矩形的性质与判定习题
初一下册矩形的性质与判定练习题含答案
矩形:有一个角是直角的平行四边形叫做矩形,也说是长方形。
矩形的性质:矩形的四个角都是直角;矩形的对角线相等;矩形的对角线相等且互相平分。
特别提示:直角三角形斜边上的中线等于斜边的一半 矩形具有平行四边形的一切性质。
矩形的判定方法有一个角是直角的平行四边形是矩形;对角线相等的平行四边形是矩形 有三个角是直角的四边形是矩形【例题】专题一:矩形的性质矩形的性质性质1. 矩形的四个角都是直角。
几何语言:∵四边形ABCD 是矩形;∴∠BAD=∠ABC=∠BCD=∠ADC=90°性质2. 矩形的对角线相等且平分。
几何语言:∵四边形ABCD 是矩形;∴OA=OC=OB=OD=D B 21AC 21==性质3. 对边平行且相等几何语言:∵四边形ABCD 是矩形;∴AD=BC , AD ∥BC 或者 AB=CD , AB ∥CD3. 直角三角形的一个性质:直角三角形斜边上的中线等于斜边的一半。
几何语言:∵ 在Rt △ABC 中,OA=OC (OB 是AC 边上的中线)∴ OB=21AC在直角三角形中,30角所对的直角边等于斜边的一半。
矩形具有平行四边形的一切性质。
1.如图,矩形ABCD 中,BE ⊥AC 于E ,DF ⊥AC 于F ,若AE=1,EF =2,则FC = ,AB = 。
FEADBFC =1,AB =2.2.只用一把刻度尺检查一张四边形纸片是否是矩形,下列操作中最为恰当的是( )A. 先测量两对角线是否互相平分,再测量对角线是否相等 CB. 先测量两对角线是否互相平分,再测量是否有一个直角C. 先测量两组对边是否相等,再测量对角线是否相等D. 先测量两组对边是否互相平行,再测量对角线是否相等3.已知:如图3-32,矩形ABCD 中,对角线AC 、BD 相交于点O ,AC = 10cm ,∠ACB = 30°, 则∠AOB = °,AD = cm ;60 534.如图,将矩形纸片ABCD 沿对角线AC 折叠,使点B 落在点E 处,求证:EF =DF .5.如图,在Rt ⊿ABC 中,∠C = 90,AC = AB ,AB = 30,矩形 DEFG 的一边DE 在AB 上,顶点G 、F 分别在AC 、BC 上,若 DG :GF = 1:4,则矩形DEFG 的面积是 100 ;专题二:矩形的判定图3-32OBACDABCDF G矩形的判定方法方法1:矩形的定义:有一个角是直角的平行四边形叫做矩形。
矩形的性质与判定习题及答案
由题意得:AE=CF=t
AE=CF=t
∵点G、H分别是矩形ABCD的边AB、 EF=5﹣2(5﹣t)=2t-5
DC的中点,
∴ BG 1 AB,CH 1 CD
2
2
∴2t-5=4 ∴t=4.5
又∵AB=CD,AB∥CD
综上,当t为0.5秒或4.5秒时,
∴BG∥CH,BG=CH
四边形EGFH为矩形
∴四边形BCHG为平行四边形
2
2
4
∴ 13 PE PF 15
4
∴ PE PF 60 13
(1)矩形的面积公式是S=长×宽(两邻边的乘积)
(2)过矩形对角线交点O的任一直线平分矩形ABCD的面积
(3)矩形ABCD对角线AC、BD相交于点O,则
①△ABO≌△CDO,△AOD≌△COB
△ABO,△CDO,△AOD,△COB都是等腰三角形
1
2
证明:(1)∵四边形ABCD是矩形, 在△AEG与△CFH中
∴AB=CD,AB∥CD,AD∥BC, ∠B=90°
∴∠1=∠2 ∵G、H分别是AB、DC的中点 ∴AG=BG,CH=DH ∴AG=CH
AG CH
1
2
AE CF
∴△AEG≌△CFH(SAS)
∴EG=FH
∵AE=CF
又∵GF=HE
②△ABD≌△CDB≌△BAC≌△DCA
△ABD,△CDB,△BAC,△DCA都是直角三角形
③S△ABO
=S△BCO
=S△CDO
=S△AOD
=
1 4
S矩形ABCD
例4.如图,O是矩形ABCD的对角线的交点,E、F、G、 H分别是OA、OB、OC、OD上的点,且AE=BF=CG =DH. (1)求证:四边形EFGH是矩形; (2)若E、F、G、H分别是OA、OB、OC、OD的中点 ,且DG⊥AC,OF=2cm,求矩形ABCD的面积.
18.2.1__矩形的性质与判定_习题课
D E B
5、已知矩形的对角线与较长边所 夹的角等于30°,那么较短边与两 对角线所围成的三角形是 等边 三角形。 __________
A
D
O B
C
3、已知:如图,AB=AC,AE=AF, 且∠EAB=∠FAC,EF=BC. 求证:四边形EBCF是矩形.
A E F
B
C
练一练
已知:如图,在平行四边形ABCD中,AC、 BD 相交于点o, △ AOB是等边三角形。求: ∠BAD的度数 解:∵ △AOB是等边三角形 D A ∴OA=OB O ∵四边形ABCD是平行四边形 B ∴AC=2OA,BD=2BO C ∴AC=BD ∴平行四边形ABCD是矩形 ∴∠BAD=90°。
3. 如图,点P是矩形ABCD的边AD上的一个动点, 矩形的两条边长AB、BC分别为8和15,求点P到 矩形的两条对角线AC和BD的距离之和.
提示:过点P分别作 PE⊥AC,PF⊥BD,分别交 AC,BD于点E,F.设AC与BD 相交于O,连结PO,利用 ⊿PAO与⊿PDO的面积之 和是矩形面积的四分之一, 求得结果为120/17.
矩形习题课
复习回顾
1、根据平行四边形、矩形的定义填空:
四边形
( 两组对边分别平行 ) 平行四边形 ( 有一个角是直角 矩形 )
A
D
O
边
矩形对边平行且相等;
B
C
角
矩形的四个角都是直角;
矩形的对角线相等且互相平分;
对角线
直角三角形的性质定理:
直角三角形斜边上的中线等于斜边的一半.
A
D
O
方法1:
B
C
(第 1 题)
2. 如图, ABCD中,∠1=∠2.此时四边形 ABCD是矩形吗?为什么?
人教版八年级数学下册第02课 矩形的性质与判定 同步练习题
初中数学试卷第02课矩形的性质与判定同步练习题【例1】如图,在矩形ABCD中,点E是BC上一点,AE=AD,DF⊥AE,垂足为F.求证:DF=DC.【例2】如图,在矩形ABCD中,对角线BD的垂直平分线MN与AD相交于点M,与BC相交于点N,连接BM,DN.(1)求证:四边形BMDN是菱形;(2)若AB=4,AD=8,求MD的长.【例3】如图,已知在△ABC中,AC=3,BC=4,AB=5,点P在AB上(不与A、B重合),过P作PE⊥AC,PF⊥BC,垂足分别是E、F,连接EF,M为EF的中点.(1)请判断四边形PECF的形状,并说明理由;(2)随着P点在边AB上位置的改变,CM的长度是否也会改变?若不变,请你求CM的长度;若有变化,请你求CM的变化范围.【例4】如图,在矩形ABCD中,对角线AC,BD相交于点O,点E,F分别在边AD,BC上,且DE=CF,连接OE,OF.求证:OE=OF.【例5】如图,△ABC中,点O是边AC上一个动点,过O作直线MN∥BC.设MN交∠ACB的平分线于点E,交∠ACB 的外角平分线于点F.(1)求证:OE=OF;(2)若CE=12,CF=5,求OC的长;(3)当点O在边AC上运动到什么位置时,四边形AECF是矩形?并说明理由.课堂同步练习一、选择题:1、如图,四边形ABCD为平行四边形,延长AD到E,使DE=AD,连接EB,EC,DB,添加一个条件,不能使四边形DBCE 成为矩形的是( )A.AB=BEB.DE⊥DCC.∠ADB=90°D.CE⊥DE第1题图第2题图第4题图2、如图是一张矩形纸片ABCD,AD=10cm,若将纸片沿DE折叠,使DC落在DA上,点C的对应点为点F,若BE=6cm,则DC的长是()A.4cmB.6cmC.8cmD.10cm3、若顺次连接四边形ABCD各边的中点所得到的四边形是矩形,则该四边形ABCD一定是()A.菱形B.对角线互相垂直的四边形C.矩形D.对角线相等的四边形4、如图,把一个长方形纸片沿EF折叠后,点D、C分别落在D′、C′的位置,若∠EFB=65°,则∠AED′等于()A.50°B.55°C.60°D.65°5、如图.矩形ABCD中.E在AD上.且EF⊥EC.EF=EC.DE=2.矩形的周长为16.则AE的长是()A.3B.4C.5D.7第5题图第6题图第7题图6、如图,E是矩形ABCD中BC边的中点,将△ABE沿AE折叠到△AFE,F在矩形ABCD内部,延长AF交DC于G 点,若∠AEB=55°,则∠DAF=( )A.40°B.35°C.20°D.15°7、如图,将矩形纸片ABCD沿EF折叠,使点B与CD的中点重合,若AB=2,BC=3,则△FCB′与△B′DG的面积之比为( )A.9:4B.3:2C.4:3D.16:98、如图,矩形ABCD沿着直线BD折叠,使点C落在C′处,BC′交AD于E,AD=8,AB=4,则DE长为( )A.3B.4C.5D.6第8题图第9题图9、如图,在矩形ABCD中,AB=2,BC=4,对角线AC的垂直平分线分别交AD、AC于点E、O,连接CE,则CE的长为( )A.3B.3.5C.2.5D.2.810、如图,矩形ABCD中,AE平分∠BAD交BC于E,∠CAE=15°,则下列结论:△ODC是等边三角形;②BC=2AB;③∠AOE=135°;④S△AOE=S△COE.其中正确的结论的个数有( )A.1B.2C.3D.4第10题图第11题图第12题图11、在矩形ABCD中,点A关于∠B的角平分线的对称点为E,点E关于∠C的角平分线的对称点为F,若AD=,AB=3,则S △ADF=()A.2B.3C.3D.12、如图,在矩形ABCD中,O为AC中点,EF过O点,且EF⊥AC分别交DC于F,交AB于E,点G是AE中点,且∠AOG=30°.①DC=3OG;②OG=BC;③△OGE是等边三角形;④S△AOE=S矩形ABCD.则结论正确的个数为( )A.1B.2C.3D.4二、填空题:13、若矩形的一个角的平分线分一边为4cm和3cm的两部分,则矩形的周长为cm.14、如图,矩形ABCD的对角线AC,BD相交于点O,CE∥BD,DE∥AC,若AC=4 cm,则四边形CODE的周长为。
矩形的性质与判定习题
1、如图,在菱形ABCD中,AB=5,∠BCD=120°,则△ABC的周长等于()A.20 B.15 C.10 D. 52、顺次连接矩形四边中点得到的四边形一定是()A.正方形B.矩形C.菱形 D.平行四边形3、如图,菱形ABCD中,AB=2,∠A=120º,点P、Q、K分别为线段BC、CD、BD上任意一点,则PK+QK的最小值为………………………………………………()A.1 B. C.2 D.+14、如图,将一个长为,宽为的矩形纸片先按照从左向右对折,再按照从下向上的方向对折,沿所得矩形两邻边中点的连线(虚线)剪下(如图(1)),再打开,得到如图(2)所示的小菱形的面积为()A. B. C. D.(1)(2)5、如图,在菱形中,,∠,则对角线等于()A.20B.15C.10D.56、从菱形的钝角顶点向对角的两条边作垂线,垂足恰好是该边的中点,则菱形的内角中钝角的度数是()A.150°B. 135°C. 120°D. 100°7、如图5所示,有一个利用四边形的不稳定性制作的菱形晾衣架.已知其中每个菱形的边长为20cm,墙上悬挂晾衣架的两个铁钉A、B之间的距离为20cm,则∠1等于( )A.90°B.60°C.45°D.30°8、菱形的周长为4,两个相邻的内角的度数之比为1:2,则较短的对角线长为()A.2 B. C.1 D.9、如图所示,在平面直角坐标系中,菱形MNPO的顶点P的坐标是(3,4),则顶点M、N的坐标分别是()A.M(5,0),N(8,4) B.M(4,0),N(8,4)C.M(5,0),N(7,4) D.M(4,0),N(7,4)10、如图,在平面直角坐标系中,菱形ABCD的顶点C的坐标为(-1,0),点B的坐标为(0,2),点A在第二象限.直线与x轴、y轴分别交于点N、M.将菱形ABCD沿x轴向右平移m个单位,当点D落在△MON的内部时(不包括三角形的边),则m的值可能是()A.1B.2C.4D.811、如右上图,小红在作线段AB的垂直平分线时,是这样操作的:分别以点A,B为圆心,大于线段AB长度一半的长为半径画弧,相交于点C,D,则直线CD即为所求。
矩形的判定和性质.doc习题
OF ED C B A ODC B AONM DCBA [矩形的判定和性质]具有算方法;⑩有一个直角的→矩形;⑾有三个直角的四边形→矩形;⑿对角线相等的基础练习1. 在矩形ABCD 中, 对角线交于O 点,AB=0.6, BC=0.8, 那么△AOB 的面积为_______________; 周长为_______________.2. 一个矩形周长是12cm, 对角线长是5cm, 那么它的面积为__________________.3. 在△ABC 中, AM 是中线, ∠BAC=90︒, AB=6cm, AC=8cm, 那么AM 的长为_____________________.4. 如图, 矩形ABCD 对角线交于O 点, EF 经过O 点, 那么图中全等三角形共有_____________________对.5. 在矩形ABCD 中, AB=3, BC=4, P 为形内一点, 那么PA+PB+PC+PD 的最小值为__________________.6. 在矩形ABCD 内有一点Q, 满足QA=1, QB=2, QC=3, 那么QD 的长为____________________.7. 如图, 矩形ABCD 的对角线交于O 点, 若那么∠BDC 的大小为________________.8. 如图, 矩形ABCD 对角线交于O 点, 且满足AM=BN, 给出以下结论: ①MN //DC; ②∠DMN=∠MNC; ③OMD ONC S S = . 其中正确的是______________.9. 一个平行四边形的四个内角的角平分线相交围成的四边形的形状是________________.10. 如图, 在矩形ABCD 中, AE 平分∠BAD, ∠CAE=15︒, 那么∠BOE 的度数为__________________.11.已知矩形ABCD 中,S 矩形ABCD =24 cm 2,若BC =6 cm ,则对角线AC 的长是________ cm. 12已知矩形ABCD ,若它的宽扩大2倍,则它的面积等于原面积的________;若宽不变长缩小41倍,那么新矩形的面积等于原矩形面积的________;若宽扩大2倍且长缩小41,那么新矩形的面积等于原矩形面积的________. 13矩形的两条对角线的夹角是60°,一条对角线与矩形短边的和为15,那么矩形对角线P HDC BAED CBA F E D CB AFED C B A OE DC B A的长为_______,短边长为_______.14.矩形ABCD 的周长是56 cm ,它的两条对角线相交于O ,△AOB 的周长比△BOC 的周长少4 cm ,则AB =_______,BC =_______.15.如图4矩形ABCD 中,若AB =4,BC =9,E 、F 分别为BC ,DA 上的31点,则S 四边形AECF 等于( ) A.12 B.24C.36 图4D.4816.如图5,周长为68的矩形ABCD 被分成7个全等的矩形,则矩形ABCD 的面积为( ) A.98 B.196 C.280 D.284二. 解题技巧17在矩形ABCD 中,∠A 和∠B 的平分线交边CD 于点M 和N ,若M 、N是CD 的三等分点,那么AB :BC 的值为___________________.18如图, 在矩形ABCD 中,DE ⊥AC 于点E, BC=CD=2, 那么BE=_______________________.19如图, 在矩形ABCD 中, AP=DC, PH=PC, 求证: PB 平分∠CBH.20如图, 矩形ABCD 的周长为16cm, DE=2cm, 若△CEF 是等腰直角三角形, 那么这个三角形的面积为______________.21如图, 在矩形ABCD 中, AD=12, AB=7, DF 平分∠ADC, AF ⊥EF, (1)求EF 长; (2)在平面上是否存在点Q, 使得QA=QD=QE=QF? 若存在, 求出QA 的长; 若不存在, 说明理由.22一个四边形满足: 它的每个顶点到其它三个顶点的距离之和相等, 试判断这个四边形的形状.二巩固练习基本知识点:矩形的性质及判定,直角三角形斜边中线定理.1.矩形的一内角平分线把矩形的一条边分成3和5两部分,则该矩形的周长是___________.2.矩形的两条对角线的夹角是60°,一条对角线与矩形短边的和为15,那么矩形对角线的长为_______,短边长为_______.3.若一个直角三角形的两条直角边分别为5和12, 则斜边上的中线等于 .4.如图,E 为矩形ABCD 对角线AC 上一点,DE ⊥AC 于E ,∠ADE: ∠EDC=2:3,则∠BDE 为_________.5.矩形的两邻边分别为4㎝和3㎝,则其对角线为 ㎝,矩形面积为 cm 2. 6.若矩形的一条对角线与一边的夹角是40°,则两条对角线相交所成的锐角是___________. 7.矩形具有一般平行四边形不具有的性质是( )A. 对边相互平行B. 对角线相等C. 对角线相互平分D. 对角相等 8.矩形具备而平行四边形不具有的性质是( )A .对角线互相平分B .邻角互补C .对角相等D .对角线相等 9.在下列图形性质中,矩形不一定具有的是( )A .对角线互相平分且相等B .四个角相等C .是轴对称图形D .对角线互相垂直平分10.如图,四边形ABCD 中,∠ABC=∠ADC=90°,M 、N 分别是AC 、BD•的中点,那么MN ⊥BD 成立吗?试说明理由.11.如图,在矩形ABCD 中,AB=3,BC=4,如果将该矩形沿对角线BD 重叠,求图中阴影部分的面积.C1DA12.如图,已知在四边形ABCD 中,AC DB ⊥交于O ,E 、F 、G 、H 分别是四边的中点, 求证:四边形EFGH 是矩形.13. 如图,平行四边形ABCD 中,AQ 、BN 、CN 、DQ 分别是DAB ∠、ABC ∠、BCD ∠、CDA ∠的平分线,AQ 与BN 交于P ,CN 与DQ 交于M ,求证:四边形PQMN 是矩形.★14. 如图矩形ABCD 中,延长CB 到E ,使CE AC =,F 是AE 中点. 求证:BF DF ⊥.★15. 如图,矩形ABCD 中,CE BD ⊥于E ,AF 平分BAD ∠交EC 于F ,求证:CF BD =.16、如图所示,在△ABC 中,∠ABC=90°,BD 是△ABC 的中线,延长BD 到E ,•使DE=BD ,连结AE ,CE ,求证:四边形ABCE 是矩形.2如图,矩形ABCD 的对角线AC 、BD 相交于点O ,E 、F 、G 、H 分别是OA 、OB 、OC 、OD 的中点,顺次连结E 、F 、G 、H 所得的四边形EFGH 是矩形吗?说明理由.HG OFEDCB ANMQPDCBAABCEFDDABCEF。
2020年人教版初中数学八年级练习题(专题训练一)
2020年人教版初中数学八年级练习题(专题训练一)
专题一:矩形的性质与判定
1.如图,矩形 ABCD 的两条对角线交于点O,且∠AOD=120°,你能说明 AC=2AB 吗?
2、如图,在矩形 ABCD 中,AE⊥BD,垂足为 E,∠DAE=2∠BAE,求∠BAE与∠DAE 的度数。
A D
E
B C
3、如图,在矩形 ABCD 中,点E 在AD 上,EC 平分∠BED。
(1)△BEC是否为等腰三角形?为什么?(2)若AB=1,∠ABE=45°,求 DE 的长
A E D
B C
4、如图,在矩形 ABCD 中,CE⊥BD于E,∠DCE:∠BCE=3:1,且M 为OC 的中点,试说明:ME⊥AC
D C
A B
5、如图所示,□ABCD 的四个内角的平分线分别相交于 E,F,G,H 两点,试说明四边形EFGH 是矩形.
6、如图所示,△ABC 中,AB=AC,AD 是BC 边上的高,AE 是∠CAF 的平分线且∠CAF 是△ABC 的一个外角,且DE∥BA,四边形 ADCE 是矩形吗?为什么?
7、已知如图所示,折叠矩形纸片 ABCD,先折出折痕(对角线)BD,再过点 D 折叠,使AD 落在折痕BD 上,得另一折痕 DG,若 AB=2,BC=1,求 AG 的长度.
8、如图,在等边△ABC 中,点D 是BC 边的中点,以AD 为边作等边△ADE.
(1)求∠CAE 的度数;
(2)取AB 边的中点F,连结CF、CE,试证明四边形AFCE 是矩形.
9、如图,M、N 分别是平行四边形ABCD 对边ADBC 的中点,且AD=2AB,求证,四边形PMQN 是矩形。
D
B N C。
北师大版九年级数学上册《1.2矩形的性质与判定》同步练习题-附答案
北师大版九年级数学上册《1.2矩形的性质与判定》同步练习题-附答案学校:___________班级:___________姓名:___________考号:___________一、选择题1.如图,在矩形ABCD中,AC、BD相交于点O,AE平分∠BAD交BC于点E,若∠CAE=15°,则∠BOE的度数为()A.60°B.75°C.72° D2.关于矩形的性质、下面说法错误的是()A.矩形的四个角都是直角B.矩形的两组对边分别相等C.矩形的两组对边分别平行D.矩形的对角线互相垂直平分且相等3.在矩形ABCD中,以A为圆心,AD长为半径画弧,交AB于F点,以C为圆心,CD长为半径画弧,交AB于E点,若AD=2,CD=√5则EF=()A.1B.4−√5C.√5−2 D4.顺次连接矩形各边中点得到的四边形是()A.梯形B.矩形C.菱形D.正方形5.如图,在矩形ABCD中,对角线AC、BD相交于点O,AE平分∠BAD交BC边于点E,点F是AE的中点,连接OF,若∠BDC=2∠ADB,AB=1则FO的长度为()A.√32B.12C.√3−1 D6.如图,矩形ABCD的对角线AC、BD相交于点O,CE∥BD,DE∥AC,若AC=2,则四边形CODE的周长是()A.2.5B.3C.4D.57.如图,已知平行四边形ABCD的对角线AC与BD相交于点O,下列结论中,不正确...的是()A.当AB⊥AD时,四边形ABCD是矩形B.当AC⊥BD时,四边形ABCD是菱形C.当OA=OB时,四边形ABCD是矩形D.当AB=AC时,四边形ABCD是菱形8.依据所标数据,下列四边形不一定为矩形的是()A.B.C.D.二、填空题9.如图,要使平行四边形ABCD是矩形,则应添加的条件是(添加一个条件即可)10.如图,矩形ABCD中,点A坐标是(﹣1,0),点C的坐标是(2,4),则BD的长是;11.如图,在矩形ABCD中,对角线AC与BD相交于点O,CE⊥BD,垂足为点E,CE=5且OE=2DE,则DE的长为.12.矩形一个角的平分线分矩形一边为1cm和3cm两部分,则这个矩形的面积为cm213.如图,在矩形ABCD中AD=4,AB=6作AE平分∠BAD,若连接BF,则BF的长度为。
完整版矩形的性质与判定练习题
矩形的性质与判定练习题知识点定义:有一个角是直角的平行四边形叫做矩形矩形是特殊的平行四边形,所以,平行四边形的性质矩形都具备矩形的性质:性质1•对边平行且相等;性质2•矩形的四个角都是直角;性质 3.矩形的对角线相等且互相平分。
判定1.二ABCD ,且BAC90四边形ABCD是矩形判定2.二ABCD,且AC BD,四边形ABCD是矩形判定3.BAC ABC BCD90 ,四边形ABCD是矩形夯实基础:1. 在下列图形性质中,矩形不一定具有的是(A.对角线互相平分且相等BC.是轴对称图形D2. 矩形具有而一般的平行四边形不一定具有的特征是()。
A.对角相等B. 对边相等 C .对角线相等 D. 对角线互相平分3. 如图,矩形ABCD的对角线AC BD相交于点0, AB=3 / AOD=120 ,贝U AD的长为()A . 3B . 3 二C . 6 D. 3."4. 如图,在矩形ABCD中,对角线AC BD交于点0,以下说法错误的是()A . Z ABC=90B . AC=BDC . OA=OB D. OA=AD几何语言:性质1.性质2.矩形矩形矩形ABCD , AB // DA , AD // BC , AB DC , AD BCABCD , BAC ABC BCD ADC 90ABCD , AC BD , AO CO , BO DO矩形的判定:判定1•有一个角是直角的平行四边形是矩形;判定2.对角线相等的平行四边形是矩形;几何语言:判定3•有三个角是直角的四边形是矩形).四个角相等.对角线互相垂直平分5. 判断一个四边形是矩形,下列条件正确的是()A .对角线相等B .对角线垂直C.对角线互相平分且相等 D .对角线互相垂直且相等。
6. 一个矩形周长是12cm,对角线长是5cm,那么它的面积为7. 若矩形的一条对角线与一边的夹角是40°,则两条对角线相交所成的锐角是8. 如图,在矩形ABCD中,点E、F分别是边AB、CD的中点.求证:DE=BF .9•如图,在矩形ABCD中,E, F为BC上两点,且(1 )△ ABF ◎△ DCE ;(2)△ AOD是等腰三角形.10. 已知:如图,平行四边形ABCD的四个内角的平分线分别相交于点E, F, G, H,求证:四边形EFGH是矩形。
矩形的性质和判定练习题
矩形的性质和判定练习题
矩形的定义
矩形是一个拥有四个直角(90度角)的四边形。
矩形的对边相等且平行,且相邻边也相等。
以下是矩形的性质和判定练题。
矩形的性质
1. 矩形的对边相等且平行。
2. 矩形的相邻边相等。
3. 矩形的对角线相等。
4. 矩形的内角为直角。
5. 矩形是一个正方形的一种特殊情况,其中所有的边长都相等。
矩形的判定练题
1. 下面哪个形状是矩形?
A. 正方形
B. 长方形
C. 菱形
D. 三角形
2. 如何判断一个四边形是矩形?
A. 对角线相等
B. 对边平行
C. 所有边长相等
D. 有一个直角
3. 若一个四边形的两条相邻边之和大于另外两条边,那么它可
能是矩形吗?
A. 可能是
B. 不可能是
请在以上题目中选择正确答案。
通过练这些题目,您可以更好
地理解矩形的性质和判定方法。
---
以上是关于矩形的性质和判定练题的文档,希望对您有所帮助。
参考资料:。
(完整版)矩形的判定和性质练习题
O FE DCBAODC B AONM DCBA OEDCBA矩形的判定和性质(基础练习)1. 在矩形ABCD 中, 对角线交于O 点,AB=0.6, BC=0.8, 那么△AOB 的面积为_______________; 周长为_______________.2. 一个矩形周长是12cm, 对角线长是5cm, 那么它的面积为__________________.3. 在△ABC 中, AM 是中线, ∠BAC=90︒, AB=6cm, AC=8cm, 那么AM 的长为_____________________.4. 如图, 矩形ABCD 对角线交于O 点, EF 经过O 点, 那么图中全等三角形共有_____________________对.5. 在矩形ABCD 中, AB=3, BC=4, P 为形内一点, 那么PA+PB+PC+PD 的最小值为__________________.6. 在矩形ABCD 内有一点Q, 满足QA=1, QB=2, QC=3, 那么QD 的长为____________________.7. 如图, 矩形ABCD 的对角线交于O 点, 若那么∠BDC 的大小为________________.8. 如图, 矩形ABCD 对角线交于O 点, 且满足AM=BN, 给出以下结论: ①MN //DC; ②∠DMN=∠MNC; ③OMD ONC S S =V V . 其中正确的是______________.9. 一个平行四边形的四个内角的角平分线相交围成的四边形的形状是________________.10. 如图, 在矩形ABCD 中, AE 平分∠BAD, ∠CAE=15︒, 那么∠BOE 的度数为__________________.二. 解题技巧11. 在矩形ABCD 中,∠A 和∠B 的平分线交边CD 于点M 和N ,若M 、N 是CD 的三等分点,那么AB :BC 的值为___________________.PHDCBAE DCBAFE D C BAFED CB A12. 如图, 在矩形ABCD 中,DE ⊥AC 于点E,BC=, CD=2, 那么BE=_______________________.13. 如图, 在矩形ABCD 中, AP=DC, PH=PC, 求证: PB 平分∠CBH.14. 如图, 矩形ABCD 的周长为16cm, DE=2cm, 若△CEF 是等腰直角三角形, 那么这个三角形的面积为______________.15. 如图, 在矩形ABCD 中, AD=12, AB=7, DF 平分∠ADC, AF ⊥EF, (1)求EF 长; (2)在平面上是否存在点Q, 使得QA=QD=QE=QF? 若存在, 求出QA 的长; 若不存在, 说明理由.16. 一个四边形满足: 它的每个顶点到其它三个顶点的距离之和相等, 试判断这个四边形的形状.17. 已知矩形ABCD ,试问:当边AB 和BC 满足什么条件时, 在边CD 上一定存在点P, 使得PA ⊥PB?矩形的判定和性质(巩固练习)1.矩形的一内角平分线把矩形的一条边分成3和5两部分,则该矩形的周长是___________.2.矩形的两条对角线的夹角是60°,一条对角线与矩形短边的和为15,那么矩形对角线的长为_______,短边长为_______.3.若一个直角三角形的两条直角边分别为5和12,则斜边上的中线等于 .4.如图,E为矩形ABCD对角线AC上一点,DE⊥AC于E,∠ADE: ∠EDC=2:3,则∠BDE为_________.5.矩形的两邻边分别为4㎝和3㎝,则其对角线为㎝,矩形面积为 cm2.6.若矩形的一条对角线与一边的夹角是40°,则两条对角线相交所成的锐角是___________.7.矩形具有一般平行四边形不具有的性质是()A. 对边相互平行B. 对角线相等C. 对角线相互平分D. 对角相等8.矩形具备而平行四边形不具有的性质是()A.对角线互相平分 B.邻角互补 C.对角相等 D.对角线相等9.在下列图形性质中,矩形不一定具有的是()A.对角线互相平分且相等 B.四个角相等C.是轴对称图形 D.对角线互相垂直平分10.如图,四边形ABCD中,∠ABC=∠ADC=90°,M、N分别是AC、BD•的中点,那么MN⊥BD 成立吗?试说明理由.11.如图,在矩形ABCD中,AB=3,BC=4,如果将该矩形沿对角线BD重叠,求图中阴影部分的面积.CEDAB12.如图,已知在四边形ABCD 中,AC DB ⊥交于O ,E 、F 、G 、H 分别是四边的中点, 求证:四边形EFGH 是矩形.13. 如图,平行四边形ABCD 中,AQ 、BN 、CN 、DQ 分别是DAB ∠、ABC ∠、BCD ∠、CDA ∠的平分线,AQ 与BN 交于P ,CN 与DQ 交于M ,求证:四边形PQMN 是矩形.14. 如图矩形ABCD 中,延长CB 到E ,使CE AC =,F 是AE 中点. 求证:BF DF ⊥.15. 如图,矩形ABCD 中,CE BD ⊥于E ,AF 平分BAD ∠交EC 于F , 求证:CF BD =.HG OFEDCB ANMQPDCBAABCE FDDABCEF。
矩形的性质与判定习题课
例4.已知,如图在△ABC中,AB=AC,AD⊥BC, 垂足为点D,AN是△ABC外角的∠CAM的平分线, CE⊥AN,垂足为点E,求证:四边形ADCE是矩形.
F M A E □ N
B
□ D
C
课堂检测
1.已知:如图,在矩形ABCD中,AE⊥BD 于E,BE:ED=1:3,从两条对角线的交点作O F⊥AD于F,且OF=2,求BD的长.
②有三个角是直角的四边形是矩形.
③对角线相等的平行四边形是矩形.
合作交流
例1 如图,已知在四边形ABCD中,AC⊥DB交 于O,E、F、G、H分别是四边的中点 ,求证:四边形EFGH是矩形.
D E A F B O G H C
பைடு நூலகம்
例2.如图,在矩形ABCD中,AB=3, BC=4,如果将该矩形沿对角线BD重叠, 求图中阴影部分的面积.
A
F
D
B
E
O C
2.如图,在四边形ABCD中,AC,BD互相平分于点O, ∠AEC=∠BED=90°,求证:四边形ABCD是矩形.
E
A
O
B
D
C
3.如图,在矩形ABCD中,AC、BD 相交于点O,AE平分∠BAD,交BC于E, 若∠CAE=15°,求∠BOE的度数。
A O D
B
E C
课堂小结
这节课你学到了什么……
F
A
E
D
B
C
例3.如图,ABCD是矩形纸片,翻折∠B, ∠D,使BC,A D恰好落在AC上.设F、H分别是B、D落在AC上的两点, E、G分别是折痕CE、AG、与AB、CD的交点. (1)求证:四边形AECG是平行四边形; (2)若AB=4cm,BC=3cm求线段EF的长.
矩形性质与判定练习题
矩形性质与判定练习题1、已知矩形的一条对角线长是8cm ,两条对角线的一个交角为60°,则矩形的周长为______2、矩形的一内角平分线把矩形的一条边分成3和5两部分,则该矩形的周长是___________.3、形的两条对角线的夹角是60°,一条对角线与矩形短边的和为15,那么矩形对角线的长为_______,短边长为_______.4、一个矩形周长是12cm ,对角线长是5cm ,那么它的面积为_______________5、在△ABC 中,AM 是中线, ∠BAC=090,AB=6cm ,AC=8cm ,那么AM 的长为____________.6、如图所示,将△ABC 绕AC 的中点O 顺时针旋转180°得到△CDA ,添加一个条件______,使四边形ABCD 为矩形。
第6题 第7题第9题7、(2013江西)如图,矩形ABCD 中,点E 、F 分别是AB 、CD 的中点,连接DE 和BF ,分别取DE 、BF 的中点M 、N ,连接AM ,CN ,MN ,若AB=4,BC=面积为___________。
8、如图所示,将矩形ABCD 绕点A 顺时针旋转到矩形AB ′C ′D ′的位置,旋转角为α00(090)α<<若01110∠=,则α=( )A 、020B 、030C 、040D 、0509、(2004•黑龙江)如图,矩形ABCD 中,AB=3,BC=4,如果将该矩形沿对角线BD 折叠,那么图中阴影部分的面积是___________。
10、菱形具有而矩形不一定具有的性质是( )A 、对角线互相垂直B 、对角线相等C 、对角线互相平分D 、对角互补第11题 第12题11、如图:长方形纸片ABCD 中,AD=4cm ,AB=10cm ,按如图的方式折叠,使点B 与点D 重合.折痕为EF ,则DE 长为___________。
12、图所示,矩形ABCD 中,AE ⊥BD 于E ,∠BAE=30°,BE=1cm ,那么DE 的长为_____13、□ABCD 的对角线AC 与BD 相交于点O ,(1)若AB=AD ,则□ABCD 是 形; (2)若AC=BD ,则□ABCD 是 形;(3)若∠ABC是直角,则□ABCD是形;(4)若∠BAO=∠DAO,则□ABCD是形。
矩形的性质与判定练习题
矩形的性质与判定练习题1.如图,矩形ABCD 中,AB=3,BC=3,AE ⊥BD 于E ,则EC=( )A . 27B . 25C . 215D . 221 2.下列说法:①矩形是轴对称图形,两条对角线所在的直线是它的对称轴;②两条对角线相等的四边形是矩形;③有两个角相等的平行四边形是矩形;④两条对角线相等且互相平分的四边形是矩形;⑤两条对角线互相垂直平分的四边形是矩形.其中,正确的有( )A .1个B .2个C .3个D .4个3.如图,在△ABC 中,AB=3,AC=4,BC=5,P 为边BC 上一动点,PE ⊥AB 于E ,PF ⊥AC 于F ,则EF 的最小值为( )A .2B .2.2C .2.4D .2.54.如图∠BOP=∠AOP=15°,PC ∥OB ,PD ⊥PB 于D ,PC=2,则PD 的长度为( )A .4 B .3 C .2 D .15.下列说法中,错误的是( )A .矩形的四个内角都相等 B .四个内角都相等的四边形是矩形 C .菱形的对角线互相垂直D .对角线互相垂直的四边形是菱形6.如图,在△ABC 中,AB=3,AC=4,BC=5,P 为边BC 上一动点,PE ⊥AB 于E ,PF ⊥AC 于F ,M 为EF 中点,则AM 的最小值为( )A . 45 B . 25 C . 35 D . 56 7.在梯形ABCD 中,AD ∥BC ,若CD=2,∠C=60°,∠B=90°,则AB=( )A .4 B .2 C . 3 D .38.如图,在△ABC 中,AB=6,AC=8,BC=10,P 为边BC上一动点(且点P 不与点B 、C 重合),PE ⊥AB 于E ,PF ⊥AC于F .则EF 的最小值为( )A .4B .4.8C .5.2D .69.如图是一把30°的三角尺,外边AC=8,内边与外边的距离都是2,那么EF 的长度是( )A .4 B .43 C .2.5 D .6-2310.下列命题错误的是( )A .平行四边形的对边相等 B .两组对边分别相等的四边形是平行四边形 C .对角线相等的四边形是矩形 D .矩形的对角线相等11.△ABC 中,AB=AC=5,BC=6,点D 是BC 上的一点,那么点D 到AB 与AC 的距离的和为( )A .5 B .6 C .4 D .524 12.(2013•河北区二模)已知下列命题中:(1)矩形是轴对称图形,且有两条对称轴;(2)两条对角线相等的四边形是矩形;(3)有两个角相等的平行四边形是矩形;(4)两条对角线相等且互相平分的四边形是矩形.其中正确的有( )A .4个 B .3个 C .2个 D .1个13.如图,在梯形ABCD 中,AD ∥BC ,∠BCD=90°,BC=2AD ,F 、E 分别是BA 、BC 的中点,则下列结论不正确的是( )A .△ABC 是等腰三角形 B .四边形EFAM 是菱形 C .S △BEF = 21S △ACD D .DE 平分∠CDF 14.(2012•冷水江市三模)下列关于矩形的说法中正确的是( )A .矩形的对角线互相垂直且平分 B .矩形的对角线相等且互相平分C .对角线相等的四边形是矩形D .对角线互相平分的四边形是矩形15.直角梯形ABCD 中,AD ∥BC ,AB ⊥BC ,AD=2.BC=DC=5,P 在BC 上运动,则PA+PD 取最小值时,△APD 边AP 上的高是多少( )A . 17174 B .17178 C . 17177 D . 81717 16.如图,四边形ABCD 中,AC=a ,BD=b ,且AC 丄BD ,顺次连接四边形ABCD 各边中点,得到四边形A 1B 1C 1D 1,再顺次连接四边形A 1B 1C 1D 1各边中点,得到四边形A 2B 2C 2D 2…,如此进行下去,得到四边形A n B n C n D n .下列结论正确的有( )①四边形A 2B 2C 2D 2是矩形; ②四边形A 4B 4C 4D 4是菱形;③四边形A 5B 5C 5D 5的周长是4ba + ④四边形A n B n C n D n 的面积是12+n abA .①②B .②③C .②③④D .①②③④17.如图,△ABC 中,AC 的垂直平分线分别交AC 、AB 于点D 、F ,BE ⊥DF 交DF 的延长线于点E ,已知∠A=30°,BC=2,AF=BF ,则四边形BCDE 的面积是( )A .23B .33C .4D .4318..下列关于矩形的说法,正确的是( ) A .对角线相等的四边形是矩形 B .对角线互相平分的四边形是矩形 C .矩形的对角线互相垂直且平分 D .矩形的对角线相等且互相平分19.下列命题中,正确的是( )A .等腰梯形的对角线相等 B .矩形的对角线互相垂直平分 C .有两个角为直角的四边形是矩形 D .对角线互相垂直的四边形是菱形20.下列说法正确的是( )A .有两个角为直角的四边形是矩形 B .矩形的对角线互相垂直 C .等腰梯形的对角线相等 D .对角线互相垂直的四边形是菱形21.时钟的表面为圆形,在它的圆周上有12个用于表示整点的等分点.以这些等分点为顶点的矩形共有( )A .6个B .12个C .15个D .18个22.四边形ABCD 中,∠BAD=90°,DC ⊥AC ,AC 交BD 于点O ,AO=AB ,过B 作BN ∥CD 交AC 于E ,交AD 于N ,下列结论:①∠NBD=21 ∠ADC ;②CD+BE=AD ;③若AO=2CO ,则BE=CD ;④S △ABD =S △ADC ,其中正确的个数是( )A .1个B .2个C .3个D .4个23.如图,四边形ABCD 中,对角线AC ⊥BD ,且AC=8,BD=4,各边中点分别为A 1、B 1、C 1、D 1,顺次连接得到四边形A 1B 1C 1D 1,再取各边中点A 2、 B 2、C 2、D 2,顺次连接得到四边形A 2B 2C 2D 2,…,依此类推,这样得到四边形A n B n C n D n ,则四边形A n B n C n D n 的面积为( )A .n 216 B . 128-n C .421-n D .不确定 24.下列各组条件中,能判定四边形ABCD 为矩形的是( )A .∠A+∠B=90°B .AB ∥CD ,AB=CD ,AC=BDC .AB ∥CD ,AD=BC ,AC=BD D .AC=BD ,∠A=90°25.顺次连接四边形ABCD 的四条边的中点,得到一个矩形,那么( )A .AC=BDB .AC ⊥BD C .AB=CD D .AB ⊥CD26.在四边形ABCD 中,∠A=60°,AB ⊥BC ,CD ⊥AD ,AB=4cm ,CD=2cm ,求四边形ABCD 的周长( )A .10+23 B .8+25 C .8+35 D .10+2531.如图,在△ABC 中,AB=8,BC=6,AC=10,D 为边AC 上一动点,DE ⊥AB 于点E ,DF ⊥BC 于点F ,则EF 的最小值为( )A .2.4 B .3C .4.8D .532.等腰梯形的一内角为45°,高等于上底,下底为9,那么梯形的面积为( )A .27 B .18 C .36 D .2433.下列命题:(1)两条对角线相等的四边形是矩形(2)圆心角相等则所对的弦也相等.(3)两条对角线互相平分的四边形是平行四边形(4)垂直于弦的直径平分这条弦.其中真命题的个数是( ) A .3B .2C .1D .034.比较左、右两图的阴影部分面积,可以得到因式分解公式( )A .a 2-b 2=(a+b )(a-b )B .(a+b )2=a2+2ab+b2 C.(a-b)2=a2-2ab+b2 D.a2-ab=a(a-b)35.取四边形ABCD的各边中点E、F、G、H,依次连接EFGH得到四边形EFGH,现知四边形EFGH是菱形,则四边形ABCD的对角线()A.相等B.相等且平分C.垂直D.垂直且平分36.如图,矩形ABCD中,AB>AD,AN平分∠DAB,DM⊥AN于点M,CN⊥AN于点N,G为MN的中点,GH⊥MN交CD于点H,且DM=a,GH=b,则CN的值为(用含a、b的代数式表示)()A.2a+b B.a+2b C.a+b D.2a+2b37.下列说法正确的是()A.矩形的对角线互相平分B.平行四边形的对角线相等C.有一个角是直角的四边形是矩形D.对角线相等的四边形是矩形39.已知1个四边形的对角线互相垂直,且两条对角线的长度分别是8和10,那么顺次连接这个四边形的四边中点所得的四边形的面积是()A.40 B.202C.20 D.10240.在四边形ABCD中,∠A=60°,∠ABC=∠ADC=90°,BC=2,CD=11,自D作DH⊥AB 于H,则DH的长是()A.7.5 B.7 C.6.5 D.5.5。
18.2.1矩形的性质和判定练习题
矩形的性质和判定练习题1.在矩形ABCD 中, 对角线交于O 点,AB=0.6, BC=0.8, 那么△AOB 的面积为 ; 周长为 .2.一个矩形周长是12cm, 对角线长是5cm, 那么它的面积为 .3.若一个直角三角形的两条直角边分别为5和12,则斜边上的中线等于 .4.矩形的两条对角线的夹角是60°,一条对角线与矩形短边的和为15,那么矩形对角线的长为 ,短边长为 .5.矩形的两邻边分别为4㎝和3㎝,则其对角线为 ㎝,矩形面积为cm 2.6.若矩形的一条对角线与一边的夹角是40°,则两条对角线相交所成的锐角是 .7.矩形的对角线相交所成的钝角为120°,矩形的短边长为5 cm ,则对角线之长为______cm 。
8.矩形ABCD 的两对角线AC 与BD 相交于O 点,∠AOB=2∠BOC ,若对角线AC 的长为18 cm ,则AD= cm 。
9.如图,矩形ABCD 中,AC 与BD 交于O 点,BE ⊥AC 于E ,CF ⊥BD 于F.求证:BE=CF.10.如图,ABCD 是矩形纸片,翻折∠B 、∠D ,使BC 、AD 恰好落在AC 上。
设F 、H 分别是B 、D 落在AC 上的两点,E 、G 分别是折痕CE 、AG 与AB 、CD 的交点。
(1)求证:四边形AECG 是平行四边形; (2)若AB =4cm ,BC =3cm ,求线段EF 的长。
11.在△ABC 中,∠C=90°,AC=BC ,AD=BD ,PE ⊥AC 于点E , PF ⊥BC 于点F 。
求证:DE=DF12.平行四边形ABCD 中,对角线AC 、BD 相交于点O,点P是四边形外一点,且PA ⊥PC ,PB ⊥PD ,垂足为P。
求证:四边形ABCD 为矩形13.已知:如图,在△ABC 中,AB=AC ,AD ⊥BC ,垂足为点D ,AN 是△ABC 的外角∠CAM 的平分线,CE ⊥AN ,垂足为点E ,求证:四边形ADCE 为矩形。
矩形的性质与判定习题课 性质判定测试
1.矩形的对边 是 ,对角线 且 ,四个角都是 。
2.矩形是面积的60,一边长为5,则它的一条对角线长等于 。
3、如果矩形的一边长为8,一条对角线长为10,那么这个矩形面积是__________。
4.平行四边形没有而矩形具有的性质是( )A 、对角线相等B 、对角线互相垂直C 、对角线互相平分D 、对角相等5、下列叙述错误的是( )A.平行四边形的对角线互相平分。
B.平行四边形的四个内角相等。
C.矩形的对角线相等。
D.有一个角时90º的平行四边形是矩形6若一个直角三角形的两条直角边分别为5和12,则斜边上的中线等于 .7.矩形ABCD 的对角线相交于点O ,如果ABC ∆的周长比AOB ∆的周长大10cm ,则AD 的长是( )A 、5cmB 、7.5cmC 、10cmD 、12.5cm8、下列图形中既是轴对称图形,又是中心对称图形的是( )A 、平行四边形B 、等边三角形C 、矩形D 、直角三角形二、解答题例1.如图,已知矩形ABCD 的两条对角线相交于O ,︒=∠120AOD ,AB=4cm ,求此矩形的面积。
2、矩形ABCD 中,M 是BC 的中点,MA ⊥MD ,若矩形的周长为48cm,则矩形的面积是多少?D B C M1.下列叙述中能判定四边形是矩形的个数是()①对角线互相平分的四边形;②对角线相等的四边形;③对角线相等的平行四边形;④对角线互相平分且相等的四边形.A.1 B.2 C.3 D.42.下列命题中,正确的是()A.有一个角是直角的四边形是矩形 B.三个角是直角的多边形是矩形C.两条对角线互相垂直且相等的四边形是矩形 D.有三个角是直角的四边形是矩形3.若四边形ABCD的对角线AC,BD相等,且互相平分于点O,则四边形ABCD•是_____形,若∠AOB=60°,那么AB:AC=______.4.如图,在□ABCD中,对角线AC,BD相交于点O,且OA=OD,∠OAD=56°.求∠OAB的度数.一、基本概念:平行四边形定义:平行四边形性质①②③平行四边形判定①②③④三角形中位线定理:矩形定义:矩形性质①②直角三角形的一个性质:矩形判定①②菱形定义:菱形性质①②菱形判定①②正方形的定义:有一组邻边____并且有一个角是___的平行四边形叫做正方形,因此正方形既是一个特殊的有一组邻边相等的____,又是一个特殊的有一个角是直角的______.正方形的性质:正方形具有四边形、平行四边形、矩形、菱形的一切性质,正方形的四个角都______;四条边都______且__________________;正方形的两条对角线______,并且互相______,每条对角线平分______对角.它有______条对称轴.正方形的判定:(1)__________________________________ 的平行四边形是正方形;(2)____________________________________ 的矩形是正方形;(3)____________________________________ 的菱形是正方形;对角线________________________________的四边形是正方形有一组邻边____ __,且有一个角____ __的平行四边形是正方形。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
矩形性质及判定测试
一、基础练习
1.矩形的对边 是 ,对角线 且 ,四个角都是 。
2.矩形是面积的60,一边长为5,则它的一条对角线长等于 。
3、如果矩形的一边长为8,一条对角线长为10,那么这个矩形面积是__________。
4.平行四边形没有而矩形具有的性质是( ) A 、对角线相等
B 、对角线互相垂直
C 、对角线互相平分
D 、对角相等
5、下列叙述错误的是( )
A.平行四边形的对角线互相平分。
B.平行四边形的四个内角相等。
C.矩形的对角线相等。
D.有一个角时90º的平行四边形是矩形 6若一个直角三角形的两条直角边分别为5和12,则斜边上的中线等于 .
7.矩形ABCD 的对角线相交于点O ,如果ABC ∆的周长比AOB ∆的周长大10cm ,则AD 的长是( ) A 、5cm
B 、7.5cm
C 、10cm
D 、12.5cm
8、下列图形中既是轴对称图形,又是中心对称图形的是( )
A 、平行四边形
B 、等边三角形
C 、矩形
D 、直角三角形 二、解答题
1.如图,已知矩形ABCD 的两条对角线相交于O ,︒=∠120AOD ,AB=4cm ,求此矩形的面积。
2、矩形ABCD 中,M 是BC 的中点,MA ⊥MD ,若矩形的周长为48cm,则矩形的面积是多少?
例3.如图,□ABCD 中,AE 、BF 、CG 、DH 分别是各内角的平分线,E 、F 、G 、H 为它们的交点,
D B C M
求证:四边形EFGH 的矩形。
4. 如图,已知在四边形ABCD 中,AC DB ⊥交于O ,E 、F 、G 、H 分别是四边的中点, 求证:四边形EFGH 是矩形.
5.如图,矩形ABCD 中,ABCD EB EF EB EF ,,=⊥周长为22cm ,CE=3cm ,求:DE 的长。
6. 如图,矩形ABCD 中,DE=AB ,DE CF ⊥,求证:EF=EB 。
能力提高
H
G O
F
E
D
C
B
A
1、 矩形ABCD 中,M 是BC 的中点,MA ⊥MD ,若矩形的周长为48cm,则矩形的面积是多少?
2.如图,矩形ABCD 中,点E 、F 分别在AB 、CD 上,BF//DE ,若AD=12cm ,AB=7cm ,且
AE:EB=5:2,求阴影部分。
3.如图,矩形ABCD 中,ABCD EB EF EB EF ,,=⊥周长为22cm ,CE=3cm ,求:DE 的长。
4.如图,矩形ABCD 中,对角线AC 、BD 相交于O ,BD AE ⊥,垂足为E ,已知AB=3,AD=4,求
AEO ∆的面积。
5.矩形ABCD 中,E 是CD 上一点,且AE=CE ,F 是AC 上一点AE FH ⊥于H ,CD FG ⊥于G ,
求证:AD FG FH =+
D
B
C
M
6、 如图,过矩形ABCD 的对角线BD 上一点R 分别作矩形两边的平行线MN 与PQ ,那么图中矩形AMRP 的面积S 1,与矩形QCNR 的面积S 2的大小关系是( )
A. S 1>S 2
B. S 1=S 2
C. S 1<S 2
D. 不能确定
7.(2007重庆)已知,如图:在平面直角坐标系中,O 为坐标原点,四边形OABC 是矩形,点A 、C 的坐标分别为A (10,0)、C (0,4),点D 是OA 的中点,点P 在BC 边上运动,当△ODP 是腰长为5的等腰三角形时,点P 的坐标为 。
y
x
P
D C
B
A
O。