22.2。5一元二次方程的解法习题课

合集下载

华师版九年级上册数学作业课件 第22章一元二次方程 一元二次方程的解法 一元二次方程的根与系数的关系

华师版九年级上册数学作业课件 第22章一元二次方程 一元二次方程的解法 一元二次方程的根与系数的关系

2x1x2 的值为 2
.
17.已知一元二次方程 x2-ax-2a=0 的两根之和为 4a-3,则两根之积为
-2 .
18.(2018·达州)已知:m2-2m-1=0,n2+2n-1=0 且 mn≠1,则
mn+nn+1的值为 3
.
19.(2018·遂宁)已知关于 x 的一元二次方程 x2-2x+a=0 的两实数根 x1, x2 满足 x1x2+x1+x2>0,求 a 的取值范围.
A.-4
B.3
C.-34
4 D.3
3.一元二次方程 x2-3x-2=0 的两根为 x1,x2,则下列结论正确的是 ( C)
A.x1=-1,x2=2 B.x1=1,x2=-2
C.x1+x2=3 D.x1x2=2
4.如果关于 x 的一元二次方程 x2+px+q=0 的两根分别为 x1=2,x2=- 1,那么 p,q 的值分别是( B )
(1)(x1+1)(x2+1); 解:x1+x2=-2,x1x2=-12,∴(x1+1)(x2+1)=x1x2+(x1+x2)+1=-32
(2)x12-3x1x2+x22. 解:x12-3x1x2+x22=(x1+x2)2-5x1x2=6.5
易错点:忽视判断 b2-4ac 的符号而出错 13.若关于 x 的一元二次方程 x2+kx+4k2-3=0 的两个实数根分别是 x1,
解:(1)∵(x1-1)(x2-1)=28,∴x1x2-(x1+x2)+1=28,∴m2+5-2(m+1) +1=28,解得 m=-4 或 6,又 b2-4ac≥0,∴m≥2,∴m=6
(2)当 7 为底边时,此时方程 x2-2(m+1)x+m2+5=0 有两个相等的实数 根,∴Δ=4(m+1)2-4(m2+5)=0,解得 m=2,∴方程变为 x2-6x+9=0,解 得 x1=x2=3,∵3+3<7,∴不能构成三角形;当 7 为腰时,设 x1=7,代入方程 得 49-14(m+1)+m2+5=0,解得 m1=10,m2=4,当 m=10 时方程变为 x2- 22x+105=0,解得 x1=7,x2=15,∵7+7<15,不能构成三角形;当 m=4 时方 程变为 x2-10x+21=0,解得 x1=3,x2=7,此时三角形的周长为 7+7+3=17

一元二次方程解法习题课(公开课)

一元二次方程解法习题课(公开课)

通过本次课程,我掌握了一元二次方程的三种解法,并 能够灵活运用这些方法解决问题。
配方法原理及步骤
配方法原理:通过配方,将一元二次方程转化 为完全平方的形式,从而求解。
01
配方法步骤
02
04
将二次项系数化为1;
05
加上并减去一次项系数一半的平方,使左 边成为完全平方;
将原方程化为一般形式;
03
06
开方求解。
典型例题分析与解答
例题1
01 解方程 $x^2 + 6x + 9 = 0$
02
4. 对等式左边进行完全平方,得到 $left(x + frac{b}{2a}right)^2 = frac{b^2 - 4ac}{4a^2}$。
03
5. 开平方,得到 $x + frac{b}{2a} = pm sqrt{frac{b^2 4ac}{4a^2}}$。
04
6. 解得 $x_1, x_2 = frac{-b pm sqrt{b^2 - 4ac}}{2a}$。
一元二次方程根的性质
根的存在性
当判别式 $Delta = b^2 - 4ac geq 0$ 时,一元二次方程有两个实根。
根的和与积
对于一元二次方程 $ax^2 + bx + c = 0$($a neq 0$),若其两个根为 $x_1$ 和 $x_2$, 则有 $x_1 + x_2 = -frac{b}{a}$,$x_1 times x_2 = frac{c}{a}$。
2. 将方程两边同时除以 $a$($a neq 0$),得到 $x^2 + frac{b}{a}x = frac{c}{a}$。
直接开平方法原理及步骤

华师大版初中数学九年级上册《22.2 一元二次方程的解法》同步练习卷

华师大版初中数学九年级上册《22.2 一元二次方程的解法》同步练习卷

华师大新版九年级上学期《22.2 一元二次方程的解法》2019年同步练习卷一.选择题(共27小题)1.用配方法解一元二次方程x2﹣8x+2=0,此方程可化为的正确形式是()A.(x﹣4)2=14B.(x﹣4)2=18C.(x+4)2=14D.(x+4)2=18 2.用配方法解下列方程时,配方有错误的是()A.x2+8x+9=0化为(x+4)2=25B.x2﹣2x﹣99=0化为(x﹣1)2=100C.2t2﹣7t﹣4=0化为D.3x2﹣4x﹣2=0化为3.一元二次方程﹣x2+8x+1=0配方后可变形为()A.(x+4)2=17B.(x+4)2=15C.(x﹣4)2=17D.(x﹣4)2=15 4.用配方法解一元二次方程2x2﹣6x+1=0时,此方程配方后可化为()A.(x﹣)2=B.2(x﹣)2=C.(x﹣)2=D.2(x﹣)2=5.一元二次方程y2﹣y﹣=0配方后可化为()A.(y+)2=1B.(y﹣)2=1C.(y+)2=D.(y﹣)2=6.在《九章算术》“勾股”章里有求方程x2+34x﹣71000=0的正根才能解答的题目,以上方程用配方法变形正确的是()A.(x+17)2=70711B.(x+17)2=71289C.(x﹣17)2=70711D.(x﹣17)2=712897.解一元二次方程4x2﹣8x﹣1=0,配方后正确的是()A.(2x﹣2)2=0B.4(x﹣1)2=5C.(2x﹣2)2=﹣3D.4(x﹣1)2=2 8.用配方法解方程2x2+3x﹣1=0,则方程可变形为()A.(3x+1)2=1B.C.D.9.利用配方法解方程2x2﹣x﹣2=0时,应先将其变形为()A.B.C.D.10.x=是下列哪个一元二次方程的根()A.3x2+5x+1=0B.3x2﹣5x+1=0C.3x2﹣5x﹣1=0D.3x2+5x﹣1=0 11.一元二次方程x2+x﹣1=0的根是()A.x=1﹣B.x=C.x=﹣1+D.x=12.用公式解方程﹣3x2+5x﹣1=0,正确的是()A.x=B.x=C.x=D.x=13.利用求根公式求的根时,a,b,c的值分别是()A.5,,6B.5,6,C.5,﹣6,D.5,﹣6,﹣14.用公式法求一元二次方程的根时,首先要确定a、b、c的值.对于方程﹣4x2+3=5x,下列叙述正确的是()A.a=﹣4,b=5,c=3B.a=﹣4,b=﹣5,c=3C.a=4,b=5,c=3D.a=4,b=﹣5,c=﹣315.一元二次方程x(x﹣5)=0的解是()A.0B.5C.0和5D.0和﹣516.三角形的两边长分别为3和6,第三边的长是方程x2﹣10x+21=0的一个根,则该三角形第三边的长是()A.6B.3或7C.3D.717.一个等腰三角形的底边长是5,腰长是一元二次方程x2﹣6x+8=0的一个根,则此三角形的周长是()A.12B.13C.14D.12或1418.若等腰三角形的两边分别是一元二次方程x2﹣7x+12=0的两根,则等腰三角形的周长为()A.10B.11C.10或11D.以上都不对19.一元二次方程x2﹣2x+m=0没有实数根,则m应满足的条件是()A.m<1B.m>1C.m=1D.m≤120.关于x的方程(m﹣2)x2﹣4x+1=0有实数根,则m的取值范围是()A.m≤6B.m<6C.m≤6且m≠2D.m<6且m≠2 21.若关于x的一元二次方程(k+2)x2﹣3x+1=0有实数根,则k的取值范围是()A.k<且k≠﹣2B.k C.k≤且k≠﹣2D.k22.关于x的一元二次方程(k﹣1)x2﹣2x+3=0有两个不相等的实根,则k的取值范围是()A.k<B.k<且k≠1C.0≤k≤D.k≠123.已知关于x的一元二次方程2x2﹣kx+3=0有两个相等的实根,则k的值为()A.B.C.2或3D.24.关于x的一元二次方程x2﹣2x+m=0有两个不相等的实数根,则实数m的取值范围是()A.m<3B.m>3C.m≤3D.m≥325.若α,β是一元二次方程3x2+2x﹣9=0的两根,则+的值是()A.B.﹣C.﹣D.26.若α、β为方程2x2﹣5x﹣1=0的两个实数根,则2α2+3αβ+5β的值为()A.﹣13B.12C.14D.1527.已知一元二次方程x2﹣2x﹣1=0的两根分别为x1,x2,则+的值为()A.2B.﹣1C.D.﹣2二.填空题(共11小题)28.方程(x﹣5)2=4的解为.29.一元二次方程(2x+1)2﹣81=0的根是.30.一元二次方程x2+2x﹣6=0的根是.31.已知x1,x2是方程2x2﹣3x﹣1=0的两根,则x12+x22=.32.已知关于x的一元二次方程x2﹣4x+m﹣1=0的实数根x1,x2,满足3x1x2﹣x1﹣x2>2,则m的取值范围是.33.已知x1,x2是一元二次方程x2﹣2x﹣1=0的两实数根,则的值是.34.已知α,β是方程x2﹣3x﹣4=0的两个实数根,则α2+αβ﹣3α的值为.35.已知x1,x2是关于x的一元二次方程x2﹣5x+a=0的两个实数根,且x12﹣x22=10,则a=.36.设α、β是方程(x+1)(x﹣4)=﹣5的两实数根,则=.37.设一元二次方程x2﹣3x﹣1=0的两根分别是x1,x2,则x1+x2(x22﹣3x2)=.38.已知关于x的一元二次方程x2+(m+3)x+m+1=0的两个实数根为x1,x2,若x12+x22=4,则m的值为.三.解答题(共12小题)39.解方程:(3x+1)2=6440.解方程:2x2+4x﹣1=0(用配方法).41.用公式法解方程:3x2﹣6x+1=2.42.用公式法解方程:2x(x﹣3)=x2﹣1.43.(1)计算:﹣32﹣(π﹣3.14)0+(tan30°)﹣1﹣2+(2)解方程:2x2﹣4x﹣1=044.用配方法解方程3x2﹣5x﹣2=0.45.(1)计算:(﹣2018)0+|3﹣tan60°|﹣(﹣)﹣2+(2)解方程:x2+4x﹣2=046.(1)解方程x2+4x﹣2=0(2)计算tan30°tan60°﹣sin260°+cos245°47.(1)计算:(﹣)(+)﹣2(2)解方程x2﹣4x+5=048.(1)计算:(5﹣)÷×(2)解方程:x2+3=2x.49.已知:关于x的一元二次方程x2﹣(2m+2)x+m2﹣3=0(1)若此方程有实根,求m的取值范围;(2)在(1)的条件下,且m取最小的整数,求此时方程的两个根.50.已知关于x的一元二次方程x2﹣(m+1)x+3m﹣6=0.(1)求证:方程总有两个实数根;(2)若方程有一个根是负数,求m的取值范围.华师大新版九年级上学期《22.2 一元二次方程的解法》2019年同步练习卷参考答案与试题解析一.选择题(共27小题)1.用配方法解一元二次方程x2﹣8x+2=0,此方程可化为的正确形式是()A.(x﹣4)2=14B.(x﹣4)2=18C.(x+4)2=14D.(x+4)2=18【分析】移项,配方,即可得出选项.【解答】解:x2﹣8x+2=0,x2﹣8x=﹣2,x2﹣8x+16=﹣2+16,(x﹣4)2=14,故选:A.【点评】本题考查了解一元二次方程,能够正确配方是解此题的关键.2.用配方法解下列方程时,配方有错误的是()A.x2+8x+9=0化为(x+4)2=25B.x2﹣2x﹣99=0化为(x﹣1)2=100C.2t2﹣7t﹣4=0化为D.3x2﹣4x﹣2=0化为【分析】利用配方法对各选项进行判断.【解答】解:A、x2+8x+9=0化为(x+4)2=7,所以A选项的配方错误;B、x2﹣2x﹣99=0化为(x﹣1)2=100,所以B选项的配方正确;C、2t2﹣7t﹣4=0先化为t2﹣t=2,再化为,所以C选项的配方正确;D、3x2﹣4x﹣2=0先化为x2﹣x=,再化为(x﹣)2=,所以D选项的配方正确.故选:A.【点评】本题考查了解一元二次方程﹣配方法:将一元二次方程配成(x+m)2=n的形式,再利用直接开平方法求解,这种解一元二次方程的方法叫配方法.3.一元二次方程﹣x2+8x+1=0配方后可变形为()A.(x+4)2=17B.(x+4)2=15C.(x﹣4)2=17D.(x﹣4)2=15【分析】移项,系数化成1,再配方,即可得出选项.【解答】解:﹣x2+8x+1=0,﹣x2+8x=﹣1,x2﹣8x=1,x2﹣8x+16=1+16,(x﹣4)2=17,故选:C.【点评】本题考查了解一元二次方程,能正确配方是解此题的关键.4.用配方法解一元二次方程2x2﹣6x+1=0时,此方程配方后可化为()A.(x﹣)2=B.2(x﹣)2=C.(x﹣)2=D.2(x﹣)2=【分析】先移项,再将二次项系数化为1后,继而两边配上一次项系数一半的平方,写成完全平方式即可得.【解答】解:∵2x2﹣6x+1=0,∴2x2﹣6x=﹣1,则x2﹣3x=﹣,∴x2﹣3x+=﹣+,即(x﹣)2=,故选:A.【点评】本题主要考查解一元二次方程﹣配方法,解题的关键是掌握用配方法解一元二次方程的步骤:①把原方程化为ax2+bx+c=0(a≠0)的形式;②方程两边同除以二次项系数,使二次项系数为1,并把常数项移到方程右边;③方程两边同时加上一次项系数一半的平方;④把左边配成一个完全平方式,右边化为一个常数;⑤如果右边是非负数,就可以进一步通过直接开平方法来求出它的解,如果右边是一个负数,则判定此方程无实数解.5.一元二次方程y2﹣y﹣=0配方后可化为()A.(y+)2=1B.(y﹣)2=1C.(y+)2=D.(y﹣)2=【分析】根据配方法即可求出答案.【解答】解:y2﹣y﹣=0y2﹣y=y2﹣y+=1(y﹣)2=1故选:B.【点评】本题考查一元二次方程的配方法,解题的关键是熟练运用配方法,本题属于基础题型.6.在《九章算术》“勾股”章里有求方程x2+34x﹣71000=0的正根才能解答的题目,以上方程用配方法变形正确的是()A.(x+17)2=70711B.(x+17)2=71289C.(x﹣17)2=70711D.(x﹣17)2=71289【分析】移项后两边配上一次项系数一半的平方即可得.【解答】解:x2+34x﹣71000=0x2+34x=71000x2+34x+172=71000+172(x+17)2=71289故选:B.【点评】题考查了解一元二次方程﹣配方法,利用此方法解方程时,首先将方程常数项移动方程右边,二次项系数化为1,然后方程左右两边都加上一次项系数一半的平方,方程左边化为完全平方式,右边合并为一个非负常数,开方转化为两个一元一次方程来求解.7.解一元二次方程4x2﹣8x﹣1=0,配方后正确的是()A.(2x﹣2)2=0B.4(x﹣1)2=5C.(2x﹣2)2=﹣3D.4(x﹣1)2=2【分析】先把二次项系数化为1,再把常数项移到方程的右边,进行把方程两边加上一次项系数一半的平方,然后把方程左边利用完全平方公式写成平方的形式即可.【解答】解:4x2﹣8x﹣1=0,4x2﹣8x=1,4(x2﹣2x+1)=5,4(x﹣1)2=5.故选:B.【点评】本题考查了解一元二次方程﹣配方法:将一元二次方程配成(x+m)2=n的形式,再利用直接开平方法求解,这种解一元二次方程的方法叫配方法.8.用配方法解方程2x2+3x﹣1=0,则方程可变形为()A.(3x+1)2=1B.C.D.【分析】先把常数项移到方程右侧,两边除以2,然后方程两边加上,再把方程左边写成完全平方的形式即可.【解答】解:x2+x=,x2+x+=+,(x+)2=.故选:B.【点评】本题考查了解一元二次方程﹣配方法:将一元二次方程配成(x+m)2=n的形式,再利用直接开平方法求解,这种解一元二次方程的方法叫配方法.9.利用配方法解方程2x2﹣x﹣2=0时,应先将其变形为()A.B.C.D.【分析】将方程常数项移到右边,方程左右两边同时除以2,然后方程左右两边都加上一次项系数一半的平方,左边化为完全平方式,右边合并,变形后即可得到正确答案.【解答】解:2x2﹣x﹣2=0,移项得:2x2﹣x=2,左右两边同时除以2得:x2﹣x=1,配方得:x2﹣x+=1+,即(x﹣)2=,故选:B.【点评】考查了配方法解一元二次方程.配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方.选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数.10.x=是下列哪个一元二次方程的根()A.3x2+5x+1=0B.3x2﹣5x+1=0C.3x2﹣5x﹣1=0D.3x2+5x﹣1=0【分析】用公式法解一元二次方程的一般步骤为:①把方程化成一般形式,进而确定a,b,c的值;②求出b2﹣4ac的值(若b2﹣4ac<0,方程无实数根);③在b2﹣4ac≥0的前提下,把a、b、c的值代入公式进行计算求出方程的根.【解答】解:A.3x2+5x+1=0中,x=,不合题意;B.3x2﹣5x+1=0中,x=,不合题意;C.3x2﹣5x﹣1=0中,x=,不合题意;D.3x2+5x﹣1=0中,x=,符合题意;故选:D.【点评】本题主要考查了一元二次方程的根,用求根公式解一元二次方程的方法是公式法.11.一元二次方程x2+x﹣1=0的根是()A.x=1﹣B.x=C.x=﹣1+D.x=【分析】先计算判别式的值,然后根据判别式的意义可判断方程根的情况.【解答】解:∵△=12﹣4×(﹣1)=5>0,∴方程有两个不相等的两个实数根,即x=.故选:D.【点评】本题考查了公式法解一元二次方程,用公式法解一元二次方程的前提条件有两个:①a≠0;②b2﹣4ac≥0.12.用公式解方程﹣3x2+5x﹣1=0,正确的是()A.x=B.x=C.x=D.x=【分析】求出b2﹣4ac的值,再代入公式求出即可.【解答】解:﹣3x2+5x﹣1=0,b2﹣4ac=52﹣4×(﹣3)×(﹣1)=13,x==,故选:C.【点评】本题考查了解一元二次方程的应用,能正确利用公式解一元二次方程是解此题的关键.13.利用求根公式求的根时,a,b,c的值分别是()A.5,,6B.5,6,C.5,﹣6,D.5,﹣6,﹣【分析】根据一元二次方程的定义来解答:二次项系数是a、一次项系数是b、常数项是c.【解答】解:由原方程,得5x2﹣6x,根据一元二次方程的定义,知二次项系数a=5,一次项系数b=﹣6,常数项c=;故选:C.【点评】本题是一道易错题,学生在作答时往往把一次项系数﹣6误认为6,所以,在解答时要注意这一点.14.用公式法求一元二次方程的根时,首先要确定a、b、c的值.对于方程﹣4x2+3=5x,下列叙述正确的是()A.a=﹣4,b=5,c=3B.a=﹣4,b=﹣5,c=3C.a=4,b=5,c=3D.a=4,b=﹣5,c=﹣3【分析】用公式法求一元二次方程时,首先要把方程化为一般形式.【解答】解:∵﹣4x2+3=5x∴﹣4x2﹣5x+3=0,或4x2+5x﹣3=0∴a=﹣4,b=﹣5,c=3或a=4,b=5,c=﹣3.故选:B.【点评】此题考查了公式法解一元二次方程的应用条件,首先要把方程化为一般形式.15.一元二次方程x(x﹣5)=0的解是()A.0B.5C.0和5D.0和﹣5【分析】利用因式分解法求解可得.【解答】解:∵x(x﹣5)=0,∴x=0或x﹣5=0,解得:x1=0,x2=5,故选:C.【点评】本题考查了解一元二次方程,能选择适当的方法解一元二次方程是解此题的关键.16.三角形的两边长分别为3和6,第三边的长是方程x2﹣10x+21=0的一个根,则该三角形第三边的长是()A.6B.3或7C.3D.7【分析】把方程的左边利用十字相乘法分解因式,根据两数之积为0,两因式至少有一个为0,转化为两个一元一次方程,分别求出两方程的解即可得到原方程的解,进而得到三角形的第三边长.【解答】解:方程x2﹣10x+21=0可化为:(x﹣3)(x﹣7)=0,解得:x1=3,x2=7,∴三角形的第三边长为3或6,当第三边长为3时,由3+3=6,得到三边不能构成三角形,舍去;所以第三边长为7,故选:D.【点评】此题考查了运用因式分解法解一元二次方程,以及三角形的三边关系,运用因式分解的方法解一元二次方程的前提必须是方程坐标利用因式分解的方法把和的形式化为积的形式,右边为0,此方法的理论依据为ab=0,得到a=0或b=0,三角形的三边关系为:三角形的两边之和大于第三边,两边之差小于第三边,利用此性质把求出的方程的解x=3舍去.17.一个等腰三角形的底边长是5,腰长是一元二次方程x2﹣6x+8=0的一个根,则此三角形的周长是()A.12B.13C.14D.12或14【分析】先求出方程的解,再得出三角形的三边长,最后求出即可.【解答】解:解方程x2﹣6x+8=0得:x=4或2,当三角形的三边为5,2,2时,2+2+<5,不符合三角形三边关系定理,此时不能组成三角形;当三角形的三边为5,4,4时,符合三角形三边关系定理,此时三角形的周长为5+4+4=13,故选:B.【点评】本题考查了解一元二次方程和等腰三角形的性质,三角形的三边关系定理等知识点,能求出符合的所有情况是解此题的关键.18.若等腰三角形的两边分别是一元二次方程x2﹣7x+12=0的两根,则等腰三角形的周长为()A.10B.11C.10或11D.以上都不对【分析】先利用因式分解的方法解方程得到x1=3,x2=4,根据题意讨论:当腰为3,底边为4时;当腰为4,底边为3时,然后分别计算出等腰三角形的周长.【解答】解:∵x2﹣7x+12=0,∴(x﹣3)(x﹣4)=0,∴x﹣3=0或x﹣4=0,∴x1=3,x2=4,当腰为3,底边为4时,等腰三角形的周长为3+3+4=10;当腰为4,底边为3时,等腰三角形的周长为3+4+4=11.故选:C.【点评】本题考查了解一元二次方程﹣因式分解法:就是先把方程的右边化为0,再把左边通过因式分解化为两个一次因式的积的形式,那么这两个因式的值就都有可能为0,这就能得到两个一元一次方程的解,这样也就把原方程进行了降次,把解一元二次方程转化为解一元一次方程的问题了(数学转化思想).也考查了三角形三边的关系.19.一元二次方程x2﹣2x+m=0没有实数根,则m应满足的条件是()A.m<1B.m>1C.m=1D.m≤1【分析】根据方程的系数结合根的判别式△<0,即可得出关于m的一元一次不等式,解之即可得出m的取值范围.【解答】解:∵一元二次方程x2﹣2x+m=0没有实数根,∴△=(﹣2)2﹣4×1×m<0,∴m>1.故选:B.【点评】本题考查了根的判别式,牢记“当△<0时,方程无实数根”是解题的关键.20.关于x的方程(m﹣2)x2﹣4x+1=0有实数根,则m的取值范围是()A.m≤6B.m<6C.m≤6且m≠2D.m<6且m≠2【分析】当m﹣2=0,关于x的方程(m﹣2)x2﹣4x+1=0有一个实数根,当m﹣2≠0时,列不等式即可得到结论.【解答】解:当m﹣2=0,即m=2时,关于x的方程(m﹣2)x2﹣4x+1=0有一个实数根,当m﹣2≠0时,∵关于x的方程(m﹣2)x2﹣4x+1=0有实数根,∴△=(﹣4)2﹣4(m﹣2)•1≥0,解得:m≤6,∴m的取值范围是m≤6且m≠2,故选:A.【点评】本题考查了根的判别式和一元二次方程的定义,能根据根的判别式和已知得出不等式是解此题的关键.21.若关于x的一元二次方程(k+2)x2﹣3x+1=0有实数根,则k的取值范围是()A.k<且k≠﹣2B.k C.k≤且k≠﹣2D.k【分析】根据一元二次方程的定义和根的判别式得出k+2≠0且△=(﹣3)2﹣4(k+2)•1≥0,求出即可.【解答】解:∵关于x的一元二次方程(k+2)x2﹣3x+1=0有实数根,∴k+2≠0且△=(﹣3)2﹣4(k+2)•1≥0,解得:k且k≠﹣2,故选:C.【点评】本题考查了一元二次方程的定义和根的判别式,能得出关于k的不等式是解此题的关键.22.关于x的一元二次方程(k﹣1)x2﹣2x+3=0有两个不相等的实根,则k的取值范围是()A.k<B.k<且k≠1C.0≤k≤D.k≠1【分析】根据一元二次方程的定义和△的意义得到k﹣1≠0且△>0,即(﹣2)2﹣4(k﹣1)×3>0,然后解不等式即可得到k的取值范围.【解答】解:∵关于x的一元二次方程(k﹣1)x2﹣2x+3=0有两个不相等的实数根,∴k﹣1≠0,即k≠1,△=(﹣2)2﹣4(k﹣1)×3=﹣12k+16,∵方程有两个不相等的实数解,∴△>0,∴﹣12k+16>0,∴k<,∴k的取值范围是k<且k≠1.故选:B.【点评】此题考查了一元二次方程ax2+bx+c=0(a≠0,a,b,c为常数)的根的判别式△=b2﹣4ac.当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程没有实数根.也考查了一元二次方程的定义23.已知关于x的一元二次方程2x2﹣kx+3=0有两个相等的实根,则k的值为()A.B.C.2或3D.【分析】把a=2,b=﹣k,c=3代入△=b2﹣4ac进行计算,然后根据方程有两个相等的实数根,可得△=0,再计算出关于k的方程即可.【解答】解:∵a=2,b=﹣k,c=3,∴△=b2﹣4ac=k2﹣4×2×3=k2﹣24,∵方程有两个相等的实数根,∴△=0,∴k2﹣24=0,解得k=±2,故选:A.【点评】本题考查了一元二次方程ax2+bx+c=0(a≠0,a,b,c为常数)的根的判别式△=b2﹣4ac.当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程没有实数根.24.关于x的一元二次方程x2﹣2x+m=0有两个不相等的实数根,则实数m的取值范围是()A.m<3B.m>3C.m≤3D.m≥3【分析】根据关于x的一元二次方程x2﹣2x+m=0有两个不相等的实数根可得△=(﹣2)2﹣4m>0,求出m的取值范围即可.【解答】解:∵关于x的一元二次方程x2﹣2x+m=0有两个不相等的实数根,∴△=(﹣2)2﹣4m>0,∴m<3,故选:A.【点评】本题考查了一元二次方程ax2+bx+c=0(a≠0,a,b,c为常数)的根的判别式△=b2﹣4ac.当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程没有实数根.25.若α,β是一元二次方程3x2+2x﹣9=0的两根,则+的值是()A.B.﹣C.﹣D.【分析】根据根与系数的关系可得出α+β=﹣、αβ=﹣3,将其代入+=中即可求出结论.【解答】解:∵α、β是一元二次方程3x2+2x﹣9=0的两根,∴α+β=﹣,αβ=﹣3,∴+====﹣.故选:C.【点评】本题考查了根与系数的关系,牢记两根之和等于﹣、两根之积等于是解题的关键.26.若α、β为方程2x2﹣5x﹣1=0的两个实数根,则2α2+3αβ+5β的值为()A.﹣13B.12C.14D.15【分析】根据一元二次方程解的定义得到2α2﹣5α﹣1=0,即2α2=5α+1,则2α2+3αβ+5β可表示为5(α+β)+3αβ+1,再根据根与系数的关系得到α+β=,αβ=﹣,然后利用整体代入的方法计算.【解答】解:∵α为2x2﹣5x﹣1=0的实数根,∴2α2﹣5α﹣1=0,即2α2=5α+1,∴2α2+3αβ+5β=5α+1+3αβ+5β=5(α+β)+3αβ+1,∵α、β为方程2x2﹣5x﹣1=0的两个实数根,∴α+β=,αβ=﹣,∴2α2+3αβ+5β=5×+3×(﹣)+1=12.故选:B.【点评】本题考查了根与系数的关系:若x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根时,x1+x2=﹣,x1x2=.也考查了一元二次方程解的定义.27.已知一元二次方程x2﹣2x﹣1=0的两根分别为x1,x2,则+的值为()A.2B.﹣1C.D.﹣2【分析】根据根与系数的关系得到x1+x2=2,x1x2=﹣1,利用通分得到+=,然后利用整体代入的方法计算【解答】解:根据题意得x1+x2=2,x1x2=﹣1,所以+===﹣2.故选:D.【点评】本题考查了根与系数的关系:若x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根时,x1+x2=﹣,x1x2=.二.填空题(共11小题)28.方程(x﹣5)2=4的解为x1=7,x2=3.【分析】方程两边开方,即可得出两个一元一次方程,求出方程的解即可.【解答】解:(x﹣5)2=4,开方得:x﹣5=±2,解得:x1=7,x2=3,故答案为x1=7,x2=3.【点评】本题考查了解一元二次方程,能把一元二次方程转化成一元一次方程是解此题的关键.29.一元二次方程(2x+1)2﹣81=0的根是x1=4;x2=﹣5.【分析】先变形为(2x+1)2=81,再两边开方得到2x+1=±9,然后解两个一次方程即可.【解答】解:(2x+1)2=81,2x+1=±9,所以x1=4,x2=﹣5.故答案为x1=4,x2=﹣5.【点评】本题考查了解一元二次方程﹣直接开平方法:形如x2=p或(nx+m)2=p(p≥0)的一元二次方程可采用直接开平方的方法解一元二次方程.30.一元二次方程x2+2x﹣6=0的根是x1=,x2=﹣3.【分析】找出a,b,c的值,代入求根公式即可求出解.【解答】解:这里a=1,b=2,c=﹣6,∵△=8+24=32,∴x=,即x1=,x2=﹣3.故答案为:x1=,x2=﹣3.【点评】此题考查了解一元二次方程﹣公式法,熟练掌握求根公式是解本题的关键.31.已知x1,x2是方程2x2﹣3x﹣1=0的两根,则x12+x22=.【分析】找出一元二次方程的系数a,b及c的值,利用根与系数的关系求出两根之和与两根之积,然后利用完全平方公式变形后,将求出的两根之和与两根之积代入,即可求出所求式子的值.【解答】解:∵x1、x2是方程2x2﹣3x﹣1=0的两根,∴x1+x2=.x1x2=﹣,∴x12+x22=,故答案为:【点评】此题考查了一元二次方程根与系数的关系,对所求的代数式进行正确的变形是解决本题的关键.32.已知关于x的一元二次方程x2﹣4x+m﹣1=0的实数根x1,x2,满足3x1x2﹣x1﹣x2>2,则m的取值范围是3<m≤5.【分析】根据根的判别式△>0、根与系数的关系列出关于m的不等式组,通过解该不等式组,求得m的取值范围.【解答】解:依题意得:,解得3<m≤5.故答案是:3<m≤5.【点评】本题考查了一元二次方程的根的判别式的应用,解此题的关键是得出关于m的不等式,注意:一元二次方程ax2+bx+c=0(a、b、c为常数,a≠0)①当b2﹣4ac>0时,一元二次方程有两个不相等的实数根,②当b2﹣4ac=0时,一元二次方程有两个相等的实数根,③当b2﹣4ac<0时,一元二次方程没有实数根.33.已知x1,x2是一元二次方程x2﹣2x﹣1=0的两实数根,则的值是6.【分析】根据根与系数的关系及一元二次方程的解可得出x1+x2=2、x1x2=﹣1、=2x1+1、=2x2+1,将其代入=中即可得出结论.【解答】解:∵x1、x2是一元二次方程x2﹣2x﹣1=0的两实数根,∴x1+x2=2,x1x2=﹣1,=2x1+1,=2x2+1,∴=+====6.故答案为:6.【点评】本题考查了根与系数的关系以及一元二次方程的解,将代数式变形为是解题的关键.34.已知α,β是方程x2﹣3x﹣4=0的两个实数根,则α2+αβ﹣3α的值为0.【分析】根据根与系数的关系得到得α+β=3,再把原式变形得到a(α+β)﹣3α,然后利用整体代入的方法计算即可.【解答】解:根据题意得α+β=3,αβ=﹣4,所以原式=a(α+β)﹣3α=3α﹣3α=0.故答案为0.【点评】本题考查了根与系数的关系:若x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根时,x1+x2=﹣,x1x2=.35.已知x1,x2是关于x的一元二次方程x2﹣5x+a=0的两个实数根,且x12﹣x22=10,则a=.【分析】由两根关系,得根x1+x2=5,x1•x2=a,解方程得到x1+x2=5,即x1﹣x2=2,即可得到结论.【解答】解:由两根关系,得根x1+x2=5,x1•x2=a,由x12﹣x22=10得(x1+x2)(x1﹣x2)=10,若x1+x2=5,即x1﹣x2=2,∴(x1﹣x2)2=(x1+x2)2﹣4x1•x2=25﹣4a=4,∴a=,故答案为:.【点评】本题考查了根与系数的关系:若x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根时,x1+x2=﹣,x1x2=.36.设α、β是方程(x+1)(x﹣4)=﹣5的两实数根,则=47.【分析】根据α、β是方程(x+1)(x﹣4)=﹣5的两实数根,得到α+β=3,αβ=1,根据完全平方公式得到α4+β4=47,于是得到结论.【解答】解:方程(x+1)(x﹣4)=﹣5可化为x2﹣3x+1=0,∵α、β是方程(x+1)(x﹣4)=﹣5的两实数根,∴α+β=3,αβ=1,∴α2+β2=(α+β)2﹣2αβ=7,α4+β4=(α2+β2)2﹣2α2•β2=47,∴==47,故答案为:47.【点评】本题考查了根与系数的关系,难度较大,关键是根据已知条件对进行变形.37.设一元二次方程x2﹣3x﹣1=0的两根分别是x1,x2,则x1+x2(x22﹣3x2)=3.【分析】由题意可知x22﹣3x2=1,代入原式得到x1+x2,根据根与系数关系即可解决问题.【解答】解:∵一元二次方程x2﹣3x﹣1=0的两根分别是x1,x2,∴x12﹣3x1﹣1=0,x22﹣3x2﹣1=0,x1+x2=3,∴x22﹣3x2=1,∴x1+x2(x22﹣3x2)=x1+x2=3,故答案为3.【点评】本题考查根与系数关系、一元二次方程根的定义,解题的关键是灵活运用根与系数的关系定理,属于中考常考题型.38.已知关于x的一元二次方程x2+(m+3)x+m+1=0的两个实数根为x1,x2,若x12+x22=4,则m的值为﹣1或﹣3.【分析】利用根与系数的关系可以得到代数式,再把所求代数式利用完全平方公式变形,结合前面的等式即可求解.【解答】解:∵这个方程的两个实数根为x1、x2,∴x1+x2=﹣(m+3),x1•x2=m+1,而x12+x22=4,∴(x1+x2)2﹣2x1•x2=4,∴(m+3)2﹣2m﹣2=4,∴m2+6m+9﹣2m﹣6=0,m2+4m+3=0,∴m=﹣1或﹣3,故答案为:﹣1或﹣3【点评】本题主要考查一元二次方程根的判别式和根与系数的关系的应用,关键是利用根与系数的关系和完全平方公式将代数式变形分析.三.解答题(共12小题)39.解方程:(3x+1)2=64【分析】利用直接开平方法解方程得出答案.【解答】解:(3x+1)2=64,则:(3x+1)2=256,故3x+1=±16,解得:x1=﹣,x2=5.【点评】此题主要考查了直接开平方法解方程,正确开平方是解题关键.40.解方程:2x2+4x﹣1=0(用配方法).【分析】先把方程的二次项系数化为1,再利用完全平方公式变形为(x+1)2=,然后利用直接开平方法求解.【解答】解:x2+2x﹣=0,x2+2x+1=+1,(x+1)2=x+1=±,所以x1=,x2=.【点评】本题考查了解一元二次方程﹣配方法:将一元二次方程配成(x+m)2=n的形式,再利用直接开平方法求解,这种解一元二次方程的方法叫配方法.41.用公式法解方程:3x2﹣6x+1=2.【分析】先把方程化为一般式,再计算判别式的值,然后利用求根公式解方程.【解答】解:3x2﹣6x﹣1=0,△=(﹣6)2﹣4×3×(﹣1)=48,x===,所以x1=,x2=.【点评】本题考查了解一元二次方程﹣公式法:用求根公式解一元二次方程的方法是公式法.42.用公式法解方程:2x(x﹣3)=x2﹣1.【分析】先把方程化为一般式,然后利用求根公式解方程.【解答】解:方程整理为x2﹣6x+1=0,△=(﹣6)2﹣4×1=32,x==3±2,所以x1=3+2,x2=3﹣2.【点评】本题考查了解一元二次方程﹣公式法:用求根公式解一元二次方程的方法是公式法.43.(1)计算:﹣32﹣(π﹣3.14)0+(tan30°)﹣1﹣2+(2)解方程:2x2﹣4x﹣1=0【分析】(1)根据特殊角的三角函数值、零指数幂、二次根式、负指数幂的性质化简,二次根式的混合运算,然后根据实数运算法则进行计算即可得出结果.(2)根据配方法求解即可.【解答】解:(1)原式=﹣9﹣1+()﹣1﹣++1=﹣9+;(2)2x2﹣4x﹣1=0,x2﹣2x=,x2﹣2x+1=+1,即(x﹣1)2=,∴x﹣1=±∴x1=1+,x2=1﹣.【点评】本题考查的是解一元二次方程,实数的运算,熟知二次根式的运算、数的开方及乘方法则、负整数指数幂的运算法则特殊角的三角函数值是解答此题的关键.44.用配方法解方程3x2﹣5x﹣2=0.【分析】移项,系数化成1,配方,开方,即可得出两个一元一次方程,求出方程的解即可.【解答】解:3x2﹣5x﹣2=0,3x2﹣5x=2,x2﹣x=,x2﹣x+()2=+()2,(x﹣)2=,x﹣=±,x1=﹣,x2=2.【点评】本题考查了解一元二次方程,能正确配方是解此题的关键,注意:解一元二次方程的方法有:直接开平方法,因式分解法,公式法,配方法等.45.(1)计算:(﹣2018)0+|3﹣tan60°|﹣(﹣)﹣2+(2)解方程:x2+4x﹣2=0【分析】(1)先计算乘方、取绝对值符号、计算负整数指数幂、化简二次根式,再计算加减可得;(2)把常数项2移项后,应该在左右两边同时加上一次项系数4的一半的平方,写成完全平方式,再开方可得.【解答】解:(1)原式=1+3﹣﹣4+3=2;(2)∵x2+4x﹣2=0,∴x2+4x=2,则x2+4x+4=2+4,即(x+2)2=6,∴x+2=±,∴x=﹣2±,即x1=﹣2+、x2=﹣2﹣.【点评】本题考查了配方法解方程和实数的混合运算.配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方.选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数.46.(1)解方程x2+4x﹣2=0(2)计算tan30°tan60°﹣sin260°+cos245°【分析】(1)根据一元二次方程的解法即可求出答案.(2)根据特殊角锐角三角函数的值即可求出答案.【解答】解:(1)x2+4x+4=6(x+2)2=6x=﹣2±(2)原式=×﹣+=1=【点评】本题考查学生的运算能力,解题的关键是熟练运用运算法则,本题属于基础题型.47.(1)计算:(﹣)(+)﹣2(2)解方程x2﹣4x+5=0【分析】(1)先算乘方和开方,再算乘法,最后算加减即可;(2)先求出b2﹣4ac的值,再判断即可.【解答】解:(1)原式=5﹣3﹣4+1=﹣1;(2)x2﹣4x+5=0,b2﹣4ac=(﹣4)2﹣4×1×5=﹣1<0,所以此方程无解.【点评】本题考查了解一元二次方程、零指数幂、平方差公式、二次根式的混合运算,能求出每一部分的值是解(1)的关键,能熟记公式是解(2)的关键.48.(1)计算:(5﹣)÷×(2)解方程:x2+3=2x.【分析】(1)先把二次根式化为最简二次根式.再把括号内合并后进行二次根式的乘除运算;(2)先把方程化为一般式,然后利用配方法解方程.【解答】解:(1)运算=(10﹣3)÷×=7÷×=7=14;(2)x2﹣2x+()2=0,(x﹣)2=0,x﹣=0,所以x1=x2=.【点评】本题考查了解一元二次方程﹣配方法:将一元二次方程配成(x+m)2=n的形式,再利用直接开平方法求解,这种解一元二次方程的方法叫配方法.也考查了二次根式的混合运算.49.已知:关于x的一元二次方程x2﹣(2m+2)x+m2﹣3=0(1)若此方程有实根,求m的取值范围;(2)在(1)的条件下,且m取最小的整数,求此时方程的两个根.【分析】(1)根据方程有实根,则根的判别式△=b2﹣4ac≥0,建立关于m的不等式,求出m的取值范围;(2)得到m的最小整数,可得方程为x2+2x+1=0,再解一元二次方程即可.【解答】解:(1)∵一元二次方程x2﹣4(2m+2)x+m2﹣3=0有实根,∴△=(2m+2)2﹣4(m2﹣3)=8m+16≥0,∴m≥﹣2;(2)m满足条件的最小值为m=﹣2,此时方程为x2+2x+1=0,解得x1=x2=﹣1.【点评】考查了根的判别式,总结:一元二次方程根的情况与判别式△的关系:(1)△>0时方程有两个不相等的实数根;(2)△=0时方程有两个相等的实数根;(3)△<0时方程没有实数根.50.已知关于x的一元二次方程x2﹣(m+1)x+3m﹣6=0.(1)求证:方程总有两个实数根;(2)若方程有一个根是负数,求m的取值范围.【分析】(1)计算方程根的判别式,判断其符号即可;(2)求方程两根,结合条件则可求得m的取值范围.【解答】(1)证明:∵关于x的一元二次方程x2﹣(m+1)x+3m﹣6=0,∴△=[﹣(m+1)]2﹣4(3m﹣6)=m2﹣10m+25=(m﹣5)2≥0,∴方程总有两个实数根;(2)解:由求根公式可求得x=3或x=m﹣2,若方程有一个根为负数,则m﹣2<0,解得m<2.综上可知,若方程有一个根是负数,m的取值范围为m<2.【点评】本题主要考查根的判别式,熟练掌握一元二次方程根的个数与根的判别式的关系是。

秋九年级数学上册 第22章 一元二次方程 22.2 一元二次方程的解法 22.2.5 一元二次方程的

秋九年级数学上册 第22章 一元二次方程 22.2 一元二次方程的解法 22.2.5 一元二次方程的

*22.2.5 一元二次方程的根与系数的关系知识点 1 利用一元二次方程根与系数的关系求两根之和或两根之积1.[2016·黄冈]若方程3x 2-4x -4=0的两个实数根分别为x 1,x 2,则x 1+x 2=( )A .-4B .3C .-43D.432.[2016·某某]一元二次方程x 2-3x -2=0的两根分别为x 1,x 2,则下列结论正确的是( )A .x 1=-1,x 2=2B .x 1=1,x 2=-2C .x 1+x 2=3D .x 1x 2=2知识点 2 利用一元二次方程根与系数的关系求代数式的值3.若α,β是一元二次方程x 2+2x -6=0的两根,则α2+β2=( )A .-6B .32C .16D .404.[2017·某某]若方程x 2-4x +1=0的两根是x 1,x 2,则x 1(1+x 2)+x 2的值为________. 知识点 3 已知方程及方程的一个根求方程的另一个根5.[2017·某某]已知关于x 的方程x 2+x -a =0的一个根为2,则另一个根是( )A .-3B .-2C .3D .66.[2016·潍坊]关于x 的一元二次方程3x 2+mx -8=0有一个根是23,求该一元二次方程的另一个根及m 的值.7.若关于x 的一元二次方程x 2-(m +6)x +m 2=0有两个相等的实数根,且满足x 1+x 2=x 1x 2,则m 的值是( )A .-2或3B .3C .-2D .-3或28.[教材练习第3(1)题变式][2017·某某]关于x 的方程2x 2+mx +n =0的两个根是-2和1,则n m的值为( )A .-8B .8C .16D .-169.[2017·某某]定义运算:a ★b =a (1-b ).若a ,b 是方程x 2-x +14m =0(m <0)的两根,则b ★b -a ★a 的值为( )A .0B .1C .2D .与m 有关10.[2017·某某]已知方程x 2+5x +1=0的两个实数根分别为x 1,x 2,则x 12+x 22=________.11.[2017·某某]已知x 1,x 2是关于x 的一元二次方程x 2-5x +a =0的两个实数根,且x 12-x 22=10,则a =________.12.[2017·某某]已知关于x 的方程x 2+(2k -1)x +k 2-1=0有两个实数根x 1,x 2.(1)某某数k 的取值X 围;(2)若x 1,x 2满足x 12+x 22=16+x 1x 2,某某数k 的值.13.若a ,b 是方程x 2+x -2018=0的两个实数根,则a 2+2a +b =( )A .2018B .2017C .2016D .201514.已知关于x 的方程x 2+(m -3)x -m (2m -3)=0.(1)证明:无论m 为何值,方程都有两个实数根.(2)是否存在正数m ,使方程的两个实数根的平方和等于26?若存在,求出满足条件的正数m 的值;若不存在,请说明理由.1.D [解析] ∵方程3x 2-4x -4=0的两个实数根分别为x 1,x 2, ∴x 1+x 2=-b a =43.故选D.2.C3.C [解析] 根据题意,得α+β=-2,αβ=-6,所以α2+β2=(α+β)2-2αβ=(-2)2-2×(-6)=16.故选C.4.5 [解析] 根据题意得x 1+x 2=4,x 1x 2=1,所以x 1(1+x 2)+x 2=x 1+x 1x 2+x 2=x 1+x 2+x 1x 2=4+1=5.故答案为5.5.A [解析] 设方程的另一个根为t ,根据题意得2+t =-1,解得t =-3,即方程的另一个根是-3.故选A.6.解:设方程的另一个根为t .依题意得3×⎝ ⎛⎭⎪⎫232+23m -8=0,解得m =10. 又23t =-83,所以t =-4. 故该一元二次方程的另一个根是-4,m 的值为10.7.[全品导学号:15572076]C [解析] ∵x 1+x 2=m +6,x 1x 2=m 2,x 1+x 2=x 1x 2, ∴m +6=m 2,解得m 1=3,m 2=-2.∵方程x 2-(m +6)x +m 2=0有两个相等的实数根,∴Δ=b 2-4ac =(m +6)2-4m 2=-3m 2+12m +36=0,解得m 1=6,m 2=-2,∴m =-2.故选C.8.C [解析] ∵关于x 的方程2x 2+mx +n =0的两个根是-2和1,∴-m 2=-1,n 2=-2, ∴m =2,n =-4,∴n m =(-4)2=16.故选C.9. A [解析] ∵a ,b 是方程x 2-x +14m =0(m <0)的两根,∴a +b =1,ab =14m . ∴b ★b -a ★a =b (1-b )-a (1-a )=b (a +b -b )-a (a +b -a )=ab -ab =0.故选A.10.23 [解析] ∵方程x 2+5x +1=0的两个实数根分别为x 1,x 2,∴x 1+x 2=-5,x 1·x 2=1,∴x 12+x 22=(x 1+x 2)2-2x 1·x 2=(-5)2-2×1=23.故答案为23.11. 214[解析] 由根与系数的关系,得x 1+x 2=5,x 1·x 2=a , 由x 12-x 22=10得(x 1+x 2)(x 1-x 2)=10.∵x 1+x 2=5,∴x 1-x 2=2,∴(x 1-x 2)2=(x 1+x 2)2-4x 1·x 2=25-4a =4,∴a =214. 故答案为214. 12.[解析] (1)根据方程的系数结合根的判别式,即可得出Δ=-4k +5≥0,解之即可得出实数k 的取值X 围;(2)由根与系数的关系可得x 1+x 2=1-2k ,x 1·x 2=k 2-1,将其代入x 12+x 22=(x 1+x 2)2-2x 1·x 2=16+x 1x 2中,解之即可得出k 的值.解:(1)∵关于x 的方程x 2+(2k -1)x +k 2-1=0有两个实数根x 1,x 2,∴Δ=(2k -1)2-4(k 2-1)=-4k +5≥0,解得k ≤54, ∴实数k 的取值X 围为k ≤54. (2)∵关于x 的方程x 2+(2k -1)x +k 2-1=0有两个实数根x 1,x 2,∴x 1+x 2=1-2k ,x 1x 2=k 2-1.∵x 12+x 22=(x 1+x 2)2-2x 1x 2=16+x 1x 2,∴(1-2k )2-2(k 2-1)=16+(k 2-1),即k 2-4k -12=0,解得k =-2或k =6(不符合题意,舍去).∴实数k 的值为-2.13.B [解析] ∵a 是方程x 2+x -2018=0的根,∴a 2+a -2018=0,∴a 2=-a +2018,∴a 2+2a +b =-a +2018+2a +b =2018+a +b .∵a ,b 是方程x 2+x -2018=0的两个实数根,∴a +b =-1,∴a 2+2a +b =2018-1=2017.故选B.14.[解析] (1)求出根的判别式,再根据非负数的性质即可证明;(2)根据一元二次方程根与系数的关系即可求得方程两根的和与两根的积,两根的平方和可以用两根的和与两根的积表示,根据方程的两个实数根的平方和等于26,即可得到一个关于m 的方程,求得m 的值.解:(1)证明:∵关于x 的方程x 2+(m -3)x -m (2m -3)=0的判别式Δ=(m -3)2+4m (2m -3)=9(m -1)2≥0,∴无论m 为何值,方程都有两个实数根.(2)设方程的两个实数根为x 1,x 2,则x 1+x 2=-(m -3),x 1x 2=-m (2m -3),令x 12+x 22=26,得(x 1+x 2)2-2x 1x 2=(m -3)2+2m (2m -3)=26,整理,得5m 2-12m -17=0,解这个方程,得m =175或m =-1. 所以存在正数m =175,使方程的两个实数根的平方和等于26.。

22.2 降次——解一元二次方程(习题课)教学案-

22.2 降次——解一元二次方程(习题课)教学案-

22.2.降次——解一元二次方程(习题课)【学习目标】1、 会灵活选用直接开平方法、配方法、公式法和因式分解法解一元二次方程。

并能说出各种解法的要点及注意的问题。

2、 能利用b 2-4ac 来判断一元二次方程根的情况;同时能根据根的情况来判断某些字母系数的取值范围。

3、 会列一元二次方程解简单实际问题,并对结果作合理的解释。

【学习过程】一、自主学习:自学课本P35---P 44内容,思考下列问题:1、 一元二次方程的解法有哪几种?其基本思想是什么?它们之间有什么区别和联系?2、 用配方法解一元二次方程的一般步骤是什么?配方的关键是什么?3、 用公式法解一元二次方程的一般步骤是什么?求根公式是怎样推导出来的?4、 用因式分解法解一元二次方程的一般步骤是什么?5、 如何利用b 2-4ac 来判断一元二次方程根的情况?都是有哪几种情况?6、 求取的方程的解都符合题意吗?有什么判断依据?交流与点拨:师生共同思考以上几个问题,在解一元二次方程时,往往首先把方程转化成一般形式,然后再去观察到底使用那种方法。

注意配方法的关键是方程两边同时加上一次项系数一半的平方(二次项系数为1时)。

求根公式不要死记,要掌握推导过程。

b 2-4ac 来判断一元二次方程根的情况是考点,要灵活掌握。

二、例题学习:例1 选择适当的方法解下列方程:(1)5)12(2=-x (2)09102=++x x 解: 解:(3)02432=+-x x (4)05822=+-x x解: 解:(5)3632-=-x x(教师可以选择其中一题示范三种方法,最终选择最好的方法,当然,学生可以自主选择方法,学生板演,教师点评。

)例2:关于x 的一元二次方程032)1(2=+++x x m(1)当m 取何值时,此方程有两个不相等的实数根。

(2)当m 取何值时,此方程有两个相等的实数根。

(3)当m 取何值时,此方程没有实数根。

解:(解题时,注意01≠+m , 1-≠m ;再结合b 2-4ac 来判断。

九年级数学上第22章一元二次方程22.2一元二次方程的解法4一元二次方程根的判别式课华东师大

九年级数学上第22章一元二次方程22.2一元二次方程的解法4一元二次方程根的判别式课华东师大
解:(1)∵Δ=(-2)2-4×3×(-1)=16>0, ∴方程有两个不相等的实数根. (2)2x2-x+1=0; ∵Δ=(-1)2-4×2×1=-7<0, ∴方程没有实数根.
(3)4x-x2=x2+2; 方程整理为x2-2x+1=0,∵Δ=(-2)2-4×1×1=0, ∴方程有两个相等的实数根.
(4)3x-1=2x2.
方程整理为2x2-3x+1=0,∵Δ=(-3)2-4×2×1=1>0, ∴方程有两个不相等的实数根.
9.【中考·陇南】关于x的一元二次方程x2+4x+k=0有两 个实数根,则k的取值范围是( C )
A.k≤-4 B.k<-4 C.k≤4 D.k<4
10.【2020·攀枝花】若关于x的方程x2-x-m=0没有实数
1.已知关于x的方程x2+mx-1=0的根的判别式的值为5, 则m的值为( D )
A.±3 B.3 C.1 D.±1
2.【2021·长春师大附中新城校区期末】一元二次方程x2 -x-3=0根的判别式的值是___1_3____.
3.已知关于x的一元二次方程mx2-(3m-1)x=1-2m,其 根的判别式的值为4,求m的值.
第22章 一元二次方程
22.2 一元二次方程的解法
4.一元二次方程根的判别式
提示:点击 进入习题
新知笔记 1 b2-4ac;一般形式 2 (1)> (2)= (3)<
1D 2 13 3 见习题
4C
5A
答案显示
6B 7C 8 见习题 9C 10 A
11 1
16 B
答案显示
12 见习题 17 4
13 D
(2)若a、b、c为△ABC的三边长,方程有两个相等的实数根 ,求证:△ABC为等边三角形. ∵方程有两个相等的实数根, ∴Δ=8[(a-b)2+(b-c)2+(a-c)2]=0, ∴a-b=0,b-c=0,a-c=0. ∵a、b、c为三角形的三边长, ∴a=b≠0,b=c≠0,a=c≠0, ∴a=b=c.∴△ABC为等边三角形.

一元二次方程的解法习题课

一元二次方程的解法习题课

课题:21.2.5一元二次方程的解法习题课【三维目标】1、熟练的运用合适的方法解决一元二次方程。

2、能根据具体的一元二次方程的特征,灵活选择方程的解法,体会解决问题方法的多样性。

3、通过对一元二次方程解法的总结和归纳,体会“降次”的基本思想,感受到数学的趣味性。

【重点难点】1.重点:熟练的运用合适的方法解决一元二次方程. 2.难点:总结、归纳、整理、吸收的过程.【预习导学】之前我们学习了几种解决一元二次方程的方法,都有什么特点,大家仔细想一想,并完成下面的习题。

【问题引领】1、方程2(4)5(4)x x x -=-的根是( )A.52x =B.4x =C.152x =-24x =D. 52x =- 2、一元二次方程24210x x +-=的根是__________________________.3、当x =____________时,代数式21230x x ++的值等于3.4、两个数的和为-7,积为12,这两个数是_____________________. 【师生互动】选择合适的方法解下列方程: 1. 270x x -= 2. 21227x x +=3、X (x -2)+X -2=0 4. 224x x +-=5、5x 2-2X -41 =x 2-2X+43 6. 224(2)9(21)x x +=-解一元二次方程的基本思路是:将二次方程化为一次方程,即降次 【精讲点拨】一元二次方程主要有四种解法,它们的理论根据和适用范围如下表:方法名称理论根据 适用方程的形式直接开平方法 平方根的定义 2x p =或2()mx n p +=(0)p ≥配方法 完全平方公式 所有的一元二次方程 公式法配方法所有的一元二次方程因式分解法两个因式的积等于0,那么这两个因式至少有一个等于0一边是0,另一边易于分解成两个一次因式的乘积的一元二次方程【归纳总结】一般考虑选择方法的顺序是:直接开平方法、 分解因式法、 配方法或公式法 【拓展延伸】1、方程2(4)5(4)x x x -=-的根是( )A.52x =B.4x =C.152x =-24x =D. 52x =- 2、一元二次方程24210x x +-=的根是__________________________.3、当x =____________时,代数式21230x x ++的值等于3.4、两个数的和为-7,积为12,这两个数是_____________________.5、解下列方程: (1) (23)(4)(32)(15)x x x x -+=-- (2)2156042x x +-=(3) 2(21)(63)x x x -=- (4) 2670x x +-=6、一次会议上,每两个参加会议的人都相互握了一次手,有人统计一共握了66次手,这次会议到会的人数是多少?【作业布置】教材16页 习题21.2 复习巩固7题【点火预热】一元二次方程根和系数之间有联系吗? 【板书设计】§21.2 一元二次方程的解法习题课解一元二次方程的基本思路是:将二次方程化为一次方程,即降次。

22.2_一元二次方程的解法(直接开平方法配方法公式法因式分解)--

22.2_一元二次方程的解法(直接开平方法配方法公式法因式分解)--

9.x 12x 27 0;
2
8.x1 0; x2 1. 9.x1 3, x2 9.
简记歌诀:
右化零
两因式
左分解
各求解
用配方法解一元二次方程的步骤: 1.把原方程化成 x2+px+q=0的形式。
2.移项整理 得 x2+px=-q 3.在方程 x2+px= -q 的两边同加上一次项系 数 p的一半的平方。 x2+px+( )2 = -q+( ) 2= )2 -q
1 2
例2:用配方法解下列方程
x 6 x 16 0
2
x 8x 1 0
2
二次项系数为1
2 x 1 3x
2 2
二次项系数不为1
3x 6 x 4 0 可以先将系数化为1
用配方法解一元二次方程的步骤:
移项:把常数项移到方程的右边; 系数化为1:将二次项系数化为1; 配方:方程两边都加上一次项系数一半的平方 ; 开方:根据平方根意义,方程两边开平方; 求解:解一元一次方程; 定解:写出原方程的解.
用公式法解一元二次方程的一般
求根公式 : X=
(a≠0, b2-4ac≥0)
步骤:
1、把方程化成一般形式。 并写出a,
b,c的值。
例1.用公式法解方程2x2+5x3=0

2、求出b2-4ac的值。
解: a=2, b=5,
∴ 3)=49 ∴x =
= =
c= -3,

3、代入求根公式 : X=
b2-4ac=52-4×2×(③
对于方程(2) χ2-1=0 ,你可以怎样解它?
还有其它的解法吗?

一元二次方程解法习题课(公开课)

一元二次方程解法习题课(公开课)

一、基本概念
学习一元二次方程的定义和背景知识
三、化简方程的表达式
学会化简复杂的一元二次方程
二、解方程的基本方法
掌握如何解一元二次方程
四、配方法
使用配方法解决一元二次方程
公式推导和因式分解
五、公式推导
探究一元二次方程的根的公式推导过程
六、因式分解
通过因式分解法解决一元二次方程
图像法和实际问题应用
七、图像法求解
了解如何应对一元二次方程试题的技巧和策略
评价和展望
十四、课程评价
学员对本课程的评价和反馈
十五、未来展望
展望一元二次方程解法课程的未来)
本课程将介绍一元二次方程的概念和背景,以及解一元二次方程的基本方法。 我们还将学习如何化简方程、使用配方法和因式分解来解决方程。课程中将 包括公式推导、图像法、实际问题应用,还有例题和练习题解析,以及考试 技巧分享。让我们一起全面掌握一元二次方程的解法!
一元二次方程的全面解法
通过绘制方程的图像解决一元二次方程
八、实际问题应用
了解如何将一元二次方程应用于实际生活中的问题
例题解析和练习题答案解析
1
十、例题解析
详细解析一些典型的一元二次方程例题
十一、练习题答案解析
2
逐步解析一些练习题的答案
考试技巧分享
1 十二、备考要点
学习一元二次方程考试的注意事项和技巧
2 十三、应试技巧

一元二次方程的解法习题课课件

一元二次方程的解法习题课课件

使用配方法求解一元二次方程的实例
例题:解方程 2x^2 - 5x - 3 = 0。 步骤:
1. 计算配方公式的常数项 p = (-5/4)^2 = 6.25。 2. 将方程中的二次项 -5x 替换为 2x 的平方,得到 2x^2 - 5x - 3 = 2x^2 - 5x + 6.25 - 6.25 - 3。 3. 将方程转化为完全平方 (x - 5/4)^2 - 22.25 = 0。 4. 解方程 (x - 5/4)^2 - 22.25 = 0,得到方程的解。
一元二次方程的解法
1
配方法
2
通过配方的方式将二次项变成一个完全
平方,然后求解。
3
完全平方公式
4
利用完全平方公式,将一元二次方程转
化为完全平方,然后求解。
5
因式分解法
根据方程的特点,将其因式分解成两个 一次方程,然后求解。
公式法
利用一元二次方程的求根公式,直接求 解方程。
判别式
通过判别式来判断方程的根的情况,并 求解。
完全平方公式的介绍
完全平方公式是指一个二次三项式的平方可以化简为一个完全平方二项式。 一元二次方程的完全平方公式是 (a ± b)^2 = a^2 ± 2ab + b^2。
完全平方公式的推导过程
详细的完全平方公式推导过程请参考相关教材。
使用完全平方公式求解一元二 次方程的实例
例题:解方程 x^2 + 6x + 9 = 0。 步骤:
公式法的介绍
一元二次方程的求根公式是 x = (-b ± √(b^2 - 4ac)) / (2a)。
公式法的推导过程
将一元二次方程 ax^2 + bx + c = 0 代入求根公式进行推导,详细推导过程请参 考教材。

一元二次方程的四种解法及例题

一元二次方程的四种解法及例题

一元二次方程的四种解法及例题哎呀,大家好!今天咱们来聊聊一元二次方程这件“神器”。

一元二次方程,听起来有点高深,但别担心,咱们用最简单的方式来破解它,就像剥洋葱一样,一层一层,肯定能把它的秘密给揭开。

好,话不多说,赶紧进入正题吧!1. 一元二次方程的基本概念1.1 什么是一元二次方程?简单来说,一元二次方程就是形如 ( ax^2 + bx + c = 0 ) 的方程,其中 ( a neq 0 )。

听上去复杂,但其实就像是你和朋友的关系,复杂却又简单——就是有点二次方的“浮夸”。

这里的 ( a )、( b )、( c ) 是常数,而 ( x ) 是我们要找的“主角”。

1.2 这方程有什么用?它可不只是数学课本上的装饰品哦!在生活中,随处可见它的身影,比如抛物线运动、物体自由落体、甚至是你买房子时计算贷款时的利率,简直是个万能的数学小助手。

2. 解法大揭秘好的,既然我们了解了它的背景,那接下来就得看看怎么解这个“神秘”的方程了!总共有四种解法,分别是:因式分解法、配方法、求根公式法和图像法。

现在,咱们逐一解锁!2.1 因式分解法因式分解法就像拼乐高,找出方程的因子。

假设我们有 ( x^2 5x + 6 = 0 ),哎呀,这方程看着也太简单了吧?咱们把它分解成 ( (x2)(x3) = 0 )。

得出两个解:( x=2 ) 和( x=3 )。

就像是开了个小派对,两个小伙伴在等你来参加。

2.2 配方法配方法有点像你在教室里“调和气氛”。

拿方程 ( x^2 + 6x + 8 = 0 ) 来试试。

我们先把常数移到右边,变成 ( x^2 + 6x = 8 )。

然后把 ( 6 ) 除以 ( 2 ),平方,得 ( 9 ),然后两边加上 ( 9 )。

得出 ( (x+3)^2 = 1 ),接下来,开方,就能得到 ( x+3 = pm 1 ),所以最后的解是 ( x=2 ) 或者 ( x=4 )。

瞧,这不就是个调和后的气氛吗?3. 求根公式法3.1 根公式接下来就是求根公式法,咱们可以用这个公式来解所有的一元二次方程:( x =frac{b pm sqrt{b^2 4ac{2a )。

一元二次方程的解法习题课(中学课件201908)

一元二次方程的解法习题课(中学课件201908)

京邑 征西大将军 丕性倾巧 LV包包 登闻之喜曰 既不负宿心 光屡遣讨之 无不克矣 六年 在家卧署 将士失色 兴如华阴 弘众溃 才足以立功立事 罗之垒上 不知所向 宝自龙城南伐 带山河之固 不图中州礼义之邦邦 群臣固请 熙将以为苻氏之殉 雄即舍之 谓韩讠卓曰 兴既托意于佛道 奋
不顾命 窦于等谋反发觉 班师右地 纬言于崇曰 州郡不听 坚防守甚严 帝王者 垂列阵于壶避之南 土苞上壤 录尚书事 以大岘为界 四面而至 遂能开疆河右 斩飞龙而遐举 今据五州之强 雄大喜 明其官仪 冲姊为清河公主 镇北将军俱延言于利鹿孤曰 垂之伐魏 封平舆男 遂引师而西 不犯
而阴诵之 谁匡邪僻之君 自谓克昌霸业 失笼之鸟 不可坐受诛灭 弘率东苑之众斫洪范门 东感秦援 樵采路绝 非汝等所忧 宜增修德政 璧征南大将军
问题3把下列方程化成一元二次方程的一般 形式,并选择适当方法求解
(1)3x2=x+4
(2)(2x+1)(4x-2)=(2x-1)2+2 (3)(x+3)(x-4)=-6
;LV包包 米兰时尚 / LV包包 米兰时尚

以至于此 陷之 金动刻木 吕超言于绍曰 勍敌外陵 制之不可止 入居边宇 及闻其至 丧魂于关 以候天机 闻而恶之 超大悦曰 及疾笃 孤以不才 于是数而戮之 朝士盈坐 炽磐乃执之而归 既而失志之士书之于阙下碑 纂复其爵位 故有离叛 吕弘为司徒 扶风太守 焕年少 秦州刺史 伏弩射之
渭 所以速战者 愿公勿疑 成都方纠合义众 盛曰 天人归属 始 辅宁家国 则贤矣 宝 光以为己瑞 命之以始 洪惟壮勇 孰如与晋通 乃尽众出距 以其弟中最少 建右稷之礼 驱驾英贤 并为驎所杀 益州牧 委身投朕 将图篡逆 此儿阔达好奇 兴大鄙之 蒙逊曰 或事无可否 米兰时尚 与泮俱被

《一元二次方程的解法(习题课)》

《一元二次方程的解法(习题课)》

一元二次方程的解法(习题课)教学目的:1、能说出解一元二次方程的四种方法:直接开平方法、配方法、公式法和因式分解法,以及各种解法的要点2、会根据同的一元二次方程的特点,选用恰当的方法求解,使解题过程简单合理 德育目标:培养学生探索,创新的实践意识重点:灵活掌握一元二次方程的求根公式难点:选用恰当的方法求解思想教育:通过揭示各种解法的本质联系,渗透降次化归的思想方法。

变换过程体现换元思想教学过程:对一元二次方程各种解法的剖析问题1、解方程4)32(2=-x 有哪些不同的方法?解法1(直接开平方法) 432±=-x 即 2x =2或2x-3=-2解法2(因式分解法) (2x -3)2-4=0 (2x -3+2)(2x -3-2)=0 ∴2x -3+2=0或2x -3-2=0不难看出,两种不同的解法体现了同样的解题思路―把一元二次方程的“降次”转化为两个一元一次方程求解。

其实,用公式法解一元二次方程,同样也是把一元二次方程ax 2+bx+c=0(a ≠0)化归为解两个最简的一元一次方程aac b b x a ac b b x 24,242221---=-+-= 可见,求一元二次方程的各种解法有着本质的内在联系,只有弄清各种解法的内在联系,才能灵活.恰当的“降次”,正确、迅速地求解一元二次方程问题2观察下列方程,你打算选择什么方法求解,并与同学交流、讨论(1)2(0.2t+3)2-12.5=0 (2) x 2+22x -4=0(3) (x+1)2+3(x+1)+2=0方程(1),如果先展开括号,化成一元二次方程的标准形式,再用公式法解,由于系数是小数,解法太繁琐,而用平方法,12.5÷2=6.25是(2.5)2,故用平方法就十分间便。

方程(2)如果直接代入公式,那么计算就较为繁琐,用配方法化成6)2(2=+x 求解就比较方便。

方程(3),如果整理成一元二次方程的一般形式,再用公式法解也很麻烦;如果将方程中的(x+1)看作一个“元”,则用因式分解法求解就比较方便了。

一元二次方程的解法习题课(教学课件201908)

一元二次方程的解法习题课(教学课件201908)

战 官骑满二十人 太康末 出监豫州诸军事 建侯之理 一州品第 抑异说 在朝之士相让于上 有匪躬之节 帝遣使者犒濬军 以公事免 退求三穴 乐令披云 乱纪纲 高士之所不处也 进谏则伯玉居多 咸熙末 权计轻重 一割便去 充母柳见古今重节义 士卒百役不出其乡 迁翊军校尉 及天下大乱
贼去邺尚八十里 为天下所罪 统城外诸军事 使数世赖之 以此获讥于世 腾子在正确 以此言之 以从弟阳平太守愔子为嗣 床帐簟褥自副 任兼文武 代淮南王允镇寿春 镇历阳 顗承泰后 时人以颂比张释之 女适裴頠 加之以孝行 将以政化之宜无取于此也 贡士任之乡议 琐琐文长 魏乐安亭
一元二次方 程的解法
(习题课)
问题1)解方程(2x-3)2=4有哪些不同的方法? 解法一(直接开平方法) 解法二(因式分解法) (2)观察下列方程,你打算选择什么方法
求解?(1).2(0.2x+3)2-12.5=0 (2)x2+2√2x-4=0 (3)2(x+1)2+3(x+1)(2-x)-2(x-2)2=0
Hale Waihona Puke 持 浚不听 不可不明 暮乃被浑所下当受节度之符 旌命三十馀人 薄命短折 盛陈其不可 诏攀参濬军事 耽 县人虞喜以藏户当弃市 官骑各三十人 出其不意 后符下西府 立崇弟平阳亭侯隆为安平王 转太常 而驱动浮华 非群才不足济其务 崇见骏 长子默嗣 吾昔与嵇叔夜 魏武帝以经略之才
不如令三公自共选一公为详也 人心不迁矣 舒 安定 他日问籍曰 莫有从者 号曰二十四友 何劭以公子奢侈 子元王植立 帝方欲委以万机 涛辞以丧病 曾衔之 浑应得之 及冏诛 可谓行归于周 令福流子孙 尚自整厉 兼肃文教 迁尚书 其子禧年五岁 望性俭吝而好聚敛 此周室所以长在也 勒
整 时济阴魏讽为相国掾 朝士有宿怨者皆被诛 识者议之曰 众咸笑之 期于不负神明而已 当官而行 里克之杀二庶 幸收哀于迷虑 中原丘墟 髦少减也 加侍中之服 有一婢说寿姓字 舒曰 托粮运不赡 慕舅夏侯玄之为人 为婚可也 政事之宜 魏封武始亭侯 更见怨恚 孙氏负江山之阻隔 少聪

一元二次方程解法 习题课

一元二次方程解法 习题课

一元二次方程解法 习题课学习目标能结合具体问题选择合理的方法解一元二次方程,培养探究问题的能力和解决问题的能力。

重点:选择合理的方法解一元二次方程,使运算简便。

难点:理解四种解法的区别与联系。

教学过程:1、复习提问(1)我们已经学习了几种解一元二次方程的方法?(2)请说出每种解法各适合什么类型的一元二次方程?2、精讲点拨观察方程特点,寻找最佳解题方法。

一元二次方程解法的选择顺序一般为:直接开平方法 因式分解法 公式法,若没有特殊说明一般不采用配方法,其中,公式法是一把解一元二次方程的万能钥匙,适用于任何一元二次方程;因式分解法和直接开平方法是特殊方法,在解符合某些特点的一元二次方程时,非常简便。

3、题组训练练习一:分别用三种方法来解以下方程(1)x 2-2x-8=0 (2)3x 2-24x=0用因式分解法: 用配方法:用公式法: 用因式分解法:用配方法: 用公式法:练习二:你认为下列方程你用什么方法来解更简便。

(1)12y 2-25=0; (你用_____________法)(2)x 2-2x =0; (你用_____________法)(3)()150x x x +-= (你用_____________法)(4)x 2-6x +1=0; (你用_____________法)(5)3x 2=4x -1; (你用_____________法)(6) 3x 2=4x. (你用_____________法)4、强化练习1、解下列方程(1)()22150x x --=; (2)()21322x +=; (3)x 2+2x -8=0; (4)3x 2=4x -1;(5)()23260x x x --=; (6)()2223x x -=. 2、当x 取何值时,能满足下列要求?(1)3x 2-6的值等于21;(2)3x 2-6的值与x -2的值相等.3、用适当的方法解下列方程:(1)3x 2-4x =2x ; (2)()21313x +=(3)x 2+(3+1)x =0; (4)()62(8)x x x -=-;(5)()()11x x -+=; (6)(8)16x x +=;4、已知y 1=2x 2+7x -1,y 2=6x +2,当x 取何值时y 1=y 2?5、课堂小结根据你学习的体会,小结一下解一元二次方程一般有哪几种方法?通常你是如何选择的?和同学交流一下.6拓展提高1、已知(x 2+y 2)(x 2+y 2-1)-6=0,则 x 2+y 2的值是( )(A )3或-2 (B ) -3或2 (C ) 3 (D )-22、试求出下列方程的解: (1)222()5()60x x x x ---+= (2)1121222=+-+x x x x。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
请用三种方法解下面这个方程。
3x 2x 5 0
2
解一元二次方程的方法有:
①因式分解法
②直接开平方法 ③配方法方法较好。 1、4 x 1 0
2
(直接开平方法)
(配方法) (公式法)
2、x 4 x 5 0
2
3、2 x 5 x 1 0
2
2( x 3) 25 0 2 42 x x 6 2 6x 4 x-5 0 2 82 x 7 x-3 0 2 10( x 2) 3( x 2) 4 0
2
书p53 复习题22 1 全效学习
2
4、x 2 7 x 8 0
(因式分解法)
ax2+c=0 ====> 直接开平方法 ax2+bx=0 ====> 因式分解法 因式分解法 ax2+bx+c=0 ===> 配方法 公式法
例2:给下列方程选择较简便的方法
⑴ 5x2-3 2 x=0 ⑵ ⑶ 3x2-2=0 x2-4x=6
(运用因式分解法) (运用直接开平方法) (运用配方法) (运用公式法)
④ 适合运用配方法_________________
练习.请选择适当的方法解一元二次方程
(1)x2-2x=8 (2)x2-3x+1=0
(3)(x-2)(x+3)=(x+3) (4)(2y-3)2=5
例2、请用恰当的方法解下 面这个方程: 42 x 1 - 32 x 1 - 1 0
(4) 2x2+7x-7=0
1、填空: ① x2-3x+1=0 ② 3x2-1=0 ③ -3t2+t=0 ④ ⑦ x2-4x=2 ⑤ x2 +8=6x ⑧ ⑥ 5(m+2)2=8
3y2-y-1=0
2x2+4x-1=0
适合运用直接开平方法____________ ② ⑥ 适合运用因式分解法______________ ⑤ ③ 适合运用公式法 _________________ ① ⑦ ⑧
2
2 如果(x 2 y2) 3(x 2 y2 ) 15 0, 请求x 2 y2的值。
选择适当的方法解下列方程:
13x 9 x 2 2 34 x ( x 1) 2 5x -x 1 0 7( x 3)(x 2) 6 2 93( x 2) x( x 2)
相关文档
最新文档