矩阵论试题及答案
矩阵理论习题答案
![矩阵理论习题答案](https://img.taocdn.com/s3/m/0cee556bb84ae45c3b358cfb.png)
习 题 一1. 设λ为的任一特征值,则因 λλ22- 为A =-A 22O 的特征值, 故022=-λλ. 即 λ=0或2.2. A ~B , C ~D 时, 分别存在可逆矩阵P 和Q , 使得 P 1-AP =B , Q 1-CQ =D .令T =⎪⎪⎭⎫⎝⎛Q O O P 则 T 是可逆矩阵,且T 1-⎪⎪⎭⎫⎝⎛C O O A T =⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛--Q O O P C O O A Q O O P 11=⎪⎪⎭⎫ ⎝⎛D O O B 3. 设i x 是对应于特征值i λ的特征向量, 则 A i x =i λi x , 用1-A 左乘得i i i x A x 1-λ=.即i i i x x A 11--λ= 故 1-i λ是A 的特征值, i =1,2,, n .4. (1) 可以. A E -λ=)2)(1)(1(-+-λλλ,=P ⎪⎪⎪⎭⎫ ⎝⎛--104003214, ⎪⎪⎪⎭⎫ ⎝⎛-=-2111AP P .(2) 不可以.(3) ⎪⎪⎪⎭⎫ ⎝⎛=110101010P , ⎪⎪⎪⎭⎫⎝⎛=-1221AP P .5. (1) A 的特征值是0, 1, 2. 故A =-(b -a )2=0. 从而 b =a .又11111-λ----λ----λ=-λaa aa A I =)223(22+---a λλλ将λ=1, 2 代入上式求得 a=0.(2) P =⎪⎪⎪⎭⎫ ⎝⎛-101010101.6. A I -λ=)1()2(2+-λλ, A 有特征值 2, 2, -1.λ=2所对应的方程组 (2I -A )x =0 有解向量p 1=⎪⎪⎪⎭⎫ ⎝⎛041, p 2=⎪⎪⎪⎭⎫ ⎝⎛401λ=-1所对应的方程组 (I +A )x =0 有解向量p 3=⎪⎪⎪⎭⎫⎝⎛101令 P =(p ,1p ,2p 3)=⎪⎪⎪⎭⎫ ⎝⎛140004111, 则 P 1-=⎪⎪⎪⎭⎫ ⎝⎛---4416414030121. 于是有A 100=P ⎪⎪⎪⎭⎫ ⎝⎛122100100P 1-=⎪⎪⎪⎭⎫⎝⎛-⋅-⋅-⋅---12412244023012122431100100100100100100100. 7. (1)A I -λ=)1(2+λλ=D 3(λ), λI -A 有2阶子式172111----λ=λ-4λ-4不是D 3(λ)的因子, 所以D 2(λ)=D 1(λ)=1, A 的初等因子为λ-1, 2λ. A 的Jordan 标准形为J =⎪⎪⎪⎭⎫ ⎝⎛-000100001设A 的相似变换矩阵为P =(p 1,p 2,p 3), 则由AP =PJ 得 ⎪⎩⎪⎨⎧==-=23211pAp Ap p Ap 0 解出P =⎪⎪⎪⎭⎫ ⎝⎛-----241231111; (2) 因为),2()1()(23--=λλλD 1)()(12==λλD D ,故A ~J =⎪⎪⎪⎭⎫ ⎝⎛200010011设变换矩阵为 P =(321,,p p p ), 则⎪⎩⎪⎨⎧=+==33212112p Ap p p Ap p Ap ⇒P =⎪⎪⎪⎭⎫ ⎝⎛---502513803 (3) ),2()1()(23-+=-=λλλλA I D ,1)(2+=λλD 1)(1=λD .A 的不变因子是,11=d ,12+=λd )2)(1(3-+=λλdA ~J =⎪⎪⎪⎭⎫ ⎝⎛--211 因为A 可对角化,可分别求出特征值-1,2所对应的三个线性无关的特征向量:当λ=-1时,解方程组 ,0)(=+x A I 求得两个线性无关的特征向量,1011⎪⎪⎪⎭⎫ ⎝⎛-=p ⎪⎪⎪⎭⎫ ⎝⎛-=0122p当λ=2时,解方程组 ,0)2(=-x A I 得⎪⎪⎪⎭⎫ ⎝⎛-=1123p , P =⎪⎪⎪⎭⎫ ⎝⎛---101110221(4) 因⎪⎪⎪⎭⎫ ⎝⎛---+=-41131621λλλλA I ~⎪⎪⎪⎭⎫ ⎝⎛--2)1(11λλ, 故A ~J =⎪⎪⎪⎭⎫ ⎝⎛10111设变换矩阵为P =),,(321p p p , 则⎪⎩⎪⎨⎧+===3232211pp Ap p Ap p Ap 21,p p 是线性方程组 0=-x A I )(的解向量,此方程仴的一般解形为p =⎪⎪⎪⎭⎫ ⎝⎛+-t s t s 3 取⎪⎪⎪⎭⎫ ⎝⎛-=0111p , ⎪⎪⎪⎭⎫ ⎝⎛=1032p为求滿足方程 23)(p p A I -=-的解向量3p , 再取 ,2p p = 根据 ⎪⎪⎪⎭⎫ ⎝⎛------t s t s 3113113622~⎪⎪⎪⎭⎫⎝⎛----t s t s s 00033000311 由此可得 s =t , 从而向量 T 3213),,(x x x =p 的坐标应満足方程s x x x -=-+3213取 T 3)0,0,1(-=p , 最后得P =⎪⎪⎪⎭⎫ ⎝⎛--010001131 8. 设 f (λ)=4322458-++-λλλλ. A 的最小多项式为 12)(3+-=λλλA m ,作带余除法得 f (λ)=(149542235-+-+λλλλ))(λA m +1037242+-λλ, 于是f (A )=I A A 1037242+-=⎪⎪⎪⎭⎫ ⎝⎛----346106195026483.9. A 的最小多项式为 76)(2+-=λλλA m , 设 f(λ)=372919122234+-+-λλλλ,则f (λ)=)()52(2λλA m ++2+λ. 于是 [f (A )]1-=1)2(-+I A .由此求出[f (A )]1-=⎪⎪⎭⎫ ⎝⎛-3217231 10. (1) λI -A =⎪⎪⎪⎭⎫ ⎝⎛---+41131621λλλ标准形⎪⎪⎪⎭⎫ ⎝⎛--2)1(00010001λλ, A 的最小多项式为 2)1(-λ;2) )1)(1(+-λλ; (3) 2λ.11. 将方程组写成矩阵形式:⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛----=⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛321321188034011d d d d d d x x x t x t x t x , ⎪⎪⎪⎭⎫ ⎝⎛=321x x x x , ⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=t x t x t x t d d d d d d d d 321x , A =⎪⎪⎪⎭⎫ ⎝⎛----188034011则有J =PAP 1-=⎪⎪⎪⎭⎫ ⎝⎛-100010011, .其中 P =⎪⎪⎪⎭⎫⎝⎛124012001.令 x =Py , 将原方程组改写成 : ,d d Jy y=t 则⎪⎪⎪⎩⎪⎪⎪⎨⎧-=+==3321211d d d d d d yty y y ty y t y 解此方程组得: y 1=C 1e t +C 2T e t , y 2=C 2e t , y 3=C 3e t -. 于是x =Py =⎪⎪⎪⎭⎫ ⎝⎛++++++-t t t tt t t c )t (c c )t (c c t c c e e 24e 4e 12e 2e e 3212121.12. (1) A 是实对称矩阵. A I -λ=2)1)(10(--λλ,A 有特征值 10, 2, 2.当λ=10时. 对应的齐次线性方程组 (10I -A )x =0的系数矩阵⎪⎪⎪⎭⎫ ⎝⎛--542452228~⎪⎪⎪⎭⎫ ⎝⎛000110102由此求出特征向量p 1=(-1, -2, 2)T , 单位化后得 e 1= (32,32,31--)T . 当λ=1时, 对应的齐次线性方程组 (I -A )x =0的系数矩阵⎪⎪⎪⎭⎫ ⎝⎛-----442442221~⎪⎪⎪⎭⎫ ⎝⎛-000000221 由此求出特征向量 p 2=(-2, 1, 0)T , p 3=(2, 0, 1)T . 单位化后得e 2=(0,51,52-)T , e 3=(535,534,532)T. 令 U =⎪⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛---53503253451325325231, 则 U 1-AU =⎪⎪⎪⎭⎫⎝⎛1110.(2) A 是Hermit 矩阵. 同理可求出相似变换矩阵U =⎪⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛---2121212i 2i 2i 21210, U 1-AU =⎪⎪⎪⎭⎫⎝⎛-22. 13. 若A 是Hermit 正定矩阵,则由定理1.24可知存在n 阶酉矩阵U , 使得U H AU =⎪⎪⎪⎪⎪⎭⎫ ⎝⎛n λλλ21, i λ﹥0, I =1, 2, , n . 于是A =U ⎪⎪⎪⎪⎪⎭⎫ ⎝⎛n λλλ21U H = U ⎪⎪⎪⎪⎪⎭⎫ ⎝⎛n λλλ 21U H U ⎪⎪⎪⎪⎪⎭⎫⎝⎛n λλλ21U H 令B =U ⎪⎪⎪⎪⎪⎭⎫⎝⎛n λλλ21U H 则 A =B 2.反之,当 A =B 2且B 是Hermit 正定矩阵时,则因Hermit 正定矩阵的乘积仍为Hermit 正定矩阵,故A 是Hermit 正定的. 14. (1)⇒(2). 因A 是Hermit 矩阵,则存在酉矩阵U,使得U H AU =diag(n λλλ,,,21 )令x =Uy , 其中 y =e k . 则 x ≠0. 于是x H Ax =y H (U H AU )y =k λ≧0 (k =1, 2, , n ).(2)⇒(3).A =U diag(n λλλ,,,21 )U H =U diag(n λλλ,,,21 )diag(n λλλ,,,21 )U H令 P =diag(n λλλ,,,21 )U H , 则 A =P H P . (3)⇒(1). 任取x ≠0, 有x H Ax =x H P H Px =22Px ≧0.习 题 二1. 1x =01i 42i 1+++-++=7+2,2x =1i)4i(4)2(i)1i)(1(2+-+-+-+=23, ∞x =max {}1i 42i 1,,,-+=4.2. 当 x ≠0时, 有 x ﹥0; 当 x ﹦0时, 显然有 x =0. 对任意∈λC , 有x λ=x nk kk nk kk λξωλλξω==∑∑==1212.为证明三角不等式成立,先证明Minkowski 不等式: 设 1≦p ﹤∞, 则对任意实数 x k ,y k (k =1, 2, , n )有pnk pk k y x 11)(∑=+≦∑∑==+nk ppk nk ppk y x 1111)()(证 当 p =1时,此不等式显然成立. 下设 p ﹥1, 则有∑=+nk pkk y x 1≦∑∑=-=-+++nk p kk k nk p kk k y x y y x x 1111对上式右边的每一个加式分别使用H ölder 不等式, 并由 (p -1)q =p , 得∑=+nk pkky x1≦qnk q p kk pnk pk qnk q p kk pnk pk y x y y x x 11)1(1111)1(11)()()()(∑∑∑∑=-==-=+++=qnk p k k pnk pk pnk p k y x y x 111111)]()()[(∑∑∑===++再用 qnk p k k y x 11)(∑=+ 除上式两边,即得 Minkowski 不等式.现设任意 y =(n ηηη,,,21 )T ∈C n , 则有∑=+=+nk kk k y x 12ηξω=∑=+nk k k k 12)(ηξω≦∑=+nk k k k k 12)(ηωξω≦∑∑==+nk j k nk k k 1212()(ηωξω=y x +.3. (1) 函数的非负性与齐次性是显然的,我们只证三角不等式.利用最大函数的等价定义:max(A , B )=)(21b a b a -++max(),b a y x y x ++≦max(b b a a y x y x ++,)=)(21b b a a b a b a y x y x y y x x --+++++≦)(21b a b a b a b a y y x x y y x x -+-++++ =)(21)(21b a b a b a b a y y y y x x x x -+++-++ =max( b a x x ,)+max( b a y y ,)(2) 只证三角不等式.k 1a y x ++k 2b y x +≦k 1a x +k 1a y +k 2b x +k 2b y =( k 1a x +k 2b x )+( k 1a y +k 2b y ) .4. 218132i 453i 11m +=+++++++=A ;66132i 453i 1222222F =+++++++=A ; 15m =∞A ;=1A 列和范数(最大列模和)=27+;∞A =行和范数(最大行模和)=9 ;5. 非负性: A ≠O 时S 1-AS ≠O , 于是 m 1AS S A -=>0. A =O 时, 显然A =0;齐次性: 设λ∈C , 则 λλλ==-m1)(S A S A m1ASS -=λA ;三角不等式: m11m1)(BSS AS S S B A S B A ---+=+=+≦B A BSS AS S +=+--m 1m 1;相容性: m11m1)(BS ASS S SAB S AB ---==≦m1m1BSS AS S --=A B .6. 因为I n ≠O , 所以n I >0.从而利用矩阵范数的相容性得:n n n I I I =≦n I n I ,即n I ≧1.7. 设 A =(A ij )∈C n n ⨯, x =∈ξξξT 21),,,(n C n , 且 A =ij ji a ,max , 则∑∑=ikk ik Ax ξa 1≦∑∑ikk ik a ξ=∑∑kiik k a ][ξ≦n A ∑kk ξ=∞m A 1x ;∑∑=ikk ikAx 22ξa≦∑∑ikk ika2][ξ=∑∑ikka 22][ξ=n A 2x ≦n A =∞m A 2x .8. 非负性与齐次性是显然的, 我们先证三角不等式和相容性成立. A =(a ij ), B =(b ij )∈C n m ⨯, C =(c st )∈C l n ⨯且 A =ij ji a ,max , B =ij ji a ,max , C =st ts c ,max . 则MBA +=max{m ,n }ij ij ji b a +,max ≦max{m ,n })(m ax ,ij ij ji b a +≦max{m ,n }(A +B )=max{m ,n }A +max{m ,n }B =M M B A +;MAC=max{m ,l }∑kkt ik ti c a ,max ≦max{m ,n }}{max ,∑kkt ik ti c a ≦max{m ,n }}{max 22,∑∑⋅kkt kikti c a (Minkowski 不等式)=max{m ,n }n AC ≦max{m ,n }max{n ,l }AC =M M C A .下证与相应的向量范数的相容性.设 x =∈ξξξT 21),,,(n C n , d =kmax {k ξ}, 则有∑∑=ikk ik a Ax ξ1≦∑∑ikk ik a ξ=∑∑ki ikka)(ξ≦∑kk na ξ=n A ∑kk ξ≦max{m ,n }A ∑kk ξ=1M x A ;2Ax =∑∑ikkik a2ξ≦∑∑ik k ik a 2)(ξ≦∑∑∑ikkkika )(22ξ(H ölder 不等式)=∑∑∑⋅kk ikik a 22ξ≦mn A 2x≦max{m ,n }A 2x =2M x A ;}{max 1∑=∞=n k k ik iAxξa ≦∑=nk k ik ia 1}{max ξ≦}{max 22∑∑⋅kk kik ia ξ≦}max{22nd na i⋅=n AD ≦max{m ,n }AD =∞x A M .9. 只证范数的相容性公理及与向量2–范数的相容性. 设 A =(a ij )∈C n m ⨯, B =(b st )∈C l n ⨯,x =∈ξξξT 21),,,(n C n 且 A =ij ji a ,max , B =st ts b ,max , 则∑=≤≤≤≤=nk ktik lt m i AB11,1Gmaxb aml ≦}{max ,kt kik t i b a ml ∑≦}{max 22,∑∑⋅kkt kikti b a ml (Minkowski 不等式)≦ml n ab =))((b nl a mn =G G B A .∑∑===m i nk k ikAx1212ξa≦∑∑ik k ika2)(ξ≦∑∑∑⋅ikkk ik a )(22ξ (H ölder 不等式)≦∑∑⋅ikkna )(22ξ=mn A 2x=2G x A .10. 利用定理2.12得122H 2===nI UU U.11.A 1-=⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛---0110211214321cond 1(A )=225255111=⋅=-A A ; cond ∞(A )=10251=⋅=∞-∞A A .12.设x 是对应于λ的特征向量, 则A x x m m λ=.又设 v ⋅是C n 上与矩阵范数⋅相容的向量范数,那么vm vm v mx A x x ==λλ≦v m x A因 v x >0, 故由上式可得 mλ≦m A ⇒λ≦m m A .习 题 三1. 2c λc λλ))(2(+-=-A I , 当c λρ=)(﹤1时, 根据定理3.3, A 为收敛矩阵.2. 令S )N (=∑=N0)(k k A , )(lim N N S +∞→=S , 则 0)(lim lim )()()(=-=+∞→+∞→k k k k k S S A .反例: 设 A )(k =k⎪⎪⎭⎫ ⎝⎛0001k, 则因 ∑+∞=01k k发散, 故 ∑+∞=0)(k k A发散, 但)(lim k k A +∞→=O .3. 设 A =⎪⎪⎭⎫⎝⎛6.03.07.01.0, 则 )(A ρ≦=∞A 行和范数=0.9<1, 根据定理3.7,∑∞+=⎪⎪⎭⎫ ⎝⎛06.03.07.01.0k k=(I -A )1-=⎪⎪⎭⎫ ⎝⎛937432.4. 我们用用两种方法求矩阵函数e A : 相似对角化法. 22a λλ+=-A I , a -a i ,i =λ当 =λi a 时, 解方程组 (i a -A )x =0, 得解向量 p 1=(i, 1)T .当 λ=-i a 时, 解方程组 (i a +A )x =0, 得解向量 p 2=(-i, 1)T .令 P =⎪⎪⎭⎫⎝⎛-11i i , 则P 1-=⎪⎪⎭⎫ ⎝⎛-i 1i 1i 21, 于是 e A =P ⎪⎪⎭⎫⎝⎛-a ai 00i P 1-=⎪⎪⎭⎫ ⎝⎛a a a -a cos sin sin cos . 利用待定系数法. 设e λ=(2λ+a 2)q (λ)+r (λ), 且 r (λ)=b 0+b 1λ, 则由⎩⎨⎧=-=+-aaa b b a b b i 10i 10ei e i ⇒b 0=cos a , b 1=a1sin a .于是e A =b 0I +b 1A =cos a ⎪⎪⎭⎫ ⎝⎛11+a 1sin a ⎪⎪⎭⎫ ⎝⎛-a a =⎪⎪⎭⎫ ⎝⎛-a a a a cos sin sin cos . 后一求法显然比前一种方法更简便, 以后我们多用待定系数法. 设f (λ)=cos λ, 或 sin λ则有⎩⎨⎧=-=+a-a b b aa b b sini i sini i 1010 与 ⎩⎨⎧=-=+aa b b aa b b i cos i i cos i 1010 由此可得⎪⎩⎪⎨⎧-==a a b b sini i 010 与 ⎩⎨⎧==0i cos 10b ab 故 (a 2isini a )A =⎪⎪⎭⎫ ⎝⎛-0isini isini 0a a =sin A 与(cosi a )I =⎪⎪⎭⎫⎝⎛a acosi 00cosi =cos A .5. 对A 求得P = ⎪⎪⎪⎭⎫ ⎝⎛--013013111, P 1-=⎪⎪⎪⎭⎫ ⎝⎛-24633011061, P 1-AP =⎪⎪⎪⎭⎫ ⎝⎛-211根据p69方法二,e At =P diag(e t -,e t ,e t 2)P 1-=⎪⎪⎪⎭⎫⎝⎛+--++---------t t t t tt tt t t t t t t e 3e 3e 3e 30e 3e 3e 3e 30e e 3e 2e e 3e 4e 661222tsin A =P diag(sin(-1),sin1,sin2)P 1-=⎪⎪⎪⎭⎫⎝⎛--01sin 601sin 6001sin 42sin 21sin 22sin 42sin 616. D 3(λ)=101011----λλλ=2)1(-λλ, D 2(λ)=D 1(λ)=1, A ~J =⎪⎪⎪⎭⎫⎝⎛000010011.现设r (λ,t )=b 0+b 1λ+b 2λ2, 则有⎪⎩⎪⎨⎧==+=++1e 2e 021210b t b b b b b t t ⇒b 0=1, b 1=2e t -t e t -2, b 2=t e t -e t +1. 于是e t A =r (A , t )=b 0I +b 1A +b 2A 2=I +(2e `t -t e t -2)⎪⎪⎪⎭⎫⎝⎛100100011+(t e t -e t +1)⎪⎪⎪⎭⎫ ⎝⎛100100111=⎪⎪⎪⎭⎫ ⎝⎛-+--tt e 001e 101e e 1e e tt t t t同理,由⎪⎩⎪⎨⎧=-=+=++1sin 2cos 021210b t t b b t b b b ⇒b 0=1, b 1=t sin t +2cos t -2, b 2=1-t sin t -cos t . 将其代入cos A t =b 0I +b 1A +b 2A 2, 求出cos A t =⎪⎪⎪⎭⎫ ⎝⎛----t t t t t t t cos 001cos 10cos sin 11cos cos7. 设 f (A )=∑+∞=0k k A ka ,S N=∑=Nk k A 0k a .则 f (A )=N N S +∞→lim 并且由于(S N)T=T)(∑=N k k k A a =∑=Nk k k A 0T )(a所以, f (A T )=T )(lim N N S +∞→=f (A )T .8, (1) 对A 求得P =⎪⎪⎪⎪⎪⎭⎫ ⎝⎛1111, P 1-=P , J =⎪⎪⎪⎪⎪⎭⎫⎝⎛1111111 则有e t A =P ⎪⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛t t tt t tt ttt t t t t t t e e e e 2e e e 6e 2e 232eP 1-=⎪⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛t ttt t t tt t e e e 2e 60e e e 200e e 000e 232t t t t t t tsin A t =P ⎪⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛---t t t t t t t t t t t t t t t t sin cos sin sin 2cos sin cos 6sin 2cos sin 232P 1-=⎪⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛---t t t t t t t t t t t t t t t t sin cos sin 2cos 6sin cos sin 2sin cos sin 232cos A t =P ⎪⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛-----t t t tt t t t tt t t t t t t cos sin cos cos 2sin cos sin 6cos 2sin cos 232P=⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛-----t t t t t t t t t t t t t t t t cos sin cos 2sin 60cos sin cos 200cos sin 000cos 232(2) 对A 求出P =P 1-=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛0100100000100001, J =⎪⎪⎪⎪⎪⎭⎫⎝⎛--010212 则有e At =P ⎪⎪⎪⎪⎪⎭⎫⎝⎛---11e e e 222t t tt t P 1-=⎪⎪⎪⎪⎪⎭⎫⎝⎛---100010000e 000e e 222t t tt tsin A t =P ⎪⎪⎪⎪⎪⎭⎫⎝⎛--002sin 2cos 2sin t t tt tP 1-=⎪⎪⎪⎪⎪⎭⎫⎝⎛--0000000002sin 0002cos 2sin t t tt tcos A t =P ⎪⎪⎪⎪⎪⎭⎫ ⎝⎛1012cos 2sin 2cos t t t t P 1-=⎪⎪⎪⎪⎪⎭⎫⎝⎛10000100002cos 0002sin 2cos t t t t 9. (1) sin 2A +cos `2A =[)e (e i 21i i A A --]2=[)(e 21i i A A e -+]2=)e e e (e 41)e e e (e 41i 2i 2i 2i 2O O A A O O A A ++++--+---=e O =I(2) sin(A +2πI )=sin A cos(2πI )+cos A sin(2πI )=sin A [I -!21(2πI )2+!41(2πI )4-…]+cos A [2πI -!31(2πI )3+!51(2πI )5-…]= sin A [1-!21(2π)2+!41(2π)4-…]I +cos A [2π-!31(2π)3+!51(2π)5-…]I=sin A cos2π+cos A sin2π (3)的证明同上.(4) 因为 A (2πi I )=(2πi I )A ,所以根据定理3.10可得 e I A i π2+=e A e I πi 2=e A [I +(2πI )+!21(2πi I )2+!31(2πi I )3+…]=e A {[1-!21(2π)2+!41(2π)4-…]+i[2π-!31(2π)3+!51(2π)5-…]}I=e A {cos2π+isin2π}I =e A此题还可用下列方法证明:e I A πi 2+=e ⋅A e I i π2=e ⋅A P ⎪⎪⎪⎪⎪⎭⎫⎝⎛i π2iπ2πi 2e e e P 1-=e ⋅A PIP 1-=e A用同样的方法可证: e I A πi 2-=e A e I πi 2-.10. A T =-A , 根据第7题的结果得 (e A )T =e TA =e A -, 于是有e A (e A )T =e A e TA =e A A -=e O =I11. 因A 是Herm(i A )H =-i A H =-i A , 于是有e A i (e A i )H =e A i e A i -=e O =I12. 根据定理3.13, A 1-tt A e d d =e At , 利用定理3.14得 ⎰tA 0d e ττ=⎰-t A A 01d e d d τττ=A 1-τττd e d d 0A t ⎰=A 1-(e -At I ). 13. t d d A (t )=⎪⎪⎭⎫ ⎝⎛---t t t t sin cos cos sin , t d d (det A (t ))=t d d (1)=0, det(t d dA (t ))=1, A 1-(t )=⎪⎪⎭⎫ ⎝⎛-t t t t cos sin sin cos , t d d A 1-(t )=⎪⎪⎭⎫⎝⎛---t t t t sin cos cos sin14. ⎰t A 0d )(ττ=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛⎰⎰⎰⎰⎰⎰-00d 30d e 2d e d d e d e 002002002t t t t t t τττττττττττττ=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛--+---002301e e1311e e )1(e 212232t t t t t t t t 15. 取 m =2, A (t )=⎪⎪⎭⎫⎝⎛t t t 02, 则 A 2(t )=⎪⎪⎭⎫ ⎝⎛+22340t t t t , t d d (A (t ))2=⎪⎪⎭⎫ ⎝⎛+t t t t 2023423≠2A (t )t d dA (t )=⎪⎪⎭⎫⎝⎛+t t t t 2022423. 困为++==--21)]()[(d d)()]()[(d d )]()()([d d )]([d d m m A A A A A A A A A t t tt t t t t t t t t t m +)(d d)]([1t tt A A m -所以当(t d d A (t ))A (t )=A (t )t d dA (t )时, 有)(d d)]([)(d d )]([)(d d )]([)]([d d 111t tt t t t t t t t t A A A A A A A m m m m ---++= =m [A (t )])(d d1t tA m -16. (1) 设 B =(ij b )n m ⨯, X =(ij ξ)m n ⨯, 则 BX =(∑=nk kj ik 1ξb )m m ⨯,于是有tr(BX )=∑∑∑===++++nk km mk n k kj jk n k k k 11111ξξξb b bijBX ξ∂∂)tr(=ji b (i =1,2,…,n ;j =1,2,…,m ) ⎪⎪⎪⎭⎫ ⎝⎛=mn n m BX X b b b b 1111)(tr(d d=T B 由于 BX 与 T T T )(B X BX =的迹相同,所以T T T ))(tr(d d ))(tr(d d B BX XB X X == (2) 设A =(ij a )n n ⨯,f=tr(AX X T ), 则有⎪⎪⎪⎭⎫ ⎝⎛=nm mn X ξξξξ1111T ,AX =⎪⎪⎪⎪⎪⎭⎫⎝⎛∑∑∑∑k km nk k k nk km k k k k ξξξξa a a a 1111f =∑∑∑∑∑∑++++l kkm lk lm l k kj lk lj l kk lk l ξξξξξξa a a 11)]()([][∑∑∑∑∑∂∂⋅+⋅∂∂=∂∂=∂∂k kj lk l k ijlj kj lk ij lj l k kj lk lj ij ij ξξξξξξξξξξa a a f =∑∑+klj li kkj ik ξξa amn ij X ⨯⎪⎪⎭⎫⎝⎛∂∂=ξff d d =X A A X A AX )(T T +=+ 17. 设A =(ij a )m n ⨯, 则 F (x )=(∑∑∑===nk kn k nk k nk k k 1211,,,a a a 1k ξξξ ),且A d F F F x F nn n n n n n =⎪⎪⎪⎪⎪⎭⎫⎝⎛=⎪⎪⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=a a aa a a a a a 21222211121121d d d d d d d ξξξ 18. ()⎪⎪⎪⎭⎫⎝⎛---------=='t t tt t t tt t t t t t t t t tt AtAt A 222222222e 4e 3e 3e 6e 3e 6e 2e e e 4e e 2e 2e e e 2e e 4e e在上式中令t =0, 则有A =⎪⎪⎪⎭⎫ ⎝⎛---=133131113e OA19. A =⎪⎪⎪⎭⎫ ⎝⎛---502613803, x (0)=⎪⎪⎪⎭⎫⎝⎛111, A 的最小多项式为 2)1()(+=λλϕ. 记f (λ)=t λe ,并设f (λ)=g(λ))(λϕ+)(10λb b +, 则⎩⎨⎧==---tte e 110t b b b ⇒ tt --=+=e ,)1(10t b e t b 于是⎪⎪⎪⎭⎫ ⎝⎛--+=++=---t t t t t t t t 41026138041e e e )1(e t t t At A I , x (t )=Ate x (0)=⎪⎪⎪⎭⎫ ⎝⎛-++-t t t 6191121e t20. A =⎪⎪⎪⎭⎫ ⎝⎛--101024012, f (t )=⎪⎪⎪⎭⎫ ⎝⎛-1e 21t , x (0)=⎪⎪⎪⎭⎫ ⎝⎛-111, =)(λϕdet(λI -A)=23λλ-. 根据O A =)(ϕ,可得; 252423,,A A A A A A ===,….于是23232)!31!21()(!31)(!21)(e A A I A A A I At ++++=++++=t t t t t t=2)1(e A A I t t t --++=⎪⎪⎪⎭⎫⎝⎛---++--t t t e 1e e 210124021t t t t ttx (t )=⎪⎪⎪⎭⎫⎝⎛-=⎪⎪⎪⎭⎫ ⎝⎛+⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎭⎫ ⎝⎛+=+⎰⎰-t t t t f e )1(11]02111[e ]d 021)0([]d )(e )0([e 00At t At tA At x e x ττττ习 题 四1. Doolite 分解的说明,以3阶矩阵为例: 11r 12r 13r 第1框 21l 22r 23r 第2框 31l 32l 33r 第3框 计算方法如下: (ⅰ) 先i 框,后i +1框,先r 后l .第1框中行元素为A 的第1行元素; (ⅱ)第2框中的j r 2为A 中的对应元素j a 2减去第1框中同行的21l 与同列的j r 1之积.第3框中的33r 为A 中的对应元素33a 先减去第1框中同行的31l 与同列的13r 之积,再减去第2框中同行的32l 与同列的23r 之积; (ⅲ)第2框中的32l 为A 中的对应元素32a 先减去第1框中同行的31l 与同列的12r 之积,再除以22r . 计算如下:1 3 02 -3 0 2 2 -6A =⎪⎪⎪⎭⎫ ⎝⎛--⎪⎪⎪⎭⎫ ⎝⎛600030031122012001 2.Crout 分解的说明,以3阶矩阵为例:11l 12u 13u 第1框 21l 22l 23u 第2框 31l 32l 33l 第3框(ⅰ) 先i 框,后i +1框.每框中先l 后r .第1框中的列元素为A 的第1列的对应元素;(ⅱ)第2框中的2i l 为A 中对应元素2i a 减去第1框中同行的1i l 与同列的12u 之积;(ⅲ)第2框中的23u 为A 中的对应元素23a 减去第1框中同行的21l 与同列的13u 之积,再除以22l .第3框中的33l 为A 中的对应元素33a 先减去第1框中同行的31l 与同列的13u 之积,再减去第2框中同行的32l 与同列的23u 之积.计算如下:1 3 02 -3 02 -6 -6A =⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛---100010031662032001 2. 先看下三角矩阵的一种写法:⎪⎪⎪⎭⎫⎝⎛333231222111000a a a a a a =⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛332211223211311121000000101001a a a a a a a a a , ii a ≠0 对本题中的矩阵A 求得Crout 分解为A =⎪⎪⎪⎪⎪⎭⎫⎝⎛--⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛--1002105452115240512005 利用下三角矩阵的写法对上面的分解变形可得A =⎪⎪⎪⎪⎪⎭⎫⎝⎛--⎪⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛--10021054521100051000512540152001 =⎪⎪⎪⎪⎪⎭⎫⎝⎛--⎪⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛--10021054521100510005100051000512540152001=⎪⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛--⎪⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛--10052510545251525405152005 3.对A 的第1列向量)1(β, 构造Householder 矩阵1H 使得 =)1(1βH 12)1(e β, 31C e ∈⎪⎪⎪⎭⎫ ⎝⎛=010)1(β, ⎪⎪⎪⎭⎫ ⎝⎛-=-01112)1()1(e ββ, u =⎪⎪⎪⎭⎫ ⎝⎛-=--01121212)1()1(12)1()1(e e ββββ⎪⎪⎪⎭⎫ ⎝⎛=-=1000010102T 1uu I H , ⎪⎪⎪⎭⎫⎝⎛=2301401111A H , ⎪⎪⎭⎫⎝⎛=23141A对1A 的第1列向量⎪⎪⎭⎫ ⎝⎛=34)2(β, 类似构造Householder 矩阵2H :⎪⎪⎭⎫ ⎝⎛-=--=3110122)2)2(12)2()2ββββe u , 21C e ∈, ⎪⎪⎭⎫ ⎝⎛-=-=4334512T 22uu I H ⎪⎪⎭⎫⎝⎛-=102512A H令12001H H H ⎪⎪⎭⎫⎝⎛=, 则有 ⎪⎪⎪⎭⎫ ⎝⎛-=100250111HA =R 并且⎪⎪⎪⎭⎫ ⎝⎛-⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛==---1002501115453000153540001001T2T 112111R H H R H H R H A =QR4. 对A 的第1列向量⎪⎪⎪⎭⎫⎝⎛=202)1(β, 构造Givens 矩阵⎪⎪⎪⎪⎪⎭⎫⎝⎛-=210210102102113T , ⎪⎪⎪⎪⎭⎫⎝⎛=0022)1(13βT , ⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=1132221210220232322A O A T 对1A 的第1列向量⎪⎪⎪⎭⎫⎝⎛-=212)2(β, 构造 ⎪⎪⎪⎪⎭⎫ ⎝⎛-=3223131322~12T , ⎪⎪⎪⎭⎫ ⎝⎛=023~)2(12βT , ⎪⎪⎪⎪⎭⎫⎝⎛=34023723~112A T 令 ⎪⎪⎭⎫ ⎝⎛=12T12~1T O O T , 则有 ⎪⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛==34002372302323221312R A T T . 于是 QR R T T A =⎪⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛--==340023723023232232231213123403223121H13H 125. 设A =),,(i i 0i 0i 0i 1321ααα=⎪⎪⎪⎭⎫ ⎝⎛----, 对向量组321,,ααα施行正交化, 令⎪⎪⎪⎭⎫ ⎝⎛--==0i 111αβ, ⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛--+⎪⎪⎪⎭⎫ ⎝⎛=-=i 212i 0i 12i i 0i ],[],[1111222ββββααβ,⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛--=⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-⎪⎪⎪⎭⎫ ⎝⎛---⎪⎪⎪⎭⎫ ⎝⎛--=--=323i232i 212i 3i 0i 1211i 0],[],[],[],[222231111333ββββαββββααβ于是⎪⎪⎪⎩⎪⎪⎪⎨⎧++=+-==3213212113i 212iβββαββαβα 写成矩阵行式K ),,(1003i 10212i 1),,(),,(321321321ββββββααα=⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡-= ⎪⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛⎪⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛----=32632316i 203i 612i 316i 21),,(321βββ 最后得A =K ⎪⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛----32632316i 203i 612i 316i 21=⎪⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-⎪⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛----32006i 630212i 2316i 203i 612i 316i 21=QR 6. 令⎪⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛-==10005152********T T 则⎪⎪⎪⎪⎪⎭⎫⎝⎛=⎪⎪⎪⎭⎫⎝⎛⎪⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛-=011000520550114022011000515*******A T 再令⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-==305061010610305132T T , ⎪⎪⎪⎪⎪⎭⎫⎝⎛-=3010305000061061612A T T 最后令⎪⎪⎪⎭⎫⎝⎛=0101000013T , R A T T T =⎪⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛-=00030103050610616123 A =⎪⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-⎪⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛---=0003010305061061603056151302625230161H 3H 2H 3R T T T =QR 7. =)1(β(0, 1)T , 12)1(=β, u =2121)1(1)1(=--e e ββ(-1, 1)T ,H 1=⎪⎪⎭⎫⎝⎛=-01102T2uu I , H =⎪⎪⎭⎫⎝⎛1001H 则有HAH T =⎪⎪⎪⎭⎫⎝⎛⎪⎪⎪⎭⎫ ⎝⎛--⎪⎪⎪⎭⎫ ⎝⎛010100001111210121010100001=⎪⎪⎪⎭⎫ ⎝⎛--120111211, H 是Householder 矩阵.同理, 对)1(β, 取 c =0, s =1, T 12=⎪⎪⎭⎫⎝⎛-0110, T =⎪⎪⎭⎫ ⎝⎛12001T , 则 ⎪⎪⎪⎭⎫⎝⎛-⎪⎪⎪⎭⎫ ⎝⎛--⎪⎪⎪⎭⎫ ⎝⎛-=='-0101000011112101210101000011TAT T TA=⎪⎪⎪⎭⎫ ⎝⎛---120111211, T 是Givens 矩阵.8. 对 ⎪⎪⎭⎫⎝⎛=1612)1(β, 计算u =⎪⎪⎭⎫ ⎝⎛-=--2151202021)1(1)1(e e ββ, H =I -2uu T=⎪⎪⎭⎫ ⎝⎛-344351 令 Q =⎪⎪⎭⎫⎝⎛H 001, 则⎪⎪⎪⎭⎫⎝⎛=075075600200200TQAQ同理,对)1(β,为构造Givens 矩阵,令c =53, s =54, ⎪⎪⎪⎪⎭⎫ ⎝⎛-=5354545312T ,则当⎪⎪⎭⎫⎝⎛=12001T T 时,='T TA ⎪⎪⎪⎭⎫ ⎝⎛--075075600200200.1. (1) 对A 施行初等行变换⎪⎪⎪⎭⎫ ⎝⎛----100424201011200010321~⎪⎪⎪⎪⎭⎫ ⎝⎛---142000002102121100111201 S=,1420210011⎪⎪⎪⎪⎭⎫ ⎝⎛-- A =⎪⎪⎭⎫ ⎝⎛-⎪⎪⎪⎭⎫ ⎝⎛-2121101201422021(2) ⎪⎪⎪⎪⎪⎭⎫⎝⎛--------10001111010011110010111100011111~⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛-----11000000001100000210211110021021001 S=⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛---11000011021021021021, A =⎪⎪⎭⎫ ⎝⎛--⎪⎪⎪⎪⎪⎭⎫⎝⎛----1110000111111111(3)⎪⎪⎪⎪⎪⎭⎫ ⎝⎛1000126420100632100101264200016321~⎪⎪⎪⎪⎪⎭⎫⎝⎛---10100000010100000011000000016321 ⎪⎪⎪⎪⎪⎭⎫⎝⎛---=1010010100110001S, ()63212121⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=A 10. (1) ⎪⎪⎪⎭⎫⎝⎛=000000005T A A 的特征值是5,0,0. 分别对应特征向量321,,e e e ,从而V=I,),(11p V =∑=(5), 11AV U =∑1-=⎪⎪⎭⎫ ⎝⎛2151. 令,12512⎪⎪⎭⎫⎝⎛-=U ()21U U U =, 则I U A ⎪⎪⎭⎫⎝⎛=000005(2)⎪⎪⎭⎫⎝⎛=2112T A A 的特征值是,,1321==λλ对应的特征向量分别为TT11,11⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫⎝⎛.于是 ∑=⎪⎪⎭⎫⎝⎛1003, ⎪⎪⎪⎪⎭⎫⎝⎛-=21212121V =1V , 11AV U =∑1-=⎪⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛-06221612161取 ⎪⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛--=3131312U , 构造正交矩阵()21U U U ==⎪⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛---31062312161312161‘所以,A 的奇异值分解为T 001003V U A ⎪⎪⎪⎪⎭⎫ ⎝⎛=11. 根据第一章定理1.5, A A H 的特征值之和为其迹,而由第二章2.7 F-范数的定义A A A A A HH2F )tr(==的特征值之和=∑=ri i 12σ习 题 五1.设x =T 21),,,(n ηηη 为对应于特征值λ的单位特征向量,即(QD )x =λx两边取转置共轭:H H H H x Q D x λ=与上式左乘得2H H λ=Dx D x 即 22222221212n n ηηηd d d λ+++= ,由此立即有 2min iid ≤2λ≤2max i id从而i d imin ≤λ≤i d imax .后一不等式的另一证明:根据定理2.13,λ≤)(QD ρ≤2QD i d imax 最大特征值的H 22.11定理==D D D2. A 的四个盖尔园是 1G : 9-z ≤6, 2G : 8-z ≤2, 3G : 4-z ≤1, 4G : 1-z ≤1.由于4G 是一个单独的连通区域,故其中必有一个实特征值.321G G G ⋃⋃是连通区域,其中恰有三个特征值,因而含有一个实特征值 .3. A 的四个盖尔园:1G 1-z ≤2713, :2G 2-z ≤2713, :3G 3-z ≤2713, :4G 4-z ≤2713 是互相隔离的,并且都在右半平面,从而每个盖尔园中恰有一个特征值且为正实数.4.设 =λβαi +为A 的待征值,则有盖尔园k G ,使得k G ∈λ.若α≤0, 则kk a -α≤βαi )(+-kk a ≤k R 故 kk a +-)(α≤k R ,即 kk a ≤α+kk R ≤kk R , 这与A 是严格对角占优的条件矛盾.5. (1)当两个盖尔园的交集中含有两个特征值时; (2) 当两个盖尔园相切且切点是A 的单特征值时.6. A 的盖尔园 2:1-z G ≤3, 10:2-z G ≤2, 20:3-z G ≤10. 因1G 是与32G G ⋃分离的,故1G 中恰有一个实特征值∈1λ[-1, 5].A 的列盖尔园 :'1G 2-z ≤9, 10:'2-z G ≤4, 20:'3-z G ≤2. 因'3G 是与'2'1G G ⋃分离的,故 '3G 中恰有一个实特征值 ∈3λ[18, 22]. 选取 D =diag(1, 1,21), 则 1-DAD 的盖尔园 ''G 1 : 2-z ≤4, :''2G 10-z ≤3, :''3G20-z ≤5. 这三个盖尔园是相互独立的,故必然有∈1λ[-2, 6], ∈2λ[7, 13], ∈3λ[15, 25]与上面所得的结果对照可知利用Gerschgorin 定理,特征值的最隹估计区间为∈1λ[-1, 5], ∈2λ[7, 13], ∈3λ[18, 22]7. 因为det(λB -A )=)23)(2(422+-=----λλλλλλ所以广义特征值为1λ=2, 2λ=-32.分别求解齐次线性方程组0=-x A B )(1λ , 0=-x A B )(2λ可得对应于1λ与2λ的特征向量分别为⎪⎪⎭⎫⎝⎛121k (01≠k ), ⎪⎪⎭⎫ ⎝⎛-122k (02≠k ) 8. 先证明一个结果:若A 是Hermit 矩阵,n λλ,1分别是A 的最大、最小特征值,则)(m ax )(m ax 112x R x R x x =≠==λ, )(m ax )(m ax 12x R x R =≠==x x n λ事实上,Ax x x x x Axx x x x Axx x x x x H 1H 22H 220H H 002max 11max max )(max =≠≠≠===x R下证1λ>1μ, n λ>n μ. 令 Q =A -B , 则)(m ax m ax H H 1H 1122Qx x Bx x Ax x x x +====λ>Bx x x H 12max ==1μ( Q 正定,Qx x H >0 )同理可证 n λ>n μ.现在设 1<s <n , 则根据定理5.10及上面的结果,有)m ax (m in m ax m in H H H 1021Qx x Bx x Ax x x x P s +====λ>s x x P Bx x μ===H 1021max min 9. 显然,A B 1-的特征值就是A 相对于B 的广义特征值. 设为n λλλ,,,21 且j j j Bq Aq λ=, 0≠j q , j =1, 2, …,n 其中 n q q q ,,,21 是按B 标准正交的广义特征向量. 当 )(1A B -ρ<1时,对任意 x =0≠+++n n q q q c c c 2211)()(2211HH 22H 11H n n n n q q q A q q q Ax x c c c c c c ++++++==))((222111HH 22H 11n n n n n Bq Bq Bq q q q λλλc c c c c c ++++++ =2222211n n c c c λλλ+++ ≤i iλmax )(22221n c c c ++⋅=Bx x A B H 1)(-ρ<Bx x H反之,若对任意 x ≠0, Ax x H <Bx x H 成立,并且 )(1A B -=ρλ,Bq Aq λ=,0≠q ,则取 x=q , 于是有λ=Aq q H <1H =Bq q10. 若λ是BA 的特征值,q 是对应于λ的特征向量,即(BA )q =λq =λIq由此可知,λ是BA 的相对于单位矩阵I 的广义特征值 ,因此BAx x Ix x BAxx x R BA x x I x H 1H H 111222max max )(max )(======λ=)(maxH H 12Ax Bxx x x =≤)(max )(max H 1H 122Ax x Bx x x x == =)()(11A B λλ同理)(m in )(m in )(H H 1122Ax Bxx x x R BA x I x n ====λ≥)(m in )(m in H 1H 122Ax x Bx x x x == =)()(A B n n λλ11. 由于x ≠0时,12)()(==x x R x R ,从而5.24式等价于}0,1)(m in{m ax H 22)(2===-⨯∈x P x x R r n n P r C λ我们约定,下面的最小值都是对12=x 来取的. 令x =Qy , 则y y Ax x x R Qy P x P x P ΛH H H 2H 2H 2m in m in )(m in 0=====由于 n r n Q P ⨯-∈)(H 2C , 则在齐次线性方程组 0=Qy P H 2中,方程的个数小于未知量的个数,根据 Cramer 法则,它必有非零解. 设),,,,0,,0(~1n r r y ηηη +=,(1~2=y )为满足方程的解(容易证明这种形式的解必存在),则)(min ~min 22112~H ~H 2H 2n n r r r r y Q P y Q P y y ηληληλ ++=++==0Λ≤r λ 注意到 ⊆==}1~,~~{2H 2y y Q P y 0}1,{2H 2==y Qy P y 0,从而)(min H 2x R x P 0==)(min H 2y R Qy P 0=≤y y y R y Q P y Q P ΛH ~~~m in )~(m in H 2H 20===≤r λ 特别地,取),,(12n r q q P +=时,根据定理5.9)(min H 2x R x P r 0==λ故(5.24)式成立. 12. 我们约定:以下的最小值是对单位向量来取的,即证},1)(min{max H 22)(20C ===-⨯∈Bx P x x R r n n P r λ成立. 令 x =Qy , 则有y y x R BQy P B Bx P ΛHH2H 2m in )(m in === 设齐次线性方程组 0=BQy P H 2有形如 1~),,,,,0,,0(~21==+y y n r r ηηη 的解(不难证明这样的解一定存在),则因})({}~)(~{H 2H 200=⊆=y BQ P y y BQ P y所以)(min H 2x R B BxP ≤22112H ~~~min H 2n n r r r r y BQ P y y ηληληλ+++=++= Λ0≤r λ 特别地,取 ),,,(21H 2n r r q q q P ++=时,根据定理5.12可得r B Bx P x R λ==)(min H 20由此即知(5.44)成立.习 题 六求广义逆矩阵{1}的一般方法: 1)行变换、列置换法利用行变换矩阵S 和列置换矩阵P , 将矩阵A 化成SAP =⎪⎪⎭⎫⎝⎛O O K I r则。
矩阵论复习题 带答案1
![矩阵论复习题 带答案1](https://img.taocdn.com/s3/m/9a77ca06581b6bd97f19eaa8.png)
矩阵论复习题1设A 、B 均为n 阶正规矩阵,试证A 与B 酉相似的充分必要条件是A 与B 的特征值相同。
证明: 充分性:A 与B 的特征值相同,A 、B 均为n 阶正规矩阵,则有11,A P IP B Q IQ --== 故11111,,A P QIQ P R Q P R P Q -----==令= A 与B 酉相似 必要性:A,B 为n 阶正规矩阵,存在初等变换R,1A RBR -=11,,,I E PQ A P IP B Q EQ --==为对角矩阵,存在初等变换111,I PAP E QRAR Q ---== ,因为I,E 为对角矩阵,故I=E 。
因此A 与B 的特征值相同。
#2 作出下列矩阵的奇异值分解10(1)A 0111⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦011(2)A 200-⎡⎤=⎢⎥⎣⎦ (1)632- 6 3 2101263011,130 2 6 311206333T B AA ⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥==⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎢⎥⎢⎥⎢⎥-⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦特征值对应,特征值对应,特征值对应 2221 2 2,131222 2 2TC A A ⎡⎤⎡⎤⎢⎥⎢⎥⎡⎤⎢⎥⎢⎥==⎢⎥⎢⎥⎢⎥⎣⎦-⎢⎥⎢⎥⎣⎦⎣⎦特征值对应,特征值对应故263 2 6 32210263 2 203 2 6 3220063 2 20 33HA ⎡⎤-⎢⎥⎡⎤⎢⎥⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥-⎢⎥⎣⎦⎢⎥⎣⎦-⎢⎥⎢⎥⎣⎦(2) 2010,240401T B AA ⎡⎤⎡⎤⎡⎤==⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦特征值对应,特征值对应, 0040012201-1,2-400- 2 20-11022- 2 2T C A A ⎡⎤⎡⎤⎢⎥⎢⎥⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥==⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦特征值对应,特征值对应,特征值对应 0101022200A 001 2202022022H⎡⎤⎢⎥⎢⎥⎡⎤⎡⎤⎢⎥=-⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎢⎥⎢⎥⎢⎥⎣⎦3.求下列矩阵A 的满秩分解123002111021A ⎛⎫⎪=- ⎪⎪⎝⎭112211001230010,021110102111001230010,021101100001001230=010021-11-11L L A L L L A A ⎡⎤⎡⎤⎢⎥⎢⎥==-⎢⎥⎢⎥⎢⎥⎢⎥---⎣⎦⎣⎦⎡⎤⎡⎤⎢⎥⎢⎥==-⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦⎢⎥⎣⎦故4 设A 、B 均为n 阶Hermite 正定矩阵,证明:若B A ≥且BA AB =,则33B A ≥.证明:由于A 、B 均为n 阶Hermite 正定矩阵,且BA AB =,则AB 与BA 均为n 阶Hermite 正定矩阵。
矩阵理论 (A-B卷)及答案
![矩阵理论 (A-B卷)及答案](https://img.taocdn.com/s3/m/25c8892cbd64783e09122b6a.png)
矩阵理论矩阵理论 2006-2007 学年第 一 学期末考试试题(A 卷)及答案一、 填空题(共20分,每空2分)1、 在欧氏空间4R 中,与三个向量(1,1,1,1),(1,1,1,1),(2,1,1,3)---都正交的单位向量为:)3,1,0,4(261-±2、 已知122212221A ⎛⎫⎪= ⎪ ⎪⎝⎭, 则12__________;__________;__________;F A A A A ∞====3、 已知三阶方阵A 的初等因子为()()21,1λλ--,则A 的约当标准形为:⎪⎪⎪⎭⎫⎝⎛1100100014、 已知cos sin ()sin cos t t A x t t ⎛⎫=⎪-⎝⎭,则1()______________;()______________;|()|______________;|()|______________.d dA t A t dt dtd dA t A t dt dt-====.1,0,s i n c o s c o s s i n ,s i n c o s c o s s i n ⎪⎪⎭⎫ ⎝⎛---⎪⎪⎭⎫ ⎝⎛---t t t t t t t t 二、解答下列各题((共48分,每小题8分)1. 用最小二乘法求解线性方程组121312312312021x x x x x x x x x x +=⎧⎪+=⎪⎨++=⎪⎪+-=-⎩解:⎪⎪⎪⎪⎪⎭⎫⎝⎛-=121111101011A ,⎪⎪⎪⎪⎪⎭⎫⎝⎛-=⎪⎪⎪⎭⎫⎝⎛-=1021,111021011111b A T,-------------(3’) 所以b A x x x Ax A TT =⎪⎪⎪⎭⎫⎝⎛-=⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛--=312311164144321-----------------------(7’)求得最小二乘解为.64,613,617321-=-==x x x -------------------------------------(8’) 2. 设111111111A ⎛⎫ ⎪= ⎪ ⎪⎝⎭,试计算43()322A A A A E φ=-++。
《矩阵论》习题答案,清华大学出版社,研究生教材习题 2.2
![《矩阵论》习题答案,清华大学出版社,研究生教材习题 2.2](https://img.taocdn.com/s3/m/5f628012cc7931b765ce151b.png)
= k1 1 ( 1 , ) k 2 2 ( 2 , ) = k1 H 1 k 2 H 2 故 是线性变换.又因为
( H , H ) ( ( , ) , ( , ) ) ( , ) ( , ) 2 ( 2 2 )
, (i 1, , n 2) .如此
又因为各行与第 n 1 行正交,故 ai ,n1 0 由下往上逐行递推,即得结果.
8
17. 证:因为
( A S )( A S ) ( A S ) ( A S ) ( A S )
1 T 1 T T
5. 证:由 ( ( ( 得
cos , ( , )
( ), ( ), (β),
(β))= ( , β) ( ))=( , ) (β))= (β, β)
. ( ), (β))/| ( ), (β)> ( ) || (β)) |
= (
= cos<
1
1
,使
1
( 1 ) 1 . 令
1
( j ) j ( j 2,3, , n) ,如果 j j , j 2,3, , n ,则
2
=
,结论
成立.否则可设 2 2 ,再作镜面反射
2
:
2 2 2 2
( ) 2( , ) ,
于是
2
( 2 ) 2 ,且可验算有
2
(1 ) 1 .
如此继续下去,设经 s 次正交变换
1 , 2 , n , 1 , 2 , , n
1 , 2 , 3, , n 1 , 2 , , n
矩阵论试题及答案
![矩阵论试题及答案](https://img.taocdn.com/s3/m/506b2692ec3a87c24028c47b.png)
一.(10分)已知n n C ⨯中的两种范数a ⋅和b ⋅,对于n n C A ⨯∈,证明b a A A A +=是n n C ⨯中的范数. 解:⑴非负性:由于b a ⋅⋅,是两种范数,故当A=0时,0,0==b a A A ,所以000=+=+=b a A A A ; 当A ≠0时,0,0>>b a A A ,所以0>+=b a A A A⑵齐性:()A A A A A A A A b a b a b a ααααααα=+=+=+= ⑶三角不等式:B A B A B A B A B A B A b b a a b a +=+++≤+++=+二.(每小题10分,共20分)已知⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---=101121103A ,()⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=002t e t b , 1. 求At e2. 用矩阵函数方法求微分方程()()()()()⎪⎩⎪⎨⎧-=+=T x t b t Ax t x dt d1,0,10的解.解:1. ()1112113det ----=-λλλλA I ()()3211132-=----=λλλλ显然, )det(A I -λ的一阶子式的公因子为1, 容易知道)det(A I -λ 的二阶子式的公因子为2-λ,所以A的最小多项式为()()()23222-=--=λλλλm ,即()()022=-=I A A m ,设()()()b a g m e f t ++==λλλλλ,则()a te f t =='λλ 对于特征值2=λ有()()⎩⎨⎧=='+==a te f b a e f t t 22222,()⎩⎨⎧+-==ttet b te a 2212 所以⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----+=+=t t t t t t e bI aA e t At1010122. ()()()⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡+--+⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=⎥⎦⎤⎢⎣⎡+=⎰⎰--ds e s s s ss s e e ds s b e x e t x s t s At t As At 001010110102020 ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡+⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=t t e t e t At 1001012三.(15分)用Givens 变换求⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=2100421132403100A 的QR 分解. 解:()T01001=β,构造()s c T ,13=,1101sin ,0100cos 22232132223211=+=+===+=+==xx x s x x x c θθ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-=210031002340421121421132403100100000010010010013A T⎥⎦⎤⎢⎣⎡--=21312A , 构造),(12s c T , ()21sin ,21111cos 222122222211=+==-=+--=+==x x x s x x x c θθ⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡--⎥⎦⎤⎢⎣⎡---=1052212131111121212A T⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-=⎥⎦⎤⎢⎣⎡=2/1002/12/1002/10010010013122T T I T ,⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡-==2/12/100000100102/12/100TT Q ,⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=2/12/522344211R四.(10分)用Gerschgorin 定理证明⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=8110260110410100A 至少有两个实特征值. 解:A 的4个盖尔圆为:{}1|1≤=z z G ,{}2114|2=+≤-=z z G , {}3216|3=+≤-=z z G , {}2118|4=+≤-=z z G ,它们构成的两个连通部分为11G S =,4322G G G S =.易见,1S ,2S 都关于实轴对称且各含有1个和3个特征值,因为实矩阵的复特征值必成对出现, 故1S ,2S 必各含有一个实特征值,从而A 至少含有2个实特征值.五.(20分)已知⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡------=221221*********A ,⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡---=44111b 1. 求A 的满秩分解.2. 求+A3. 用广义逆矩阵的方法判别方程组b Ax =是否相容.4. 求方程组b Ax =的极小范数解或极小范数最小二乘解并指出所求解的类型.解 1。
11级-矩阵论试题与答案
![11级-矩阵论试题与答案](https://img.taocdn.com/s3/m/d5c32aec524de518964b7d22.png)
参考答案一(20分) V 表示实数域上次数不超过2的多项式构成的线性空间。
对2()f x ax bx c V ∀=++∈,在V 上定义变换:2[()]3(223)(4)T f x ax a b c x a b c =++++++(1)验证T 是V 上的线性变换;(2)求V 的基2,,1x x 到基2(1),1,1x x --的过渡矩阵P ; (3)求T 在基2,,1x x 下的表示矩阵A ; (4)在V 中定义内积1(,)()()f g f t g t dt =⎰,求基2,,1x x 的度量矩阵G 。
解:(1)设22111222(),()f x a x b x c g x a x b x c =++=++2121212()()()f g a a x b b x c c +=+++++[]212121212()3()2()2()3()T f g a a x a a b b c c x +=+++++++[]121212()()4()a a b b c c ++++++()()2111111132234a x a b c x a b c =++++++()()2222222232234a x a b c x a b c +++++++()()T f T g =+类似可验证: ()()T kf kT f =或把T 写成:2300[()][,,1]223114a T f x x x b c ⎡⎤⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦(1)再来验证就更方便了。
(2)由22100(1),1,1,,1210111x x x x ⎡⎤⎢⎥⎡⎤⎡⎤--=-⎣⎦⎣⎦⎢⎥⎢⎥-⎣⎦得基2,,1x x 到基2(1),1,1x x --的过渡矩阵为100210111P ⎡⎤⎢⎥=-⎢⎥⎢⎥-⎣⎦(3) 由22()321T x x x =++,()21T x x =+,(1)34T x =+得T 在基1,,2x x 下的表示矩阵为:300223114A ⎛⎫ ⎪= ⎪ ⎪⎝⎭(4) 11431112210011,54g x dx g g x dx =====⎰⎰ 11221331220011,33g x dx g g x dx =====⎰⎰11233233001,12g g xdx g dx =====⎰⎰ 故度量矩阵11154311143211132G ⎛⎫ ⎪ ⎪⎪= ⎪ ⎪ ⎪ ⎪⎝⎭二(20分) 设311121210A -⎛⎫ ⎪=- ⎪ ⎪⎝⎭(1)求A 的行列式因子、不变因子、初等因子; (2)求A 的Jordan 标准形J ; (3)求可逆矩阵P 使1P AP J -=;(4)计算Ate 并求解微分方程组。
08级-北航博士-矩阵论试题与答案
![08级-北航博士-矩阵论试题与答案](https://img.taocdn.com/s3/m/ab273e856529647d27285239.png)
一(15分)计算 (1) 已知A 可逆,求10d Ate t ⎰(用矩阵A 或其逆矩阵表示); (2)设1234(,,,)Ta a a a =α是给定的常向量,42)(⨯=ij x X 是矩阵变量,求Td()d X αX ;(3)设3阶方阵A 的特征多项式为2(6)I A λλλ-=-,且A 可对角化,求kk A A ⎪⎪⎭⎫⎝⎛∞→)(lim ρ。
二(15分)设微分方程组d d (0)xAx t x x ⎧=⎪⎪⎨⎪⎪=⎩,508316203A ⎛⎫ ⎪= ⎪ ⎪--⎝⎭,0111x ⎛⎫ ⎪= ⎪ ⎪⎝⎭(1)求A 的最小多项式)(λA m ; (3)求Ate ; (3)求该方程组的解。
三(15分)对下面矛盾方程组b Ax =312312111x x x x x x =⎧⎪++=⎨⎪+=⎩ (1)求A 的满秩分解FG A =; (2)由满秩分解计算+A ;(3)求该方程组的最小2-范数最小二乘解LS x 。
四(10分)设1113A ⎫=⎪⎭求矩阵A 的QR 分解(要求R 的对角元全为正数,方法不限)。
五(10分) 设(0,,2)TnA R n αβαβ=≠∈≥ (1)证明A 的最小多项式是2()tr()m A λλλ=-;(2)求A 的Jordan 形(需要讨论)。
六(10分)设m n r A R ⨯∈,(1)证明rank()n I A A n r +-=-;(2)0Ax =的通解是(),n n x I A A y y R +=-∀∈。
七(10分)证明矩阵2121212311122222224333333644421(1)(1)n n n n n n n n n n ---⎛⎫ ⎪⎪ ⎪ ⎪⎪= ⎪ ⎪⎪ ⎪ ⎪ ⎪+++⎝⎭A (1)能与对角矩阵相似;(2)特征值全为实数。
八(15分) 设A 是可逆矩阵,11,B A Aαβ-=-=(这里矩阵范数都是算子范数), 如果βα<,证明(1)B 是可逆矩阵;(2)11B αβ-≤-;(3)11()B A βααβ---≤-。
矩阵理论试题答案最终版
![矩阵理论试题答案最终版](https://img.taocdn.com/s3/m/6d4b4938ed630b1c59eeb5b3.png)
阵
G
为
(2, 2) (2, t + 1) (2, t 2 − 1) 2 (t + 1, 2) (t + 1, t + 1) (t + 1, t − 1) (t 2 − 1, 2) (t 2 − 1, t + 1) (t 2 − 1, t 2 − 1)
1 ∫−1 4dt 1 = ∫ 2*(t + 1)dt −1 1 ∫ 2*(t 2 − 1)dt −1 −8 4 8 3 10 −4 = 4 3 3 −8 −4 16 3 15 3
2
x ' −1 0 x 1 = + y ' 0 2 y −1 求多项式 P(x)经此仿射变换所得到的曲线,变换后的曲线是什么曲线? 解:(1)由平面的四个点我们可得如下方程。
a0 + a1 *1 + a2 *12 = 0 2 −1 a0 + a1 *(−1) + a2 *(−1) = 2 1 a0 + a1 * 2 + a2 * 2 = a + a *(−3) + a *(−3) 2 = 2 2 0 1
∫ ∫ ∫
1 −1 1
1
−1
2*(t + 1)dt
−1
(t 2 + 2t + 1)dt
(t + 1) *(t 2 − 1)dt
1 2 ∫−1 (t + 1) *(t − 1)dt 1 2 2 t dt t ( 1) *( 1) − − ∫−1
∫
1
−1
2*(t 2 − 1)dt
11-12(1)-11级-矩阵论试题与答案
![11-12(1)-11级-矩阵论试题与答案](https://img.taocdn.com/s3/m/41a5b22bbceb19e8b9f6ba24.png)
参考答案一(20分) V 表示实数域上次数不超过2的多项式构成的线性空间。
对2()f x ax bx c V ∀=++∈,在V 上定义变换:2[()]3(223)(4)T f x ax a b c x a b c =++++++(1)验证T 是V 上的线性变换;(2)求V 的基2,,1x x 到基2(1),1,1x x --的过渡矩阵P ; (3)求T 在基2,,1x x 下的表示矩阵A ; (4)在V 中定义内积1(,)()()f g f t g t dt =⎰,求基2,,1x x 的度量矩阵G 。
解:(1)设22111222(),()f x a x b x c g x a x b x c =++=++2121212()()()f g a a x b b x c c +=+++++[]212121212()3()2()2()3()T f g a a x a a b b c c x +=+++++++[]121212()()4()a a b b c c ++++++()()2111111132234a x a b c x a b c =++++++()()2222222232234a x a b c x a b c +++++++()()T f T g =+类似可验证: ()()T kf kT f =或把T 写成:2300[()][,,1]223114a T f x x x b c ⎡⎤⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦(1)再来验证就更方便了。
(2)由22100(1),1,1,,1210111x x x x ⎡⎤⎢⎥⎡⎤⎡⎤--=-⎣⎦⎣⎦⎢⎥⎢⎥-⎣⎦得基2,,1x x 到基2(1),1,1x x --的过渡矩阵为100210111P ⎡⎤⎢⎥=-⎢⎥⎢⎥-⎣⎦(3) 由22()321T x x x =++,()21T x x =+,(1)34T x =+得T 在基1,,2x x 下的表示矩阵为:300223114A ⎛⎫ ⎪= ⎪ ⎪⎝⎭(4) 11431112210011,54g x dx g g x dx =====⎰⎰11221331220011,33g x dx g g x dx =====⎰⎰11233233001,12g g xdx g dx =====⎰⎰ 故度量矩阵11154311143211132G ⎛⎫ ⎪ ⎪⎪= ⎪ ⎪ ⎪ ⎪⎝⎭二(20分) 设311121210A -⎛⎫ ⎪=- ⎪ ⎪⎝⎭(1)求A 的行列式因子、不变因子、初等因子; (2)求A 的Jordan 标准形J ; (3)求可逆矩阵P 使1P AP J -=;(4)计算Ate 并求解微分方程组。
矩阵论期末试题及答案
![矩阵论期末试题及答案](https://img.taocdn.com/s3/m/cae85d66182e453610661ed9ad51f01dc3815742.png)
矩阵论期末试题及答案1. 选择题题目1:矩阵的秩是指矩阵中非零行(列)线性无关的最大个数,下面关于矩阵秩的说法中,错误的是:A. 若矩阵A的秩为r,则只能确定 A 中有r个行(列)线性无关。
B. 若矩阵A的秩为r,则只能确定 A 中有r个坐标线性无关。
C. 设A,B为n×m矩阵,若A的秩为r,B的秩为s,则AB的秩至少为max{r,s}。
D. 同一矩阵的行秩与列秩相等。
题目2:对于阶梯形矩阵,以下说法正确的是:A. 阶梯形矩阵的行秩与列秩相等。
B. 阶梯形矩阵的行秩等于主元的个数。
C. 阶梯形矩阵的列秩等于主元的个数。
D. 阶梯形矩阵的行秩与列秩之和等于矩阵的阶数。
题目3:设A为n阶矩阵,下列说法正确的是:A. 若A为可逆矩阵,则A的行秩和列秩都为n。
B. 若A的行秩和列秩都为n,则A为可逆矩阵。
C. 若对于非零向量 x,都有Ax=0,则称矩阵A为零矩阵。
D. 若A为可逆矩阵,则方程Ax=b存在唯一解。
题目4:对于实对称矩阵A,以下说法正确的是:A. A一定有n个线性无关的特征向量。
B. A的所有特征值都是实数。
C. 若A的特征向量构成的特征子空间的维数为n,则称A为满秩矩阵。
D. A一定可以对角化。
2. 计算题题目1:已知矩阵A = [1, 2; 3, 4],求矩阵A的转置矩阵。
解答:转置矩阵的行与列互换,故矩阵A的转置矩阵为:A^T = [1, 3; 2, 4]题目2:已知矩阵B = [2, 1; -1, 3],求矩阵B的逆矩阵。
解答:逆矩阵满足BB^(-1) = I,其中I为单位矩阵。
对于矩阵B,可以使用伴随矩阵法求解:B^(-1) = (1/(ad-bc)) * [d, -b; -c, a]其中a、b、c、d分别为矩阵B的元素:B^(-1) = (1/(2*3-(-1)*1)) * [3, -1; 1, 2] = [3/7, -1/7; 1/7, 2/7]题目3:已知矩阵C = [1, 2, 3; 4, 5, 6],求矩阵C的行列式的值。
矩阵论答案习题 1.1
![矩阵论答案习题 1.1](https://img.taocdn.com/s3/m/4c7bb18a71fe910ef12df819.png)
习 题 1.11. 解: 除了由一个零向量构成的集合{}θ可以构成线性空间外,没有两个和有限(m )个向量构成的线性空间,因为数乘不封闭(k α有无限多个,k ∈p 数域).2. 解:⑴是;⑵不是,因为没有负向量;⑶不是,因为存在两向量的和向量处在第二或第四象限,即加法不封闭;⑷是;⑸不是,因为存在二个不平行某向量的和却平行于某向量,即加法不封闭.3. 解:⑴ 不是,因为 当k ∈Q 或R 时,数乘k α不封闭;⑵ 有 理域上是;实数域上不是,因为当k ∈R 时,数乘k α不封闭.⑶ 是;⑷ 是;⑸ 是;⑹ 不是,因为加法与数乘均不封闭.4. 解:是,因为全部解即为通解集合,它由基础解系列向量乘以相应常数组成,显然对解的加法与数乘运算满足二个封闭性和八条公理.5. 解:(1)是线性空间;(2)不是线性空间(加法不封闭;或因无零向量).6. 解:(1)设A 的实系数多项式()A f 的全体为(){}正整数m R a A a A a I aA f i m m ,10∈++=显然,它满足两个封闭性和八条公理,故是线性空间.(2)与(3)也都是线性空间.7. 解:是线性空间.不难验证tsin,t2sin,…,ntsin是线性无关的,且任一个形如题中的三角多项式都可由它们惟一地线性表示,所以它们是V中的一个组基.由高等数学中傅里叶(Fourier)系数知⎰=ππ2sin1itdttci.8. 解:⑴不是,因为公理2)'不成立:设r=1, s=2, α=(3, 4), 则(r+s) (3, 4)= (9, 4), 而r (3, 4) ⊕s (3, 4)=(3,4) ⊕(6, 4)= (9, 8), 所以(r+s) α≠r α⊕s α.⑵不是,因为公理1)不成立:设α= (1,2) , β= (3,4) ,则α⊕β=(1,2) ⊕(3,4) = (1,2), β⊕α= (3,4) ⊕(1,2) = (3,4) ,所以α⊕β≠β⊕α.⑶不是,因为公理2)'不成立:设r=1, s=2, α=(3,4) , 则(r+s) α=3 (3, 4)= (27, 36) 而r α⊕s α=1 (3,4)⊕2 (3,4)=(3, 4)⊕(12, 16)= (15, 20),于是(r+s) α≠r α⊕s α.⑷是.9. 证若∈βα,V,则()()()() ()()()ββααββααββααβαβαβα+++=+++=+ ++=+++=+=+)11(111111222另一方面,()()()()()()()()βαβαβαβαβαβαβαβα+++=+++=+++=++=+111112因此 ()()βαβαββαα+++=+++,从而有()()()()()()ββαβααβββααα-+++++-=-+++++-于是得 αββα+=+.10. 解:先求齐次方程组的基础解系ξ1=(3,3,2,0)T , ξ2=(-3,7,0,4)T ,即为解空间V 的一组基. 所以, dim V =2.11. 解:考察齐次式 0)1()()(32221=++-++x k x x k x x k即 0)()(3321221=++-++k x k k k x k k ,得线性方程组021=+k k321=+-k k k3=k由于系数行列式不等于零,那么只有 0321===k k k 时, 上述齐次式才对 ∀x 成立,所以x x +2, x x -2, 1+x 线性无关,且任二次多项式c bx ax ++2都可惟一地用它们来表示(因为相应的非齐次方程组有惟一解),故为基. 令 33212212)()(372k x k k k x k k x x ++-++=++得3,1,3321=-==k k k , 即坐标为 ( 3, -1, 3 ) .12. 解: ⑴ 因为 (4321,,,ββββ)=(4321,,,αααα)C ,故 C =(4321,,,αααα)1-(4321,,,ββββ)=1010*********1-311121163316502- =311121163316502- .⑵显然,向量α在基4321,,,αααα下的坐标为X =(1ξ,432,,ξξξ)T,设α在基4321,,,ββββ下的坐标为 Y =(T),,,4321ηηηη, 则Y =C 1-4321ξξξξ =311121163316502- 1-321ξξξξ=272631912773200312723319427191113194------- 4321ξξξξ = B X⑶ 如果 X = Y , 则有 X= BX ,即得齐次方程组 ( I- B )X=0 , 求 其非零解为X = k (-1, -1, -1, 1 )T, k ∈R , 即为所求 .13. 解: (1) 对nk,,2,1 =;n k k l ,,1, +=令()nn ijkla F ⨯=,其中1=kl a ,其余的0=ij a ,则{}kl F 为上三角矩阵空间的一组基,维数为()121+n n .(2)R +中任意非零元素都可作R +的基,dim R +=1. (3)I ,A ,A 2为所述线性空间的一组基,其维数为3.14. 解: (1)由已知关系式求得⎪⎪⎩⎪⎪⎨⎧+=+=+--=-++=3242134212432112242284ααβααβαααβααααβ于是,由基(I )到基(II )的过渡矩阵为⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡---=0012200112480124C (2)α在基(II )下的坐标为(2,-1,1,1)T ,再由坐标变换公式计算α在基(I )下的坐标为C (2,-1,1,1)T =(11,23,4,-5)T .(3)不难计算得det (1·I —C )=0,所以1是C 的特征值.不妨取过渡矩阵C 的对应于特征值1的一个特征向量为η,则有C η=1·η,那么α()4321,,,ββββ=η≠0,再由坐标变换公式知,α在基(I )下的坐标为ξ=C η=η,即存在非零α4V ∈,使得α在基(I )和基(II )下有相同的坐标.15. 解:不难看出,由简单基E 11,E 12,E 21,E 22改变为基(I )和基(II )的过渡矩阵分别为⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-=22211120311112021C ,⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-----=1110111121211112C则有(B 1,B 2,B 3,B 4)=(E 11,E 12,E 21,E 22)C 2=(A 1,A 2,A 3,A 4)11-C C 2故由基(I )改变到基(II )的过渡矩阵为⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡----==-1111100000111110211C C C .16. 解:(1)由简单基1,32,,x x x 改变到基(I )和基(II )的过渡矩阵为⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=11111111111C ,⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=10110111111011012C故由基(I )改变为基(II )的过渡矩阵为⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡---==-1011110010010011211C C C(2)设()[]3x p x f ∈在基(I )和基(II )下的坐标分别为()T4321,,,ξξξξα=,()T4321,,,ηηηηβ=,则有βαC =且βα=,即有()0=-βC I ,该齐次方程组的通解为()Tk 0,1,0,0=β,∈k .于是,在基(I )和基(II )下有相同坐标的全体多项式 为()()()()()()()234321,,,kxkx k x kg x g x g x g x g x f ++===β .17. 解:⑴ 设n的子集合为L ,对任意∈αL ,有),...,,(21n a a a =α, ∑==ni ia 10,对任意L ∈βα,,),...,,(21n a a a =α,),...,,(21n b b b =β 有∑∑∑====+=+++=+n i ni ni iii in n bab ab a b a 111110)(),,...,(βα又∑∑=====ni ni i in a k kaka ka k 1110),,...,(α,所以∈+βαL∈αk L因此L 是V 的子空间.⑵ 对任意∈βα,L ,,...,,(21na a a =α,),...,,(21n b b b =β , 有∑==ni ia11,∑==ni ib 11故 2)(),,...,(11111∑∑∑====+=+++=+ni ni ni iii in n bab ab a b a βα于是可知 ∉+βα L ,因此L 不是V 的子空间.18. 解:),,('3'2'1αααSpan 的基为'3'2'1,,ααα的一个最大无关组,'3'2'1,,ααα在基321,,ααα下的坐标依次为(1, -2, 3)T , (2 , 3 , 2)T , (4, 13, 0 )T 该列向量组的一个最大无关组为 (1, -2, 3)T , (2 ,3 ,2)T .因此,'3'2'1,,ααα的一个最大无关组为 '2'1,αα,即),,('3'2'1αααSpan 的一个基为'2'1,αα .19. 解:(1)因为10V n n ∈⨯,所以V 1非空.设A ,1V B ∈,则有AP=PA ,BP=PB .又因为(A+B )P=AP+BP=PA+PB=P (A+B ),(kA )P=k (AP )=k (PA )=P (kA ) (∈k ),所以1V B A ∈+,1V kA ∈,故V 1是n n R ⨯的子空间.(2)取⎥⎦⎤⎢⎣⎡=0001A ,B ⎥⎦⎤⎢⎣⎡=1000,则det A=det B =0,从而1V A ∈,1V B ∈,但⎥⎦⎤⎢⎣⎡=+1001BA ,()0det ≠+B A ,所以1V B A ∈+,故V 1不是子空间.又A A =2,从而2V A ∈,⎥⎦⎤⎢⎣⎡=00022A ,()A A 2000422≠⎥⎦⎤⎢⎣⎡=,所以22V A ∈,故V 2也不是子空间.20. 证:因为(2,-1,3,3)=(-1)(1,1,0,0)+3(1,0,1,1), (0,1,-1,-1)=(1,1,0,0)+(-1)(1,0,0,1)即生成的子空间有相同的基,所以它们生成的子空间相同.21. 解: (1)设14321V x x x x A ∈⎥⎦⎤⎢⎣⎡=,则由AP=PA 可得齐次方程组⎪⎪⎩⎪⎪⎨⎧==-=-+=-03003303334213x x x x x x求得基础解系为(1,-3,0,0)T ,(1,0,0,1)T ,从而V 1的基为⎥⎦⎤⎢⎣⎡-=00311A ,⎥⎦⎤⎢⎣⎡=10012A ,dimV 1 =2 .(2) V 1的矩阵一般形式⎥⎦⎤⎢⎣⎡-+=+=2121221103k k k k A k A k A ()R k k ∈21,.22. 证:若V 1的维数为0,则V 1与V 2都是零空间,当然相等; 若V 1的维数是0≠m,由于21V V ⊆,故V 1的任一组基m e e e ,,,21 都是V 2的线性无关组.又因V 2与V 1的维数相同,故这个线性无关组也是V 2的一组基,即V 1与V 2有相同的基,因此V 1=V 2.23. 解:设()WV a a a a ∈=4321,,,α,则有0,043214321=+++=-+-a a a a a a a a由此相加或相减可得031=+a a ,042=+a a ,从而31a a -=,42a a -=,故得 ()()()1,0,1,00,1,0,1,,,212121-+-=--=a a a a a a α.但(1,0,-1,0),(0,1,0,-1)线性无关,即为所求的基.24. 解:(1)设()22⨯=ija A ,()Vb B ij∈=⨯22,则02211=+a a ,02211=+b b ,因为()22⨯+=+ijij b a B A ,()()022221111=+++b a b a,()22⨯=ijka kA ,()()02211=+ka ka ,所以VB A ∈+,V kA ∈,又V ∈⨯220,所以V 是22⨯的子空间.(2)在V 中取⎥⎦⎤⎢⎣⎡-=10011A ,⎥⎦⎤⎢⎣⎡=01102A ,⎥⎦⎤⎢⎣⎡=01003A 它们线性无关.因为02211=+a a 即1122a a -=,于是321212111A a A a A a A ++=,因此,V的一组基为A 1,A 2,A 3,从而dim V =3.25. 解:(1){}3,,,dim 2121=ββααSpan,{}2,dim 21=ααSpan,{}2,dim 21=ββSpan故交的维数为2+2-3=1,交的一组基为(-5,2,3,4)T ,和的维数 为3,{}121,,βαα为一组基.(2){}4,,,,dim21321=ββαααSpan ,{}{}2,dim ,3,,dim 21321==ββαααSpan Span故交的维数为1,基为1β;和的维数为4,{}2321,,,βααα为一组基.26. 证:(1)设1,V ∈βα,且∑∑====ni n i iiiix ex 11εα,∑∑====ni ii i n i i y e y 11εβ则 ()()∑∑==+=+=+ni ni ii ii i iy xe y x11εβα∑∑====ni ni iiiikx ekx k 11εα (k 是数)即βα+与αk 在两组基下的坐标也是相同的,所以1V ∈+βα,1V k ∈α,故V 1是子空间.(2)因V 中每个向量在两组基下的坐标相同,所以基向量()n i e i ,,2,1 =在n e e e ,,21 下的坐标为(0,…,0,1,0,…,0)它也应为i e 在n εεε,,,21 下的坐标,于是有1=i e ()n i ii ,,2,1 ==εε.27. 证:设(){}R a a a a A V ij ji ij ij ∈===⨯,221, (){}Rb b b b B V ij ji ij ij∈-===⨯,222容易验证V 1与V 2都是V 的子空间.对任意V C ∈有 ()()TTC C C C C -++=2121且()()2121,21V CCV CCTT∈-∈-,所以21V V V+=.因为()212122V D V D V V d D ij ∈∈⇒∈=⨯且jiij ji ij dd d d -==⇒且11()2,1,0==⇒j i d ij即0=D ,所以{}021=V V ,则21V V V ⊕=.28. 证:由齐次线性方程组的理论可推知V 1是n-1维的,且有基=1α(-1,1,0,…,0),=2α(-1,0,1,0,…,0),…,=-1n α(-1,0,…,0,1).又n x x x === 21,即⎪⎪⎩⎪⎪⎨⎧=-=-=--00013221n n x x x x x x此方程组系数矩阵的秩为n -1,故解空间V 2的维数为1,令x n =1,便得V 2的一组基=β(1,1,…,1);又以121,,,-n ααα ,β为行的n 阶行列式()0,1111111000100101000111≠-=---+n n故121,,,-n ααα ,β为的一组基,且有n21V V ⊕=.29. 证:设V 是n 维线性空间,n e e e ,,21 为基,则()i e L 都是一维子空间(i =1,2,…,n ),且有()()()()V e e e L e L e L e L n n ==+++,,,2121 .又因n e e e ,,,21 是基,零向量θ表示式惟一,故这个和是直和,即()()()Ve L e L e L n =⊕⊕⊕ 21.。
矩阵论答案习题 1.2
![矩阵论答案习题 1.2](https://img.taocdn.com/s3/m/e27aa042e45c3b3567ec8b18.png)
习题 1.21. 解:因为对2的任一向量(21,x x),按对应规则都有2中惟一确定的向量与之对应,所以是2的一个变换.(1) 关于x 轴的对称变换; (2) 关于y 轴的对称变换; (3) 关于原点的对称变换; (4) 到x 轴的投影变换; (5) 到y 轴的投影变换.2. 解: (1) 不是.因为(2211ααk k +)=2211ααk k ++β≠k1(1α)+k2)()()(22112βαβαα+++=k k=2211ααk k ++)(21k k +β(2) 不是.因为(2211ααk k +)=β≠k1(1α)+k2βα)()(212k k +=(3) 不是.因为取 x =(1 , 0 , 0 ) ,1≠k 时,(k x )=(k 2,0, 0)≠k( x )= k (1, 0, 0)=(k , 0, 0) (4) 是.因为 设x =(321,,x x x ) ,y =(321,,y y y)(k 1x +k 2y )=112(x k),,2(),,1322121322y y y y y k x x x x +-++-=k1(x )+k 2( y )(5) 是.因为()()(2211x f k x f k+)=)1()1(2211+++x f k x f k=k1(f 1(x ))+k2))((2x f(6) 是.因为()()(2211x f k x f k+)=)()(022011x f k x f k+= k1(f 1(x ))+k2))((2x f(7) 不是.因为 设x =(321,,x x x) ,y =(321,,y y y)(k 1x +k 2y )= ()0),sin(),cos(22211211y k x k y k x k ++≠k 1(x )+k2( y )=)0,sin ,(cos )0,sin ,(cos 212211y y k x x k+ =()0,sin sin ,cos cos 22211211y k x k y k x k++.3. 解:1(α+β)=1[()]()11222221,,y x y x y x y x--+=++()()=-+-=1212,,y y x x 1(α)+1(β)1(k α)=1(k (x 1, x 2))()()kx x k kx kx=-=-=1212,,1(α)所以1是线性变换.同理可证2也是线性变换.(1+2)(α)= (1+2)[(x 1, x 2)]=1[(x 1, x 2)]+2[(x 1, x 2)]),(),(),(21212112x x x x x x x x --+=-+-=12(α)=1[2(α)]=1[( x 1, -x 2)]=(- x 2, -x 1)21(α)=2[1(α)]=2[( x 2, -x 1)]=( x 2, x 1) .4. 证:(1)因()()()C B A B A C B A +-+=+()()=-+-=BCCBACCA (A )+(B )()()()()=-=-=ACCA k C kA kA C kA k(A )故是线性变换.(2)(A )B +A (B )()()BC CB A B AC CA -+-==-=ABC CAB (AB )5. 解:令 ()3,,R c b a c c b a a ∈↔⎥⎦⎤⎢⎣⎡+ 即可.6. 证:设()[]nx p x f ∈,则(12-21)(f(x))=1[2(f(x))]-2[1(f(x))]=1[xf(x)]-2[f(x)]()()()()x f x f x x f x x f ='-'+=故12-21是恒等变换.7. 证:设2V∈α,则2211e k e k +=α,由于2(e 1)+ 2(e 2)=2(e 1+e 2)=e '1+e '22(e 1)-2(e 2)=2(e 1-e 2)=e '1-e '2所以,2(e 1)=e '1,2(e 2)= e '2于是1(α)=k11(e 1)+k21(e 2)2211e k e k'+'== k12(e 1)+k22(e 2)=2(α)故1=2.8. 解:(1) 因为j i ,在xoy 平面上,其投影不变,故有(i )=i ,(j)=j ,又k 垂直xoy 平面,则0)(=k , 得((i ),(j ),(k ))=(i ,j ,k ) 0010001所求矩阵为A =010001.(2) 因为,001)(γβαα++==i,010)(γβαβ++==j ,,011)(γβαγ++=+=j i所以, 所求矩阵为 A =110101 .(3) 由的定义知,(i )=((1 ,0 ,0 ))= ( 2 ,0 ,1)(j )= ((0 ,1, 0 ))= ( -1, 1 , 0)(k )=((0 ,0 ,1))= ( 0 ,1 , 0)有 ((i ),(j ),(k ))=(),,k j i1110012-所求矩阵为 A =1110012- .(4) 据题设:)())(('t f t f = 则)(1x =(bt eatcos )'=btbebt aeatatsin cos -=21bx ax-)(2x =(bteatsin )'=12bx ax +)(3x =( btteatcos )'=431bx ax x-+ )(4x =(btte atsin )'=342bx ax x++ )(5x =(bte t atcos 212)'=653bx ax x-+)(6x = (btt sin 212)'=564bx ax x++于是 ()(1x ,)(2x ,)(3x ,)(4x ,)(5x ,)(6x )()Dx x x x x x 654321,,,,,= ,所求矩阵为D =abb a a bbaa bba ---000010000100001000019. 解:(1) (123,,e e e)=(321,,e e e )1010100=(321,,e e e)C所求矩阵为 B=C 1-AC =111213212223313233a a a a a a a a a(2) (321,,e ke e)=(321,,e e e )100001k =(321,,e e e)C所求矩阵为B=C1-AC =333231232221131211akaakaakaakaa(3)(3221,,eeee+)=(321,,eee)1111=(321,,eee)C 所求矩阵为B=C1-AC=33323231132312221211222113121211aaaaaaaaaaaaaaaa+----++10. 解:由定义知()()31121,0,2εεε+==212)0,1,1()(εεε+-=-=()()23,1,0εε==所以,所求矩阵为⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-11112.11. 解:因为()()21121,2εεε'+'==()()1231,3εε'==()()2131,1εεε'+'-=-=所以,所求矩阵为⎥⎦⎤⎢⎣⎡-11132.12. 解: (1η,2η,3η)=(321,,εεε)111101011--(321,,εεε)=(1η,2η,3η)111101011--1-= (1η,2η,3η) CB=C 1-AC =111101011--21011101-111101011-- 1-= 12121211---- .13. 解:(1) (1η,2η,3η) = (321,,e e e) C ,过渡矩阵为C=(321,,e e e)1-(1η,2η,3η)=11110121 1-111122221---- =252112323123232---(2) ()(1e ,)(2e ,)(3e )=(1η,2η,3η) = (321,,e e e) C故在基{}ie 下的矩阵就是 C . (3) (()1η,(2η),(3η) ) = (1η,2η,3η) = (321,,e e e) C=()(1e ,)(2e ,)(3e ) C = (1η,2η,3η) C故在基{}iη下的矩阵仍为C . 14. 解:(1) 由于()21111110cE aE c aE +=⎥⎦⎤⎢⎣⎡=()22121210cE aE c a E +=⎥⎦⎤⎢⎣⎡=()211121100dE bE db E +=⎥⎦⎤⎢⎣⎡=()2212221dE bE d b E +=⎥⎦⎤⎢⎣⎡=故1在该基下的矩阵为⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=d cd c b a b a A 00000001类似地,可得2在该基下的矩阵为⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=d bc ad bc a A 00000002.由于3=12,所以3在该基下的矩阵为⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡==2222213d bdcdbccd ad cac bd bad abbc ab ac a A A A同理,可得4在该基下的矩阵为⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=a ca cb a b aA 0200022000204(2)由于由简单基E 11,E 12,E 21,E 22改变为给定基E 1,E 2,E 3,E 4的过渡矩阵为⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-=001110011000001C于是,4在给定基下的矩阵为⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--==-a bca b c cc a b b a C A C B 002202204115. 解: (1)将题给关系式写成矩阵形式为(()1e ,(2e ),(3e ) )()⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡11011101,,423312121321εεε即()()()B e e e 3211321321,42331212111011101,,,,εεεεεε=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=-由于()()C e e e 321321,,,,=εεε,所以有(=),,321εεε()()BCC e e e 321321,,,,εεε=故在基(II )下的矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----==256355123BC A(2)因为(=)1ε()()⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡001,,001,,321321A εεεεεε()()⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=953,,001,,321321e e e CA e e e所以()1ε在基(I )下的坐标为(3,5,9).16. 解:(1)取[]2x p 的简单基1,x ,x 2,则有()()()⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡==101110102,,1,,1,,22321xx Axx f f f从简单基改变到基f 1,f 2,f 3和g 1,g 2,g 3的过渡阵分别为 ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=5222101011C ,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=211010112C故有(g 1, g 2, g 3)=(1, x, x 2)C =()211321,,C C f f f -()()21101232121102,,,,1C C A C g g g C C Axx ---==即在基(II )下的矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---==--11211221211012C C A C A(2)因为()()()⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=-321,,321,,1123212C g g g xx x f()⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=032,,321g g g所以(f(x))=()()⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-032,,032,,321321A g g g g g g()23211354,,x x g g g +--=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-= .17. 证:设在给定基下的矩阵为()ija A =,并设C 为从旧基到新基的过渡矩阵,由于在任一组基下的矩阵相同,则有ACCA 1-=,即AC=CA ,根据“A 与一切满秩矩阵可变换”性质,即可定出A 必为数量矩阵()常数k kI A ,=.18. 解:由基321,,ηηη到基321,,εεε的过渡矩阵为⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡--=3103161213121211C故{}i ε在基下的矩阵为⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--==-46846453106111C B C B .那么,+,,, (+ )在基{}iε下的矩阵分别为⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=+2644241011151061B A ,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=60127212212661AB ,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---=123414026215291361BA ,()⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---=+3612078611442549675181B A B .19. 证:设有可逆方阵P 与Q ,使 B=P 1-AP , D=Q 1-CQ 则DB OO =CQQAPP11--O O=11--OO QPCA OOQP O=QP OO 1-CA OOQP OO即 CA OO 与 DB OO 相似.20. 证:设1r rankA=,2r rankB =,则A ,B 的行向量的极大无关组中分别含有21,r r 个行向量,设分别为11,,r αα 和21,,r ββ ,则A 的每个行向量均可由11,,r αα线性表示,B的每个行向量均可由21,,r ββ线性表示.又可A+B 的每个行向量是A 与B 的相应行向量的和,故A+B 的每个行向量均可由11,,r αα,21,,r ββ 线性表示.因此A+B 的行向量组的极大无关组中所含向量的个数不超过21r r+,即()rankBrankA B A rank+≤+.21. 证:设()n B r rankAβββ,,,,21 ==,则()()0,,,,,,2121===n n A A A A AB ββββββ ,所以θβ=1A ,θβ=2A ,…,θβ=n A .这就说明B 的列向量nβββ,,,21 都是以A 为系数矩阵的齐次方程组的解.由于rr a n k A =,所以解空间的维数为r n -,从而知nββ,,1的极大无关组所含向量的个数rn -≤,即rn rankB-≤,因此有nr n r rankB rankA =-+≤+ .22. 证:设A ,B 为同一数域上的n m ⨯与g n ⨯阶矩阵,显然,方程组BX=θ的解向量X 也满足方程组()θ=XAB ,记{}θ==BX X U , (){}θ==XAB XV则VU⊂,于是dinV AB rank n rankB n U =-≤-=)(dim即()rankBAB rank ≤.又由于()()()TT TAB rank AB rankAB rank ==rankArankAT=≤因此 (){}r a n k B r a n k AAB rank,min ≤.23. 证:由上题知,()rankAA A rank T≤,现在只需证明()rankAA A rank T≥即可.考虑线性方程组θ=AX A T,设()T nx x x X,,,21 =是方程组的一组解,将θ=AX A T两边左乘X T ,得θ=AX A XTT,即()θ=AX AX T,所以θ=AX,即{}{}00=⊂=AX X AX A XT.于是()rankAn A Arankn T-≤-即有()rankAA Arank T≤,故有()rankAA Arank T= ,并且有()()rankArankA A A rankA ArankTTTT T===即有()()TTAA rankA ArankrankA==.注:对复矩阵A ,上式不一定成立.例如⎥⎦⎤⎢⎣⎡-=11ii A ,1=rankA .由于⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡-⎥⎦⎤⎢⎣⎡-=00001111i i i i A AT故()=A Arank T.此时,相应的关系式应为()()A A rankAA rankrankA **== .24. 证:必要性.由上题已证得,充分性只要在AX=θ两边左乘A T 即可.25. 证:(1)因为nrankA=,故nm≥,不妨设A 的前n 行线性无关,且构成的n 阶满秩方阵为A 1,后n m -行构成的矩阵为A 2,则⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡=B A B A B A A AB 2121所以()()rankBB A rankAB rank =≥1,但()r a n k B AB rank ≤,故()r a n k BAB rank =.(2) 同理可证. 26. 解:(1)⎥⎦⎤⎢⎣⎡=0011A ,⎥⎦⎤⎢⎣⎡--=0011B ;(2)⎥⎦⎤⎢⎣⎡=0001A , ⎥⎦⎤⎢⎣⎡=0020B ; (3)⎥⎦⎤⎢⎣⎡=0001A ,⎥⎦⎤⎢⎣⎡=1000B .27. 证:因为()()()n m rankBrankA AB rankrankC,min ,min ≤≤=,但n m >,故m 阶方阵C 的秩mn <≤,所以C 是降秩的.28. 解:先求矩阵A 的特征值和特征向量为 121==λλ,()T20,6,31-=α23-=λ,()T1,0,02=α故的特征值和特征向量为121==λλ,()3212063e e ek +-,0≠k23-=λ,3ke , 0≠k .29. 解:(1)121==λλ,()T1,0,11=α,()T0,1,02=α,13-=λ,()T1,0,13-=α.(2)1=λ,()T2,1,31-=α,i143,2±=λ,().10,1432,1463,2Ti i -±-±=α(3)121==λλ,()T20,6,31-=α,23-=λ,()T1,0,02=α;(4)2321===λλλ,()T0,0,1,11=α,()T0,1,0,12=α,()T1,0,0,13=α,24-=λ,()T1,1,1,14---=α.以上分别求出了在不同基下所对应矩阵A 的特征值和特征向量,则类似于上题的方法,可求出不同基下所对应的特征值和特征向量.30. 解:(1),(2),(4)为非亏损矩阵(单纯矩阵),其变换矩阵P 分别为(1)⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-101010101;(2)⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----+---+101021432143211461463i ii i;(4)⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡---11101010011111.31. 证 : 设在给定基下的矩阵为A ,则()n i A i ni i ,,2,100det 1=≠⇔≠=∏=λλ32. 证:设rrankA =,则存在满秩矩阵P 与Q ,使得()0,r I diagPAQ =,故有()C I diagBPPAQQPABPr 0,111==---其中()ijC BQQC==--11, 这说明AB 与diag (0,rI)相似.另一方面,有()0,111r I C d i a g P A Q BPQBAQ Q==---,说明BA 与()0,r I Cdiag相似.不难验证有()()()()0,det 0,det r r I CdigI C I diagI -=-λλ故AB 与BA 有相同的特征多项式,因此有相同的特征值和迹.33. 证:设A 的任一特征值为λ,λ的对应于λ的特征子空间记为λV .对λV 中任意向量Z 有BZZ B BAZ ABZ λλ===故λV BZ ∈,因此λV 为线性变换()BZZ =的不变子空间,即()BZZ =为λV 中的线性变换,此线性变换的特征向量即为B 的特征向量,但它又属于λV ,由λV 的定义知它又是A 的特征向量,即A 与B 有公共的特征向量.34. 证:设A 的特征值为iλ,则A 2的特征值为2iλ,由12=iλ有1±=i λ,若所有1=i λ,则A+I 为满秩矩阵,故由(A+I )(A-I )=A 2-I 2=0,有A=I .35. 证:不失一般性,设B 非奇异,有AB=B -1(BA )B 即AB 与BA 相似,所以它们有相同的特征多项式.36. 证:设A 为n 阶方阵,具其秩为r ,由于A 2=A ,知A 的列向量都是A 的对应于特征值1的特征向量.因γ=rankA ,故特征值1的几何重复度为r ,其代数重复度至少为r .又θ=AX的基础解系中的向量个数为r n -,即A 的特征值0的几何重复度为r n -,其代数重复度不小于r n -.由于一个n 阶矩阵的特征值的代数重复度之和恰为n ,故特征值1和0的代数重复度分别为r 和r n -.可见A 除了1和0外无其它特征值,而1和0的几何重复度之和为n ,故A 为非亏损矩阵,所以A 相似()0,rIdiag .37. 证:用反证法.若A 可相似于对角矩阵,对角元素即为A 的特征值,且至少有一个不为0.但是,由于λαα=A ,于是θαλα==kkA,因为θα≠,所以0=kλ,故0=λ,即A 的特征值都等于0,矛盾.38. 证:由XAX λ=,有()Xk kX A λ=,XX A kk λ=,从而有()()Xf X A f λ=,即X 也是()A f 的特征向量.显然()A f 的特征值为()λf ,即为λ的多项式.39. 解:取3中的自然基321,,εεε,计算得(1ε)=(0 , -2 ,-2 ) , (2ε)=(-2 , 3 ,-1 ) , (3ε)=(-2 , -1 ,3 )则在基321,,εεε下的矩阵为⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡------=31213222A而A的特征值为2,4321-===λλλ,与之对应的特征向量为()TX0,2,11-=,()TX2,0,12-=,()TX1,1,23=,则有()2,4,41-=Λ=-diagACC,其中⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=112211C.由()321,,ααα=(321,,εεε)C求得3R的另一组基为()0,2,12211-=+-=εεα,()2,0,12312-=+-=εεα,()1,1,223213=++=εεεα,显然在该基下的矩阵为对角阵Λ.40. 解:(1)因为()21xx+=,()21xx+=,()xx+=12,所以在基1,x,x2下的矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=111111A.(2)由于A原特征值为121-==λλ,23=λ,相应的特征向量为()TX01,11-=,()TX1,12-=,()TX11,13=,存在可逆阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=111111C,使⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--==-2111AACC,故所求的基321,,eee为()()()2223211,1,1,,1,,xxxxCxxeee+++-+-==.41. 解:(1)对任意的V∈βα,及Rlk∈,,有()()()()()BBlBBkBlklkBlkTTTTTTββααβαβαβα-+-=+-+=+=k ((α))+l ((β))故是线性变换.(2)取V的简单基⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡-=1,1,11321AAA由于(),111⎥⎦⎤⎢⎣⎡-=A⎥⎦⎤⎢⎣⎡-=11)(2A,⎥⎦⎤⎢⎣⎡-=11)(3A,所以在基321,,AAA下的矩阵为⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---=111111RR的特征值为2,0321===λλλ,对应的线性无关的特征向量为(1,1,0)T,(0,1,1)T,(0,1,-1)T,令⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=111111C,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=Λ2则有Λ=-RCC1,由(B1,B2,B3)=(A1,A2,A3)C求得V的另一组基为⎥⎦⎤⎢⎣⎡-=+=111211AAB,⎥⎦⎤⎢⎣⎡=+=11322AAB,⎥⎦⎤⎢⎣⎡-=-=11323AAB,在该基下的矩阵为Λ.42. 证:(1)取n的一组基neee,,,21,设1(neee,,,21)=(n eee,,,21)A2(neee,,,21)=(n eee,,,21)B则有 (12)(n e e e ,,,21)=(n e e e ,,,21)(AB )(1+2)(ne e e,,,21)=(ne e e,,,21)(A+B )由12=1+2,可得AB=A+B ,从而有B T A T =A T +B T .若1是1的特征值,则 1也是A 的特征值,从而1也是A T 的特征值,设A T 对应于特征值1的特征向量为β,即()0≠=βββTA,由(B T A T )β=(A T +B T )β,可得B T β=β+B T β,即β=0,这与β是A T 的特征向量矛盾,故1不是1的特征值.(2)因1有几个不同的特征值,所以1有n 个线性无关的特征向量.记1的对应于特征值nλλλ,,,21的线性无关的特征向量为X 1,X 2,…,X n ,即1ii iXXλ= (i =1,2,…,n ),则X 1,X 2,…,X n 作为n的基时,1的矩阵A =diag (nλλλ,,,21).再由AB=A+B 及1≠iλ知 ()⎪⎪⎭⎫ ⎝⎛---=-=-1,,1,122111n n d i a g A I A B λλλλλλ 即1与2在该基X 1,X 2,…,X n 下的矩阵都为对角阵.43. 证:对任意0λαV ∈,有1(αλα0)∈.由于1(2(α))=2(1(α))=2(λα)所以2()0λαV ∈, 故0λV 是2的不变子空间.44. 解:(1) ('3'2''1,,,ee e e )=( 4321,,,e e e e )C=(4321,,,e e e e)2111011*********---∴ B=C1-AC =242134040168101042699631-----(2) 先求核θ(1-) . 设η=)(1θ-在基{}iε下的坐标为(4321,,,x x x x),(θη=)在此基下的坐标为(0,0,0,0),于是A4321x x x x = 000此时A 的秩为2,解之,得基础解系 )1,0,2,1(,)0,1,23,2(21--=--=ξξ,作 421232112,232e e e e e e +--=+--=ηη. 显然,21,ηη为核θ(1-)的一组基,故核由21,ηη所张成,即 θ(1-)=Span (21,ηη) .再求值域(4) . 由于((e 1),(e 2),(e 3),(e 4)) = (4321,,,e e e e) A而A 的秩为2,所以(e 1),(e 2),(e 3),(e 4)的秩也为2,且(e 1),(e 2)线性无关,故组成(4)的基,从而(4)=Span ((e 1),(e 2)) .(3) 由(2)知21,ηη是核θ(1-)的一组基,易知2121,,,ηηe e为4的一组基,由于有(2121,,,ηηe e)=(4321,,,e e e e )1100223101201---- = (4321,,,e e e e) D所以在此基下的矩阵为B=D 1-AD =220021001290025-(4) (2)知(e 1),(e 2)是值域(4)的一组基,又知(e 1),(e 2),43,e e为4的一组基,有((e1),(e2),43,e e )=(4321,,,e e e e )122012100210001--=(4321,,,e e e e) T所以在此基下的矩阵为B=T 1-A T =00002231291225 .45. 证:取3中的自然基321,,εεε,因为(+ )(1ε)=(1ε)+ (1ε)=(1,0,0)+(0,0,1)=(1,0,1)同理有(+ )(2ε)=(2,0,0),(+ )(3ε) =(1,1,0)这表明+ 将基321,,εεε变换成3中的另一组基1e =(1,0,1),2e =(2,0,0),3e =(1,1,0)(易证它们线性无关). 又因(+ )(3)是3的子空间,而321,,e e e是(+ )(3)的最大无关组,故这个子空间的维数为3,再由习题1.1中第22题的结果知(+ )(3)=3(此时取V 2=3).46. 解:因为2[(321,,a a a)]=([(321,,a a a)])=()[]21,,0a a =(0,0,1a )所以2的像子空间为R (2)(){}R a a ∈=,0,核子空间为N (2)(){}R a a a a ∈=2232,,,因此,dimR (2)=1,其一组基为(0,0,1);dim N (2)=2,其一组基为(0,1,0),(0,0,1).47. 证 :(1)由的定义容易验证满足可加性和齐次性,所以它为线性变换.又因2[(nx x x,,,21)]=[()()2111,,,0,0],,,0--=n n x x x x ,…推知n[()()0,,0,0],,,21==n x x x,即nϑ=(零变换).(2)若[()()()0,,0,0,,,0],,,1121==-n n x x x x x,则1x =2x =…=1-n x=0即()θ1-为由一切形如(0,0,…,n x )的向量构成的子空间,它是一维子空间,则(0,…,0,1)是它的基.又由维数关系 dim (V)+dim1-(θ)=n便得 (V) 的维数等于 n-1 .48. 证 :(1)必要性.若(V)= (V),对任V∈α,则∈)(α(V )=(V) ,故存在V∈β,使=)(α)(β,=)(α2)(β= )(β=)(α ,由α的任意性有 = .同理可证= .充分性.若= ,=, 对任(∈)α(V )V ⊂,=)(α)(α= ()(α)∈ (V ) , 故(V)⊂ (V) ;同理可证 (V)⊂(V).(2)必要性.若()=-θ1)(1θ-,对任V∈β,作-β)(β,因(-β)(β)=)(β-2)(β=)(β-)(β=θ ,所以,-β)(β∈()θ1- =)(1θ- ,则 (-β)(β)= θ,故=)(β )(β,由β的任意性有 =. 同理,通过作β- )(β, 可得=.充分性.若= , =, 对任 ∈α()θ1-,由=)(α=)(α()(α)= (θ)=θ ,故()⊂-θ1)(1θ-;同理,由任∈β)(1θ- ,可得 ()⊂-θ1)(1θ-.。
矩阵论B卷及答案上海交通大学
![矩阵论B卷及答案上海交通大学](https://img.taocdn.com/s3/m/5ea521d5b14e852458fb577d.png)
上海交通大学《矩阵论》 B 卷姓名: 班级: 学号: 一、 单项选择题(每题3分,共15分)(答案AAAAB )1. 设1()kk A f A k ∞==∑收敛,则A 可以取为A. 0091⎡⎤⎢⎥--⎣⎦ B. 0091⎡⎤⎢⎥-⎣⎦C. 1011⎡⎤⎢⎥-⎣⎦ D. 100.11⎡⎤⎢⎥⎣⎦注:A 的特征值为0,-1,而1kk x k∞=∑的收敛区间为[1,1)-2. 设M 是n 阶实数矩阵,若M 的n 个盖尔圆彼此分离,则M A. 可以对角化 B. 不能对角化 C. 幂收敛 D. 幂发散 注:由定理M 有n 个不同特征值,故可以对角化3. 设211112121M --⎡⎤⎢⎥=--⎢⎥⎢⎥--⎣⎦的,则M 不存在 A. QR 分解 B. 满秩分解 C. 奇异值分解 D. 谱分解 注:M 的秩为2故无QR 分解 4. 设,则A = A.214020031-⎛⎫ ⎪ ⎪ ⎪⎝⎭B.114010061-⎛⎫ ⎪ ⎪ ⎪⎝⎭C.224020031-⎛⎫ ⎪ ⎪ ⎪⎝⎭D.204020061-⎛⎫⎪ ⎪ ⎪⎝⎭注:'()At Ate Ae =,故()'A At t A Ae Aee ====5. 设3阶矩阵A 满足多项式222(4)(3)A E A E O --=, 且其最小多项式m (x )满足条件(1)(3)1m m ==,则A 可以相似于A. 200130002M ⎡⎤⎢⎥=⎢⎥⎢⎥-⎣⎦B. 20002002M ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦C. 20012002M ⎡⎤-⎢⎥=-⎢⎥⎢⎥-⎣⎦ D. 200030013M -⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦注:B 中矩阵的最小多项式为()22x - 二、填空题(每题3分,共15分) 1. 设220A A -=,则cos 2A = [ E+()2cos11A - ]。
2.已知n nA C ⨯∈,并且()1A ρ<,则矩阵幂级数kk kA ∞=∑=[()2AE A - ]。
矩阵理论试题及其解答
![矩阵理论试题及其解答](https://img.taocdn.com/s3/m/17bcc648d1f34693dbef3e31.png)
矩阵论试题一.设n x x x ,,,21 是欧氏空间nV 中的一组向量,),(y x 表示x 与y 的内积,令111212122212(,)(,)(,)(,)(,)(,)(,)(,)(,)n n n n n n x x x x x x x x x x x x A x x x x x x ⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦试证明0)det(≠A 的充要条件为向量12,,,n x x x 线性无关。
证明:若11220n n l x l x l x +++=,则用(1,2,,)i x i n =依次与此式作内积有:1122(,)(,)(,)0i i n n i l x x l x x l x x +++= (1,2,,)i n =即111221112122221122(,)(,)(,)0(,)(,)(,)0(,)(,)(,)0n n n nn n n n n l x x l x x l x x l x x l x x l x x l x x l x x l x x +++=⎧⎪+++=⎪⎨⎪⎪+++=⎩ 此式仅有零解的充分必要条件为det()0A ≠,故12,,n x x x 线性无关的充分必要条件为det()0A ≠二.设⎥⎦⎤⎢⎣⎡=3112A ⎥⎦⎤⎢⎣⎡=∆02.05.00A试估计下述值∞-∞--∆+-111)(AA A A解: 1311125A --⎛⎫= ⎪-⎝⎭ ,145A -∞=, 2 1.51.23A A ⎛⎫+∆= ⎪⎝⎭1553 1.51714() 1.222104.2721A A -⎛⎫-⎪-⎛⎫+∆== ⎪ ⎪- ⎪⎝⎭- ⎪⎝⎭,1119()70A A A --∞-+∆=, 111()190.3456A A A A----+∆=≈。
三.设⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=442101002A ,求tA e 和)(R t e A ∈。
解 3200111(2)(2)044244I A λλλλλλλλ--=-=-=-=----容易验证A 的最小多项式为2()(2)m λλ=-,取2()(2)ϕλλ=-, (1)令()t f e λλ=,设()()()f g a b λϕλλλ=++,则有22(2)(2)t t f e f te ⎧=⎨'=⎩ 即 222tta b e b te⎧+=⎨=⎩ 从而22(12),t t a t e b te =-=,于是22()(12)t tt e te γλλ=-+,故22()()(12)tA t t e f A A t e I te A γ===-+2((12))t t I tA e =-+2100122412t t t t e t t t ⎛⎫ ⎪=-- ⎪ ⎪-+⎝⎭(2)2100111243A e e ⎛⎫ ⎪=-- ⎪ ⎪-⎝⎭(在(1)的tAe 中令1t =即可)四.设nm C A ⨯∈,试叙述A 的奇异分解指的是什么?并试求矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=111001A 的奇异值分解式。
矩阵论自测题答案完整版
![矩阵论自测题答案完整版](https://img.taocdn.com/s3/m/b7bc745a77232f60ddcca1e4.png)
自测题一一、解: 因为齐次方程0211211=++x x x 的基础解系为T T T )1,0,0,0(,)0,1,0,1(,)0,0,1,1(321=-=-=ααα,所以V 的一组基为⎥⎦⎤⎢⎣⎡-=00111A ,⎥⎦⎤⎢⎣⎡-=01012A ,⎥⎦⎤⎢⎣⎡=10003A ,显然A 1,A 2,A 3线性无关.V a a a a A ∈⎥⎦⎤⎢⎣⎡=∀22211211,有211211a a a --=,于是有 322221112A a A a A a A ++=,即A 可由A 1,A 2,A 3线性表示,故A 1,A 2,A 3为V 的一组基;且dimV=3.二、解: (1)R V X X ∈∈∀λ,.21,有21212122112211(2211)(X X X X X X ⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡=+⎥⎦⎤⎢⎣⎡=+)=+)(1X )(2X,λλλλ=⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡=11122112211)(X XX )(1X .又因任意两个二阶方阵的乘积、和仍为二阶方阵,故V V '=,即为从V 到V (自身)的线性算子,所以为线性变换.(2)先求的自然基22211211,,,E E E E 下的矩阵A :2221121111020020100012211)(E E E E E +++=⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡=2221121112200)(E E E E E +++=2221121121020)(E E E E E +++=2221121122200)(E E E E E +++=故 ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=2020020210100101A . 显然, 从自然基到所给基4321,,,E E E E 的过渡过阵为⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=1000110011101111C ;⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡---=-10001100011000111C , 所以在4321,,,E E E E 下的矩阵为⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡----==-40200202231201011AC C B .三、解: (1)不是内积. 因为)(,A A tr A A +=)(2)(22211a a A tr +==并不一定大于零.(2)因为 1),(10==⎰dt te g f t ,⎰===1021231)(),(dt t f f f ,⎰-===1212212)21()(),(e dt e g g g t,g f g f ⋅≤),( ,即 212)21(311-⋅≤e .四、解: (1)2)2)(1(--=-λλλA I ,2,1321===λλλ.行列式因子:1,1,)2)(1(1223==--=D D D λλ ; 不变因子:2321)2)(1()(,1)()(--===λλλλλd d d ; 初等因子:2)2(),1(--λλ .(2)⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎦⎤⎢⎣⎡=2121~21J JJ A ; (3)对T X A I )1,1,0(0)(,1111==-=ξλ得;T X A I )1,0,1(0)2(,2222==-=ξλ得.再求22=λ的一个广义特征向量: 由23)2(X X A I -=- 得 T )1,1,1(3=ξ .取 ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=-111110111,1111011101P P ,:,)(则令SinA A f =[][]⎥⎦⎤⎢⎣⎡===2sin 02cos 2sin )(,1sin )()(22111λλλJ f f J f , 故 12211)])([)],([(s i n -⋅=P J f J f P d i a g A λλ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=1111101112s i n 2c o s 2s i n 1s i n 111101110⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-+-+----+=2c o s 1s i n 1s i n 2c o s 1s i n 2c o s 2s i n 2s i n 1s i n 1s i n 2s i n 1s i n 2s i n 2c o s 2c o s 2s i n 2c o s .五、解: (1)130143014,83,3014max max 31<=⎭⎬⎫⎩⎨⎧==∑=∞j ij ia A , 故 0lim =∞→k k A ;(2)∑∞=0k k x 的收敛半径为1,而1<∞A 若在其收敛域内,故∑∞=0k kA绝对收敛,且∑∞=--=01)(k k A I A .六、解:(1) 6,5,15,511====∞∞m m A A A A ;又因为⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---=-322232223511A ,571=∞-A . 所以 7557)(1=⨯==∞∞-∞A A A c o n d ;1,5,)1)(5(3212-===+-=-λλλλλλA I .故 5l i m )(==i iA λρ. (2)因为031221,0121≠-==∆≠=∆,故可分解. (3) -+-r B B B ,,均可取1-B .七、证: 设T n T n y y y Y x x x X ),,,(,),,,(2121 ==分别为在两组基下的坐标,则CY X =,当Y X =时有:θ=-X C I )(,则0=-C I ,故C 有特征值1.反之,由于1是过渡过阵C 的一个特征值,设其对应的特征向量为X ,即X CX ⋅=1,由坐标变换公式知,在基1β,2β,n β, 下的坐标CX Y =,故有X Y =.八、证: A 对称正定,∴存在正交矩阵C ,使D diag AC C n T ==),,,(21λλλ其中特征值)n i i ,,2,1(0 =>λ.对θ≠∀X ,有CX Y =,使DY Y y y y AX X T n n T =+++=2222211λλλ ,其中θ≠y .令n nn z y z y z y λλλ1,,1,1222111===.于是θλλλ≠=⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎣⎡=Z BZ Z Y n ,11121故Z Z Z DB B Z DY Y T T T T ==)(. 而)(P B C PZ BZ C Y C X T T T ====令,所以Z Z Z AP P Z AX X DY Y T T T T T ===)(.因Z 的任意性,知I AP P T =,即A 与I 相合.自测题二一、解: I a A a I A I A k k k k k k λλλ===,,,I a a a A a A a A a I a n n k n )(102210λλ+++=++++∀ , 其中R a a a n n ∈+++λλ 10,故取V 的基为I ,1dim =V .二、解:(1)从基2,,1x x 到基22,,1x x x x ++的过渡矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=110011001C ,所以在新基下的坐标为 ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--0111011C .(2)不是线性变换.因为≠++++++=+),,2()(33221121111b a b a b a b b a a βα+)(α)(β.(3)不是内积. 如0341212121<-=-==),),(,(),,(α,不具有非负性.三、解:(1)利用Schmidt 正交化方法,得T e )1,1,1(1=,T e )1,0,1(2-=,T e )61,31,61(3-=.(2)从321,,ααα到321,,e e e 的过渡阵⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡---=610021103421C , ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=-6003102211C ,故所求⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡--==-00000034211AC C B .四、解:(1)由于A 实对称,所以存在正交阵Q ,使⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=∧=n AQ Q T21. 故2)1+=∧==n n AQ Q A F F T F (;n A =)('ρ;n A =2;n A cond =2)(;1)(21=-mA .(2)取⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=000000111 A ,⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=111 α ,得n a A n A ===212,1,α,即有212ααA A >.五、解: (1)3)1(201335212+=+-+---=-λλλλλA I ;1321-===λλλ. 33)1()(+=λλD ,所以,不变因子为3321)1()(,1)()(+===λλλλd d d ;初等因子为3)1(+λ. 故A 的Jordan标准形⎪⎪⎪⎭⎫ ⎝⎛=100110011J .(2)cos A 的Jordan标准形为:J =⎪⎪⎪⎪⎪⎭⎫⎝⎛------)1cos(00)1sin()1cos(0)1cos(21)1sin()1cos(.六、证:(1)因173.01<=A ;故;0lim =∞→kk A(2)因A 有范数小于1,故∑∞=0k k A 绝对收敛;且其和的形式为1)(--A I .七、解:⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛⎪⎪⎪⎭⎫ ⎝⎛--=00032103101~230121121A ;取⎪⎪⎪⎭⎫⎝⎛--=302121B ,⎪⎪⎪⎪⎭⎫⎝⎛=32103101C ; 则有BC A =(最大秩分解);1)()(12==λλD DT T B B B B 1)(-+=, 1)(-+=T T CC C C ,则 +++=B C A ,所以, 方程b AX =的极小范数最小二乘解为b A X +=.八、证:(1)因为 A C A AC C A n T 2)1(,=-=-所以,则有,0)1(2>-=n C n必为偶数.(2)设T n x x x X X AX ],,,[,21 ==λ的分量中绝对值最大者为kx ,则X AX λ=的第k 个方程∑==nj jkj k x a x 1λ;∑∑==≤=nj jkjnj j kj k x a x a x 11λ;∑∑==<≤≤nj nj kj kj kja x x a 111λ,故有1<λ.自测题三一、 解:(1)不是. 设B B A A T T -==,,则)(T T B A B A -=+=T T B A B A )()(+≠-(一般情况下), 又)()(B A B A B A T +-≠-=+(一般情况下),即V B A ∈+.(2)⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡+++=+++∀001)(111010 n n n n d a d a a D a D a I a⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡+++++100)(10 n n n n d a d a a , 故得一组基为⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡100,,001 ,且n V =dim .二、解: (1)123)(22++=x x x,12)(+=x x, 43)1(+=x,在基1,,2x x 下的矩阵为:⎪⎪⎪⎭⎫⎝⎛=411322003A .(2))5)(1)(3(41132203---=-------=-λλλλλλλA I ,可见矩阵A 有三个不同的单根1,3,5,故 A 可以对角化,即可以对角化.(3)设度量矩阵33)(⨯=ij C C ,则⎰⎰====1010213124114151C dx x C dx x C , ⎰⎰=====1102223121331,31dx x C C dx x C ,⎰⎰=====10331032231,21dx C xdx C C . 故⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛=12131213141314151C .三、解:设3322113)(ααααx x x ++=,使得)(1α,)(2α,)(3α是标准正交的.∵)(1α,)(2α已标准正交化,∴()(1α,)(2α)=()(2α,)(3α)=0,)(3α=1,即得⎪⎩⎪⎨⎧=++=+-=-+1022022232221321321x x x x x x x x x ;解得:32,32,31321==-=x x x ; 即()().22313213αααα++-=.因为)(1α,)(2α,)(3α为标准正交基,且把标准正交基变为标准正交基,故为正交变换, 它在基321,,ααα下的矩阵表示为⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡---=32321323132313232A .四、解: 由自测题一中第四题(2)知A 的Jordan 标准形为⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=2121J ,相似变换矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=111101110T . 由T )321321,,(),,(αααβββ=,求得3V 的一组基为3213312321,,αααβααβααβ++=+=+=,则在该基下的矩阵为J .五、证: 当0=X 时,000===F F X α;当θ≠X 时,0≠T X α ; 从而0>=FTX X α. ,C k ∈∀ FT FTX k kx kX αα()(===X k X k FT=α,FTFTFTT FTY X Y X Y X Y X ααααα+≤+=+=+)(=Y X +,因此 , X 是向量范数. 又因为FTT FTA X AX AX )()(αα==X AA X FFTFT=≤α,因此 , F A 与X 相容.六、解:)6(2-=-λλλA I ,特征根为0,6321===λλλ;则6)(=A ρ.由于A A 62=,故A 可以对角化, 即存在可逆矩阵C ,使1006-⎪⎪⎪⎭⎫ ⎝⎛=C C A ;1001)(-⎪⎪⎪⎭⎫ ⎝⎛=C C A Aρ. 故得.61001001lim )(lim 11A C C C C A A kk kk =⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫⎝⎛--∞→∞→ρ七、证: ⇒设1)(<A ρ,取0)](1[21>-=A ρε,对于矩阵A ,存在矩阵范数⋅,使121)()(<+=+≤A e A A ερ . 1)(<≤⇐A A ρ 便得证.八、证:(1) 1-====AB B A B A B A T T , 同理,有1-==T T T B A AB .(2) B A B A B A B A B A T T +=+=+--)(11=AB ()AB B A T -=+, 得2即有,0=+B A 0=+B A .自测题四一、 解:(1)21111011201010011)(E E E E E T +=⎥⎦⎤⎢⎣⎡-=⎥⎦⎤⎢⎣⎡-+⎥⎦⎤⎢⎣⎡-=+=,21222011200110101)(E E E E E T+=⎥⎦⎤⎢⎣⎡-=⎥⎦⎤⎢⎣⎡-+⎥⎦⎤⎢⎣⎡-=+=,33332200010001000)(E E E E T=⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡=+=, 所以在E 1,E 2,E 3下的矩阵为⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=200011011A . (2) 设有一组基321,,e e e ,从E 1 ,E 2 ,E 3到e 1 ,e 2 ,e 3的过渡矩阵设为C ,即C E E E e e e ),,(),,(321321=再设A 在e 1 ,e 2 ,e 3下的矩阵为B , 则 AC C B 1-=.要使B 为对角阵,即找一个可逆矩阵C ,使AC C 1-为对角阵. 因为2)2(211011-=-----=-λλλλλλA I ,对0=λ,求得特征向量()T 0,1,1-,对λ=2,求得两个线性无关的特征向量()T 0,1,1,T )1,0,0(.令⎪⎪⎪⎭⎫ ⎝⎛-=100011011C ,得 ⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡-=-10002121021211C ,则AC C B 1-=为对角阵. 由()()⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=100011011,,,,321321E E E e e e ,可得⎥⎦⎤⎢⎣⎡-=⎥⎦⎤⎢⎣⎡-+⎥⎦⎤⎢⎣⎡-=+-=011001010011211E E e⎥⎦⎤⎢⎣⎡-=⎥⎦⎤⎢⎣⎡-+⎥⎦⎤⎢⎣⎡-=+=011201010011212E E e ⎥⎦⎤⎢⎣⎡==100033E e .二、证: 易得()()()122111,,,1,αααααα==0=,()()()()()(),1,,0,,,1,,0,,332332221331======αααααααααααα即11)(α=e ,22)(α=e ,33)(α=e 也是标准正交基,故是正交变换.三、解:(1)令T Y )0,,0,,(21 ηξ=,由Y HX = ,知X HX Y ==; 取 Y X YX Y X X Y X X --=--=0η ; Y YY 10=,构造初等反射矩阵 T I H ηη2-= ,则有Y Y X HX ==0.(2))3)(5(16)1(12812--=--=--=-λλλλλλA I . 因此 3,521==λλ ,所以5m ax )(==i iA λρ;因为65)(<=A ρ,故矩阵幂级数收敛.四、解: 由正交矩阵行(列)向量组标准正交,得12122=+⎪⎭⎫⎝⎛a12122=+⎪⎭⎫ ⎝⎛b 02=+bc a四组解是:⎪⎪⎪⎩⎪⎪⎪⎨⎧-===212121c b a , ⎪⎪⎪⎩⎪⎪⎪⎨⎧=-==212121c b a , ⎪⎪⎪⎩⎪⎪⎪⎨⎧==-=212121c b a , ⎪⎪⎪⎩⎪⎪⎪⎨⎧-=-=-=212121c b a .五、解: (1){}∑====31162,4,6m ax m axi ijja A ;{}∑=∞===3153,4,5m ax m ax j ij ia A;{}9max =⋅=∞ij m a n A.因为 ()()221--=-λλλA I,2,1321===λλλ , 故2m ax )(==i iA λρ.(2) 031≠=∆,0521132≠==∆ ,故可以进行LU 分解 .(3)易得2)(,3)(==B R A R ,所以6)(=⊗B A R ,B 的特征根为2,121==μμ ,故B A ⊗的特征根为4,2,4,2,2,1231322122111======μλμλμλμλμλμλ.2)(B A ⊗的特征根为:1,4,4,16,4,16.(4)∵02≠=B ∴B 可逆,且⎥⎦⎤⎢⎣⎡-=-1032211B ,所以-+-r B B B ,,均可取为:⎥⎦⎤⎢⎣⎡-=-1032211B . (5)A 的Jordan标准形为:⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=2121J . (6)对应于11=λ的特征向量T )11,0(, ,对应于22=λ的线性无关的特征向量只有一个T )1,0,1(,再求一个广义特征向量T )1,1,1(. 令TT ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=111101110,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---=-1111101111T .令 AA f 1)(= , 则1))((11=λJ f ;⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=214121)((22λJ f . 12211))(),(()(-⋅⋅=T J J diay T A f λλ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡-⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=111110111210041210001111101110⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---=53322211141.六、解:(1)由X AX λ=,即0)(=-X I A λ,若λ不是A 的特征根,则0≠-I A λ,所以0)(=-X I A λ只有零解,故0dim =λV .若λ是A 的特征根,则0=-IA λ,所以0)(=-X I A λ有非零解.设r I A R =-)(λ,则r n V -=λdim .(2) 设T I A ωω2-= 其中ω为单位向量1=ωωT .则)2)(2(2T T I I A ωωωω--=T T T T w I ωωωωωωωω422+--=I I T T =+-=ωωωω44.七、 证:(1)设()由于二,0≠∈m R X 次型()()0≥==AX AX AX A X BX X T T T T , 所以B 为半正定矩阵.(2)当A 的列向量组线性无关时,若X ≠0,则AX ≠0, 故())(AX AX BX X T T =>0 ,即A 为正定矩阵.八、证:(1)λ为非奇异,λ为A 的特征值,故λ≠0 , 而λ1为1-A 的特征值,据特征值上界原理, 有11-≤A λ,即11-≥Aλ. (2) 对0≠∀X ,由已知有BXA X XB A A 11)(--+=+BXA X 1--≥XB A X 1--≥XB A )1(1--=由已知11-<AB , 即 11<-A B ,故知0≠∀X , 0)1()(11>-≥+--X B A X B A A ;即对0≠∀X , 有0)(1≠+-X B A A ,即0)(1=+-X B A A 无非零解.故0)(11≠+=+--B A A B A A , 从而0≠+B A ,即A +B 可逆.自测题五一、 解:(1) 在V 1中,⎪⎪⎭⎫⎝⎛+-=⎪⎪⎭⎫ ⎝⎛=4324324321x x x x x x x xx x A ⎪⎭⎫⎝⎛+⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛=100101010011432x x x . 令⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫⎝⎛=1001,0101,0011321E E E , 因321,,E E E 线性无关,由定义知,它们是1V 的基,且3dim 1=V .(2)[]212,BB L V = 因为21,B B 线性无关; 2dim 2=V .),,,,(2132121B B E E E L V V =+在22⨯R 的标准基下,将21321,,,,B B E E E 对应的坐标向量21321,,,,ββααα排成矩阵, 并做初等变换⎪⎪⎪⎪⎪⎭⎫⎝⎛---⎪⎪⎪⎪⎪⎭⎫⎝⎛--=10000031000111001111~13100020102000101111),,,,(21321ββααα, 可见 4)dim(21=+V V .由维数定理145)dim (dim dim )dim (212121=-=+-+=V V V V V V .二、解:(1) 因为,过渡阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=111111C ,且⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=-111111C ,所以α在α1,α2,α3下的坐标为=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-3211a a a C ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--23121a a a a a .(2)设,21λλV V X ∈则有()X X A 1λ=与()X X A 2λ=,两式相减得()021=-X λλ,由于21λλ≠,所在地只有X=0,故[]0dim 21=λλV V .三、解:取[]3X P 中的简单基,,,,132x x x 由于)1(=,12x -,)(3x x x -=221)(x x +=, 33)(x x x +-= ,则在1,x ,32,x x 下的矩阵为⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡----=1010010110100101A . A 的特征值为:2,04321====λλλλ , 相应的特征向量为:⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡1010,0101,1010,0101. 令 ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=Λ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--=2200,1010010110100101C , 则Λ=-AC C 1. 再由()()C x x x f f f f 324321,,,1,,,= , 求得[]3x P 中另一组基:()34233221)(,1)()(,1x x x f x x f x x x f x x f -=-=+=+=,.四、解: (1) ⎰⎰⎪⎪⎭⎫⎝⎛=-1101dt dt de Adt e AtAt)(1I e A A -=-.(2)当j i ≠时0)(=j i εε;故度量矩阵⎪⎪⎪⎪⎪⎭⎫⎝⎛=n A 21.五、解: (1),9,1,3,3121====∞m T XX XX X3,4,3===∞∞XX XX XX T m T FT .(2))1()(23+=λλλD ,易得1)()(12==λλD D . ∴ 不变因子)1()(,1)()(2321+===λλλλλd d d ;初等因子)1(,2+λλ.A 的Jordan标准形为:⎪⎪⎪⎭⎫ ⎝⎛-=100000010J .六、解: (1)⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-−−→−⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=000001101101112101101011行变换A ,令⎥⎦⎤⎢⎣⎡-=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=01101101,211011C B , 则 A=BC . 其中B 为列最大秩矩阵, C 为行最大秩矩阵 .(2) ⎥⎦⎤⎢⎣⎡--=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛==--+121033312111016332)(11TT B B B B ,⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-=⎪⎪⎭⎫ ⎝⎛--⎪⎪⎪⎪⎪⎭⎫⎝⎛-==--+1221311251211301111001)(11T T CC C C , 所以 ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡---=⎥⎦⎤⎢⎣⎡--⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-==+++14527533014515112103312213112151B C A .(3) ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡----==+10111501515151413145275330145151b A X .七、证明提示:类似习题4.1第16题(1)的证明.八、证明:AC A B A ++=⇒因为两边左乘矩阵A ,有C A AA B A AA )()(++=,故 AB=AC .AC AB =⇐因为,设+A 为A 的加号定则,两边左乘+A ,有AC A AB A ++=.自测题六一、解:(1) 当V x x x x X ∈⎪⎭⎫⎝⎛=22211211时,由02112=+x x 得⎪⎭⎫⎝⎛-+⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛=011010000001212211X X X X .取 ⎪⎪⎭⎫⎝⎛-=⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛=0110,1000,0001321E E E , 因线性无关,则它们是V的一个基.(2)⎪⎪⎭⎫⎝⎛-=-=0110)(111B E E B E T T ;⎪⎪⎭⎫ ⎝⎛=-=0000)(222B E E B E TT ;⎪⎪⎭⎫ ⎝⎛-=-=0220)(333B E E B E TT ;故在基321,,E E E 下的矩阵为:⎪⎪⎪⎭⎫⎝⎛-=201000000A .(3)将A 对角化,取⎪⎪⎪⎭⎫⎝⎛=110001020C 使 ⎪⎪⎪⎭⎫ ⎝⎛=-2001AC C ;设所求基为321,,Y Y Y ,有:()()C E E E Y Y Y 321321,,,,=.得⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛-=⎪⎭⎫⎝⎛=0110,0112,1000321Y Y Y,则在基321,,Y Y Y 下的矩阵为对角形.二、解: (1) )1(4963752542-=---+---=-λλλλλλA I,A 的特征根 1,0321===λλλ;行列式因子 )1()(23-=λλλD ,易得 1)()(12==λλD D ;不变因子 )1()(1)()(2321-===λλλλλd d d ;初等因子1,2-λλ.(2) A 的Jordan 标准形为 ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=100000010J ;(3) ∵ 01621511,0121≠-=--=∆≠-=∆;∴ A 能进行LU 分解.三、解:(1).13214,1010,00022322122⎥⎦⎤⎢⎣⎡+=⎥⎥⎦⎤⎢⎢⎣⎡--=⎥⎦⎤⎢⎣⎡=-t t t dt dA t dt dA dt A d .(2)⎥⎦⎤⎢⎣⎡=00032121312x x dX df .四、解:(1) 由)(21I B A +=,得I A A I A B I A B +-=-=-=44)2(,2222,显然, 当且仅当I B =2时,有A A =2.(2) 因B A B BA AB A B BA AB A B A +=+++=+++=+222)(,得,0=+BA AB 即 ,BA AB -=两端右乘B 得 BAB AB -=2, 从而 AB B AB )(-=,由于幂等阵B 的任意性,故0=AB .五、解: (1)∵ m x x x 21两两正交的单位向量.∴)(21m x x x A =为列满秩矩阵,故T T T A A A A A ==-+1)(.(2)∵⎪⎭⎫ ⎝⎛=101k A k ,且∑∞=-12)1(k k k与∑∞=-1)1(k kk 都收敛;∴ ∑∞=-12)1(k kk A k 收敛.(3)∵ 762+-=-λλλA I,而)2()52)(76(37291912222234++++-=+-+-λλλλλλλλ;由于0762=+-I A A ;∴原式⎪⎭⎫⎝⎛-=+=-3217231)2(1I A . (4)∵ A 的特征根为n)2,1(,,i i =;B 的特征根为m )21(,,,j j =λ;∴B A ⊗的特征根为j i λ n;2,1(,,i =m)21,,,j =.六、证: (1) 当0=A 时,设A 的最大秩分解为A=BC.则 C B C B B C B C B A A D ~=⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛= . 而[]()H HHH B BB B B B B 1~-+⎭⎬⎫⎩⎨⎧⎪⎪⎭⎫ ⎝⎛=()[][]++-==B B B BB B H HH21211.[]++++++⋅==B B C B C D 21~[]++=A A 21.当A =0时上式也成立.(2) 经计算A a a a A )(2321213++-= . 于是A A a a a AXA =++-=-31232221)(,A a a a X 1232221)(-++-=是A 的一个减号逆.(3)()I e e e e e e A A A A AT A TA A T ===-=-,..,所以因为.故 A e 为正交矩阵.七、证:(1) 设 R V n ∈∀∈μλβα,,,,,则00),()(ααμβλαμβλαμβλα+++=+k)),(()),((0000ααββμααααλk k +++==λ)(α+μ)(β.所以是线性变换.(2)是正交变换),(),(αααα=⇔T T ,即 ),(),(),(),(2),(0020220αααααααααα=++k k , 得[]0),(2),(0020=+ααααk k .由n V ∈α的任意性,上式等价于0),(20=+ααk ,所以 22200212),(2n k +++=-= αα .八、证: 由舒尔定理知,存在西矩阵U 及上三角矩阵()ij r R =,使得R AU U H =,因此有H H H R U A U =,从而得H H H RR U AA U =.又因为()()()H H H H RR tr U AA U tr AA tr ==, ①由于R 主对角线上的元素都是A 的特征值,故由①式得2112121ij nj ni ij ni i ni r r ∑∑∑∑====≤=λ, ②而②式端是R 的Frobenius 范数的平方,又因在酉相似(即R AU U H =)下矩阵的F 范数不变,所以211211ij ni ni ijni n i a r ∑∑∑∑===== ③综合②、③两式便得到所需证的不等式.又不等式②取等号当用仅当i≠j 时都有0=ij r ,即A 酉相似于能角形矩阵,也就是A 为正规矩阵.自测题七一、 解:(1)由02421=-+a a a ,得基础解系)0,0,1,2(1-=α,)0,1,0,0(2=α,)1,0,0,1(3=α;所以V 1的一组基为321,,ααα,且3dim 1=V .因为),(),,(2132121ββαααL L V V +=+),,,,(21321ββαααL =,易知1321,,,βααα是21321,,,,ββααα的一个极大无关组,故4)dim (21=+V V ,21V V +的一组基为1321,,,βααα.(2)251433221121,ββξαααξξk k k k k V V +=++=⇔∈∀ .所以 025********=--++ββαααk k k k k . 解此方程组得),,133,2,2(),,,,(54321---=k k k k k . 所以21V V 的一组基为)3,2,21---=,(ξ,且1)dim (21=V V .二、解:(1)211111)(cE aE E +=221212)(cE aE E +=211121)(dE bE E +=221222)(dE bE E +=即⎪⎪⎪⎪⎪⎭⎫⎝⎛=d cd c b a b a E E E E E E E E 00000000),,,(),,,(2221121122211211, 故A =⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡d cd c b a b a00000000 ; (2) 由,B A AB +=得到 I I B A AB B A AB =+--=--,0 ,即I I B I A =--))((, 显然I A -与I B - 均为阶可逆方阵,于是有II A I B =--))((,即 I I B A BA =+--,亦即0=--B A BA , 故B A BA +=,从而 AB BA =.三、解: (1))2()1(232011012λλλλλλ--=---=-E A,)2()1()(23λλλ--=D ,1)(2=λD , 1)(1=λD .)2()1()()()(,1)()()(,1)(22331221λλλλλλλλλ--=====D D d D D d d ,所以初等因子为:λλ--2,)1(2.A 的Jordan 标准形为⎪⎪⎪⎭⎫ ⎝⎛200010011. (2)()n I A tr dAd=. (3)两边求导数,利用,At AtAe e dtd = 且,0Ie = 得 ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---=133131113A .四、解:(1)∑==iij ja A 5m ax 1;∑==∞jij ia A 5m ax .(2)122212221---------=-λλλλA I )5()1(2-+=λλ ,5,1321=-==λλλ;故 5m ax )(==i iA λρ;⎪⎪⎭⎫ ⎝⎛--=-3122411B ,故∞-∞∞⋅=1)(B BB cond 54145=⨯⨯=. (3) 2,3==rankB rankA ;623)(=⨯=⊗B A rank .)4)(1(26521232--=-+-=----=-λλλλλλλB I ,所以4,121==λλ,故 B A ⊗的特征值为:20,4,4,5,1,1'6'5'4'3'2'1=-=-==-=-=λλλλλλ(4) ∵0≠A ,1-A 存在,∴ ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡===--+-3222322235112221222111A A A .五、解:(1)⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=000032102101~321043211111A , BC A =⎥⎦⎤⎢⎣⎡--⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=32102101102111. (2)∵ 2=rankA ;2):(=b A rank ;∴ b AX =相容.(3)∵⎪⎪⎪⎭⎫ ⎝⎛=142062*********T AA ;⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛---==--211030010502152011070)(T T m AA A A , ∴ 极小范数解⎪⎪⎪⎪⎪⎭⎫ ⎝⎛==-1234101b A X m.六、解:(1)0max≠=x P A 2121022maxmax--≠≠===PAP yy PAP PXPAX XAX x x PP .(2)A 的4个盖尔圆为它们构成的两个连通部分为11G S =, G G G S 322=4.易见,1S 与S 2都关于实轴对称.由于实矩阵的复特征值必成共轭出现,所以S 1中含A 的一个实特征值,而S 2中至少含A 的一个实特征值.因此A 至少有两个实特征值.七.证:(1)设为正交变换,λ为的特征值 , 则有()0()≠=αλαα,),(αα=()(α,)(α)),(),(2ααλλαλα==.∵),(>αα, ∴12=λ,故 1±=λ ;(2)设λ为的任一特征根,α为的属于λ的一个特征向量,即0,)(≠=αλαα,则1,11)(2,1222-=⇒=⇒==λλααλα.记11=λ的特征子空间为,1V 12-=λ的特征子空间为1-V .对V ∈∀α有=α(+α)(α) 2 + (-α)(α) 2 ,而 (+α)(α) 2∈,1V (-α)(α) 2 ∈1-V ,所以 11-+=V V V. 又⇒∈∀-11V V α,)(αα=且,)(αα-=;{}{}{}{},28,36,24,14321≤-=≤-=≤-=≤=g g G g g G g g G g g G得 αα-= ,即0=α,故11-⊕=V V V .自测题八一、解:(1)在已知基)(),(),(321t f t f t f 下的矩阵为:⎪⎪⎪⎭⎫ ⎝⎛------=111323221A ;(2) (⎪⎪⎪⎭⎫ ⎝⎛=321),,1())(2t t t f ;基2,,1t t 且到基)(),(),(321t f t f t f 的过渡矩阵为:⎪⎪⎪⎭⎫ ⎝⎛=101110102C ;则21321234321))(),(,)(())((t t C t f t f t f t f -+-=⎪⎪⎪⎭⎫ ⎝⎛=-.(3) 设度量矩阵33)(⨯=ij d D , 则⎰⎰=====11021121121,11tdt d d dt d ; ⎰⎰=====1012222311331,31dt t d dt t d d ; ⎰⎰=====1014333322351,41dt t d dt t d d ; 故⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛=51413141312131211D .二、解:(1) 令 矩阵,3)(I A A f -= 若A 的特征值为λ,则)(A f 的特征值是3)(-=λλf ,故)(A f n 的个特征值为32)2(,,3)6(,1)4(,1)2(-===-=n n f f f f .从而 ))32(531(3)(-⋅⋅-=-=n I A A f .(2) 2)1)(2(224023638--=+-+---=-λλλλλλA I ;特征根为1,2321===λλλ.行列式因子:23)1)(2()(--=λλλD ,1)()(12==λλD D ; 不变因子:2321)1)(2()(;1)()(--===λλλλλd d d ;初等因子: 2)1(),2(--λλ; 故A 的Jordan 标准形为⎪⎪⎪⎭⎫ ⎝⎛=100110002J .三、解:(1)由于A 实对称,所以易求得非奇异矩阵P ,使Λ=-AP P 1, 其中⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=Λ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--=2200,1001011001101001P ,于是12211-⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=P e e P e t t At=12111000011--⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡+⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡P P e P P t =⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡+-+--+-+t t ttttt te ee e e e e e 2222222210101100110100121. (2) X ()()Tt t At e e X e t ⎪⎪⎭⎫ ⎝⎛-==22,0,0,0.四、解:(1)6=∞A ;2)4)(2(224)4(31213232-+=--=--=-λλλλλλλλλA I ; 特征根为4,2321==-=λλλ;则 4)(=A ρ.(2)2)3(,3)(==R A R∴ 6)(=⊗B A R ;B 的特征根3,421==μμ,∴ B A ⊗的全部特征根为:-8,-6,16,16,12,12. (3)∵⎪⎪⎪⎪⎭⎫ ⎝⎛-=-310125411B ,∴+-B B l ,可取1-B .五、解:α1()T 4,0,3=,构造⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=3040504035113R ,113140430735A A R =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=. 同理,构造R A R R =⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=5135165735,3404300055112323.令 ()==TR R Q 2313⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---012202015012161551, 则 A=QR.六、证:(1)∵ A 为对称正定矩阵, ∴≠∀α有:>Aα,当且仅当0≠α时,有0=Aα;对R R ∈∀有:A T AkAk k αααα==;βββαααβαβαβαA A A T T T A++=++=+),(2)()(AAAAβαβα+=+≤2)(, (2)∵ IAA AA AA A A T T T T ==--11))(())((;∴1)(-T T AA A 是A 的右逆.(3)因为1-=A ,且A 为正交矩阵,所以有T T T A I A A I A A AA A I )()(+=+=+=+,则 AI A I A A I T +-=+=+)(,即 0=+A I .故A 一定有特征根-1.七、证: ()(),1111A a a A I f n n n n -++++=-=--λλλλλ 因为 由()0=A f 得()01111=-++++--I A A a A a A nn n n ,即A ()()I A I a A a A n n n n 112111+----=+++ ,故 ()()I a A a AAA n n n 12111111--++-+++-= .自测题九一、解: 不是. 如取α=(1,2),β=(3,4),()().,4,3,2,1αββααββα⊕≠⊕=⊕=⊕则有.二、解:(1)令⎥⎦⎤⎢⎣⎡--=1111A ,则V X AX X ∈=,)(.VY X ∈∀,,P k ∈∀,则=+=+)()(Y X A YX )(X +)(Y ,kkX =)()(X ,所以是线性变换. (2)⎥⎦⎤⎢⎣⎡-==0101)(1111AE E ,⎥⎦⎤⎢⎣⎡-==1010)(1212AE E ,⎥⎦⎤⎢⎣⎡-==0101)(2121AE E,⎥⎦⎤⎢⎣⎡-==1010)(2222AE E ,设在基22211211,,,E E E E 下的矩阵为B ,则⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡----=1010010110100101B .(3)令),,,(4321ββββ=B 其中i β为B 的列向量,由于 2)(=B rank ,且21,ββ是4321,,,ββββ的一个极大线性无关组, 所以dim2)(=V ,且),()(21B B L V =,其中⎥⎦⎤⎢⎣⎡-==0101),,,(1222112111βE E E E B , ⎥⎦⎤⎢⎣⎡-==1010),,,(2222112112βE E E E B , 且21,B B 为)(V 的一组基,得dimKer =4-dim (V)=2.令⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡00004321x x x x B ,得基础解系⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=1010,010121ξξ. 记 ⎥⎦⎤⎢⎣⎡==⎥⎦⎤⎢⎣⎡==1010),,,(,0101),,,(22221121141222112113ξξE E E E B E E E E B , 则ker),(43B B L =,且43,B B 为Ker的一组基.三、解: 非负性. A=0时,A 0,0,0,0;0,0,0〉=〉≠===A A A A A A bHa bHa 从而时从而.相容性. 设A ,B ∈C n n ⨯,则有()()().B A BBAA AB BAAB AB AB bHabHa bHbHaa bHa ⋅=++≤+≤+=同样可验证齐次性与三角不等式.在此A 是矩阵范数.四、解:(1)FG A ,A =⎥⎦⎤⎢⎣⎡-⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-−→−11101101412101000011101101行.(2)⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡--==--+303241012120663)(11TTTF F F F F . ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-=⎥⎦⎤⎢⎣⎡==--+11111001313003)(11T T T G GG G G . ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--==+++54131473032410361F G A . (3)b b AA b A T =-=++,)1,1,0,1(,故b AX =有解,极小范数解为T b A X )1,1,0,1(0-==+.五、解: (1)因2,3==rankB rankA ,得623)()()(=⨯=⋅=⊗B rank A rank B A rank .令0)2)(7(=+-=-λλλB I ,特征值2,721-==μμ.所以B A ⊗的所有特征值为:4,14,14,2,7,7161514321=-=-=-='='='λλλλλλ;10976)14()2(3232-=-⋅-==⊗B A B A .(2)∵ B 的特征值2,721-==λλ,∴I B B B f 3)(2+-=的特征值453772'1=+-=λ;113)2()2(2'2=+---=λ.六、解: ,11120013221111⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=-e ββ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=-=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=122212221312,111311111T I H ωωω 令,1102003131⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡= A H ⎥⎦⎤⎢⎣⎡-=⎥⎦⎤⎢⎣⎡⋅-⎥⎦⎤⎢⎣⎡-⎥⎦⎤⎢⎣⎡=-⎥⎦⎤⎢⎣⎡=1101110210,11201221e A ββ ⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡=-=⎥⎦⎤⎢⎣⎡-=2011,01102,1121122222A H I H Tωωω 所以取QR A R H H Q =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=⎥⎦⎤⎢⎣⎡=得211313,21212222131121.七、证:(1)令 ),,(11-=n L W αα ,其中11,,-n αα 线性无关.通过标准正交化,将11,,-n αα 变为W 的一个标准正交基11,,-n ηη .由已知可得1,,2,10,-=>=<n i i ηα;因而11,,-n ηη ,α线性无关.把α单位化,令ααη||1=n ,于是{}n n ηηη--,,,11 与{}n n ηηη,,,11- 均为V 的标准正交基.同时,由题设,1,,2,1,)(-==n i i i ηη,而n n ηη-=)(,则把标准正交基{}n n ηηη,,,11- 变为标准正交基,故为正交变换. (2)因为为正交变换,(n ααα,,,21 )=(n ααα,,,21 )A ,所以A 为正交矩阵.又 A 的所有特征值n λλλ,,,21 都为实数,故有,T T AA I A A ==即A 为实的正规矩阵,从而存在正交矩阵Q ,使得Λ=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=321λλλAQ Q T , 则A =()A Q Q Q Q A Q Q Y TTT T =Λ=Λ=Λ,,即A 为实对称矩阵,故A 是对称变换.八、证:(1)设A 的特征根是n λλ,,1 ,令λλ-=1)(f ,则AI A f -=)(的特征根是,1,,11n λλ-- 由题设i λ-1〈1,n i ,,1 =, 故,111 --i λ即20 i λ,因此,,,,1,20n i i =λ进而n n 2||||01<<λλ ,然而n d A λλ 1||==,故n n d 2|,|||01<=<λλ .(2)设A 的三个特征根为321,,λλλ,则32132312123213)()(||)(λλλλλλλλλλλλλλλλλ-+++++-=-=A I f ,由于A 是奇数阶正交方阵,且1||=A ,易证奇数维欧氏空间中的旋转变换一定有特征值1,因此不妨设11=λ,则1||32321===A λλλλλ,于是323231213211λλλλλλλλλλλ++=++=++,从而1||)(23-+-=-=λλλλλt t A I f .其中321λλ++=t 为实数(因32,λλ或均为实数或为一对共轭复数).又由于正交方阵的特征根的模为1.故有22,)(32323232≤+≤-+≤+≤+-λλλλλλλλ,所以31132≤++≤-λλ,即31≤≤-t .由哈密顿-凯莱定理知:023=-+-I tA tA A .自测题十一、解:(1)因为,2=rankA 求得θ=AX 的基础解系()(),9,0,21,2,0,9,24,121T T -=-=ξξ即为V 的一组基,且dimV =2.(2) 设A 为P 上任一n 阶方阵,则)(21T A A +为对称阵,)(21T A A -为反对称阵,且A=)(21T A A ++)(21T A A -,得21V V P n n +=⨯. 又若21V V B ∈∀ , 则有T B B =, 且T B B -=, 从而 θ=B , 则{}θ=21V V , 故21V V P n n ⊕=⨯.二、解:(1)∈∀ξ⇒-)(1θθξ=)(.设ξ在基4321,,,εεεε下的坐标为),,,(4321x x x x,则(ξ)在基4321,,,εεεε下的坐标为⎪⎪⎪⎪⎭⎫⎝⎛4321x x x x A .且(ξ)θ=及 ⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛0004321 x x x x A , 其中⎪⎪⎪⎪⎭⎫ ⎝⎛--→⎪⎪⎪⎪⎭⎫ ⎝⎛--------=00000000101001011111111111111111A . 得基础解系⎪⎪⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎪⎪⎭⎫⎝⎛1010,0101;取)(1θ-中两个线性无关的解向量⎩⎨⎧+=+=422311εεξεεξ, 所以),()(211ξξθL =-,dim2)(1=-θ.(2)由于)(1θ-中有一组基1ξ,2ξ,所以取432121,,,,,εεεεξξ,易知4321,,,εεξξ线性无关,则4321,,,εεξξ构成V 的一组基.设由基4321,,,εεεε到基4321,,,εεξξ的过渡矩阵为C ,则⎪⎪⎪⎪⎪⎭⎫⎝⎛--⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=-101001010010001,10100101001000011=C C ,所以在4321,,,εεξξ下的矩阵为 ⎪⎪⎪⎪⎪⎭⎫⎝⎛----=-22002200110011001AC C .三、解:(1)先由rankA=n ,即A 的列向量组线性无关,证A T A 是正定矩阵(见自测题四中第七题),再由习题2-1第7题知,R n 构成一个欧氏空间.(2)令C=A T A =(c ij ),()ij j i j i c C ==εεεε,所以自然基在该内积定义下的度量矩阵为C=A T A.四、(1)证:∵A 是幂收敛的,∴()()B A A A B n n n ===22lim lim lim .(2)解:令⎪⎪⎭⎫ ⎝⎛-==014112B A ,1212<⇒-=-λλλB I , ∴ B 是幂收敛.∴ 原级数和为()⎪⎪⎭⎫ ⎝⎛-=--04141B I . (3)解:设A的最大秩分解式为:⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫⎝⎛===10010110012AI FG A ,则⎪⎭⎫⎝⎛=⎪⎪⎪⎭⎫⎝⎛⎪⎭⎫ ⎝⎛==1002011001010101A A F F H H .显然()⎪⎪⎭⎫⎝⎛==⎪⎪⎭⎫⎝⎛=--1001)(,10021211I GG F F H H,.0102102101010110021)()(1111⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛==----+F F F F GG G A H H H。
矩阵论试题及答案可编辑全文
![矩阵论试题及答案可编辑全文](https://img.taocdn.com/s3/m/1b1b03a35ebfc77da26925c52cc58bd63086930b.png)
2006矩阵论试题答案一.填空(每题4分,共40分)1. 设−−=41311221222832A ,则A 的值域4(){,R }R A y y Ax x ==∈的维数=)(dim A R 2 .2. 设A 的若当标准型−−−=10000011000001100000020000012000002J ,则A 的最小多项式=)(λψm 32(1)(2)λλ+−.3. 设110430102A −=−,则()5432333h A A A A A A =−++−=110430102−− −−. 4. 设埃尔米特阵为 −−+=2005111i i i i A , 则矩阵A 为 正定的 埃尔米特阵.5. 在3R 中有下列两组向量:()13,1,2Tα=−−,()21,1,1Tα=−,()32,3,1Tα=−; ()11,1,1Tβ=,()21,2,3Tβ=,()32,0,1Tβ=,则由321,,ααα到321,,βββ的过渡矩阵=P 619113421270−−−−−− −− .6.设33CA ×∈,21332211{}ij m j i A a ===∑∑,H AA 的非零特征值分别为15 ,5 ,3,则=2mA.7. 设12102101, 11111137A B −== −−,12,V V 分别为齐次线性方程组 0Ax =,0Bx =的解空间,则=)dim(21V V ∩ 1 .8. 设1(1)1(1)121()321nn n n n n n A n n n n +−−=++ −,则lim n n A →∞=1311e .9. 设213121202A −=,则A 的 LDU 分解为 A =100121012/51 2001123205200115004/5001− − − 10.设 −=5221A ,=0242B ,则2448204048102040100A B−−−⊗=. 二.(10分)设T 为n 维欧氏空间V 中的线性变换,且满足:),(),(Ty x y Tx −=,试证明:T 在标准正交基下的矩阵A 为反对称阵(T A A −=)证明:设n ααα,,,21 为V 的标准正交基,n n ij a A ×=}{,下证:ji ij a a −=: 由=),,,(21n T ααα A n ),,,(21ααα 知n ni i i i a a a T αααα+++= 2211,n nj j j j a a a T αααα+++= 2211, ),(),(j i j i T T αααα−=;=),(j i T ααji j n ni i i a a a a =+++),(2211αααα , =),(j i T ααij n nj j j i a a a a =+++),(2211αααα , 所以:ji ij a a −=.三.(10分)在复数域上求矩阵−−−=7137341024A 的若当标准形J ,并求出可逆矩阵P 使得J AP P =−1.解: A 的若当标准形210021002J=. 令123(,,)P p p p =,则有112123232,2,2Ap p Ap p p Ap p p ==+=+;1213262100621062104170,417,4173150315315p p p p p −−−−=−=−= −−−解得:123(2,1,1),(0,1,0),(1,2,1)T T Tp p p ===− , 201112101P=−.四. (10分)已知 =654321x x x x x xX ,162534()sin()x x f X e x x x x =++,求dXdf . 解答:16161234652543225516cos()cos()x x x x ff f x x x df dX ff f x x x x e x x x x x x x x x e ∂∂∂∂∂∂== ∂∂∂ ∂∂∂. 五.(10分)已知311202113A −=−−−,求4sin()A π,Ae .解:3||(2)E A λλ−=−,A 的最小多项式2)2()(−=λλϕ .待定系数一:令24sin ()(2)q a b πλλλλ=−++,则21,0a b b +==,4sin()A E π=;令2()(2)e q a b λλλλ=−++,则222,a b e b e +==.222211212112A e e e E e A −−=−+=− −−.待定系数二:令324sin ()(2)q a b c πλλλλλ=−+++,则22222414018,8,32216a b c b c a b c c ππππ ++=+=⇒=−==− =− ; 224sin()(44)32A E E A A E ππ=−−+=.令32()(2)e q a b c λλλλλ=−+++,则2222222414,,22a b c e b c e a e b e c e c e++= +=⇒==−== ; 2221()2211212112A e e E A A e −−− =− +−−= .六.(10分)设−=01200110A ,求A 的奇异值分解. 解答一:=5002A A H ,A 的奇异值为5,2; 00Σ= , 25H HV A AV = ,1001V =; 1100100100200100U AV −−− =Σ==; 00000000U− =; 0000010001 0 000 0 000A=.解答二:=5002A A H ,那么A 的奇异值为5,2,A A H对应于特征值5,2的标准特征向量为 = =01,1021x x ,=0110V ; 再计算H AA 的标准正交特征向量,解得分别与5,2,0,0对应的四个标准正交特征向量=0520511υ, −=2102102υ,−=0510523υ,=2102104υ,−−=210210051052210210052051U ; 所以=∆=HV UA 0000000000000110.七.(10分)设n n i A ×∈≠C 0,2rank rank i i A A =),,2,1(n i =,且当i j ≠时),,2,1,(0n j i A A j i ==.试用归纳法证明存在同一个可逆阵n n P ×∈C 使 得对所有的i ),,2,1(n i =有1−=P PE a A ii i i ,其中C ∈i a . 证明:1n =时,命题显然.假设n k ≤时,命题成立. 当1n k =+时,设1rank A r =.由若当分解11111000D A P P − =,其中1C r rD ×∈可逆; 当2,,j n = 时,由110j j A A A A ==可得1(1)(1)1100, C 0n n j jj A P P B B −−×− =∈(直接推出的j B 为()()n r n r −×−的) 再由0i j A A =得0i j B B =(,,2,,)i j i j n ≠= ;0j B ≠,2rank rank j j B B =也是明显的.由假设知存在可逆阵(1)(1)C n n Q −×−∈使得1j j jj B a QE Q −=,其中C j a ∈,2,,j n = .此时,再由110j j A A A A ==得到11111111110101010000000a A P P a P P Q Q −−− == ; 记1100P P Q =,则 11111111100000000 (2,,).0 j j j jj j j jj jj A P P P P B a QE Q a P P a P E P j n E −−−−− =====由归纳原理知命题为真.。
矩阵论试题(2011)
![矩阵论试题(2011)](https://img.taocdn.com/s3/m/844b19fdc8d376eeaeaa317a.png)
矩阵论试题(2011)一.(18分)填空:设.1111,0910⎪⎭⎫⎝⎛=⎪⎭⎫ ⎝⎛=B A 1. A -B 的Jordan 标准形为J =2. 是否可将A 看作线性空间V 2中某两个基之间的过渡矩阵( )。
3. 是否可将B 看作欧式空间V 2中某个基的度量矩阵。
( )4. ()p vec B =( ),其中+∞<≤p 1。
5 .若常数k 使得kA 为收敛矩阵,则k 应满足的条件是( )。
6. A ⊗B 的全体特征值是( )。
7. =⊗2BA ( )。
8. B 的两个不同秩的{1}-逆为⎪⎭⎫⎝⎛=⎪⎭⎫ ⎝⎛=)1()1(,B B 。
二.(10分)设n m C A ⨯∈,对于矩阵的2-范数2A 和F -范数F A ,定义实数222F A A A +=,(任意n m C A ⨯∈) 验证A 是n m C ⨯中的矩阵范数,且与向量的2-范数相容。
三.(15分)已知⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛--=011)0(,0)(,11120211133x e e t b A t t 。
1. 求At e ;2. 用矩阵函数方法求微分方程)()()(t b t Ax t x dtd+=满足初始条件x (0) 的解。
四.(10分)用Householder 变换求矩阵⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=4021030143010021A 的QR 分解。
五.(10分)用Gerschgorin 定理隔离矩阵⎪⎪⎪⎭⎫⎝⎛=i A 116864120的特征值。
(要求画图表示)六. (15分)已知⎪⎪⎪⎪⎪⎭⎫⎝⎛=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=3131,1212010121211010b A 。
1. 求A 的满秩分解; 2. 求A +;3. 用广义逆矩阵方法判断线性方程组 Ax =b 是否有解;4. 求线性方程组Ax =b 的极小范数解,或者极小范数最小二乘解x 0。
(要求指出所求的是哪种解)七.(15分)已知欧式空间R 2⨯2 的子空间,0032414321⎭⎬⎫⎩⎨⎧=-=-⎪⎪⎭⎫ ⎝⎛==x x x x x xx x X V R 2⨯2中的内积为,,),(222112112121⎪⎪⎭⎫ ⎝⎛==∑∑==a a a a A b a B A ij i j ij ,22211211⎪⎪⎭⎫ ⎝⎛=b b b b B V 中的线性变换为T (X )=XP +XT , 任意X ∈V ,.0110⎪⎭⎫⎝⎛=P 1. 给出子空间V 的一个标准正交基; 2. 验证T 是V 中的对称变换;3. 求V 的一个标准正交基,使T 在该基下的矩阵为对角矩阵.八. (7分) 设线性空间V n 的线性变换T 在基n x x x ,,,21 下的矩阵为A ,T e 表示V n 的单位变换,证明:存在x 0≠0,使得T (x 0)=(T e -T )(x 0)的充要条件是21=λ为A 的特征值.矩阵论试题(07,12)一.(18分)填空:1. 矩阵⎪⎪⎪⎪⎪⎭⎫⎝⎛-----=2101120100102201A 的Jordan 标准形为J = 2. 设,4321,1001021001201001⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎪⎪⎭⎫⎝⎛--=x A 则⎪⎩⎪⎨⎧===∞Ax A A F 2 3. 若A 是正交矩阵,则cos(πA )=4. 设n m C A ⨯∈,A +是A 的Moore -Penrose 逆,则(-2A , A )+=5. 设⎪⎪⎪⎭⎫ ⎝⎛=⎪⎭⎫⎝⎛--=300220111,4221B A ,则A ⊗B +I 2⊗I 3的全体特征值是( )。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
三.(10
分)在复数域上求矩阵
A
=
− −
4 4
2 3
10 7
的若当标准形
J
,并求出可逆
− 3 1 7
矩阵 P 使得 P −1 AP = J .
2 1 0
解:
A
的若当标准形
J
=
0 0
2 0
1 2
.
令 P = ( p1 , p2 , p3 ) ,则有
b
=
0
,
sin(
π 4
A) =
E
;
令 eλ = q(λ )(λ − 2)2 + a + bλ ,则 a + 2b = e2 , b = e2 .
2 1 −1
eA
=
−e2 E
+
e2
A
=
e2
−2 −1
−1 −1
2 2
.
待定系数二:
令 sin
π 4
λ
=
q(λ ห้องสมุดไป่ตู้(λ
−
2)3
+
a
+
证明:设α1 ,α2 , ,αn 为V 的标准正交基, A = {aij }n×n ,下证: aij = −a ji :
由T (α1 ,α 2 , ,α n ) = (α1 ,α 2 , ,α n )A 知
Tα i = a1iα1 + a2iα 2 + + aniα n , Tα j = a1 jα1 + a2 jα 2 + + anjα n ,
+
sin( x2 x5 ) +
x3
x4
,求
df dX
.
∂f ∂f ∂f
解答: df
=
∂x1
dX ∂f
∂x4
∂x2 ∂f ∂x5
∂x3 ∂f ∂x6
=
x6
e
x1
x6
x3
x5 cos( x2 x5 ) x2 cos( x2 x5 )
3 1 −1
五.(10
−4 −3
1 1
7 5
p3
=
p2
解得: p1 = (2, 1, 1)T ,
p2 = (0, 1, 0)T ,
2 0
p3 = (1, − 2, 1)T
,
P
=
1 1
1 0
1
−2 1
.
四.
(10
分)已知
X
=
x1
x
4
x2 x5
x x
3 6
,
f (X)
=
e x1 x6
由若当分解
A1
=
P1
D1 0
0 0
P1−1
,其中
D1
∈
Cr×r
可逆;
当 j = 2, , n 时,由 A1Aj = Aj A1 = 0 可得
0 Aj = P1 0
0 Bj
P1−1
,
Bj ∈ C(n−1)×(n−1) (直接推出的 Bj 为 (n − r ) × (n − r ) 的)
a + 2b + 4c = e2
b
+
4c
=
e2
⇒ a = e2,
2c = e2
b = −e2 ,
c = 1 e2 ; 2
eA
=
e2 (E
−
A
+
1 2
A2
)
=
e2
2 −2 −1
1 −1 −1
−1
2 2
.
0
六.(10
分)设
A
=
− 1 0
1
1
0 2
Ai Aj = 0 (i, j = 1, 2, , n) .试用归纳法证明存在同一个可逆阵 P ∈ Cn×n 使
得对所有的 i (i = 1, 2, , n) 有 Ai = ai PEii P −1 ,其中 ai ∈ C .
证明: n = 1 时,命题显然. 假设 n ≤ k 时,命题成立.
当 n = k +1 时,设 rankA1 = r .
(Tα i ,α j ) = −(α i ,Tα j ) ;
(Tα i ,α j ) = (a1iα1 + a2iα 2 + + aniα n ,α j ) = a ji ,
(α i ,Tα j ) = (α i , a1 jα1 + a2 jα 2 + + anjα n ) = aij ,
所以: aij = −a ji .
再由 Ai Aj = 0 得 Bi Bj = 0 (i ≠ j, i, j = 2, , n) ;
Bj
≠
0 , rank Bj
=
rank
B
2 j
也是明显的.
由 假 设 知 存 在 可 逆 阵 Q C ∈ (n−1)×(n−1) 使 得 Bj = a jQE jjQ−1 , 其 中 a j ∈ C ,
j = 2, , n .
此时,再由 A1Aj = Aj A1 = 0 得到
A1
=
P1
a1 0
0 0
P1−1
=
a1P1
1 0
0 1 Q 0
0 1 0 0
0 Q−1
P1−1
;
记
P
=
P1
1 0
0 Q
,则
Aj
0 = P1 0
0 Bj
1 5
=
−
1 2 0
1
2
1
5
0 2
;
5
0
0
−
U=
1 2
0
1
2
1 5
0
−
2
5
0 2
1 2 0
0 1
;
5
5
0 −1
0
2
0
−
A=
1 2
0
1
1
10.设
A
=
1 −2
2 5
,
B
=
2 2
2 4 4 8
04 ,则
A⊗
B
=
2
−4
−4
0 −8 0
4 10 10
0
.
20
0
二.(10 分)设T 为 n 维欧氏空间V 中的线性变换,且满足: (Tx, y) = −( x,Ty) ,
试证明:T 在标准正交基下的矩阵 A 为反对称阵( A = − AT )
x1
=
0 1, x2
=
1 0
,V
=
0 1
1 0
;
再计算 AAH 的标准正交特征向量,解得分别与 5,2,0,0 对应的四个标准
正交特征向量
1
υ1
=
1
5
0 2
,υ
2
5 0
=
0
−1
2
0 1
=
2 1
−1 −1
0 3
1 7
, V1 , V2 分别为齐次线性方程组
Ax = 0 , Bx = 0 的解空间,则 dim(V1 ∩V2 ) = 1 .
n + (−1)n
8. 设 An =
n n+1
3n
(1 −
11 )n
n
(
2n 2n
+ −
1 1
)n
=
−13 −2
−42 −7
−1 0
.
33
1
∑ ∑ 6 . 设 A∈ C3×3 , A = { m2
aij 2 }2 , AA H 的 非 零 特 征 值 分 别 为 3, 5, 15 ,
j=1 i=1
则 A = 23 . m2
7.
设
A
=
1 −1
2 1
1 1
0 1
,
B
,则 lim n→∞
An
=
1
1 3
1 e
.
2 −1 3
9.
设
A
=
1 2
2 0
1 2
,则
A
的
LDU
分解为
1 0 0 2 0 0 1 −1 2 3 2
A
=
1
2
1
0
0
52
0
0
1
−
1
5
1 2 / 5 1 0 0 −4 / 5 0 0
=
−4 1
3 0
0 2
,则 h( A)
=
A5
−
3 A4
+
A3
+
3 A2
−