直线的参数方程(1)ppt

合集下载

13级:第二讲(三)直线的参数方程(1)

13级:第二讲(三)直线的参数方程(1)
12
e
O
x
思考2
是否可以根据t的值来确定向量的 M 0 M
我们知道e是直线l的单位方向向量,那 么它的方向应该是向上还是向下的?还 是有时向上有时向下呢?
分析: 是直线的倾斜角, 当0< < 时, sin >0
又 sin 表示e 的纵坐标, e 的纵坐标都大于0 那么e 的终点就会都在第一,二象限, e 的方向 就总会向上。
3、抛物线y2=2px的参数方程
2p y 2px x t an2 由 y (为 数 参 ) t an y 2p x t an
2
x t 任一点与原点连线的斜率的倒数,即: y
4
1 若 t 令 , t (,0) (0,),则 t an x 2pt 2 t的几何意义:是抛 (t为 数 ) 参 y 2pt 物线上除顶点外的
k
7
y2 y1 x2 x1
Ax By C 0
tan
问题:已知一条直线过点M0(x0 ,y0 ),倾斜角,
求这条直线的参数方程. 解: 直线的普通方程为y y0 tan ( x x0 ) sin 把它变成y y0 ( x x0 ) cos y y0 x x0 进一步整理,得: sin cos
求这条直线的方程.
M(x,y)
M0(x0,y0) 所以,该直线的参数方程为 e x x t cos

O
(cos ,sin )
x
10
练习1
x 3 t sin200 B () 直 线 1 (t为 参 数 ) 的 倾 斜 角 是 () 0 y t cos 20 0 0 0 0 A.20 B .70 C .110 D.160

选修4-4数学直线的参数方程【优质PPT】

选修4-4数学直线的参数方程【优质PPT】



参数方程为__________.
课 时
(2)由 α 为直线的倾斜角知 α∈__________,所以
作 业

sinα≥0,当 α∈(0,π)时,sinα>0.



第二讲 学案3 直线的参数方程
数学
人教A版·选修4-4 数学

前 预 习

(3)直线的参数方程中参数 t 的几何意义是:_____ 内
时 作 业
课 内
y=3+2
5 5 t.


第二讲 学案3 直线的参数方程
数学
人教A版·选修4-4 数学

前 预 习
经验证易知点
A(3,7)恰好在直线上,所以有
1+
5 5
课 内

t=3,即 t=2 5,即点 M 到点 A 的距离是 2 5.


而点 B(8,6)不在直线上,所以不能使用参数 t 的几
B.(-3,4)


C.(-3,4)或(-1,2)
D.(-4,5)或(0,1)
时 作

课 内 讲 练
第二讲 学案3 直线的参数方程
数学
人教A版·选修4-4 数学

前 预 习
[解析] d= -2- 2t-22+3+ 2t-32= 2, 课

∴t=±
2 2.
巩 固
自 主 演
当 t= 22时,对应点为(-3,4),

课 内 讲 练
第二讲 学案3 直线的参数方程
数学
人教A版·选修4-4 数学

前 预 习
[解析] (1)因为倾斜角 α=π6,所以 sinα=12,

2.3 直线的参数方程 课件(人教A选修4-4)

2.3 直线的参数方程 课件(人教A选修4-4)

返回
返回
[例1]
已知直线l的方程为3x-4y+1=0,点P(1,1)在
直线l上,写出直线l的参数方程,并求点P到点M(5,4)的距 离. [思路点拨] 由直线参数方程的概念,先求其斜率,进
而由斜率求出倾斜角的正、余弦值,从而得到直线参数方
程.
返回
[解]
3 由直线方程 3x-4y+1=0 可知, 直线的斜率为 , 4
返回
理解并掌握直线参数方程的转化,弄清参数t的 几何意义,即直线上动点M到定点M0的距离等于参 数t的绝对值是解决此类问题的关键.
返回
π 1.一直线过 P0(3,4),倾斜角 α= ,求此直线与直线 3x+ 4 2y=6 的交点 M 与 P0 之间的距离.
x=3+ 解:设直线的参数方程为 y=4+ 2 2 得 3(3+ t)+2(4+ t)=6. 2 2 11 2 解得 t=- , 5 ∴|MP0|=|t|= 11 2 . 5 2 t, 2 2 t, 2
在 α∈[0,π)内无解;
返回
3 x=-1+- 2 -2t, 而化成 y=2+1-2t 2 3 cos α=- 2 , 则 sin α=1 2 5π 得 α= . 6
时,
5π 故直线 l 的倾斜角为 . 6
返回
[例 2]
π 已知直线 l 经过点 P(1,1),倾斜角 α= , 6
返回
求解直线与圆或圆锥曲线有关的弦长时,不必求
出交点坐标,根据直线参数方程中参数t的几何意义 即可求得结果,与常规方法相比较,较为简捷.
返回
π 3.直线 l 通过 P0(-4,0),倾斜角 α= ,l 与圆 x2+y2 6 =7 相交于 A、B 两点. (1)求弦长|AB|; (2)求 A、B 两点坐标.

选修4-4直线的参数方程优秀课件

选修4-4直线的参数方程优秀课件
设直线 l的倾斜角为 ,定点 M 0、动点 M的坐标 分别为 ( x0 , y0 )、 ( x, y )
(1)如何利用倾斜角 写出直线l的单位方向向量 e ?
( 2)如何用e和M 0的坐标表示直线上任意 一点M的坐标?
(1) e (cos , sin )
(2) M 0 M ( x, y ) ( x0 , y0 ) ( x x0 , y y0 )
x 线AB的方程为 3 y 2
1 2x 3y 6 0
6 13
d
| 6 cos 6 sin 6 | 22 32
2 sin( ) 4
所以当 =

4 这时点P的坐标为( 3 2 2 , 2)
时, d 有最大值, 面积最大
x2 y2 1、动点P(x,y)在曲线 1上变化 ,求2x+3y的最 9 4 大值和最小值
3 5 3 5 4 2
( 1 )如何写出直线 l的参数方程?

( 2 )如何求出交点 A,B所对应的参数 t1,t 2 ?

( 3 ) AB 、 MA MB 与t1,t 2有什么关系?
( 1 ) M 1 M 2 t1 t 2
t1 t 2 ( 2 )t 2
四、课堂小结
A1
B2
A
F1
C
O B1
B
F2
X A2 X
练习3:已知A,B两点是椭圆 x 1 9 与坐标轴正半轴的两个交点,在第一象限的椭 圆弧上求一点P,使四边形OAPB的面积最大.
2
y2 4
解 : 椭圆参数方程 设点P(3cos ,2sin ) SABO 面积一定, 需求 SABP 最大即可 即求点P到线AB的距离最大值

2.3 直线的参数方程 课件(人教A选修4-4)

2.3 直线的参数方程 课件(人教A选修4-4)

返回
x2 2 4.求经过点(1,1),倾斜角为 120° 的直线截椭圆 +y =1 所 4 得的弦长.
解:由直线经过点(1,1),倾斜角为 120° ,可得直线的 1 x=1-2t, 参数方程为 y=1+ 3t 2
(t 为参数),代入椭圆的方
1 2 1- t 2 3 2 程,得 +(1+ t) =1, 4 2
所以直线被椭圆所截得的弦长为
返回
点击下图进入
返回
(1)写出直线 l 的参数方程. (2)设 l 与圆 x2+y2=4 相交于两点 A、B,求点 P 到 A、 B 两点的距离之积. [思路点拨] (1)由直线参数方程的概念可直接写出方
程;(2)充分利用参数几何意义求解.
返回
[解]
π (1)∵直线 l 过点 P(1,1),倾斜角为 , 6
π x=1+tcos6 , ∴直线的参数方程为 y=1+tsinπ, 6 3 x=1+ 2 t, 即 y=1+1t 2
返回
理解并掌握直线参数方程的转化,弄清参数t的 几何意义,即直线上动点M到定点M0的距离等于参 数t的绝对值是解决此类问题的关键.
返回
π 1.一直线过 P0(3,4),倾斜角 α= ,求此直线与直线 3x+ 4 2y=6 的交点 M 与 P0 之间的距离.
x=3+ 解:设直线的参数方程为 y=4+ 2 2 得 3(3+ t)+2(4+ t)=6. 2 2 11 2 解得 t=- , 5 ∴|MP0|=|t|= 11 2 . 5 2 t, 2 2 t, 2
为所求.
返回
(2)因为点 A,B 都在直线 l 上,所以可设它们对应的参 数为 t1 和 t2,则点 A,B 的坐标分别为 3 1 3 1 A(1+ t1,1+ t1),B(1+ t2,1+ t2), 2 2 2 2 以直线 l 的参数方程代入圆的方程 x2+y2=4 整理得到 t2 +( 3+1)t-2=0, 因为 t1 和 t2 是方程①的解,从而 t1t2=-2. 所以|PA|· |PB|=|t1t2|=|-2|=2. ①

直线的参数方程

直线的参数方程

3
直线参数方程可以用于解决一些与直线相关的 解析几何问题,如交点、距离等。
在物理中的应用
在力学中,直线参数方程可以用于描述物体的运 动轨迹。
在电磁学中,直线参数方程可以用于描述电流和 电压的关系。
在光学中,直线参数方程可以用于描述光的传播 路径。
在计算机图形学中的应用
在计算机图形学中 ,直线参数方程可 以用于绘制直线和 曲线。
在计算机图形学中,直线的参数方程可以用来描述物体的形状和轮廓。例如,在 绘制一条直线时,可以使用直线的参数方程来表示。这种方程形式可以方便地表 示出直线的方向和位置,并且可以方便地进行绘制和控制。
直线参数方程与三维建模
在三维建模中,直线的参数方程可以用来描述物体的表面和边缘。例如,在创建 一个立方体或球体时,可以使用直线的参数方程来表示。这种方程形式可以方便 地表示出物体的形状和轮廓,并且可以方便地进行修改和控制。
THANK YOU.
用点斜式推导直线参数方程
总结词
利用点斜式的直线方程,推导出直线参数方程的表达式 。
详细描述
已知直线通过点 $P_{1}(x_{1}, y_{1})$ 和斜率为 $k$, 则直线的点斜式方程为 $y - y_{1} = k(x - x_{1})$。为 了将其转化为参数方程形式,引入参数 $t$ 并令 $y y_{1} = t$,则 $x = x_{1} + \frac{t}{k}$
直线参数方程的特殊形式包括
当 θ = π/2 时,直线垂直于 y 轴 ,t 为任意实数;
直线参数方程的性质还包括:通 过改变 t 的值可以得到直线上不 同的点,t 的取值范围为全体实数 。
02
直线参数方程的应用
在解析几何中的应用

直线的参数方程ppt课件

直线的参数方程ppt课件

返回首页
下一页
5.化直线l的参数方程
x=-3+t, y=1+ 3t
(t为参数)为普通方程,并求倾斜角,
说明|t|的几何意义.
上一页
返回首页
下一页
【解】 由xy= =- 1+3+3tt, 消去参数t,得
直线l的普通方程为 3x-y+3 3+1=0.
故k= 3=tan α,即α=π3,
几何意义为|
→ M0M
|=4,且
→ M0M
与e方向相反(即点M在直线l上点M0的左下
方).
上一页
返回首页
下一页
1.一条直线可以由定点M0(x0,y0),倾斜角α(0≤α<π)惟一确定,直线上
的动点M(x,y)的参数方程为
x=x0+tcos y=y0+tsin
α, α
(t为参数),这是直线参数方程的
上一页
返回首页
下一页
【解析】 将xy= =12- +23tt 化为y=-32x+72, ∴斜率k1=-32, 显然k=0时,直线4x+ky=1与上述直线不垂直, ∴k≠0,从而直线4x+ky=1的斜率k2=-4k. 依题意k1k2=-1,即-4k×-32=-1, ∴k=-6. 【答案】 -6
上一页
θ, θ
(θ为参数)交于A,B两点,求|PA|·|PB|.
上一页
返回首页
下一页
【解】 (1)直线l的参数方程为
x=-3+tcos56π=-3- 23t, y=3+tsin56π=3+2t
(t为参数).
上一页
返回首页
下一页
(2)把曲线C的参数方程中参数θ消去,得4x2+y2-16=0. 把直线l的参数方程代入曲线C的普通方程中,得 4-3- 23t2+3+12t2-16=0, 即13t2+4(3+12 3)t+116=0. 由t的几何意义,知 |PA|·|PB|=|t1·t2|, 故|PA|·|PB|=|t1·t2|=11136.

高中数学《参数方程-直线的参数方程》课件

高中数学《参数方程-直线的参数方程》课件
§2 直线和圆锥曲线的参数方程
-1-
2.1
直线的参数方程
-2-
首 页
课程目标
1.掌握直线参数方程的标准形
式,理解参数 t 的几何意义.
2.能依据直线的几何性质,写出
它的两种形式的参数方程,体会
参数的几何意义.
3.能利用直线的参数方程解决
简单的实际问题.
学习脉络
J 基础知识 Z 重点难点
ICHU ZHISHI

4

= -1 + cos ,
4
3π (t
= 2 + sin
4
解:因为 l 过定点 M,且 l 的倾斜角为 ,
所以它的参数方程是

2
t,
2
(t
2
+ t
2
= -1=2
为参数).
为参数).①
把①代入抛物线方程,得 t2+ 2t-2=0.
解得 t1=
- 2+ 10
- 2- 10
,t2=
5
= 1 + t,
=
为参数).
因为 3×5-4×4+1=0,所以点 M 在直线 l 上.
4
5
由 1+ t=5,得 t=5,即点 P 到点 M 的距离为 5.
因为 3×(-2)-4×6+1≠0,所以点 N 不在直线 l 上.
由两点间距离公式得|PN|= (1 + 2)2 + (1-6)2 = 34.
π
6
即 α= 或

3
时,|PA||PB|最小,其最小值为
1
6
2 1+4
6

2.3直线的参数方程1

2.3直线的参数方程1

思考:
o
x
x 100t , 2 ( g=9.8m/s ) 1 2 y 500 gt . 2
抛物线的参数方程
设M (x,y)为抛物线上除顶点外的任意一点, 以射线OM为终边的角记作。
y
M(x,y)

o x y H 因为点M (x,y)在的终边上,根据三角函数定义可得 tan . x
2 x 1 t 2 (t为参数) y 2t 0的 一 个 参 数 方 程 是 。 2
(2 )直线 x y 1
直线的参数方程中参数t的几何意义是: t 表示参数t 对应的点M到定点M 0的距离。当M 0 M 与e同向时,t取正 数;当M 0 M 与e异向时,t取负数;当点M与M 0重合时, t 0.
3 5 3 5 4 2
( 1 )如何写出直线 l的参数方程?

( 2 )如何求出交点 A,B所对应的参数 t1,t 2 ?

( 3 ) AB 、 MA MB 与t1,t 2有什么关系?
( 1 ) M 1 M 2 t1 t 2
t1 t 2 ( 2 )t 2
四、课堂小结
又设抛物线普通方程为y2 =2px.
x=2pt2 , 所以, (t为参数,t R)表示整条抛物线。 y 2pt.
抛物线的参数方程
抛物线y2 =2px(p>0)的参数方程为:
x=2pt2 , (t为参数,t R) y 2pt.
y
M(x,y)

o H x
1 其中参数t= ( 0),当 =0时,t=0. tan 几何意义为: 抛物线上除顶点外的任意一点与原点连线的斜率的倒数。
三、例题讲解

直线的参数方程

直线的参数方程
工程应用
在工程中,直线参数方程被广泛应用于机械设计、土木工程等领域。例如,在机 械设计中,直线参数方程可以用来描述机器的运动轨迹;在土木工程中,直线参 数方程可以用来描述建筑物的轮廓线。
物理应用
在物理学中,直线参数方程也被广泛应用于描述运动轨迹和实验数据。例如,在 研究物体的运动时,直线参数方程可以用来描述物体的位置和速度随时间的变化 。
通过两点确定直线
对于通过两点的直线,参数方程可以表示为 `x = tcosθ + ρcosθ`, `y = tsinθ + ρsinθ`,其中t为参数,θ为角度,ρ为距离。
斜截式
对于斜截式直线,参数方程可以表示为 `x = ty + b`, `y = t`,其中t为参数,b 为截距。
应用直线参数方程解决实际问题
向量推导的应用
利用向量推导直线参数方程,可以直观地理解直线的方向和位置 ,为解决几何问题提供方便。
使用点斜式推导直线参数方程
点斜式的定义
点斜式是直线方程的一种形式,它表示直线通过 某一点且与该直线的斜率有关。
点斜式的推导
通过点斜式的定义,推导出直线参数方程的系数 ,并得到点斜式对应的参数方程。
点斜式的应用
直线参数方程在几何中的应用
直线的平行和垂直判定
利用参数方程求解直线的斜率和 截距
直线的参数方程可以用来表示直 线上的点,其应用包括
直线与圆、椭圆的交点求解
通过引入参数,直线的参数方程 可以将直线上的点坐标表示为参 数的函数,从而简化了直线相关 的几何问题的求解
直线参数方程在物理中的应用
直线的参数方程可以 用于描述物理学中的 波的传播和运动轨迹 ,其应用包括
机械工程中的机构运动学分析

2.3 直线的参数方程 课件(人教A选修4-4)

2.3 直线的参数方程 课件(人教A选修4-4)

返回
x2 2 4.求经过点(1,1),倾斜角为 120° 的直线截椭圆 +y =1 所 4 得的弦长.
解:由直线经过点(1,1),倾斜角为 120° ,可得直线的 1 x=1-2t, 参数方程为 y=1+ 3t 2
(t 为参数),代入椭圆的方
1 2 1- t 2 3 2 程,得 +(1+ t) =1, 4 2
所以直线被椭圆所截得的弦长为
返回
点击下图进入
返回
返回
理解并掌握直线参数方程的转化,弄清参数t的 几何意义,即直线上动点M到定点M0的距离等于参 数t的绝对值是解决此类问题的关键.
返回
π 1.一直线过 P0(3,4),倾斜角 α= ,求此直线与直线 3x+ 4 2y=6 的交点 M 与 P0 之间的距离.
x=3+ 解:设直线的参数方程为 y=4+ 2 2 得 3(3+ t)+2(4+ t)=6. 2 2 11 2 解得 t=- , 5 ∴|MP0|=|t|= 11 2 . 5 2 t, 2 2 t, 2
返回
整理,得 13t2+4(4 3-1)t+4=0. 设方程的两实根分别为 t1,t2, 41-4 3 4 则 t1+t2= ,t1t2= . 13 13 |t1-t2|= t1+t22-4t1t2= 42 42 2 21-4 3 - 13 13
4 4 2 = 1-4 3 -13= 49-2 3 13 13 = 8 9-2 3 . 13 8 9-2 3 . 13
返回
返回
[例1]
已知直线l的方程为3x-4y+1=0,点P(1,1)在
直线l上,写出直线l的参数方程,并求点P到点M(5,4)的距 离. [思路点拨] 由直线参数方程的概念,先求其斜率,进
而由斜率求出倾斜角的正、余弦值,从而得到直线参数方
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2020/4/11
Corporate Culture
1
一、创设情景 2020/4/11
Corporate Culture
2
1. 在平面直角坐标系中,确定一条直线的几 何条件是什么?
2.根据直线的几何条件,你认为用哪些几何条 件来建立参数方程比较好?
一个定点和倾斜角可惟一确定一条直线
y y0 tan (x x0 )
2
1 2
t
(2)直线
x y
3 t sin 20(0 t为参y 数)3的倾斜2角3是t( t cos 200
B)
A.200 B.700 C.1100 D.1600
2020/4/11
练习 Corporate Culture
11
3.直线x 3y 2 0的点角式参数方程为
_________ _x____2_ ___2_3_ t.
y 1t 2
x 3 1 t 2
4.已知直线L的参数方程
y
3
3t 2
(1)求当t=2时对应点的坐标
(2)求点M(2,3+31/2)所对应的t的值
和|MM0|.
(3)若直线L与y轴交于点A,M0的
2020/4/11
四、课堂小结 Corporate Culture
12
本节课我们主要学习了直线的参数方程的推导及其简单应用, 学习后要把握以下几个知识点:
M0M (x, y)
又 M0M // e
(x0
,
y0
)
(x
y
x0
,
y
yL0
)
存在惟一实数t R,e
M α
uuuuuur r 使得 M0M te M0
o
x
2020/4/11
Corporate Culture
6
(x x0, y y0 ) t(cos,sin )
x x0 t cos, y y0 t sin
13
五、作业
P41习题2.3 1、(1), (2).
ar 3 ar
它的方向 (1) 当λ>0时,λa 的方向 与a方向相同; (2) 当λ<0时,λa 的方向 与a方向相反.
其实质就是向量的伸长或缩短! 坐标运算: 若a = (x , y), 则λa = λ (x , y)
= (λ x , λ y)
知识连接(2)
直线2020的/4/11方向向量C:orporate Culture
sinα=n/1=n,cosα=m/1=m α
Q(m,n)
∴e =(cosα, Sinα)
oe
x
二、新课讲授 2020/4/11
Corporate Culture
5
设直线l的倾斜角为,且过定点M0 (x0 , y0 ) ,
M (x, y)是l上一动点.
r
设e是r 直线l的单位方向向量,则
e (cos ,sin ) uuuuuur
即 x x0 t cos, y y0 t sin,
所以,经过点M0(x0,y0),且倾
斜角为α的直线 的参数l 方程为 y L
e
x y
x0 y0
t cos t sin
(t为参数)
M0
M
α
O
x
直线的点角式参数方程 2020/4/11
Corporate Culture
7
经过点M(0 x0, y0 ),倾斜角为的直线l的参数方程为:
x y
x0 y0
t cos(t为参数) t sin

注:参数方程形式上的特点:
(1)在x=x0+tcosα中,t的系数是cosα,在 y=y0+tsinα,t的系数是sinα ; (2)0≤sinα ≤1,-1<cosα≤1;
(3)sin2α+cos2α=1.
直2020线/4/11参数方程Co中rpo参rat数e Ct的 ultu几re 何意义 y
L
9
uuuuuur r r
e
由M oM te及 e 1可得, uuuuuur r uuuuuur
M α
M oM t e M oM t M0
o
x
uuuuuur r
当M uuuouMuur与er同向时,t 0; 当M oM与e反向时,t 0;
L
e
y αM0
当M与M0重合时,t 0.
o X
t 表示参uu数uuutur对应r 的点M到定点M0的距离M.
当Muuu0uMuur与er同向时,t取正数; 当M0 M与e异向时,t取负数;
当点M 与M0重合时,t 0.
2020/4/11
三.随堂练习 Corporate Culture
10
(1)过点Mo(2,3)且倾斜角为2π/ 3的直线的
参数方程为___________.x
4
在直线上或与直线平行的向量叫直线的方向向量.
试求倾斜角为α的直线L的一个单位方向向量.
倾斜角α是刻画直线方向的一个量,直线的
向量也是表示直线方向的一个量.设想如果数方程呢?
设直线L的单位方向向量为e=OQ =(m,n),那么∠QOX=α根据
y
L
三角函数的定义有
(1)直线的参数方程与普通方程 y y0 tan( x x0 )的联系; (2)直线的参数方程与向量知识的联系;
(3)参数t的几何意义;
(4)应用:用参数t表示点的坐标、直线上两点间的距离、直 线被曲线所截得的弦的长,与中点对应的参数t .
2020/4/11
Corporate Culture
x y
x0 y0
t t
cos(t为参数) sin
注:(1)直线的参数方程中哪些是变量?
哪些是常量?
(2)参数t的取值范围是什么? (3)该参数方程形式上有什么特点?
直线的点角式参数方程 2020/4/11
Corporate Culture
8
经过点M(0 x0, y0 ),倾斜角为的直线l的参数方程为:
3.根据确定直线的这个几何条件,你认为 应当怎样选择参数?
即已知直线L经过点M0(x0,y0)且倾斜角为 α,选择什么变数为参数求直线的参数程?
2020/4/11
C知orpo识rate连Cult接ure (1) r
实数λ与向量 a 的积:
a
定义:λa是一个 向量.
它的长度 |λa| = |λ||a|;
相关文档
最新文档