PolyimideCarbon Nanotube Composite Films for Electrostatic Charge Mitigation

合集下载

聚亚酰胺

聚亚酰胺

聚亚酰胺聚酰亚胺聚酰亚胺是综合性能最佳的有机高分子材料之一,耐高温达400℃以上,长期使用温度范围-200~300℃,无明显熔点,高绝缘性能,103 赫下介电常数4.0,介电损耗仅0.004~0.007,属F至H级绝缘材料概述聚酰亚胺:英文名Polyimide (简称PI)聚酰亚胺作为一种特种工程材料,已广泛应用在航空、航天、微电子、纳米、液晶、分离膜、激光等领域。

近来,各国都在将聚酰亚胺的研究、开发及利用列入21世纪最有希望的工程塑料之一。

聚酰亚胺,因其在性能和合成方面的突出特点,不论是作为结构材料或是作为功能性材料,其巨大的应用前景已经得到充分的认识,被称为是"解决问题的能手"(protion solver),并认为"没有聚酰亚胺就不会有今天的微电子技术"。

分类聚酰亚胺可分成缩聚型和加聚型两种。

(1)缩聚型聚酰亚胺缩聚型芳香族聚酰亚胺是由芳香族二元胺和芳香族二酐、芳香族四羧酸或芳香族四羧酸二烷酯反应而制得的。

由于缩聚型聚酰亚胺的合成反应是在诸如二甲基甲酰胺、N-甲基吡咯烷酮等高沸点质子惰性的溶剂中进行的,而聚酰亚胺复合材料通常是采用预浸料成型工艺,这些高沸点质子惰性的溶剂在预浸料制备过程中很难挥发干净,同时在聚酰胺酸环化(亚胺化)期间亦有挥发物放出,这就容易在复合材料制品中产生孔隙,难以得到高质量、没有孔隙的复合材料。

因此缩聚型聚酰亚胺已较少用作复合材料的基体树脂,主要用来制造聚酰亚胺薄膜和涂料。

(2)加聚型聚酰亚胺由于缩聚型聚酰亚胺具有如上所述的缺点,为克服这些缺点,相继开发出了加聚型聚酰亚胺。

目前获得广泛应用的主要有聚双马来酰亚胺和降冰片烯基封端聚酰亚胺。

通常这些树脂都是端部带有不饱和基团的低相对分子质量聚酰亚胺,应用时再通过不饱和端基进行聚合。

①聚双马来酰亚胺聚双马来酰亚胺是由顺丁烯二酸酐和芳香族二胺缩聚而成的。

它与聚酰亚胺相比,性能不差上下,但合成工艺简单,后加工容易,成本低,可以方便地制成各种复合材料制品。

新型高性能聚酰亚胺超薄薄膜的结构设计、制备及研究

新型高性能聚酰亚胺超薄薄膜的结构设计、制备及研究

新型高性能聚酰亚胺超薄薄膜的结构设计、制备及研究一、简述聚酰亚胺(Polyimide,简称PI)作为一种性能优异的高分子材料,在航空航天、电子信息和精密机械等领域具有广泛的应用前景。

传统的聚酰亚胺薄膜存在尺寸稳定性差和易损伤等局限性。

随着科技的不断进步和创新,研究者们致力于开发新型的高性能聚酰亚胺超薄薄膜,以满足日益严苛的使用要求。

本文将从结构设计、制备方法和研究三个方面对新型高性能聚酰亚胺超薄薄膜进行全面的阐述,旨在为相关领域的技术突破与创新提供有益的参考。

1. 聚酰亚胺(Polyimides)的优异性能与重要性聚酰亚胺(Polyimides)是一类具有卓越性能的特种工程材料,因其独特的结构和化学性质,在众多领域中都显示出极高的应用价值。

聚酰亚胺首先拥有优异的热稳定性,即使在高温环境下也能保持出色的物理和化学性能;它们具有极佳的机械性能,包括高抗张强度、高弯曲模量和优异的抗冲击性;除此之外,聚酰亚胺还表现出优异的化学稳定性,包括对各种酸碱盐类物质的耐腐蚀性以及对有机溶剂的耐受性;聚酰亚胺的加工性能也十分出色,可通过各种制备方法制成薄膜、纤维、复合材料等多种形式。

2. 超薄薄膜的应用领域与发展趋势聚酰亚胺超薄薄膜作为一种具有独特性能的新材料,自问世以来就受到了广泛的关注。

随着科技的发展和产业结构的优化,超薄薄膜的研究与应用逐渐渗透到各个领域,展现出巨大的潜力和价值。

在电子领域,聚酰亚胺超薄薄膜可以作为柔性导电膜、柔性触摸屏、柔性显示器等关键部件的原材料。

其独特的低蠕变特性和优异的机械强度使得聚酰亚胺超薄薄膜在柔性电子器件中具有较高的稳定性,为电子产品带来更轻便、更便携以及更好的耐用性。

在光伏领域,聚酰亚胺超薄薄膜可用于生产高效且轻质的太阳能电池封装膜。

这种薄膜具备出色的透光性、耐候性以及良好的隔离性能,可以有效保护太阳能电池片在恶劣环境下的稳定运行,从而提高光伏器件的发电效率及使用寿命。

聚酰亚胺超薄薄膜还在航空航天、精密仪器、锂电池隔膜等领域展现出巨大的应用前景。

碳纳米管的分类英语

碳纳米管的分类英语

碳纳米管的分类英语Carbon nanotubes are fascinating materials that come in various types. You know, there's single-walled nanotubes, which are like super-thin tubes made of a single layer of carbon atoms. They're strong and lightweight, making them great for nanoelectronics and composites.On the other hand, multi-walled nanotubes have multiple layers of carbon atoms, like a Russian nesting doll. These are more stable and can handle higher temperatures, whichis why they're often used in aerospace applications.Functionally, you've got chiral nanotubes, which have a spiral shape. They're unique in their electrical properties and can be used in sensors or as conductors in specialized electronics.But if you're looking for nanotubes that are arrangedin a specific way, there are arrayed nanotubes. Think of them like a forest of carbon nanotubes standing upright.These arrays have excellent thermal conductivity and are used in heat dissipation systems.And let's not forget about the hybrid nanotubes. These are a combination of different types, like single-walled nanotubes wrapped in another material for added properties. Hybrids are the future of carbon nanotechnology, offering endless possibilities for customization and functionality.。

无机材料改性聚酰亚胺复合材料的研究进展

无机材料改性聚酰亚胺复合材料的研究进展

综述CHINA SYNTHETIC RESIN AND PLASTICS合 成 树 脂 及 塑 料 , 2021, 38(3): 71*DOI:10.19825/j.issn.1002-1396.2021.03.14聚酰亚胺(PI)是一种主链上含有酰亚胺环的高性能聚合物,具有密度低,力学性能优异,化学稳定性和阻燃性能优良等特点,在航空航天、信息技术、微电子技术、激光等高科技领域具有举足轻重的地位[1-3]。

人们对先进功能材料的要求越来越高,但高生产成本和复杂的生产工艺技术等限制了其广泛应用,这就使制备高性能化、多功能化、低成本化的PI成为引人关注的科研方向。

目前,主要采用化学改性和物理改性的方法。

化学改性主要通过在PI分子结构中引入柔性基团,设计分子结构的异构化等方法,改善其加工性能和功能性;物理改性包括共混改性、共聚改性、填充改性[4]。

填充改性是一种简单有效的改性方法,能够显著提高PI的力学性能、热稳定性、阻燃性能等。

填充改性常用的填料包括无机材料(如碳纳米管,石墨烯,SiO2,二氧化钛等)、金属材料及金属氧化物、芳纶蜂窝芯材(ARHC)等[5-6]。

本文主要综述了无机改性材料对PI性能的影响。

1 石墨烯改性PI石墨烯作为一种质量轻、韧性高、导电性好的碳元素为主的非金属材料[7-8],其比表面积大、耐磨性好,在惰性空气中温度高达3 000 ℃,而且具有优良的阻燃性能和力学性能[9]。

PI中引入石墨烯,可改善复合材料的隔热性能、阻燃性能、热稳定性和力学性能。

通常,复合材料的阻燃隔热性能增强是由于石墨烯的加入会形成连续排列的无机材料改性聚酰亚胺复合材料的研究进展张玉迪,于 浩,徐新宇*(辽宁石油化工大学 化学化工与环境学部,辽宁 抚顺 113001)摘要:综述了近几年国内外有关聚酰亚胺(PI)改性的研究现状,主要介绍了PI填充改性的方法以及填料的类型,并展望了PI的发展前景。

填充改性不仅是一种快速、简单有效的改性方法,而且能够显著提高PI的热稳定性、力学性能、导电性能等。

碳纳米管结构概述

碳纳米管结构概述

福建教育学院学报二○○三年第十期碳纳米管结构概述陈展虹(福建教育学院信息技术系,福建福州350001)摘要:本文通过对碳纳米管的分类的描述、碳纳米管的合成方法、碳纳米管结构的表征、不规则碳纳米管的结构和欧拉定律、多壁碳纳米管概述、单壁碳纳米管的管束及管束环、碳纳米管结构的稳定性以及碳纳米管结构的观察等8各方面,综述了碳纳米管的一般特点,同时提供了较详细的参考资料。

文章重点描述了碳纳米管结构的表征。

关键词:碳纳米管;结构;合成;单壁碳纳米管;多壁碳纳米管中图分类号:O6文献标识码:A陈展虹:碳纳米管结构概述前言1959年,美国著名物理学家、诺贝尔物理学奖获得者F e y nem an 曾经预言:“如果我们对物体微小规模上的排列加以某种控制的话,我们就能使物体得到大量的异乎寻常的特性,就会看到材料的性能产生丰富的变化”。

他所说的材料就是现在的纳米材料。

1990年7月在美国召开的第一届国际纳米科学技术会议,正式宣布纳米材料科学为材料科学的一个新分支。

1996年10月瑞典皇家科学院宣布,两名美国人Sm alle y 和Curl 以及一名英国人K roto 因发现C 60而荣获诺贝尔化学奖。

他们的发现发表在1985年11月份出版的《自然》杂志上[1]。

碳纳米管(Carbon nanotube )是1991年由日本电子公司(NEC )的饭岛博士(S.I i j im a )在高分子透射电镜下观察C 60结构时发现的[2]。

碳纳米管在结构上与C 60同属一类,其强度比钢高出100倍,但重量只有钢的1/6。

碳纳米管在场发射器件、电子晶体管、储氢、太阳能利用、高效催化剂以纳米生物系统等方面应用以及纳米科学与技术本身均会带来革命性的变化。

随着C 60的出现,其同族物如C 70、C 76和C 84等也先后被发现,如今又发现碳纳米管,这说明C 60及其同族物,应作为碳的第三种稳定存在的晶体结构。

因此,晶形碳有金刚石、石墨、富勒碳(巴基球以C 60为代表、碳纳米管、巴基葱)三类。

碳纳米管增强复合材料的力学性能研究

碳纳米管增强复合材料的力学性能研究

碳纳米管增强复合材料的力学性能研究复合材料是由两种或多种不同类型的材料通过一定的加工方式组合在一起而成,其中一种被称为增强相,另一种则称为基质相。

碳纳米管(Carbon Nanotube,简称CNT)作为一种新型的增强相材料,因其出色的力学性能而受到广泛关注。

本文将重点探讨碳纳米管增强复合材料的力学性能,并评估其潜在应用。

1. 碳纳米管的结构与性质碳纳米管是由由一个或多个由碳原子构成的六角截面的圆柱体组成的纳米级管状结构。

碳纳米管具有极高的比强度和比刚度,同时具有优良的导电性和导热性。

这些特性使得碳纳米管成为增强复合材料理想的增强相材料。

2. 碳纳米管增强复合材料的制备方法碳纳米管可以通过化学气相沉积、热解石墨和碳化物等方法制备得到。

在制备碳纳米管增强复合材料时,一般将碳纳米管与基质相材料进行混合,通过化学反应、传统制备方法或纳米级的加工方法使其形成复合材料。

3. 碳纳米管在普通复合材料中的作用由于碳纳米管的高比强度和高比刚度特性,将其引入普通复合材料中可以显著提高材料的力学性能。

碳纳米管的加入可以增加复合材料的强度、刚度和韧性,同时降低其密度。

这些改善的力学性能使得碳纳米管增强复合材料在结构材料、航空航天和汽车工业等领域具有广泛的应用前景。

4. 碳纳米管与基质相的界面碳纳米管与基质相之间的界面是影响复合材料力学性能的关键因素。

良好的界面相互作用可以有效地传递应力,提高复合材料的强度。

一些技术,如化学修饰和表面涂覆处理,已经被应用于改善碳纳米管与基质相之间的界面结合性能。

5. 碳纳米管增强复合材料的力学性能评价方法评价碳纳米管增强复合材料的力学性能通常涉及拉伸、压缩和弯曲等力学测试。

通过这些测试,可以了解复合材料的强度、刚度、韧性和疲劳性能等关键力学指标。

此外,还可以使用纳米力学测试方法研究碳纳米管在复合材料中的局部机械性能。

6. 碳纳米管增强复合材料的应用前景由于碳纳米管增强复合材料的出色力学性能和广泛的应用领域,它已经被广泛研究并应用于结构材料、电子器件、能源存储和传感器等领域。

碳纳米管增强尼龙六复合材料的工艺设计

碳纳米管增强尼龙六复合材料的工艺设计

碳纳米管增强尼龙六复合材料的工艺设计碳纳米管(Carbon Nanotubes,简称CNTs)是一种具有优异力学性能和导电性能的纳米材料,被广泛应用于复合材料领域。

尼龙六作为一种常见的工程塑料,具有良好的力学性能和耐磨性,但其导电性较差,因此将碳纳米管与尼龙六复合可以有效提高尼龙六的导电性能和力学性能。

本文将探讨碳纳米管增强尼龙六复合材料的工艺设计。

确定碳纳米管的添加量。

适量的碳纳米管可以有效提高复合材料的力学性能和导电性能,但添加过多会导致复合材料的加工性能下降。

因此,在工艺设计中需要通过实验确定最佳的碳纳米管添加量,以达到最佳的综合性能。

选择合适的碳纳米管预处理方法。

碳纳米管表面往往存在氧化物等杂质,需要通过酸洗、改性等方法进行预处理,以提高碳纳米管与尼龙六基体的界面结合强度,从而提高复合材料的力学性能。

再者,优化尼龙六的制备工艺。

尼龙六作为基体材料,其制备工艺对复合材料的性能有重要影响。

可以通过控制尼龙六的熔体温度、挤出速度等工艺参数,使其与碳纳米管均匀混合,确保复合材料具有良好的力学性能和导电性能。

采用适当的增强方法。

除了碳纳米管外,还可以引入纳米颗粒、纤维等其他增强材料,通过多种增强方法的组合,进一步提高复合材料的性能,实现多功能化设计。

进行复合材料的性能测试。

在确定了合适的碳纳米管添加量、预处理方法和工艺参数后,需要对复合材料进行力学性能、导电性能等方面的测试,验证设计的有效性,并进一步优化复合材料的性能。

碳纳米管增强尼龙六复合材料的工艺设计涉及碳纳米管添加量、预处理方法、尼龙六制备工艺、增强方法和性能测试等多个方面。

通过合理设计和优化,可以制备出具有优异力学性能和导电性能的碳纳米管增强尼龙六复合材料,拓展其在领域的应用范围,为工程实践提供重要参考。

聚吡咯与碳纳米管

聚吡咯与碳纳米管

聚吡咯与碳纳米管聚吡咯(Polypyrrole)是一种有机导电聚合物,具有良好的导电性和光学性质。

碳纳米管(Carbon nanotubes)是一种具有微纳米尺寸的碳材料,具有优异的导电性、力学性能和化学稳定性。

由于聚吡咯和碳纳米管的独特性质,二者的复合材料在电子学、光学器件、传感器等领域具有很大的应用潜力。

聚吡咯和碳纳米管复合材料的制备方法多种多样,其中一种常用的方法是化学还原法。

通过将吡咯单体与氧化碳纳米管混合,然后加入还原剂进行还原反应,可得到具有复合结构的聚吡咯/碳纳米管复合材料。

这种制备方法具有简单、快速、可控性好的特点,使得复合材料的性能可以通过调整反应条件进行调节。

聚吡咯/碳纳米管复合材料的导电性能优于纯聚吡咯材料,这是因为碳纳米管具有高导电性,可以提供电子输运的通道,改善了聚吡咯材料的导电性能。

复合材料的导电性可以通过控制碳纳米管的添加量和分散性来调节,这可以通过扫描电子显微镜(SEM)和透射电子显微镜(TEM)对样品的形貌和结构进行表征来实现。

聚吡咯/碳纳米管复合材料的应用领域非常广泛。

在电子领域,复合材料可以用于制备导电薄膜、电极材料、电池等。

由于复合材料具有优异的导电性和机械性能,可以用于制备柔性电子器件,例如可弯曲的显示屏、智能织物等。

在光学领域,由于聚吡咯和碳纳米管的带隙调控性能,复合材料可以用于制备光电器件,例如光电探测器、太阳能电池等。

此外,聚吡咯/碳纳米管复合材料还可以应用于传感器领域。

由于碳纳米管具有高的表面积和化学稳定性,可以用于制备传感器的敏感膜,用于检测环境中的各种污染物。

复合材料的导电性能可以通过掺杂不同的气体、离子或分子来实现选择性传感功能。

例如,将复合材料用作气敏传感器,可以检测环境中的气体污染物,如二氧化硫、氨气等。

此外,复合材料还可以用于生物传感器的制备,用于检测生物分子,如蛋白质、DNA等。

总之,聚吡咯和碳纳米管组成的复合材料具有许多优异的性质和潜在的应用。

碳纳米管化学物质cas号

碳纳米管化学物质cas号

碳纳米管化学物质cas号碳纳米管化学物质CAS号- 探索这一材料在科学和工程领域的应用潜力1. 引言在当今全球对可持续发展的追求下,新型材料的研发备受关注。

碳纳米管(Carbon Nanotubes,简称CNTs)作为一种拥有独特性质的纳米材料,引起了广泛的兴趣。

为了更好地了解碳纳米管及其应用领域,本文将深入探讨碳纳米管化学物质的CAS号。

2. 碳纳米管简介碳纳米管是由纳米级碳原子排列而成的管状结构,具有高强度、高导电性和高导热性等卓越的性质。

它们分为单壁碳纳米管(Single-Walled Carbon Nanotubes,简称SWCNTs)和多壁碳纳米管(Multi-Walled Carbon Nanotubes,简称MWCNTs)两类。

SWCNTs由单层碳原子卷曲而成,而MWCNTs则由多层碳原子卷曲而成。

3. 碳纳米管化学物质的CAS号CAS号(Chemical Abstracts Service Registry Number)是一种用于唯一标识化学物质的编码系统。

碳纳米管作为一种特殊材料,其化学物质也有对应的CAS号。

3.1 单壁碳纳米管CAS号在碳纳米管领域,SWCNTs通常由以碳为基础的原料制备而成。

该类碳纳米管的CAS号为:1333-86-4。

这一CAS号标识了SWCNTs以碳为主要成分的化学物质。

3.2 多壁碳纳米管CAS号与SWCNTs相比,MWCNTs由多层碳原子构成,因此其CAS号与SWCNTs不同。

多壁碳纳米管的CAS号为:308068-56-6。

这一CAS号唯一地标识了MWCNTs这种特殊化学物质。

4. 碳纳米管的应用潜力由于碳纳米管具有出色的材料性质,因此在多个领域中具有广泛的应用潜力。

4.1 电子学领域由于碳纳米管具有优异的导电性和导热性能,它们在电子学领域中有着重要的应用。

SWCNTs和MWCNTs可以用于制备高性能的场效应晶体管(Field-Effect Transistors,简称FETs),而且SWCNTs还可以用于制作高性能的透明电极。

一种利用单轴静电纺丝技术制备中空碳纳米纤维的方法及应用

一种利用单轴静电纺丝技术制备中空碳纳米纤维的方法及应用

一种利用单轴静电纺丝技术制备中空碳纳米纤维的方法及应用摘要本文介绍了一种利用单轴静电纺丝技术制备中空碳纳米纤维的方法,并探讨了其在能源存储和传感器领域的应用前景。

该方法采用聚酰亚胺(polyimide, PI)作为聚合物基质,利用单轴静电纺丝技术制备出中空PI纳米纤维,并通过高温碳化制备出中空碳纳米纤维。

通过对其结构和性质的分析,发现中空碳纳米纤维具有高表面积、优异的导电性和稳定的循环性能,具有广泛的应用前景。

正文1. 引言随着现代科技和工业的不断发展,对新型纳米材料的需求日益增长。

其中,纳米纤维作为一种具有很高比表面积和优异性能的纳米材料,一直受到人们的关注。

然而,常规的纳米纤维常常存在制备难度大、生产成本高、稳定性差等问题。

因此,寻找一种简单易行、低成本且性能优异的纳米纤维制备方法,成为当前研究的热点。

单轴静电纺丝技术是一种制备纳米纤维的常用方法,其基本原理是利用高电压作用下,将溶液中的聚合物拉伸成纳米尺度的纤维状物。

正是因为其简单易行、低成本的特点,单轴静电纺丝技术已经广泛应用于纳米材料制备中。

2. 制备中空碳纳米纤维的方法中空碳纳米纤维的制备方法通常有多种,其中较为常见的是基于模板法的制备方法。

但是,通过模板法制备中空碳纳米纤维具有模板成本高、制备周期长、模板难以回收等缺点。

因此,研究一种基于单轴静电纺丝技术的制备中空碳纳米纤维的方法,具有很高的研究意义和应用前景。

本研究采用聚酰亚胺(polyimide, PI)作为聚合物基质,在单轴静电纺丝技术的作用下,制备出中空PI纳米纤维。

经过高温碳化处理,中空PI纳米纤维转化为中空碳纳米纤维。

该方法的制备流程如下:1.制备聚酰亚胺溶液。

将聚酰亚胺粉末与N,N-二甲基甲酰胺(DDMF)混合,超声处理30min,得到聚酰亚胺溶液。

2.制备中空聚酰亚胺纳米纤维。

将聚酰亚胺溶液注入滴定针,通过高压电场和重力共同作用,将聚酰亚胺溶液拉成纳米级别的中空纤维,经过干燥后形成中空聚酰亚胺纳米纤维。

纳米纤维素晶须双重接枝共聚物对cu2+的吸附

纳米纤维素晶须双重接枝共聚物对cu2+的吸附

纳米纤维素晶须双重接枝共聚物对cu2+的吸附下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!本店铺为大家提供各种类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you! In addition, this shop provides you with various types of practical materials, such as educational essays, diary appreciation, sentence excerpts, ancient poems, classic articles, topic composition, work summary, word parsing, copy excerpts, other materials and so on, want to know different data formats and writing methods, please pay attention!Certainly! Here's a structured Chinese demonstration article on the topic "纳米纤维素晶须双重接枝共聚物对Cu^2+的吸附":纳米纤维素晶须双重接枝共聚物对Cu^2+的吸附研究。

低电阻率聚吡咯-碳纤维纸基复合材料的制备

低电阻率聚吡咯-碳纤维纸基复合材料的制备

低电阻率聚吡咯-碳纤维纸基复合材料的制备方法如下:
材料准备:
1.聚吡咯(PPy)粉末
2.碳纤维纸(CFP)
3.氯化铁(FeCl3)
4.甲苯(MT)
制备步骤:
1.将PPy粉末和FeCl3按一定比例混合,加入适量的MT,配制成PPy单体溶液。

2.将碳纤维纸放在PPy单体溶液中,在恒定的温度和时间下进行高压处理,使PPy单体溶液渗透到碳纤维纸基材中。

3.将PPy修饰后的碳纤维纸进行高温热解处理,这将促进PPy与碳纤维纸基材之间的化学反应,使得PPy与碳纤维纸基材形成了强的共价键结合。

4.将处理后的聚吡咯-碳纤维纸基材浸泡在聚合物基质中进行固化。

5.制备完成后,将样品进行测试,测量其电阻率和力学性能,并对成品进行分析。

该制备方法得到的聚吡咯-碳纤维纸基复合材料具有低电阻率、高导电性和优异的力学性能。

与传统的碳纤维增强聚合物复合材料相比,该材料的电导率更高,可用于制备高性能传感器、储能器和导电膜等电子功能材料。

此外,该制备方法简便,成本低廉,易于工业化生产,为产业化应用提供了广阔的前景。

总之,低电阻率聚吡咯-碳纤维纸基复合材料具有优异的导电性能和机械性能,其制备方法简单易行,可以应用于多种领域。

随着技术的不断推进,该复合材料的应用前景将会更加广泛。

《服装材料开发与生产》课件——任务1-5 聚酰亚胺纤维

《服装材料开发与生产》课件——任务1-5 聚酰亚胺纤维

两步法 纺丝
均苯四酸二酐和芳香族 二胺的预聚体通过溶液 纺丝得到聚酰胺酸纤维
经化学环化或热环 化得到聚酰亚胺
熔融 纺丝
在聚酰亚胺主链上引入聚 酯或聚醚,再进行熔融纺 丝。其纤维耐热性低。
降低聚酰亚胺熔 点,使其熔融纺 丝时不易分解或 交联
聚酰亚胺纤维的改性
●共混改性
聚酰亚胺与其他有机物或无机物共混复合,把不同材料 的优异性能进行组合。如:环氧树脂(EP)、热塑性聚氨酯 (TPUR)、聚四氟乙烯(PTFE)、聚醚醚酮(PEEK)。
分解温度一般都在500℃左右 可耐极低温 拉伸强度100~400MPa 不溶于有机溶剂,对稀酸稳定 有很高的耐辐照性能 很好的介电性能 自熄性聚合物,发烟率低 具环、-O-键、C=O基团、-C=O基团、-C-N-C-基团,再加上芳杂环 的共轭效应,使主链键能大,分子间作用力也大, 使纤维表现出许多优良的性能。除了具有聚酰亚胺 材料的优异性能之外,还具有优异的热性能和高强 高模性能。
在大分子反应中形成酰亚胺环的合成方法 ●由二酐和二胺反应获得聚酰亚胺
一步法:
二酐和二 胺在高沸 点溶剂中 直接聚合
两步法:
二元酸酐 和二胺单 体反应成聚 酰胺酸液,
三二或聚反酸胺酰酐热 酰环步应、酸亚和处亚化得碱法,胺二理胺成聚催:脱,胺成聚酰化水经异气由象合法单胺沉成体涂淀聚直层法酰接的:亚方
再加工成聚
聚酰亚胺与其他高性能纤维的力学性能比较
聚酰亚胺的合成方法
聚酰亚胺的合成方法可以分为两大类:
由二酐和二胺反应获得聚酰亚胺
★再聚合过程中或 在大分子反应中形 成酰亚胺环
由四元酸和二元胺反应获得聚酰亚胺 由四元酸的二元酯和二胺反应获得聚酰亚胺
由二酐和而异氰酸酯反应获得聚酰亚胺

纳米粘土材料

纳米粘土材料
石墨:经物理或化学分散后,可制成纳米石墨
蒙皂石粘土矿物、球粘土
沸石、海泡石、玻缕石为具纳米孔道的天然纳 米结构材料
Nanoclay Composite
粘土片层纳米级分散在有机基质(橡胶或 塑料高分子聚合物中)制成的复合材料
蒙脱石晶体显微结构透射电镜 照片
粘土片层在基质中的几种分散情况
纳米粘土/聚合物复合材料的透射电镜照片
矿物组成。大多数粘土矿物均为层状含水的硅酸盐。
作为纳米前驱体的层状硅酸盐片层尺度一般均在 1~100nm之间,因此,层状硅酸盐本身就是“天然 的纳米”结构,这种层状结构是设计制备有机高分 子-无机粘土纳米复合材料的基础,由此得到的纳 米复合材料比基体高分子大大提高,因此形成了今 天世界范围内的研究开发热点。
插层法
是一种制备有机-无机纳米复合材 料的重要方法。此法能够获得趋 于单一分散的纳米片层的复合材 料,容易工业化生产,但不足之 处是可供选择的纳米前驱体材料 不多,仅限于蒙脱石粘土等几种 层状硅酸盐。
有机大分子在晶层中的几种 排列情况
有机分子不同,蒙脱石晶层膨胀间 距大小也不同
共混法
是纳米粉体与聚合物粉体混合的最简单、 方便的方法,但制得的复合材料远没有 达到纳米级分散水平,而只属于微观复 合材料。原因在于,当填料粒径减小到 1~0.1μ m时,粒子的表面能如此之大, 粒子间的自聚作用非常显著,现有的共 混技术难以获得纳米尺度的均匀共混; 现有的界面改性技术难以完全消除填料 与聚合物基体间的界面张力。
粘土/塑料高分子聚合物纳米复合材料:
粘土/橡胶高分子聚合物纳米复合材料:
聚合物/粘土纳米复合材料的优点
(1)重量轻,很少质量分数(3%~5%)即可具有 很高性能 (2)具有优良的热稳定性及尺寸稳定性; (3)力学性能优于纤维增强聚合物体系,可以在 二维方向上起到增强的作用。 (4)有优异的阻隔性能; (5)纳米蒙脱石/热塑性聚烯烃复合物容易再生利 用,其力学性能能够在再生中得到提高; (6)具有抗静电性和阻燃性; (7)填料颗粒小,塑料制品的表面更加光洁[9]。

巯基碳纳米管

巯基碳纳米管

巯基碳纳米管巯基碳纳米管(Thiol-Capped Carbon Nanotube)是一种特殊的碳纳米管,它由单壁或多壁碳纳米管表面的苯并环结构与巯基化合物结合而成。

巯基碳纳米管通常由碳纳米管上的羰基(C=O)与巯基化合物(R-SH)发生反应而形成,其中R代表碳链,SH代表巯基(硫醇)。

这种机理使得巯基碳纳米管在催化方面具有优势,因此可以用于许多不同的化学反应,如水溶液中的氧化还原反应、氢化反应、合成反应、羰基化反应等。

由于巯基碳纳米管表面的巯基基团拥有许多独特的特性,其可以作为有效的催化剂,用于大量的化学反应。

它的催化活性在于其表面的羰基(C=O)与其他活性基团(如羟基)之间的作用力。

这一作用力使得巯基碳纳米管能够将被催化反应物与活性基团强烈地结合起来,从而促进反应的发生。

此外,巯基碳纳米管还有一种独特的电荷分布,使得它能够有效地吸附电荷正的物质,从而对反应物的活动性产生重要的影响。

此外,由于巯基碳纳米管表面有许多受体,可以容易地与其他化合物结合,因此也可以用于超分子组装,从而实现新型结构复合材料的制备。

巯基碳纳米管还可以用于传感器的制备。

由于其具有良好的光学性质,可以检测到极小量的有效物质。

例如,巯基碳纳米管可以用于检测小分子、金属离子、有机污染物等物质,从而为环境监测、食品安全检测等领域提供新的检测手段。

此外,由于巯基碳纳米管具有优异的光学性质和高比表面积,因此还可以用于太阳能电池的制备。

当太阳光照射到巯基碳纳米管表面时,由于其优异的光学性质,可以有效地将光能转换为电能,从而提高太阳能电池的转换效率。

总之,巯基碳纳米管具有诸多优点,被广泛应用于催化、传感、太阳能电池等领域,具有广阔的应用前景。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Polyimide/Carbon Nanotube Composite Filmsfor Electrostatic Charge MitigationJoseph G. Smith, Jr., Donavon M. Delozier‡, and John W. ConnellNational Aeronautics and Space AdministrationLangley Research CenterHampton, VA USA 23681-2199Kent A. WatsonNational Institute of Aerospace144 Research DriveHampton, VA 23666AbstractLow color, space environmentally durable polymeric films with sufficient electrical conductivity to mitigate electrostatic charge (ESC) build-up have potential applications on large, deployable, ultra-light weight Gossamer spacecraft as thin film membranes on antennas, solar sails, thermal/optical coatings, multi-layer insulation blankets, etc.. The challenge has been to develop a method to impart robust electrical conductivity into these materials without increasing solar absorptivity (α) or decreasing optical transparency or film flexibility. Since these spacecraft will require significant compaction prior to launch, the film portion of the spacecraft will require folding. The state-of-the-art clear, conductive coating (e.g. indium-tin-oxide, ITO) is brittle and cannot tolerate folding. In this report, doping a polymer with single-walled carbon nanotubes (SWNTs) using two different methods afforded materials with good flexibility and surface conductivities in the range sufficient for ESC mitigation. A coating method afforded materials with minimal effects on the mechanical, optical, and thermo-optical properties as compared to dispersal of SWNTs in the matrix. The chemistry and physical properties of these nanocomposites are discussed.IntroductionLarge, deployable, ultra-lightweight vehicles (e.g. Gossamer spacecraft) have been proposed by NASA for several mission concepts.1 The vehicle would consist of both structural and polymer film components. As proof of concept, solar sails and tori have been constructed by various organizations and tested in ground-based facilities. Examples of on-orbit validation of these concepts were the Russian Znamya-22 and the Inflatable Antennae Experiment3, respectively. Both flight experiments were successful at deploying a Mylar® based film structure in low Earth orbit. Since these were ‘proof of concept’ experiments, the space durability of the polymer film was not an issue. However, space durability of the film component is a concern for longer-term missions. Depending on the orbital location of the vehicle, different environmental effects will be encountered; therefore, material requirements could include resistance to UV and vacuum UV radiation, electrons and protons, and atomic oxygen (prevalent in low Earth orbit). For some applications high optical transparency, low α, and high thermal emissivity (ε) need to be maintained. The α pertains to the fraction of incoming solar energy that is absorbed by a material and is typically low (~0.1) for a low color film. The ε is a measure of a material’s ability to radiate energy from its surface. Low α and high ε values are desirable since the film would effectively absorb little radiation. The film would also need to be folded into a compact volume found on conventional launch vehicles, so compliance is needed. Upon achieving orbit, the folded film would‡National Research Council research associate located at NASA Langley Research Centerdeploy affording structures that are several square meters in size.Aromatic polyimides possess excellent mechanical and physical properties in addition to radiation resistance to satisfy many of the property requirements for Gossamer applications. Respectable space environmental durability and low color (related to α) have been achieved in polyimides through the proper choice of constituent monomers.4,5 Like many organic polymers, polyimides are intrinsically insulative and can build-up charge due to the orbital environment. This can result in the material behaving like a capacitor. Considerable damage to surrounding materials and electronics on the vehicle could result when discharge occurs in a single event. To mitigate charge build-up, a surface resistance in the range of 106-1010Ω/square is needed. Current methods that meet both the electrical conductance and optical transparency requirement utilize conductive coatings such as ITO to provide surface conductivity. However, these coatings are brittle making handling difficult. If the coating is broken/cracked by either handling or during on-orbit deployment, the conductive pathway is lost.Electrical conductivity can also be enhanced by the uniform dispersal of a conductive additive in the polymer to provide both surface and bulk conductivity. One additive receiving much attention over the last 5-10 years are SWNTs. Due to their high aspect ratio and electrical properties, SWNTs are excellent candidates for obtaining the electrical conductivity necessary for ESC dissipation at low loading levels. However, achieving good SWNT dispersal has been a challenge due to insolubility and/or incompatibility with the host resin. In general, SWNTs tend to agglomerate as bundles in solution and if dispersed, reagglomerate soon thereafter due to electrostatic attraction. Uniform dispersions of SWNTs have been reported in space durable polymers (e.g. LaRC™ CP2) using an in-situ polymerization approach6 and by the addition of the SWNTs into polymers terminated with reactive groups.7 The first approach involved the synthesis of the precursor amide acid polymer in the presence of SWNTs with concurrent ultrasonic treatment followed by thermal cure to afford the polyimide nanocomposite. The latter method involved the addition of SWNTs to a previously prepared amide acid polymer containing reactive end groups and thus negating batch-to-batch variations in the polymer. Both approaches have yielded volume conductivity sufficient for ESC mitigation; however, optical transparency decreased and the color (related to α) increased relative to that of the pristine material.Many space vehicle applications require only surface conductivity to mitigate ESC build-up. In this case, coating the SWNTs on the surface of space durable polymers was investigated.8,9 By this method, considerably lower amounts of SWNTs were needed to achieve surface conductivity. Consequently, the optical properties did not deteriorate as much compared to the bulk approach. The preparation and characterization of LaRC™ CP2/SWNT nanocomposites by addition of SWNTs to a polymer containing reactive endgroups (bulk method) and by surface coating are presented herein. The effects upon optical transparency, α, and ε as well as electrical conductivity are discussed.ExperimentalStarting MaterialsThe synthesis of unendcapped and alkoxysilane endcapped LaRC™ CP2 has been previously reported.7,8 SWNTs prepared by the HiPco process were obtained from Tubes@Rice and purified by heating at 250°C for ~16 h in a high humidity chamber followed by Soxhlet extraction with hydrochloric acid (22.2 wt%) for ~24 h. All other chemicals were used as received.SWNT/alkoxysilane terminated amide acid (ASTAA) LaRC™ CP2 Mixture Nanocomposite solutions were prepared by the addition of a sonicated mixture of SWNTs in N,N-dimethylacetamide (DMAc) to a pre-weighed ASTAA LaRC™ CP2 solution. A representative procedure is described below.To a 100 mL round-bottom flask equipped with nitrogen inlet, mechanical stirrer, and drying tube filled with calcium sulfate was charged 11.06 g of an ASTAA solution (~33.5% solids). In a separate vial, SWNTs (0.0011 g) were placed in 3 mL of DMAc and the mixture sonicated for ~2.5 h in a Degussa-Ney ULTRAsonik 57X cleaner operated at ~50% power and degas levels. The initial temperature of the waterbath was ambient and ~40 °C at the conclusion of sonication. The suspended tubes were added to the stirred mixture of ASTAA at room temperature and rinsed in with 4.5 mL of DMAc to afford a solids content of ~20%. The SWNT loading was 0.03 wt%. The mixture was stirred for ~16 h under a nitrogen atmosphere at room temperature prior to film casting.Films with/without Bulk SWNT DispersionDMAc solutions of ASTAA LaRC™ CP2 were doctored onto clean, dry plate glass and dried to tack-free forms in a low humidity chamber at ambient temperature. The films on glass were stage cured in a forced air oven at 100, 200, and 300 °C for 1 h each. The films were subsequently removed from the glass plate and characterized.Spray Coating of SWNT1) ASTAA-LaRC™ CP2 film solutions in DMAc were doctored onto clean, dry plate glass and dried to a tack-free state in a low humidity chamber. A SWNT/N,N-dimethylformamide (DMF) mixture (1.0 mg SWNT per 5.0 g DMF) was placed in an ultrasonic bath operating at 40 MHz for 6-8 h. An airbrush (Badger Model 250) was used to apply the SWNT/DMF suspension to the surface of tack-free ASTAA-LARC™ CP2 films. The films were placed in a low humidity chamber for 16 h and then staged to 300 °C for 1 h in a forced air oven. 2) LaRC™ CP2 dissolved in DMAc (23% wt/wt) was doctored onto plate glass and placed in a low humidity chamber for 0.25 h. A SWNT/tetrahydrofuran (THF) mixture (1.0 mg SWNT per 5.0 g THF) was placed in an ultrasonic bath operating at 40 MHz for 1-2 h and then spray coated onto the film surface. The coated films were placed in a low humidity chamber for 16 h and then staged to 220 °C for 1 h in a forced air oven. The films were subsequently removed from the glass plate and characterized.CharacterizationInherent viscosities (ηinh) were obtained on 0.5% (w/v) amide acid solutions in DMAc at 25 °C. Glass transition temperatures (T g s) were determined by differential scanning calorimetry at a heating rate of 20 °C/min on a Shimadzu DSC-50 thermal analyzer and taken as the inflection point of the ∆H vs. temperature curve. Ultraviolet/visible/near infrared (UV/vis/near-IR) spectra were obtained on thin films using a Perkin-Elmer Lambda 900 spectrometer and reported as % transmission (%T) at 500 nm. The αwas obtained on thin films using an AZ Technology Model LPSR-300 spectroreflectometer with measurements taken between 250-2800 nm. Vapor deposited aluminum on Kapton® film (1st surface mirror) was used as the reflective reference for air mass 0 per ASTM E903. An AZ Technology Temp 2000A infrared reflectometer was used to determine ε on thin films. Surface resistivity was determined according to ASTM D-257-99 using a Prostat® PSI-870 operating at 9 V and reported as an average of three readings. Volume resistivity was determined using a Prostat® PRS-801 Resistance System with a PRF-911 Concentric Ring Fixture operating at 10-100 V according to ASTM D-257.Results and DiscussionPolymer SynthesisThe space durable polymer chosen for this work was LaRC™ CP2 with and without reactive endgroups (i.e. alkoxysilanes). In Scheme 1, the unendcapped polymer was prepared via the traditional amide acid route. The intermediate amide acid was subsequently converted to the imide by chemical imidization with pyridine and acetic anhydride. The polyimide was isolated as a white fibrous material with an ηinh of 0.98 dL/g.The ASTAA of LaRC™ CP2 was prepared by the same amide acid approach as depicted in Scheme 2. By this approach the dianhydride was added to a stirred mixture of the diamines. To prevent aH 22+1. 23°C, Nitrogen, DMAc2. Acetic anhydride, pyridineScheme 1. LaRC™ CP2 Synthesistemperature increase due to the heat of reaction and mitigate premature reaction of the endgroups, the flask was immersed in a room temperature water bath. The ASTAA solution was stirred overnight at room temperature under a nitrogen atmosphere. The ηinh was 0.73 dL/g. This solution was used to cast thin films that were subsequently spray coated with a SWNT dispersion. An ASTAA with an ηinh of 0.88 dL/g was used to prepare different wt% SWNT loadings.H 22H 23)33)3(H 3CO)3++Scheme 2. ASTAA LaRC™ CP2 SynthesisNanocomposite Properties per Bulk SWNT DistributionTo achieve both surface and volume conductivities sufficient for ESC mitigation, HiPco SWNTs were distributed throughout the bulk of LaRC™ CP2 prepared from the precursor ASTAA (Scheme 2).7 Suspended SWNTs were obtained by sonicating the tubes in DMAc. This suspension was then added to the ASTAA and the solution stirred under low shear with a mechanical stirrer at ambient temperature prior to film casting. Tack-free films were stage cured to 300 °C in flowing air to effect imidization and condensation. Due to the acidic nature of the amide acid, no additional acid catalyst was required for the hydrolysis of the alkoxysilane endgroups.10 The silanol groups generated can condense with another silanol group to form a siloxane chain affording a crosslinked material. Presumably the silanol can also react with carboxylic acid and/or hydroxy functionalities present on purified SWNTs to form a covalent bond and perhaps aid in dispersion.7Table 1. Thermal and Tensile PropertiesSWNT, T g, Room Temperature Tensile Elong. @ID % °C Strength, MPa Modulus, GPa Break, %reported P1 HMW* 209 117 2.9 NotP2 0 207 131 ± 4 3.7 ± 0.1 5 ± 1P3 0.03 205 122 ± 6 3.5 ± 0.2 5 ± 1P4 0.05 203 139 ± 2 3.7 ± 0.1 6 ± 1P5 0.08 206 137 ± 6 3.8 ± 0.1 5 ± 1* High molecular weight, unendcapped LaRC™ CP-2.5T g and room temperature tensile properties are shown in Table 1. LaRC™ CP2 properties are Theshown for comparison.5 As seen, the T g of P2 was comparable to that of P1 and was unexpected since crosslinking tends to increase the T g. However, the mechanical properties increased as expected (P2 vs. P1). Inclusion of SWNTs in the matrix (P3-P5) did not increase the T g or the mechanical properties compared to P2.As previously mentioned, low α, high optical transparency, and high ε are important for some Gossamer applications. These properties were determined for P1–P5 and presented in Table 2. The %T at 500 nm is reported since this is where the solar maximum occurs. Optical properties are thickness dependent and thus all attempts were made to obtain films of comparable thickness. Film thickness ranged from 38 to 41 µm allowing comparisons to be made without normalization.Table 2. Optical, α, and ε PropertiesnmSWNT, Film 500ID wt% Thickness, µm % Transmission Absorbance* αεHMW 38 85 0.0706 0.07 0.53 P1 0,0.59P2 0 38 86 0.0655 0.07P3 0.03 38 67 0.1739 0.21 0.63P4 0.05 41 59 0.2291 0.30 0.65P5 0.08 38 53 0.2757 0.35 0.67*A = 2 – log10%TThe endcapping agent was found to have a negligible effect on the %T at 500 nm and α for P2 compared to P1. However, ε increased ~10% for P2 compared to P1 and was presumably due to the reaction products from the alkoxysilane endcapping agent. SWNT inclusion in P3-P5 resulted in higher αand ε and lower %T compared to P2. A Beer’s law relationship was obtained when absorbance at 500 nm was plotted vs. wt% SWNT (Figure 1). Losses due to scattering and reflectivity were not taken into account. In addition, α vs. wt% SWNT was plotted to afford a Beer’s law-like relationship (Figure 1). The α differs from absorbance in the traditional Beer’s law equation in that α is obtained over the spectral region of 250-2800 nm instead of a particular wavelength. Linear least-squares fit of the data had correlation coefficients of 0.961 and 0.951, respectively. This data was useful in developing models to predict the absorbance at 500 nm and α for various thicknesses and SWNT loadings.11 Note that these relationships are dependent upon the polymer and the type, batch, and purity of SWNT used; however, the fundamentals should be applicable for other polymer/SWNT systems.Electrical conductivity was determined as surface and volume resistivities (Table 3). As seen from the data, the percolation threshold for conductivity was reached at a 0.05 wt% SWNT loading (P4) and was in a range that was acceptable for ESC mitigation (106-1010Ω/square). Increasing the SWNT loading toFigure 1: A at 500 nm and α vs. wt% SWNT.0.08 wt % (P5) resulted in a material exhibiting the same order of magnitude resistivity but decreased %T and increased α compared to P4.Table 3. Thin Film Electrical CharacterizationID SWNT, wt% Surface Resistivity, Ω/square Volume Resistivity, ΩcmP2 0>1012Not Determined P3 0.03 1011 9.9 X 1014P4 0.05108 1.7 X 109 P5 0.08 108 1.1 X 109 Besides exhibiting good mechanical, optical, and electrical properties, it was desired that the conductive film be compliant (i.e. flexible). Coatings such as ITO are brittle and lose conductivity if the conductive pathway is broken. To determine the robustness of the conductive pathway, P4 was subjected to harsh manipulation (Figure 2). This involved creasing, folding, and finally crumpling the film into a ball with the surface resistivity measured after every manipulation. After all of this harsh teatment, the initial surface resistivity of 108 Ω/square remained unchanged. In addition, the film retained its integrity and did not fracture or tear. As a note these manipulations were harsh and it is unlikely that the materials on a Gossamer spacecraft would have to endure this degree of abuse during packaging and deployment.A. Film folded seven times.B. Film after seven folds and crumpled into a ball. Figure 2. Mechanical manipulation of P4.Nanocomposite Properties per Spray Coating SWNTBy the bulk dipersal method, it was observed that the SWNT loading level necessary for ESC mitigation was detrimental to the optical and thermo-optical properties compared to the pristine polymer. However, for many space applications only surface conductivity is needed. Thus, spray coating of SWNTs onto the film surface was investigated.8,9 Typically a solution is used in spray-coating processes; however, homogeneous dispersions of the SWNTs in DMF and THF were found to work well.Thin films of unendcapped and alkoxysilane endcapped LaRC™ CP2 were spray coated with various amounts of SWNTs (Table 4). The actual wt% loading was unknown and thus the quantities used in the spraying process are provided.Film thickness for LaRC™ CP2 (P6-P10) were about the same allowing for direct optical property comparison. A slight decrease in the %T with a slight increase in α and ε were observed for spray coatings up to 2.0 mg SWNT (P7-P9) compared to the uncoated polymer, P6. For P7-P9, the surface resistivities were essentially the same (~107Ω/square) regardless of the increase in the amount of SWNTs sprayed. As expected, the films only exhibited surface resistivity. Film P10 spray coated with 4.0 mg SWNT exhibited a substantial decrease in %T and increase in α than compared to P6-P9; however, εremained relatively unchanged. The reason for this is unknown. The surface resistivity for P10 was the lowest measured (105Ω/square).Films of alkoxysilane endcapped LaRC™ CP2 were likewise spray coated with SWNTs. For these samples (P11 and P12) there appeared to be a more substantial decrease in %T and increase in αcompared with P2 (Table 2) as was observed for the LaRC™ CP2 samples spray coated with a similar SWNT amount (Table 4, P7 and P8 compared to P6). This may be due to effects of the endcapping agent or variations in spray coating. A comparable surface resistivity to P4 (bulk loading, Table 2) was obtained for P11 with less of an impact on %T, α, and ε by this method. However, P11 exhibited only surface resistivity whereas P4 also possessed comparable volume resistivity. Further comparison of the optical properties of these samples (Table 4, P11 and P12) with samples containing SWNTs distributed throughout the bulk (Table 2, P2-P5) could not be made directly due to thickness differences.In order to assess the robustness of the SWNT spray-coated surface, qualitative handling tests were performed. These tests included creasing, folding and crumpling a spray-coated LaRC™ CP2 film and measuring surface resistivity after each manipulation. In separate tests, scotch tape was applied to the spray-coated surface and removed, and the film also placed in a sonicating bath operating at 40 Hz. This was repeated several times. In all of these qualitative tests, the initial surface resistivity of 107Ω/square did not change. Such tests applied to an ITO coated film would have resulted in loss of conductivity due to fracture of the coating.Table 4. Optical and Electrical PropertiesID Polymer SWNT,mg aFilmThickness,µm% T @500 nm αεSurfaceResistivity,Ω/squareP6 LaRC™CP2 0 38 87 0.06 0.52 2.5 X 1012 P7 LaRC™CP2 0.5 41 86 0.07 0.54 1.6 X 107 P8 LaRC™CP2 1.0 38 83 0.09 0.56 6.1 X 106 P9 LaRC™CP2 2.0 38 82 0.09 0.56 2.0 X 107 P10 LaRC™ CP2 4.0 38 72 0.21 0.52 2.2 X 105 P11 ASTAA LaRC™ CP2 0.4 31 81 0.12 0.52 1 X 108 P12 ASTAA LaRC™ CP2 1.1 33 68 0.20 0.56 1 X 107 a Amount of SWNTs sprayed onto 1.0 g of polymerSummaryTwo methods to prepare clear, colorless, flexible, space environmentally durable polymers with surface resistivity sufficient for ESC mitigation were summarized. One method involved preparing nanocomposites from alkoxysilane terminated amide acid polymers of LaRC™ CP2 and SWNTs distributed throughout the bulk. The second method involved spray-coating the film surface of ASTAA films as well as LaRC™ CP2 with a SWNT suspension. The former method possessed surface and volume resistivities whereas the latter provided conductivity on only one surface. The spray coating method resulted in little change in %T and α . A more substantial effect on these properties was observed with bulk SWNT inclusion. Both methods afforded films that exhibited a high degree of flexibility and robustness as evidenced by retention of surface resistance after harsh manipulation.The use of trade names of manufacturers does not constitute an official endorsement of such products or manufacturers, either expressed or implied, by NASA.References1.Jenkins CHM. Gossamer Spacecraft: Membrane and Inflatable Structures Technology for SpaceApplications Vol. 191, American Institute of Aeronautics and Astronautics; 2001.2.http://www.space.ru/src/inform-e.htm3./tto/spinoff1996/13.html4.Watson KA and Connell JW. Polym. Mater. Sci. Eng. Proc. 2001; 46:1853.5.SRS Technologies, Huntsville, AL 35806, .6.Park C, Ounaies Z, Watson KA, Crooks RE, Smith Jr. JG, Lowther SE, Connell JW, Siochi EJ,Harrison JS, and St. Clair TL. Chem. Phys. Lett. 2002; 364:303.7.Smith Jr. JG, Connell JW, Delozier, DM, Lillehei PT, Watson KA, Lin Y, Zhou B, and Sun Y-P.Polym. 2004; 45:8258.Watson KA, Smith Jr. JG and Connell JW. Society for the Advancement of Material and ProcessEngineering Proceedings 2003; 48:1145.9.Glatkowski P. Society for the Advancement of Material and Process Engineering Proceedings 2003;48:2146.10.Tsai MH and Whang WT Polym. 2001; 42:4197.11.Smith Jr. JG, Connell JW, Watson KA and Danehy, PM. Manuscript in preparation.Joseph G. Smith, Jr. is a senior polymer scientist in the Advanced Materials andProcessing Branch of the Structures and Materials Competency at NASALangley Research Center (LaRC). He received a B.S. degree from High PointCollege in 1985 and a Ph.D. from Virginia Commonwealth University (VCU) in1990. Prior to joining NASA LaRC in September 1994, he held postdoctoralresearch positions with the University of Akron and VCU. His work at NASA hasfocused on the development of high performance polymers for aerospaceapplications.。

相关文档
最新文档