各类有机物的红外吸收峰

合集下载

红外--各类有机物的红外吸收峰

红外--各类有机物的红外吸收峰

各类有机化合物红外吸收光谱σ伸缩振动,δ面内弯曲振动,γ面外弯曲振动一、烷烃饱与烷烃IR光谱主要由C-H键得骨架振动所引起,而其中以C—H键得伸缩振动最为有用、在确定分子结构时,也常借助于C-H键得变形振动与C -C键骨架振动吸收。

烷烃有下列四种振动吸收。

1、σC-H在2975—2845cm-1范围,包括甲基、亚甲基与次甲基得对称与不对称伸缩振动2、δC—H在1460 cm—1与1380cm-1处有特征吸收,前者归因于甲基及亚甲基C—H得σas,后者归因于甲基C—H得σs。

1380 cm—1峰对结构敏感,对于识别甲基很有用。

共存基团得电负性对1380cm-1峰位置有影响,相邻F中此峰移至1475cm-1。

基团电负性愈强,愈移向高波数区,例如,在CH3异丙基1380 cm—1裂分为两个强度几乎相等得两个峰1385cm-1、1375 cm—1叔丁基1380 cm—1裂分1395 cm-1、1370cm-1两个峰,后者强度差不多就是前者得两倍,在1250 cm-1、1200 cm—1附近出现两个中等强度得骨架振动。

-1范围内,因特征性不强,用处不大。

3、σC-C在1250—800cm4、γC—H分子中具有—(CH2)n—链节,n大于或等于4时,在722cm-1有一个弱吸收峰,随着CH2个数得减少,吸收峰向高波数方向位移,由此可推断分子链得长短。

二、烯烃烯烃中得特征峰由C=C-H键得伸缩振动以及C=C-H键得变形振动所引起。

烯烃分子主要有三种特征吸收。

1、σC=C-H烯烃双键上得C-H键伸缩振动波数在3000cm-1以上,末端双键氢在3075—3090 cm-1有强峰最易识别。

2、σC=C 吸收峰得位置在1670—1620cm-1。

随着取代基得不同,σC=C吸收峰得位置有所不同,强度也发生变化。

3、δC烯烃双键上得C-H键面内弯曲振动在1500-1000cm—1,对结=C—H构不敏感,用途较少;而面外摇摆振动吸收最有用,在1000—700cm—1范围内,该振动对结构敏感,其吸收峰特征性明显,强度也较大,易于识别,可借以判断双键取代情况与构型。

红外--各类有机物的红外吸收峰

红外--各类有机物的红外吸收峰

各类有机化合物红外吸收光谱σ伸缩振动,δ面内弯曲振动,γ面外弯曲振动一、烷烃饱和烷烃IR光谱主要由C-H键的骨架振动所引起,而其中以C-H键的伸缩振动最为有用。

在确定分子结构时,也常借助于C-H键的变形振动和C-C 键骨架振动吸收。

烷烃有下列四种振动吸收。

1、σC-H在2975—2845 cm-1范围,包括甲基、亚甲基和次甲基的对称与不对称伸缩振动2、δC-H在1460 cm-1和1380 cm-1处有特征吸收,前者归因于甲基及亚甲基C-H的σas,后者归因于甲基C-H的σs。

1380 cm-1峰对结构敏感,对于识别甲基很有用。

共存基团的电负性对1380 cm-1峰位置有影响,相邻基团电负性愈强,愈移向高波数区,例如,在CH3F中此峰移至1475 cm-1。

异丙基1380 cm-1裂分为两个强度几乎相等的两个峰1385 cm-1、1375 cm-1叔丁基1380 cm-1裂分1395 cm-1、1370cm-1两个峰,后者强度差不多是前者的两倍,在1250 cm-1、1200 cm-1附近出现两个中等强度的骨架振动。

3、σC-C在1250—800 cm-1范围内,因特征性不强,用处不大。

4、γC-H分子中具有—(CH2)n—链节,n大于或等于4时,在722 cm-1有一个弱吸收峰,随着CH2个数的减少,吸收峰向高波数方向位移,由此可推断分子链的长短。

二、烯烃烯烃中的特征峰由C=C-H键的伸缩振动以及C=C-H键的变形振动所引起。

烯烃分子主要有三种特征吸收。

1、σC=C-H 烯烃双键上的C-H键伸缩振动波数在3000 cm-1以上,末端双键氢C=CH2在3075—3090 cm-1有强峰最易识别。

2、σC=C 吸收峰的位置在1670—1620 cm-1。

随着取代基的不同,σC=C吸收峰的位置有所不同,强度也发生变化。

3、δC=C-H烯烃双键上的C-H键面内弯曲振动在1500—1000 cm-1,对结构不敏感,用途较少;而面外摇摆振动吸收最有用,在1000—700 cm-1范围内,该振动对结构敏感,其吸收峰特征性明显,强度也较大,易于识别,可借以判断双键取代情况和构型。

各类有机物的红外吸收峰

各类有机物的红外吸收峰

第四节各类有机化合物红外吸收光谱σ伸缩振动,δ面内弯曲振动,γ面外弯曲振动一、烷烃饱和烷烃IR光谱主要由C-H键的骨架振动所引起,而其中以C-H键的伸缩振动最为有用。

在确定分子结构时,也常借助于C-H键的变形振动和C-C 键骨架振动吸收。

烷烃有下列四种振动吸收。

1、σC-H在2975—2845 cm-1范围,包括甲基、亚甲基和次甲基的对称与不对称伸缩振动2、δC-H在1460 cm-1和1380 cm-1处有特征吸收,前者归因于甲基及亚甲基C-H的σas,后者归因于甲基C-H的σs。

1380 cm-1峰对结构敏感,对于识别甲基很有用。

共存基团的电负性对1380 cm-1峰位置有影响,相邻基团电负性愈强,愈移向高波数区,例如,在CH3F中此峰移至1475 cm-1。

异丙基1380 cm-1裂分为两个强度几乎相等的两个峰1385 cm-1、1375 cm-1叔丁基1380 cm-1裂分1395 cm-1、1370cm-1两个峰,后者强度差不多是前者的两倍,在1250 cm-1、1200 cm-1附近出现两个中等强度的骨架振动。

3、σC-C在1250—800 cm-1范围内,因特征性不强,用处不大。

4、γC-H分子中具有—(CH2)n—链节,n大于或等于4时,在722 cm-1有一个弱吸收峰,随着CH2个数的减少,吸收峰向高波数方向位移,由此可推断分子链的长短。

二、烯烃烯烃中的特征峰由C=C-H键的伸缩振动以及C=C-H键的变形振动所引起。

烯烃分子主要有三种特征吸收。

1、σC=C-H 烯烃双键上的C-H键伸缩振动波数在3000 cm-1以上,末端双键氢C=CH2在3075—3090 cm-1有强峰最易识别。

2、σC=C 吸收峰的位置在1670—1620 cm-1。

随着取代基的不同,σC=C吸收峰的位置有所不同,强度也发生变化。

3、δC=C-H烯烃双键上的C-H键面内弯曲振动在1500—1000 cm-1,对结构不敏感,用途较少;而面外摇摆振动吸收最有用,在1000—700 cm-1范围内,该振动对结构敏感,其吸收峰特征性明显,强度也较大,易于识别,可借以判断双键取代情况和构型。

红外各类有机物的红外吸收峰

红外各类有机物的红外吸收峰

红外各类有机物的红外吸收峰Coca-cola standardization office【ZZ5AB-ZZSYT-ZZ2C-ZZ682T-ZZT18】各类有机化合物红外吸收光谱σ伸缩振动,δ面内弯曲振动,γ面外弯曲振动一、烷烃饱和烷烃IR光谱主要由C-H键的骨架振动所引起,而其中以C-H键的伸缩振动最为有用。

在确定分子结构时,也常借助于C-H键的变形振动和C-C键骨架振动吸收。

烷烃有下列四种振动吸收。

1、σC-H在2975—2845 cm-1范围,包括甲基、亚甲基和次甲基的对称与不对称伸缩振动2、δC-H在1460 cm-1和1380 cm-1处有特征吸收,前者归因于甲基及亚甲基C-H的σas,后者归因于甲基 C-H的σs。

1380 cm-1峰对结构敏感,对于识别甲基很有用。

共存基团的电负性对1380 cm-1峰位置有影响,相邻基团电负性愈强,愈移向高波数区,例如,在CH3F中此峰移至1475 cm-1。

异丙基 1380 cm-1裂分为两个强度几乎相等的两个峰 1385 cm-1、1375 cm-1叔丁基 1380 cm-1裂分1395 cm-1、1370cm-1两个峰,后者强度差不多是前者的两倍,在1250 cm-1、1200 cm-1附近出现两个中等强度的骨架振动。

3、σC-C在1250—800 cm-1范围内,因特征性不强,用处不大。

4、γC-H 分子中具有—(CH2)n—链节,n大于或等于4时,在722 cm-1有一个弱吸收峰,随着CH2个数的减少,吸收峰向高波数方向位移,由此可推断分子链的长短。

二、烯烃烯烃中的特征峰由C=C-H键的伸缩振动以及C=C-H键的变形振动所引起。

烯烃分子主要有三种特征吸收。

1、σC=C-H烯烃双键上的C-H键伸缩振动波数在3000 cm-1以上,末端双键氢在3075—3090 cm-1有强峰最易识别。

2、σC=C 吸收峰的位置在1670—1620 cm-1。

红外--各类有机物的红外吸收峰

红外--各类有机物的红外吸收峰

各类有机化合物红外吸收光谱σ伸缩振动,δ面内弯曲振动,γ面外弯曲振动一、烷烃饱和烷烃IR光谱主要由C-H键的骨架振动所引起,而其中以C—H键的伸缩振动最为有用。

在确定分子结构时,也常借助于C—H键的变形振动和C-C键骨架振动吸收。

烷烃有下列四种振动吸收。

1、σC—H在2975-2845 cm-1范围,包括甲基、亚甲基和次甲基的对称与不对称伸缩振动2、δC—H在1460 cm—1和1380 cm—1处有特征吸收,前者归因于甲基及亚甲基C—H的σas,后者归因于甲基C—H的σs。

1380 cm—1峰对结构敏感,对于识别甲基很有用。

共存基团的电负性对1380 cm—1峰位置有影响,相邻基团电负性愈强,愈移向高波数区,例如,在CH3F中此峰移至1475 cm—1。

异丙基1380 cm—1裂分为两个强度几乎相等的两个峰1385 cm—1、1375 cm-1叔丁基1380 cm—1裂分1395 cm—1、1370cm-1两个峰,后者强度差不多是前者的两倍,在1250 cm—1、1200 cm—1附近出现两个中等强度的骨架振动。

3、σC—C在1250—800 cm-1范围内,因特征性不强,用处不大。

4、γC—H分子中具有—(CH2)n—链节,n大于或等于4时,在722 cm—1有一个弱吸收峰,随着CH2个数的减少,吸收峰向高波数方向位移,由此可推断分子链的长短.二、烯烃烯烃中的特征峰由C=C-H键的伸缩振动以及C=C—H键的变形振动所引起.烯烃分子主要有三种特征吸收。

1、σC=C-H 烯烃双键上的C—H键伸缩振动波数在3000 cm—1以上,末端双键氢在3075—3090 cm—1有强峰最易识别.2、σC=C 吸收峰的位置在1670—1620 cm-1。

随着取代基的不同,σC=C吸收峰的位置有所不同,强度也发生变化。

3、δC=C-H烯烃双键上的C—H键面内弯曲振动在1500-1000 cm—1,对结构不敏感,用途较少;而面外摇摆振动吸收最有用,在1000-700 cm-1范围内,该振动对结构敏感,其吸收峰特征性明显,强度也较大,易于识别,可借以判断双键取代情况和构型。

各类有机物的红外吸收峰

各类有机物的红外吸收峰

第四节各类有机化合物红外吸收光谱σ伸缩振动,δ面内弯曲振动,γ面外弯曲振动一、烷烃饱和烷烃IR光谱主要由C-H键的骨架振动所引起,而其中以C-H键的伸缩振动最为有用。

在确定分子结构时,也常借助于C-H键的变形振动和C-C 键骨架振动吸收。

烷烃有下列四种振动吸收。

1、σC-H在2975—2845 cm-1范围,包括甲基、亚甲基和次甲基的对称与不对称伸缩振动2、δC-H在1460 cm-1和1380 cm-1处有特征吸收,前者归因于甲基及亚甲基C-H的δas,后者归因于甲基C-H的δs。

1380 cm-1峰对结构敏感,对于识别甲基很有用。

共存基团的电负性对1380 cm-1峰位置有影响,相邻基团电负性愈强,愈移向高波数区,例如,在CH3F中此峰移至1475 cm-1。

异丙基1380 cm-1裂分为两个强度几乎相等的两个峰1385 cm-1、1375 cm-1叔丁基1380 cm-1裂分1395 cm-1、1370cm-1两个峰,后者强度差不多是前者的两倍,在1250 cm-1、1200 cm-1附近出现两个中等强度的骨架振动。

3、σC-C在1250—800 cm-1范围内,因特征性不强,用处不大。

4、γC-H分子中具有—(CH2)n—链节,n大于或等于4时,在722 cm-1有一个弱吸收峰,随着CH2个数的减少,吸收峰向高波数方向位移,由此可推断分子链的长短。

二、烯烃烯烃中的特征峰由C=C-H键的伸缩振动以及C=C-H键的变形振动所引起。

烯烃分子主要有三种特征吸收。

1、σC=C-H 烯烃双键上的C-H键伸缩振动波数在3000 cm-1以上,末端双键氢C=CH2在3075—3090 cm-1有强峰最易识别。

2、σC=C 吸收峰的位置在1670—1620 cm-1。

随着取代基的不同,σC=C吸收峰的位置有所不同,强度也发生变化。

3、δC=C-H烯烃双键上的C-H键面内弯曲振动在1500—1000 cm-1,对结构不敏感,用途较少;而面外摇摆振动吸收最有用,在1000—700 cm-1范围内,该振动对结构敏感,其吸收峰特征性明显,强度也较大,易于识别,可借以判断双键取代情况和构型。

红外--各类有机物的红外吸收峰知识分享

红外--各类有机物的红外吸收峰知识分享

红外--各类有机物的红外吸收峰各类有机化合物红外吸收光谱σ伸缩振动,δ面内弯曲振动,γ面外弯曲振动一、烷烃饱和烷烃IR光谱主要由C-H键的骨架振动所引起,而其中以C-H键的伸缩振动最为有用。

在确定分子结构时,也常借助于C-H键的变形振动和C-C键骨架振动吸收。

烷烃有下列四种振动吸收。

1、σC-H在2975—2845 cm-1范围,包括甲基、亚甲基和次甲基的对称与不对称伸缩振动2、δC-H在1460 cm-1和1380 cm-1处有特征吸收,前者归因于甲基及亚甲基C-H的σas,后者归因于甲基 C-H的σs。

1380 cm-1峰对结构敏感,对于识别甲基很有用。

共存基团的电负性对1380 cm-1峰位置有影响,相邻基团电负性愈强,愈移向高波数区,例如,在CH3F中此峰移至1475 cm-1。

异丙基 1380 cm-1裂分为两个强度几乎相等的两个峰 1385 cm-1、1375 cm-1叔丁基 1380 cm-1裂分1395 cm-1、1370cm-1两个峰,后者强度差不多是前者的两倍,在1250 cm-1、1200 cm-1附近出现两个中等强度的骨架振动。

3、σC-C在1250—800 cm-1范围内,因特征性不强,用处不大。

4、γC-H分子中具有—(CH2)n—链节,n大于或等于4时,在722 cm-1有一个弱吸收峰,随着CH2个数的减少,吸收峰向高波数方向位移,由此可推断分子链的长短。

二、烯烃烯烃中的特征峰由C=C-H键的伸缩振动以及C=C-H键的变形振动所引起。

烯烃分子主要有三种特征吸收。

1、σC=C-H 烯烃双键上的C-H 键伸缩振动波数在3000 cm -1以上,末端双键氢在3075—3090 cm -1有强峰最易识别。

2、σC=C 吸收峰的位置在1670—1620 cm -1。

随着取代基的不同,σC=C 吸收峰的位置有所不同,强度也发生变化。

3、δC=C-H 烯烃双键上的C-H 键面内弯曲振动在1500—1000 cm -1,对结构不敏感,用途较少;而面外摇摆振动吸收最有用,在1000—700 cm -1范围内,该振动对结构敏感,其吸收峰特征性明显,强度也较大,易于识别,可借以判断双键取代情况和构型。

红外--各类有机物的红外吸收峰

红外--各类有机物的红外吸收峰

各类有机化合物红外吸收光谱σ伸缩振动,δ面内弯曲振动,γ面外弯曲振动一、烷烃饱和烷烃IR 光谱主要由C-H 键的骨架振动所引起,而其中以C-H 键的伸缩振动最为有用。

在确定分子结构时,也常借助于C-H 键的变形振动和C-C 键骨架振动吸收。

烷烃有下列四种振动吸收。

1、σC-H 在2975—2845cm -12、δC-H 在1460cm -1和1380cm -1于甲基C-H 的σs 。

1380cm -1峰对结构敏感,1380cm -1-1。

异丙基1380cm -1叔丁基1380cm -1裂分1395cm -1、1370cm -1-1、1200cm -1附近出现两个中等强度的骨架振动。

3、σC-C4、γC-H CH 2 二、烯烃C=C-H 键的变形振动所引起。

烯烃分子主要有1、σC=C-H -1以上,末端双键氢在3075—3090cm -1有强2、σC=C C=C 吸收峰的位置有所不同,强度也发生变化。

3、δC=C-H 烯烃双键上的C-H 键面内弯曲振动在1500—1000cm -1,对结构不敏感,用途较少;而面外摇摆振动吸收最有用,在1000—700cm -1范围内,该振动对结构敏感,其吸收峰特征性明显,强度也较大,易于识别,可借以判断双键取代情况和构型。

RHC=CH 2995~985cm -1(=CH ,S )915~905cm -1(=CH 2,S )R 1R 2C=CH 2895~885cm -1(S )(顺)-R 1CH=CHR 2~690cm -1(反)-R 1CH=CHR 2980~965cm -1(S )C=CH 2R 1R 2C=CHR 3840~790cm -1(m ) 三、炔烃在IR 光谱中,炔烃基团很容易识别,它主要有三种特征吸收。

1、σ该振动吸收非常特征,吸收峰位置在3300—3310cm -1,中等强度。

σN-H 值与σC-H 值相同,但前者为宽峰、后者为尖峰,易于识别。

各类有机物的红外吸收峰

各类有机物的红外吸收峰

第四节各类有机化合物红外吸收光谱σ伸缩振动,δ面内弯曲振动,γ面外弯曲振动一、烷烃饱和烷烃IR光谱主要由C-H键的骨架振动所引起,而其中以C-H键的伸缩振动最为有用。

在确定分子结构时,也常借助于C-H键的变形振动和C-C 键骨架振动吸收。

烷烃有下列四种振动吸收。

1、σC-H在2975—2845 cm-1范围,包括甲基、亚甲基和次甲基的对称与不对称伸缩振动2、δC-H在1460 cm-1和1380 cm-1处有特征吸收,前者归因于甲基及亚甲基C-H的σas,后者归因于甲基C-H的σs。

1380 cm-1峰对结构敏感,对于识别甲基很有用。

共存基团的电负性对1380 cm-1峰位置有影响,相邻基团电负性愈强,愈移向高波数区,例如,在CH3F中此峰移至1475 cm-1。

异丙基1380 cm-1裂分为两个强度几乎相等的两个峰1385 cm-1、1375 cm-1叔丁基1380 cm-1裂分1395 cm-1、1370cm-1两个峰,后者强度差不多是前者的两倍,在1250 cm-1、1200 cm-1附近出现两个中等强度的骨架振动。

3、σC-C在1250—800 cm-1范围内,因特征性不强,用处不大。

4、γC-H分子中具有—(CH2)n—链节,n大于或等于4时,在722 cm-1有一个弱吸收峰,随着CH2个数的减少,吸收峰向高波数方向位移,由此可推断分子链的长短。

二、烯烃烯烃中的特征峰由C=C-H键的伸缩振动以及C=C-H键的变形振动所引起。

烯烃分子主要有三种特征吸收。

1、σC=C-H烯烃双键上的C-H键伸缩振动波数在3000 cm-1以上,末端双键氢C=CH2在3075—3090 cm-1有强峰最易识别。

2、σC=C吸收峰的位置在1670—1620 cm-1。

随着取代基的不同,σC=C吸收峰的位置有所不同,强度也发生变化。

3、δC=C-H烯烃双键上的C-H键面内弯曲振动在1500—1000 cm-1,对结构不敏感,用途较少;而面外摇摆振动吸收最有用,在1000—700 cm-1范围内,该振动对结构敏感,其吸收峰特征性明显,强度也较大,易于识别,可借以判断双键取代情况和构型。

红外--各类有机物的红外吸收峰

红外--各类有机物的红外吸收峰

各类有机化合物红外吸收光谱σ伸缩振动,δ面内弯曲振动,γ面外弯曲振动一、烷烃饱和烷烃IR光谱主要由C-H键的骨架振动所引起,而其中以C-H键的伸缩振动最为有用。

在确定分子结构时,也常借助于C-H键的变形振动和C-C 键骨架振动吸收。

烷烃有下列四种振动吸收。

1、σC-H在2975—2845 cm-1范围,包括甲基、亚甲基和次甲基的对称与不对称伸缩振动2、δC-H在1460 cm-1和1380 cm-1处有特征吸收,前者归因于甲基及亚甲基C-H 的σas,后者归因于甲基 C-H的σs。

1380 cm-1峰对结构敏感,对于识别甲基很有用。

共存基团的电负性对1380 cm-1峰位置有影响,相邻基团电负性愈强,愈移向高波数区,例如,在CH3F中此峰移至1475 cm-1。

异丙基 1380 cm-1裂分为两个强度几乎相等的两个峰 1385 cm-1、1375 cm-1叔丁基 1380 cm-1裂分1395 cm-1、1370cm-1两个峰,后者强度差不多是前者的两倍,在1250 cm-1、1200 cm-1附近出现两个中等强度的骨架振动。

3、σC-C在1250—800 cm-1范围内,因特征性不强,用处不大。

4、γC-H 分子中具有—(CH2)n—链节,n大于或等于4时,在722 cm-1有一个弱吸收峰,随着CH2个数的减少,吸收峰向高波数方向位移,由此可推断分子链的长短。

二、烯烃烯烃中的特征峰由C=C-H键的伸缩振动以及C=C-H键的变形振动所引起。

烯烃分子主要有三种特征吸收。

1、σC=C-H烯烃双键上的C-H键伸缩振动波数在3000 cm-1以上,末端双键氢在3075—3090 cm-1有强峰最易识别。

2、σC=C 吸收峰的位置在1670—1620 cm-1。

随着取代基的不同,σC=C吸收峰的位置有所不同,强度也发生变化。

3、δC=C-H烯烃双键上的C-H键面内弯曲振动在1500—1000 cm-1,对结构不敏感,用途较少;而面外摇摆振动吸收最有用,在1000—700 cm-1范围内,该振动对结构敏感,其吸收峰特征性明显,强度也较大,易于识别,可借以判断C=CH2双键取代情况和构型。

红外吸收光谱特征峰点,史上最全

红外吸收光谱特征峰点,史上最全

红外吸收光谱特征峰点,史上最全
红外吸收光谱是分析有机物和无机物化学组成的重要手段之一。

其中特征峰点的识别和解析是红外光谱分析的基础。

本文将介绍常
见物质的红外谱图以及显示其特征峰点的位置。

以下为几种有机物
和无机物的特征峰点:
有机物的特征峰点
- 烷基C--H伸缩振动(脂肪族烃):3000~2850 cm^-1
- 烯丙基C--H伸缩振动(卤代烃):3100~3000 cm^-1
- 芳香族C--H伸缩振动:3100~3000 cm^-1、1500~1450 cm^-1
- 烷基C--O拉伸振动(醇、醚):1300~1000 cm^-1
- 腈类分子C---N伸缩振动:2260、2220 cm^-1
无机物的特征峰点
- 含羟基化合物的水分子O--H伸缩振动:3400~3200 cm^-1
- 硫酸盐分子的S--O拉伸振动:1100~1000 cm^-1
- 亚硝酸盐分子的N--O伸缩振动:1550 cm^-1
- 氨基酸盐分子的N--H伸缩振动:3500~3200 cm^-1
- 硫化物离子分子的S--H伸缩振动:2550~2350 cm^-1
在进行红外光谱分析实验前,有必要将待测试物质和标准物质对比,以确定谱图中的特征峰点。

只有正确地识别了特征峰点,才能准确分析样品的组成结构和含量。

总结
本文介绍了常见物质的红外谱图以及显示其特征峰点的位置。

有机物和无机物的特征峰点各不相同,一般通过与标准物质进行比较来确定谱图中的特征峰。

对于分析组成结构和含量非常重要。

红外--各类有机物的红外吸收峰

红外--各类有机物的红外吸收峰

各类有机化合物红外吸收光谱σ伸缩振动,δ面内弯曲振动,γ面外弯曲振动一、烷烃饱和烷烃IR光谱主要由C-H键的骨架振动所引起,而其中以C-H键的伸缩振动最为有用。

在确定分子结构时,也常借助于C-H键的变形振动和C-C键骨架振动吸收。

烷烃有下列四种振动吸收。

1、σC-H在2975—2845 cm-1范围,包括甲基、亚甲基和次甲基的对称与不对称伸缩振动2、δC-H在1460 cm-1和1380 cm-1处有特征吸收,前者归因于甲基及亚甲基C-H的σas,后者归因于甲基 C-H的σs。

1380 cm-1峰对结构敏感,对于识别甲基很有用。

共存基团的电负性对1380 cm-1峰位置有影响,相邻基团电负性愈强,愈移向高波数区,例如,在CH3F中此峰移至1475 cm-1。

异丙基 1380 cm-1裂分为两个强度几乎相等的两个峰 1385 cm-1、1375 cm-1叔丁基 1380 cm-1裂分1395 cm-1、1370cm-1两个峰,后者强度差不多是前者的两倍,在1250 cm-1、1200 cm-1附近出现两个中等强度的骨架振动。

3、σC-C在1250—800 cm-1范围内,因特征性不强,用处不大。

4、γC-H 分子中具有—(CH2)n—链节,n大于或等于4时,在722 cm-1有一个弱吸收峰,随着CH2个数的减少,吸收峰向高波数方向位移,由此可推断分子链的长短。

二、烯烃烯烃中的特征峰由C=C-H键的伸缩振动以及C=C-H键的变形振动所引起。

烯烃分子主要有三种特征吸收。

1、σC=C-H 烯烃双键上的C-H 键伸缩振动波数在3000 cm -1以上,末端双键氢在3075—3090 cm -1有强峰最易识别。

2、σC=C 吸收峰的位置在1670—1620 cm -1。

随着取代基的不同,σC=C 吸收峰的位置有所不同,强度也发生变化。

3、δC=C-H 烯烃双键上的C-H 键面内弯曲振动在1500—1000 cm -1,对结构不敏感,用途较少;而面外摇摆振动吸收最有用,在1000—700 cm -1范围内,该振动对结构敏感,其吸收峰特征性明显,强度也较大,易于识别,可借以判断双键取代情况和构型。

各类有机化合物的红外特征吸收

各类有机化合物的红外特征吸收

各类有机化合物的红外特征吸收2007-02-06 21:45:09| 分类:药物分析| 标签:|字号大中小订阅第一峰区(4000-2500cm-1)X-H 伸缩振动吸收范围。

(1). O-H醇与酚:游离态--3640~3610cm-1,峰形尖锐。

缔合态--3300cm-1附近,峰形宽而钝羧酸:3300~2500cm-1,中心约3000cm-1,谱带宽而散;(2) . N-H胺类:游离——3500~3300cm-1缔合——吸收位置降低约100cm-1伯胺:3500,3400 cm-1(吸收强度比羟基弱)仲胺:3400 cm-1(吸收峰比羟基要尖锐)叔胺:无吸收酰胺:伯酰胺:3350,3150 cm-1 附近出现双峰仲酰胺:3200 cm-1 附近出现一条谱带叔酰胺:无吸收(3). C-H烃类: 3300~2700 cm-1范围,3000 cm-1是分界线。

不饱和碳(三键、双键及苯环)>3000 cm-1饱和碳(除三元环外)<3000 cm-1饱和烃基:3000~2700 cm-1,四个峰-CH3:~2960(s)、~2870 cm-1(m)-CH2-:~2925(s)、~2850 cm-1(s)>CH-:~2890 cm-1炔烃:~3300 cm-1,峰很尖锐,与nOH 和nNH有重叠;烯烃、芳烃:3100~3000 cm-1两种氢易于混淆醛基:2820 cm-1,2740~2720 cm-1,两个中强峰,区别醛和酮的特征谱带。

巯基:2600~2500 cm-1,谱带尖锐,容易识别叁键:-C≡C-、-C≡N累积双键:>C=C=C<、-N=C=O、-N=C=S特点:谱带为中等强度吸收或弱吸收。

干扰少, 容易识别。

1.C≡C 2280~2100cm-1 乙炔及全对称双取代炔,无红外吸收。

2.C≡N 2250~2240cm-1,谱带较C≡C强。

C≡N与苯环或双键共轭,谱带向低波数位移20~30cm-1。

红外--各类有机物的红外吸收峰

红外--各类有机物的红外吸收峰

各类有机化合物红外吸收光谱σ伸缩振动,δ面内弯曲振动,γ面外弯曲振动一、烷烃饱和烷烃IR光谱主要由C-H键的骨架振动所引起,而其中以C-H键的伸缩振动最为有用。

在确定分子结构时,也常借助于C-H键的变形振动和C-C 键骨架振动吸收。

烷烃有下列四种振动吸收。

1、σC-H在2975—2845 cm-1范围,包括甲基、亚甲基和次甲基的对称与不对称伸缩振动2、δC-H在1460 cm-1和1380 cm-1处有特征吸收,前者归因于甲基及亚甲基C-H 的σas,后者归因于甲基 C-H的σs。

1380 cm-1峰对结构敏感,对于识别甲基很有用。

共存基团的电负性对1380 cm-1峰位置有影响,相邻基团电负性愈强,愈移向高波数区,例如,在CH3F中此峰移至1475 cm-1。

异丙基 1380 cm-1裂分为两个强度几乎相等的两个峰 1385 cm-1、1375 cm-1叔丁基 1380 cm-1裂分1395 cm-1、1370cm-1两个峰,后者强度差不多是前者的两倍,在1250 cm-1、1200 cm-1附近出现两个中等强度的骨架振动。

3、σC-C在1250—800 cm-1范围内,因特征性不强,用处不大。

4、γC-H 分子中具有—(CH2)n—链节,n大于或等于4时,在722 cm-1有一个弱吸收峰,随着CH2个数的减少,吸收峰向高波数方向位移,由此可推断分子链的长短。

二、烯烃烯烃中的特征峰由C=C-H键的伸缩振动以及C=C-H键的变形振动所引起。

烯烃分子主要有三种特征吸收。

1、σC=C-H烯烃双键上的C-H键伸缩振动波数在3000 cm-1以上,末端双键氢在3075—3090 cm-1有强峰最易识别。

2、σC=C 吸收峰的位置在1670—1620 cm-1。

随着取代基的不同,σC=C吸收峰的位置有所不同,强度也发生变化。

3、δC=C-H烯烃双键上的C-H键面内弯曲振动在1500—1000 cm-1,对结构不敏感,用途较少;而面外摇摆振动吸收最有用,在1000—700 cm-1范围内,该振动对结构敏感,其吸收峰特征性明显,强度也较大,易于识别,可借以判断C=CH2双键取代情况和构型。

2021年红外--各类有机物的红外吸收峰

2021年红外--各类有机物的红外吸收峰

各类有机化合物红外吸收光谱欧阳光明(2021.03.07)σ伸缩振动,δ面内弯曲振动,γ面外弯曲振动一、烷烃饱和烷烃IR光谱主要由CH键的骨架振动所引起,而其中以CH键的伸缩振动最为有用。

在确定分子结构时,也常借助于CH 键的变形振动和CC键骨架振动吸收。

烷烃有下列四种振动吸收。

1、σCH在2975—2845 cm1规模,包含甲基、亚甲基和次甲基的对称与不合毛病称伸缩振动2、δCH在1460 cm1和1380 cm1处有特征吸收,前者归因于甲基及亚甲基CH的σas,后者归因于甲基CH的σs。

1380 cm1峰对结构敏感,对识别甲基很有用。

共存基团的电负性对1380 cm1峰位置有影响,相邻基团电负性愈强,愈移向高波数区,例如,在CH3F 中此峰移至1475 cm1。

异丙基1380 cm1 裂分为两个强度几乎相等的两个峰1385 cm1、1375 cm1叔丁基1380 cm1 裂分1395 cm1 、1370cm1两个峰,后者强度差未几是前者的两倍,在1250 cm1、1200 cm1邻近呈现两个中等强度的骨架振动。

3、σCC在1250—800 cm1规模内,因特征性不强,用处不年夜。

4、γCH分子中具有—(CH2)n—链节,n年夜于或即是4时,在722 cm1有一个弱吸收峰,随着CH2个数的减少,吸收峰向高波数标的目的位移,由此可推断分子链的长短。

二、烯烃烯烃中的特征峰由C=CH 键的伸缩振动以及C=CH 键的变形振动所引起。

烯烃分子主要有三种特征吸收。

1、σC=CH 烯烃双键上的CH 键伸缩振动波数在3000 cm1以上,末端双键氢在3075—3090 cm1有强峰最易识别。

2、σC=C 吸收峰的位置在1670—1620 cm1。

随着取代基的不合,σC=C 吸收峰的位置有所不合,强度也产生变更。

3、δC=CH 烯烃双键上的CH 键面内弯曲振动在1500—1000 cm1,对结构不敏感,用途较少;而面外摇摆振动吸收最有用,在1000—700 cm1规模内,该振动对结构敏感,其吸收峰特征性明显,强度也较年夜,易于识别,可借以判断双键取代情况和构型。

红外--各类有机物的红外吸收峰

红外--各类有机物的红外吸收峰

各类有机化合物红外吸收光谱--(二)σ伸缩振动,δ面内弯曲振动,γ面外弯曲振动一、烷烃饱和烷烃IR光谱主要由C-H键的骨架振动所引起,而其中以C-H键的伸缩振动最为有用。

在确定分子结构时,也常借助于C-H键的变形振动和C-C键骨架振动吸收。

烷烃有下列四种振动吸收。

1、σC-H在2975—2845 cm-1范围,包括甲基、亚甲基和次甲基的对称与不对称伸缩振动2、δC-H在1460 cm-1和1380 cm-1处有特征吸收,前者归因于甲基及亚甲基C-H的σas,后者归因于甲基C-H的σs。

1380 cm-1峰对结构敏感,对于识别甲基很有用。

共存基团的电负性对1380 cm-1峰位置有影响,相邻基团电负性愈强,愈移向高波数区,例如,在CH3F中此峰移至1475 cm-1。

异丙基1380 cm-1 裂分为两个强度几乎相等的两个峰1385 cm-1、1375 cm-1叔丁基1380 cm-1 裂分1395 cm-1 、1370cm-1两个峰,后者强度差不多是前者的两倍,在1250 cm-1、1200 cm-1附近出现两个中等强度的骨架振动。

3、σC-C在1250—800 cm-1范围内,因特征性不强,用处不大。

4、γC-H分子中具有—(CH2)n—链节,n大于或等于4时,在722 cm-1有一个弱吸收峰,随着CH2个数的减少,吸收峰向高波数方向位移,由此可推断分子链的长短。

二、烯烃烯烃中的特征峰由C=C-H键的伸缩振动以及C=C-H键的变形振动所引起。

烯烃分子主要有三种特征吸收。

1、σC=C-H烯烃双键上的C-H键伸缩振动波数在3000 cm-1以上,末端双键氢在C=CH23075—3090 cm-1有强峰最易识别。

2、σC=C吸收峰的位置在1670—1620 cm-1。

随着取代基的不同,σC=C吸收峰的位置有所不同,强度也发生变化。

3、δC=C-H烯烃双键上的C-H键面内弯曲振动在1500—1000 cm-1,对结构不敏感,用途较少;而面外摇摆振动吸收最有用,在1000—700 cm-1范围内,该振动对结构敏感,其吸收峰特征性明显,强度也较大,易于识别,可借以判断双键取代情况和构型。

各类物质的红外吸收峰

各类物质的红外吸收峰
芳烃的红外吸收主要为苯环上的 C-H 键及环骨架中的 C=C 键振动所引 起。芳族化合物主要有三种特征吸收。 1、σAr-H 芳环上 C-H 吸收频率在 3100~3000 cm-1 附近,有较弱的三个峰,特 征性不强,与烯烃的σC=C-H 频率相近,但烯烃的吸收峰只有一个。 2、σC=C 芳环的骨架伸缩振动正常情况下有四条谱带,约为 1600,1585,1500, 1450 cm-1,这是鉴定有无苯环的重要标志之一。 3、δAr-H 芳烃的 C-H 变形振动吸收出现在两处。1275—960 cm-1 为δAr-H,由 于吸收较弱,易受干扰,用处较小。另一处是 900—650 cm-1 的δAr-H 吸收较强, 是识别苯环上取代基位置和数目的极重要的特征峰。取代基越多,δAr-H 频率 越高,见表 3-10。若在 1600—2000 cm-1 之间有锯齿壮倍频吸收(C-H 面外和 C=C 面内弯曲振动的倍频或组频吸收),是进一步确定取代苯的重要旁证。 苯 670cm-1(S) 单取代苯 770~730 cm-1(VS),710~690 cm-1(S) 1,2-二取代苯 770~735 cm-1(VS) 1,3-二取代苯 810~750 cm-1(VS),725~680 cm-1(m~S)
O
XCY A
O-
X
C B+
Y
C=O 键有着双键性强的 A 结构和单键性强的 B 结构两种结构。共轭效应
将使σC=O 吸收峰向低波数一端移动,吸电子的诱导效应使σC=O 的吸收峰向高 波数方向移动。α,β不饱和的羰基化合物,由于不饱和键与 C=O 的共轭,
烯烃中的特征峰由 C=C-H 键的伸缩振动以及 C=C-H 键的变形振动所引 起。烯烃分子主要有三种特征吸收。 1、σC=C-H 烯烃双键上的 C-H 键伸缩振动波数在 3000 cm-1 以上,末端双键氢
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第四节各类有机化合物红外吸收光谱σ伸缩振动,δ面内弯曲振动,γ面外弯曲振动一、烷烃饱和烷烃IR光谱主要由C-H键的骨架振动所引起,而其中以C-H键的伸缩振动最为有用。

在确定分子结构时,也常借助于C-H键的变形振动和C-C 键骨架振动吸收。

烷烃有下列四种振动吸收。

1、σC-H在2975—2845 cm-1范围,包括甲基、亚甲基和次甲基的对称与不对称伸缩振动2、δC-H在1460 cm-1和1380 cm-1处有特征吸收,前者归因于甲基及亚甲基C-H的σas,后者归因于甲基C-H的σs。

1380 cm-1峰对结构敏感,对于识别甲基很有用。

共存基团的电负性对1380 cm-1峰位置有影响,相邻基团电负性愈强,愈移向高波数区,例如,在CH3F中此峰移至1475 cm-1。

异丙基1380 cm-1裂分为两个强度几乎相等的两个峰1385 cm-1、1375 cm-1叔丁基1380 cm-1裂分1395 cm-1、1370cm-1两个峰,后者强度差不多是前者的两倍,在1250 cm-1、1200 cm-1附近出现两个中等强度的骨架振动。

3、σC-C在1250—800 cm-1范围内,因特征性不强,用处不大。

4、γC-H分子中具有—(CH2)n—链节,n大于或等于4时,在722 cm-1有一个弱吸收峰,随着CH2个数的减少,吸收峰向高波数方向位移,由此可推断分子链的长短。

二、烯烃烯烃中的特征峰由C=C-H键的伸缩振动以及C=C-H键的变形振动所引起。

烯烃分子主要有三种特征吸收。

1、σC=C-H 烯烃双键上的C-H键伸缩振动波数在3000 cm-1以上,末端双键氢C=CH2在3075—3090 cm-1有强峰最易识别。

2、σC=C 吸收峰的位置在1670—1620 cm-1。

随着取代基的不同,σC=C吸收峰的位置有所不同,强度也发生变化。

3、δC=C-H烯烃双键上的C-H键面内弯曲振动在1500—1000 cm-1,对结构不敏感,用途较少;而面外摇摆振动吸收最有用,在1000—700 cm-1范围内,该振动对结构敏感,其吸收峰特征性明显,强度也较大,易于识别,可借以判断双键取代情况和构型。

RHC=CH 2 995~985cm -1(=CH ,S ) 915~905 cm -1(=CH 2,S )R 1R 2C=CH 2 895~885 cm -1(S )(顺)-R 1CH=CHR 2 ~690 cm -1 (反)-R 1CH=CHR 2 980~965 cm -1(S )R 1R 2C=CHR 3 840~790cm -1 (m )三、炔烃在IR 光谱中,炔烃基团很容易识别,它主要有三种特征吸收。

1、σ 该振动吸收非常特征,吸收峰位置在3300—3310 cm -1,中等强度。

σN-H 值与σC-H 值相同,但前者为宽峰、后者为尖峰,易于识别。

2、σ 一般 键的伸缩振动吸收都较弱。

一元取代炔烃σ 出现在2140—2100 cm -1,二元取代炔烃在2260—2190 cm -1,当两个取代基的性质相差太大时,炔化物极性增强,吸收峰的强度增大。

当 处于分子的对称中心时,σ 为红外非活性。

3、σ 炔烃变形振动发生在680—610 cm -1。

四、芳烃芳烃的红外吸收主要为苯环上的C-H 键及环骨架中的C=C 键振动所引起。

芳族化合物主要有三种特征吸收。

1、σAr-H 芳环上C-H 吸收频率在3100~3000 cm -1附近,有较弱的三个峰,特征性不强,与烯烃的σC=C-H 频率相近,但烯烃的吸收峰只有一个。

2、σC=C 芳环的骨架伸缩振动正常情况下有四条谱带,约为1600,1585,1500,1450 cm -1,这是鉴定有无苯环的重要标志之一。

3、δAr-H 芳烃的C-H 变形振动吸收出现在两处。

1275—960 cm -1为δAr-H ,由于吸收较弱,易受干扰,用处较小。

另一处是900—650 cm -1的δAr-H 吸收较强,是识别苯环上取代基位置和数目的极重要的特征峰。

取代基越多,δAr-H 频率越高,见表3-10。

若在1600—2000 cm -1之间有锯齿壮倍频吸收(C-H 面外和C=C 面内弯曲振动的倍频或组频吸收),是进一步确定取代苯的重要旁证。

苯 670cm -1(S ) 单取代苯 770~730 cm -1(VS ),710~690 cm -1(S )1,2-二取代苯 770~735 cm -1(VS )C C H C C C C RC CH C C C C C C H1,3-二取代苯810~750 cm-1(VS),725~680 cm-1(m~S)1,4-二取代苯860~800 cm-1(VS)五、卤化物随着卤素原子的增加,σC-X降低。

如C-F(1100~1000 cm-1);C-Cl(750~700 cm-1);C-Br(600~500 cm-1);C-I(500~200 cm-1)。

此外,C-X吸收峰的频率容易受到邻近基团的影响,吸收峰位置变化较大,尤其是含氟、含氯的化合物变化更大,而且用溶液法或液膜法测定时,常出现不同构象引起的几个伸缩吸收带。

因此IR光谱对含卤素有机化合物的鉴定受到一定限制。

六、醇和酚醇和酚类化合物有相同的羟基,其特征吸收是O-H和C-O键的振动频率。

1、σO-H一般在3670~3200 cm-1区域。

游离羟基吸收出现在3640~3610 cm-1,峰形尖锐,无干扰,极易识别(溶剂中微量游离水吸收位于3710 cm-1)。

OH 是个强极性基团,因此羟基化合物的缔合现象非常显著,羟基形成氢键的缔合峰一般出现在3550~3200 cm-1。

1,2-环戊二醇顺式异构体P470.005mol/L (CCl4) 3633 cm-1(游离),3572 cm-1(分子内氢键)。

0.04 mol/L (CCl4) 3633 cm-1(游离),3572 cm-1(分子内氢键)~3500cm-1(分子间氢键)。

2、σC-O和δO-H C-O键伸缩振动和O-H面内弯曲振动在1410—1100 cm-1处有强吸收,当无其它基团干扰时,可利用σC-O的频率来了解羟基的碳链取代情况(伯醇在1050cm-1,仲醇在1125cm-1,叔醇在1200cm-1,酚在1250cm-1)。

七、醚和其它化合物醚的特征吸收带是C-O-C不对称伸缩振动,出现在1150~1060cm-1处,强度大,C-C骨架振动吸收也出现在此区域,但强度弱,易于识别。

醇、酸、酯、内酯的σC-O吸收在此区域,故很难归属。

八、醛和酮醛和酮的共同特点是分子结构中都含有(C=O),σC=O在1750~1680cm-1范围内,吸收强度很大,这是鉴别羰基的最明显的依据。

临近基团的性质不同,吸收峰的位置也有所不同。

羰基化合物存在下列共振结构:A BC=O 键有着双键性 强的A 结构和单键性强的B 结构两种结构。

共轭效应将使σC=O 吸收峰向低波数一端移动,吸电子的诱导效应使σC=O 的吸收峰向高波数方向移动。

α,β不饱和的羰基化合物,由于不饱和键与C=O 的共轭,因此C=O 键的吸收峰向低波数移动σC=O 1685~1665cm -1 1745~1725cm -1苯乙酮 对氨基苯乙酮 对硝基苯乙酮σC=O 1691cm -1 1677cm -1 1700cm -1 σ 一般在2700~2900cm -1 区域内,通常在~2820 cm -1、~2720 cm -1附近各有一个中等强度的吸收峰,可以用来区别醛和酮。

九、羧酸1、σO-H 游离的O-H 在~3550 cm -1,缔合的O-H 在3300~2500 cm -1,峰形宽而散,强度很大。

2、σC=O 游离的C=O 一般在~1760 cm -1附近,吸收强度比酮羰基的吸收强度大,但由于羧酸分子中的双分子缔合,使得C=O 的吸收峰向低波数方向移动,一般在1725~1700 cm -1,如果发生共轭,则C=O 的吸收峰移到1690~1680 cm -1。

3、σC-O 一般在1440~1395 cm -1,吸收强度较弱。

4、δO-H 一般在1250 cm -1附近,是一强吸收峰,有时会和σC-O 重合。

十、酯和内酯1、σC=O 1750~1735 cm -1处出现(饱和酯σC=O 位于1740cm -1处),受相邻基团的影响,吸收峰的位置会发生变化。

2、σC-O 一般有两个吸收峰,1300~1150 cm -1,1140~1030 cm -1十一、酰卤σC=O 由于卤素的吸电子作用,使C=O 双键性增强,从而出现在较高波C O X Y C O X Y +-RCH=CHCOR'RCHClCOR'C O H数处,一般在~1800cm-1处,如果有乙烯基或苯环与C=O共轭,,会使σC=O 变小,一般在1780~1740cm-1处。

十二、酸酐1、σC=O由于羰基的振动偶合,导致σC=O有两个吸收,分别处在1860~1800 cm-1和1800~1750 cm-1区域,两个峰相距60 cm-1。

2、σC-O为一强吸收峰,开链酸酐的σC-O在1175~1045 cm-1处,环状酸酐1310~1210 cm-1处。

十三、酰胺1、σC=O酰胺的第ⅠⅡⅢ谱带,由于氨基的影响,使得σC=O向低波数位移,伯酰胺1690~1650 cm-1,仲酰胺1680~1655 cm-1,叔酰胺1670~1630 cm-1。

2、σN-H一般位于3500~3100 cm-1,伯酰胺游离位于~3520 cm-1和~3400 cm-1,形成氢键而缔合的位于~3350 cm-1和~3180 cm-1,均呈双峰;仲酰胺游离位于~3440 cm-1,形成氢键而缔合的位于~3100 cm-1,均呈单峰;叔酰胺无此吸收峰。

3、δN-H酰胺的第Ⅱ谱带,伯酰胺δN-H位于1640~1600 cm-1;仲酰胺1500~1530 cm-1,强度大,非常特征;叔酰胺无此吸收峰。

4、σC-N酰胺的第Ⅲ谱带,伯酰胺1420~1400 cm-1,仲酰胺1300~1260 cm-1,叔酰胺无此吸收峰。

十四、胺1、σN-H游离位于3500~3300 cm-1处,缔合的位于3500~3100 cm-1处。

含有氨基的化合物无论是游离的氨基或缔合的氨基,其峰强都比缔合的OH峰弱,且谱带稍尖锐一些,由于氨基形成的氢键没有羟基的氢键强,因此当氨基缔合时,吸收峰的位置的变化不如OH那样显著,引起向低波数方向位移一般不大于100cm-1。

伯胺3500~3300 cm-1有两个中等强度的吸收峰(对称与不对称的伸缩振动吸收),仲胺在此区域只有一个吸收峰,叔胺在此区域内无吸收。

2、σC-N脂肪胺位于1230~1030 cm-1处,芳香胺位于1380~1250 cm-1处。

相关文档
最新文档