河南省2019年普通高中招生考试中考数学模拟试题2(带答案)

合集下载

2019年河南省中考数学模拟卷(二)含答案解析

2019年河南省中考数学模拟卷(二)含答案解析

2019年河南省中考数学模拟试卷(二)一、选择题(本大题共10小题,每小题3分,共30分,下列各小题具有四个答案,其中只有一个是正确的。

)1.﹣2的绝对值是()A.2 B.C.﹣2 D.﹣2.将一根圆柱形的空心钢管任意放置,它的主视图不可能是()A.B.C.D.3.下列各式变形中,正确的是()A.x2•x3=x6B. =|x|C.(x2﹣)÷x=x﹣1 D.x2﹣x+1=(x﹣)2+4.如图,把一块直角三角板的直角顶点放在直尺的一边上,若∠1=48°,则∠2的度数为()A.48° B.42° C.40° D.45°5.函数y=中自变量x的取值范围是()A.x≥2 B.x>2 C.x≤2 D.x≠26.在某校“我的中国梦”演讲比赛中,有7名学生参加决赛,他们决赛的最终成绩各不相同,其中一名学生想要知道自己能否进入前3名,他不仅要了解自己的成绩,还要了解这7名学生成绩的()A.众数 B.方差 C.平均数D.中位数7.已知关于x的方程x2+3x+a=0有一个根为﹣2,则另一个根为()A.5 B.﹣1 C.2 D.﹣58.如图,在▱ABCD中,E为AD的三等分点,AE=AD,连接BE交AC于点F,AC=12,则AF 为()A.4 B.4.8 C.5.2 D.69.星期天,小明从家出发,以15千米/小时的速度骑车去郊游,到达目的地休息一段时间后原路返回,已知小明行驶的路程s(千米)与时间t(小时)之间的函数关系如图所示,则小明返程的速度为()A.15千米/小时B.10千米/小时C.6千米/小时D.无法确定10.如图,AB是半圆O的直径,C是半圆O上一点,CD是⊙O的切线,OD∥BC,OD与半圆O 交于点E,则下列结论中不一定正确的是()A.AC⊥BC B.BE平分∠ABC C.BE∥CD D.∠D=∠A二、填空题(本小题共5小题,每小题3分,共15分)11.计算:2﹣2﹣= .12.写出一个二次函数解析式,使它的图象的顶点在y轴上:.13.课外活动中,九(1)班准备把全班男生随机分成两个小组进行拔河比赛,则甲、乙、丙三位同学恰好被分在同一小组的概率为.14.如图,在Rt△ABC中,∠ACB=90°,AC=BC=2,以点A为圆心,AC的长为半径作交AB于点E,以点B为圆心,BC的长为半径作交AB于点D,则阴影部分的面积为.15.如图,矩形ABCD中,AB=8,BC=15,点E是AD边上一点,连接BE,把△ABE沿BE折叠,使点A落在点A′处,点F是CD边上一点,连接EF,把△DEF沿EF折叠,使点D落在直线EA′上的点D′处,当点D′落在BC边上时,AE的长为.三、解答题(本题共8小题,共75分.)16.先化简,再求值:(﹣)÷,其中实数a,b满足(a﹣2)2+|b ﹣2a|=0.17.每年的3月22日为联合国确定的“世界水日”,某社区为了宣传节约用水,从本社区1000户家庭中随机抽取部分家庭,调查他们每月的用水量,并将调查的结果绘制成如下两幅尚不完整的统计图(每组数据包括右端点但不包括左端点),请你根据统计图解答下列问题:(1)此次抽样调查的样本容量是;(2)补全频数分布直方图,求扇形图中“6吨﹣﹣9吨”部分的圆心角的度数;(3)如果自来水公司将基本月用水量定为每户每月12吨,不超过基本月用水量的部分享受基本价格,超出基本月用水量的部分实行加价收费,那么该社会用户中约有多少户家庭能够全部享受基本价格?18.如图,△ABC是半径为2的⊙O的内接三角形,连接OA、OB,点D、E、F、G分别是CA、OA、OB、CB的中点.(1)试判断四边形DEFG的形状,并说明理由;(2)填空:①若AB=3,当CA=CB时,四边形DEFG的面积是;②若AB=2,当∠CAB的度数为时,四边形DEFG是正方形.19.某社会实践活动小组实地测量两岸互相平行的一段河的宽度,在河的北岸边点A处,测得河的南岸边点B在其南偏东45°方向,然后向北走20米到达C点,测得点B在点C的南偏东33°方向,求出这段河的宽度(结果精确到1米,参考数据sin33°≈0.54,cos33°≈0.84,tan33°≈0.65,≈1.41)20.如图,直线y=﹣x+b与反比例函数y=的图形交于A(a,4)和B(4,1)两点.(1)求b,k的值;(2)在第一象限内,当一次函数y=﹣x+b的值大于反比例函数y=的值时,直接写出自变量x的取值范围;(3)将直线y=﹣x+b向下平移m个单位,当直线与双曲线只有一个交点时,求m的值.21.某化工材料经销公司购进一种化工原料若干千克,物价部门规定其销售单价不低于进价,不高于60元/千克,经市场调查发现:销售单价定为60元/千克时,每日销售20千克;如调整价格,每降价1元/千克,每日可多销售2千克.(1)已知某天售出该化工原料40千克,则当天的销售单价为元/千克;(2)该公司现有员工2名,每天支付员工的工资为每人每天90元,每天应支付其他费用108元,当某天的销售价为46元/千克时,收支恰好平衡.①求这种化工原料的进价;②若公司每天的纯利润(收入﹣支出)全部用来偿还一笔10000元的借款,则至少需多少天才能还清借款?22.如图1,四边形ABCD是正方形,点E是AB边的中点,以AE为边作正方形AEFG,连接DE,BG.(1)发现①线段DE、BG之间的数量关系是;②直线DE、BG之间的位置关系是.(2)探究如图2,将正方形AEFG绕点A逆时针旋转,(1)中的结论是否仍然成立?若成立,请给出证明;若不成立,请说明理由.(3)应用如图3,将正方形AEFG绕点A逆时针旋转一周,记直线DE与BG的交点为P,若AB=4,请直接写出点P到CD所在直线距离的最大值和最小值.23.如图,以x=1为对称轴的抛物线y=ax2+bx+c的图象与x轴交于点A,点B(﹣1,0),与y轴交于点C(0,4),作直线AC.(1)求抛物线解析式;(2)点P在抛物线的对称轴上,且到直线AC和x轴的距离相等,设点P的纵坐标为m,求m的值;(3)点M在y轴上且位于点C上方,点N在直线AC上,点Q为第一象限内抛物线上一点,若以点C、M、N、Q为顶点的四边形是菱形,请直接写出点Q的坐标.2019年河南省中考数学模拟试卷(二)参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分,下列各小题具有四个答案,其中只有一个是正确的。

2019-2020学年河南省中考数学模拟试卷(二)(有标准答案)

2019-2020学年河南省中考数学模拟试卷(二)(有标准答案)

河南省中考数学模拟试卷(二)一、选择题(本大题共10小题,每小题3分,共30分,下列各小题具有四个答案,其中只有一个是正确的。

)1.﹣2的绝对值是()A.2 B.C.﹣2 D.﹣2.将一根圆柱形的空心钢管任意放置,它的主视图不可能是()A.B.C.D.3.下列各式变形中,正确的是()A.x2•x3=x6B. =|x|C.(x2﹣)÷x=x﹣1 D.x2﹣x+1=(x﹣)2+4.如图,把一块直角三角板的直角顶点放在直尺的一边上,若∠1=48°,则∠2的度数为()A.48° B.42° C.40° D.45°5.函数y=中自变量x的取值范围是()A.x≥2 B.x>2 C.x≤2 D.x≠26.在某校“我的中国梦”演讲比赛中,有7名学生参加决赛,他们决赛的最终成绩各不相同,其中一名学生想要知道自己能否进入前3名,他不仅要了解自己的成绩,还要了解这7名学生成绩的()A.众数 B.方差 C.平均数D.中位数7.已知关于x的方程x2+3x+a=0有一个根为﹣2,则另一个根为()A.5 B.﹣1 C.2 D.﹣58.如图,在▱ABCD中,E为AD的三等分点,AE=AD,连接BE交AC于点F,AC=12,则AF为()A.4 B.4.8 C.5.2 D.69.星期天,小明从家出发,以15千米/小时的速度骑车去郊游,到达目的地休息一段时间后原路返回,已知小明行驶的路程s(千米)与时间t(小时)之间的函数关系如图所示,则小明返程的速度为()A.15千米/小时B.10千米/小时C.6千米/小时D.无法确定10.如图,AB是半圆O的直径,C是半圆O上一点,CD是⊙O的切线,OD∥BC,OD与半圆O交于点E,则下列结论中不一定正确的是()A.AC⊥BC B.BE平分∠ABC C.BE∥CD D.∠D=∠A二、填空题(本小题共5小题,每小题3分,共15分)11.计算:2﹣2﹣= .12.写出一个二次函数解析式,使它的图象的顶点在y轴上:.13.课外活动中,九(1)班准备把全班男生随机分成两个小组进行拔河比赛,则甲、乙、丙三位同学恰好被分在同一小组的概率为.14.如图,在Rt△ABC中,∠ACB=90°,AC=BC=2,以点A为圆心,AC的长为半径作交AB于点E,以点B为圆心,BC的长为半径作交AB于点D,则阴影部分的面积为.15.如图,矩形ABCD中,AB=8,BC=15,点E是AD边上一点,连接BE,把△ABE沿BE折叠,使点A落在点A′处,点F是CD边上一点,连接EF,把△DEF沿EF折叠,使点D落在直线EA′上的点D′处,当点D′落在BC边上时,AE的长为.三、解答题(本题共8小题,共75分.)16.先化简,再求值:(﹣)÷,其中实数a,b满足(a﹣2)2+|b﹣2a|=0.17.每年的3月22日为联合国确定的“世界水日”,某社区为了宣传节约用水,从本社区1000户家庭中随机抽取部分家庭,调查他们每月的用水量,并将调查的结果绘制成如下两幅尚不完整的统计图(每组数据包括右端点但不包括左端点),请你根据统计图解答下列问题:(1)此次抽样调查的样本容量是;(2)补全频数分布直方图,求扇形图中“6吨﹣﹣9吨”部分的圆心角的度数;(3)如果自来水公司将基本月用水量定为每户每月12吨,不超过基本月用水量的部分享受基本价格,超出基本月用水量的部分实行加价收费,那么该社会用户中约有多少户家庭能够全部享受基本价格?18.如图,△ABC是半径为2的⊙O的内接三角形,连接OA、OB,点D、E、F、G分别是CA、OA、OB、CB的中点.(1)试判断四边形DEFG的形状,并说明理由;(2)填空:①若AB=3,当CA=CB时,四边形DEFG的面积是;②若AB=2,当∠CAB的度数为时,四边形DEFG是正方形.19.某社会实践活动小组实地测量两岸互相平行的一段河的宽度,在河的北岸边点A处,测得河的南岸边点B在其南偏东45°方向,然后向北走20米到达C点,测得点B在点C的南偏东33°方向,求出这段河的宽度(结果精确到1米,参考数据sin33°≈0.54,cos33°≈0.84,tan33°≈0.65,≈1.41)20.如图,直线y=﹣x+b与反比例函数y=的图形交于A(a,4)和B(4,1)两点.(1)求b,k的值;(2)在第一象限内,当一次函数y=﹣x+b的值大于反比例函数y=的值时,直接写出自变量x的取值范围;(3)将直线y=﹣x+b向下平移m个单位,当直线与双曲线只有一个交点时,求m的值.21.某化工材料经销公司购进一种化工原料若干千克,物价部门规定其销售单价不低于进价,不高于60元/千克,经市场调查发现:销售单价定为60元/千克时,每日销售20千克;如调整价格,每降价1元/千克,每日可多销售2千克.(1)已知某天售出该化工原料40千克,则当天的销售单价为元/千克;(2)该公司现有员工2名,每天支付员工的工资为每人每天90元,每天应支付其他费用108元,当某天的销售价为46元/千克时,收支恰好平衡.①求这种化工原料的进价;②若公司每天的纯利润(收入﹣支出)全部用来偿还一笔10000元的借款,则至少需多少天才能还清借款?22.如图1,四边形ABCD是正方形,点E是AB边的中点,以AE为边作正方形AEFG,连接DE,BG.(1)发现①线段DE、BG之间的数量关系是;②直线DE、BG之间的位置关系是.(2)探究如图2,将正方形AEFG绕点A逆时针旋转,(1)中的结论是否仍然成立?若成立,请给出证明;若不成立,请说明理由.(3)应用如图3,将正方形AEFG绕点A逆时针旋转一周,记直线DE与BG的交点为P,若AB=4,请直接写出点P到CD所在直线距离的最大值和最小值.23.如图,以x=1为对称轴的抛物线y=ax2+bx+c的图象与x轴交于点A,点B(﹣1,0),与y轴交于点C (0,4),作直线AC.(1)求抛物线解析式;(2)点P在抛物线的对称轴上,且到直线AC和x轴的距离相等,设点P的纵坐标为m,求m的值;(3)点M在y轴上且位于点C上方,点N在直线AC上,点Q为第一象限内抛物线上一点,若以点C、M、N、Q为顶点的四边形是菱形,请直接写出点Q的坐标.河南省中考数学模拟试卷(二)参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分,下列各小题具有四个答案,其中只有一个是正确的。

河南省2019年普通高中招生考试中考数学模拟试题2

河南省2019年普通高中招生考试中考数学模拟试题2
住:考前休息很重要。好好休息并不意味着很早就要上床睡觉, 根据以往考生的经验,太早上床反而容易失眠。考前按照你平时习惯 的时间上床休息就可以了,但最迟不要超过十点半。
用:出门考试之前,一定要检查文具包。看看答题的工具是否准 备齐全,应该带的证件是否都在,不要到了考场才想起来有什么工具 没带,或者什么工具用着不顺手。
1 A. 4
3 B. 8
( D)
1 C. 2
5 D. 8
9.如图,在 ?ABCD中,对角线 AC, BD相交于点 O,添加下列条件不能判定 ?ABCD是菱形的只有 ( C )
A. AC⊥ BD
B. AB= BC
C. AC= BD
D.∠ 1=∠2
10.如图,正方形 ABCD的边长为 10,对角线 AC, BD相交于点 E,点 F 是 BC上一动点,过点 E作 EF的垂
度为 0.000 000 039 cm 的小洞,则 0.000 000 039 用科学记数法可表示为 ( A )
A. 3.9 ×10-8
B.
39×

10
8
C. .39 × 10-7
D. 39× 10- 9
3.将正方体的表面沿某些棱剪开, 展成如图所示的平面图形, 则原正方体中与“创”字所在的面相对的面
y= 2x2+1 .
13.如图,在 Rt △ABC中,∠ C=90°,∠ A=25°,按以下步骤作图:①分别以
1 A, B为圆心,以大于 2AB
的长为半径作弧,两弧交于 M,N两点;②作直线 MN交 AB于点 D,交 AC于点 E,连接 BE,则∠ CBE=
40 °.
︵ 14.如图,在 Rt△ ABC中,∠ ACB=90°, AC= BC=2,以点 A 为圆心, AC的长为半径作 CE交 AB于点 E,以

2019年河南省中考数学仿真试卷(二)(含参考答案)

2019年河南省中考数学仿真试卷(二)(含参考答案)

2019年河南省中考数学仿真试卷(二)一、选择题(每小题3分,共30分)下列各小题均有四个选项,其中只有一个是正确的,将正确选项的代号字母填入题后括号内.1.下列实数中,比﹣π小的数是()A.﹣2B.﹣3C.﹣4D.02.“厉行勤俭节约,反对铺张浪费”势在必行,最新统计数据显示,中国每年浪费食物总量折合粮食大约是210000000人一年的口粮.将210000000用科学记数法表示为()A.2.1×109B.0.21×109C.2.1×108D.21×1073.如图是由几个大小相同的小正方体搭成的几何体的俯视图,小正方形中的数字表示该位置上小正方体的个数,则该几何体的左视图是()A.B.C.D.4.如图,剪两张对边平行的纸片随意交叉叠放在一起,转动其中一张,重合部分构成一个四边形,则下列结论中不一定成立的是()A.∠DAB+∠ABC=180°B.AB=BCC.AB=CD,AD=BC D.∠ABC=∠ADC,∠BAD=∠BCD5.学校团委组织“阳光助残”捐款活动,九年一班学生捐款情况如下表:捐款金额(元)5102050人数(人)10131215则学生捐款金额的中位数是()A.13人B.12人C.10元D.20元6.不等式组的整数解的个数为()A.3B.4C.5D.67.如图,在△ABC中,AB=AC,以点B为圆心,BC长为半径作弧,交AC于不同于点C的另一点D,连接BD;再分别以点C、D为圆心,大于CD的长为半径作弧,两弧相交于点E,作射线BE 交AC于点F.若∠A=40°,则∠DBF的度数为()A.20°B.30°C.40°D.50°8.现有三张分别标有数字1,2,3的牌,它们除数字外完全相同,把牌背面朝上洗匀后,甲、乙两人进行摸牌游戏甲从中随机抽取一张,记下数字后放回洗匀,乙再从中随机抽取一张,若两人抽取的数字之和为偶数,则甲胜,否则乙胜甲获胜的概率是()A.B.C.D.9.在平面直角坐标系中,边长为的正方形OABC的两顶点A,C分别在y轴、x轴的正半轴上,点O在原点.现将正方形OABC绕O点顺时针旋转,AC与x轴相交于点D,如图,当∠AOD=60°时,点B的坐标为()A.(,)B.(,)C.(,)D.(,)10.如图1,在矩形ABCD中,动点E从A出发,沿AB→BC方向运动,当点E到达点C时停止运动,过点E做FE⊥AE,交CD于F点,设点E运动路程为x,FC=y,如图2所表示的是y与x的函数关系的大致图象,当点E在BC上运动时,FC的最大长度是,则矩形ABCD的面积是()A.B.5C.6D.二、填空题(每小题3分,共15分)11.计算:20190﹣|﹣2|=.12.若关于x的方程x2﹣x+sinα=0有两个相等的实数根,则锐角α的度数为.13.已知二次函数y=ax2+bx+c中,函数y与自变量x的部分对应值如表所示:x…﹣5﹣4﹣3﹣2﹣1…y…﹣8﹣3010…当y<﹣3时,x的取值范围是.14.如图,菱形OACD的边长为2cm,以点O为圆心,OA长为半径的经过点C,作CE⊥OD,垂足为点E,则阴影部分面积为.15.如图,在Rt△ABC中,∠ACB=90°,∠B=30°,AC=2,E为斜边AB的中点,点P是射线BC上的一个动点,连接AP、PE,将△AEP沿着边PE折叠,折叠后得到△EPA′,当折叠后△EPA′与△BEP的重叠部分的面积恰好为△ABP面积的四分之一,则此时BP的长为.三、解答题(本大题共8个小题,满分75分)16.(8分)化简,并求值,其中a与2,3构成△ABC的三边,且a为整数.17.(9分)每年的4月23日为“世界读书日”,为了解学生一年的课外阅读量,某校“阅读越乐“读书社团对全校2000名学生采用随机抽样的方式进行了问卷调查,调查结果分为四种情况:A.10本以下;B.10﹣15本;C.16﹣20本;D.20本以上,根据调查结果绘制了如下两幅不完整的统计图.(1)在这次调查中一共抽查了名学生;(2)请补全条形统计图;(3)在扇形统计图中,C部分所对应的扇形的圆心角是度;(4)根据抽样调查结果,请估计全校学生中阅读课外书20本以上的学生人数.18.(9分)某数学活动小组实地测量湛河两岸互相平行的一段东西走向的河的宽度,在河的北岸边点A处,测得河的南岸边点B处在其南偏东45°方向,然后向北走20米到达点C处,测得点B 在点C的南偏东33°方向,求出这段河的宽度.(结果精确到1米,参考数据:sin33°=0.54,cos33°≈0.84,tan33°=0.65,≈1.41)19.(9分)如图,四边形OABC是平行四边形,以O为圆心,OA为半径的圆交AB于D,延长AO 交⊙O于E,连接CD,CE,CE是⊙O的切线.(1)求证:CD是⊙O的切线.(2)若BC=3,CD=4,求BD的长.20.(9分)如图1,在平面直角坐标系中,等腰Rt△AOB的斜边OB在x轴上,直线y=3x﹣4经过等腰Rt△AOB的直角顶点A,交y轴于C点,双曲线y=也经过A点.连接BC.(1)求k的值;(2)判断△ABC的形状,并求出它的面积.(3)若点P为x正半轴上一动点,在点A的右侧的双曲线上是否存在一点M,使得△PAM是以点A为直角顶点的等腰直角三角形?若存在,求出点M的坐标;若不存在,请说明理由.21.(10分)为落实“精准扶贫”,某村在政府的扶持下建起了蔬菜大棚基地,准备种植A,B两种蔬菜,若种植20亩A种蔬菜和30亩B种蔬菜,共需投入36万元;若种植30亩A种蔬菜和20亩B种蔬菜,共需投入34万元.(1)种植A,B两种蔬菜,每亩各需投入多少万元?(2)经测算,种植A种蔬菜每亩可获利0.8万元,种植B种蔬菜每亩可获利1.2万元,村里把100万元扶贫款全部用来种植这两种蔬菜,总获利w万元.设种植A种蔬菜m亩,求w关于m的函数关系式;(3)在(2)的条件下,若要求A种蔬菜的种植面积不能少于B种蔬菜种植面积的2倍,请你设计出总获利最大的种植方案,并求出最大总获利.22.(10分)如图1,在Rt△ABC中,∠BAC=90°,AB=AC,D,E两点分别在AC,BC上,且DE∥AB,将△CDE绕点C按顺时针方向旋转,记旋转角为α.(1)问题发现:当α=0°时,的值为;(2)拓展探究:试判断:当0°⩽α<360°时,的大小有无变化?请仅就图2的情况给出证明.(3)问题解决:设CE=13,AC=12,当△EDC旋转至A,B,E三点共线时,直接写出线段BE 的长.23.(11分)如图,抛物线y=﹣x2+bx+c与x轴交于点A和点B(3,0),与y轴交于点C(0,3),点D是抛物线的顶点,过点D作x轴的垂线,垂足为E,连接DB.(1)求此抛物线的解析式及顶点D的坐标;(2)点M是抛物线上的动点,设点M的横坐标为m.①当∠MBA=∠BDE时,求点M的坐标;②过点M作MN∥x轴,与抛物线交于点N,P为x轴上一点,连接PM,PN,将△PMN沿着MN翻折,得△QMN,若四边形MPNQ恰好为正方形,直接写出m的值.2019年河南省中考数学仿真试卷(二)参考答案与试题解析一、选择题(每小题3分,共30分)下列各小题均有四个选项,其中只有一个是正确的,将正确选项的代号字母填入题后括号内.1.【分析】根据任意两个实数都可以比较大小.正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小,分析得出答案.【解答】解:﹣4<﹣π﹣3<﹣2<0.故选:C.【点评】此题主要考查了实数比较大小,正确把握实数比较大小的方法是解题关键.2.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将210000000用科学记数法表示为:2.1×108.故选:C.【点评】此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.【分析】根据俯视图中每列正方形的个数,再画出从正面,左面看得到的图形即可.【解答】解:该几何体的左视图是:.故选:D.【点评】此题主要考查了画几何体的三视图;用到的知识点为:主视图,左视图分别是从物体的正面,左面看得到的图形;看到的正方体的个数为该方向最多的正方体的个数.4.【分析】根据题意可得四边形ABCD是平行四边形,根据平行四边形的性质可判断.【解答】解:根据题意可得AB∥CD,AD∥BC∴四边形ABCD是平行四边形∴AD=BC,AB=CD,∠ABC=∠ADC,∠BAD=∠BCD,∠DAB+∠ABC=180°故选:B.【点评】本题考查了菱形的判定与性质,平行四边形的性质和判定,熟练运用平行四边形的判定和性质解决问题是本题的关键.5.【分析】根据题意得出按照从小到大顺序排列的第25个和第26个数据都是20(元),它们的平均数即为中位数.【解答】解:∵10+13+12+15=50,按照从小到大顺序排列的第25个和第26个数据都是20(元),∴它们的平均数即为中位数,=20(元),∴学生捐款金额的中位数是20元;故选:D.【点评】本题考查了中位数的定义、平均数的计算;熟练掌握中位数的定义,正确求出中位数是解决问题的关键.6.【分析】分别求出两个不等式的解,然后求其解集,最后找出整数解的个数.【解答】解:解不等式3﹣(3x﹣2)≥1得:x≤,解不等式2+x<3x+8得:x>﹣3,故不等式的解集为:﹣3<x≤,则整数解为﹣2,﹣1,0,1,共4个.故选:B.【点评】本题考查了一元一次不等式组的整数解,求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.7.【分析】只要证明BD=DC,求出∠BDC的值即可解决问题;【解答】解:∵AB=AC,∠A=40°,∴∠ACB=∠ABC=(180°﹣40°)=70°,由作图可知,BF垂直平分线段CD,∴BC=BD,∴∠BCD=∠BDC=70°,∴∠DBC=40°,∴∠DBF=∠FBC=20°,故选:A.【点评】本题考查作图﹣基本作图,等腰三角形的判定和性质等知识,解题的关键是熟练掌握基本作图,属于中考常考题型.8.【分析】画树状图展示所有9种等可能的结果数,再找出两人抽取的数字之和为偶数的结果数,然后根据概率公式求解.【解答】解:画树状图为:共有9种等可能的结果数,其中两人抽取的数字之和为偶数的有5种结果,所以甲获胜的概率为,故选:D.【点评】此题考查的是用列表法或树状图法求概率.解题的关键是要注意是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.9.【分析】过点A作AE⊥x轴,作BF⊥AE,垂足分别是E,F,可证△AFB≌△AEO,所以AF=OE,BF=AE,根据OA=,根据含有30°的直角三角形性质可求OE,AE的长度,即可求B点坐标.【解答】解:过点A作AE⊥x轴,作BF⊥AE,垂足分别是E,F.如图∵∠AOD=60°,AE⊥OD∴∠OAE=30°∴OE=OA=,AE=OE=∵∠OAE+∠AOE=90°,∠OAE+∠EAB=90°∴∠AOE=∠AFB,且∠AEO=∠AFB=90°,OA=OB∴△AOE≌△AFB(AAS)∴AF=OE=,BF=AE=∴EF=﹣∴B(,)故选:C.【点评】本题考查了全等三角形性质,正方形的性质,含有30度的直角三角形的性质,解题的关键是构造全等三角形.10.【分析】易证△CFE∽△BEA,可得=,根据二次函数图象对称性可得E在BC中点时,CF有最大值,列出方程式即可解题.【解答】解:若点E在BC上时,如图∵∠EFC+∠AEB=90°,∠FEC+∠EFC=90°,∴∠CFE=∠AEB,∵在△CFE和△BEA中,,∴△CFE∽△BEA,由二次函数图象对称性可得E在BC中点时,CF有最大值,此时=,BE=CE=x﹣,即,∴y=,当y=时,代入方程式解得:x1=(舍去),x2=,∴BE=CE=1,∴BC=2,AB=,∴矩形ABCD的面积为2×=5;故选:B.【点评】本题考查了二次函数顶点问题,考查了相似三角形的判定和性质,考查了矩形面积的计算,本题中由图象得出E为BC中点是解题的关键.二、填空题(每小题3分,共15分)11.【分析】首先计算乘方、开方,然后计算减法,求出算式的值是多少即可.【解答】解:20190﹣|﹣2|=1﹣2=﹣1故答案为:﹣1.【点评】此题主要考查了实数的运算,要熟练掌握,解答此题的关键是要明确:在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到右的顺序进行.另外,有理数的运算律在实数范围内仍然适用.12.【分析】根据方程x2﹣x+sinα=0有两个相等的实数根,得出△=0,求出sinα的值,即可得出答案.【解答】解:∵x的方程x2﹣x+sinα=0有两个相等的实数根,∴△=(﹣)2﹣4×1×sinα=0,解得:sinα=,∴锐角α的度数为30°;故答案为:30°.【点评】此题考查了根的判别式,一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.13.【分析】观察表格求出抛物线的对称轴,确定开口方向,利用二次函数的对称性判断出x=0时,y=﹣3,然后写出y<﹣3时,x的取值范围即可.【解答】解:由表可知,二次函数的对称轴为直线x=﹣2,抛物线的开口向下,且x=0时,y=﹣3,所以,y<﹣3时,x的取值范围为x<﹣4或x>0.故答案为x<﹣4或x>0.【点评】本题考查了二次函数的性质,二次函数图象上点的坐标特征,观察图表得到y=﹣3时的另一个x的值是解题的关键.14.【分析】连接OC,根据等边三角形的判定得出△DOC是等边三角形,求出∠DOC=60°,OE=1cm,CE=cm,根据扇形和三角形面积公式求出即可.【解答】解:连接OC,∵菱形OACD的边长为2cm,以点O为圆心,OA长为半径的经过点C,∴DC =OD =OC =2cm , ∴△DOC 是等边三角形, ∴∠COE =60°, ∵CE ⊥OD ,∴∠CEO =90°,OE =DE =1cm ,∴CE =OC ×sin60°=2×=(cm ),∴阴影部分的面积S =S 扇形DOC ﹣S △CEO =﹣=(π﹣)cm 2故答案为:(π﹣)cm 2.【点评】本题考查了菱形的性质、等边三角形的性质和判定、扇形的面积等知识点,能把不规则图形的面积转化成规则图形的面积是解此题的关键.15.【分析】根据30°角所对的直角边等于斜边的一半可求出AB ,即可得到AE 的值,然后根据勾股定理求出BC .①若PA ′与AB 交于点F ,连接A ′B ,如图1,易得S △EFP =S △BEP =S △A ′EP ,即可得到EF =BE =BF ,PF =A ′P =A ′F .从而可得四边形A ′EPB 是平行四边形,即可得到BP =A ′E ,从而可求出BP ;②若EA ′与BC 交于点G ,连接AA ′,交EP 与H ,如图2,同理可得GP =BG ,EG =EA ′=1,根据三角形中位线定理可得AP =2=AC ,此时点P 与点C 重合(BP =BC ),从而可求出BP .【解答】解:∵∠ACB =90°,∠B =30°,AC =2,E 为斜边AB 的中点,∴AB =4,AE =AB =2,BC =2.①若PA ′与AB 交于点F ,连接A ′B ,如图1.由折叠可得S △A ′EP =S △AEP ,A ′E =AE =2,. ∵点E 是AB 的中点,∴S △BEP =S △AEP =S △ABP .由题可得S △EFP =S △ABP ,∴S △EFP =S △BEP =S △AEP =S △A ′EP ,∴EF =BE =BF ,PF =A ′P =A ′F . ∴四边形A ′EPB 是平行四边形, ∴BP =A ′E =2;②若EA ′与BC 交于点G ,连接AA ′,交EP 与H ,如图2..同理可得GP =BP =BG ,EG =EA ′=×2=1.∵BE =AE ,∴EG =AP =1, ∴AP =2=AC , ∴点P 与点C 重合,∴BP =BC =2.故答案为2或2.【点评】本题主要考查了轴对称的性质、30°角所对的直角边等于斜边的一半、勾股定理、平行四边形的判定与性质、等高三角形的面积比等于底的比、三角形中位线定理等知识,运用分类讨论的思想是解决本题的关键.三、解答题(本大题共8个小题,满分75分)16.【分析】原式利用除法法则变形,约分后两项通分并利用同分母分式的加法法则计算得到最简结果,求出a 的值,代入计算即可求出值.【解答】解:原式=•+=+==,∵a 与2,3构成△ABC 的三边,∴1<a <5,且a 为整数,∴a =2,3,4, 又∵a ≠2且a ≠3,∴a =4, 当a =4时,原式=1.【点评】此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.17.【分析】(1)由A调查结果的人数及其所占百分比可得总人数;(2)先用总人数乘以B的百分比求得B的人数,再根据各调查结果的人数和等于总人数求得C的人数即可补全图形;(3)用360°乘以C人数所占比例可得;(4)用总人数乘以样本中D人数所占比例可得.【解答】解:(1)在这次调查中一共抽查学生20÷10%=200名,故答案为:200;(2)B调查结果的人数为200×30%=60人,则C调查结果的人数为200﹣(20+60+40)=80人,补全图形如下:(3)扇形统计图中,C部分所对应的扇形的圆心角是360°×=144°,故答案为:144.(4)估计全校学生中阅读课外书20本以上的学生人数为2000×=400人.【点评】本题考查的是条形统计图和扇形统计图的综合运用.读懂统计图,从统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图能够清楚地表示各部分所占的百分比.18.【分析】延长CA交BE于点D,得CD⊥BE,设AD=x,得BD=x米,CD=(20+x)米,根据=tan∠DCB列方程求出x的值即可得.【解答】解:如图,延长CA交BE于点D,则CD⊥BE,由题意知,∠DAB=45°,∠DCB=33°,设AD=x米,则BD=x米,CD=(20+x)米,在Rt△CDB中,=tan∠DCB,∴≈0.65,解得x≈37,答:这段河的宽约为37米.【点评】本题考查了解直角三角形的应用﹣方向角问题,作出辅助线构造直角三角形是解题的关键.19.【分析】(1)证出△EOC≌△DOC,推出∠ODC=∠OEC=90°,根据切线的判定推出即可;(2)连接DE,交OC于F,由圆周角定理得出AD⊥DE,由平行四边形的性质得出OF⊥DE,由垂径定理得出DF=EF=DE,由勾股定理求出OC,由三角形的面积求出DF的长,即可得出AD 的长,进而由BD=AB﹣AD求得BD.【解答】(1)证明:∵CE是⊙O的切线,∴∠OEC=90°,∵四边形OABC是平行四边形,∴AO=BC,OC=AB,OC∥AB,∴∠EOC=∠A,∠COD=∠ODA,∵OD=OA,∴∠A=∠ODA,∴∠EOC=∠DOC,在△EOC和△DOC中,,∴△EOC≌△DOC(SAS),∴∠ODC=∠OEC=90°,∴OD⊥CD,∴CD是⊙O的切线;(2)解:连接DE,交OC于F,如图所示:BC=3,CD=4,∵CE、CD是⊙O的切线,∴CE=CD=4,∵四边形OABC是平行四边形,∴OA=BC=3,∴OE=3,在Rt△CEO中,CE=4,OE=3,由勾股定理得:OC==5,∴AB=OC=5,∵AE是直径,∴∠ADE=90°,即AD⊥DE,由三角形的面积公式得:×CD×OD=×OC×DF,∴DF===,∴DE=2DF=,在Rt△ADE中,AE=6,DE=,由勾股定理得AD==,∴BD=AB﹣AD=5﹣=.【点评】本题考查了切线的性质和判定,平行四边形的性质,平行线的性质,勾股定理,垂径定理,三角形的面积的应用,熟练掌握切线的判定和性质是解题的关键.20.【分析】(1)过点A分别作AM⊥y轴于M点,AN⊥x轴于N点,根据直角三角形的性质可设点A的坐标为(a,a),因为点A在直线y=3x﹣4上,即把A点坐标代入解析式即可算出a的值,进而得到A点坐标,然后再利用待定系数法求出反比例函数解析式;(2)利用勾股定理逆定理即可判断出三角形ABC是直角三角形,利用三角形的面积公式即可得出结论.(3)由SAS易证△AOP≌△ABQ,得出∠OAP=∠BAQ,那么△APQ是所求的等腰直角三角形.根据全等三角形的性质及函数图象与点的坐标的关系得出结果.【解答】解:(1)如图1,过点A分别作AQ⊥y轴于Q点,AN⊥x轴于N点,∵△AOB是等腰直角三角形,∴AQ=AN.设点A的坐标为(a,a),∵点A在直线y=3x﹣4上,∴a=3a﹣4,解得a=2,则点A的坐标为(2,2),∵双曲线y=也经过A点,∴k=4;(2)由(1)知,A(2,2),∴B(4,0),∵直线y=3x﹣4与y轴的交点为C,∴C(0,﹣4),∴AB2+BC2=(4﹣2)2+22+42+(﹣4)2=40,AC2=22+(2+4)2=40,∴AB2+BC2=AC2,∴△ABC是直角三角形;S=AB×BC=××=8,△ABC(3)如图2,假设双曲线上存在一点M,使得△PAM是等腰直角三角形.∴∠PAM=90°=∠OAB,AP=AM连接AM,BM,由(1)知,k=4,∴反比例函数解析式为y=,∴∠OAP=∠BAM,在△AOP和△ABM中,,∴△AOP≌△ABM(ASA),∴∠AOP=∠ABM,∴∠OBM=∠OBA+∠ABM=90°,∴点M的横坐标为4,∴M(4,1)即:在双曲线上存在一点M(4,1),使得△PAM是以点A为直角顶点的等腰三角形【点评】此题是反比例函数综合题,主要考查了反比例函数解析式的确定、等腰直角三角形的性质、勾股定理、全等三角形的判定等知识及综合应用知识、解决问题的能力.21.【分析】(1)根据题意列二元一次方程组问题可解;(2)用m表示种植两种蔬菜的利润即可得到w与m之间函数关系式;(3)根据A种蔬菜的种植面积不能少于B种蔬菜种植面积的2倍得到m的取值范围,讨论w最大值.【解答】解:(1)设种植A,B两种蔬菜,每亩各需分别投入x,y万元根据题意得解得答:种植A,B两种蔬菜,每亩各需分别投入0.6,0.8万元(2)由题意得w=0.8m+1.2×=﹣0.1m+150(3)由(2)m≥2×解得m≥100∵w=﹣0.1m+150k=﹣0.1<0∴w随m的增大而减小=140∴当m=100时,w最大=50∴当种A蔬菜100亩,B种蔬菜50亩时,获得最大利润为140万元.【点评】本题为一次函数实际应用问题,考查了二元二次方程组、不等式组、列一次函数关系式和根据自变量取值范围讨论函数最值.22.【分析】(1)先判断出,再求出,即可得出结论;(2)先判断出DE=CD,BC=AC,进而得出=,进而判断出△ACD∽△BCE,即可得出结论;(3)分两种情况,当点E落在线段AB上时,利用勾股定理求出AE=5,即可得出结论;当点E落在线段AB上时,求出AE=5,即可得出结论.【解答】解:(1)当α=0°时,∵DE∥AB,∴,在Rt△ABC中,AB=AC,∴∠C=45°,∴cos C=cos45°==,∴,故答案为:;(2)当0°⩽α<360°时,的大小无变化,理由:∵DE∥AB,∴∠CDE=∠CAB=90°,∠C=45°,∴CD=DE,∴DE=CD,∵AB=AC,∴BC=AC,∴=,由旋转知,∠ACD=∠BCE,∴△ACD∽△BCE,∴==;(3)当点E落在线段AB上时,如图1,∵AC=12,∴AB=AC=12,在Rt△ACE中,AC=12,CE=13,根据勾股定理得,AE==5,∴BE=AB﹣AE=7,当点E落在线段AB上时,如图2,∵AC=12,∴AB=AC=12,在Rt△ACE中,AC=12,CE=13,根据勾股定理得,AE==5,∴BE=AB+AE=17,当△EDC旋转至A,B,E三点共线时,线段BE的长为7或17.【点评】此题是相似形综合题,主要考查了相似三角形的判定和性质,勾股定理,锐角三角函数,等腰直角三角形的性质,正确画出图形是解本题的关键.23.【分析】(1)利用待定系数法即可解决问题;(2)①根据tan ∠MBA ==,tan ∠BDE ==,由∠MBA =∠BDE ,构建方程即可解决问题;②因为点M 、N 关于抛物线的对称轴对称,四边形MPNQ 是正方形,推出点P 是抛物线的对称轴与x 轴的交点,即OP =1,易证GM =GP ,即|﹣m 2+2m +3|=|1﹣m |,解方程即可解决问题;【解答】解:(1)把点B (3,0),C (0,3)代入y =﹣x 2+bx +c ,得到,解得, ∴抛物线的解析式为y =﹣x 2+2x +3.∵y =﹣x 2+2x ﹣1+1+3=﹣(x ﹣1)2+4,∴顶点D 坐标(1,4).(2)①作MG ⊥x 轴于G ,连接BM .则∠MGB =90°,设M (m ,﹣m 2+2m +3),∴MG =|﹣m 2+2m +3|,BG =3﹣m ,∴tan ∠MBA ==,∵DE ⊥x 轴,D (1,4),∴∠DEB=90°,DE=4,OE=1,∵B(3,0),∴BE=2,∴tan∠BDE==,∵∠MBA=∠BDE,∴=当点M在x轴上方时,=,解得m=﹣或3(舍弃),∴M(﹣,),当点M在x轴下方时,=,解得m=﹣或m=3(舍弃),∴点M(﹣,﹣),综上所述,满足条件的点M坐标(﹣,)或(﹣,﹣);②如图中,∵MN∥x轴,∴点M、N关于抛物线的对称轴对称,∵四边形MPNQ是正方形,∴点P是抛物线的对称轴与x轴的交点,即OP=1,易证GM=GP,即|﹣m2+2m+3|=|1﹣m|,当﹣m2+2m+3=1﹣m时,解得m=,当﹣m2+2m+3=m﹣1时,解得m=,∴满足条件的m的值为或;【点评】本题考查二次函数综合题、锐角三角函数、正方形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,学会利用参数构建方程解决问题,属于中考压轴题.。

河南省中招重点初中2019年中考数学模拟试卷(二)(含解析)

河南省中招重点初中2019年中考数学模拟试卷(二)(含解析)

2019年河南省中招重点初中中考数学模拟试卷(二)一、选择题(本大题共10小题,每小题3分,共30分)1.4的倒数是()A.﹣4 B.4 C.﹣ D.2.据报道,目前我国“天河二号”超级计算机的运算速度位居全球第一,其运算速度达到了每秒338 600 000亿次,数字338 600 000用科学记数法可简洁表示为()A.3.386×108B.0.3386×109C.33.86×107D.3.386×1093.从一个边长为3cm的大立方体挖去一个边长为1cm的小立方体,得到的几何体如图所示,则该几何体的左视图正确的是()A.B.C.D.4.下列运算正确的是()A.a3+a2=2a5B.(﹣ab2)3=a3b6 C.2a(1﹣a)=2a﹣2a2D.(a+b)2=a2+b25.如图,反比例函数y=(x<0)的图象经过点P,则k的值为()A.﹣6 B.﹣5 C.6 D.56.如图所示,线段AC的垂直平分线交线段AB于点D,∠A=50°,则∠BDC=()A.50° B.100°C.120°D.130°7.某校规定学生的学期数学成绩满分为100分,其中研究性学习成绩占40%,期末卷面成绩占60%,小明的两项成绩(百分制)依次是80分,90分,则小明这学期的数学成绩是()A.80分B.82分C.84分D.86分8.一个不透明的口袋中有四个完全相同的小球,把它们分别标号为1,2,3,4随机摸出一个小球,不放回,再随机摸出一个小球,两次摸出的小球标号的积小于4的概率是()A.B.C.D.9.y=x+1是关于x的一次函数,则一元二次方程kx2+2x+1=0的根的情况为()A.没有实数根B.有一个实数根C.有两个不相等的实数根 D.有两个相等的实数根10.如图,在平面直角坐标系中,正三角形OAB的顶点B的坐标为(2,0),点A在第一象限内,将△OAB沿直线OA的方向平移至△O′A′B′的位置,此时点A′的横坐标为3,则点B′的坐标为()A.(4,2)B.(3,3)C.(4,3)D.(3,2)二、填空题(本大题共5小题,每小题3分,共15分)11.计算:﹣2﹣1+﹣|﹣2|= .12.在平行四边形ABCD中,∠BAD的平分线AE交BC于点E,且BE=3,若平行四边形ABCD 的周长是16,则EC等于.13.将抛物线y=﹣x2先向下平移2个单位,再向右平移3个单位后所得抛物线的解析式为.14.如图,在△ABC中,∠C=90°,AC=BC,斜边AB=2,O是AB的中点,以O为圆心,线段OC的长为半径画圆心角为90°的扇形OEF,弧EF经过点C,则图中阴影部分的面积为.15.正方形ABCD的边长是4,点P是AD边的中点,点E是正方形边上的一点.若△PBE是等腰三角形,则腰长为.三、解答题(本大题共8小题,共75分)16.已知(1)化简A;(2)若x满足不等式组,且x为整数时,求A的值.17.为了丰富同学们的课余生活,某学校举行“亲近大自然”户外活动,现随机抽取了部分学生进行主题为“你最想去的景点是?”的问卷调查,要求学生只能从“A(植物园),B(花卉园),C(湿地公园),D(森林公园)”四个景点中选择一项,根据调查结果,绘制了如下两幅不完整的统计图.请解答下列问题:(1)本次调查的样本容量是;(2)补全条形统计图;(3)若该学校共有3600名学生,试估计该校最想去湿地公园的学生人数.18.如图1,以△ABC的边AB为直径的⊙O交边BC于点E,过点E作⊙O的切线交AC于点D,且ED⊥AC.(1)试判断△ABC的形状,并说明理由;(2)如图2,若线段AB、DE的延长线交于点F,∠C=75°,CD=2﹣,求⊙O的半径和BF 的长.19.周末小明和同学们去“绿博园”的枫湖坐船,观赏风景;如图,小明正在A处的小船上,B处小船上的游客发现点A在点B的正西方向上,C处小船上的游客发现点A在点C的南偏东30°方向上,已知点C在点B的北偏西60°方向上,且B、C两地相距120米.(1)求出此时点A到点C的距离;(2)若小明从A处沿AC方向向C驶去,当到达点A′时,测得点B在A′的南偏东75°的方向上,求此时小明所乘坐的小船走的距离.(注:结果保留根号)20.某职业高中机电班共有学生42人,其中男生人数比女生人数的2倍少3人.(1)该班男生和女生各有多少人?(2)某工厂决定到该班招录30名学生,经测试,该班男、女生每天能加工的零件数分别为50个和45个,为保证他们每天加工的零件总数不少于1460个,那么至少要招录多少名男学生?21.如图,隧道的截面由抛物线和长方形构成,长方形的长是12m,宽是4m.按照图中所示的直角坐标系,抛物线可以用y=﹣x2+bx+c表示,且抛物线的点C到墙面OB的水平距离为3m时,到地面OA的距离为m.(1)求该抛物线的函数关系式,并计算出拱顶D到地面OA的距离;(2)一辆货运汽车载一长方体集装箱后高为6m,宽为4m,如果隧道内设双向行车道,那么这辆货车能否安全通过?(3)在抛物线型拱壁上需要安装两排灯,使它们离地面的高度相等,如果灯离地面的高度不超过8m,那么两排灯的水平距离最小是多少米?22.如图①,△ABC与△CDE是等腰直角三角形,直角边AC、CD在同一条直线上,点M、N 分别是斜边AB、DE的中点,点P为AD的中点,连接AE、BD.(1)猜想PM与PN的数量关系及位置关系,请直接写出结论;(2)现将图①中的△CDE绕着点C顺时针旋转α(0°<α<90°),得到图②,AE与MP、BD分别交于点G、H.请判断(1)中的结论是否成立?若成立,请证明;若不成立,请说明理由;(3)若图②中的等腰直角三角形变成直角三角形,使BC=kAC,CD=kCE,如图③,写出PM 与PN的数量关系,并加以证明.23.如图,已知抛物线经过原点O,顶点为A(1,1),且与直线y=x﹣2交于B,C两点.(1)求抛物线的解析式及点C的坐标;(2)求证:△ABC是直角三角形;(3)若点N为x轴上的一个动点,过点N作MN⊥x轴与抛物线交于点M,则是否存在以O,M,N为顶点的三角形与△ABC相似?若存在,请求出点N的坐标;若不存在,请说明理由.2019年河南省中招重点初中中考数学模拟试卷(二)参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分)1.4的倒数是()A.﹣4 B.4 C.﹣ D.【考点】17:倒数.【分析】根据倒数的定义:乘积是1的两个数,即可求解.【解答】解:4的倒数是.故选D.2.据报道,目前我国“天河二号”超级计算机的运算速度位居全球第一,其运算速度达到了每秒338 600 000亿次,数字338 600 000用科学记数法可简洁表示为()A.3.386×108B.0.3386×109C.33.86×107D.3.386×109【考点】1I:科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:数字338 600 000用科学记数法可简洁表示为3.386×108.故选:A.3.从一个边长为3cm的大立方体挖去一个边长为1cm的小立方体,得到的几何体如图所示,则该几何体的左视图正确的是()A.B.C.D.【考点】U1:简单几何体的三视图.【分析】直接利用左视图的观察角度,进而得出视图.【解答】解:如图所示:∵从一个边长为3cm的大立方体挖去一个边长为1cm的小立方体,∴该几何体的左视图为:.故选:C.4.下列运算正确的是()A.a3+a2=2a5B.(﹣ab2)3=a3b6 C.2a(1﹣a)=2a﹣2a2D.(a+b)2=a2+b2【考点】4I:整式的混合运算.【分析】直接利用合并同类项、积的乘方与幂的乘方的性质与整式乘法的知识求解即可求得答案.【解答】解:A、a3+a2,不能合并;故本选项错误;B、(﹣ab2)3=﹣a3b6,故本选项错误;C、2a(1﹣a)=2a﹣2a2,故本选项正确;D、(a+b)2=a2+2ab+b2,故本选项错误.故选C.5.如图,反比例函数y=(x<0)的图象经过点P,则k的值为()A.﹣6 B.﹣5 C.6 D.5【考点】G6:反比例函数图象上点的坐标特征.【分析】根据待定系数法,可得答案.【解答】解:函数图象经过点P,k=xy=﹣3×2=﹣6,故选:A.6.如图所示,线段AC的垂直平分线交线段AB于点D,∠A=50°,则∠BDC=()A.50° B.100°C.120°D.130°【考点】KG:线段垂直平分线的性质.【分析】根据线段垂直平分线的性质得到DA=DC,根据等腰三角形的性质得到∠DCA=∠A,根据三角形的外角的性质计算即可.【解答】解:∵DE是线段AC的垂直平分线,∴DA=DC,∴∠DCA=∠A=50°,∴∠BDC=∠DCA+∠A=100°,故选:B.7.某校规定学生的学期数学成绩满分为100分,其中研究性学习成绩占40%,期末卷面成绩占60%,小明的两项成绩(百分制)依次是80分,90分,则小明这学期的数学成绩是()A.80分B.82分C.84分D.86分【考点】W2:加权平均数.【分析】利用加权平均数的公式直接计算即可得出答案.【解答】解:由加权平均数的公式可知===86,故选D.8.一个不透明的口袋中有四个完全相同的小球,把它们分别标号为1,2,3,4随机摸出一个小球,不放回,再随机摸出一个小球,两次摸出的小球标号的积小于4的概率是()A.B.C.D.【考点】X6:列表法与树状图法.【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与两次摸出的小球标号的积小于4的情况,再利用概率公式求解即可求得答案.【解答】解:画树状图得:∵共有12种等可能的结果,两次摸出的小球标号的积小于4的有4种情况,∴两次摸出的小球标号的积小于4的概率是: =.故选C.9.y=x+1是关于x的一次函数,则一元二次方程kx2+2x+1=0的根的情况为()A.没有实数根B.有一个实数根C.有两个不相等的实数根 D.有两个相等的实数根【考点】AA:根的判别式;F1:一次函数的定义.【分析】由一次函数的定义可求得k的取值范围,再根据一元二次方程的判别式可求得答案.【解答】解:∵y=x+1是关于x的一次函数,∴≠0,∴k﹣1>0,解得k>1,又一元二次方程kx2+2x+1=0的判别式△=4﹣4k,∴△<0,∴一元二次方程kx2+2x+1=0无实数根,故选A.10.如图,在平面直角坐标系中,正三角形OAB的顶点B的坐标为(2,0),点A在第一象限内,将△OAB沿直线OA的方向平移至△O′A′B′的位置,此时点A′的横坐标为3,则点B′的坐标为()A.(4,2)B.(3,3)C.(4,3)D.(3,2)【考点】Q3:坐标与图形变化﹣平移;KK:等边三角形的性质.【分析】作AM⊥x轴于点M.根据等边三角形的性质得出OA=OB=2,∠AOB=60°,在直角△OAM中利用含30°角的直角三角形的性质求出OM=OA=1,AM=OM=,则A(1,),直线OA的解析式为y=x,将x=3代入,求出y=3,那么A′(3,3),由一对对应点A与A′的坐标求出平移规律,再根据此平移规律即可求出点B′的坐标.【解答】解:如图,作AM⊥x轴于点M.∵正三角形OAB的顶点B的坐标为(2,0),∴OA=OB=2,∠AOB=60°,∴OM=OA=1,AM=OM=,∴A(1,),∴直线OA的解析式为y=x,∴当x=3时,y=3,∴A′(3,3),∴将点A向右平移2个单位,再向上平移2个单位后可得A′,∴将点B(2,0)向右平移2个单位,再向上平移2个单位后可得B′,∴点B′的坐标为(4,2),故选A.二、填空题(本大题共5小题,每小题3分,共15分)11.计算:﹣2﹣1+﹣|﹣2|= 2.【考点】2C:实数的运算;6F:负整数指数幂.【分析】直接利用负整数指数幂的性质以及结合绝对值的性质和二次根式的性质分别化简求出答案.【解答】解:﹣2﹣1+﹣|﹣2|=3﹣+2﹣2=2.故答案为:2.12.在平行四边形ABCD中,∠BAD的平分线AE交BC于点E,且BE=3,若平行四边形ABCD 的周长是16,则EC等于 2 .【考点】L5:平行四边形的性质.【分析】由平行四边形的性质和已知条件证出∠BAE=∠BEA,证出AB=BE=3;求出AB+BC=8,得出BC=5,即可得出EC的长.【解答】解:∵四边形ABCD是平行四边形,∴AD∥BC,AB=CD,AD=BC,∴∠AEB=∠DAE,∵平行四边形ABCD的周长是16,∴AB+BC=8,∵AE是∠BAD的平分线,∴∠BAE=∠DAE,∴∠BAE=∠AEB,∴AB=BE=3,∴BC=5,∴EC=BC﹣BE=5﹣3=2;故答案为:2.13.将抛物线y=﹣x2先向下平移2个单位,再向右平移3个单位后所得抛物线的解析式为y=﹣x2+6x﹣11 .【考点】H6:二次函数图象与几何变换.【分析】根据平移规律:上加下减,左加右减写出解析式即可.【解答】解:抛物线y=﹣x2先向下平移2个单位,再向右平移3个单位后所得抛物线的解析式为y=﹣(x﹣3)2﹣2即y=﹣x2+6x﹣11,故答案为y=﹣x2+6x﹣11.14.如图,在△ABC中,∠C=90°,AC=BC,斜边AB=2,O是AB的中点,以O为圆心,线段OC的长为半径画圆心角为90°的扇形OEF,弧EF经过点C,则图中阴影部分的面积为﹣.【考点】MO:扇形面积的计算.【分析】连接OC,作OM⊥BC,ON⊥AC,证明△OMG≌△ONH,则S四边形OGCH=S四边形OMCN,求得扇形FOE的面积,则阴影部分的面积即可求得.【解答】解:连接OC,作OM⊥BC,ON⊥AC.∵CA=CB,∠ACB=90°,点O为AB的中点,∴OC=AB=1,四边形OMCN是正方形,OM=.则扇形FOE的面积是: =.∵OA=OB,∠AOB=90°,点D为AB的中点,∴OC平分∠BCA,又∵OM⊥BC,ON⊥AC,∴OM=ON,∵∠GOH=∠MON=90°,∴∠GOM=∠HON,则在△OMG和△ONH中,,∴△OMG≌△ONH(AAS),∴S四边形OGCH=S四边形OMCN=()2=.则阴影部分的面积是:﹣.故答案为:﹣.15.正方形ABCD的边长是4,点P是AD边的中点,点E是正方形边上的一点.若△PBE是等腰三角形,则腰长为2,或,或.【考点】KQ:勾股定理;KI:等腰三角形的判定;LE:正方形的性质.【分析】分情况讨论:(1)当PB为腰时,若P为顶点,则E点和C点重合,求出PB长度即可;若B为顶点,则E点为CD中点;(2)当PB为底时,E在BP的垂直平分线上,与正方形的边交于两点,即为点E;①由题意得出BM=BP=,证明△BME∽△BAP,得出比例式,即可求出BE;②设CE=x,则DE=4﹣x,根据勾股定理得出方程求出CE,再由勾股定理求出BE即可.【解答】解:分情况讨论:(1)当PB为腰时,若P为顶点,则E点与C点重合,如图1所示:∵四边形ABCD是正方形,∴AB=BC=CD=AD=4,∠A=∠C=∠D=90°,∵P是AD的中点,∴AP=DP=2,根据勾股定理得:BP===2;若B为顶点,则根据PB=BE′得,E′为CD中点,此时腰长PB=2;(2)当PB为底边时,E在BP的垂直平分线上,与正方形的边交于两点,即为点E;①当E在AB上时,如图2所示:则BM=BP=,∵∠BME=∠A=90°,∠MBE=∠ABP,∴△BME∽△BAP,∴,即,∴BE=;②当E在CD上时,如图3所示:设CE=x,则DE=4﹣x,根据勾股定理得:BE2=BC2+CE2,PE2=DP2+DE2,∴42+x2=22+(4﹣x)2,解得:x=,∴CE=,∴BE===;综上所述:腰长为:2,或,或;故答案为:2,或,或.三、解答题(本大题共8小题,共75分)16.已知(1)化简A;(2)若x满足不等式组,且x为整数时,求A的值.【考点】6C:分式的混合运算;CC:一元一次不等式组的整数解.【分析】(1)原式第一项利用除法法则变形,约分后两项通分并利用同分母分式的减法法则计算即可得到结果;(2)分别求出不等式组中两不等式的解集,找出解集的公共部分确定出不等式组的解集,确定出整数x的值,代入计算即可求出A的值.【解答】解:(1)A=(x﹣3)•﹣1=﹣1==;(2),由①得:x<1,由②得:x>﹣1,∴不等式组的解集为﹣1<x<1,即整数x=0,则A=﹣.17.为了丰富同学们的课余生活,某学校举行“亲近大自然”户外活动,现随机抽取了部分学生进行主题为“你最想去的景点是?”的问卷调查,要求学生只能从“A(植物园),B(花卉园),C(湿地公园),D(森林公园)”四个景点中选择一项,根据调查结果,绘制了如下两幅不完整的统计图.请解答下列问题:(1)本次调查的样本容量是60 ;(2)补全条形统计图;(3)若该学校共有3600名学生,试估计该校最想去湿地公园的学生人数.【考点】VC:条形统计图;V5:用样本估计总体;VB:扇形统计图.【分析】(1)由A的人数及其人数占被调查人数的百分比可得;(2)根据各项目人数之和等于总数可得C选项的人数;(3)用样本中最想去湿地公园的学生人数占被调查人数的比例乘总人数即可.【解答】解:(1)本次调查的样本容量是15÷25%=60;(2)选择C的人数为:60﹣15﹣10﹣12=23(人),补全条形图如图:(3)×3600=1380(人).答:估计该校最想去湿地公园的学生人数约由1380人.故答案为:60.18.如图1,以△ABC的边AB为直径的⊙O交边BC于点E,过点E作⊙O的切线交AC于点D,且ED⊥AC.(1)试判断△ABC的形状,并说明理由;(2)如图2,若线段AB、DE的延长线交于点F,∠C=75°,CD=2﹣,求⊙O的半径和BF 的长.【考点】MC:切线的性质.【分析】(1)连接OE,根据切线性质得OE⊥DE,与已知中的ED⊥AC得平行,由此得∠1=∠C,再根据同圆的半径相等得∠1=∠B,可得出三角形为等腰三角形;(2)通过作辅助线构建矩形OGDE,再设与半径有关系的边OG=x,通过AB=AC列等量关系式,可求得结论.【解答】解:(1)△ABC是等腰三角形,理由是:如图1,连接OE,∵DE是⊙O的切线,∴OE⊥DE,∵ED⊥AC,∴AC∥OE,∴∠1=∠C,∵OB=OE,∴∠1=∠B,∴∠B=∠C,∴△ABC是等腰三角形;(2)如图2,过点O作OG⊥AC,垂足为G,则得四边形OGDE是矩形,∵△ABC是等腰三角形,∴∠B=∠C=75°,∴∠A=180°﹣75°﹣75°=30°,设OG=x,则OA=OB=OE=2x,AG=x,∴DG=OE=2x,根据AC=AB得:4x=x+2x+2﹣,x=1,∴OE=OB=2,在直角△OEF中,∠EOF=∠A=30°,cos30=,OF==2÷=,∴BF=﹣2,⊙O的半径为2.19.周末小明和同学们去“绿博园”的枫湖坐船,观赏风景;如图,小明正在A处的小船上,B处小船上的游客发现点A在点B的正西方向上,C处小船上的游客发现点A在点C的南偏东30°方向上,已知点C在点B的北偏西60°方向上,且B、C两地相距120米.(1)求出此时点A到点C的距离;(2)若小明从A处沿AC方向向C驶去,当到达点A′时,测得点B在A′的南偏东75°的方向上,求此时小明所乘坐的小船走的距离.(注:结果保留根号)【考点】TB:解直角三角形的应用﹣方向角问题;KU:勾股定理的应用.【分析】(1)根据题意作出合适的辅助线,然后根据锐角三角函数即可求得AC的长;(2)根据题意和锐角三角函数可以求得小明所乘坐的小船走的距离.【解答】解:(1)作CD⊥BA交BA的延长线于点D,由题意可得,BC=120米,∠CBD=30°,则CD=60米,∵∠DCA=30°,∴AC=米,即此时点A到点C的距离是40米;(2)作A′N⊥BC于点N,作A′E⊥BA交BA的延长线于点E,由题意可得,∠1=30°,∠EA′B=′75°,∠EA′A=30°,∠CBD=30°,则∠AA′B=45°,∴∠2=15°,∴∠A′BE=15°,∴A′N=A′E,设AA′=x,则A′E=,∴A′N=,∴CA′=,∵CA=,∴x+x=40,得x=答:此时小明所乘坐的小船走的距离是()米.20.某职业高中机电班共有学生42人,其中男生人数比女生人数的2倍少3人.(1)该班男生和女生各有多少人?(2)某工厂决定到该班招录30名学生,经测试,该班男、女生每天能加工的零件数分别为50个和45个,为保证他们每天加工的零件总数不少于1460个,那么至少要招录多少名男学生?【考点】C9:一元一次不等式的应用;9A:二元一次方程组的应用.【分析】(1)设该班男生有x人,女生有y人,根据男女生人数的关系以及全班共有42人,可得出关于x、y的二元一次方程组,解方程组即可得出结论;(2)设招录的男生为m名,则招录的女生为(30﹣m)名,根据“每天加工零件数=男生每天加工数量×男生人数+女生每天加工数量×女生人数”,即可得出关于m的一元一次不等式,解不等式即可得出结论.【解答】解:(1)设该班男生有x人,女生有y人,依题意得:,解得:.∴该班男生有27人,女生有15人.(2)设招录的男生为m名,则招录的女生为(30﹣m)名,依题意得:50m+45(30﹣m)≥1460,即5m+1350≥1460,解得:m≥22,答:工厂在该班至少要招录22名男生.21.如图,隧道的截面由抛物线和长方形构成,长方形的长是12m,宽是4m.按照图中所示的直角坐标系,抛物线可以用y=﹣x2+bx+c表示,且抛物线的点C到墙面OB的水平距离为3m时,到地面OA的距离为m.(1)求该抛物线的函数关系式,并计算出拱顶D到地面OA的距离;(2)一辆货运汽车载一长方体集装箱后高为6m,宽为4m,如果隧道内设双向行车道,那么这辆货车能否安全通过?(3)在抛物线型拱壁上需要安装两排灯,使它们离地面的高度相等,如果灯离地面的高度不超过8m,那么两排灯的水平距离最小是多少米?【考点】HE:二次函数的应用.【分析】(1)先确定B点和C点坐标,然后利用待定系数法求出抛物线解析式,再利用配方法确定顶点D的坐标,从而得到点D到地面OA的距离;(2)由于抛物线的对称轴为直线x=6,而隧道内设双向行车道,车宽为4m,则货运汽车最外侧与地面OA的交点为(2,0)或(10,0),然后计算自变量为2或10的函数值,再把函数值与6进行大小比较即可判断;(3)抛物线开口向下,函数值越大,对称点之间的距离越小,于是计算函数值为8所对应的自变量的值即可得到两排灯的水平距离最小值.【解答】解:(1)根据题意得B(0,4),C(3,),把B(0,4),C(3,)代入y=﹣x2+bx+c得,解得.所以抛物线解析式为y=﹣x2+2x+4,则y=﹣(x﹣6)2+10,所以D(6,10),所以拱顶D到地面OA的距离为10m;(2)由题意得货运汽车最外侧与地面OA的交点为(2,0)或(10,0),当x=2或x=10时,y=>6,所以这辆货车能安全通过;(3)令y=8,则﹣(x﹣6)2+10=8,解得x1=6+2,x2=6﹣2,则x1﹣x2=4,所以两排灯的水平距离最小是4m.22.如图①,△ABC与△CDE是等腰直角三角形,直角边AC、CD在同一条直线上,点M、N 分别是斜边AB、DE的中点,点P为AD的中点,连接AE、BD.(1)猜想PM与PN的数量关系及位置关系,请直接写出结论;(2)现将图①中的△CDE绕着点C顺时针旋转α(0°<α<90°),得到图②,AE与MP、BD分别交于点G、H.请判断(1)中的结论是否成立?若成立,请证明;若不成立,请说明理由;(3)若图②中的等腰直角三角形变成直角三角形,使BC=kAC,CD=kCE,如图③,写出PM 与PN的数量关系,并加以证明.【考点】SO:相似形综合题.【分析】(1)由等腰直角三角形的性质易证△ACE≌△BCD,由此可得AE=BD,再根据三角形中位线定理即可得到PM=PN,由平行线的性质可得PM⊥PN;(2)(1)中的结论仍旧成立,由(1)中的证明思路即可证明;(3)PM=kPN,由已知条件可证明△BCD∽△ACE,所以可得BD=kAE,因为点P、M、N分别为AD、AB、DE的中点,所以PM=BD,PN=AE,进而可证明PM=kPN.【解答】解:(1)PM=PN,PM⊥PN,理由如下:∵△ACB和△ECD是等腰直角三角形,∴AC=BC,EC=CD,∠ACB=∠ECD=90°.在△ACE和△BCD中,∴△ACE≌△BCD(SAS),∴AE=BD,∠EAC=∠CBD,∵点M、N分别是斜边AB、DE的中点,点P为AD的中点,∴PM=BD,PN=AE,∴PM=PM,∵PM∥BD,PN∥AE,AE⊥BD,∴∠NPD=∠EAC,∠MPA=∠BDC,∠EAC+∠BDC=90°,∴∠MPA+∠NPC=90°,∴∠MPN=90°,即PM⊥PN;(2)∵△ACB和△ECD是等腰直角三角形,∴AC=BC,EC=CD,∠ACB=∠ECD=90°.∴∠ACB+∠BCE=∠ECD+∠BCE.∴∠ACE=∠BCD.∴△ACE≌△BCD.∴AE=BD,∠CAE=∠CBD.又∵∠AOC=∠BOE,∠CAE=∠CBD,∴∠BHO=∠ACO=90°.∵点P、M、N分别为AD、AB、DE的中点,∴PM=BD,PM∥BD;PN=AE,PN∥AE.∴PM=PN.∴∠MGE+∠BHA=180°.∴∠MGE=90°.∴∠MPN=90°.∴PM⊥PN.(3)PM=kPN ∵△ACB和△ECD是直角三角形,∴∠ACB=∠ECD=90°.∴∠ACB+∠BCE=∠ECD+∠BCE.∴∠ACE=∠BCD.∵BC=kAC,CD=kCE,∴=k.∴△BCD∽△ACE.∴BD=kAE.∵点P、M、N分别为AD、AB、DE的中点,∴PM=BD,PN=AE.∴PM=kPN.23.如图,已知抛物线经过原点O,顶点为A(1,1),且与直线y=x﹣2交于B,C两点.(1)求抛物线的解析式及点C的坐标;(2)求证:△ABC是直角三角形;(3)若点N为x轴上的一个动点,过点N作MN⊥x轴与抛物线交于点M,则是否存在以O,M,N为顶点的三角形与△ABC相似?若存在,请求出点N的坐标;若不存在,请说明理由.【考点】HF:二次函数综合题.【分析】(1)可设顶点式,把原点坐标代入可求得抛物线解析式,联立直线与抛物线解析式,可求得C点坐标;(2)分别过A、C两点作x轴的垂线,交x轴于点D、E两点,结合A、B、C三点的坐标可求得∠ABO=∠CBO=45°,可证得结论;(3)设出N点坐标,可表示出M点坐标,从而可表示出MN、ON的长度,当△MON和△ABC相似时,利用三角形相似的性质可得=或=,可求得N点的坐标.【解答】解:(1)∵顶点坐标为(1,1),∴设抛物线解析式为y=a(x﹣1)2+1,又抛物线过原点,∴0=a(0﹣1)2+1,解得a=﹣1,∴抛物线解析式为y=﹣(x﹣1)2+1,即y=﹣x2+2x,联立抛物线和直线解析式可得,解得或,∴B(2,0),C(﹣1,﹣3);(2)如图,分别过A、C两点作x轴的垂线,交x轴于点D、E两点,则AD=OD=BD=1,BE=OB+OE=2+1=3,EC=3,∴∠ABO=∠CBO=45°,即∠ABC=90°,∴△ABC是直角三角形;(3)假设存在满足条件的点N,设N(x,0),则M(x,﹣x2+2x),∴ON=|x|,MN=|﹣x2+2x|,由(2)在Rt△ABD和Rt△CEB中,可分别求得AB=,BC=3,∵MN⊥x轴于点N∴∠ABC=∠MNO=90°,∴当△ABC和△MNO相似时有=或=,①当=时,则有=,即|x||﹣x+2|=|x|,∵当x=0时M、O、N不能构成三角形,∴x≠0,∴|﹣x+2|=,即﹣x+2=±,解得x=或x=,此时N点坐标为(,0)或(,0);②当=时,则有=,即|x||﹣x+2|=3|x|,∴|﹣x+2|=3,即﹣x+2=±3,解得x=5或x=﹣1,此时N点坐标为(﹣1,0)或(5,0),综上可知存在满足条件的N点,其坐标为(,0)或(,0)或(﹣1,0)或(5,0).。

2019年河南省中考数学模拟试卷(一)(二)合卷两套及答案

2019年河南省中考数学模拟试卷(一)(二)合卷两套及答案

B.(- 12 , 9 ) 55
C.(- 16 , 12 ) 55
D.(- 12 , 16 ) 55
9. 如图,在矩形 ABCD 中,AD= 2 AB,∠BAD 的平分线交 BC 于点 E,DH⊥AE 于点 H,连接 BH 并延长交 CD 于点 F,连接 DE 交 BF 于点 O,下列结论: ①∠AED=∠CED;②OE=OD;③BH= HF;④ BC-CF=2HE;⑤ AB= HF, 其中正确的有( )
22.(10 分)【问题探索】如图 1,在 Rt△ABC 中,∠ACB=90°,AC=BC,点 D、E 分别在 AC、BC 边上,DC=EC,连接 DE、AE、BD,点 M、N、P 分别是 AE、BD、AB 的中点, 连接 PM、PN、MN.探索 BE 与 MN 的数量关系.聪明的小华推理发现 PM 与 PN 的关系 为_______,最后推理得到 BE 与 MN 的数量关系为___________. 【深入探究】将△DEC 绕点 C 逆时针旋转到如图 2 的位置,判断(1)中的 BE 与 MN 的数 量关系是否仍然成立,如果成立,请写出证明过程,若不成立,请说明理由; 【解决问题】若 CB=8,CE=2,在将图 1 中的△DEC 绕点 C 逆时针旋转一周的过程中,当 B、E、D 三点在一条直线上时, MN 的长度是____________.
19.【解答】解:(1)将 A(-3,4)代入 y= m ,得 m=-3×4=-12 x
∴反比例函数的解析式为 y=- 12 ; x
将 B(6,n)代入 y=- 12 ,得 6n=-12,解得 n=-2,∴B(6,-2), x

A(-3,4)和
B(6,-2)分别代入
y=kx+b(k≠0),得
3k b=4 6k b= 2

河南省2019年普通高中招生数学模拟试卷及参考答案

河南省2019年普通高中招生数学模拟试卷及参考答案

, y3的大小关系是________. 14. 如图,将边长为4的正方形ABCD绕AD的中点O按逆时针方向旋转后得到正方形A′B′C′D′,当点D的对应点D′落在对
角线AC上时,点C所经过的路径与CD′,C′D′所围成图形的阴影部分面积是________.
15. 如图,在矩形ABCD中,AB=4,BC=5,E,F分别是线段CD和线段BA延长线上的动点,沿直线EF折叠使点D 的对应点D′落在BC上,连接AD′,DD′,当△ADD′是以DD′为腰的等腰三角形时,DE的长为________.
利润 最大,并求出 的最大值.
22. 如图
(1) 问题发现 如图①,在Rt△ABC中,∠A=90°,AB=kAC,点D是AB上一点,DE∥BC.
填空:BD,CE的数量关系为;位置关系为;
(2) 类比探究 如图②,将△ADE绕着点A顺时针旋转,旋转角为α(0°<α≤90°),连接BD,CE,请问(1)中的结论还成立吗?若 成立,请给出证明,若不成立,请说明理由.
尺码/cm
155
160
165
170
175
销量/件
1
4
2
2
1
则这10件上衣尺码的平均数和众数分别为( )
A . 160,164 B . 160,4 C . 164,160 D . 164,4 7. 我国古代伟大的数学家刘徽将直角三角形分割成一个正方形和两对全等的直角三角形,得到一个恒等式.角三角形的周长为( )
(1)
整理数据按如下分数段整理数据,并补全表格:
测试成绩x(分)
年级
50≤x<60
60≤x<70
70≤x<80
80≤x<90
90≤x≤100

2019年河南省中考数学二模试卷

2019年河南省中考数学二模试卷

((2019年河南省中考数学二模试卷一、选择题(每小题3分,共30分)下列各小题均有四个答案,其中只有一个是正确的1.(3分)﹣的相反数是()A.﹣B.﹣C.D.2.3分)春暖花开,走在郑州中原西路上,不禁感慨“郑州的路越来越漂亮了“感慨背后,是对郑州从2012年起建设生态廊道的由衷认可.目前,郑州累计增绿超3亿平方米,相当于140个碧沙岗公园.我们把3亿用科学记数法表示为()A.3×1010B.3×109C.3×108D.3x1073.(3分)如图,若添上一个正方形,使它能折叠成一个正方体,且使相对面上的数字之和相等,则共有几种不同的添法()A.5B.4C.3D.64.(3分)下列计算结果为a6的是()A.a2•a3B.a12÷a2C.(a2)3D.(﹣a2)35.3分)某篮球运动员在连续7场比赛中的得分(单位:分)依次为20,18,23,17,20,20,18,则这组数据的众数与中位数分别是()A.18分,17分6.(3分)不等式组A..2<x<3B.20分,17分C.20分,19分D.20分,20分的解集为()B..2<x≤3C..x<2或x≥3D.无解7.(3分)如图,在△ABC中,按以下步骤作图:①分别以点B,C为圆心,大于BC的长为半径作弧,两弧相交于点M,N;②作直线MN,交AB于点D,连接CD若AC=AD,∠A=80°,则∠ACB的度数为()(A .65°B .70°C .75°D .80°8.(3 分)在﹣2,﹣1,0,1,2 这五个数中任取两数 m ,n ,则二次函数 y =(x ﹣m )2+n的顶点在坐标轴上的概率为()A .B .C .D .9.3 分)二次函数 y =ax 2+b x +c 的图象如图所示,以下结论:①abc >0; ②4ac <b 2;③2a +b>0;④其顶点坐标为( ,﹣2); ⑤当 x < 时,y 随 x 的增大而减小;⑥a +b +c >0中正确的有()A .3 个B .4 个C .5 个D .6 个10.(3 分)如图 1,在矩形 ABCD 中,动点 E 从点 A 出发,沿 AB →BC 方向运动,当点 E到达点 C 时停止运动,过点 E 作 FE ⊥AE ,交 CD 于点 F ,设点 E 的运动路程为 x ,FC=y ,如图 2 所表示的是 y 与 x 的函数关系的大致图象,当点 E 在 BC 上运动时,FC 的最大长度是 ,则矩形 ABCD 的面积是()A .16B .6C .20D .8二、填空题(每小题 3 分,共 15 分)11.(3分)﹣(﹣)0=.12.(3分)一元二次方程kx2﹣2x﹣1=0有实数根,则k的取值范围是.13.(3分)如图,点C在反比例函数y=(x>0)的图象上,过点C的直线与x轴,y轴分别交于点A,B,且AB=△BC,AOB的面积为,则k的值为.14.(3分)如图,在△ABC中,AC=AB,∠CAB=30°,AC=2.以AB的中点O为圆心、AB的长为直径,在AB的上方作半圆,再以点A为圆心、AC的长为半径,作扇形DAC,且∠DAC=30°,则图中阴影部分的面积为.15.(3分)如图,在R t△ABC中,∠ACB=90°,BC=6,AC=8.点D为AB边上的一动点(点D不与点A,点B重合),过点D作DE∥BC,交AC于点E,把△ADE沿直线DE折叠,点A落在点A'处,连接△BA′,若A′DB为直角三角形,则AD的长为三、解答题(本大题共8个小题,满分75分)16.(8分)先化简,再求值(1+)÷,其中x是满足﹣1<x<2的整数.17.(9分)近几年,中学生过生日互送礼物甚至有部分家长为庆贺孩子生日大摆宴席攀比之风已成为社会关注热点.为此某媒体记者就中学生攀比心理的成因对某市城区若干名市民进行了调查,调查结果分为四组:A.社会环境的影响;B.学校正确引导的缺失;( 、 (C .家长榜样示范的不足;D .其他.并将调查结果绘制成如下条形统计图和扇形统计图(均不完整)请根据图中提供的信息,解答下列问题:(1)扇形统计图中,B 组所在扇形的圆心角度数是;(2)将条形统计图补充完整;(3)根据抽样调查结果,请你估计该市城区 120000 名市民中有多少名市民持 C 组观点;(4)针对现在部分同学因举行生日宴会而造成极大浪费的现象,请你简单说说中学生大操大办庆祝生日的危害性,并提出合理化的建议.18. 9 分)如图,在 Rt △ABC 中,∠ACB =90°,以 AC 为直径的⊙O 与斜边 AB 交于点 D ,点 E 为边 BC 的中点,连接 DE .(1)求证:DE 是⊙O 的切线;(2)填空①若∠B =30°,AC =,则 DE = ;②当∠B =°时,以 O ,D ,E ,C 为顶点的四边形是正方形.19.(9 分)郑州大学(ZhengzhouUniversity ),简称“郑大” 是中华人民共和国教育部与河南省人民政府共建的全国重点大学,首批“双一流”世界一流大学“211 工程”.某学校兴趣小组 3 人来到郑州大学门口进行测量,如图,在大楼 AC 的正前方有一个舞台,舞台前的斜坡 DE =4 米,坡角∠DEB =41°,小红在斜坡下的点 E 处测得楼顶 A 的仰角为60°,在斜坡上的点 D 处测得楼顶 A 的仰角为 45°,其中点 B ,C ,E 在同一直线上求大楼 AC 的高度. 结果精确到整数.参考数据:tan41°≈0.87)≈1.73,sin41°≈0.6,cos41°≈0.75,20.(9分)如图,在平面直角坐标系中,点A(﹣,1)在反比例函数y=的图象上,AB⊥x轴于点C,过点O作OB⊥OA,交直线AB于点B.(1)求反比例函数y=的表达式;(2)在x轴上有一点P,使得△S AOP=△S AOB,求点P的坐标21.(10分)党的十九大提出实施乡村振兴战略,将生态宜居作为乡村振兴的总目标之一,《乡村振兴战略规划(2018﹣2022年)中更是把建设生态宜居美丽乡村作为重要内容以具体化.某县富强加工厂响应“产业兴旺、生态宜居、生活富裕”的号召,拟计划投资兴建2条全自动生产线和1条半自动生产线共用资金260万元;而投资兴建1条全自动生产线和3条半自动生产线共用资金280万元.(1)求每条全自动生产线和半自动生产线的成本各为多少万元?(2)据预测,2019年每条全自动生产线的毛利润为260万元,每条半自动生产线的毛利润为160万元这一年,该加工厂共投资兴建10条生产线,若想获得不少于1200万元的纯利润,则2019年该加工厂至少需投资兴建多少条全自动生产线?22.(10分)已知,点C为线段AB外一动点,且AB=4,AC=2.问题发现(1)图1,当点C位于时,线段BC的长取最大值,且最大值为.扩展探究(2)如图2,若以BC为斜边向上构造等腰直角三角形BCD,以点A为圆心,AC为半(径,在转过程中,当 A ,C ,D 三点共线时,求 CD 的长度;解决问题(3)在(2)的条件下,以点 A 为圆心,AC 为半径,在旋转过程中,试求 AD 的最大值和最小值.23. 11 分)如图,抛物线 y =﹣ x 2+b x +c 经过点 A (1,0),点 B ,交 y 轴于点 C (0,2).连接 BC ,AC(1)求抛物线的解析式;(2)点 D 为抛物线第二象限上一点,满足 △S BCD = S △ABC ,求点 D 的坐标;(3)将直线 BC 绕点 B 顺时针旋转 45°,与抛物线交于另一点 E ,求点 E 的坐标.(2019年河南省中考数学二模试卷参考答案与试题解析一、选择题(每小题3分,共30分)下列各小题均有四个答案,其中只有一个是正确的1.(3分)﹣的相反数是()A.﹣B.﹣C.D.【分析】根据只有符号不同的两个数互为相反数,可得一个数的相反数.【解答】解:﹣的相反数是.故选:C.【点评】本题考查了相反数,关键是在一个数的前面加上负号就是这个数的相反数.2.3分)春暖花开,走在郑州中原西路上,不禁感慨“郑州的路越来越漂亮了“感慨背后,是对郑州从2012年起建设生态廊道的由衷认可.目前,郑州累计增绿超3亿平方米,相当于140个碧沙岗公园.我们把3亿用科学记数法表示为()A.3×1010B.3×109C.3×108D.3x107【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:3亿=3×108,故选:C.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.(3分)如图,若添上一个正方形,使它能折叠成一个正方体,且使相对面上的数字之和相等,则共有几种不同的添法()A.5B.4C.3D.6【分析】正方体的表面展开图,相对的面之间一定相隔一个正方形确定出相对面,再根据相对面上的数字之和相等解答.( 【解答】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,“1”与“5”是相对面,“2”与“4”是相对面,所以,要添加的是“3”的相对面,∴要添加一个正方形,使它能折叠成一个正方体,且使相对面上的数字之和相等,则共有 4 种不同的添法.故选:B .【点评】本题主要考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.4.(3 分)下列计算结果为 a 6 的是()A .a 2•a 3B .a 12÷a 2C .(a 2)3D .(﹣a 2)3【分析】分别根据同底数幂相乘、同底数幂相除、幂的乘方的运算法则逐一计算可得.【解答】解:A 、a 2•a 3=a 5,此选项不符合题意;B 、a 12÷a 2=a 10,此选项不符合题意;C 、(a 2)3=a 6,此选项符合题意;D 、(﹣a 2)3=﹣a 6,此选项不符合题意;故选:C .【点评】本题主要考查幂的运算,解题的关键是掌握同底数幂相乘、同底数幂相除、幂的乘方的运算法则.5. 3 分)某篮球运动员在连续 7 场比赛中的得分(单位:分)依次为 20,18,23,17,20,20,18,则这组数据的众数与中位数分别是()A .18 分,17 分B .20 分,17 分C .20 分,19 分D .20 分,20 分【分析】根据中位数和众数的定义求解:众数是一组数据中出现次数最多的数据,注意众数可以不止一个;找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数.【解答】解:将数据重新排列为 17、18、18、20、20、20、23,所以这组数据的众数为 20 分、中位数为 20 分,故选:D .【点评】本题属于基础题,考查了确定一组数据的中位数和众数的能力.一些学生往往对这个概念掌握不清楚,计算方法不明确而误选其它选项,注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求,如果是偶数个则找中间两个数的平均数.6.(3分)不等式组A..2<x<3的解集为()B..2<x≤3C..x<2或x≥3D.无解【分析】一元一次不等式组的解法:解一元一次不等式组时,一般先求出其中各不等式的解集,再求出这些解集的公共部分,利用数轴可以直观地表示不等式组的解集.方法与步骤:①求不等式组中每个不等式的解集;②利用数轴求公共部分.解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.【解答】解:由不等式①,得x>2,由不等式②,得x≤3,所以原不等式组的解集为2<x≤3.故选:B.【点评】本题考查了解不等式组,熟练掌握一元一次不等式组的解法是解题的关键,7.(3分)如图,在△ABC中,按以下步骤作图:①分别以点B,C为圆心,大于BC的长为半径作弧,两弧相交于点M,N;②作直线MN,交AB于点D,连接CD若AC=AD,∠A=80°,则∠ACB的度数为()A.65°B.70°C.75°D.80°【分析】利用等腰三角形的性质和三角形内角和计算出∴∠ACD=∠ADC=50°,再利用基本作图得到MN垂直平分BC,所以DB=DC,利用三角形外角性质和等腰三角形的性质计算出∠DCB=25°,然后计算∠ACD+∠DCB即可.【解答】解:∵AC=AD,∴∠ACD=∠ADC=(180°﹣∠A)=(180°﹣80°)=50°,由作法得MN垂直平分BC,∴DB=DC,∴∠B=∠DCB,而∠ADC=∠B+∠DCB,∴∠DCB=∠ADC=25°,∴∠ACB=∠ACD+∠DCB=50°+25°=75°.故选:C.【点评】本题考查了作图﹣基本作图:熟练掌握基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线).8.(3分)在﹣2,﹣1,0,1,2这五个数中任取两数m,n,则二次函数y=(x﹣m)2+n 的顶点在坐标轴上的概率为()A.B.C.D.【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果以及坐标轴上的点的情况,再利用概率公式即可求得答案.【解答】解:画树状图得:∵﹣2,﹣1,0,1,2这五个数中任取两数m,n,一共有20种可能,其中取到0的有8种可能,∴顶点在坐标轴上的概率为=.故选:A.【点评】此题考查了列表法或树状图法求概率.用到的知识点为:概率=所求情况数与( 总情况数之比,属于中考常考题型.9. 3 分)二次函数 y =ax 2+b x +c 的图象如图所示,以下结论:①abc >0; ②4ac <b 2;③2a +b>0;④其顶点坐标为( ,﹣2); ⑤当 x < 时,y 随 x 的增大而减小;⑥a +b +c >0中正确的有()A .3 个B .4 个C .5 个 【分析】根据二次函数的性质即可求出答案.【解答】解:①由图象开口可知:a >0,c <0,∵>0,∴b <0,∴abc >0,故①正确;②由图象可知: >△0,∴b 2﹣4ac >0,∴b 2>4ac ,故②正确;③抛物线与 x 轴交于点 A (﹣1,0),B (2,0),∴抛物线的对称轴为:x = ,∴<1,∴2a +b >0,故③正确;④由图象可知顶点坐标的纵坐标小于﹣2,故④错误;⑤由③可知抛物线的对称轴为 x = ,∴由图象可知:x < 时,y 随着 x 的增大而减小,D .6 个故⑤正确;⑥由图象可知:x=1时,y<0,∴a+b+c<0,故⑥错误;故选:B.【点评】本题考查二次函数的性质,解题的关键是熟练运用二次函数的图象与性质,本题属于中等题型.10.(3分)如图1,在矩形ABCD中,动点E从点A出发,沿AB→BC方向运动,当点E 到达点C时停止运动,过点E作FE⊥AE,交CD于点F,设点E的运动路程为x,FC =y,如图2所表示的是y与x的函数关系的大致图象,当点E在BC上运动时,FC的最大长度是,则矩形ABCD的面积是()A.16B.6C.20D.8【分析】易证△CFE∽△BEA,可得,根据二次函数图象对称性可得E在BC中点时,CF有最大值,列出方程式即可解题.【解答】解:若点E在BC上时,如图∵∠EFC+∠AEB=90°,∠FEC+∠EFC=90°,∴∠CFE=∠AEB,∵在△CFE和△BEA中,∠CFE=∠AEB,∠C=∠B=90°,∴△CFE∽△BEA,由二次函数图象对称性可得E在BC中点时,CF有最大值,此时,BE=CE=x( ﹣5,即∴y =,,当 y = 时,代入方程式解得:x 1=3(不合题意,舍去),x 2=7,∴BE =CE =2,∴BC =4,AB =5,∴矩形 ABCD 的面积为 5×4=20.故选:C .【点评】本题考查了二次函数动点问题,考查了相似三角形的判定和性质,考查了矩形面积的计算,本题中由图象得出 E 为 BC 中点是解题的关键.二、填空题(每小题 3 分,共 15 分)11.(3 分)﹣(﹣ )0= 3 .【分析】直接利用二次根式的性质、零指数幂的性质分别化简得出答案.【解答】解:原式=4﹣1=3.故答案为:3.【点评】此题主要考查了实数运算,正确化简各数是解题关键.12. 3 分)一元二次方程 kx 2﹣2x ﹣1=0 有实数根,则 k 的取值范围是k ≠0 且 k ≥﹣1 .【分析】让 =△b 2﹣4ac ≥0,且二次项的系数不为 0 以保证此方程为一元二次方程.【解答】解:由题意得:4+4k ≥0,k ≠0,解得:k ≠0 且 k ≥﹣1.【点评】一元二次方程有实数根应注意两种情况:≥△0,二次项的系数不为 0.13.(3 分)如图,点 C 在反比例函数 y = (x >0)的图象上,过点 C 的直线与 x 轴,y 轴分别交于点 A ,B ,且 AB =△BC , AOB 的面积为 ,则 k 的值为 ﹣6 .【分析】根据题意可以设出点 A 的坐标,从而以得到点 B 和点 C 的坐标,即可求得 k 的值.【解答】解:设点A的坐标为(a,△0),AOB的面积为,∴B(0,)∵过点C的直线与x轴,y轴分别交于点A,B,且AB=BC∴点C(﹣a,),∵点C在反比例函数y=(x>0)的图象上,∴k=(﹣a)×=﹣6故答案为:﹣6.【点评】本题考查反比例函数系数k的几何意义、一次函数图象上点的坐标特征、反比例函数图象上点的坐标特征,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.14.(3分)如图,在△ABC中,AC=AB,∠CAB=30°,AC=2.以AB的中点O为圆心、AB的长为直径,在AB的上方作半圆,再以点A为圆心、AC的长为半径,作扇形DAC,且∠DAC=30°,则图中阴影部分的面积为.【分析】设半圆O交AD于E交AC于F,连接OE,OF,EF,根据圆周角定理得到∠EOF=△60°,推出EOF是等边三角形,得到∠EFO=60°,推出EF∥AB,求得△SAEF =△S EOF,根据扇形的面积公式即可得到结论.【解答】解:设半圆O交AD于E交AC于F,连接OE,OF,EF,∵∠CAD=30°,∴∠EOF=60°,∴△EOF是等边三角形,∴∠EFO=60°,∵∠BAC=30°,∴∠BOF=60°,∴EF∥AB,∴△S AEF=△S EOF,∴图中阴影部分的面积=SCAD﹣S扇形EOF=﹣=π﹣=扇形,故答案为:.【点评】本题考查了扇形的面积的计算,等腰三角形的性质,圆周角定理,正确的作出辅助线是解题的关键.15.(3分)如图,在R t△ABC中,∠ACB=90°,BC=6,AC=8.点D为AB边上的一动点(点D不与点A,点B重合),过点D作DE∥BC,交AC于点E,把△ADE沿直线DE折叠,点A落在点A'处,连接△BA′,若A′DB为直角三角形,则AD的长为或【分析】分两种情况进行讨论,当∠DA'B为直角时,设AD=A'D=△x,通过证AED∽△ACB,求出A'C,A'B的长度,然后在△Rt A'DB中,利用勾股定理可求出x的值;当∠DBA△'为直角时,证ABC∽△AA'B,求出A'B的值,然后在△Rt A'BD中,利用勾股定理可求出x的值.【解答】解:如图1,当∠DA'B为直角时,在△Rt ABC中,AB===10,由折叠知,△ADE≌△A'DE,∴AD=A'D,AE=A'E,∠AED=∠A'ED=×180°=90°,∴∠AED=∠ACB=90°,又∵∠A=∠A,∴△AED∽△ACB,∴,设AD=A'D=x,∴∴AE=,,∴A'C=AC﹣AA'=8﹣在△Rt A'CB中,A'B2=A'C2+BC2=(8﹣,)2+36,在△Rt A'DB中,BD=AB﹣AD=10﹣x,A'D=x,A'B2+A'D2=BD2,∴x2+(8﹣)2+36=(10﹣x)2,解得,x1=0(舍去),x2=,∴AD=;如图2,当∠DBA'为直角时,∵∠ABA'=∠ACB=90°,∠A=∠A∴△ABC∽△AA'B,∴∴∴AA'=,,,在△Rt AA'B中A'B==,设AD=A'D=x,在△Rt A'BD中,DB2+A'B2=A'D2,∴(10﹣x)2+()2=x2,解得,x=,∴AD=;故答案为:或.【点评】本题考查了勾股定理,轴对称的性质,相似三角形的判定与性质等,解题关键是能够根据题意画出两种情况的草图.三、解答题(本大题共8个小题,满分75分)16.(8分)先化简,再求值(1+)÷,其中x是满足﹣1<x<2的整数.【分析】根据分式的加法和除法可以化简题目中的式子,然后﹣1<x<2中选取一个使得( 原分式有意义的整数代入化简后的式子即可解答本题.【解答】解:(1+)÷==,当 x =0 时,原式==0.【点评】本题考查分式的化简求值,解答本题的关键是明确分式化简求值的方法.17.(9 分)近几年,中学生过生日互送礼物甚至有部分家长为庆贺孩子生日大摆宴席攀比之风已成为社会关注热点.为此某媒体记者就中学生攀比心理的成因对某市城区若干名市民进行了调查,调查结果分为四组:A .社会环境的影响;B .学校正确引导的缺失;C .家长榜样示范的不足;D .其他.并将调查结果绘制成如下条形统计图和扇形统计图(均不完整)请根据图中提供的信息,解答下列问题:(1)扇形统计图中,B 组所在扇形的圆心角度数是90° ;(2)将条形统计图补充完整;(3)根据抽样调查结果,请你估计该市城区 120000 名市民中有多少名市民持 C 组观点;(4)针对现在部分同学因举行生日宴会而造成极大浪费的现象,请你简单说说中学生大操大办庆祝生日的危害性,并提出合理化的建议.【分析】 1)根据题目中的数据可以求得本次调查的人数,从而可以求得扇形统计图中,B 组所在扇形的圆心角度数;(2)根据(1)中的结果和条形统计图中的数据可以求得 C 组的人数,从而可以将条形统计图补充完整;(3)根据统计图中的数据可以求得该市城区120000 名市民中有多少名市民持 C 组观点;(4)根据题意写出几条为孩子和合理化建议即可,本题答案不唯一,只要合理即可.( ( 【解答】解:(1)本次调查的人数为:40÷20%=200,扇形统计图中,B 组所在扇形的圆心角度数是:360°×=90°,故答案为:90°;(2)C 组人数为:200﹣40﹣50﹣30=80,补充完整的条形统计图如右图所示;(3)120000×=48000(人),答:计该市城区 120000 名市民中有 48000 名市民持 C 组观点;(4)中学生大操大办庆祝生日的危害性:第一,造成孩子们的互相攀比现象;第二,给很多家庭带来负担;第三,不利于孩子们树立正确的价值观;合理化建议:可以一家人给孩子在家里办一个生日宴,这样可以和孩子拉近感情,又让孩子感受到父母对他们的关注.【点评】本题考查条形统计图、扇形统计图、用样本估计总体,解答本题的关键是明确题意,利用数形结合的思想解答.18. 9 分)如图,在 Rt △ABC 中,∠ACB =90°,以 AC 为直径的⊙O 与斜边 AB 交于点 D ,点 E 为边 BC 的中点,连接 DE .(1)求证:DE 是⊙O 的切线;(2)填空①若∠B =30°,AC =,则 DE = ;②当∠B = 45 °时,以 O ,D ,E ,C 为顶点的四边形是正方形.【分析】 1)AC 是直径,则∠ADC =∠CDB =90°,点 E 为边 BC 的中点,连接 OD ,、 ( 则∠OCD =∠ODC ,则∠ODC +∠EDC =∠OCD +∠ECD =∠ACB =90°,即可证明;(2)①CB == =3,则 DE = BC = ,即可求解;②只要 DE ⊥BC ,以 O ,D ,E ,C 为顶点的四边形就是正方形,即可求解.【解答】解:(1)∵AC 是直径,则∠ADC =∠CDB =90°,∵点 E 为边 BC 的中点,∴∠ECD =∠EDC ,∠B =∠BDE ,连接 OD ,则∠OCD =∠ODC ,∴∠ODC +∠EDC =∠OCD +∠ECD =∠ACB =90°,∴DE 是⊙O 的切线;(2)①CB == =3,则 DE = BC = ,故答案是 ;②只要 DE ⊥BC ,以 O ,D ,E ,C 为顶点的四边形就是正方形,则∠B =∠BDE = ×90°=45°,故答案为 45.【点评】本题为圆的综合题,涉及到直角三角形中线定理、正方形的性质,直角三角形中线定理的应用,是本题解题的关键.19.(9 分)郑州大学(ZhengzhouUniversity ),简称“郑大” 是中华人民共和国教育部与河南省人民政府共建的全国重点大学,首批“双一流”世界一流大学“211 工程”.某学校兴趣小组 3 人来到郑州大学门口进行测量,如图,在大楼 AC 的正前方有一个舞台,舞台前的斜坡 DE =4 米,坡角∠DEB =41°,小红在斜坡下的点 E 处测得楼顶 A 的仰角为60°,在斜坡上的点 D 处测得楼顶 A 的仰角为 45°,其中点 B ,C ,E 在同一直线上求大楼 AC 的高度. 结果精确到整数.参考数据:tan41°≈0.87)≈1.73,sin41°≈0.6,cos41°≈0.75,【分析】设CE=x,根据正弦的定义求出BD,根据余弦的定义求出BE,根据正切的定义用x表示出AC,根据等腰直角三角形的性质列方程,解方程得到答案.【解答】解:设CE=x,在△Rt DEB中,sin∠DEB=,∴DB=DE•sin∠DEB≈4×0.6=2.4,cos∠DEB=,∴BE=DE•cos∠DEB≈4×0.75=3,在△Rt AEC中,tan∠AEC=,x,∴AC=CE•tan∠AEC=∵∠ADF=45°,∴F A=FD,∴x﹣2.4=x+3,解得,x=,∴AC=x≈13,答:大楼AC的高度约为13米.【点评】本题考查的是解直角三角形的应用﹣仰角俯角问题、坡度坡角问题,掌握仰角俯角的概念、坡度的概念、熟记锐角三角函数的定义是解题的关键.( 20.(9 分)如图,在平面直角坐标系中,点 A (﹣,1)在反比例函数 y = 的图象上,AB ⊥x 轴于点 C ,过点 O 作 OB ⊥OA ,交直线 AB 于点 B .(1)求反比例函数 y = 的表达式;(2)在 x 轴上有一点 P ,使得 △S AOP = △S AOB ,求点 P 的坐标【分析】 1)将点 A (﹣达式;,1)代入 y = ,利用待定系数法即可求出反比例函数的表(2)先由射影定理求出 BC =3,那么 B (﹣,﹣3),计算求出 △S AOB = × ×4=2.则 S △AOP = △S AOB =【解答】解:(1)∵点 A (﹣∴k =﹣×1=﹣ ,.设点 P 的坐标为(m ,0),列出方程求解即可. ,1)在反比例函数 y = 的图象上, ∴反比例函数的表达式为 y =﹣;(2)∵A (﹣,1),AB ⊥x 轴于点 C , ∴OC = ,AC =1,由射影定理得 OC 2=AC •BC ,可得 BC =3,B (﹣△S AOB = × ×4=2 . ,﹣3),∴△S AOP = △S AOB =.设点 P 的坐标为(m ,0),∴ ×|m |×1=,∴|m |=2∴m =±2 , ,(∴点 P 的坐标为(﹣2,0)或(2 ,0).【点评】本题考查了待定系数法求反比例函数的解析式,反比例函数图象上点的坐标特征,三角形的面积,正确求出解析式是解题的关键.21.(10 分)党的十九大提出实施乡村振兴战略,将生态宜居作为乡村振兴的总目标之一,《乡村振兴战略规划(2018﹣2022 年)中更是把建设生态宜居美丽乡村作为重要内容以具体化.某县富强加工厂响应“产业兴旺、生态宜居、生活富裕”的号召,拟计划投资兴建 2 条全自动生产线和 1 条半自动生产线共用资金 260 万元;而投资兴建 1 条全自动生产线和 3 条半自动生产线共用资金 280 万元.(1)求每条全自动生产线和半自动生产线的成本各为多少万元?(2)据预测,2019 年每条全自动生产线的毛利润为 260 万元,每条半自动生产线的毛利润为 160 万元这一年,该加工厂共投资兴建 10 条生产线,若想获得不少于 1200 万元的纯利润,则 2019 年该加工厂至少需投资兴建多少条全自动生产线?【分析】 1)可设每条全自动生产线的成本为 x 万元,每条半自动生产线的成本为 y 万元,根据等量关系:投资兴建 2 条全自动生产线和 1 条半自动生产线共需资金 260 万元;投资兴建 1 条全自动生产线 3 条半自动生产线共需资金 280 万元;列出方程组求解即可;(2)可设 2019 年该加工厂需兴建全自动生产线 a 条,根据不等关系:获得不少于 1200万元的纯利润,列出不等式求解即可.【解答】解:(1)设每条全自动生产线的成本为 x 万元,每条半自动生产线的成本为 y万元,根据题意,得,解得.答:每条全自动生产线的成本为 100 万元,每条半自动生产线的成本为 60 万元.(2)设 2019 年该加工厂需兴建全自动生产线 a 条,根据题意,得(260﹣100)a +(160﹣60)(10﹣a )≥1200,解得 a ≥3 ,由于 a 是正整数,所以 a 至少取 4.即 2019 年该加工厂至少需投资兴建 4 条全自动生产线.【点评】本题考查二元一次方程组的应用,一元一次不等式组的应用,将现实生活中的事件与数学思想联系起来,读懂题列出等量关系和不等式关系式是解题的关键.( 22.(10 分)已知,点 C 为线段 AB 外一动点,且 AB =4,AC =2.问题发现(1)图 1,当点 C 位于 线段 BA 的延长线上 时,线段 BC 的长取最大值,且最大值为 6 .扩展探究(2)如图 2,若以 BC 为斜边向上构造等腰直角三角形 BCD ,以点 A 为圆心,AC 为半径,在转过程中,当 A ,C ,D 三点共线时,求 CD 的长度;解决问题(3)在(2)的条件下,以点 A 为圆心,AC 为半径,在旋转过程中,试求 AD 的最大值和最小值.【分析】 1)当点 C 位于线段 BA 的延长线上时,线段 BC 的长度最大,最大值为 6; (2)以点 A 为圆心,AC 为半径,在转过程中,当 A ,C ,D 三点共线,且点 A 在线段CD 上时或点 A 在线段 DC 的延长线上时,设 CD =x ,在 △RtADB 中,利用勾股定理可分别求出两种情况下 CD 的长度;(3)当 AC ⊥AB 且点 C 在 AB 上方时,AD 取最大值,将△DCA 以点 D 为圆心逆时针旋转 △90°得到 DBE ,证明△ADE 为等腰直角三角形,通过解直角三角形可求出 AD 的最大值;当 AC ⊥AB 且点 C 在 AB 下方时,AD 取最小值,将△DCA 以点 D 为圆心逆时针旋转 △90°得到 DFB ,且 A ,F ,B 三点在同一直线上,证明△ADF 为等腰直角三角形,可通过解直角三角形可求出 AD 的最小值.【解答】解:(1)如图 1,当点 C 位于线段 BA 的延长线上时,线段 BC 的长度最大,BC =AB +AC =4+2=6,故答案为:线段 BA 的延长线上,6;(2)① 如图 2﹣1,以点 A 为圆心,AC 为半径,在转过程中,当 A ,C ,D 三点共线,且点A在线段CD上时,设CD=x,则DB=x,AD=CD﹣AC=x﹣2,在△Rt ADB中,AD2+DB2=AB2,即(x﹣2)2+x2=42,解得,x1=1﹣(负值舍去),x2=1+,∴CD=1+;②如图2﹣2,以点A为圆心,AC为半径,在转过程中,当A,C,D三点共线,且点A 在线段DC的延长线上时,设CD=x,则DB=x,AD=CD+AC=x+2,在△Rt ADB中,AD2+DB2=AB2,即(x+2)2+x2=42,解得,x1=﹣1﹣∴CD=﹣1;∴CD的长度为1+(负值舍去),x2=﹣1,或﹣1;(3)①如图3﹣1,当AC⊥AB且点C在AB上方时,AD取最大值,将△DCA以点D为圆心逆时针旋转△90°得到DBE,则∠ADE=△90°,DCA≌△DBE,∴DA=DE,BE=AC=2,∴△ADE为等腰直角三角形,∴AE=AB+BE=4+2=6,∴在等腰直角△ADE中,AD=AE=3,∴AD的最大值是3;。

2019年河南地区中考一模数学试卷二及答案解析

2019年河南地区中考一模数学试卷二及答案解析

2019年河南地区中考一模数学试卷二及答案解析
1
2019年河南地区中考一模数学试卷二
(考试时间120分钟;试卷满分
120分)
第Ⅰ卷
一、选择题(本大题共10个小题,每小题3分,共30分.)
1.-8的相反数是(
) A .-8 B .18
C .8 D
.-
18
2.斑叶兰被列为国家二级保护植物,它的一粒种子重约0.000 000 5克.将0.000 000
5用科学记数法表示为( )
A .5×107
B
.5×10
-7
C .0.5×10
-6
D .5×10
-6
3.如图是正方体的表面展开图,则与“前”字相对的字是(
)
A .认
B .真
C .复
D .习
4.下列运算正确的是
(
)
A .x 2
+x 2
=x
4
B .x 3÷x 2=x
6
C .2x 4
÷x 2
=2x 2
D .(3x )2
=6x
2
5.在“经典诵读”比赛活动中,某校10名学生参赛成绩如图所示,对于这
10名学生
的参赛成绩,下列说法正确的是
(
)
A .众数是90分
B .中位数是95分。

最新 2019年河南省中考数学模拟试卷(二)含答案解析

最新 2019年河南省中考数学模拟试卷(二)含答案解析

2019年河南省中考数学模拟试卷(二)一、选择题(本大题共10小题,每小题3分,共30分,下列各小题具有四个答案,其中只有一个是正确的。

)1.将一根圆柱形的空心钢管任意放置,它的主视图不可能是()A.B.C.D.2.﹣2的绝对值是()A.2 B.C.﹣2 D.﹣3.下列各式变形中,正确的是()A.x2•x3=x6B. =|x|C.(x2﹣)÷x=x﹣1 D.x2﹣x+1=(x﹣)2+4.如图,把一块直角三角板的直角顶点放在直尺的一边上,若∠1=48°,则∠2的度数为()A.48°B.42°C.40°D.45°5.函数y=中自变量x的取值范围是()A.x≥2 B.x>2 C.x≤2 D.x≠26.在某校“我的中国梦”演讲比赛中,有7名学生参加决赛,他们决赛的最终成绩各不相同,其中一名学生想要知道自己能否进入前3名,他不仅要了解自己的成绩,还要了解这7名学生成绩的()A.众数B.方差C.平均数D.中位数7.已知关于x的方程x2+3x+a=0有一个根为﹣2,则另一个根为()A.5 B.﹣1 C.2 D.﹣58.如图,在▱ABCD中,E为AD的三等分点,AE=AD,连接BE交AC于点F,AC=12,则AF为()A.4 B.4.8 C.5.2 D.69.星期天,小明从家出发,以15千米/小时的速度骑车去郊游,到达目的地休息一段时间后原路返回,已知小明行驶的路程s(千米)与时间t(小时)之间的函数关系如图所示,则小明返程的速度为()A.15千米/小时 B.10千米/小时 C.6千米/小时D.无法确定10.如图,AB是半圆O的直径,C是半圆O上一点,CD是⊙O的切线,OD∥BC,OD与半圆O交于点E,则下列结论中不一定正确的是()A.AC⊥BC B.BE平分∠ABC C.BE∥CD D.∠D=∠A二、填空题(本小题共5小题,每小题3分,共15分)11.计算:2﹣2﹣= .12.写出一个二次函数解析式,使它的图象的顶点在y轴上:.13.课外活动中,九(1)班准备把全班男生随机分成两个小组进行拔河比赛,则甲、乙、丙三位同学恰好被分在同一小组的概率为.14.如图,在Rt△ABC中,∠ACB=90°,AC=BC=2,以点A为圆心,AC的长为半径作交AB于点E,以点B为圆心,BC的长为半径作交AB于点D,则阴影部分的面积为.15.如图,矩形ABCD中,AB=8,BC=15,点E是AD边上一点,连接BE,把△ABE沿BE 折叠,使点A落在点A′处,点F是CD边上一点,连接EF,把△DEF沿EF折叠,使点D落在直线EA′上的点D′处,当点D′落在BC边上时,AE的长为.三、解答题(本题共8小题,共75分.)16.先化简,再求值:(﹣)÷,其中实数a,b满足(a﹣2)2+|b ﹣2a|=0.17.每年的3月22日为联合国确定的“世界水日”,某社区为了宣传节约用水,从本社区1000户家庭中随机抽取部分家庭,调查他们每月的用水量,并将调查的结果绘制成如下两幅尚不完整的统计图(每组数据包括右端点但不包括左端点),请你根据统计图解答下列问题:(1)此次抽样调查的样本容量是;(2)补全频数分布直方图,求扇形图中“6吨﹣﹣9吨”部分的圆心角的度数;(3)如果自来水公司将基本月用水量定为每户每月12吨,不超过基本月用水量的部分享受基本价格,超出基本月用水量的部分实行加价收费,那么该社会用户中约有多少户家庭能够全部享受基本价格?18.如图,△ABC是半径为2的⊙O的内接三角形,连接OA、OB,点D、E、F、G分别是CA、OA、OB、CB的中点.(1)试判断四边形DEFG的形状,并说明理由;(2)填空:①若AB=3,当CA=CB时,四边形DEFG的面积是;②若AB=2,当∠CAB的度数为时,四边形DEFG是正方形.19.某社会实践活动小组实地测量两岸互相平行的一段河的宽度,在河的北岸边点A处,测得河的南岸边点B在其南偏东45°方向,然后向北走20米到达C点,测得点B在点C的南偏东33°方向,求出这段河的宽度(结果精确到1米,参考数据sin33°≈0.54,cos33°≈0.84,tan33°≈0.65,≈1.41)20.如图,直线y=﹣x+b与反比例函数y=的图形交于A(a,4)和B(4,1)两点.(1)求b,k的值;(2)在第一象限内,当一次函数y=﹣x+b的值大于反比例函数y=的值时,直接写出自变量x的取值范围;(3)将直线y=﹣x+b向下平移m个单位,当直线与双曲线只有一个交点时,求m的值.21.某化工材料经销公司购进一种化工原料若干千克,物价部门规定其销售单价不低于进价,不高于60元/千克,经市场调查发现:销售单价定为60元/千克时,每日销售20千克;如调整价格,每降价1元/千克,每日可多销售2千克.(1)已知某天售出该化工原料40千克,则当天的销售单价为元/千克;(2)该公司现有员工2名,每天支付员工的工资为每人每天90元,每天应支付其他费用108元,当某天的销售价为46元/千克时,收支恰好平衡.①求这种化工原料的进价;②若公司每天的纯利润(收入﹣支出)全部用来偿还一笔10000元的借款,则至少需多少天才能还清借款?22.如图1,四边形ABCD是正方形,点E是AB边的中点,以AE为边作正方形AEFG,连接DE,BG.(1)发现①线段DE、BG之间的数量关系是;②直线DE、BG之间的位置关系是.(2)探究如图2,将正方形AEFG绕点A逆时针旋转,(1)中的结论是否仍然成立?若成立,请给出证明;若不成立,请说明理由.(3)应用如图3,将正方形AEFG绕点A逆时针旋转一周,记直线DE与BG的交点为P,若AB=4,请直接写出点P到CD所在直线距离的最大值和最小值.23.如图,以x=1为对称轴的抛物线y=ax2+bx+c的图象与x轴交于点A,点B(﹣1,0),与y轴交于点C(0,4),作直线AC.(1)求抛物线解析式;(2)点P在抛物线的对称轴上,且到直线AC和x轴的距离相等,设点P的纵坐标为m,求m的值;(3)点M在y轴上且位于点C上方,点N在直线AC上,点Q为第一象限内抛物线上一点,若以点C、M、N、Q为顶点的四边形是菱形,请直接写出点Q的坐标.2019年河南省中考数学模拟试卷(二)参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分,下列各小题具有四个答案,其中只有一个是正确的。

【精品】2019年河南省中考数学模拟试卷(二)含答案解析

【精品】2019年河南省中考数学模拟试卷(二)含答案解析

2019年河南省中考数学模拟试卷(二)一、选择题(本大题共10小题,每小题3分,共30分,下列各小题具有四个答案,其中只有一个是正确的。

)1.﹣2的绝对值是()A.2 B.C.﹣2 D.﹣2.将一根圆柱形的空心钢管任意放置,它的主视图不可能是()A.B.C.D.3.下列各式变形中,正确的是()A.x2•x3=x6B. =|x|C.(x2﹣)÷x=x﹣1 D.x2﹣x+1=(x﹣)2+4.如图,把一块直角三角板的直角顶点放在直尺的一边上,若∠1=48°,则∠2的度数为()A.48° B.42° C.40° D.45°5.函数y=中自变量x的取值范围是()A.x≥2 B.x>2 C.x≤2 D.x≠26.在某校“我的中国梦”演讲比赛中,有7名学生参加决赛,他们决赛的最终成绩各不相同,其中一名学生想要知道自己能否进入前3名,他不仅要了解自己的成绩,还要了解这7名学生成绩的()A.众数 B.方差 C.平均数D.中位数7.已知关于x的方程x2+3x+a=0有一个根为﹣2,则另一个根为()A.5 B.﹣1 C.2 D.﹣58.如图,在▱ABCD中,E为AD的三等分点,AE=AD,连接BE交AC于点F,AC=12,则AF为()A.4 B.4.8 C.5.2 D.69.星期天,小明从家出发,以15千米/小时的速度骑车去郊游,到达目的地休息一段时间后原路返回,已知小明行驶的路程s(千米)与时间t(小时)之间的函数关系如图所示,则小明返程的速度为()A.15千米/小时B.10千米/小时C.6千米/小时D.无法确定10.如图,AB是半圆O的直径,C是半圆O上一点,CD是⊙O的切线,OD∥BC,OD与半圆O交于点E,则下列结论中不一定正确的是()A.AC⊥BC B.BE平分∠ABC C.BE∥CD D.∠D=∠A二、填空题(本小题共5小题,每小题3分,共15分)11.计算:2﹣2﹣= .12.写出一个二次函数解析式,使它的图象的顶点在y轴上:.13.课外活动中,九(1)班准备把全班男生随机分成两个小组进行拔河比赛,则甲、乙、丙三位同学恰好被分在同一小组的概率为.14.如图,在Rt△ABC中,∠ACB=90°,AC=BC=2,以点A为圆心,AC的长为半径作交AB于点E,以点B 为圆心,BC的长为半径作交AB于点D,则阴影部分的面积为.15.如图,矩形ABCD中,AB=8,BC=15,点E是AD边上一点,连接BE,把△ABE沿BE折叠,使点A落在点A′处,点F是CD边上一点,连接EF,把△DEF沿EF折叠,使点D落在直线EA′上的点D′处,当点D′落在BC边上时,AE的长为.三、解答题(本题共8小题,共75分.)16.先化简,再求值:(﹣)÷,其中实数a,b满足(a﹣2)2+|b﹣2a|=0.17.每年的3月22日为联合国确定的“世界水日”,某社区为了宣传节约用水,从本社区1000户家庭中随机抽取部分家庭,调查他们每月的用水量,并将调查的结果绘制成如下两幅尚不完整的统计图(每组数据包括右端点但不包括左端点),请你根据统计图解答下列问题:(1)此次抽样调查的样本容量是;(2)补全频数分布直方图,求扇形图中“6吨﹣﹣9吨”部分的圆心角的度数;(3)如果自来水公司将基本月用水量定为每户每月12吨,不超过基本月用水量的部分享受基本价格,超出基本月用水量的部分实行加价收费,那么该社会用户中约有多少户家庭能够全部享受基本价格?18.如图,△ABC是半径为2的⊙O的内接三角形,连接OA、OB,点D、E、F、G分别是CA、OA、OB、CB的中点.(1)试判断四边形DEFG的形状,并说明理由;(2)填空:①若AB=3,当CA=CB时,四边形DEFG的面积是;②若AB=2,当∠CAB的度数为时,四边形DEFG是正方形.19.某社会实践活动小组实地测量两岸互相平行的一段河的宽度,在河的北岸边点A处,测得河的南岸边点B在其南偏东45°方向,然后向北走20米到达C点,测得点B在点C的南偏东33°方向,求出这段河的宽度(结果精确到1米,参考数据sin33°≈0.54,cos33°≈0.84,tan33°≈0.65,≈1.41)20.如图,直线y=﹣x+b与反比例函数y=的图形交于A(a,4)和B(4,1)两点.(1)求b,k的值;(2)在第一象限内,当一次函数y=﹣x+b的值大于反比例函数y=的值时,直接写出自变量x的取值范围;(3)将直线y=﹣x+b向下平移m个单位,当直线与双曲线只有一个交点时,求m的值.21.某化工材料经销公司购进一种化工原料若干千克,物价部门规定其销售单价不低于进价,不高于60元/千克,经市场调查发现:销售单价定为60元/千克时,每日销售20千克;如调整价格,每降价1元/千克,每日可多销售2千克.(1)已知某天售出该化工原料40千克,则当天的销售单价为元/千克;(2)该公司现有员工2名,每天支付员工的工资为每人每天90元,每天应支付其他费用108元,当某天的销售价为46元/千克时,收支恰好平衡.①求这种化工原料的进价;②若公司每天的纯利润(收入﹣支出)全部用来偿还一笔10000元的借款,则至少需多少天才能还清借款?22.如图1,四边形ABCD是正方形,点E是AB边的中点,以AE为边作正方形AEFG,连接DE,BG.(1)发现①线段DE、BG之间的数量关系是;②直线DE、BG之间的位置关系是.(2)探究如图2,将正方形AEFG绕点A逆时针旋转,(1)中的结论是否仍然成立?若成立,请给出证明;若不成立,请说明理由.(3)应用如图3,将正方形AEFG绕点A逆时针旋转一周,记直线DE与BG的交点为P,若AB=4,请直接写出点P到CD所在直线距离的最大值和最小值.23.如图,以x=1为对称轴的抛物线y=ax2+bx+c的图象与x轴交于点A,点B(﹣1,0),与y轴交于点C (0,4),作直线AC.(1)求抛物线解析式;(2)点P在抛物线的对称轴上,且到直线AC和x轴的距离相等,设点P的纵坐标为m,求m的值;(3)点M在y轴上且位于点C上方,点N在直线AC上,点Q为第一象限内抛物线上一点,若以点C、M、N、Q为顶点的四边形是菱形,请直接写出点Q的坐标.2019年河南省中考数学模拟试卷(二)参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分,下列各小题具有四个答案,其中只有一个是正确的。

2019年河南省中考数学模拟试卷(二)(含解析)

2019年河南省中考数学模拟试卷(二)(含解析)

2019年河南省中考数学模拟试卷(二)一、选择题(本大题共10小题,每小题3分,共30分,下列各小题具有四个答案,其中只有一个是正确的。

)1.﹣2的绝对值是()A.2 B.C.﹣2 D.﹣2.将一根圆柱形的空心钢管任意放置,它的主视图不可能是()A.B.C.D.3.下列各式变形中,正确的是()A.x2•x3=x6B. =|x|C.(x2﹣)÷x=x﹣1 D.x2﹣x+1=(x﹣)2+4.如图,把一块直角三角板的直角顶点放在直尺的一边上,若∠1=48°,则∠2的度数为()A.48° B.42° C.40° D.45°5.函数y=中自变量x的取值范围是()A.x≥2 B.x>2 C.x≤2 D.x≠26.在某校“我的中国梦”演讲比赛中,有7名学生参加决赛,他们决赛的最终成绩各不相同,其中一名学生想要知道自己能否进入前3名,他不仅要了解自己的成绩,还要了解这7名学生成绩的()A.众数 B.方差 C.平均数D.中位数7.已知关于x的方程x2+3x+a=0有一个根为﹣2,则另一个根为()A.5 B.﹣1 C.2 D.﹣58.如图,在▱ABCD中,E为AD的三等分点,AE=AD,连接BE交AC于点F,AC=12,则AF为()A.4 B.4.8 C.5.2 D.69.星期天,小明从家出发,以15千米/小时的速度骑车去郊游,到达目的地休息一段时间后原路返回,已知小明行驶的路程s(千米)与时间t(小时)之间的函数关系如图所示,则小明返程的速度为()A.15千米/小时B.10千米/小时C.6千米/小时D.无法确定10.如图,AB是半圆O的直径,C是半圆O上一点,CD是⊙O的切线,OD∥BC,OD与半圆O交于点E,则下列结论中不一定正确的是()A.AC⊥BC B.BE平分∠ABC C.BE∥CD D.∠D=∠A二、填空题(本小题共5小题,每小题3分,共15分)11.计算:2﹣2﹣= .12.写出一个二次函数解析式,使它的图象的顶点在y轴上:.13.课外活动中,九(1)班准备把全班男生随机分成两个小组进行拔河比赛,则甲、乙、丙三位同学恰好被分在同一小组的概率为.14.如图,在Rt△ABC中,∠ACB=90°,AC=BC=2,以点A为圆心,AC的长为半径作交AB于点E,以点B 为圆心,BC的长为半径作交AB于点D,则阴影部分的面积为.15.如图,矩形ABCD中,AB=8,BC=15,点E是AD边上一点,连接BE,把△ABE沿BE折叠,使点A落在点A′处,点F是CD边上一点,连接EF,把△DEF沿EF折叠,使点D落在直线EA′上的点D′处,当点D′落在BC 边上时,AE的长为.三、解答题(本题共8小题,共75分.)16.先化简,再求值:(﹣)÷,其中实数a,b满足(a﹣2)2+|b﹣2a|=0.17.每年的3月22日为联合国确定的“世界水日”,某社区为了宣传节约用水,从本社区1000户家庭中随机抽取部分家庭,调查他们每月的用水量,并将调查的结果绘制成如下两幅尚不完整的统计图(每组数据包括右端点但不包括左端点),请你根据统计图解答下列问题:(1)此次抽样调查的样本容量是;(2)补全频数分布直方图,求扇形图中“6吨﹣﹣9吨”部分的圆心角的度数;(3)如果自来水公司将基本月用水量定为每户每月12吨,不超过基本月用水量的部分享受基本价格,超出基本月用水量的部分实行加价收费,那么该社会用户中约有多少户家庭能够全部享受基本价格?18.如图,△ABC是半径为2的⊙O的内接三角形,连接OA、OB,点D、E、F、G分别是CA、OA、OB、CB的中点.(1)试判断四边形DEFG的形状,并说明理由;(2)填空:①若AB=3,当CA=CB时,四边形DEFG的面积是;②若AB=2,当∠CAB的度数为时,四边形DEFG是正方形.19.某社会实践活动小组实地测量两岸互相平行的一段河的宽度,在河的北岸边点A处,测得河的南岸边点B 在其南偏东45°方向,然后向北走20米到达C点,测得点B在点C的南偏东33°方向,求出这段河的宽度(结果精确到1米,参考数据sin33°≈0.54,cos33°≈0.84,tan33°≈0.65,≈1.41)20.如图,直线y=﹣x+b与反比例函数y=的图形交于A(a,4)和B(4,1)两点.(1)求b,k的值;(2)在第一象限内,当一次函数y=﹣x+b的值大于反比例函数y=的值时,直接写出自变量x的取值范围;(3)将直线y=﹣x+b向下平移m个单位,当直线与双曲线只有一个交点时,求m的值.21.某化工材料经销公司购进一种化工原料若干千克,物价部门规定其销售单价不低于进价,不高于60元/千克,经市场调查发现:销售单价定为60元/千克时,每日销售20千克;如调整价格,每降价1元/千克,每日可多销售2千克.(1)已知某天售出该化工原料40千克,则当天的销售单价为元/千克;(2)该公司现有员工2名,每天支付员工的工资为每人每天90元,每天应支付其他费用108元,当某天的销售价为46元/千克时,收支恰好平衡.①求这种化工原料的进价;②若公司每天的纯利润(收入﹣支出)全部用来偿还一笔10000元的借款,则至少需多少天才能还清借款?22.如图1,四边形ABCD是正方形,点E是AB边的中点,以AE为边作正方形AEFG,连接DE,BG.(1)发现①线段DE、BG之间的数量关系是;②直线DE、BG之间的位置关系是.(2)探究如图2,将正方形AEFG绕点A逆时针旋转,(1)中的结论是否仍然成立?若成立,请给出证明;若不成立,请说明理由.(3)应用如图3,将正方形AEFG绕点A逆时针旋转一周,记直线DE与BG的交点为P,若AB=4,请直接写出点P到CD 所在直线距离的最大值和最小值.23.如图,以x=1为对称轴的抛物线y=ax2+bx+c的图象与x轴交于点A,点B(﹣1,0),与y轴交于点C(0,4),作直线AC.(1)求抛物线解析式;(2)点P在抛物线的对称轴上,且到直线AC和x轴的距离相等,设点P的纵坐标为m,求m的值;(3)点M在y轴上且位于点C上方,点N在直线AC上,点Q为第一象限内抛物线上一点,若以点C、M、N、Q为顶点的四边形是菱形,请直接写出点Q的坐标.参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分,下列各小题具有四个答案,其中只有一个是正确的。

2019年河南省普通高中招生考试模拟考试数学试卷(word版,含答案)

2019年河南省普通高中招生考试模拟考试数学试卷(word版,含答案)

…○………………装…………○………………装………________姓名:_________绝密★启用前|河南中考考试研究中心命制2019年河南省普通高中招生考试模拟考试数学试卷(考试时间:100分钟 试卷满分:120分)注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.回答第Ⅰ卷时,选出每小题答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

写在本试卷上无效。

3.回答第Ⅱ卷时,将答案写在答题卡上。

写在本试卷上无效。

4.考试结束后,将本试卷和答题卡一并交回。

第Ⅰ卷一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一个选项是符合题目要求的) 1. |-5|的相反数是( B )A .5 B.-5 C.15 D.-15 2.2018年1月8日22时某市某个观察站测得:空气中PM2.5含量为每立方米0.000 023 g ,0.000 023用科学记数法表示为( C )A .2.3×10-7 B.23×10-6 C.2.3×10-5 D.2.3×10-4 3.如图,若图1是放置的一个机器零件,若其主视图如图2,则其俯视图是( D )A B C D4.分式方程1x -1=2x -2的解是( C )A .x =1B .x =2C .x =0D .无解5.如图,在平行线l 1,l 2之间放置一块直角三角板,三角板的锐角顶点A ,B 分别在直线l 1,l 2上,若∠1=65°,则∠2的度数是( A )A .25°B .35°C .45°D .65°6.如图,在▱ABCD 中,对角线AC 与BD 相交于点O ,E 是边CD 的中点,连接OE .若∠ABC =60°,∠BAC =80°,则∠1的度数为( B )A .50°B .40°C .30°D .20°7.如图,PA ,PB 是⊙O 的两条切线,切点是A ,B.如果OP =4,OA =2,那么∠AOB 的度数为( D )A .90°B .100°C .110°D .120°8.如图,已知钝角三角形ABC ,依下列步骤尺规作图,并保留作图痕迹.步骤1:以C 为圆心,CA 为半径画弧①;步骤2:以B 为圆心,BA 为半径画弧②,交弧①于点D ; 步骤3:连接AD ,交BC 延长线于点H . 下列叙述正确的是( A )A .BH 垂直平分线段ADB .AC 平分∠BAD C .S △ABC =BC ·AH D .AB =AD9.不透明的袋子里装有2个红球和1个白球,这些球除了颜色外都相同.从中任意摸一个,放回摇匀,再从中摸一个,则两次摸到球的颜色相同的概率是( B )A.49B.59C.12D.23 10.如图,在Rt △ABC 中,∠C =90°,AC =1 cm ,BC =2 cm ,点P 从点A 出发,以1 cm/s 的速度沿折线AC →CB →BA 运动,最终回到点A ,设点P 的运动时间为x (s),线段AP 的长度为y (cm),则能够反映y 与x 之间函数关系的图象大致是( A )……○…………………………○………………订…………………线………… 订不......○..............................○..................订.....................线 (Ⅱ)二、填空题(本大题共5小题,每小题3分,共15分) 11.计算:27-12=12.若关于x 的一元二次方程mx 2-4x +1=0有两个不相等的实数根,则m 的取值范围为 m <4且m ≠0 .13.已知二次函数y =-x 2+ax -4图象的最高点在x 轴上,则该函数关系式为 y =-x 2+4x -4或y =-x 2-4x -4 .14.如图,四边形ABCD 是菱形,∠A =60°,AB =2,扇形BEF 的半径为2,圆心角为60°,则图中阴影部分的面积是 2π3-3 .15.如图,在正方形ABCD 15.如图,有一张面积为1的正方形纸片ABCD ,M ,N 分别是AD ,BC 边的中点,将C 点折叠至MN 上,落在P 点的位置,折痕为BQ ,连接PQ ,则PQ = 3三、解答题(本大题共8小题,共75分.解答应写出文字说明、证明过程或演算步骤)16.(本小题满分8分)先化简,再求值:(x -1)÷(2x +1-1),其中x 为方程x 2+3x +2=0的根.解:原式=(x -1)÷2-x -1x +1=(x -1) · x +11-x=-x -1.解方程x 2+3x +2=0,得x 1=-2,x 2=-1.∵当x =-1时,2x +1无意义,∴x =-2.当x =-2时,原式=-(-2)-1=1.17.(本小题满分9分)某兴趣小组为了解本校男生参加课外体育锻炼的情况,随机抽取本校300名男生进行了问卷调查,统计整理并绘制了如下两幅尚不完整的统计图.请根据以上信息,解答下列问题:(1)课外体育锻炼情况扇形统计图中,“经常参加”所对应的圆心角的度数为________;(2)请补全条形统计图; (3)该校共有1 200名男生,请估计全校男生中经常参加课外体育锻炼并且最喜欢的项目是篮球的人数;(4)小明认为“全校所有男生中,课外最喜欢参加的运动项目是乒乓球的人数约为1 200×27300=108”,请你判断这种说法是否正确,并说明理由.解:(1)144°.(2)∵“经常参加”的总人数为300×(1-15%-45%)=120(人), ∴“篮球”项目的人数为120-(27+33+20)=40(人). 补全的条形统计图如下:(3)1 200×120300×40120=160(人). 答:估计全校男生中经常参加课外体育锻炼并且最喜欢的项目是篮球的人数约有160人.(4)答:不正确,条形统计图中所涉及的是“经常参加”课外体育锻炼的男生最喜欢的一样项目,1 200名男生并不是所有的男生都参加课外体育锻炼.18.(本小题满分9分)如图,CD 是⊙O 的直径,且CD =2 cm ,点P 为CD 的延长线上一点,过点P 作⊙O 的切线PA ,PB ,切点分别为点A ,B .(1)连接AC ,若∠APO =30°,试证明△ACP 是等腰三角形; (2)填空:①当DP =________ cm 时,四边形AOBD 是菱形; ②当DP =________ cm 时,四边形AOBD 是正方形.…○……………………订…………○……………………订………… _________考号∵PA 是⊙O 的切线, ∴OA ⊥PA .在Rt △AOP 中,∠AOP =90°-∠APO =90°-30°=60°, ∴∠ACP =30°. ∵∠APO =30°,∴∠ACP =∠APO ,∴AC =AP , ∴△ACP 是等腰三角形. (2)解:①1; ② 2-1.19.(本小题满分9分)某商场为方便消费者购物,准备将原来的阶梯式自动扶梯改造成斜坡式自动扶梯.如图所示,已知原阶梯式自动扶梯AB 长为10 m ,坡角∠ABD 为30°,改造后的斜坡式自动扶梯的坡角 ∠ACB 为15°,请你计算改造后的斜坡式自动扶梯AC 的长度.(结果精确到0.1 m ,参考数据:sin 15°≈0.26,cos 15°≈0.97,tan 15°≈0.27)解:在Rt △ABD 中,∠ABD =30°,AB =10,∴AD =AB ·sin ∠ABD =10×sin 30°=5.在Rt △ACD 中,∠ACD =15°,sin ∠ACD =ADAC ,∴AC =AD sin ∠ACD=5sin 15°≈50.26≈19.2(m).答:改造后的斜坡式自动扶梯AC 的长度约为19.2 m.20.(本小题满分9分)如图,在直角坐标系中,矩形OABC 的顶点O 与坐标原点重合,顶点A ,C 分别在坐标轴上,顶点B 的坐标为(4,2).过点D (0,3)和E (6,0)的直线分别与AB ,BC 交于点M ,N .(1)求直线DE 的解析式和点M 的坐标;(2)若反比例函数y =mx (x >0)的图象经过点M ,求该反比例函数的解析式,并通过计算判断点N 是否在该函数的图象上;(3)若反比例函数y =mx (x >0)的图象与△MNB 有公共点,请直接写出m 的取值范围.解:(1)设直线DE 的解析式为y =kx +b . ∵点D ,E 的坐标分别为(0,3),(6,0),∴⎩⎪⎨⎪⎧3=b ,0=6k +b ,解得⎩⎨⎧k =-12,b =3.∴直线DE 的解析式为y =-12x +3.由题意,可知令2=-12x +3, ∴x =2, ∴M (2,2).(2)∵y =mx (x >0)经过点M (2,2), ∴m =4,∴反比例函数的解析式为y =4x .当x =4时,y =-12×4+3=1. ∴N (4,1).∵当x =4时,y =4x =1,∴点N 在函数y =4x 的图象上. (3)4≤m ≤8.21.(本小题满分10分)信阳某公交公司将淘汰某一条线路上“冒黑烟”较严重的公交车,计划购买A 型和B 型两种环保节能公交车共10辆,若购买A 型公交车1辆,B 型公交车2辆,共需400万元;若购买A 型公交车2辆,B 型公交车1辆,共需350万元,(1)求购买A 型和B 型公交车每辆各需多少万元?(2)预计在该条线路上A 型和B 型公交车每辆年均载客量分别为60万人次和100万人次.若该公司购买A 型和B 型公交车的总费用不超过1 220万元,且确保这10辆公交车在该线路的年均载客量总和不少于650万人次,则该公司有哪几种购车方案?哪种购车方案总费用最少?最少总费用是多少?解:(1)设购买A 型公交车每辆需x 万元,购买B 型公交车每辆需y 万元.由题意,得⎩⎪⎨⎪⎧x +2y =400,2x +y =350,解得⎩⎪⎨⎪⎧x =100,y =150.答:购买A 型公交车每辆需100万元,购买B 型公交车每辆需150万元.○………………订…………………………线………………○…不密○………………订…………………………线………………○…(2)设购买A型公交车为a辆,则购买B型公交车为(10-a)辆.由题意,得⎩⎪⎨⎪⎧100a+150(10-a)≤1 220,60a+100(10-a)≥650,解得5.6≤a≤8.75.∵a是整数,∴a=6,7,8.∴共有三种方案,每种方案的购车费用为①当购买A型公交车为6辆时,则B型公交车为10-6=4辆,总费用为100×6+150×4=1 200万元;②当购买A型公交车为7辆时,则B型公交车为10-7=3辆,总费用为100×7+150×3=1 150万元;③当购买A型公交车为8辆时,则B型公交车为10-8=2辆,总费用为100×8+150×2=1 100万元.综上可知,当购买A型公交车为8辆,B型公交车为2辆时费用最少,最少总费用为1 100万元.22.(本小题满分10分)如图1,在等边△ABC中,点D,E分别在边AB,AC上,AD=AE,连接BE,CD,点M,N,P分别是BE,CD,BC的中点.(1)观察猜想图1中△PMN的形状是________;(2)探究证明把△ADE绕点A逆时针方向旋转到图2的位置,△PMN的形状是否发生改变?并说明理由;(3)拓展延伸把△ADE绕点A在平面内自由旋转,若AD=1,AB=3,请直接写出△PMN的周长的最大值.图1图2解:(1)等边三角形.(2)△PMN的形状不发生改变,仍为等边三角形.理由如下:连接BD,CE,由旋转,可得∠BAD=∠CAE.∵△ABC是等边三角形,∴AB=AC,∠ACB=∠ABC=60°,∴△ABD≌△ACE,∴BD=CE,∠ABD=∠ACE.∵M是BE的中点,P是BC的中点,∴PM是△BCE的中位线,∴PM=12CE且PM∥CE.同理,可证PN=12BD且PN∥BD.∴∠MPB=∠ECB,∠NPC=∠DBC,∴∠MPB+∠NPC=∠ECB+∠DBC=(∠ACB+∠ACE)+(∠ABC-∠ABD)=∠ACB+∠ABC=120°,∴∠MPN=60°,∴△PMN是等边三角形.(3)6.23.(本小题满分11分)如图,已知抛物线y=ax2+bx+c(a≠0)的顶点坐标为Q(2,-1),且与y轴交于点C(0,3),与x轴交于A,B两点(点A在点B的右侧),点P是该抛物线上的一动点,从点C沿抛物线向点A运动(点P与点A不重合),过点P作PD∥y轴,交AC于点D.(1)求该抛物线的函数关系式;(2)当△ADP是直角三角形时,求点P的坐标;(3)在(2)的结论下,若点E在x轴上,点F在抛物线上,问是否存在以A,P,E,F为顶点的平行四边形?若存在,请直接写出点F的坐标;若不存在,请说明理由.解:(1)∵抛物线的顶点为Q(2,-1),∴设抛物线的解析式为y=a(x-2)2-1.将C(0,3)代入抛物线的解析式,得3=a(0-2)2-1,解得a=1.∴y=(x-2)2-1,即y=x2-4x+3.(2)分两种情况,如解图所示.①当点P1为△AP1D1的直角顶点时,点P1与点B重合.2解得x 1=1,x 2=3.∵点A 在点B 的右侧, ∴P 1(1,0);②当点A 为△AP 2D 2的直角顶点时, ∵OA =OC ,∠AOC =90°, ∴∠OAD 2=45°. 当∠D 2AP 2=90°时,∠OAP 2=45°, ∴AO 平分∠D 2AP 2.又P 2D 2∥y 轴,∴P 2D 2⊥AO , ∴P 2,D 2关于x 轴对称.设直线AC 的函数解析式为y =kx +b ′(k ≠0). 将A (3,0),C (0,3)代入直线AC 的函数解析式, 得⎩⎪⎨⎪⎧ 3k +b ′=0,b ′=3, 解得⎩⎪⎨⎪⎧k =-1,b ′=3. ∴y =-x +3.设D 2(x ,-x +3),P 2(x ,x 2-4x +3), 则(-x +3)+(x 2-4x +3)=0, 即x 2-5x +6=0,解得x 1=2,x 2=3(舍去).当x =2时,y =x 2-4x +3=22-4×2+3=-1, ∴P 2(2,-1)(即为抛物线的顶点).综上所述,P 点的坐标为(1,0)或(2,-1).(3)存在以A ,P ,E ,F 为顶点的平行四边形,点F 的坐标为(2-2,1)或(2+2,1).。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

河南省2019年普通高中招生考试中考数学模拟试题第Ⅰ卷一、选择题(本大题共10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有一个选项是符合题目要求的) 1.-12的绝对值是( B )A .2B .12C .-12D .-22.俗话说:“水滴石穿”,水滴不断地落在一块石头的同一个位置,经过若干年后,石头上形成了一个深度为0.000 000 039 cm 的小洞,则0.000 000 039用科学记数法可表示为( A ) A .3.9×10-8B .39×10-8C .0.39×10-7D .39×10-93.将正方体的表面沿某些棱剪开,展成如图所示的平面图形,则原正方体中与“创”字所在的面相对的面上标的字是( C )A .郑B .力C .州D .魅4.下列运算正确的是( B )A .m 3+m 2=m 5B .m 5÷m 2=m 3C .(2m )3=6m 3D .(m +1)2=m 2+15.在一次中学生田径运动会上,参加男子跳高的15名运动员的成绩如下表所示:成绩/m 1.50 1.60 1.65 1.70 1.75 1.80 人数232341A .1.65,1.75B .1.65,1.70C .1.70,1.75D .1.70,1.706.我国古代《四元玉鉴》中记载“二果问价”问题,其内容如下:九百九十九文钱,甜果苦果买一千,甜果九个十一文,苦果七个四文钱,试问甜苦果几个,又问各该几个钱?若设买甜果x 个,买苦果y 个,则下列关于x ,y 的二元一次方程组中符合题意的是( D )A .⎩⎪⎨⎪⎧x +y =999,119x +47y =1 000B .⎩⎪⎨⎪⎧x +y =1 000,911x +74y =999 C .⎩⎪⎨⎪⎧x +y =1 000,99x +28y =999 D .⎩⎪⎨⎪⎧x +y =1 000,119x +47y =9997.若一元二次方程x 2-2x +m =0有两个不相等的实数根,则实数m 的取值范围是( D )A .m ≥1B .m ≤1C .m >1D .m <18.在一个不透明的纸箱里装有2个红球、1个黄球、1个蓝球,这些球除颜色外完全相同,小明从纸箱里随机摸出1个球,记下颜色后放回,再由小亮随机摸出1个球,则两人摸到的球颜色不同的概率为( D ) A .14 B .38 C .12D .589.如图,在▱ABCD 中,对角线AC ,BD 相交于点O ,添加下列条件不能判定▱ABCD 是菱形的只有( C )A .AC ⊥BDB .AB =BC C .AC =BDD .∠1=∠210.如图,正方形ABCD 的边长为10,对角线AC ,BD 相交于点E ,点F 是BC 上一动点,过点E 作EF 的垂线,交CD 于点G ,设BF =x ,FG =y ,那么下列图象中可能表示y 与x 的函数关系的是( B )A B C D第Ⅱ卷二、填空题(本大题共5小题,每小题3分,共15分) 11.计算:16-(12)-1= 2 .12.将拋物线y =2x 2-4x +3向左平移1个单位长度,得到的抛物线的解析式为 y =2x 2+1 . 13.如图,在Rt △ABC 中,∠C =90°,∠A =25°,按以下步骤作图:①分别以A ,B 为圆心,以大于12AB的长为半径作弧,两弧交于M ,N 两点;②作直线MN 交AB 于点D ,交AC 于点E ,连接BE ,则∠CBE = 40 °.14.如图,在Rt △ABC 中,∠ACB =90°,AC =BC =2,以点A 为圆心,AC 的长为半径作CE ︵交AB 于点E ,以点B 为圆心,BC 的长为半径作CD ︵交AB 于点D ,则阴影部分的面积为 π-2 .15.如图,在Rt △ABC 中,∠B =90°,∠A =60°,AC =23+4,点M ,N 分别在线段AC ,AB 上,将△ANM沿直线MN 折叠,使点A 的对应点D 恰好落在线段BC 上,当△DCM 为直角三角形时,折痕MN 的长为 23+43或 6 .三、解答题(本大题共8小题,共75分.解答应写出文字说明、证明过程或演算步骤) 16.(本小题满分8分)先化简,再求值:(1-1m -1)÷m 2-4m +4m 2-m,其中m =2+ 2.解:原式=m -2m -1÷(m -2)2m (m -1)=m -2m -1·m (m -1)(m -2)2=mm -2.当m =2+2时,原式=2+22+2-2=2+22=2+1.17.(本小题满分9分)在“书香校园”活动中,某校为了解学生家庭藏书情况,随机抽取本校部分学生进行调查,并将调查结果绘制成如下统计图表.家庭藏书情况统计表类别家庭藏书m 本 学生人数 A 0≤m ≤25 20B 26≤m ≤100 aC 101≤m ≤20050 Dm ≥20166请根据以上信息,解答下列问题:(1)该调查的样本容量为 ,a = ;(2)在扇形统计图中,“A ”对应的扇形圆心角度数为 ;(3)若该校有2 000名学生,请估计全校学生中家庭藏书200本以上 的人数. 解:(1)200,64. (2)36°.(3)2 000×66200=660(人).答:估计全校学生中家庭藏书200本以上的学生有660人.18.(本小题满分9分)如图,AB 是半圆O 的直径,点P 是半圆上不与点A ,B 重合的动点,PC ∥AB ,点M是OP 中点.(1)求证:四边形OBCP 是平行四边形;(2)填空:①当∠BOP = 时,四边形AOCP 是菱形; ②连接BP ,当∠ABP = 时,PC 是⊙O 的切线.(1)证明:∵PC ∥AB ,∴∠PCM=∠OAM,∠CPM=∠AOM.∵点M是OP的中点,∴OM=PM,∴△CPM≌△AOM(AAS),∴PC=O A.∵AB是半圆O的直径,∴OA=OB,∴PC=O B.又PC∥AB,∴四边形OBCP是平行四边形.(2)解:①120°;②45°.19.(本小题满分9分)某数学活动小组实地测量湛河两岸互相平行的一段东西走向的河的宽度,在河的北岸边点A处,测得河的南岸边点B处在其南偏东45°方向,然后向北走20米到达点C处,测得点B 在点C的南偏东33°方向,请求出这段河的宽度.(结果精确到1米.参考数据:sin 33°≈0.54,cos 33°≈0.84,tan 33°≈0.65,2≈1.41)解:延长CA交BE于点D,如解图所示,则CD⊥B D.由题意可知∠DAB=45°,∠DCB=33°.设AD=x.在Rt△ADB中,BD=AD=x,∴CD=20+x.在Rt△CDB中,tan ∠DCB=BD CD ,∴x20+x≈0.65,解得x≈37.答:这段河的宽度约为37米.20.(本小题满分9分)如图,已知反比例函数y=mx(m≠0)的图象经过点(1,4),一次函数y=-x+b的图象经过反比例函数图象上的点Q(-4,n).(1)求反比例函数与一次函数的解析式;(2)一次函数的图象分别与x轴,y轴交于A,B两点,与反比例函数图象的另一个交点为P点,连接OP,OQ,求△OPQ的面积.解:(1)∵反比例函数y=mx( m≠0)的图象经过点(1,4),∴4=m1,解得m=4,∴反比例函数的解析式为y=4x.将Q(-4,n)代入y=4x中,得-4=4n,解得n=-1,∴Q点的坐标为(-4,-1).将Q(-4,-1)代入y=-x+b中,得-1=-(-4)+b,解得b=-5,∴一次函数的解析式为y=-x-5.(2)联立一次函数与反比例函数的解析式,得⎩⎪⎨⎪⎧y=-x-5,y=4x,解得⎩⎪⎨⎪⎧x=-1,y=-4或⎩⎪⎨⎪⎧x=-4,y=-1.∴点P的坐标为(-1,-4).在一次函数y=-x-5中,令y=0,得-x-5=0,解得x=-5,∴点A的坐标为(-5,0),∴OA=5,∴S △OPQ =S △OPA -S △OQA =12OA ·(|y P |-|y Q |)=12×5×(4-1)=152.21.(本小题满分10分)为了“创建文明城市,建设美丽家园”,我市某社区将辖区内的一块面积为1 000 m 2的空地进行绿化,一部分种草,剩余部分栽花.设种草部分的面积为x (m 2),种草所需费用y 1(元)与x (m 2)的函数关系式为y 1=⎩⎪⎨⎪⎧k 1x (0≤x <600),k 2x +b (600≤x ≤1 000),其图象如图所示.栽花所需费用y 2(元)与x (m 2)的函数关系式为y 2=-0.01x 2-20x +30 000(0≤x ≤1 000).(1)请直接写出k 1,k 2和b 的值;(2)设这块1 000 m 2空地的绿化总费用为w (元),请利用w 与x 的函数关系式,求出绿化总费用w 的最大值;(3)若种草部分的面积不少于700 m 2,栽花部分的面积不少于100 m 2,请求出绿化总费用w 的最小值. 解:(1)k 1=30,k 2=20,b =6 000. (2)当0≤x <600时,w =30x +(-0.01x 2-20x +30 000)=-0.01(x -500)2+32 500.∵-0.01<0,∴当x =500时,w 有最大值,为32 500. 当600≤x ≤1 000时,w =20x +6 000+(-0.01x 2-20x +30 000)=-0.01x 2+36 000.∵-0.01<0,∴w 随x 的增大而减小,∴当x =600时,w 有最大值,为32 400. ∵32 400<32 500,∴绿化总费用w 的最大值为32 500. (3)由题意,得x ≥700. 又1 000-x ≥100, ∴700≤x ≤900.∴w =20x +6 000+(-0.01x 2-20x +30 000)=-0.01x 2+36 000. ∵-0.01<0,∴w 随x 的增大而减小,∴当x =900时,w 有最小值,为27 900. 答:绿化总费用w 的最小值为27 900.22.(本小题满分10分)(1)问题发现在△ABC 中,AC =BC ,∠ACB =α,点D 为直线BC 上一动点, 过点D 作DF ∥AC 交AB 于点F ,将AD 绕点D 顺时针旋转α得到ED , 连接BE .如图1,当α=90°时,试猜想: ①AF 与BE 的数量关系是 ; ②∠ABE = ;(2)拓展探究如图2,当0°<α<90°时,请判断AF 与BE 的数量关系及∠ABE 的度数,并说明理由; (3)解决问题如图3,在△ABC 中,AC =BC ,AB =8,∠ACB =α,点D 在射线BC 上,将AD 绕点D 顺时针旋转α得到ED ,连接BE ,当BD =3CD 时,请直接写出BE 的长.解:(1)AF =BE ;90°. (2)AF =BE ,∠ABE =α. 理由如下:∵DF ∥AC ,∴∠ACB =∠FDB =α,∠CAB =∠DF B . ∵AC =BC , ∴∠ABC =∠CAB , ∴∠ABC =∠DFB , ∴DB =DF .由旋转的性质,可知AD =ED ,∠ADE =∠ACB =∠FDB =α. ∵∠ADF =∠ADE -∠FDE ,∠EDB =∠FDB -∠FDE , ∴∠ADF =∠ED B . 又∵AD =DE ,∴△ADF ≌△EDB (SAS ), ∴AF =EB ,∠AFD =∠EB D .∵∠AFD =∠ABC +∠FDB ,∠EBD =∠ABD +∠ABE , ∴∠ABE =∠FDB =α. (3)BE 的长为2或4.【提示】 ①当点D 在BC 上时,如解图1所示.过点D 作DF ∥A C .由(2),可知BE =AF .∵DF ∥AC ,∴AF AB =CD CB =14.∵AB =8,∴AF =2,∴BE =AF =2;②当点D 在BC 的延长线上时,如解图2所示.过点D 作DF ∥AC ,则AF AB =CD CB =12.∵AB =8,∴AF =4,∴BE =AF =4.综上所述,BE 的长为2或 4.23.(本小题满分11分)如图,抛物线y =ax 2+bx +6过点A (6,0),B (4,6),与y 轴交于点C .(1)求该抛物线的解析式;(2)如图1,直线l 的解析式为y =x ,抛物线的对称轴与线段BC 交于点P ,过点P 作直线l 的垂线,垂足为点H ,连接OP ,求△OPH 的面积;(3)把图1中的直线y =x 向下平移4个单位长度得到直线y =x -4, 如图2,直线y =x -4与x 轴交于点G ,点P 是四边形ABCO 边上的一点,过点P 分别作x 轴,直线l 的垂线,垂足分别为点E ,F .是否存在点P ,使得以P ,E ,F 为顶点的三角形是等腰三角形?若存在,请直接写出点P 的坐标;若不存在,请说明理由.解:(1)将A (6,0),B (4,6)代入y =ax 2+bx +6中,得⎩⎪⎨⎪⎧36a +6b +6=0,16a +4b +6=6,解得⎩⎪⎨⎪⎧a =-12,b =2.∴该抛物线的解析式为y =-12x 2+2x+6.(2)∵该抛物线的对称轴为直线x =-22×(-12)=2,点C 的坐标为(0,6),∴BC ∥x 轴,CP =2.如解图1所示,延长HP 交y 轴于点M .∵直线l 的解析式为y =x , ∴∠AOH =∠COH =45°,∴△OMH 和△CMP 均为等腰直角三角形, ∴CM =CP =2,∴OM =OC +CM =6+2=8. 由勾股定理,可得OH =MH =4 2.∴S △OPH =S △OMH -S △OPM =12×42×42-12×8×2=16-8=8.(3)存在点P ,使得以P ,E ,F 为顶点的三角形是等腰三角形,点P 的坐标为(0,4)或(10-32,92-12)或(4,6)或(10-62,6).【提示】 ①当点P 在线段OC 上运动时,如解图2所示,则∠PHF =∠HPF =45°.ⅰ.当PE =PF 时,设PE =PF =t ,则PH =2PF =2t .由平移的性质,可知OH =4,∴2t =4+t ,解得t =42+4.∵42+4>6,∴此种情况不存在.ⅱ.当FP =FE 时,∠PFE =90°.∵∠PFE <∠PFH =90°,∴此种情况不存在.ⅲ.当EP =EF 时,∠PEF =90°,此时点F 和点G 重合,∴此时点P 的坐标为(0,4).②当点P 在线段BC 上运动时,如解图3所示,则∠HPF =∠OGH =45°.ⅰ.当PE =PF =6时,PH =2PF =62,∴EH =EG =PH -PE =62-6,∴OE =OG -EG =10-62,∴此时点P 的坐标为(10-62,6).ⅱ.当FP =FE 时,∠PFE =90°,当点E 和点G 重合时,满足∠PFE =90°,∴此时点P 的坐标为(4,6).ⅲ.当EP =EF 时,∠PEF =90°,此种情况不存在.③当点P 在线段AB 上运动时.ⅰ.当点P 在直线l 的上方时,如解图4所示,∠EPF =45°,∠PFE >90°,∴△PEF 不可能为等腰三角形.ⅱ.当点P 在直线l 的下方时,如解图5所示,∠FPE =135°,若△PEF 为等腰三角形,则PE =PF ,∴点P 在∠FGA 的平分线上.方法一:设∠FGA 的平分线为直线l ′,由题可求得l ′的解析式为y =(2-1)x +4-4 2.联立直线l ′和直线AB 的解析式,得⎩⎨⎧y =(2-1)x +4-42,y =-3x +18,解得⎩⎨⎧x =10-32,y =92-12.∴此时点P 的坐标为(10-32,92-12).方法二:如解图6所示.设P (m ,-3m +18),则H (m ,m -4),∴PE =-3m +18,PH =4m -22.在Rt △PFH 中,PH PF =2,即4m -22-3m +18=2,解得m =10-32,∴此时点P 的坐标为(10-32,92-12).综上所述,存在点P ,使得以P ,E ,F 为顶点的三角形是等腰三角形,点P的坐标为(0,4),(10-32,92-12),(4,6),(10-62,6).。

相关文档
最新文档