机器学习课程论文

合集下载

大学生毕业论文范文基于机器学习的自然语言处理研究

大学生毕业论文范文基于机器学习的自然语言处理研究

大学生毕业论文范文基于机器学习的自然语言处理研究摘要本文基于机器学习的自然语言处理研究,从理论和实践两方面进行探讨。

首先,介绍了自然语言处理的基本概念和研究意义,然后详细解释了机器学习在自然语言处理中的应用,包括文本分类、情感分析、机器翻译等方面。

接下来,列举了一些基于机器学习的自然语言处理实际应用案例,并分析了其优势和局限性。

最后,总结了基于机器学习的自然语言处理研究的发展前景和挑战。

关键词:自然语言处理,机器学习,文本分类,情感分析,机器翻译,应用案例,发展前景,挑战1. 引言自然语言处理是人工智能领域的重要研究方向之一,其主要目标是使计算机能够理解和处理人类语言。

随着大数据时代的来临,以及互联网的快速发展,自然语言处理在很多领域都得到了广泛应用,比如搜索引擎、智能客服、智能翻译等。

2. 自然语言处理的基本概念和研究意义自然语言处理是研究如何使计算机能够理解和处理人类语言的一门学科,其内涵包括语言的理解、生成、翻译、问答等。

自然语言处理的研究意义主要体现在以下几个方面:提高人机交互的效果和体验、辅助知识获取与共享、加速信息处理与决策等。

3. 机器学习在自然语言处理中的应用机器学习是自然语言处理中常用的方法之一。

通过对大量的语料进行学习,机器能够识别出文本中的模式和规律,从而实现文本的自动分类、情感分析、机器翻译等任务。

在文本分类方面,机器学习可以将文本分为不同的类别,比如将新闻文章分为体育、政治、娱乐等不同类别。

在情感分析方面,机器学习可以识别文本中的情感倾向,判断文本是正面情感还是负面情感。

在机器翻译方面,机器学习可以将一种语言的文本自动翻译成另一种语言。

4. 基于机器学习的自然语言处理实际应用案例基于机器学习的自然语言处理在实际应用中具有广泛的应用前景。

以文本分类为例,许多搜索引擎和新闻聚合网站都采用了文本分类技术,对文章进行自动分类,并将其归入不同的类别。

以情感分析为例,很多企业通过对用户评论和社交媒体数据进行情感分析,来了解用户的情感倾向和需求。

机器学习 毕业论文

机器学习 毕业论文

机器学习毕业论文随着人工智能技术的不断发展,机器学习已经成为了人工智能的重要组成部分之一。

机器学习是一种通过样本数据来训练机器学习模型,使其能够自主的从海量的数据中学习和发现规律,从而实现预测和决策的过程。

在医疗、金融、交通、物流等行业都被广泛应用。

本篇论文将从机器学习的概念、应用和挑战三个方面来探讨机器学习的研究。

一、机器学习的概念机器学习是指对人工智能的一种方法。

各种学习算法使用这些数据点(或训练样本)进行模型训练,从而在出现新的数据时可以在不需要人类干预的情况下自动进行推理或泛化。

常见的机器学习算法包括决策树、神经网络、K-NN、贝叶斯分类器等。

机器学习的优点在于,由于其高效和准确性,它可以处理和决策处理大量数据,包括无法轻松人工处理的数据,例如来自传感器的数据或社交媒体上的数据。

二、机器学习的应用机器学习在医疗、金融、交通、物流等领域都有广泛的应用。

1. 在医疗领域,机器学习可以用来预测病人的疾病和治疗方案。

医生可以收集大量的数据点,例如病人的生理数据,以及与特定疾病相关的所有其他因素。

机器学习算法可以帮助医生分析这些数据并提供最佳治疗方案。

2. 在金融领域,机器学习算法可以用来创建信用评级系统和防欺诈系统。

金融机构可以使用机器学习算法来分析交易数据和其他行为,并根据历史数据建立模型,以自动决策该客户是否值得信任。

3. 在交通领域,机器学习可以用来预测交通拥堵情况和预测谁可能会违反交通规则,从而提高交通安全和效率。

通过使用传感器和其他技术收集数据,并使用机器学习算法分析它,可以建立准确的交通流量预测模型。

4. 在物流领域,机器学习可以用来创建优化方案和预测需求。

物流公司可以使用机器学习算法来分析过去的订单历史记录,并预测未来的需求,从而更好地管理库存和资源。

三、机器学习的挑战机器学习的挑战在于两个方面:算法和数据。

1. 算法。

需要选择和优化正确的算法以处理数据并建立准确的模型。

当前常用的机器学习算法包括SVM、朴素贝叶斯分类器、K-NN 等等。

机器学习论文

机器学习论文

现代机器学习理论论文题目:综述机器学习与支持向量机学院:电子工程学院专业:学号:学生姓名:综述机器学习与支持向量机摘要机器学习是研究计算机怎样模拟或实现人类的学习行为,以获取新的知识或技能,重新组织已有的知识结构使之不断改善自身的性能,它是人工智能的核心,是使计算机具有智能的根本途径。

基于数据的机器学习是现代智能技术中的重要方面,研究从观测数据出发寻找规律,利用这些规律对未来数据或无法观测的数据进行预测,包括模式识别、神经网络等在内,现有机器学习方法共同的重要理论基础之一是统计学。

支持向量机是从统计学发展而来的一种新型的机器学习方法,在解决小样本、非线性和高维的机器学习问题中表现出了许多特有的优势,但是,支持向量机方法中也存在着一些亟待解决的问题,主要包括:如何用支持向量机更有效的解决多类分类问题,如何解决支持向量机二次规划过程中存在的瓶颈问题、如何确定核函数以及最优的核参数以保证算法的有效性等。

本文详细介绍机器学习的基本结构、发展过程及各种分类,系统的阐述了统计学习理论、支持向量机理论以及支持向量机的主要研究热点,包括求解支持向量机问题、多类分类问题、参数优化问题、核函数的选择问题等,并在此基础上介绍支持向量机在人脸识别中的应用,并通过仿真实验证明了算法的有效性。

关键词:机器学习;统计学习理论;SVM;VC维;人脸识别The Summarization of Machine Learning and Support Vector MachineABSTRACTMachine learning is to study how a computer simulates or realizes human behaviors to acquire new information and skills, then rebuilds its knowledge structure to improve itself capability constantly. It is the core of Artificial Intelligence,and is the underlying way in which a computer develops intelligence.Machine learning based on data is one of the most important aspects of modern intelligence technology. It is to investigate how to find a rule starting from data observation, and use the rule to predict future data and unavailable data. Statistics is one of the most common important theory elements of the existing methods of machine learning, including Pattern Recognition and Neural Networks.SVM(Support Vector Machine) is a novel method of machine learning evoling from Statistics. SVM presents many own advantages in solving machine learning problems such as small samples, nonlinearity and high dimension. However, SVM methods exist some problems need to be resolved, mainly including how to deal with multi-classification effectively, how to solve the bottle-neck problem appearing in quadratic programming process, and how to decide kernel function and optimistical kernel parameters to guarantee effectivity of the algorithm.This paper has introduced in detail the structure, evolvement history, and kinds of classification of machine learning, and demonstrated systemly SLT(Statistical Learning Theory), SVM and research hotspots of SVM, including seeking SVM problems, multi-classification, parameters optimization, kernel function selection and so on. The application on human face recognition has been introduced based on above theory, and the simulation experiment has validated the algorithm.Keywords: Machine learning, SLT, SVM, VC dimension, Human face recognition目录摘要 (I)ABSTRACT (II)1.绪论 (1)1.1研究背景及意义 (1)1.1.1 机器学习概念的出现 (1)1.1.2支持向量机的研究背景 (1)1.2本文主要内容 (3)2.机器学习的结构及分类 (4)2.1机器学习定义及发展 (4)2.2机器学习系统的基本结构 (5)2.3机器学习的分类 (6)2.4目前研究领域 (9)3.支持向量机的原理 (10)3.1统计学习理论 (10)3.1.1机器学习问题 (10)3.1.2统计学理论的发展与支持向量机 (11)3.1.3VC维理论 (12)3.1.4推广性的界 (12)3.1.5结构风险最小化原则 (13)3.2支持向量机理论 (14)3.2.1最优分类面 (16)3.2.2标准支持向量机 (18)4.支持向量机的主要研究热点 (20)4.1支持向量机多类分类方法 (20)4.2求解支持向量机的二次规划问题 (23)4.3核函数选择及其参数优化 (25)5.支持向量机的算法仿真 (27)5.1人脸识别的理论基础 (27)5.2基于PCA方法和SVM原理的人脸识别仿真 (28)6.参考文献 (33)1.绪论1.1研究背景及意义1.1.1 机器学习概念的出现学习是人类具有的一种重要智能行为,但究竟什么是学习,长期以来却众说纷纭。

毕业论文机器学习的网络安全攻防技术研究

毕业论文机器学习的网络安全攻防技术研究

毕业论文设计
机器学习的网络安全攻防技术研究
摘要:随着网络技术的不断发展,网络安全问题日益严峻。

本文以机器学习技术为基础,结合网络安全攻防的实际需求,对网络安全攻防技术进行了深入研究。

本文提出了一种基于机器学习的网络安全攻防模型,并通过实验验证了该模型在网络安全攻防中的有效性和可行性。

本文的研究成果为网络安全攻防提供了一种新的思路和方法。

关键词:机器学习;网络安全;攻防技术;数据挖掘
第一章绪论1.1 研究背景及意义1.2 国内外研究现状1.3 研究内容和目标1.4 研究方法和技术路线1.5 论文结构安排
第二章网络安全攻防技术概述2.1 网络安全攻防技术的定义和特点2.2 网络安全攻防技术的分类2.3 网络安全攻防技术的应用领域
第三章机器学习技术概述3.1 机器学习技术的定义和特点 3.2 机器学习技术的分类3.3 机器学习技术在网络安全攻防中的应用
第四章基于机器学习的网络安全攻防模型设计 4.1 数据挖掘技术的概念和特点4.2 基于数据挖掘的网络安全攻防模型设计 4.3 基于
机器学习的网络安全攻防模型架构设计
第五章实验与验证5.1 数据集的准备和处理5.2 模型训练和优化5.3 实验结果分析和验证
第六章网络安全攻防应用案例分析6.1 案例背景介绍6.2 案例分析及验证6.3 案例结果分析和评价
第七章结论与展望7.1 研究成果总结7.2 研究不足和改进方向7.3 未来发展趋势。

基于机器学习的人工智能设计论文

基于机器学习的人工智能设计论文

基于机器学习的人工智能设计论文
本论文旨在探讨基于机器学习的人工智能设计理念。

首先,将介绍机器学习作为一种人工智能技术,并讨论其在设计方面的应用。

其次,将阐述利用机器学习来实现智能设计所具备的优势,并对比当前设计方法的弊端。

最后,将提出一个实例,说明如何利用机器学习实现智能设计。

机器学习是一种人工智能技术,它利用大量数据和算法,让计算机自发地从数据中识别规律,并在以后遇到相似的情况时可以作出准确的判断。

在设计方面,机器学习可以帮助设计师更准确地理解用户的需求,并快速有效地生成解决方案。

机器学习相较于传统方法具有更好的优势,包括提高数据处理能力、提高效率、了解用户需求、发现尚未发现的规律以及进行深层次的分析等等。

为了显示机器学习在智能设计方面的作用,本文将采用一个智能图像夹压机的案例。

该案例中,机器学习算法可以通过自动分析输入的图像数据,来识别最佳的夹压参数和位置,以及如何确保最佳的夹压效果。

除此之外,机器学习还可以用于改进针对不同输入数据的夹压参数,以及持续优化夹压机的性能等。

本文从宏观上介绍了基于机器学习的人工智能设计理念,并着重阐述了该理念在实施设计中所具有的优势。

通过一个智能图像夹压机的案例,也说明了如何利用机器学习实现智能设计。

未来,机器学习将在设计领域发挥重要的作用,它将使设计工作更加自动化、高效化,为用户提供更好的设计体验。

机器学习论文

机器学习论文

机器学习论文以下是一些热门的机器学习论文的例子:1. "A Few-shot Learning Approach for Object Recognition on Omni-directional Images" - 提出了一种在全方位图像上进行对象识别的少量样本学习方法。

2. "Generative Adversarial Networks" - 引入了生成对抗网络(GAN)的概念,用于生成高质量的图像、音乐等。

3. "Deep Residual Learning for Image Recognition" - 提出了一个深度残差学习模型,大大提升了图像识别任务的性能。

4. "Attention Is All You Need" - 提出了一个完全基于注意力机制的神经网络模型,用于自然语言处理任务。

5. "Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks" - 使用深度卷积生成对抗网络(DCGAN)来进行无监督的特征学习。

6. "DeepFace: Closing the Gap to Human-Level Performance in Face Verification" - 提出了一个基于深度学习的方法,将面部验证的性能提升到接近人类水平。

7. "Neural Machine Translation by Jointly Learning to Align and Translate" - 使用神经网络模型来进行机器翻译,并通过联合学习对齐和翻译来改进结果。

8. "Spatial Transformer Networks" - 引入了一个空间变换网络,可以在神经网络中自动学习对输入进行几何变换。

人工智能机器学习论文

人工智能机器学习论文

人工智能机器学习论文人工智能(Artificial Intelligence)是近年来飞速发展的一个热门领域,其应用范围涉及到了许多不同的领域,包括医疗、金融、交通等。

而机器学习(Machine Learning)则是人工智能的核心技术之一,它通过让机器从数据中学习并改进自身的性能。

1. 介绍人工智能机器学习的背景和概念人工智能是指通过模拟人类智能行为和思维的技术和方法,使计算机具有某些智能特征。

人工智能技术的应用领域非常广泛,包括语音识别、自然语言处理、图像识别等等。

而机器学习则是人工智能中的一种重要技术,其主要思想是通过让机器从数据中学习并改善自身的性能,而不需要明确地编程。

2. 人工智能机器学习的基本原理和主要方法2.1 监督学习监督学习是机器学习中最常用的方法之一,它通过使用带有标记的训练数据来训练模型。

训练数据包括输入特征和对应的目标输出。

通过对大量的训练样本进行学习,模型可以在给定新的输入时预测其对应的输出。

常见的监督学习算法包括线性回归、决策树、支持向量机等。

2.2 无监督学习无监督学习是指在训练数据中没有预先给定目标输出的情况下进行学习。

在无监督学习中,模型需要从数据中发现其中的结构和模式。

常见的无监督学习算法包括聚类、关联规则等。

2.3 强化学习强化学习是一种通过试错的学习方法,即在不断与环境进行交互的过程中,根据环境的反馈信息来调整自身的行为。

在强化学习中,模型通过与环境的互动来学习最优的行为策略。

著名的强化学习算法包括Q-learning、深度强化学习等。

3. 人工智能机器学习在实际应用中的案例3.1 医疗领域中的机器学习应用在医疗领域,人工智能机器学习技术被广泛应用于疾病诊断、药物研发和临床决策等方面。

通过分析大量的医疗数据,人工智能机器学习可以帮助医生准确诊断病情,并且预测患者的治疗效果。

此外,机器学习还可以基于患者的个人信息和病历,为医生提供个性化的治疗方案。

3.2 金融领域中的机器学习应用在金融领域,机器学习被用于风险评估、交易预测和欺诈检测等方面。

人工智能论文:机器学习与大数据

人工智能论文:机器学习与大数据

《人工智能》课程结课论文课题:机器学习与大数据姓名:学号:班级:指导老师:2015年11月13日机器学习与大数据摘要大数据并不仅仅是指海量数据,而更多的是指这些数据都是非结构化的、残缺的、无法用传统的方法进行处理的数据。

大数据时代的来临,随着产业界数据量的爆炸式增长,大数据概念受到越来越多的关注。

然而随着大数据“越来越大”的发展趋势,我们在分析和处理的过程中感觉到的困难也愈加的多了。

这个时候我们想到了机器学习。

机器学习几乎无处不在,即便我们没有专程调用它们,它们也经常出现在大数据应用之中,大数据环境下机器学习的创新和发展也倍加受到了关注。

关键词:大数据;机器学习;大数据时代Machine learning and big dataAbstractBig data is not only refers to the huge amounts of data,and to talk about these data are structured,broken,can't use the traditional method of processing ing of the era of big data,with the industry to the explosion of data volumes, large data concept is more and more attention.However,as the data,the development trend of"growing"in the process of analysis and processing we feel is more difficult.This time we thought about the machine learning.Machine learning is almost everywhere,even if we don't have to call them specially,they are also often appear in the big data applications,large data machine learning under the environment of innovation and the development also has received the attention.Keywords:Big Data;Machine learning;Age of Big Data目录第1章引言 (2)第2章机器学习与大数据 (3)2.1机器学习 (3)2.2大数据 (3)第3章大数据时代下的机器学习 (3)3.1大数据时代 (3)3.2机器学习已成为大数据的基石 (3)3.3机器学习帮助数据日志的分析解决 (4)第4章大数据时代应运而生的机器学习新趋势 (4)4.1机器学习的研究方向 (4)4.2机器学习适应大数据时代发展 (4)第5章结束语 (5)参考文献 (5)第1章引言机器学习几乎无处不在,即便我们没有专程调用它们,它们也经常出现在大数据应用之中。

《机器学习的实践》论文

《机器学习的实践》论文

写一篇《机器学习的实践》论文
《机器学习的实践》
随着科技的进步,机器学习的重要性日益凸显。

它改变了人类对数据的分析方式,使我们能够更快地获得丰富的知识和信息。

机器学习不仅仅是一个理论,而是一种新的方法,可以帮助我们更好地解决现实问题。

本文将就机器学习的实践进行探讨。

1. 首先,应具备基本的机器学习概念。

机器学习是指为了实现某种目标,使得计算机能够从已经收集到的大量数据中学习知识,进而提供有意义的结论。

机器学习分为三类:监督学习、无监督学习和半监督学习。

2. 其次,机器学习过程涉及到五个主要步骤:数据收集,特征工程,模型选择,训练和测试。

数据收集:首先是进行数据收集。

机器学习需要大量真实的数据,因此,要进行数据收集工作,以便机器学习得到所需的材料。

特征工程:其次是进行特征工程,也就是从原始数据中提取出有意义的特征。

这一步是机器学习的核心部分,也是最具挑战性的一环,这一步定义了模型的表现。

模型选择:然后是选择合适的模型,即匹配最适合要求的模型。

训练:接下来是使用所收集到的数据,使用所选择的模型进行
训练。

训练过程会用到大量数据,一般情况下,会按顺序使用数据,每次机器学习一小部分数据。

测试:最后是进行测试,当数据都通过训练后,使用测试数据来测试模型的准确性,如果模型的表现不好,则可以进行模型的调整,直至满意。

此外,实际的机器学习实践还需要考虑计算资源的分配问题,以及数据处理、特征选择等问题。

总之,机器学习是一项极具挑战性的实践,需要从数据到模型等多个方面进行思考,以实现更好的结果。

机器学习与数据分析期末结课论文

机器学习与数据分析期末结课论文

机器学习与数据分析期末结课论文随着信息技术的迅猛发展,机器学习和数据分析正逐渐成为当今社会中重要的领域。

本文将探讨机器学习和数据分析在不同领域的应用,以及对社会和个人产生的影响。

第一部分:机器学习的基础概念和原理机器学习是一种基于人工智能的方法,通过让计算机自动学习和改进,从而使其能够完成特定任务。

其基本原理是通过大量的数据训练算法,并利用统计学和概率论的方法进行模型的建立和预测。

机器学习算法主要分为监督学习、无监督学习和强化学习等。

第二部分:机器学习在商业领域的应用在商业领域,机器学习可以帮助企业实现更加精准的市场定位和个性化推荐。

通过对顾客行为和购买记录的分析,企业可以更好地了解顾客需求,并提供定制化的产品和服务。

此外,机器学习还可以帮助企业进行风险管理和预测,从而提高决策的准确性和效率。

第三部分:机器学习在医疗领域的应用在医疗领域,机器学习被广泛运用于疾病诊断和治疗方案的优化。

通过利用大量的医疗数据和病例记录,机器学习可以帮助医生提高诊断的准确性,并根据患者的具体情况进行个性化的治疗方案选择。

此外,机器学习还可以帮助医疗机构进行资源和排班的优化,提高医疗服务的效率。

第四部分:数据分析的基本方法和技术数据分析是一种通过对数据的收集、清洗、转换和建模等过程,提取有用信息的方法。

数据分析的基本方法包括描述性分析、推断性分析和预测性分析等。

数据分析还可以借助统计学和机器学习的技术,进行模式识别和异常检测等。

第五部分:数据分析在金融领域的应用在金融领域,数据分析可以帮助机构进行风险控制和投资决策。

通过对金融市场数据的分析和建模,机构可以发现市场的趋势和规律,并进行相应的投资策略调整。

同时,数据分析还可以帮助金融机构进行欺诈检测和信用评估,提高交易的安全性和风险管理能力。

第六部分:机器学习和数据分析对社会和个人的影响机器学习和数据分析的发展对社会和个人产生了深远的影响。

在社会层面,机器学习和数据分析可以促进产业的升级和转型,提高生产力和经济效益;在个人层面,机器学习和数据分析可以改善人们的生活质量,提供个性化的服务和支持。

《机器学习的系统》论文

《机器学习的系统》论文

写一篇《机器学习的系统》论文机器学习是一种新兴的研究领域,其目的是通过数据和算法来让机器学习从数据中学习特定任务并优化其性能。

本文旨在提供一种机器学习系统的综述,以及该系统如何为机器学习提供帮助。

文章将首先探讨构建机器学习系统的必要条件。

然后,我们将探讨机器学习中的几种不同方法,包括有监督学习、无监督学习和强化学习。

此外,我们还将讨论机器学习系统的应用,包括计算机视觉、自然语言处理和推荐系统。

最后,我们将总结本综述,并提出关于机器学习系统的未来研究前景。

在构建机器学习系统之前,必须考虑几个关键因素,包括数据收集、特征提取、算法选择、模型训练和模型验证。

首先,在数据收集阶段,是必须考虑的重要步骤,因此需要充分考虑正确的数据集,以及避免任何偏离的情况。

其次,特征提取是由机器学习系统提取信息的步骤,以便能够识别感兴趣的模式。

算法选择是非常重要的,因为它可以用来构建一个有效的模型,以实现机器学习任务所需的性能。

模型训练是根据给定的数据集来调整和优化算法参数,以使模型有效改善性能。

最后,模型验证是通过测试学习模型在未知数据上的表现,来确定其表现是否有效。

机器学习系统主要有三种类型,分别是有监督学习、无监督学习和强化学习。

有监督学习是用来将数据映射到特定的标签的学习方法。

它通过给定的输入数据集和对应的标签,来学习如何使用输入数据来预测标签。

无监督学习是没有任何标签的数据的学习方法,通过算法来发现数据中相关的结构和关系。

强化学习是基于奖励机制的学习方法,它让机器通过尝试,学习如何做出最有利的行为来获得最大回报。

机器学习系统可以用来实现一些高级应用,例如计算机视觉,自然语言处理,推荐系统等。

计算机视觉是利用计算机来识别图像或视频中的物体的技术。

自然语言处理技术是用来处理文本数据,提取文本中隐含的有用信息。

推荐系统利用机器学习技术,会根据用户的兴趣,提供有关内容。

本文对于机器学习系统作了综述,包括了构建这种系统所需要考虑的关键因素,以及机器学习系统中的几种不同方法,以及它们可以用来实现的高级应用。

机器学习论文

机器学习论文

A Framework for Quality Assurance of Machine Learning Applications Christian Murphy Gail Kaiser Marta AriasDept. of Computer Science Columbia UniversityNew York, NY cmurphy@ Dept. of Computer ScienceColumbia UniversityNew York, NYkaiser@Center for ComputationalLearning SystemsColumbia UniversityNew York, NYmarta@AbstractSome machine learning applications are intended to learn properties of data sets where the correct answers are not already known to human users. It is challenging to test and debug such ML software, because there is no reliable test oracle. We describe a framework and collection of tools aimed to assist with this problem. We present our findings from using the testing framework with three implementations of an ML ranking algorithm (all of which had bugs).1. IntroductionWe investigate the problem of making machine learning (ML) applications dependable, focusing on software quality assurance. Conventional software engineering processes and tools do not always neatly apply: in particular, it is challenging to detect subtle errors, faults, defects or anomalies (henceforth “bugs”) in those ML applications where there is no reliable test “oracle”. The general class of software systems with no reliable test oracle available is sometimes known as “non-testable programs” [1].We are specifically concerned with ML applications addressing ranking problems, as opposed to the perhaps better-known classification problems. When such applications are applied to real-world data (or, for that matter, to “fake” data), there is typically no easy way to determine whether or not the program’s output is “correct” for the input. In general, there are two phases to “supervised” machine learning – the first where a training data set with known positive or negative labels is analyzed, and the second where the results of that analysis (the “model”) are applied to another data set where the labels are unknown; the output of the latter is a ranking, where when the labels become known, it is intended that those with a positive label should appear as close to the top of the ranking as possible given the information known when ranked. (More accurately, labels are non-negative numeric values, and ideally the highest valued labels are at or near the top of the ranking, with the lowest valued labels at or near the bottom.) Formal proofs of an ML ranking algorithm’s optimal accuracy do not guarantee that an application implements or uses the algorithm appropriately, and thus software testing is needed.In this paper, we describe a framework supporting testing and debugging of supervised ML applications that implement ranking algorithms. The current version of the framework consists of a collection of modules targeted to several ML implementations of interest, including a test data set generator; tools to compare the output models and rankings; several trace options inserted into the ML implementations; and utilities to help analyze the traces to aid in debugging.We present our findings to date from a case study concerning the Martingale Boosting algorithm, which was developed by Long and Servedio [2] initially as a classification algorithm and then adapted by Long and others [3] into a ranking algorithm. “MartiRank” was a nice initial target for our framework since the algorithm is relatively simple and there were already three distinct, actively maintained implementations developed by different groups of programmers.2. Background2.1. Machine learning applicationsPrevious and ongoing work at the Center for Computational Learning Systems (CCLS) has focused on the development of ML applications like the system illustrated in Figure 1 [3]. The goal of that system, commissioned by Consolidated Edison Company ofNew York, is to rank the electrical distribution feeders most susceptible to impending failure with sufficient accuracy so that timely preventive maintenance can be taken on the right feeders at the right time. The prospective users would like to reduce feeder failure rates in the most cost effective manner possible. Scheduled maintenance avoids risk, as work is done when loads are low, so the feeders to which load is shifted continue to operate well within their limits. Targeting preventive maintenance to the most at-risk feeders (those at or near the top of the ranking) offers huge potential benefits. In addition, being able to predict incipient failures in close to real-time can enable crews and operators to take short-term preventative actions (e.g., shifting load to other, less loaded feeders). However, the ML application must be quite dependable for an organization to trust its results sufficiently to thusly deploy expensive resources.Other ML algorithms have also been investigated, such as Support Vector Machines (SVMs) [4] and linear regression, as the basis for the ML Engine of the example system and other analogous applications. However, much of the CCLS research has focused on MartiRank because, in addition to producing good results, the models it generates are relatively easy to understand and sometimes “actionable”. That is, it is clear which attributes from the input data most contributed to the model and thus the output ranking.In some cases the values of those attributes might then be closely monitored and/or externally adjusted.This example ML application is presented elsewhere [3]. The purpose of this paper is to present the framework we developed for testing and debugging such applications, with the goal of making them more dependable. The framework is written in Python on Linux. Our initial results reported here focus on the MartiRank implementations.One complication in this effort arose due to conflicting technical nomenclature: “testing”, “regression”, “validation”, “model” and other relevant terms have very different meanings to machine learning experts than they do to software engineers. Here we employ the terms “testing” and “regression testing” as appropriate for a software engineering audience, but we adopt the machine learning sense of “model” (i.e., the rules generated during training on a set of examples) and “validation” (measuring the accuracy achieved when using those rules to rank the training data set, rather than a different data set).2.2. MartiRank algorithmThe algorithm is shown in Figure 2 [3]. The pseudo-code presents it as applied to feeder failures, where the label indicates the number of failures (zero meaning the feeder never failed); however, the algorithm could be applied to any attribute-value data set labeled with non-negative values. In each round of MartiRank, the set of training data is broken into sub-lists (there are N sub-lists in the N th round, each containing 1/N th of the total number of failures). For each sub-list, MartiRank sorts that segment by each attribute, ascending and descending, and chooses the attribute that gives the best “quality”. For quality comparisons, the implementations all use a slight variant, adapted to ranking rather than classification, of the Area Under the receiver operating characteristic Curve (AUC) [5]. The AUC is a conventional quality metric employed in the ML community: 1.0 is the best possible, 0.0 is the worst possible, and 0.5 is random.In each round, the definition of each segment thus has three facets: the percentage of the examples from the original data set that are in the segment, the attribute on which to sort them, and the direction (ascending or descending) of the sort. In the model thatis generated, the N th round appears on the N th line of a plain-text file, with the segments separated by semicolons and the segment attributes separated by commas. For instance:0.4000,32,a;0.6500,12,d;1.0000,nopFigure 1. Incoming dynamic data is stored in the main database. The ML Engine combines this with static data to generate and update models, and then uses these models to create rankings, which can be displayed via the decision support app. Any actions taken as a result are tracked and stored in the database.might appear on the third line of the model file, representing the third round. This means that the first segment contains 40% of the examples in the data set and sorts them on attribute 32, ascending. The second segment contains the next 25% (65 minus 40) and sorts them on attribute 12, descending. The last segment contains the rest of the attributes and does a “NOP” (no-op), i.e., does not sort them again because the order resulting from the previous round had the best quality compared to re-sorting on any attribute.This model could then be re-applied to the training data (called “validation” in ML terminology) or applied to another, previously-unseen set of data (called the “testing data”). In either case, the output is a ranking of the data set examples and the overall quality of the entire ranked list can be calculated.2.3. MartiRank implementationsThe first of the three implementations was written in Perl, hereafter referred to as PerlMarti, as a straightforward implementation of the algorithm that included no optimizations. However, when applied to large data sets, e.g., thousands of examples with hundreds of attributes, PerlMarti is rather slow.A C version, hereafter CMarti, was written to improve performance (speed). CMarti also introduced some experimental options to try to improve quality.Another implementation also written in C, called FastCMarti, was designed to minimize the costly overhead of repeatedly sorting the attribute values. It sorted the full data set on each attribute at the beginning of an execution, before the first round, and remembered the results; it also used a faster sorting algorithm than CMarti (hence the name FastCMarti). This implementation also introduced some different experimental options from those in CMarti.2.4. Data setsThe MartiRank algorithm is based on sorting, with the implicit assumption that the sorted values are numerical. While in principle lexicographic sorts could be employed, non-numerical sorts do not seem intuitively appealing as ML predictors; for instance, it may not be meaningful to think of an electrical device manufactured by “Westinghouse” as more or less than something made by “General Electric” just because of their alphabetical ordering. Thus the implementations expect that all input data will be numerical.Though much of the real-world data of interest (from the system of Figure 1) indeed consists of numerical values – including floating point decimals, dates and integers – some of the data is instead categorical. Categorical data refers to attributes in which there are K different distinct values (typically alphanumeric as in the manufacturer example), but there is no sorting order that would be appropriate for the ranking algorithm. In these cases, a given attribute with K distinct values is expanded to K different attributes, each with two possible values: a 1 if the example has the corresponding attribute value, and a 0 if it does not. That is, amongst the K attributes, each example should have exactly one 1 and K-1 0’s.Some attributes in the real-world data sets need to be removed or ignored, for instance, because the values consist of free-text comments. Generally, these cannot be converted to values that can be meaningfully sorted.2.5. Related workAlthough there has been much work that applies machine learning techniques to software engineering and software testing [6, 7], there seems to be very little work in the reverse sense: applying software testing techniques to machine learning software, particularlyFigure 2: MartiRank Algorithm.those ML applications that have no reliable test oracle. Our framework builds upon Davis and Weyuker’s [8] approach to testing with a “pseudo-oracle” (comparing against another implementation of the specification), but most aspects of our framework are still useful even when there is just one implementation.There has been much research into the creation of test suites for regression testing [9] and generation of test data sets [10, 11], but not applied to ML code. Repositories of “reusable” ML data sets have been collected (e.g., the UCI Machine Learning Repository [12]) for the purpose of comparing result quality, but not for testing in the software engineering sense.Orange [13] and Weka [14] are two of the several frameworks that aid in developing ML applications, but the testing functionality they provide is again focused on comparing the quality of the results, not the “correctness” or dependability of the implementations.3. Testing Approach3.1. Optimization optionsCMarti and FastCMarti provide runtime options that turn on/off “optimizations” intended to improve result quality. These generally involve randomization (probabilistic decisions), yet it is challenging to evaluate test results when the outputs are not deterministic. Therefore, these options were disabled for all testing thus far: Our goal in comparing these implementations was not to get better results but to get consistent results.We initially believed that PerlMarti was a potential “gold standard” because it was truest to the algorithm as well as originally coded by the algorithm’s inventor, but as we shall see we found bugs in it, too. However, the fact that we had three implementations of MartiRank coded by different programmers helped immensely: we could generally assume that – with all options turned off – if two implementations agreed and the third did not, the third one was probably “wrong” (or, at least, we would know that something was amiss in at least one of them).3.2. Types of testingWe focused on two types of testing: comparison testing to see if all three implementations produced the same results, and regression testing to compare new revisions of a given implementation to previous ones (after bug fixes, refactorings, and enhancements to the optimization options).The data sets for some test cases were manually constructed, e.g., so that a hand-simulation of the MartiRank algorithm produced a “perfect” ranking, with all the positive examples (feeder failures) at the top and all the negative examples (non-failures) at the bottom. These data sets were very small, e.g., 10 examples each with 3 attributes.We also needed large data sets, to exercise a reasonable number of MartiRank rounds (the implementation default is 10) with still sufficiently many examples in each segment in the later rounds. We tested with some (large) real-world data sets, which generally have many categorical attributes, many repeating numerical values, and many missing values. However, in order to have more control over the test cases, e.g., to focus on boundary conditions from the identified equivalence classes, most of our large data sets were automatically generated with F failures (positive-labeled examples), N numerical attributes and K categorical attributes. F is any percentage between 0 and 100. The N numerical attributes were specified as including or not including any repeating values, with 0 to 100 percent missing values; the sets of values for each attribute were independent. For each of the K categorical attributes, the number of distinct values and the percent per category and missing were specified.3.3. Models versus rankingsOur evaluation of test outputs focused primarily on the models, as it is virtually always the case that if two versions produce two different models, then the rankings will also be different: if different models do produce the same rankings, that is likely by chance (i.e., an effect of the data set itself and not the model) and does not mean that the versions were producing “consistent” results. However, even when two implementations or revisions generate the same model, we cannot assume that the rankings will be the same: CMarti and PerlMarti generate rankings via programs that are separate from the code used to generate the models, so it is possible that differences could exist.FastCMarti does not follow the typical supervised ML convention in which a training data set is used to generate a model and then that model is given a separate “testing” data set with unknown labels to rank. Instead, the two data sets are joined together and each example marked accordingly. FastCMarti runs on the combined data set, but only the training data are used to create the model. The testing data are sorted and segmented along with the training data, and the final ranking of the testing data is the output – the model itself is merely a side effect that we needed to extract in order to compare across versions.4. Testing Framework4.1. Generating data setsWe created a tool that randomly generates values and puts them in the data set according to certain parameters. This allowed us to separately test different equivalence classes and ultimately create a suite of regression tests that covered those classes, focusing on boundaries. The parameters include the number of examples, the number of attributes, and the names of the output test data set files (which were produced in different formats for the different implementations).The data generation tool can be run with a flag that ensures that no values are repeated within the data set. This option was motivated by the need to run simple tests in which all values are different, so that sorting would necessarily be deterministic (no “ties”). It works as follows: for M attributes and N examples, generate a list of integers from 1 to M*N and then randomly shuffle them. The numbers are then placed into the data set. If the flag is not used, then each value in the data set is simply a random integer between 1 and M*N; there is thus a possibility that numbers may repeat, but this is not guaranteed.The utility is also given the percentage of failures to include in the data set. For all test cases discussed in this paper, each example could only have a label of 1 (indicating a failure) or 0 (non-failure). Similarly, a parameter specifies the percentage of missing values. Note that the label value is never missing.Lastly, parameters could be provided for generating categorical data (with K distinct values expanded to K attributes as described above). For creating categorical data, the input parameter to the data generation utility is of the format (a1, a2, ..., a K-1, a K, b), where a1 through a K represent the percentage distribution of those values for the categorical attribute, and b is the percent of unknown values. The utility also allows for having multiple categorical attributes, or for having none at all.4.3. Comparing modelsWe created a utility that compares the models and reports on the differences in each round: where the segment boundaries are drawn, the attribute chosen to sort on, and the direction. Typically, however, any difference between models in an earlier round would necessarily affect the rest of the models, so only the first difference is of much practical importance.4.4. Comparing rankingsAs explained above, we cannot simply assume that the same models will produce the same rankings for different implementations or revisions. This utility reports some basic metrics, such as the quality (AUC) for each ranking, the number of differences between the rankings (elements ranked differently), the Manhattan distance (sum of the absolute values of the differences in the rankings), and the Euclidean distance (in N-dimensional space). Another metric given is the normalized Spearman Footrule Distance, which attempts to explain how similar the rankings are (1 means that they are exactly the same, 0 means they are completely in the opposite order) [15]. Some of these metrics have mostly been useful when testing the “optimization” options, outside the scope of this paper.4.5. Tracing optionsThe final part of the testing framework is a tool for examining the differences in the trace outputs produced by different test runs. We added runtime options to each implementation to report significant intermittent values that arise during the algorithm’s execution, specifically the ordering of the examples before and after attempting to sort each attribute for a given segment, and the AUC calculated upon doing so. This is extremely useful in debugging differences in the models and rankings, as it allows us to see how the examples are being sorted (there may be bugs in the sorting code), what AUC values are determined (there may be bugs in the calculations), and which attribute the code is choosing as best for each segment/round (there may be bugs in the comparisons).5. Findings5.1. Testing with real-world dataWe first ran tests with some real-world data on all three implementations. Those data sets contained categorical data and both missing and repeating values. Our hope was that, with all “optimizations” disabled, the three implementations would output identical models and rankings.Not only did PerlMarti and FastCMarti produce different models, but CMarti reproducibly gave seg faults. Using the tracing utilities for the CMarti case, we found that some code that was only required for one of the optimization options was still being called even when that flag was turned off – but the internal state was inappropriate for that execution path. We refactored the code and the seg faults disappeared. However, the model then created by CMarti was still different from those created by either of the other two.These tests demonstrated the need for “fake” (controlled) data sets, to explore the equivalence classes of non-repeating vs. repeating values, none-missing vs. missing values, and non-categorical vs. categorical attributes (which are necessarily repeating).5.2. Simple comparison testingWe hand-crafted data sets (i.e., we did not yet use the framework to generate data sets) to see whether the implementations would give the same models in cases where a “perfect” ranking was possible. That is, we constructed data sets so that a manually-simulated sequence of sorting the segments (i.e., model) led to a ranking in which all of the failures were at the top and all the non-failures were at the bottom. It was agreed by the CCLS machine learning researchers that any implementation of MartiRank should be able to find such a “correct” model. And they generally did.In one of the “perfect” ranking tests, however, the implementations produced different results because the data set was already ordered as if sorted on the attribute that MartiRank would choose in the first round. In the reported models, CMarti sorted anyway, but PerlMarti and FastCMarti did NOPs because leaving the data as-is would yield the same quality (AUC).After consulting with the CCLS ML researchers, we “fixed” PerlMarti and FastCMarti so that they would always choose an attribute to sort on in the first round, i.e., never select NOP in the first round. The rationale was that one could not expect that the initial ordering of a real-world data set would happen to produce the best ranking in the first round, and any case in which the data are already ordered in a way that yields the “best” quality is likely just a matter of luck – so sorting is always preferable to not sorting. However, the MartiRank algorithm as defined in Figure 2 does not treat the first round specially, so the implementations now thus deviate from the algorithm.In another simple test, we wanted to see what would happen if sorting on two different attributes gave the same AUC. For instance, if sorting on attribute #3 ascending would give the same AUC as sorting on attribute #10 descending, and either provided the best AUC for this segment, which would the code pick? Our assumption was that the implementations should choose an attribute/direction for sorting only when it produces a better AUC than the best so far, starting with attribute #0 (leftmost in the data file) and going up to attribute #N (rightmost), as specified in MartiRank.This led to the interesting discovery that FastCMarti was doing the segmentation (sub-list splits) differently from PerlMarti and CMarti. By using the framework’s model analysis tool, we found that even when FastCMarti was choosing the same attribute to sort on as the other implementations, in the subsequent round the percentage of the data set in each segment could sometimes be different.It appeared (and we confirmed using the tracing analysis tool) that the difference was that FastCMarti was taking enough failure examples (labeled as 1s) to fill the segment with the appropriate number, and then taking all non-failure examples (0s) up to the next failure (1). In contrast, CMarti and PerlMarti took only enough failures to fill the segment and stopped there. For example, if the sequence of labels were:1 1 0 0 1 0 0 1 0 0and we were in the second round (two segments, each having ½ of the failures), then CMarti and PerlMarti would create segments like this:1 1 | 0 0 1 0 0 1 0 0but FastCMarti would create segments like this:1 1 0 0 | 1 0 0 1 0 0Both are “correct” because the algorithm merely says that, in the N th round, each segment should contain 1/N th of the failures, and here each segment indeed contains two of the four. The algorithm does not specify where to draw the boundaries between the non-failures. This is the first instance we found in which the MartiRank algorithm did not address an implementation-specific issue, which does not matter with respect to formal proofs, but does matter with respect to consistent testing.Once these issues were addressed, we repeated all the small test cases as well as with larger generated data sets, both for regression testing purposes (to ensure that the fixes did not introduce any new bugs) and for comparison testing (to ensure that all three implementations produced the same models).5.3. Comparison testing with repeating valuesThe next tests we performed with repeating values, that is, the same value could appear for a given attribute for different examples (in the real-world data sets, voltage level and activation date attributes involve many repeating values). We again started with small hand-crafted data sets that allowed us to judge the behavior by inspection. In one test, PerlMarti and CMarti found a “perfect” ranking after two rounds, but FastCMarti did not find one at all. In another test, PerlMarti/CMarti vs. FastCMarti showed different segmentations in a particular round.Then by using larger, automatically generated data sets, we confirmed our intuition that the CMarti and PerlMarti sorting routines were “stable” (i.e., theymaintain the relative order of the examples from the previous round when the values are the same), whereas FastCMarti was using a faster sorting algorithm that was not a stable sort (in particular producing a different order than a stable sort in the case of “ties”). Again, the algorithm did not address a specific implementation issue – which sorting approach to use – and different implementation decisions led to different results.After replacing FastCMarti’s sorting routine with a stable sort, we noticed that – again in an effort to be “fast” – the resulting list from the descending sort was simply the reverse of the list from the ascending sort, which does not retain the stability. For instance, if the stable ascending sort returned examples in this order:1 2 A B 5 6where A and B have the same values, then the stable descending sort should be:6 5 A B 2 1But FastCMarti was simply taking the reverse of the ascending list to produce:6 5 B A 2 1This code was “fixed”. This modification necessarily had an adverse effect on runtime, but provided the consistency we sought.5.4. Comparison testing of rankingsPreviously we had only compared the models. Now for the cases where the models were the same, we wanted to check whether the rankings were also identical. For CMarti and PerlMarti, ranking generation involved a separate program that we had not yet tested.We used the testing framework to create new large data sets with repeating values and used the analysis tool to analyze the rankings (at this point, all three implementations were producing the same models). CMarti and PerlMarti agreed on the rankings, but FastCMarti did not. The framework allowed us to determine how different, based on the various metrics such as normalized Spearman Footrule Distance and AUCs, as well as to determine why they were different, using the trace analysis tool.Using the tracing utility to see how the examples were being ordered during each sorting round, we found that the “stability” in FastCMarti was based on the initial ordering from the original data set, and not from the sorted ordering at the end of the previous round. That is, when a list that contained repeating values was to be sorted, CMarti and PerlMarti would leave those examples in their relative order as they stood at the end of the previous round, but FastCMarti would leave them in the relative order as they stood in the original data set. FastCMarti was designed this way to make it faster, i.e., by “remembering” the sort order for each attribute at the very beginning of the execution, and not having to re-sort in each round.For instance, a data set with entries A and B such that A appears in the set before B would look like: ....A....B....If in the first round MartiRank sorts on some attribute such that B gets placed in front of A, the ordering would then look like:....B....A....In the second round, if the examples are in the same segment and MartiRank sorts on some attribute that has the same value for those two examples, PerlMarti and CMarti would then end up like this:......BA......because B was before A at the end of round 1. However, FastCMarti would do this:......AB......because A was before B in the original data set.Since this was not explicitly addressed in the MartiRank algorithm, we contacted Long and Servedio, who agreed that remembering the order from the previous round was more in the spirit of the algorithm since it would take into account its execution history, rather than just the somewhat-randomness of how the examples were ordered in the original data set. Fixing this problem will require rethinking the entire approach to “fastness”, which has not yet occurred; thus all further comparison testing omitted FastCMarti.5.5. Comparison testing with sparse data setsOnce PerlMarti and CMarti were producing the same models for the cases with repeating values, we began to test data sets that had missing values. We used the framework to create large, randomly-generated (but non-repeating) data sets with percent of missing values as a parameter (0.5%, 1%, 5%, 10%, 20%, and 50%).In these tests, both implementations were initially generating different models, and there was no way to know which was “correct” since the MartiRank algorithm does not dictate how to handle missing values. Consulting with the CCLS ML researchers, we decided that the sorting should be “stable” with respect to missing values in that examples with a missing attribute value should remain in the same position, with the other examples (with known values) sorted “around” them. For instance, when the values:4 A5 2 1 B C 3are sorted in ascending order (with A, B and C representing the missing values), the result should be:1 A234 B C 5。

机器学习:入门必读的经典论文推荐

机器学习:入门必读的经典论文推荐

机器学习:入门必读的经典论文推荐引言机器学习是人工智能领域的重要分支,它研究如何通过计算机自动地学习和改进任务的性能。

随着近年来大数据和计算力的快速发展,机器学习取得了深刻而广泛的应用。

在理解机器学习的基本原理和算法之前,了解一些经典论文可以帮助我们建立坚实的基础。

本文将介绍一些入门必读的经典论文,并对其核心思想进行简要概括。

论文推荐1. "A Few Useful Things to Know About Machine Learning" by Pedro Domingos (2012)这篇论文总结了作者多年从事机器学习研究和实践中积累的经验,并提供了一些有关数据集、模型选择、特征工程等方面的实用技巧。

它让新手能够迅速入门并了解如何避免常见陷阱。

2. "A Neural Probabilistic Language Model" by Yoshua Bengio et al. (2003)这篇论文提出了神经概率语言模型(Neural Probabilistic Language Model),将词语表示为低维向量,并通过神经网络学习其表示和概率分布,从而解决了语言模型中的一些问题。

该模型为后续深度学习在自然语言处理领域的发展奠定了基础。

3. "Support-Vector Networks" by Bernhard Schölkopf et al. (1995)这篇论文介绍了支持向量机(Support Vector Machines, SVM)算法,提出了构建最大间隔超平面的思想,并讨论了其在分类和回归任务中的应用。

SVM 是一种非常强大且广泛应用的机器学习方法,在这篇论文中你将对其原理有一个深入的了解。

4. "Learning to Detect Objects in Images via a Sparse,Part-Based Representation" by Piotr Dollar et al. (2009)这篇论文介绍了一种基于稀疏表达和部件划分的图像目标检测方法。

spsspro机器学习类论文

spsspro机器学习类论文

spsspro机器学习类论文
近年来,机器学习(Machine Learning)作为一个跨学科领域,引起了广泛的关注。

它是一个基于数据的技术,其通过定义算法和模型,来学习从没有管理经验、非结构化数据和持久发展的数据中提取信息。

因此,机器学习在大规模数据挖掘和应用技术中有着重要的地位。

SPSSPro是一个专门用于数据分析的软件系统,它主要用于统计分析和数据挖掘,它是一个集成环境,可以实现从数据收集、编辑、统计分析到数据可视化的集成系统,可以解决许多应用技术问题。

此外,SPSSPro还拥有面向数据挖掘的机器学习工具,这些工具可以帮助用户更好地理解所学习的数据。

本文旨在探讨SPSSPro机器学习工具的功能和特点,并展示其在数据分析和数据挖掘中的应用。

首先,本文介绍了机器学习的基本概念,为介绍SPSSPro提供了基础。

其次,本文介绍了SPSSPro软件的基本功能和特点,以及其机器学习模块的主要功能,包括:分类、聚类、回归和时间序列模型,以及软件中的其他功能。

此外,本文也介绍SPSSPro的一些第三方应用,包括社交媒体分析,商业智能和人工智能等,以及它们如何应用到SPSSPro中。

最后,本文还展示了SPSSPro机器学习工具在数据挖掘中的实际应用,并讨论了研究和开发中的可能挑战,以及未来可能实现的可能性。

综上所述,SPSSPro机器学习工具是一个强大的工具,可以用来进行大规模数据挖掘和分析,并实现多种应用,包括社交媒体分析、商业智能和人工智能等。

它的丰富的功能和实用的工具,使它能够应
用于许多不同的领域。

未来,SPSSPro机器学习软件将面临更多的挑战,但是它仍然是未来研究和开发的重要基础。

机器学习论文

机器学习论文

机器学习论文
引言
机器研究是一门研究如何使计算机系统从数据中自动获取知识和经验的学科。

近年来,机器研究在各个领域取得了巨大的进展,并在人工智能的发展中起到了重要的作用。

本文将探讨机器研究的基本概念、应用领域以及发展趋势。

基本概念
机器研究的核心思想是通过让计算机从大量的数据中研究,从而提高其性能和智能水平。

主要的机器研究算法包括监督研究、无监督研究和强化研究。

监督研究通过给定的输入和输出数据建立模型,用于预测新的输入数据的输出值。

无监督研究则是通过对数据进行聚类或降维等处理来发现其中的结构和模式。

强化研究则通过与环境进行交互,通过试错的方式来研究最优的行为策略。

应用领域
机器研究在各个领域都有广泛的应用。

在医疗领域,机器研究
可以用于预测疾病的风险,辅助医生进行诊断。

在金融领域,机器
研究可以用于股票市场预测和风险管理。

在交通领域,机器研究可
以用于智能驾驶和交通流量优化。

此外,机器研究还可以应用于自
然语言处理、图像识别、推荐系统等领域。

发展趋势
随着数据量的不断增加和计算能力的提升,机器研究的发展前
景非常广阔。

未来,我们可以预见机器研究将在更多领域得到应用,使人工智能技术更加普及和智能化。

同时,为了解决机器研究中的
挑战和问题,如数据隐私和模型可解释性等,还需要进一步研究和
发展相关的算法和技术。

结论
机器学习作为一门关键的人工智能技术,已经在各个领域产生
了深远的影响。

通过不断的研究和创新,机器学习将继续发展,并
在未来的科技进步中发挥重要的作用。

毕业论文设计机器学习的智能交通管理系统研究

毕业论文设计机器学习的智能交通管理系统研究

毕业论文设计机器学习的智能交通管理系统研究摘要:随着城市化的发展,交通问题越来越突出。

如何提高交通运行效率、减少拥堵和事故,是当前交通管理领域亟待解决的问题。

本文基于机器学习技术,探究了智能交通管理系统的设计和实现。

首先,介绍了智能交通管理系统的基本概念和研究背景;然后,分析了机器学习技术在智能交通管理系统中的应用,如交通数据的采集和处理,交通流量预测和调度优化等;接着,针对机器学习算法的优异性能,提出了一种基于机器学习的交通管理系统方案,并对其进行实验验证,并对其性能进行评估;最后,通过实验数据分析,论证了本文所提出的智能交通管理系统对交通拥堵和事故等问题的解决方案的有效性和可行性。

第一章绪论1.1 研究背景1.2 研究意义1.3 研究目的1.4 研究方法第二章智能交通管理系统的基本概念和研究现状2.1 智能交通管理系统的定义和特点2.2 智能交通管理系统的研究现状2.3 智能交通管理系统的应用场景和发展趋势第三章机器学习技术在智能交通管理系统中的应用3.1 机器学习技术的基本概念和原理3.2 机器学习技术在智能交通管理系统中的应用场景3.3 机器学习技术在智能交通管理系统中的优势和局限性第四章基于机器学习的智能交通管理系统的设计和实现4.1 基于机器学习的流量预测和调度优化算法4.2 智能交通管理系统的架构设计和技术实现4.3 基于机器学习的智能交通管理系统的性能评估第五章基于机器学习的智能交通管理系统实验分析5.1 实验设计和数据采集与处理5.2 实验结果分析和评估5.3 实验结果讨论和总结第六章智能交通管理系统的未来发展方向和展望6.1 智能交通管理系统的未来发展方向6.2 基于机器学习的智能交通管理系统的未来研究方向6.3 智能交通管理系统的未来发展挑战和机遇第七章总结7.1 研究结论7.2 研究贡献7.3 研究不足和展望关键词:机器学习、智能交通管理系统、交通数据处理、流量预测、调度优化。

机器学习课程论文

机器学习课程论文

1.监督学习和无监督学习
机器学习的常用方法,主要分为监督学习(supervised learning)和无监督学习 (unsupervised learning)。 首先看,什么是学习(learning)?一个成语就可概括:举一反三。以高考 为例, 高考的题目在上考场前我们未必做过,但在高中三年我们做过很多很多题 目,懂解题方法,因此考场上面对陌生问题也可以算出答案。机器学习的思路也 类似: 我们能不能利用一些训练数据 (已经做过的题) , 使机器能够利用它们 (解 题方法)分析未知数据(高考的题目)? 最简单也最普遍的一类机器学习算法就是分类(classification)。对于分类, 输入的训练数据有特征(feature),有标签(label)。所谓的学习,其本质就是 找到特征和标签之间的关系(mapping)。这样当有特征而无标签的未知数据输 入时,我们就可以通过已有的关系得到未知数据的标签。 在上述的分类过程中,如果所有训练数据都有标签,则称为监督学习 (supervised learning)。如果数据没有标签,显然就是无监督学习(unsupervised learning)了,也即聚类(clustering)。 常见的监督学习方法有 k 近邻法(k-nearest neighbor,KNN)、决策树、朴 素贝叶斯法、支持向量机(SVM)、感知机和神经网络等等;无监督学习方法 有划分法、层次法、密度算法、图论聚类法、网格算法和模型算法几大类,常见 的具体算法有 K-means 算法、K-medoids 算法和模糊聚类法(FCM)。
k accuracy k accuracy 1 0.69375 7 0.7625 2 0.73125 8 0.7375 3 0.725 9 0.74375 4 0.73125 10 0.7375 5 0.73125 11 0.71875 6 0.75 12 0.7375

基于机器学习的上下文相关意图识别论文

基于机器学习的上下文相关意图识别论文

基于机器学习的上下文相关意图识别论文
基于机器学习的上下文相关意图识别是一种新兴技术,它主要用于识别文本中表明特定意图的上下文特征。

例如,当用户在对话系统中识别用户意图时,可以使用此技术来识别用户的意图。

本文主要讨论的就是基于机器学习的上下文相关的意图识别技术。

首先,我们从基本的机器学习方法开始讨论。

机器学习是一个非常有用的技术,可以从大量数据中自动学习模式,并从中提取有价值的信息和知识。

为了实现上下文相关的意图识别,需要利用从语料库中收集的大量数据、从现有文本中提取出的上下文特征和复杂的特征抽取技术来构建有效的机器学习模型。

其次,我们介绍如何使用深度神经网络来实现上下文相关的意图识别。

深度神经网络是众多机器学习方法之一,它在语言处理领域受到广泛的应用,用于提取句子的上下文特征。

我们可以将深度神经网络应用于上下文相关的意图识别,通过其多层结构来提取句子中潜在的意图特征。

最后,我们讨论了基于机器学习的上下文相关的意图识别技术的一些潜在问题。

例如,如果对话系统中没有足够的数据来支持机器学习模型,可能会导致模型训练不够完善,从而影响识别精度。

此外,由于上下文自身的复杂性,用户的意图可能也会根据环境的变化而变化,因此需要引入新的机器学习技术来处理这样的变量。

总之,本文介绍了基于机器学习的上下文相关意图识别技术,
详细探讨了机器学习方法、深度神经网络以及复杂的特征抽取技术。

这些技术可以有效地利用大量数据和从文本中提取的上下文特征来识别用户的意图。

然而,它也存在一些问题,例如对于不同环境的变化,需要引入新的机器学习技术才能准确识别用户的意图。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

-2-
2.2 算法实现 利用给定的皮马印第安人的糖尿病数据集, 编写 matlab 程序来实现 KNN 算 法。对新的输入实例,判定其类标的部分代码如下: prediction.m
function predicted_label = prediction(testing_input,data,labels,k) 类标 A = bsxfun(@minus,data,testing_input); % testing_input 为输入测试数据的一行,data 为训练样本数据集,labels 为训练样本的
2.1 算法要点 1.算法思想: 基本思想是“近朱者赤、近墨者黑”:给定一个训练数据集,对新的输入实 例, 在训练数据集中找到与该实例最邻近的 k 个实例,这 k 个实例的多数属于某 个类,就把该输入实例分为这个类。 2.算法步骤: 1)算距离:计算已知类别数据集合汇总的点与当前点的距离,按照距离递 增次序排序; 2)找邻居:选取与当前点距离最近的 k 个点; 3)做分类:确定距离最近的前 k 个点所在类别的出现频率,返回距离最近 的前 k 个点中频率最高的类别作为当前点的预测分类。 3.算法规则: 1)k 值设定: k 太小,分类结果易受噪声点影响;k 太大,近邻中又可能包含太多的其它 类别的点。k 值通常是采用交叉检验来确定(以 k=1 为基准)。经验规则:k 一 般低于训练样本数的平方根。 2)距离度量: 什么是合适的距离衡量?距离越近应该意味着这两个点属于一个分类的可 能性越大。 常用的距离衡量包括欧氏距离、 夹角余弦等。 变量值域对距离的影响: 值域越大的变量常常会在距离计算中占据主导作用,因此应先对变量进行标准 化。 3)分类决策规则: 投票决定:少数服从多数,近邻中哪个类别的点最多就分为该类。 加权投票法:根据距离的远近,对近邻的投票进行加权,距离越近则权重越 大(权重为距离平方的倒数)。 投票法没有考虑近邻的距离的远近, 距离更近的近邻也许更应该决定最终的 分类,所以加权投票法更恰当一些。
%训练数据集逐行与输入的测试数据行向量相减 distanceMat = sum(A.^2,2);
%求测试数据与训练集每一个样本点(即训练集的一行)的欧氏距离 [B,IX] = sort(distanceMat,'ascend'); 满足 B=distanceMat(IX) len = min(k,length(B)^0.5);
Similarity and difference between supervised learning and unsupervised learning
【摘要】 本文对机器学习中常见的两类方法——监督学习和无监督学习进行了简单 的探讨,以此来加深对机器学习算法的认识和理解。 首先, 简要阐述了监督学习和无监督学习的定义;然后利用给定的皮马印第 安人糖尿病的数据集, 分别利用监督学习中的 KNN 算法和无监督学习中的 FCM 算法对数据集进行了相应的处理,前者的分类精度最佳(k=7 时)为 0.7625,后 者的聚类准确率达到了 0.7435,并探讨了如何评价聚类结果的优劣性;最后,依 据上述实验结果,讨论了监督学习和无监督学习的异同点。 关键词:机器学习、糖尿病、分类、聚类、多变量
5.参考文献
[1]李航,《统计学习方法》,清华大学出版社,2012 [2]周志华,《机器学习》,清华大学出版社,2016 [3]Jiawei Han, Micheline Kamber, Jian Pei 著,范明、孟小峰 译,《数据挖掘概念 与技术(第三版)》,机械工业出版社,2012 [4]薛山,《MATLAB 基础教程》,清华大学出版社,2011 [5]陈杰 等,《MATLAB 宝典(第 3 版)》,电子工业出版社,2011 [6]https:///question/23194489 [7]https:///question/19635522 [8]/article/machinelearning/35272
-3-
图1
k=7 时的分类预测精度
3.无监督学习应用举例——FCM 算法
模糊 C 均值(Fuzzy C-means)算法简称 FCM 算法,是一种基于目标函数的 模糊聚类算法,主要用于数据的聚类分析。 K-means 与 FCM 都是经典的聚类算法,K-means 是排他性聚类算法,即一 个数据点只能属于一个类别,而 FCM 只计算数据点与各个类别的相似度。可理 解为: 对任一个数据点, 使用 K-means 算法, 其属于某个类别的相似度要么 100% 要么 0%(非是即否);而对于 FCM 算法,其属于某个类别的相似度只是一个 百分比。 本文将以 FCM 算法为例,利用给定的皮马印第安人的糖尿病数据集,来说 明无监督学习方法的应用。
-1-
2.监督学习应用举例——KNN 算法
KNN 算法是典型的监督学习方法,是从训练集中找到和新数据最接近的 k 条记录, 然后根据他们的主要分类来决定新数据的类别。该算法涉及 3 个主要因 素:训练集、距离或相似的衡量、k 的大小。 本文将以 KNN 算法为例,利用给定的皮马印第安人的糖尿病数据集,来说 明监督学习方法的应用。
图2
聚类结果与精度
-5-
3.3 聚类精度 聚类没有统一的评价指标,总体思想为一个 cluster 聚类内的数据点聚集在 一起的密度越高,圈子越小,离 center 中心点越近,类内越近,类间越远,那么 这个聚类的总体质量相对来说就会越好。
4.监督学习ቤተ መጻሕፍቲ ባይዱ无监督学习的异同
监督学习最常见的就是分类, 通常我们为算法输入大量已分类数据作为算法 的训练集, 训练集的每一个样本都包含了若干个特征和一个类标,通过已有的训 练样本去训练得到一个最优模型, 然后利用这个最优模型将所有陌生输入映射为 相应的输出,对于输出进行判断实现分类,这就对未知数据进行了分类。 与监督学习相对应的是无监督学习,此时数据没有类别信息,也不会给定目 标值。 在无监督学习中,将数据集合分成由类似的对象组成的多个类的过程被称 为聚类,将寻找描述数据统计值的过程称之为密度估计。 无监督学习与监督学习的不同之处,主要是它没有训练样本,而是直接对数 据进行建模。典型案例就是聚类了,其目的是把相似的东西聚在一起,而不关心 这一类是什么。 聚类算法通常只需要知道如何计算相似度就可以了,它可能不具 有实际意义。
1.监督学习和无监督学习
机器学习的常用方法,主要分为监督学习(supervised learning)和无监督学习 (unsupervised learning)。 首先看,什么是学习(learning)?一个成语就可概括:举一反三。以高考 为例, 高考的题目在上考场前我们未必做过,但在高中三年我们做过很多很多题 目,懂解题方法,因此考场上面对陌生问题也可以算出答案。机器学习的思路也 类似: 我们能不能利用一些训练数据 (已经做过的题) , 使机器能够利用它们 (解 题方法)分析未知数据(高考的题目)? 最简单也最普遍的一类机器学习算法就是分类(classification)。对于分类, 输入的训练数据有特征(feature),有标签(label)。所谓的学习,其本质就是 找到特征和标签之间的关系(mapping)。这样当有特征而无标签的未知数据输 入时,我们就可以通过已有的关系得到未知数据的标签。 在上述的分类过程中,如果所有训练数据都有标签,则称为监督学习 (supervised learning)。如果数据没有标签,显然就是无监督学习(unsupervised learning)了,也即聚类(clustering)。 常见的监督学习方法有 k 近邻法(k-nearest neighbor,KNN)、决策树、朴 素贝叶斯法、支持向量机(SVM)、感知机和神经网络等等;无监督学习方法 有划分法、层次法、密度算法、图论聚类法、网格算法和模型算法几大类,常见 的具体算法有 K-means 算法、K-medoids 算法和模糊聚类法(FCM)。
3.1 算法要点 FCM 算法是基于对目标函数的优化基础上的一种数据聚类方法。聚类结果 是每一个数据点对聚类中心的隶属程度,该隶属程度用一个数值来表示。FCM 算法是一种无监督的模糊聚类方法,在算法实现过程中不需要人为的干预。 1.算法思想: 首先介绍一下模糊这个概念,所谓模糊就是不确定,确定性的东西是什么那 就是什么,而不确定性的东西就说很像什么。比如说把 20 岁作为年轻不年轻的 标准,那么一个人 21 岁按照确定性的划分就属于不年轻,而我们印象中的观念 是 21 岁也很年轻,这个时候可以模糊一下,认为 21 岁有 0.9 分像年轻,有 0.1 分像不年轻,这里 0.9 与 0.1 不是概率,而是一种相似的程度,把这种一个样本 属于结果的这种相似的程度称为样本的隶属度,一般用 u 表示,表示一个样本相 似于不同结果的一个程度指标。 基于此,假定数据集为 X,如果把这些数据划分成 c 类的话,那么对应的就 有 c 个类中心为 C,每个样本 j 属于某一类 i 的隶属度为 u ij 。
%对各个欧氏距离进行排序,B 为排序后的列向量,IX 为相对位置的索引向量,
%k 一般低于训练样本数的平方根 predicted_label = mode(labels(IX(1:len))); end
%出现的频率最高的类标,作为测试数据的类标
在主程序中载入训练数据集和测试数据集,调用 prediction.m,依据经验规 则, k 160 4 10 。故 k 值设定从 1 开始,依次递增,直到 12 为止,分类精 度与 k 值设定的结果如下表所示: 表 1 k 值设定与分类精度
-6-
-4-
2.算法步骤: 1)确定分类数,指数 m 的值,确定迭代次数(约束条件); 2)初始化一个隶属度 U(注意条件——和为 1); 3)根据 U 计算聚类中心 C; 4)这个时候可以计算目标函数 J 了; 5)根据 C 返回去计算 U,回到步骤 3,一直循环直到结束。
3.2 算法实现 依据给定的皮马印第安人的糖尿病数据集,利用 Matlab 自带的 fcm 函数进 行处理,fcm 函数输入需要 2 个或者 3 个参数,返回 3 个参数,如下: [center, U, obj_fcn] = fcm(data, cluster_n, options) data 数据集 cluster_n 对于输入: (注意每一行代表一个样本, 列是样本个数), 为聚类数,options 是可选参数。 对于输出:center 为聚类中心,U 是隶属度,obj_fcn 为目标函数值,这个迭 代过程的每一代的 J 都在这里面存着。 分别选取第 2、5 列,第 3、6 列,第 4、7 列,程序执行结果如下:
相关文档
最新文档