancement of technology and the increasing demand for high-quality ceramic products, the ceramic manufacturing industry is facing new opportunities and challenges in terms of industrial upgrading and transformation.First and foremost, the industrial upgrading of the ceramic manufacturing industry is closely related to technological innovation. The traditional methods of ceramic production are being replaced by advanced techniques such as digital modeling, 3D printing, and automated manufacturing processes. These technological advancements not only improve the efficiency and precision of ceramic production but also open up new possibilities for the design and functionality of ceramic products. For example, the development of advanced ceramic materials with enhanced mechanical, thermal, and electrical properties has expanded the application of ceramics in various industries, including electronics, automotive, and energy.Furthermore, the transformation of the ceramic manufacturing industry is driven by the changing market demands and environmental regulations. As consumers become more conscious of sustainability and environmental impact, there is a growing demand for eco-friendly and energy-efficient ceramic products. This has led to the development of new manufacturing processes that reduce energy consumption, minimize waste generation, and utilize recycled materials. Additionally, the trend towards customization and personalization has prompted ceramic manufacturers to adopt flexible production systems that can accommodate small-batch and diverse product requirements.Moreover, the globalization of the ceramic manufacturing industry has also contributed to its industrial upgrading and transformation. With the increasing integration of global supply chains and the expansion of international markets, ceramicmanufacturers are facing new competition and collaboration opportunities. In order to stay competitive in the global market, companies are investing in research and development, expanding their product portfolio, and establishing strategic partnerships with suppliers, distributors, and customers. This not only promotes innovation and diversification within the industry but also enhances the overall efficiency and resilience of the ceramic manufacturing ecosystem.In conclusion, the industrial upgrading and transformation of the ceramic manufacturing industry are driven by technological innovation, changing market demands, and globalization. As the industry continues to evolve, it is essential for ceramic manufacturers to embrace new technologies, adapt to market trends, and collaborate with global partners in order to remain competitive and sustainable. By doing so, the ceramic manufacturing industry will be able to meet the growing demands for high-quality, eco-friendly, and customized ceramic products in the global market.。

英语作文-陶瓷制造业:质量管理与品牌建设

英语作文-陶瓷制造业:质量管理与品牌建设

英语作文-陶瓷制造业:质量管理与品牌建设In the realm of ceramics manufacturing, quality management and brand building are pivotal to the success and longevity of a brand. The process of creating ceramics, which may include items such as tiles, tableware, or decorative objects, is one that requires precision, control, and a deep understanding of materials and techniques. 。

Quality management in ceramics manufacturing begins with the raw materials. Suppliers must be carefully selected and materials tested to ensure they meet the necessary standards for purity and consistency. Once the materials are approved, the manufacturing process must be meticulously monitored. This involves regular checks at every stage of production, from shaping and firing to glazing and decorating. Any defects, no matter how small, must be identified and rectified immediately to prevent them from becoming a larger issue.The role of technology in quality management cannot be overstated. Advanced machinery equipped with sensors can detect variations in temperature and pressure that might affect the quality of the final product. Moreover, digital tools can track the progress of each item through the production line, ensuring that any deviations from the norm are caught swiftly.However, quality management is not solely about the product; it also encompasses the people behind the product. Training and development are crucial for maintaining high standards. Workers must be skilled in the art of ceramics making, but they also need to be knowledgeable about the latest technologies and quality control techniques. A culture of continuous improvement, where feedback is encouraged and acted upon, can lead to significant enhancements in product quality.Parallel to quality management is the task of brand building. A strong brand is recognized for its quality and design, and it commands loyalty and a premium in the market. For ceramics manufacturers, this means creating a distinct aesthetic or functionality that sets their products apart. It involves storytelling, where the history, craftsmanship, and innovation of the brand are communicated to the consumer.Marketing plays a crucial role in brand building. It's not enough to have a superior product; consumers must be made aware of it. This can be achieved through various channels, including social media, trade shows, and collaborations with designers and artists. The goal is to create a brand image that resonates with consumers and evokes a sense of trust and admiration.In conclusion, the ceramics manufacturing industry demands a dual focus on quality management and brand building. The former ensures that products meet the high standards expected by consumers, while the latter creates an emotional connection with the consumer, elevating the product from a mere commodity to a cherished possession. Through a commitment to excellence and a strategic approach to branding, ceramics manufacturers can thrive in a competitive market. 。

英语作文-陶瓷制造业:国际贸易环境与趋势分析

英语作文-陶瓷制造业:国际贸易环境与趋势分析

英语作文-陶瓷制造业:国际贸易环境与趋势分析The ceramic manufacturing industry has long been a cornerstone of cultural and functional artistry, with its products ranging from fine china to advanced ceramics used in various technological applications. In the context of international trade, the industry has seen a significant evolution, shaped by economic policies, consumer preferences, and technological advancements.Global Trade Dynamics。

The global trade environment for ceramics is influenced by a multitude of factors, including trade agreements, tariffs, and the global economic climate. Countries with rich deposits of clay, such as China and Italy, have traditionally dominated the market. However, emerging economies are now entering the fray, leveraging lower labor costs and advancements in technology to compete on a global scale.Technological Innovations。

英语作文-陶瓷制造业:全球市场分析

英语作文-陶瓷制造业:全球市场分析

英语作文-陶瓷制造业:全球市场分析The ceramic manufacturing industry has been a cornerstone of the global economy for centuries, providing materials for a vast array of products, from the tiles that grace our homes to the high-tech ceramics used in electronics and aerospace. The industry has seen a significant transformation in recent years, driven by technological advancements, changing consumer preferences, and the ever-evolving global trade landscape.In analyzing the global market for ceramic manufacturing, it is essential to consider the diverse applications of ceramics. Traditional ceramics, such as bricks, tiles, and sanitary ware, continue to be in high demand, particularly in emerging economies where urbanization and infrastructure development are on the rise. On the other hand, advanced ceramics are gaining prominence for their unique properties, including high-temperature resistance, low thermal conductivity, and exceptional strength. These materials are increasingly used in sectors such as automotive, medical devices, and renewable energy.Market trends indicate a shift towards sustainability and efficiency. Manufacturers are investing in eco-friendly production processes to reduce environmental impact and meet stringent regulations. The use of recycled materials is becoming more common, and energy-efficient kilns are replacing older, less efficient models. Additionally, digitalization and automation are reshaping the manufacturing landscape, enabling more precise control over production processes and reducing labor costs.The Asia-Pacific region remains the largest market for ceramic products, buoyed by the robust construction industry in countries like China and India. However, the market is also witnessing growth in regions such as the Middle East and Africa, where investment in infrastructure is increasing. Europe and North America continue to be key markets for advanced ceramics, with a strong focus on research and development to drive innovation.Challenges facing the industry include the volatility of raw material prices and the need to adapt to the global shift towards renewable energy sources, which affects demand for certain types of ceramics. Trade tensions and tariffs can also impact the industry, as they alter the competitive landscape and affect supply chains.In conclusion, the global ceramic manufacturing industry is at a pivotal point, with opportunities for growth and innovation. Manufacturers that embrace sustainability, invest in technology, and adapt to changing market dynamics will be well-positioned to succeed in this evolving global market. The industry's future looks bright, with ceramics playing a crucial role in both traditional applications and cutting-edge technologies.This analysis encapsulates the current state and prospects of the ceramic manufacturing industry, highlighting its significance, trends, and challenges in the global market. The industry's adaptability and continuous evolution underscore its enduring importance and potential for future growth.。

生产实习答辩报告英文

生产实习答辩报告英文

Introduction:This report aims to summarize my production internship experience at [Company Name], which took place from [Start Date] to [End Date]. During this internship, I had the opportunity to learn about various aspects of production processes, enhance my practical skills, and contribute to the company’s operations. In this report, I will discuss the key tasks I performed, the challenges I encountered, and the knowledge and skills I gained.I. Internship Background1. Company Overview:[Company Name] is a leading manufacturer in the [industry] sector, with a strong presence in the [region/country]. The company focuses on [main products or services], and its products are widely recognized for their quality and innovation.2. Internship Position:I was assigned to the [department] as a production intern, working under the supervision of [supervisor’s name]. My main responsibilities included [list key responsibilities].II. Key Tasks and Achievements1. Training and Familiarization:During the initial phase of the internship, I received comprehensive training on the production processes, machinery, and safety regulations.I also familiarized myself with the company’s quality control systems and standard operating procedures.2. Production Support:I actively participated in the production process, assisting the team in tasks such as [list tasks]. Through this experience, I gained insights into the challenges faced by the production team and the importance of coordination and communication.3. Quality Control:As part of my internship, I was responsible for monitoring the quality of products during the production process. I used various inspection tools and techniques to identify defects and ensure that the products met the required standards.4. Data Analysis and Reporting:I collected and analyzed production data, including production rates, downtime, and quality issues. Based on this data, I prepared reports to identify areas for improvement and suggest solutions to the supervisor.5. Cross-functional Collaboration:I collaborated with other departments, such as engineering, sales, and logistics, to ensure smooth production and delivery processes. This experience helped me understand the interdependencies among different departments.III. Challenges and Lessons Learned1. Learning Curve:The initial phase of the internship was challenging, as I had to adapt to new machinery, processes, and work environments. However, with the support of my supervisor and colleagues, I overcame these challenges and gained valuable knowledge.2. Communication and Coordination:Effective communication and coordination were crucial in ensuring the smooth flow of production. I learned the importance of clear instructions, regular updates, and active listening in a team setting.3. Problem-Solving Skills:Throughout the internship, I encountered various production issues that required quick and efficient problem-solving. This experience enhanced my analytical and critical thinking skills.IV. ConclusionIn conclusion, my production internship at [Company Name] was a rewarding and valuable experience. I gained practical knowledge and skills that will be beneficial in my future career. I would like to express my gratitude to [supervisor’s name] and my colleagues for their guidance, support, and encouragement during my internship.Moving forward, I plan to apply the knowledge and skills I acquired during this internship to further develop my career in the production field. I am confident that this experience has prepared me well for future challenges and opportunities.。

陶瓷测试标准

陶瓷测试标准

C 1421 Fracture Toughness
C 1275 CFCC Tensile strength C 1359 Tensile strength (Hi Temp) C 1337 Creep, Creep Rupture C 1360 Cyclic fatigue
C 1358 CFCC Compression
Membership Secretary: Prof. Zhigang Xu, NC A & T State University
C28.90
Executive
C28.01 Mechanical Properties and Reliability
C28.92
Education / Outreach
C 1331 Ultrasonic velocity C 1332 Ultrasonic attenuation
Terms, Workshops, Education
C 1323 Cg
C 1525 Thermal shock
Subcommittees .01 Mech. Prop. + Reliability .03 Physical Prop. + NDE .04 Applications .07 Ceramic Matrix Composites .91 Terminology .94 ISO TAG
Editorial
ASTM C28 Advanced Ceramic Standards
Visit the C28 website ( /COMMIT/COMMITTEE/C28.htm ) to purchase C28 standards or join the C28 committee.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

SOCIEDADE EDUCACIONAL DE SANTA CATARINAESCOLA TÉCNICA TUPYTÉCNICO EM MATERIAISCERAMICA AVANÇADAPARTE I: ALUMINAPARTE II: PROCESSOS DE CONFORMAÇÃOJOINVILLEJUNHO/20052. CERÂMICA AVANÇADAAlém dos isoladores elétricos, que no Brasil costuma-se classificá-lo como um segmento à parte, existe uma gama enorme de produtos para diferentes finalidades e fabricados a partir de diferentes matérias-primas, que constituem o segmento de cerâmica avançada. No Brasil existem diversos fabricantes de cerâmica avançada a base de porcelana, esteatita e cordierita para fins elétricos, químicos, térmicos e outros e produtos intermediários (cerâmica técnica), assim considerados por serem fabricados a partir de matérias-primas sintéticas de elevada pureza e processos com controle mais rigoroso. Este grupo compreende produtos de alumina para diferentes aplicações, ferritas, capacitores, resistores e outros.Na década de 80 este segmento tomou um grande impulso, várias empresas passaram a investir visando a fabricação principalmente de alguns produtos de cerâmica avançada e iniciou-se uma intensa atividade de pesquisa, as quais são executadas por cerca de 45 grupos existentes em universidades e institutos.Com a estagnação e abertura do mercado, muitas fábricas de cerâmica tradicional, técnica e avançada, fecharam totalmente ou desativaram unidades destinadas a fabricação de determinados produtos. Muitos dos grupos de pesquisas, desanimados com a falta de perspectivas da área de alta tecnologia tem se voltado para a cerâmica tradicional. Estima-se que o faturamento deste segmento esteja em torno de US$300 milhões.A Cerâmica Avançada tem o aprofundamento dos conhecimentos da ciência dos materiais proporcionando ao homem o desenvolvimento de novas tecnologias e aprimoramento das existentes nas mais diferentes áreas, como aeroespacial, eletrônica, nuclear e muitas outras e que passaram a exigir materiais com qualidade excepcionalmente elevada, tais materiais passaram a ser desenvolvidos a partir de matérias-primas sintéticas de altíssima pureza e por meio de processos rigorosamente controlados.Estes produtos, que podem apresentar os mais diferentes formatos, são classificados, de acordo com suas funções, em : eletroeletrônicos, magnéticos, ópticos, químicos, térmicos, mecânicos, biológicos e nucleares. Os produtos deste segmento são de uso intenso e a cada dia tende a se ampliar. Como alguns exemplos, podemos citar: naves espaciais, satélites, usinas nucleares, materiais para implantes em seres humanos, aparelhos de som e de vídeo, suporte de catalisadores para automóveis, sensores (umidade, gases e outros), ferramentas de corte, brinquedos, acendedor de fogão, etc.2.1 CERAMICA TRADICIONAL X CERÂMICA AVANÇADANa tabela abaixo, apresenta-se a diferença entre a cerâmica tradicional e a cerâmica avançada para compreensão em termos de matérias primas, estrutura, propriedades, processamento e aplicações.Tabela 01 – Cerâmica tradicional x cerâmica avançada.CERÂMICAS MATÉRIASPRIMAS ESTRUTURA PROPRIE-DADESPROCESSAMENTO APLICAÇÕESTradicional (silicatos)Naturais,mineraisindustriais(<98%pureza)Não-uniforme,porosa.Mecânica,estéticaOlaria colagem,prensagem,extrusão, queimaConstrução,produtosdomésticosAvançada(alto desempenho)Produtosquímicosindustriais(>98%pureza)Homogênea, menosporosaElétrica,magnética,nuclear, ótica,mecânica,térmica equímica.Prensagemisostática,moldagem porinjeção,sinterização,ligação por reaçãoEletrônica,estrutural,química,refratáriosFonte:2.2 PROPRIEDADESA tabela 02 é utilizada somente como uma informação para referência e para num eventual projeto saber dos quais material é o apropriado, as outras tabelas abaixo apresentam as propriedades térmicas, elétricas, magnéticas, ótica, nuclear, química, biológica e mecânica das cerâmicas avançadas em geral.Tabela 02 – Propriedades comparativas de cerâmicas avançadas.Tabela 03 – Propriedades térmicas.PROPRIEDADES CLASSES APLICAÇÕES EXEMPLOSTérmicas Condutividade Trocadores de calor para pacoteseletrônicosAlNIsolamento Revestimentos isolantes para fornosde alta temperaturafibras de SiO2,Al2O3, ZrO2 Refratariedade Revestimentos isolantes para fornosde alta temperatura (metais fundidos,escórias)SiO2, Al2O3, ZrO2Fonte:Tabela 04 – Propriedades Elétricas.PROPRIEDADES CLASSES APLICAÇÕES EXEMPLOSElétricas condutividade elementos de aquecimento parafornosSiC, ZrO2, MoSi2 ferroeletricidade capacitores BaTiO3, SrTiO3 Isolamento substratos de circuitos eletrônicos Al2O3, AlNFonte:Tabela 05 – Propriedades Magnética e supercondutividade.PROPRIEDADES CLASSES APLICAÇÕES EXEMPLOSMagnéticase Supercondutoras Magnetos duros Ímãs de ferrite (Ba,Sr)O·6Fe2O3 Magnetos moles Núcleos de transformadores (Zn,M)·6Fe2O3, comM=Mn,Co, Mg SupercondutividadeFios e magnetômetros YBa2Cu3O7Fonte:Tabela 06 – Propriedades óticas.PROPRIEEDADES CLASSES APLICAÇÕES EXEMPLOSÓticas Translucência materiais para lâmpadas de Na Al2O3, MgO Transparência cabos de fibra ótica SiO2transparência aoinfravermelhojanelas para laser infravermelho CaF2, SrF2, NaClFonte:Tabela 07 – Propriedades Nucleares.PROPRIEDADES CLASSES APLICAÇÕES EXEMPLOSNucleares Fissão combustível UO3, UC Fissão moderadores de nêutrons C, BeO Fissão, fusão revestimentos em reatores C, SiCFonte:Tabela 08 – Propriedades Químicas.PROPRIEDADES CLASSES APLICAÇÕES EXEMPLOSQuímicas Catálise suporte de catalisador Mg2Al4Si5O15 condutividadesensitiva a gasessensores de gases ZnO, ZrO2, SnO2,Fe2O3Separação filtros SiO2, Al2O3Fonte:Tabela 09 – Propriedades biológicas.PROPRIEDADES CLASSES APLICAÇÕES EXEMPLOSBiológicas Biocompatibilidade cimentos CaHPO4·2H2O Biocompatibilidade próteses estruturais Al2O3Fonte:Tabela 10 – Propriedades Mecânicas.PROPRIEDADES CLASSES APLICAÇÕES EXEMPLOSMecânicas Dureza Ferramentas de corte Al2O3, Si3N4, ZrO2, TiC RefratariedadeestruturalEstatores e lâminas deturbinaAl2O3, Si3N4, MgO, SiC Resistência a desgaste Mancais Al2O3, Si3N4, ZrO2, SiCFonte:2.3 EXEMPLOS DE APLICAÇAOExemplos visuais, apresenta-se Figurauras de produtos classificados como de cerâmica avançada, de áreas distintas como, têxteis, medicinais, refratários, eletrônicos, entre outrosFigura 01 – Placas resistentes ao desgaste Figura 02 – LaminasFigura 03 – Anéis e polias de zirconitaFigura 04 – Contra facas de zirconita Figura. 05 – Acessórios - alumina e outrosFigura. 06 – Cadinhos de cordierita Figura.07 – Placas eletrônicas de aluminaFigura 08 – Fusíveis de esteadita-cordierita3.ALUMINADentre os compostos utilizados em cerâmicas avançados o mais utilizados é a alumia, do qual é dado ênfase no relatório. A alumina é um composto de alumínio e oxigênio. Ocorre na natureza como um mineral chamado corundo, encontrado também com outras substâncias, no minério bauxita (sendo que esta é a principal fonte de Al2O3, da qual obtém também o alumínio).A alumina refinada é de grande utilidade como abrasivo, isto é, material usado para trituração ou polimento. É má condutora de eletricidade, sendo por isso utilizada em revestimentos de fornos e em isolamento elétrico. A industria utiliza uma massa branca, o caulim, composta de alumina, sílica e água, na fabricação de porcelana, é utilizada também na fabricação de vidros, esmaltes, materiais cerâmicos, como mulita sintética, como carga reforçadora de borracha e como carga inerte para plásticos e papel.A alumina ocorre sob diversas formas cristalinas, estas formas tem a mesma fórmula química mas diferem no arranjo geométrico entre átomos de Al e O podendo transformar uma nas outras, desde que se aqueça a alumina a determinadas temperaturas.Para a sua obtenção, um liquido claro permanece depois que a lama anódina é removida, este liquido é levemente resfriado, então, bombas transporta-os aos precipitadores em que a solução é agitada por dois dias, onde vai se resfriar lentamente. A alumina é menos solúvel em água fria, portanto ela se precipita quando resfriada. Acrescenta-se cristais de alumina hidratada à solução para ajudar no processo de precipitação. Conforme a alumina vai se desagregando, aumenta as sementes de Al. A alumina cristalizada finalmente se deposita no fundo do tanque.Aproximadamente metade da alumina em solução se precipita durante o processamento, depois de removida, bombas transportam a soda cáustica, repetindo-se todo o processo. Gradativamente toda a alumina é extraída.Os cristais de alumina hidratada são tratados para remover as partículas finas, estas partículas são usadas como semente de alumínio nos precipitadores. As partículas são levadas e aquecidas em fornos rotativos a uma temperatura de 1110°C para remover a água. A alumina sai em forma de pó branco, fino e seco. Atualmente os defloculantes mais utilizados na dispersão da alumina são os poliacrilatos de amônio ou de sódio.3.1 PROPRIEDADES PARTICULARES DA ALUMINA E APLICAÇÕESAbaixo segue a tabela 2 cujo demonstra algumas propriedades de compostos refratários puros de alumina e algumas Figurauras demonstrativas de peças fabricadas em alumina.Tabela 10 – Propriedades da Alumina.PM 101.92DUREZA MOHS 9MDUREZA KNOOP 2000KRESISTÊNCIA Á TRAÇÃO (Kg/cm³.10³) 2.53 (20°C) 2.32 (500°C) 1.26 (1300°C) P.F. 2050 °CP.E. 2980 °CCOEFICIENTE DE EXPANSÃO TÉRMICA LINEAR6 (20°C)7 (500°C) 9 (1000°C)°C(x10-6)COEFICIENTE DE CONDUTIVIDADE TÉRMICA BTU 17 (20°C) 6(500°C) 4(1000°C) RESISTIVIDADE (Ω/cm³) 2.1015 (100°C) 2.1013 (300°C) Fonte:Figura 09 – Êmbolos ema aluminaFigura 10 – Bolas de alumina para moinhosFigura 11 – Próteses de uso clinico.Figura 12 – Guias têxteis.5.PROCESSO DE FABRICAÇÃO GENÉRICOOs processos de fabricação empregados pelos diversos segmentos cerâmicos assemelham-se parcial ou totalmente. O setor que mais se diferencia quanto a esse aspecto é o do vidro, embora exista um tipo de refratário (eletrofundido), cuja fabricação se dá através de fusão, ou seja, por processo semelhante ao utilizado para a produção de vidro ou de peças metálicas fundidas. Esses processos de fabricação podem diferir de acordo com o tipo de peça ou material desejado. De um modo geral eles compreendem as etapas de preparação da matéria-prima e da massa, formação das peças, tratamento térmico e acabamento. No processo de fabricação muitos produtos são submetidos a esmaltação e decoração. Abaixo apresenta-se m fluxograma do processo geral feita nas industrias de cerâmicas.Matérias PrimasDosagemAditivosAditivosRecicloMoagem/mi stura a secoMoagem a úmidoRecicloClassificaçãoGranulaçãoAtomizaçãoFiltro-prensagemMistura/deaeraçãoPrensage m SecagemConformação plástica SecagemColagemSecagemAcabamento superficialAcabamento superficialTratamento térmicoAcabamento superficial finalFigura 13 – Fluxograma processamento5.1PREPARAÇÃO DA MATÉRIA-PRIMAAs matérias-primas sintéticas geralmente são fornecidas prontas para uso, necessitando apenas, em alguns casos, de um ajuste de granulometria. Diferente da tradicional das matérias-primas utilizadas na indústria natural, encontrando-se em depósitos espalhados na crosta terrestre. Após a mineração, os materiais devem ser beneficiados, isto é desagregados ou moídos, classificados de acordo com a granulometria e muitas vezes também purificados. O processo de fabricação, propriamente dita, tem início somente após essas operações.5.2PREPARAÇÃO DA MASSAOs materiais cerâmicos geralmente são fabricados a partir da composição de duas ou mais matérias-primas, além de aditivos e água ou outro meio. Raramente emprega-se apenas uma única matéria-prima. Dessa forma, uma das etapas fundamentais do processo de fabricação de produtos cerâmicos é a dosagem das matérias-primas e dos aditivos, que deve seguir com rigor as formulações de massas, previamente estabelecidas. Os diferentes tipos de massas são preparados de acordo com a técnica a ser empregada para dar forma às peças. De modo geral, as massas podem ser classificadas em: - suspensão, também chamada barbotina, para obtenção de peças em moldes de gesso ou poliméricos; - massas secas ou semi-secas, na forma granulada, para obtenção de peças por prensagem; - massas plásticas, para obtenção de peças por extrusão, seguida ou não de torneamento ou prensagem.5.3CONFORMAÇÃOOs processos de fabricação empregados pelos diversos segmentos cerâmicos assemelham-se parcial ou totalmente. O setor que mais se diferencia quanto a esse aspecto é o do vidro, embora exista um tipo de refratário (eletrofundido), cuja fabricação se dá através de fusão, ou seja, por processo semelhante ao utilizado para a produção de vidro ou de peças metálicas fundidas. Esses processos de fabricação podem diferir de acordo com o tipo de peça ou material desejado. De um modo geral eles compreendem as etapas de preparação da matériaprima e da massa, formação das peças, tratamento térmico e acabamento. No processo de fabricação muitos produtos são submetidos a esmaltação e decoração. Os métodos mais utilizados para cerâmica técnica/avançada compreendem colagem, prensagem e extrusão, dos quais apresentarão uma introdução no titulo 6.5.4SECAGEMO Processo de secagem é fundamental na fabricação de peças de cerâmica. Normalmente, quando conforma-se uma peça cerâmica usando massas plásticas, esta trabalhando com pastas e barbotinas que, habitualmente, contém entre 25 a 50% de água, no caso das barbotinas. Toda essa água deverá ser retirada da peça antes da queima. Caso contrário, a peça vai trincar ou mesmo “explodir” dentro do forno. A secagem é o estágio do processo cerâmico pelo qual retira-se essa água. Para a secagem continuar, é preciso fornecer calor à peça e remover a umidade de sua volta. O ar é um facilitador nesse processo, principalmente se for circular e aquecido.Logo após a conformação da peça cerâmica, a água está distribuída quase que homogeneamente, entre as partículas de argila e outros componentes da massa cerâmica, que também precisa ser retirada homogeneamente, já que a saída da água faz com que as partículas se aproximem, diminuindo o tamanho da peça. Se essa diminuição não for igual poderá provocar trincas ou, em casos extremos a quebra da peça. A primeira água a sair da peça é aquela que se encontra na superfície ou muito próxima dela. Em seguida, esta água migra do interior da peça até a superfície se evaporar. Quanto mais espessa a peça, mais demorado e difícil é o seu processo de secagem. A velocidade de evaporação a água, em uma superfície livre, depende de vários fatores. Os principais são: temperatura do ar, velocidade do ar, teor de água no ar ( umidade ) e temperatura da água. No início da secagem, quando a água está na superfície ou proxímo dela, a velocidade de secagem é constante. No momento em que está água é eliminada, a velocidade vai diminuindo, pois ela, antes de evaporar, tem que caminhar até a superfície. Neste ponto, a peça muda de cor, passa do aspecto úmido para o aspecto seco. Portanto até o ponto onde a velocidade de secagem começa a diminuir, há sobre a superfície da peça uma película contínua de água, que funciona como água livre. Abaixo desse ponto, porém, a água se encontra cada vez mais no interior dos poros de forma que a velocidade de secagem é cada vez menor. No esquema abaixo, tem-se as fases de secagem de uma argila úmida em uma seção transversal à superfície, e um gráfico mostrando esse fenômeno. As letras do gráfico correspondem ás fases do gráfico.ABCDFigura 14 - Fases de secagem de uma argila úmida em uma seção transversal à superfície.B Velocidadede Secagem C DAPorcentagem de UmidadeGráfico 01 – Relação porcentagem X velocidade5.4.1Secagem de PlacasUma placa apoiada sobre uma das faces, perderá água pela parte superior e pelas laterais, mas não pela parte apoiada. Esse processo promoverá uma secarem mais pronunciada e, consequentemente, uma retração maior nos cantos, o que causará o levantamento dessas áreas (empenamento), e se ela não conseguir se movimentar na superfície na qual está apoiada, aparecerão trincas típicas no centro dos lados com está esquematizado abaixo.Figura 15 – Secagem em placas.Isso pode ser atenuado, colocando-se as peças sobre papel, pois ele ao mesmo tempo que retira umidade da parte de baixo da peça, permite sua movimentação.5.4.2Secagem de Pratos, Travessas, Tigelas e Peças AssemelhadasO problema é semelhante ao das placas, pois partes das peças, principalmente as abas, tem mais facilidade de perder umidade, retraindo-se mais rapidamente, causando trincas nas abas. Às vezes, as abas secam e o fundo com espessura maior, quando secar e retrair, trinca no meio ou circularmente, como no esquema abaixo.Figura 16 – Secagem de pratos.Nesse caso, deve-se sempre que possível fazer a peça com espessura constante, e não o fundo mais espesso ou com ranhuras ou saliências que poderão interferir na secagem. Para minimizar esses problemas, deve-se também colocar jornal sob as peças, para que elas possam se movimentar e perder a umidade o mais rapidamente possível. Recomenda-se, também, que o início da secagem seja feito de modo lento e, se necessário protegido.5.5SINTERIZAÇÃO DE CORPOS CERAMICOSSabemos que quando um corpo cerâmico é aquecido, perde-se primeiro a água quimicamente ao corpo ligado. Posteriormente, quando a temperatura de maturação é atingida, parte do corpo se funde e forma um vidro, o que aproxima as partículas da argila e funciona como um tipo de cola que dá ao corpo resistência mecânica quando frio. O processo de queima é importante para que se possa obter um produto final com as propriedades desejadas, porém o corpo a ser queimado deve apresentar características que lhe permitam atingir essas propriedades.Para que se possa controlar favoravelmente o processo de queima, às características desejadas, é importante que se saiba o que ocorre com uma peça cerâmica durante a queima. Uma das melhores maneiras de se obter queimas “perfeitas”, é entender o que se passa dentro do forno. O calor se movimenta dentro do forno, indo das áreas quentes para as frias de três maneiras distintas mas complementares: Convecção é o início do processo de aquecimento dentro do forno, o ar é aquecido conforme ele passa através das resistências que estão esquentando. Como o ar quente tende a subir, ele vai empurrando o ar frio para baixo, que por sua vez passa pelas resistências e vai se aquecendo. Esse movimento do ar, cria correntes no interior do forno aquecendo as peças e a mobília. Neste primeiro estágio, o forno não terá uma temperatura uniforme. Queimas baixas, entre cone 022 e 021 serão completadas somente com este estágio do aquecimento, por isso devem ser feitas lentamente, condução é quando o calor se propaga através de um sólido, Esta forma de aquecimento é lenta, mas parte importante do processo de uma queima. Condução é a principal forma de se obter uniformidade de temperatura no interior do forno. Se a queima for muito rápida, os interiores das pecas não receberão o calor necessário e seu cozimento ficará comprometido.. Radiação, no começo da queima, as áreas próximas dos maçaricos são as partes mais quentes do forno. Além de esquentarem o ar que circula pelo forno, emitem calor esquentando as peças e a mobília. Estas por sua vez, quando aquecidas, passam também a emitir calor. Para se obter uniformidade em uma queima, é muito importante que todas as partes das peças, estejam expostas à radiação.Existem no entanto, outros fatores que podem afetar a distribuição de calor em um forno durante a queima, são eles : o desenho interno do fomo (quadrado ou cilíndrico); a que temperatura está sendo a queima; qual a velocidade da queima; se existe um sistema de ventilação no fomo; se o forno está regulado para dar um “banho” nas peças.Durante a queima, o ar quente tende a subir e o ar mais frio tende ir para as partes mais baixas do forno. Como resultado, alguns fornos terão uma temperatura menor em suas partes mais baixas do que em sua parte mais alta. Os fornos com desenhos mais modernos são desenhados com isso em mente, melhorando um pouco esse problema”, mas mesmo assim, não é incomum que você possa encontrar diferenças de até um cone entre as partes de um forno grande.Figura 17 e 18 – Forno 1300°C e 1600°C da marca Jung pertencente à Sociesc.5.5.1 Controle da queimaUma das maneiras mais fáceis de aprimorar a distribuição de calor dentro de um forno, é ajustando os controles de queima para que as partes mais frias, recebam mais calor e vice-versa. Efetuando-se uma queima mais lenta, também serve para melhorar a distribuição de calor, uma vez que as regiões mais frias receberão calor por mais tempo, ajudando as peças a queimarem mais uniformemente .Para abordar as mudanças que ocorrem durante um ciclo de queima o divide-se em quatro partes.5.5.1.1 Parte 1 – SecagemDurante a conformação, a argila contém aproximadamente 25% de água. Após a secagem ao ar livre o corpo argiloso ( peça ) ainda mantém uma porcentagem de água superior a 5%. Durante o primeiro estágio da queima, essa água (fisicamente combinada) é retirada sob a forma de vapor. Por isso esta etapa pode ser considerada a etapa final da secagem.5.5.1.2 Parte 2 – DecomposiçãoA decomposição parcial dos cristais argilosos começa em torno de 200ºC e termina próximo aos 800ºC, quando a água que estava quimicamente a ela ligada sai na forma de vapor. Durante esta etapa, os gases formados a partir de outros materiais são liberados; por exemplo: os carbonatos liberam dióxido do carbono (CO2).È importante que a atmosfera do forno seja suficientemente ventilada ( oxidante ), para permitir que essas reações se completem antes que a temperatura ultrapasse 600ºC.Mesmo uma atmosfera levemente redutora poderá fazer com que as transformações não sejam completadas, provocando defeitos como inchamento ou bolhas nas etapas posteriores da queima.Todos os processos que envolvem perda de água ou gás, devem ser devidamente completados antes que a vitrificação das argilas ocorra. A vitrificação fecha a peça, e se ela ocorrer muito cedo, poderá impedir que essas reações se completem, provocando o aparecimento de bolhas ou de inchamento em temperaturas mais elevadas, ou seja, quando os gases quiserem sair e o vidro já estiver com todas as suas passagens fechadas. È etapa que ocorrem mudanças na estrutura cristalina das argilas.Em torno de 573ºC o quartzo presente na argila altera de tamanho, com um brusco aumento de volume superior a 3%. Durante essa transformação a taxa de aquecimento deve ser lenta para evitar o surgimento das trincas provocadas pela brusca variação do volume.5.5.1.3 Parte 3 – VitrificaçãoA vitrificação, que é a conversão dos minerais presentes em vidro, envolve algumas mudanças químicas e físicas complexas. A formação de líquido em argilas pode ocorrer a temperaturas tão baixas como 770ºC, mas na grande maioria das argilas, muito pouco vidro se forma a temperaturas inferiores a 1000ºC. Em massas com feldespato a vitrificação começa em torno de 1150ºC.A última etapa de aquecimento começa próxima aos 800ºC quando temperatura pode ser aumentada mais rapidamente sem perigos para a peça.Mudanças químicas e físicas iniciadas na etapa anterior ( parte 2 ), prosseguem a uma velocidade maior e novas mudanças têm inicio. Se a temperatura for suficientemente alta (ou prolongada), qualquer liquido fundido que se forme, entra nos poros entre as partículas mais refratárias (que ainda não se fundiram).Quanto mais elevada à temperatura, mais completas são as reações. A sílica (quartzo ou areia), presentes na argila, é dissolvida. Durante a produção do material vítreo as mudanças químicas provocam mudanças físicas. O volume total diminui e como se os poros são cheios pelo liquido fundido a porosidade diminui também.O intervalo de fusão de uma argila é a diferença entre a temperatura em que a fusão se inicia e aquela na qual a peça perde a forma. Esse intervalo pode ser tão pequeno como 30ºC ou tão amplo como 300ºC, dependendo dos fluxos presentes.Manter a temperatura por certo tempo, permite que o calor penetre completamente na peça, aumentando a quantidade de material fundido, diminuindo o número de poros entre as partículas, tornando o material mais impermeável. Um tempo de patamar muito grande ou uma temperatura muito elevada podem provocar a formação de uma quantidade muito grande de vidro, provocando o inchamento ou fervura na argila, como uma resultante perda de forma ( já que o vidro é liquido ).5.5.1.4 Parte 4 – ResfriamentoO resfriamento é uma parte bastante importante da queima. Um resfriamento muito rápido pode provocar trincas e um muito lento pode fazer com que o material fundido se cristalize.。

相关文档
最新文档