数学四年级上期末复习 《巧求面积》(一)
小学奥数模块教程四年级杯赛备战讲义——巧求面积
上课日期: 上课时间: 教师姓名:知识点一:格点面积 一、正方形格点问题在一张纸上,先画出一些水平直线和一些竖直直线,并使任意两条相邻的平行线的距离都相等(通常规定是1个单位),这样在纸上就形成了一个方格网,其中的每个交点就叫做一个格点.在方格网中,以格点为顶点画出的多边形叫做格点多边形,例如,右图中的乡村小屋图形就是一个格点多边形.那么,格点多边形的面积如何计算?它与格点数目有没有关系?如果有,这两者之间的关系能否用计算公式来表达?下面就让我们一起来探讨这些问题吧!用N 表示多边形内部格点,L 表示多边形周界上的格点,S 表示多边形面积,请同学们分析前几个例题的格点数.我们能发现如下规律:12LS N =+-.这个规律就是毕克定理.二、 三角形格点问题1、定义:所谓三角形格点多边形是指:每相邻三点成“∵”或“∴”,所形成的三角形都是等边三角形.规定它的面积为1,以这样的点为顶点画出的多边形为三角形格点多边形.2、公式:关于三角形格点多边形的面积同样有它的计算公式:如果用S 表示面积,N 表示图形内包含的格点数,L 表示图形周界上的格点数,那么有22S N L =⨯+-,就是格点多边形面积等于图形内部所包含格点数的2倍与周界上格点数的和减去2.知识点二:图形剪拼巧求面积知识框架毕克定理若一个格点多边形内部有N 个格点,它的边界上有L 个格点,则它的面积为12LS N =+-.本讲中很多类型的题目还要求同学们去动手尝试.通过本讲知识的学习,让同学们了解不同图形的分割、拼合、剪拼的方法,锻炼同学们的平面想象能力以及增强学生的动手操作能力.(1)把一个几何图形按某种要求分成几个图形,就叫做图形的分割.(2)反过来,按一定的要求也可以把几个图形拼成一个完美的图形,就叫做图形的拼合.(3)将一个或者多个图形先分割开,再拼成一种指定的图形,则叫做图形的剪拼.我们在图形的分割、拼合和剪拼的过程中,都要结合所提供的图形特点来思考.(1)如果把一个图形分割成若干个大小、形状相等的部分,那么就要想办法找图形的对称点,把图形先分少,再分多.(2)图形中,如果有数量方面的要求,可以先从数量入手,找出平分后每块上所含数量的多少,再结合数量来分割图形.(3)如果是要把几个图形拼合成一个大图形,要特别注意每条边的长度,把相等的边长拼合在一起,先拼少的,再拼多的.(4)如果是剪拼图形,要抓住“剪、拼前后图形的面积相等”这个关键,根据已知条件和图形的特点,通过分析推理和必要的计算,确定剪拼的方法.一、解题关键:分割其实就是运用特殊的三角形(等角直角三角形、等边三角形等)、正方形、等边图形的特殊性质进行分割而得,所以分割的关键是利用了特殊图形的关系解题。
小学四年级数学 面积的巧算 教案 例题+练习+作业+答案
面积的巧算知识点总结1:分割法2:添补法【例题精讲】例1如图:在一个等腰三角形中作一个正方形,已知阴影部分的面积是3平方厘米,那么大三角形的面积是多少平方厘米?【答案】27平方厘米可以将等腰三角形分割成完全相同的9个和阴影部分完全相同的等腰三角形,因此大三角形的面积是3×9=27(平方厘米)【例题小结】分割法:等腰三角形的分割。
练习1如图:在一个等腰三角形中作一个正方形,已知正方形的面积是36平方厘米,那么大三角形的面积是多少平方厘米?【答案】72平方厘米【解析】连接小正方形的对角线,可以将正方形分割成两个全等的等腰直角三角形,小三角形的面积是正方形面积的一半,又因为大直角三角形是等腰直角三角形,因此相当于被分割成4个面积相等的等腰直角三角形,因此大三角形的面积是36÷2×4=72平方厘米。
【小结】分割法:等腰直角三角形的分割。
例2 如图:有三个正方形,较小的正方形是由较大的正方形的各边中点连接而成,已知最小的正方形的周长为20厘米,那么最大的正方形面积是多少平方厘米?【答案】100平方厘米最小正方形的边长是20÷4=5(厘米),因此面积是5×5=25(平方厘米),连接大正方形的对角线,得出大正方形的面积是小正方形的4倍,因此面积是25×4=100(平方厘米)。
【例题小结】分割法:正方形的分割。
练习2 如图:有两个正方形,小正方形是由大正方形各边中点连结而成。
已知大正方形的边长是16厘米,那么小正方形的面积是多少平方厘米?【答案】128平方厘米【解析】连接小正方形的对角线,可将大正方形分成8个相等的直角三角形,以此小正方形的面积是大正方形面积的一半,因此面积是16×16÷2=128(平方厘米)。
【小结】分割法:正方形的分割。
例3 在下图中,三角形ABC 和三角形DEF 是两个完全相同的等腰直角三角形,其中DI 长6厘米,CF长3厘米,那么阴影部分的面积是多少平方厘米?【答案】27平方厘米连接HI。
第5讲:巧求面积(一)
2.四大方法: 割补、平移、对称、差不变.
1. 面积公式长方形=长×宽长方形长×宽正方形=边长×边长
2. 面积单位: 平方厘米,平方分米,平方米面积单位平方厘米,平方分米,平方米
3. 两个基本模型:
4. 长方形蝴蝶模型:
面积交叉相乘乘积相等面积交叉相乘,乘积相等.A ×D =B ×D
花坛10
4
平方米
________平方米.(★★★)
【例2】有个长方形花圃中间有条宽2米的人行路花圃长50米宽30米有一个长方形花圃,中间有一条宽2米的人行路. 花圃长50米,宽30米,那么,种花的面积是多少?
(★★)
【例4】已知大正方形的边长为10厘米,连接大正方形的各边中点得到一个新的正方形.再次连接这个正方形的各边中点得到一个小正方形,求小正方形的面积
方形的面积_______.【巩固】(★★★)
如图,大正方形的边长为10厘米.连接大正方形的各边中点得小正方形,将小正方形每边三等分,再将三等分点与大正方形的中心和一个顶点每,再中个相连,那么图中阴影部分的面积总和等于多少平方厘米?
【例5】(★★★)
右图中甲的面积比乙的面积大________平方厘米
如图,ABCD 是7×4的长方形,DEFG 是10×2的长方形,求△BCO 与△EFO 的面积差.
【超常大挑战】(★★★★)
如图,E F G 都是正方形ABCD 三条边的中点,△OEG 比△ODF 大,,,中,10平方厘米,那么梯形OGCF 的面积是多少平方厘米?。
(完整word版)小学奥数模块教程四年级杯赛备战讲义——巧求面积
上课日期: 上课时间: 教师姓名:知识点一:格点面积 一、正方形格点问题在一张纸上,先画出一些水平直线和一些竖直直线,并使任意两条相邻的平行线的距离都相等(通常规定是1个单位),这样在纸上就形成了一个方格网,其中的每个交点就叫做一个格点.在方格网中,以格点为顶点画出的多边形叫做格点多边形,例如,右图中的乡村小屋图形就是一个格点多边形.那么,格点多边形的面积如何计算?它与格点数目有没有关系?如果有,这两者之间的关系能否用计算公式来表达?下面就让我们一起来探讨这些问题吧!用N 表示多边形内部格点,L 表示多边形周界上的格点,S 表示多边形面积,请同学们分析前几个例题的格点数.我们能发现如下规律:12LS N =+-.这个规律就是毕克定理.二、 三角形格点问题1、定义:所谓三角形格点多边形是指:每相邻三点成“∵”或“∴”,所形成的三角形都是等边三角形.规定它的面积为1,以这样的点为顶点画出的多边形为三角形格点多边形.2、公式:关于三角形格点多边形的面积同样有它的计算公式:如果用S 表示面积,N 表示图形内包含的格点数,L 表示图形周界上的格点数,那么有22S N L =⨯+-,就是格点多边形面积等于图形内部所包含格点数的2倍与周界上格点数的和减去2.知识点二:图形剪拼巧求面积知识框架毕克定理若一个格点多边形内部有N 个格点,它的边界上有L 个格点,则它的面积为12LS N =+-.本讲中很多类型的题目还要求同学们去动手尝试.通过本讲知识的学习,让同学们了解不同图形的分割、拼合、剪拼的方法,锻炼同学们的平面想象能力以及增强学生的动手操作能力.(1)把一个几何图形按某种要求分成几个图形,就叫做图形的分割.(2)反过来,按一定的要求也可以把几个图形拼成一个完美的图形,就叫做图形的拼合.(3)将一个或者多个图形先分割开,再拼成一种指定的图形,则叫做图形的剪拼.我们在图形的分割、拼合和剪拼的过程中,都要结合所提供的图形特点来思考.(1)如果把一个图形分割成若干个大小、形状相等的部分,那么就要想办法找图形的对称点,把图形先分少,再分多.(2)图形中,如果有数量方面的要求,可以先从数量入手,找出平分后每块上所含数量的多少,再结合数量来分割图形.(3)如果是要把几个图形拼合成一个大图形,要特别注意每条边的长度,把相等的边长拼合在一起,先拼少的,再拼多的.(4)如果是剪拼图形,要抓住“剪、拼前后图形的面积相等”这个关键,根据已知条件和图形的特点,通过分析推理和必要的计算,确定剪拼的方法.一、解题关键:分割其实就是运用特殊的三角形(等角直角三角形、等边三角形等)、正方形、等边图形的特殊性质进行分割而得,所以分割的关键是利用了特殊图形的关系解题。
四年级面积求解题技巧
四年级面积求解题技巧四年级学生面积求解题是数学学习中的重要内容之一。
通过解答面积求解题,学生可以培养自己的逻辑思维能力和问题解决能力。
下面将给出一些四年级面积求解题的技巧,帮助学生更好地完成这些题目。
一、认识面积的概念在讲解面积求解题技巧之前,首先要让学生掌握面积的概念。
面积是指平面上一个图形所占的两维空间的大小。
对于常见的图形,如矩形、正方形、三角形等,可以采用不同的公式来计算其面积。
二、理解面积的计算方法1.矩形的面积计算方法:矩形的面积等于底边的长度乘以高的长度,即S=a×h(a为底边的长度,h为高的长度)。
2.正方形的面积计算方法:正方形的面积等于边长的平方,即S=a×a(a为边长)。
3.三角形的面积计算方法:三角形的面积等于底边的长度乘以高的长度的一半,即S=(1/2)×a×h(a为底边的长度,h为高的长度)。
三、掌握面积求解题的常见算法1.直接计算法:根据题目给出的图形,直接使用相应的面积计算公式计算出面积。
2.分解法:将题目给出的图形分解为一些基本的图形,计算出每个基本图形的面积再求和。
3.相似图形法:根据相似图形的性质,利用已知面积和比例关系求解出未知图形的面积。
四、应用面积求解题技巧来解答问题以下是一些常见的面积求解题,我们可以利用上述技巧来解答。
例题1:一个正方形的边长是5米,求其面积。
解题思路:根据正方形的面积计算方法,直接计算出正方形的面积。
S = a × a = 5 × 5 = 25(平方米)。
所以正方形的面积是25平方米。
例题2:一个矩形的长是12厘米,宽是8厘米,求其面积。
解题思路:根据矩形的面积计算方法,直接计算出矩形的面积。
S = a × h = 12 × 8 = 96(平方厘米)。
所以矩形的面积是96平方厘米。
例题3:一个三角形的底边长是6厘米,高是4厘米,求其面积。
解题思路:根据三角形的面积计算方法,直接计算出三角形的面积。
掌握小学四年级数学中的求面积技巧
掌握小学四年级数学中的求面积技巧在小学四年级数学中,求面积是一个重要的技巧,它涉及到了面积的概念和计算方法。
掌握好求面积的技巧,可以帮助我们更好地理解和应用数学知识。
接下来,我将介绍一些小学四年级数学中的求面积技巧。
首先,让我们来了解一下什么是面积。
面积是一个平面图形覆盖的表面的大小。
它通常以平方单位来表示,如平方厘米、平方米等。
面积可以用来描述二维图形的大小。
其次,我们来看一下求矩形面积的方法。
矩形是最基本的平面图形之一,它的边是平行且相等的。
求矩形面积的公式是“面积=长×宽”,其中长和宽分别代表矩形的长和宽。
例如,如果一个矩形的长是5厘米,宽是3厘米,那么它的面积就是5×3=15平方厘米。
接下来,我们来讨论一下求正方形面积的技巧。
正方形是一种特殊的矩形,它的四个边都相等。
求正方形面积的公式非常简单,就是“面积=边长×边长”。
例如,如果一个正方形的边长是4厘米,那么它的面积就是4×4=16平方厘米。
此外,在小学四年级的课程中还会出现一些其他形状的图形,如三角形和圆形。
那么,我们该如何求解这些图形的面积呢?对于三角形,我们可以使用“面积=底边长×高÷2”的公式来求解。
其中,底边长代表三角形的底边的长度,高代表从底边到顶点的垂直距离。
假设一个三角形的底边长是6厘米,高是4厘米,那么它的面积就是6×4÷2=12平方厘米。
对于圆形,求解面积的公式是“面积=π×半径×半径”,其中π是一个常数,约等于3.14,半径代表圆形的半径长度。
假设一个圆形的半径是5厘米,那么它的面积就是3.14×5×5≈78.5平方厘米。
除了上述的常见图形,小学四年级的数学课程还有一些其他形状的图形,如梯形、长方形等。
对于这些图形,我们可以根据其特点和性质来选择合适的求面积的方法和公式。
总结起来,掌握小学四年级数学中的求面积技巧对于学习数学和解决实际问题都非常重要。
小学四年级数学巧求面积,这几道题你都会了吗?
小学四年级数学巧求面积,这几道题你都会了吗?在小学四年级学习面积公式后经常会遇到一些求面积的题型,今天丹格教育的老师整理了部分常见的求面积题型分享给大家,希望对正在上四年级的同学们会有所帮助。
一起来看看下面的这几道题吧!例题1:把一个长18米,宽9米的长方形的宽增加9米,可以得到一个什么图形?它的面积是多少平方米?分析:在遇到这类题时,可以在练习本上画出图形,将已知条件标注到图形上去,在图形结合帮助我们分析和判断。
有时有同学觉得画图太麻烦,况且题目很简单,就是不画图分析也可以做出来。
但是画图图形可以直观地帮助我们建立模型,当模型建立起来后就可以不用再画图,直接在脑海里调用即可。
这道题已知宽为米9,将宽增加9米,得到的新的宽是:9+9=18(米)。
宽和长相等,因此得到的新的图形是一个正方形。
再求正方形的面积,这道题就迎刃而解了。
解:宽:9+9=18(米)面积:18×18=324(平方米)综合列式:(9+9)×18=324(平方米)答:可以得到一个正方形,它的面积是324平方米。
例题2:一个长方形周长是40分米,且宽比长短2分米,求长方形的面积是多少?分析:长方形的周长公式为:周长=(长+宽)×2,容易知道:长+宽=周长÷2,在这道题目中,长加宽的和为:40÷2=20。
这道题还告诉了“宽比长短2分米”,也就是知道长与宽的和,以及长与宽的差,是一个简单的和差问题。
宽(较小数):(20-2)÷2=9(分米),长(较大数):20-9=11(分米)。
解:宽:(20-2)÷2=9(分米)长:20-9=11(分米)面积:9×11=99(平方分米)答:长方形的面积是99平方分米。
例题3:已知一个长方形的长为68厘米,宽为50厘米,在这个长方形中截取一个最大的正方形,求这个正方形的面积是多少?剩下部分是一个什么图形?它的面积是多少?分析:通过画图帮助我们分析判断,剪下的正方形的边长最大为50厘米,求正方形面积直接用正方形的面积公式即可得出答案。
四年级数学专题:巧求面积,典型题型解题方法思维,精讲精练
四年级数学专题:巧求面积,典型题型解题方法思维,精讲精
练
巧求面积
一、方法思维
我们已经学会了计算长方形、正方形的面积,知道长方形的面积=长×宽,正方形的面积=边长×边长。
利用这些知识我们能解决许多有关面积的问题。
在解答比较复杂的关于长方形、正方形的面积计算的问题时,生搬硬套公式往往不能奏效,应注意以下几点:
1.细心观察,把我图形特点,可以添加辅助线或运用割补、转化等解题技巧,合理地进行切拼,从而是问题顺利解决。
2.从整体上观察图形特征,掌握图形本质,结合必要的分析推理和计算,使隐蔽的数量关系明朗化。
二、精讲精练
【例题1】把一张长为4米,宽为3米的长方形木板,剪成一个面积最大的正方形。
这个正方形木板的面积是多少平方米?
【思路导航】要使剪成的正方形面积最大,就要使它的边长最长(如图),那么只能选原来的长方形宽为边长,即正方形的边长是3米。
正方形的面积:3×3=9米。
小学数学四年级 面积的巧算 PPT+作业+答案
例题7
如图:在下面的两个四边形中均已给出其中两条边的长度和三个角 的度数,请根据图中标示数据分别求出这两个四边形的面积。
【分析】补齐四边形左上角后,四边形成为直角边长是7厘米的等腰直角三角形。四边形补 全为斜边10厘米的等腰直角三角形
(1)7×7÷2-3×3÷2=20(平方厘米) (2)10×10÷2-3×3÷2=20.5(平方厘米)
【小结】利用“分割法”将阴影部分进行分割,找到与三角形的关系。
例题4
在等边三角形ABC中,D和E分别是所在边的四等分点。已知三角 形ADE 的面积是1 平方厘米,三角形ABC 的面积是多少平方厘米 ?
【分析】 通过做平行线,分别确定每一条边的四等分点,可以将等边三角形ABC分割成16个与 三角形ADE面积相等的三角形。
例题1
如图:在一个等腰直角三角形中作一个正方形,已知阴影部分的 面积是3 平方厘米,那么大三角形的面积是多少平方厘米?
【分析】 可以将等腰直角三角形分割成完全相同的9个和阴影部分完全相同的等腰直角三角形。
3×9=27(平方厘米) 答:大三角形的面积是27平方厘米。
【小结】 利用“分割法”,以图中最小的等腰三角形为基本单元将大三角形进行分割。
积是多少平方厘米?
【分析】 连接HI,将阴影部分分成上下两部分,上方三角形是等腰直角三角形,下方四边形是
一个长方形。
9-3=6(厘米)
6×3=18(平方厘米) 6×6÷2÷2=9(厘米)
18+9=27(平方厘米)
答:阴影部分面积是27平方厘米。
【小结】本题计算面积时牵涉到等腰直角三角形的面积问题。
练习3
1×12=12(平方分米) 答:正六边形面积是12平方分米。
【小结】分割法:正六边形分割。
小学奥数之巧求面积
小学奥数之巧求面积巧求面积知识要点:1利用“被减数和减数都增加(和减少)同一个数,它们的差不变”,可将求一个图形面积的问题转化为求另一个图形面积的问题,或将两个图形面积的差转化为另两个图形的面积差,从而使隐蔽的条件明朗化,以便找到解题思路。
2、求图形的面积时,要充分发挥想象力,通过添加辅助线等方法,找出各部分之间的关系进行解答。
3、求不规则图形面积时,通过平移、分割、割补等手段将其化为一个规则图形。
4、计算不规则图形面积时,有时可以将其转化为几个图形的面积和或差来计算。
习题练习:1两个相同的直角梯形部分重叠在一起,求阴影部分的面积。
2、如图,三角形甲的面积比三角形乙的面积大多少?(单位:厘米)3、如图,ABCD是边长为8厘米的正方形,梯形AEBD的两条对角线交于0,A A0E的面积比△ BOM面积小16平方厘米。
求梯形AEBD 勺面积。
(单位:厘米)D C4、如图,正方形ABCD的边长为4厘米,△ BCF的面积比厶DEF 的面积多2平方厘米,求DE 的长度。
5、如图,长方形ABCD中,长BC为10厘米,宽AB为6厘米,E为AB的中点,F为CD的中点,G为AD上任意一点,求△BEM △GMN ffiA CFM的面积之和。
6、如图,长方形的长为8厘米,宽为5厘米,DE为2厘米,CF 为1.5厘米,求△ AEF的面积。
7、如图,AB=10厘米,BC=5厘米,MN=7厘米,求△ ADE △ GMN^A FBC的面积之和。
8、如图,正方形ABCD和正方形CEFG边长分别为4厘米和3厘米,求△ ADM和厶MEF 的面积之和。
9、如图,正方形ABCD和正方形DEFG边长分别为5厘米和4厘米,求△ BEG面积。
10、四边形ABCD中,/ B=Z D, / A=45o, AD=12厘米,BC=4厘米,求四边形ABCD的面积。
11、如图,长方形ABCD中, AB=6, BC=9, △ AED △ CDF的面积都是长方形面积的三分之一, 求厶DEF的面积。
小学四年级奥数竞赛班作业第18讲:巧求面积(一)
5、 7、 9、 11. 问
11
9
7
5
|
4
17. (第四届《小数报》数学竞赛决赛试题)有一大一小两个正方形,它们的周长相差
20
厘米,面积相差 55 平方厘米.小正方形的面积是多少平方厘米?
18. ( 第五届”祖冲之杯”数学邀请赛 ) 如右图所示,在长方形 ABCD 中,放入六个形状大 小相同的长方形 ( 尺寸如图 ) ,图中阴影部分的面积是 __________.
10. 空白处每个方格都是边长为 和周长。
4 厘米的正方形, 黑条的宽度为 2 厘米, 求阴影部分的面积
11. 如图,一块正方形地砖,上面印有四周对称的花纹,正中心红色小正方形面积是
8,四
块绿色等腰直角三角形均相同,面积总和是
36,那么图中阴影部分的面积是多少?
AC
绿
B
绿 红绿
绿
D
E
三.超常挑战:
12. 下图 ( 单位:厘米 ) 是两个相同的直角梯形重叠在一起,求阴影部分的面积
.
第 6题
15. (2008 年全国小学生” 我爱数学夏令营” 数学竞赛 ) 如图, 边长为 10 的正方形中有一等
宽的十字,其面积 ( 阴影部分 ) 为 36 ,则十字中央的小正方形面积为
.
第 2题
16. (武汉明心奥数挑战赛)如图所示,四个相叠的正方形,边长分别是 灰色区与黑色区的面积的差是多少?
方法二:如图二, 20 30 40 (20 30) 600 2000 2600 ( 平方米 )
方法三:如图三, (40 30)(20 30) 30 30 3500 900 2600 ( 平方米 )
2. ( 方法一 ) 如图, 铁板面积比原来减少的面积就是阴影部分的面积,
巧求面积(四年级用)
巧求面积教学目标:学会应用所学知识解决一些实际问题及较复杂的面积计算。
教学过程:一、知识要点我们已经学会了计算长方形、正方形的面积,运用这些知识可以解决许多有关面积的问题。
但是有些比较复杂的关于长方形、正方形的面积计算,生搬硬套公式往往不能奏效,这时,我们可以运用一些巧妙的解题技巧来解决问题。
1、面积公式:长方形的面积=长×宽(S=a×b a表示长方形的长b表示长方形的宽)正方形的面积=边长×边长(S=a×a a表示正方形的边长)2、锦囊妙计。
(1)割补法:把图形分割或添补成可求面积的长方形或正方形,再用长方形或正方形的面积公式计算。
(2)平移法: 通过平移的方法把分散的面积集中到一个长方形或正方形中,再用长方形或正方形的面积公式计算。
二、典型例题1、割补法例1.张爷爷有一块如下图的菜地,你能帮他计算出菜地的面积吗?(单位:米)(1)学生先独立思考,说一说自己的想法。
(2)解析:通过观察可以看出,这个图形可以采用分割的方法,把图形分割成两个长方形,图形的面积=两个长方形面积的和;或者在图形的左上角补上一个正方形,把它变成一个大长方形,图形的面积=大长方形面积-正方形面积。
(课件动画演示)列式:30×20+(30+20)×40=2600(平方米)列式:30×40+(30+40)×20=2600(平方米)列式:(20+30)×(40+30)-30×30=2600(平方米)答:张爷爷的菜地面积是2600平方米。
例2:下图为一个长50米、宽25 米的标准游泳池。
它的四周铺设了宽2米的白瓷地砖(阴影部分)。
求游泳池面积和地砖面积。
长解析:从图中可以看出,游泳池是长方形,可直接运用长方形面积公式计算出来。
而瓷砖面积不规则,无法直接运用长方形面积公式计算。
如果把大长方形中间空白部分的小长方形割掉(课件动画演示),剩下的就是阴影部分的面积,所以阴影的面积=大长方形的面积-小长方形的面积,即可求出地砖面积。
巧求面积(四年级用)
巧求面积教学目标:学会应用所学知识解决一些实际问题及较复杂的面积计算。
教学过程:一、知识要点我们已经学会了计算长方形、正方形的面积,运用这些知识可以解决许多有关面积的问题。
但是有些比较复杂的关于长方形、正方形的面积计算,生搬硬套公式往往不能奏效,这时,我们可以运用一些巧妙的解题技巧来解决问题。
1、面积公式:长方形的面积=长×宽(S=a×b a表示长方形的长b表示长方形的宽)正方形的面积=边长×边长(S=a×a a表示正方形的边长)2、锦囊妙计。
(1)割补法:把图形分割或添补成可求面积的长方形或正方形,再用长方形或正方形的面积公式计算。
(2)平移法: 通过平移的方法把分散的面积集中到一个长方形或正方形中,再用长方形或正方形的面积公式计算。
二、典型例题1、割补法例1.张爷爷有一块如下图的菜地,你能帮他计算出菜地的面积吗?(单位:米)(1)学生先独立思考,说一说自己的想法。
(2)解析:通过观察可以看出,这个图形可以采用分割的方法,把图形分割成两个长方形,图形的面积=两个长方形面积的和;或者在图形的左上角补上一个正方形,把它变成一个大长方形,图形的面积=大长方形面积-正方形面积。
(课件动画演示)列式:30×20+(30+20)×40=2600(平方米)列式:30×40+(30+40)×20=2600(平方米)列式:(20+30)×(40+30)-30×30=2600(平方米)答:张爷爷的菜地面积是2600平方米。
例2:下图为一个长50米、宽25 米的标准游泳池。
它的四周铺设了宽2米的白瓷地砖(阴影部分)。
求游泳池面积和地砖面积。
宽长解析:从图中可以看出,游泳池是长方形,可直接运用长方形面积公式计算出来。
而瓷砖面积不规则,无法直接运用长方形面积公式计算。
如果把大长方形中间空白部分的小长方形割掉(课件动画演示),剩下的就是阴影部分的面积,所以阴影的面积=大长方形的面积-小长方形的面积,即可求出地砖面积。
巧奥数4年级第13讲巧算面积
进阶练习题
总结词
提升解题能力
详细描述
进阶练习题在基础练习题的基础上,增加了难度和复杂度,需要学生灵活运用面积计算公式解决实际问题,培养 他们的思维能力和解题技巧。
挑战练习题
总结词:挑战自我
详细描述:挑战练习题是难度最大的题目,需要学生综合运用多个知识点,解决一些较为复杂的问题。这类题目旨在激发学 生的挑战精神,培养他们解决问题的能力。
提高数学能力
掌握面积计算方法有助于 提高学生的数学思维能力、 空间想象力和解决问题的 能力。
数学考试重点
在小学数学考试中,面积 计算是常考的知识点之一, 学生需要熟练掌握各种图 形的面积计算公式。
02 巧算面积的方法
公式法
总结词
公式法是计算面积最常用的方法,适用于各种规则的几何图 形。
详细描述
公式法是通过使用几何图形的面积公式来计算面积。对于矩 形、三角形、圆形等规则图形,都有相应的面积公式可以直 接使用。使用公式法时,需要注意公式的适用范围和单位换 算。
THANKS FOR WATCHING
感谢您的观看
拼凑法是将多个几何图形拼凑在一起,形成一个简单的几何图形,然后计算总面 积。
详细描述
拼凑法适用于一些不规则或难以直接计算的几何图形。通过将图形与其他图形拼 凑,形成易于计算的组合图形,可以简化计算过程。拼凑法需要一定的组合和创 新能力,以找到合适的拼凑方式。
03 面积计算的实例矩Fra bibliotek面积的计算矩形面积计算公式
约成本。
购物预算
在购买家具或电器时,需要根据房 间面积来选择合适的大小,并计算 所需的总面积来制定购物预算。
空间规划
在规划家庭空间时,需要根据家庭 成员的活动需求和习惯来计算各个 功能区的面积,以确保空间的有效 利用和舒适度。
四年级奥数竞赛4.巧求面积(上)答案
2011秋季学而思奥数测试题答案第1题 (本题10分)(★★)有一列数:l,2,4,7,1l,16,22,29,37,问这列数第15个数是多少?1.A 1052.B 1063.C 1104.D 104正确率:有69%的网校学员答对了该题知识点:数列正确答案:B试题讲解:第2题 (本题10分)1.A 6012.B 600C 5993.4.D 602正确率:有50%的网校学员答对了该题知识点:数列计算正确答案:A试题讲解:第3题 (本题10分)1.A 1252.B 1303.C 1004.D 98正确率:有85%的网校学员答对了该题知识点:数列计算正确答案:C试题讲解:第4题 (本题10分)1.A 452.B 603.C 284.D 50正确率:有73%的网校学员答对了该题知识点:数列计算正确答案:D试题讲解:第5题 (本题10分)(★★★)在1~300这三百个自然数中,所有能被4整除的数的和是多少?1.A 114002.B 114403.C 112404.D 12400正确率:有70%的网校学员答对了该题知识点:数列求和正确答案:A试题讲解:第6题 (本题10分)(★★★★)56个互不相同的非零自然数之和为2800,问最少有多少个偶数?1.A 32.B 53.C 44.D 6正确率:有65%的网校学员答对了该题知识点:数列正确答案:C试题讲解:===================================================================== 第1题 (本题10分)A 49501.2.B 50503.C 5051D 60504.正确率:有100%的网校学员答对了该题知识点:数列求和正确答案:B试题讲解:第2题 (本题10分)A 20130211.2.B 20140243.C 20150284.D 2016033正确率:有100%的网校学员答对了该题知识点:数列求和正确答案:C试题讲解:第3题 (本题10分)1.A 50472.B 5050C 101003.4.D 10094正确率:有100%的网校学员答对了该题知识点:数列求和正确答案:A试题讲解:第4题 (本题10分)1.A 48932.B 49003.C 48914.D 4901正确率:有100%的网校学员答对了该题知识点:平方差公式正确答案:C试题讲解:第5题 (本题10分)1.A 125262.B 125273.C 125284.D 12529正确率:有80%的网校学员答对了该题知识点:平方和公式正确答案:D试题讲解:第6题 (本题10分)1.A 3382802.B 3383203.C 3383504.D 338380正确率:有60%的网校学员答对了该题知识点:平方和公式正确答案:B试题讲解:第1题 (本题10分)桌子上放着40根火柴,甲、乙二人轮流每次取走根。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数学四年级上期末复习《巧求面积》(一)
1.你有什么好的方法计算所给图形的面积呢?(单位:厘米)
2. 如右图所示,图中的ABEFGD是由一个长方形ABCD及一个正方形CEFG拼成的,线段的长度如图所示(单位:厘米),求ABEFGD的周长和面积.
3. 有一块菜地长16米,宽8米,菜地中间留了宽2米的路,把菜地平均分成四块,每一块地的面积是多少?
4. 有一个长方形菜园,如果把宽改成50 米,长不变,那么它的面积减少680 平方米,如果使宽为60 米,长不变,那么它的面积比原来增加2720 平方米,原来的长和宽各是多少米?
5. 两个正方形的面积相差9cm2 ,边长相差1cm .求两个正方形的面积和.
6. 街心花园里有一个正方形花坛,四周有一条宽1 米的甬道(如图),如果甬道的面积是12 平方米,那么中间花坛的面积是多少平方米?
7. 如图所示,一个长方形广场的正中央有一个长方形的水池.水池长8 米、宽3 米.水池周围用边长为1 米
的方砖一圈一圈地向外铺.恰好铺了若干圈,共用了152 块方砖,那么共铺了_________圈
8. 一块长方形纸片,在长边剪去5cm ,宽边剪去2cm 后(如图),得到的正方形面积比原长方形面积少31cm2 .求原长方形纸片的面积.。