2018届高三联考试卷1(数学理)
2018年普通高等学校招生全国统一考试数学试题 理(全国卷1,解析版)
2018年普通高等学校招生全国统一考试数学试题理(全国卷1)注意事项:1.答卷前,考生务必将自己的姓名、考生号等填写在答题卡和试卷指定位置上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其它答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1. 设,则A. B. C. D.【答案】C【解析】分析:首先根据复数的运算法则,将其化简得到,根据复数模的公式,得到,从而选出正确结果.详解:因为,所以,故选C.点睛:该题考查的是有关复数的运算以及复数模的概念及求解公式,利用复数的除法及加法运算法则求得结果,属于简单题目.2. 已知集合,则A. B.C. D.【答案】B【解析】分析:首先利用一元二次不等式的解法,求出的解集,从而求得集合A,之后根据集合补集中元素的特征,求得结果.详解:解不等式得,所以,所以可以求得,故选B.点睛:该题考查的是有关一元二次不等式的解法以及集合的补集的求解问题,在解题的过程中,需要明确一元二次不等式的解集的形式以及补集中元素的特征,从而求得结果.3. 某地区经过一年的新农村建设,农村的经济收入增加了一倍.实现翻番.为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例.得到如下饼图:则下面结论中不正确的是A. 新农村建设后,种植收入减少B. 新农村建设后,其他收入增加了一倍以上C. 新农村建设后,养殖收入增加了一倍D. 新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半【答案】A【解析】分析:首先设出新农村建设前的经济收入为M,根据题意,得到新农村建设后的经济收入为2M,之后从图中各项收入所占的比例,得到其对应的收入是多少,从而可以比较其大小,并且得到其相应的关系,从而得出正确的选项.详解:设新农村建设前的收入为M,而新农村建设后的收入为2M,则新农村建设前种植收入为0.6M,而新农村建设后的种植收入为0.74M,所以种植收入增加了,所以A项不正确;新农村建设前其他收入我0.04M,新农村建设后其他收入为0.1M,故增加了一倍以上,所以B项正确;新农村建设前,养殖收入为0.3M,新农村建设后为0.6M,所以增加了一倍,所以C项正确;新农村建设后,养殖收入与第三产业收入的综合占经济收入的,所以超过了经济收入的一半,所以D正确;故选A.点睛:该题考查的是有关新农村建设前后的经济收入的构成比例的饼形图,要会从图中读出相应的信息即可得结果.4. 设为等差数列的前项和,若,,则A. B. C. D.【答案】B详解:设该等差数列的公差为,根据题中的条件可得,整理解得,所以,故选B.点睛:该题考查的是有关等差数列的求和公式和通项公式的应用,在解题的过程中,需要利用题中的条件,结合等差数列的求和公式,得到公差的值,之后利用等差数列的通项公式得到与的关系,从而求得结果.5. 设函数,若为奇函数,则曲线在点处的切线方程为A. B. C. D.【答案】D【解析】分析:利用奇函数偶此项系数为零求得,进而得到的解析式,再对求导得出切线的斜率,进而求得切线方程.详解:因为函数是奇函数,所以,解得,所以,,所以,所以曲线在点处的切线方程为,化简可得,故选D.点睛:该题考查的是有关曲线在某个点处的切线方程的问题,在求解的过程中,首先需要确定函数解析式,此时利用到结论多项式函数中,奇函数不存在偶次项,偶函数不存在奇次项,从而求得相应的参数值,之后利用求导公式求得,借助于导数的几何意义,结合直线方程的点斜式求得结果.6. 在△中,为边上的中线,为的中点,则A. B.C. D.【答案】A【解析】分析:首先将图画出来,接着应用三角形中线向量的特征,求得,之后应用向量的加法运算法则-------三角形法则,得到,之后将其合并,得到,下一步应用相反向量,求得,从而求得结果.详解:根据向量的运算法则,可得,所以,故选A.点睛:该题考查的是有关平面向量基本定理的有关问题,涉及到的知识点有三角形的中线向量、向量加法的三角形法则、共线向量的表示以及相反向量的问题,在解题的过程中,需要认真对待每一步运算.7. 某圆柱的高为2,底面周长为16,其三视图如右图.圆柱表面上的点在正视图上的对应点为,圆柱表面上的点在左视图上的对应点为,则在此圆柱侧面上,从到的路径中,最短路径的长度为A. B.C. D. 2【答案】B【解析】分析:首先根据题中所给的三视图,得到点M和点N在圆柱上所处的位置,点M在上底面上,点N 在下底面上,并且将圆柱的侧面展开图平铺,点M、N在其四分之一的矩形的对角线的端点处,根据平面上两点间直线段最短,利用勾股定理,求得结果.详解:根据圆柱的三视图以及其本身的特征,可以确定点M和点N分别在以圆柱的高为长方形的宽,圆柱底面圆周长的四分之一为长的长方形的对角线的端点处,所以所求的最短路径的长度为,故选B.点睛:该题考查的是有关几何体的表面上两点之间的最短距离的求解问题,在解题的过程中,需要明确两个点在几何体上所处的位置,再利用平面上两点间直线段最短,所以处理方法就是将面切开平铺,利用平面图形的相关特征求得结果.8. 设抛物线C:y2=4x的焦点为F,过点(–2,0)且斜率为的直线与C交于M,N两点,则=A. 5B. 6C. 7D. 8【答案】D【解析】分析:首先根据题中的条件,利用点斜式写出直线的方程,涉及到直线与抛物线相交,联立方程组,消元化简,求得两点,再利用所给的抛物线的方程,写出其焦点坐标,之后应用向量坐标公式,求得,最后应用向量数量积坐标公式求得结果.详解:根据题意,过点(–2,0)且斜率为的直线方程为,与抛物线方程联立,消元整理得:,解得,又,所以,从而可以求得,故选D.点睛:该题考查的是有关直线与抛物线相交求有关交点坐标所满足的条件的问题,在求解的过程中,首先需要根据题意确定直线的方程,之后需要联立方程组,消元化简求解,从而确定出,之后借助于抛物线的方程求得,最后一步应用向量坐标公式求得向量的坐标,之后应用向量数量积坐标公式求得结果,也可以不求点M、N的坐标,应用韦达定理得到结果.9. 已知函数.若g(x)存在2个零点,则a的取值范围是A. [–1,0)B. [0,+∞)C. [–1,+∞)D. [1,+∞)【答案】C【解析】分析:首先根据g(x)存在2个零点,得到方程有两个解,将其转化为有两个解,即直线与曲线有两个交点,根据题中所给的函数解析式,画出函数的图像(将去掉),再画出直线,并将其上下移动,从图中可以发现,当时,满足与曲线有两个交点,从而求得结果.详解:画出函数的图像,在y轴右侧的去掉,再画出直线,之后上下移动,可以发现当直线过点A时,直线与函数图像有两个交点,并且向下可以无限移动,都可以保证直线与函数的图像有两个交点,即方程有两个解,也就是函数有两个零点,此时满足,即,故选C.点睛:该题考查的是有关已知函数零点个数求有关参数的取值范围问题,在求解的过程中,解题的思路是将函数零点个数问题转化为方程解的个数问题,将式子移项变形,转化为两条曲线交点的问题,画出函数的图像以及相应的直线,在直线移动的过程中,利用数形结合思想,求得相应的结果.10. 下图来自古希腊数学家希波克拉底所研究的几何图形.此图由三个半圆构成,三个半圆的直径分别为直角三角形ABC的斜边BC,直角边AB,AC.△ABC的三边所围成的区域记为I,黑色部分记为II,其余部分记为III.在整个图形中随机取一点,此点取自I,II,III的概率分别记为p1,p2,p3,则A. p1=p2B. p1=p3C. p2=p3D. p1=p2+p3【答案】A详解:设,则有,从而可以求得的面积为,黑色部分的面积为,其余部分的面积为,所以有,根据面积型几何概型的概率公式,可以得到,故选A.点睛:该题考查的是面积型几何概型的有关问题,题中需要解决的是概率的大小,根据面积型几何概型的概率公式,将比较概率的大小问题转化为比较区域的面积的大小,利用相关图形的面积公式求得结果.11. 已知双曲线C:,O为坐标原点,F为C的右焦点,过F的直线与C的两条渐近线的交点分别为M、N.若OMN为直角三角形,则|MN|=A. B. 3 C. D. 4【答案】B【解析】分析:首先根据双曲线的方程求得其渐近线的斜率,并求得其右焦点的坐标,从而得到,根据直角三角形的条件,可以确定直线的倾斜角为或,根据相关图形的对称性,得知两种情况求得的结果是相等的,从而设其倾斜角为,利用点斜式写出直线的方程,之后分别与两条渐近线方程联立,求得,利用两点间距离同时求得的值.详解:根据题意,可知其渐近线的斜率为,且右焦点为,从而得到,所以直线的倾斜角为或,根据双曲线的对称性,设其倾斜角为,可以得出直线的方程为,分别与两条渐近线和联立,求得,所以,故选B.点睛:该题考查的是有关线段长度的问题,在解题的过程中,需要先确定哪两个点之间的距离,再分析点是怎么来的,从而得到是直线的交点,这样需要先求直线的方程,利用双曲线的方程,可以确定其渐近线方程,利用直角三角形的条件得到直线的斜率,结合过右焦点的条件,利用点斜式方程写出直线的方程,之后联立求得对应点的坐标,之后应用两点间距离公式求得结果.12. 已知正方体的棱长为1,每条棱所在直线与平面α所成的角相等,则α截此正方体所得截面面积的最大值为A. B. C. D.【答案】A【解析】分析:首先利用正方体的棱是3组每组有互相平行的4条棱,所以与12条棱所成角相等,只需与从同一个顶点出发的三条棱所成角相等即可,从而判断出面的位置,截正方体所得的截面为一个正六边形,且边长是面的对角线的一半,应用面积公式求得结果.详解:根据相互平行的直线与平面所成的角是相等的,所以在正方体中,平面与线所成的角是相等的,所以平面与正方体的每条棱所在的直线所成角都是相等的,同理平面也满足与正方体的每条棱所在的直线所成角都是相等,要求截面面积最大,则截面的位置为夹在两个面与中间的,且过棱的中点的正六边形,且边长为,所以其面积为,故选A.点睛:该题考查的是有关平面被正方体所截得的截面多边形的面积问题,首要任务是需要先确定截面的位置,之后需要从题的条件中找寻相关的字眼,从而得到其为过六条棱的中点的正六边形,利用六边形的面积的求法,应用相关的公式求得结果.二、填空题:本题共4小题,每小题5分,共20分。
2018届高三五月联考数学试卷理科(附答案)
安徽省宿州市2018届高三五月联考数学试卷(理)一选择题:1.已知集合{})90sin(,0cos 0-= A ,{}02=+=x x x B ,则B A ⋂为( ) {}1,0.-A {}1,1.-B {}1.-C {}0.D 2.i 为虚数单位,则复数=+-)1()1(2i i ( )i A 22.+- i B 22.-- i C 22.+ i D 22.-3.设γβα、、为三个不同的平面,给出下列条件:①b a 、为异面直线,βαβα//,//,,a b b a ≠≠⊂⊂ ②α内有三个不共线的点到β的距离相等 ③γβγα⊥⊥, ④γβγα//,//,则其中能使βα//成立的条件为:( )A ①④B ②③C ①③D ②④4.如图是2018年北京奥运会上男子跳台跳水比赛中, 12位评委为某个运动员打出的分数的茎叶统计图, 去掉一个最高分和一个最低分之后,所剰数据的 平均数和标准差分别为( )16,84.A 4,84.B 16,85.C 4,85.D5.已知变量y x ,满足⎪⎩⎪⎨⎧≤-≤≥,0,2,1y x y x 则2x+y 的最大值是( )A .3B .4C .5D .66.已知21nx x ⎛⎫+ ⎪⎝⎭的二项展开式的各项系数和为32,则二项展开式中x 系数为( )5.A 10.B 20.C 40.D7.设134:≤-x p ;0)1()12(:2≤+++-a a x a x q .若p ⌝是q ⌝的必要而不充分条件, 则实数a 的取值范围是( )⎥⎦⎤⎢⎣⎡21,0.A ⎪⎭⎫ ⎝⎛21,0.B (]⎪⎭⎫⎢⎣⎡+∞⋃∞-,210,.C ()⎪⎭⎫⎝⎛+∞⋃∞-,210,.D8.△ABC 中,AB=AC ,BC=2,则=⋅( )2.-A 2.B 1.-C .D 不确定9.当20π<<x 时,函数xxx x f 2sin sin 82cos 1)(2++=的最小值为( )2.A 32.B 34.C 4.D10.若正四面体SABC 的面ABC 内有一动点P 到平面SAB 、平面SBC 、平面SCA 的距离依次成等差数列,则点P 的轨迹是( ).A 一条线段 .B 一个点 .C 一段圆弧 .D 抛物线的一段11.已知点P 是抛物线x y 42=上一点,设点P 到此抛物线准线的距离为1d ,到直线0102=++y x 的距离为2d ,则21d d +的最小值为( )5.A 4.B 5511.C 511.D12.在数列{}n a 中,对任意*∈N n ,都有k a a a a nn n n =--+++112(k 为常数),则称{}n a 为“等差比数列”,下面对“等差比数列”的判断:①k 不可能为零;②等差数列一定是等差比数列;③等比数列一定是等差比数列;④通项公式为)1,0,0(≠≠+⋅=b a c b a a n n 的数列一定是等差比数列,其中正确的判断为( ) .A ① ② .B ② ③ .C ③ ④ .D ① ④二填空题:13.()202x x e dx -=⎰ .14. 执行右边的程序框图,若4p =,则输出的S =15.设M 、N 分别是曲线0sin 2=+θρ和224sin(=+πθρ上的动点,则M 、N 的最小距离是______16.设定义域为R 的函数⎪⎩⎪⎨⎧=≠-=)1(2)1(44)(x x x x f ,若关于x 的方程0)()(2=++c x bf x f 有三个不同的实数解321,,x x x ,则=++232221x x x ____三解答题:17.在锐角ABC ∆中,C B A ,,的对边分别为c b a ,,且A c B b C a cos ,cos ,cos 成等差数列, (1)求B 的值(2)求)cos(sin 22C A A -+的范围18. (12分)一个多面体的直观图如图所示(其中N M ,分别为BC AF ,的中点) (1)求证://MN 平面CDEF (2)求多面体CDEF A -的体积19.已知某种从太空飞船中带回的植物种子每粒成功发芽的概率都为31,某植物研究所分2个小组分别独立开展该种子的发芽试验,每次实验种一粒种子,如果某次没有发芽,则称该次实验是失败的。
2018年高考数学试卷1(理科)
2018年高考试卷理科数学卷本试卷分选择题和非选择题两部分。
全卷共5页,总分值150分,考试时间120分钟。
第I 卷〔共50分〕注意事项:1.答题前,考生务必将自己的、准考证号用黑色字迹的签字笔或钢笔填写在答题纸上。
2.每题选出答案后,用2B 铅笔把答题纸上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号。
不能答在试题卷上。
参考公式:球的外表积公式 棱柱的体积公式24S R π= V Sh =球的体积公式 其中S 表示棱柱的底面积,h 表示棱柱的高343V R π= 棱台的体积公式其中R 表示球的半径 11221()3V h S S S S =++棱锥的体积公式 其中12,S S 分别表示棱台的上、下底面积,13V Sh = h 表示棱台的高其中S 表示棱锥的底面积,h 表示棱锥的高 如果事件,A B 互斥,那么 ()()()P A B P A P B +=+一、选择题:本大题共10小题,每题5分,共50分.在每题给出的四个选项中,只有一项是符合题目要求的.1.〔原创〕设函数,0,(),0,x x f x x x ⎧≥⎪=⎨-<⎪⎩ 假设()(1)2f a f +-=,则a =〔 〕A .– 3B .±3C .– 1D .±12. 〔原创〕复数226(12)a a a a i --++-为纯虚数的充要条件是( )A.2a =-B.3a =C.32a a ==-或D. 34a a ==-或3. 〔原创〕甲,乙两人分别独立参加某高校自主招生考试,假设甲,乙能通过面试的概率都为23,则面试结束后通过的人数ξ的数学期望E ξ是( ) A.43 B.119C.1D.894. 〔改编〕右面的程序框图输出的结果为〔 〕.62A .126B .254C .510D5. 〔改编〕已知直线l ⊥平面α,直线m ⊂平面β,下面有三个命题: ①//l m αβ⇒⊥;②//l m αβ⊥⇒;③//l m αβ⇒⊥ 其中假命题的个数为〔 〕.3A .2B .1C .0D6. 〔改编〕已知函数f (x )的图象如右图所示,则f (x )的解析式可能是〔 〕A .()x x x f ln 22-=B .()x x x f ln 2-=C .||ln 2||)(x x x f -=D .||ln ||)(x x x f -=7. 〔原创〕等差数列{}n a 的前n 项和为n S ,且满足548213510S a a -+=,则以下数中恒为常数的是( )A.8aB. 9SC. 17aD. 17S8. 〔改编〕已知双曲线2222:1(,0)x y C a b a b-=>的左、右焦点分别为1F ,2F ,过2F 作双曲线C 的一条渐近线的垂线,垂足为H ,假设2F H 的中点M 在双曲线C 上,则双曲线C 的离心率为〔 〕A .2B . 3C .2D .39. 〔原创〕已知,x y 满足不等式00224x y x y t x y ≥⎧⎪≥⎪⎨+≤⎪⎪+≤⎩,且目标函数96z x y =+最大值的变化范围[]20,22,则t 的取值范围( )A.[]2,4B.[]4,6C.[]5,8D. []6,710. 〔改编〕假设函数32()|1|f x x a x a R =+-∈,则对于不同的实数a ,则函数()f x 的单调区间个数不可能是( )A.1个B. 2个C.3个D.5个第II 卷〔共100分〕二、填空题:本大题共7小题,每题4分,共28分。
山东省淄博市2018届高三下学期第一次模拟考试数学(理)
山东省淄博市2018届高三下学期第一次模拟考试数学(理)淄博市2017-2018学年度高三模拟考试试题理科数学第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.若集合 $A=\{x\in N|2x\leq 8\},B=\{0,1,2,3,4\}$,则$A\cap B=$A。
$\{0,1,2,3\}$B。
$\{1,2,3\}$C。
$\{0,1,2\}$D。
$\{0,1,2,3,4\}$2.在复平面内,复数 $z$ 满足 $z(1+i)=1-2i$,则 $z$ 对应的点位于A。
第一象限B。
第二象限C。
第三象限D。
第四象限3.若 $0.43a=3,b=0.4,c=\log_{0.4}3$,则A。
$b<a<c$B。
$c<a<b$XXX<c<b$D。
$c<b<a$4.若 $\sin2\alpha=\frac{\sin(\alpha-\pi/2)}{2\cos(\alpha+\pi/2)}$,则 $\sin\alpha$ 的值为A。
$\frac{5}{7}$B。
$\frac{5}{3}$C。
$-\frac{3}{5}$D。
$-\frac{5}{3}$5.已知某空间几何体的三视图如图所示,则该几何体的体积是A。
$\frac{2}{3}$B。
$\frac{5}{6}$C。
$1$D。
$2$6.设每天从甲地去乙地的旅客人数为随机变量 $X$,且$X\sim N(800,502)$。
记一天中从甲地去乙地的旅客人数不超过 $2X\sim N(\mu,\sigma^2)$ 的概率为 $p$,则 $p$ 的值为(参考数据:若 $P(\mu-\sigma<X\leq\mu+\sigma)=0.6826$,$P(\mu-2\sigma<X\leq\mu+2\sigma)=0.9544$,$P(\mu-3\sigma<X\leq\mu+3\sigma)=0.9974$)A。
高三数学-2018年全国高中数学联合竞赛一试试卷及答案(word版) 精品
2018年全国高中数学联合竞赛一试试卷(考试时间:上午8:00—9:40)一、选择题(本题满分36分,每小题6分) 1. 如图,在正四棱锥P −ABCD 中,∠APC =60°,则二面角A −PB −C 的平面角的余弦值为( ) A. 71 B. 71- C. 21 D. 21- 2. 设实数a 使得不等式|2x −a |+|3x −2a |≥a 2对任意实数x 恒成立,则满足条件的a 所组成的集合是( ) A. ]31,31[- B. ]21,21[- C. ]31,41[- D. [−3,3] 3. 将号码分别为1、2、…、9的九个小球放入一个袋中,这些小球仅号码不同,其余完全相同。
甲从袋中摸出一个球,其号码为a ,放回后,乙从此袋中再摸出一个球,其号码为b 。
则使不等式a −2b +10>0成立的事件发生的概率等于( ) A. 8152 B. 8159 C. 8160 D. 8161 4. 设函数f (x )=3sin x +2cos x +1。
若实数a 、b 、c 使得af (x )+bf (x −c )=1对任意实数x 恒成立,则ac b cos 的值等于( ) A. 21- B. 21 C. −1 D. 1 5. 设圆O 1和圆O 2是两个定圆,动圆P 与这两个定圆都相切,则圆P 的圆心轨迹不可能是( )6. 已知A 与B 是集合{1,2,3,…,100}的两个子集,满足:A 与B 的元素个数相同,且为A ∩B 空集。
若n ∈A 时总有2n +2∈B ,则集合A ∪B 的元素个数最多为( )A. 62B. 66C. 68D. 74二、填空题(本题满分54分,每小题9分)7. 在平面直角坐标系内,有四个定点A (−3,0),B (1,−1),C (0,3),D (−1,3)及一个动点P ,则|PA |+|PB |+|PC |+|PD |的最小值为__________。
8. 在△ABC 和△AEF 中,B 是EF 的中点,AB =EF =1,BC =6,33=CA ,若2=⋅+⋅,则与的夹角的余弦值等于________。
2018年高三北京市朝阳区2018届高三(一模)数学
理科数学 2018年高三北京市朝阳区2018届高三(一模)数学(理)试题解析单选题略略略略略略略略填空题略略略略略略略略略略略略单选题(本大题共8小题,每小题____分,共____分。
)1.已知全集为实数集,集合,,则A.B.C.D.2.复数满足,则在复平面内复数所对应的点位于A. 第一象限B. 第二象限C. 第三象限D. 第四象限3.直线的参数方程为(为参数),则的倾斜角大小为A.C.D.4.已知为非零向量,则“”是“与夹角为锐角”的A. 充分而不必要条件B. 必要而不充分条件C. 充分必要条件D. 既不充分也不必要条件5.某单位安排甲、乙、丙、丁4名工作人员从周一到周五值班,每天有且只有1人值班,每人至少安排一天且甲连续两天值班,则不同的安排方法种数为A.B.C.D.6.某四棱锥的三视图如图所示,则该四棱锥的体积等于A.C.D.7.庙会是我国古老的传统民俗文化活动,又称“庙市”或“节场”.庙会大多在春节、元宵节等节日举行.庙会上有丰富多彩的文化娱乐活动,如“砸金蛋”(游玩者每次砸碎一颗金蛋,如果有奖品,则“中奖”).今年春节期间,某校甲、乙、丙、丁四位同学相约来到某庙会,每人均获得砸一颗金蛋的机会.游戏开始前,甲、乙、丙、丁四位同学对游戏中奖结果进行了预测,预测结果如下:甲说:“我或乙能中奖”;乙说:“丁能中奖”;丙说:“我或乙能中奖”;丁说:“甲不能中奖”.游戏结束后,这四位同学中只有一位同学中奖,且只有一位同学的预测结果是正确的,则中奖的同学是A. 甲B. 乙C. 丙D. 丁8.在平面直角坐标系xOy中,已知点,,动点满足,其中,则所有点构成的图形面积为A.B.C.D.填空题(本大题共12小题,每小题____分,共____分。
)9.执行如图所示的程序框图,若输入,则输出的值为________.10.若三个点中恰有两个点在双曲线上,则双曲线的渐近线方程为_____________.11.函数()的部分图象如图所示,则____;函数在区间上的零点为____.12.已知点,若点是圆上的动点,则面积的最小值为____.13.等比数列满足如下条件:①;②数列的前项和.试写出满足上述所有条件的一个数列的通项公式____.14.已知,函数当时,函数的最大值是____;若函数的图象上有且只有两对点关于轴对称,则的取值范围是____.15. (本小题满分13分)在中,已知,.(Ⅰ)若,求的面积;(Ⅱ)若为锐角,求的值.16.(本小题满分14分)如图1,在矩形中,,,为的中点,为中点.将沿折起到,使得平面平面(如图2).(Ⅰ)求证:;(Ⅱ)求直线与平面所成角的正弦值;(Ⅲ)在线段上是否存在点,使得平面若存在,求出的值;若不存在,请说明理由.17.(本小题满分13分)某地区高考实行新方案,规定:语文、数学和英语是考生的必考科目,考生还须从物理、化学、生物、历史、地理和政治六个科目中选取三个科目作为选考科目.若一个学生从六个科目中选出了三个科目作为选考科目,则称该学生的选考方案确定;否则,称该学生选考方案待确定.例如,学生甲选择“物理、化学和生物”三个选考科目,则学生甲的选考方案确定,“物理、化学和生物”为其选考方案.某学校为了解高一年级420名学生选考科目的意向,随机选取30名学生进行了一次调查,统计选考科目人数如下表:(Ⅰ)估计该学校高一年级选考方案确定的学生中选考生物的学生有多少人(Ⅱ)假设男生、女生选择选考科目是相互独立的.从选考方案确定的8位男生中随机选出1人,从选考方案确定的10位女生中随机选出1人,试求该男生和该女生的选考方案中都含有历史学科的概率;(Ⅲ)从选考方案确定的8名男生中随机选出2名,设随机变量求的分布列及数学期望.18. (本小题满分13分)已知函数.(Ⅰ)当时,(ⅰ)求曲线在点处的切线方程;(ⅱ)求函数的单调区间;(Ⅱ)若,求证:.19. (本小题满分14分)已知椭圆的离心率为,且过点.(Ⅰ)求椭圆的方程;(Ⅱ)过椭圆的左焦点的直线与椭圆交于两点,直线过坐标原点且与直线的斜率互为相反数.若直线与椭圆交于两点且均不与点重合,设直线与轴所成的锐角为,直线与轴所成的锐角为,判断与大小关系并加以证明.20. (本小题满分13分)已知集合是集合的一个含有8个元素的子集.(Ⅰ)当时,设,(i)写出方程的解;(ii)若方程至少有三组不同的解,写出的所有可能取值;(Ⅱ)证明:对任意一个,存在正整数,使得方程至少有三组不同的解.答案单选题1. C2. A3. C4. B5. B6. D7. A8. C 填空题9.410.11.12.213.14.15.(Ⅰ)由,得,因为,所以.因为,所以.故的面积.………………….7分(Ⅱ)因为,且为锐角,所以.所以.………….13分16.(Ⅰ)由已知,因为为中点,所以.因为平面平面,且平面平面,平面,所以平面.又因为平面,所以.………….5分(Ⅱ)设为线段上靠近点的四等分点,为中点.由已知易得.由(Ⅰ)可知,平面,所以,.以为原点,所在直线分别为轴建立空间直角坐标系(如图).因为,,所以.设平面的一个法向量为,因为,所以即取,得.而.所以直线与平面所成角的正弦值……….10分(Ⅲ)在线段上存在点,使得平面.设,且,则,.因为,所以,所以,所以,.若平面,则.即.由(Ⅱ)可知,平面的一个法向量,即,解得,所以当时,平面.……….14分17.(Ⅰ)由题可知,选考方案确定的男生中确定选考生物的学生有4人,选考方案确定的女生中确定选考生物的学生有6人,该学校高一年级选考方案确定的学生中选考生物的学生有人.……….3分(Ⅱ)由数据可知,选考方案确定的8位男生中选出1人选考方案中含有历史学科的概率为;选考方案确定的10位女生中选出1人选考方案中含有历史学科的概率为.所以该男生和该女生的选考方案中都含有历史学科的概率为.…….8分(Ⅲ)由数据可知,选考方案确定的男生中有4人选择物理、化学和生物;有2人选择物理、化学和历史;有1人选择物理、化学和地理;有1人选择物理、化学和政治.由已知得的取值为.,,或.所以的分布列为12所以.…….13分18.当时,..(ⅰ)可得,又,所以在点()处的切线方程为. ….3分(ⅱ)在区间()上,且,则.在区间()上,且,则.所以的单调递增区间为(),单调递减区间为(). ….8分(Ⅱ)由,,等价于,等价于. 设,只须证成立.因为,,由,得有异号两根.令其正根为,则.在上,在上.则的最小值为.又,,所以.则.因此,即.所以所以.….….13分19.Ⅰ)由题意得解得,,.故椭圆的方程为.….….5分(Ⅱ).证明如下:由题意可设直线的方程为,直线的方程为,设点,,,.要证,即证直线与直线的斜率之和为零,即.因为.由得,所以,.由得,所以.所以..所以.….….14分20.(Ⅰ)(ⅰ)方程的解有:. (2)分(ii)以下规定两数的差均为正,则:列出集合的从小到大8个数中相邻两数的差:1,3,2,4,2,3,1;中间隔一数的两数差(即上一列差数中相邻两数和):4,5,6,6,5,4;中间相隔二数的两数差:6,9,8,9,6;中间相隔三数的两数差:10,11,11,10;中间相隔四数的两数差:12,14,12;中间相隔五数的两数差:15,15;中间相隔六数的两数差:16这28个差数中,只有4出现3次、6出现4次,其余都不超过2次,所以的可能取值有4,6.…………………………………………………………6分(Ⅱ)证明:不妨设,记,,共13个差数.假设不存在满足条件的,则这13个数中至多两个1、两个2、两个3、两个4、两个5、两个6,从而. …………①又,这与①矛盾!所以结论成立.……………………………………………………………………13分解析单选题略略略略略略略略填空题略略略略略略略略略略略略。
江西省上饶市重点中学2018届高三六校第一次联考数学(理)试卷
一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知集合A ={x|3x −x2>0},B ={y|y =1−x },则A ∩B =( )A 、[0,3)B 、(0,3)C 、(0,1]D 、(0,1)2.已知i 为虚数单位,若复数z 满足z1=1−i ,则|1+zi|=( ) A 、21 B 、22 C 、1 D 、23.直线ax +3y +2=0与直线4x +(a −1)y +2=0平行的充要条件是( )A 、a =−3或4B 、a ═−3C 、a =4D 、a =3或−44.已知正项数列{a n }的前n 项和为S n ,且a 1=1,a n =n S +1-n S(n ≥2),则数列{a n }的通项公式为a n =( )A 、n −1B 、nC 、2n −1D 、2n5.设x ,y 满足约束条件⎪⎩⎪⎨⎧≥-+≥+-≤01011y x y x x ,则z =x 2+y 2的最小值为( )A 、21 B 、1 C 、2 D 、5 6.一个几何体的三视图如图所示,则该几何体的表面积为( )A 、8B 、8+82C 、8+86D 、8+42+467.向边长分别为3、4、5的三角形区域内随机投一点M ,则该点M 与三角形三个顶点距离都大于1的概率为( )A 、1−18π B 、1−12π C 、1−9π D 、1−4π 8.函数f (x )=x x sin ,x ∈(−π,0)∪(0,π),其图象可能是( ) A 、 B 、 C 、 D 、9.在公比大于1的等比数列{a n }中,a 7=a 6+2a 5且a m a n =16a 21,则m 1+n 4的最小值为( )A 、49B 、59C 、35D 、23 10.已知抛物线C :y 2=2px (p >0)的通径为AB ,O 为坐标原点,过C 的焦点F 作OA 的平行线,交C 于M 、N 两点,则|FM|•|FN|−|OA|•|OB|=( )A 、0B 、pC 、2pD 、p 211.《九章算术》是我国古代内容极为丰富的数学名著,书中将四个面都是直角三角形的四面体称之为鳖臑(bie nao ),如图,在鳖臑PABC 中,PA ⊥平面ABC ,AB ⊥BC ,且AP =AC =2,过点A 分别作AE ⊥PB 于E ,AF ⊥PC于F ,连接EF ,当△AEF 的面积最大时,三棱锥A −PEF 的体积为( )A 、41B 、C 、121 D 、122 12.已知函数f (x )=a x −xlna ,(a >0且a ≠1),g (x )=−x 2+t .若关于x 的方程|f (x )−g (x )|=3有四个不相等的实数根,则实数t 的取值范围是( )A 、t >4B 、t <4C 、t >−2D 、t <−2二、填空题(本大题共4小题,每小题5分,共20分)13.(x 2+x −2)7的展开式中x 3的系数是________(用数字作答)14.执行如图所示的程序,若输入的x =1,则输出的所有x 的值之和为_________.15.若A ,B 是双曲线C :x 2−y 2=1同一支上的任意两点,O 为坐标原点,则OA •OB 的最小值为__________.16.设函数y =f (x )的定义域为D ,如果存在非零常数T ,对于任意x ∈D ,都有f (x +T )=T •f (x ),则称函数y =f (x )是类周期函数,非零常数T 为函数y =f (x )的类周期.给出下面四个命题:①关于x 的函数y =kx +b (k ,b ∈R )不可能是类周期函数;②如果定义在R 上的函数y =f (x )的类周期为−1,那么4是它的一个周期;③函数f (x )=2x 是类周期函数;④如果函数f (x )=|sin (ωx )|是类周期函数,那么ω=2k π,k ∈Z .其中真命题的序号是_____________.三、解答题(解答应写出必要计算过程,推理步骤和文字说明,共70分)(一)必考题(共60分)17.已知向量=(sinx,1),=(cosx,−1),设函数f(x)=•(−).(1)求f(x)的单调递增区间;(2)△ABC的内角A,B,C的对边分别为a,b,c,若a+c=5,b=21且f(B)=−2,求△ABC的面积.18.如图,在四棱柱ABCD−A1B1C1D1中,底面ABCD是等腰梯形,AB=2,BC=CD=1,AB∥CD,顶点D1在底面ABCD上的射影恰为点C.(1)求证:平面AD1C⊥平面BCC1B1;(2)若直线AD1与底面ABCD成30°角,求二面角C−AD1−D的余弦值.19.某高校在大一新生中招募学生会干部需要进行笔试与面试两轮选拔,第一轮进行笔试(满分100分),规定成绩超过85分者方可进入第二轮面试选拔.为让新生了解笔试考查内容与要求,该校组织了考前培训,现从参加考试的学生中按是否参加了培训分为两类,并分别随机抽取20人,分成甲(参加培训)、乙(未参加培训)两组,对其笔试成绩进行统计分析,得到的茎叶图如图所示:(1)若从甲、乙两组可以参加面试的学生中随机抽取3名,用随机变量X 表示乙组被抽到的人数,求X 的分布列及数学期望EX ;(2)判断有多大把握可以认为能够参加面试与是否参加考前培训有关?附:参考公式:))()()(()(22d b c a d c b a bc ad n K ++++-=,其中d c b a n +++=20.已知椭圆C :22a x +22by =1(a >b >0)的短轴长为2,F 1,F 2分别是椭圆C 的左、右焦点,P 是椭圆C 上的动点,且∠F 1PF 2的最大值为2π. (1)求椭圆C 的标准方程;(2)过椭圆C 的右焦点F 2作直线l 交椭圆C 于A ,B 两点,O 为坐标原点,设2AF =λF 2,λ∈[1,3],试求|OA +OB |的取值范围.21.若函数f (x )的图象从左到右先降后升,则称f (x )为“V 型函数”,函数图象最低点的横坐标称为“V 点”.(1)若函数f (x )=41(x 2−1)−alnx (a ≠0)为“V 型函数”,试求实数a 的取值范围,并求出此时的“V 点”;(2)证明:2ln 1+3ln 1+4ln 1+…+nln 1>)1(232+--n n n n (n ∈N +且n ≥2).(二)选考题(共10分).请考生在第22、23题中任选一题作答.如果多做,则按所做的第一题计分.[选修4−4:坐标系与参数方程](10分)22.在直角坐标系中,以原点为极点,x 轴的非负半轴为极轴建立极坐标系,已知曲线C 1的极坐标方程为ρcos (θ−4π)=2,曲线C 2的参数方程为⎩⎨⎧+-=+-=ααsin 21cos 21y x (其中α为参数且α∈[0,2π)).(1)求曲线C 1的直角坐标方程和曲线C 2的普通方程;(2)若点A ,B 分别在曲线C 1、C 2上,试求|AB|的最小值.[选修4−5:不等式选讲](10分)23.已知函数f (x )=|x|+|x −2|.(1)求不等式f (x )≤4的解集;(2)若关于x 的不等式f (x )<|1−a|的解集为空集,求实数a 的取值范围.。
2018届高三上学期期末联考数学(理)试题有答案-精品
2017—2018学年度第一学期期末联考试题高三数学(理科)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分全卷满分150分,考试时间120分钟.注意:1. 考生在答题前,请务必将自己的姓名、准考证号等信息填在答题卡上.2. 选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号,答在试卷上无效.3. 填空题和解答题用0.5毫米黑色墨水签字笔答在答题卡上每题对应的答题区域内.答在试题卷上无效.第Ⅰ卷(选择题 共60分)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.把答案填在答题卡上对应题号后的框内,答在试卷上无效.1.设集合{123}A =,,,{45}B =,,{|}M x x a b a A b B ==+∈∈,,,则M 中的元素个数为A .3B .4C .5D .62.在北京召开的第24届国际数学家大会的会议,会议是根据中国古代数学家赵爽的弦图(如图)设计的,其由四个全等的直角三角形和一个正方形组成,若直角三角形的直角边的边长分别是3和4,在绘图内随机取一点,则此点取自直角三角形部分的概率为 A .125B .925C .1625D .24253.设i 为虚数单位,则下列命题成立的是A .a ∀∈R ,复数3i a --是纯虚数B .在复平面内i(2i)-对应的点位于第三限象C .若复数12i z =--,则存在复数1z ,使得1z z ∈RD .x ∈R ,方程2i 0x x +=无解4.等比数列{}n a 的前n 项和为n S ,已知3215109S a a a =+=,,则1a =A .19B .19-C .13D .13-5.已知曲线421y x ax =++在点(1(1))f --,处切线的斜率为8,则(1)f -=试卷类型:A天门 仙桃 潜江A .7B .-4C .-7D .4 6.84(1)(1)x y ++的展开式中22x y 的系数是A .56B .84C .112D .1687.已知一个空间几何体的三视图如图,根据图中标出的尺寸(单位:cm ),可得这个几何体的体积是 A .4cm 3B .5 cm 3C .6 cm 3D .7 cm 38.函数()sin()(0,0)f x A x A ωϕω=+>>的图像如图所示,则(1)(2)(3)(18)f f f f ++++的值等于ABC 2D .19.某算法的程序框图如图所示,其中输入的变量x 在1,2,3…,24 这24个整数中等可能随机产生。
广东省五校协作体高三第一次联考试卷(1月)数学(理)Word版含答案
广东省五校协作体2018届高三第一次联考试卷理科数学本试卷共5页,23小题,满分150分。
考试用时120分钟。
注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
答卷前,考生务必将自己的姓名和考生号、试室号、座位号填写在答题卡上,并用2B铅笔在答题卡的相应位置填涂考生号。
2.作答第Ⅰ卷时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。
写在本试卷上无效。
3.第Ⅱ卷必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内的相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液。
不按以上要求作答无效。
4.考生必须保持答题卡的整洁。
考试结束后,将试卷和答题卡一并交回。
一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设全集U=N*,集合A={1,2,3,5},B={2,4,6},则图中的阴影部分表示的集合为()A.{2} B.{4,6} C.{1,3,5} D.{2,4,6}2.已知i是虚数单位,复数z满足(i﹣1)z=i,则z的虚部是()A.B.C.D.3. 已知M是抛物线C:y2=2px(p>0)上一点,F是抛物线C的焦点,若|MF|=p,K是抛物线C的准线与x轴的交点,则∠MKF=()A.45° B.30° C.15° D.60°4.在区间上任选两个数x和y,则y<sinx的概率为()A. B.C. D.5.已知,函数y=f(x+φ)的图象关于直线x=0对称,则φ的值可以是()A.B.C.D.6.一块硬质材料的三视图如图所示,正视图和俯视图都是边长为10cm的正方形,将该木料切削、打磨,加工成球,则能得到的最大球的半径最接近()A.3cm B.4cm C.5cm D.6cm7.执行如图所示的程序框图,若输入x=20,则输出的y的值为()A .2B .﹣1C .﹣D .﹣8.若平面α截三棱锥所得截面为平行四边形,则该三棱锥与平面α平行的棱有( )A .0条B .1条C .2条D .1条或2条 9.已知实数x ,y 满足,则z=2|x ﹣2|+|y|的最小值是( ) A .6B .5C .4D .310.已知双曲线﹣=1(a >0,b >0),过其左焦点F 作x 轴的垂线,交双曲线于A ,B两点,若双曲线的右顶点在以AB 为直径的圆外,则双曲线离心率的取值范围是( ) A .(1,) B .(1,2) C .(,+∞)D .(2,+∞)11.关于曲线C :142=+y x 给出下列四个命题: (1)曲线C 有两条对称轴,一个对称中心 (2)曲线C 上的点到原点距离的最小值为1 (3)曲线C 的长度l 满足24>l(4)曲线C 所围成图形的面积S 满足4<<S π 上述命题正确的个数是A .1 B. 2 C. 3 D. 412.定义在R 上的函数f (x )满足f (x+2)=f (x ),当x∈[0,2]时,f (x )=,函数g (x )=x 3+3x 2+m .若对任意s∈[﹣4,﹣2),存在t∈[﹣4,﹣2),不等式f (s )﹣g (t )≥0成立,则实数m 的取值范围是( ) A .(﹣∞, 12] B .(﹣∞,-14] C .(﹣∞,8]D .(﹣∞,]二、填空题(每题5分,满分20分,将答案填在答题纸上) 13. 在二项式nxx )1(-的展开式中恰好第5项的二项式系数最大,则展开式中含x 2项的系数是 . 14.已知=(,),||=1,|+2|=2,则在方向上的投影为 .15.两所学校分别有2名,3名学生获奖,这5名学生要排成一排合影,则存在同校学生排在一起的概率为 .16.已知数列{}n a 满足:1a 为正整数,⎪⎩⎪⎨⎧+=+为奇数,为偶数n nnnn a a a a a 13,21,如果1a =1,则 2018321....a a a a ++++= .三、解答题:共70分.解答应写出文字说明、证明过程和演算步骤.第17~21题为必考题,每个试题考生都必须做答.第22、23题为选考题,考生根据要求做答.(一)必考题:共60分.17.在△ABC 中,A ,B ,C 所对的边分别为a ,b ,c ,且2a sin A =(2b -c )sin B +(2c -b )sin C .(1)求角A 的大小;(2)若a =10,cos B =255,D 为AC 的中点,求BD 的长.18.如图,在四棱锥E ﹣ABCD 中,△ABD 是正三角形,△BCD 是等腰三角形,∠BCD=120°,EC ⊥BD .(1)求证:BE=DE ;(2)若AB=2,AE=3,平面EBD ⊥平面ABCD ,直线AE 与平面ABD 所成的角为45°,求二面角B ﹣AE ﹣D 的余弦值.19.据某市地产数据研究院的数据显示,2016年该市新建住宅销售均价走势如图所示,为抑制房价过快上涨,政府从8月份采取宏观调控措施,10月份开始房价得到很好的抑制. (1)地产数据研究院研究发现,3月至7月的各月均价y (万元/平方米)与月份x 之间具有较强的线性相关关系,试建立y 关于x 的回归方程(系数精确到0.01),政府若不调控,依次相关关系预测第12月份该市新建住宅销售均价;(2)地产数据研究院在2016年的12个月份中,随机抽取三个月份的数据作样本分析,若关注所抽三个月份的所属季度,记不同季度的个数为X ,求X 的分布列和数学期望. 参考数据:=25,=5.36,=0.64(说明:以上数据ii y x ,为3月至7月的数据)回归方程=x+中斜率和截距的最小二乘估计公式分别为:=, =﹣.20.已知椭圆E: +=1(a>b>0)的左焦点F1与抛物线y2=﹣4x的焦点重合,椭圆E 的离心率为,过点M (m,0)(m>)作斜率不为0的直线l,交椭圆E于A,B两点,点P(,0),且•为定值.(1)求椭圆E的方程;(2)求△OAB面积的最大值.21.已知函数f(x)=ax+lnx,其中a为常数,设e为自然对数的底数.(1)当a=﹣1时,求f(x)的最大值;(2)若f(x)在区间(0,e]上的最大值为﹣3,求a的值;(3)设g(x)=xf(x),若a>0,对于任意的两个正实数x1,x2(x1≠x2),证明:2g()<g(x1)+g(x2).(二)选考题:共10分.请考生在第22、23题中任选一题做答,如果多做,则按所做的第一题计分.22.在直角坐标系xOy中,直线l的参数方程为(t为参数),在以原点O为极点,x轴正半轴为极轴的极坐标系中,圆C的方程为ρ=6sinθ.(1)写出直线l的普通方程和圆C的直角坐标方程;(2)设点P(3,4),直线l与圆C相交于A,B两点,求+的值.23.已知函数f(x)=|x﹣2|+|2x+1|.(1)解不等式f(x)>5;(2)若关于x的方程=a的解集为空集,求实数a的取值范围.广东省五校协作体2018届高三第一次联考理科数学参考答案及评分细则一、选择题:本大题共12个小题,每小题5分,共60分.二、填空题:每题5分,满分20分. 13. 56- 14. 41-15. 10916. 4709三、解答题:满分70分.17.(1)因为2a sin A =(2b -c )sin B +(2c -b )·sin C ,由正弦定理得2a 2=(2b -c )b +(2c -b )c , ………(1分) 整理得2a 2=2b 2+2c 2-2bc , ……………(2分)由余弦定理得cos A =b 2+c 2-a 22bc =2bc 2bc =22, ……………(4分)因为A ∈(0,π),所以A =π4. ……………(5分) (2)由cos B =255,得sin B =1-cos 2B =1-45=55, ……………(6分) 所以cos C =cos[π-(A +B )]=-cos(A +B )=-⎝⎛⎭⎪⎫22×255-22×55=-1010,……8分 由正弦定理得b =a sin Bsin A=10×5522=2, ………(9分)所以CD =12AC =1, ………………………(10分)在△BCD 中,由余弦定理得BD 2=(10)2+12-2×1×10×⎝ ⎛⎭⎪⎫-1010=13,…(11分)所以BD =13. ………(12分) 18.证明:(Ⅰ)取BD 中点O ,连结CO ,EO ,∵△BCD 是等腰三角形,∠BCD=120°,∴CB=CD ,∴CO ⊥BD ,………………………(2分) 又∵EC ⊥BD ,EC ∩CO=C ,∴BD ⊥平面EOC ,∴EO ⊥BD , ………………………(4分) 在△BDE 中,∵O 为BD 的中点,∴BE=DE . ………(5分) (Ⅱ)∵平面EBD ⊥平面ABCD ,平面EBD ∩平面ABCD=BD ,EO ⊥BD ,∴EO ⊥平面ABCD , ……… (6分) 又∵CO ⊥BD ,AO ⊥BD ,∴A,O,C三点共线,AC⊥BD,以O为原点,OA为x轴,OB为y轴,OE为z轴,建立空间直角坐标系,在正△ABCD中,AB=2,∴AO=3,BO=DO=,………(7分)∵直线AE与平面ABD所成角为45°,∴EO=AO=3,………(8分)A(3,0,0),B(0,,0),D(0,﹣,0),E(0,0,3),=(﹣3,,0),=(﹣3,﹣,0),=(﹣3,0,3),………(9分)设平面ABE的法向量=(a,b,c),则,取a=1,得=(1,,1),………(10分)设平面ADE的法向量=(x,y,z),则,取x=1,得=(1,﹣,1),………(11分)设二面角B﹣AE﹣D为θ,则cosθ===.∴二面角B﹣AE﹣D的余弦值为.………(12分)19.解:(Ⅰ)由题意=5, =1.072,………(1分)=10,………(2分)∴==0.064,………(3分)=﹣=0.752,………(4分)∴从3月到6月,y关于x的回归方程为y=0.06x+0.75,………(5分)x=12时,y=1.47.即可预测第12月份该市新建住宅销售均价为1.47万元/平方米;(6分)(Ⅱ)X的取值为1,2,3,………(7分)P(X=1)==,P(X=3)==,P(X=2)=1﹣P(X=1)﹣P(X=3)=,………(10分)X的分布列为………(11分)E(X)=1×+2×+3×=.………(12分)20.解:(Ⅰ)设F1(﹣c,0),∵抛物线y2=﹣4x的焦点坐标为(﹣1,0),且椭圆E的左焦点F与抛物线y2=﹣4x的焦点重合,∴c=1,………(1分)又椭圆E的离心率为,得a=,………(2分)于是有b2=a2﹣c2=1.故椭圆Γ的标准方程为:.………(3分)(Ⅱ)设A(x1,y1),B(x2,y2),直线l的方程为:x=ty+m,由整理得(t2+2)y2+2tmy+m2﹣2=0 ………(4分),………(5分),==(t2+1)y1y2+(tm﹣t)(y1+y2)+m2﹣=.………(7分)要使•为定值,则,解得m=1或m=(舍)………(8分)当m=1时,|AB|=|y1﹣y2|=,………(9分)点O到直线AB的距离d=,………(10分)△OAB面积s==.………(11分)∴当t=0,△OAB面积的最大值为,………(12分)21.解:(1)易知f(x)定义域为(0,+∞),当a=﹣1时,f(x)=﹣x+lnx,,………(1分)令f′(x)=0,得x=1.当0<x<1时,f′(x)>0;当x>1时,f′(x)<0,∴f(x)在(0,1)上是增函数,在(1,+∞)上是减函数.………(2分)f(x)max=f(1)=﹣1.∴函数f(x)在(0,+∞)上的最大值为﹣1,………(3分)(2)∵.………(4分)①若,则f′(x)≥0,从而f(x)在(0,e]上是增函数,∴f(x)max=f(e)=ae+1≥0,不合题意,………(5分)②若,则由,即由,即,从而f(x)在(0,﹣)上增函数,在(﹣,e]为减函数………(6分)∴令,则,∴a=﹣e2,………(7分)(3)证明:∵g(x)=xf(x)=ax2+xlnx,x>0∴,………(8分)∴g′(x)为增函数,不妨令x2>x1令,………(9分)∴,∵,∴………(10分)而h(x1)=0,知x>x1时,h(x)>0故h(x2)>0,即………(12分)[选修4-4:坐标系与参数方程选讲]22.解:(Ⅰ)由直线l的参数方程为(t为参数),得直线l的普通方程为x+y﹣7=0.(2分)又由ρ=6sinθ得圆C的直角坐标方程为x2+(y﹣3)2=9;………(5分)(Ⅱ)把直线l的参数方程(t为参数),代入圆C的直角坐标方程,-+=,设t1、t2是上述方程的两实数根,………(7分)得2t10所以t1+t2=2,t1t2=1,………(8分)>0,t2>0,所以+ = . ………(10分)∴t[选修4-5:不等式选讲]23.解:(Ⅰ)解不等式|x﹣2|+|2x+1|>5,………(1分)x≥2时,x﹣2+2x+1>5,解得:x>2;………(2分)﹣<x<2时,2﹣x+2x+1>5,无解,………(3分)x≤﹣时,2﹣x﹣2x﹣1>5,解得:x<﹣,………(4分)故不等式的解集是(﹣∞,﹣)∪(2,+∞);………(5分)(Ⅱ)f(x)=|x﹣2|+|2x+1|=,………(7分)故f(x)的最小值是,所以函数f(x)的值域为[,+∞),………(8分)从而f(x)﹣4的取值范围是[﹣,+∞),进而的取值范围是(﹣∞,﹣]∪(0,+∞).………(9分)根据已知关于x的方程=a的解集为空集,所以实数a的取值范围是(﹣,0].………(10分)。
2018年高考理科数学试卷(全国卷Ⅰ)第21题的几种解法——构造函数证
a-
a2 - 4 a + a2 - 4
或
.
2
2
2
2
当 x∈ æ 0ꎬa - a - 4 ÷ö∪ çæ a + a - 4 ꎬ + ∞ ÷ö时ꎬ
2
2
è
ø è
ø
1
- x2 + 2lnx2 < 0ꎬ
x2
f( x1 ) - f( x2 )
即
< a - 2 成立.
x1 - x2
解法二 由 ( 1 ) 知ꎬ f ( x) 存 在 两 个 极 值 点 当 且 仅 当
域为(0ꎬ + ∞ ) ꎬf′( x) = - 2 - 1 +
= -
.
x
x
x2
( ⅰ) 若 a ≤2ꎬ 则 f′ ( x) ≤0ꎬ 当 且 仅 当 a = 2ꎬ x = 1 时
f′( x) = 0ꎬ所以 f( x) 在(0ꎬ + ∞ ) 上单调递减.
( ⅱ) 若 a > 2ꎬ令 f′( x) = 0ꎬ
◎陈俊国 ( 安徽省太湖中学ꎬ安徽 安庆 246400)
构造函数证明不等式问题是全国卷考查函数与导数及
不等式综合的重要内容ꎬ2018 年高考理科数学试卷( 全国卷
1
Ⅰ) 第 21 题( 已知函数 f( x) =
- x + alnx. (1) 讨论 f( x)
x
的单调 性ꎻ ( 2 ) 若 f ( x ) 存 在 两 个 极 值 点 x1 ꎬ x2 ꎬ 证 明:
a+
> 0ꎬ
a2 - 4
∴ h( a) 在(2ꎬ + ∞ ) 上单调递增ꎬ
∴ h( a) > h(2) = 0ꎬ
则 h′( a) =
∴
a2 - 4 - 2ln
2018届湖南省三湘名校教育联盟高三第三次联考数学(理)试卷
湖南省三湘名校教育联盟2018届高三第三次联考数学(理)试卷第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 设全集U R =,集合{}(){}11,20A x x B x x x =-<<=-<,则()U A C B ⋂=( ) A .{}10x x -<≤ B .{}12x x << C .{}01x x << D .{}01x x ≤<2.已知i 为虚数单位,复数322iz i+=-,则以下为真命题的是( ) A.z 的共轭复数为7455i - B.z 的虚部为85C.3z =D.z 在复平面内对应的点在第一象限3.我国古代数学著作《九章算术》有如下问题:“今有金箠,长五尺,斩本一尺,重四斤,斩末一尺,重二斤,问次一尺各重几何?” 意思是:“现有一根金箠,长5尺,一头粗,一头细,在粗的一端截下1尺,重4斤;在细的一端截下1尺,重2斤;问依次每一尺各重多少斤? ”设该金箠由粗到细是均匀变化的,则金箠的重量为( )A .15斤B .14斤C .13斤D .12斤4.与双曲线2212x y -=的渐近线平行,且距离为6的直线方程为( )A .260x y ±-=B .2260x y ±±=C .260x y ±±=D .2260x y ±+= 5.若()f x 为偶函数,且在0,2π⎛⎫⎪⎝⎭上满足任意12x x <,()()12120f x f x x x ->-,则()f x 可以为( ) A .5cos 2y x π⎛⎫=+⎪⎝⎭B .()sin y x π=+C .tan y x =-D .212cos 2y x =- 6.执行如图所示的程序框图,当7t =时,输出的S 值为( )A .32-B .0C .32D .37.“中国梦”的英文翻译为“China Dream ”,其中China 又可以简写为CN ,从“CN Dream ”中取6个不同的字母排成一排,含有“ea ” 字母组合(顺序不变)的不同排列共有( ) A .360种 B .480种 C .600种 D .720种 8. ()4231x x +-的展开式中x 的系数为( )A .4-B .8-C .12-D .16- 9.随机变量X 服从正态分布()()210,,12XN P X m σ>=,()810P X n ≤≤=,则21m n+的最小值为( )A .342+B .622+C .822+D .642+10.如图所示,网格纸上小正方形的边长为1,粗实线和虚线画出的是某几何体的三视图,则该几何休的表面积为( )A .205π+B .245π+C .()2051π+- D .()2451π+-11.已知抛物线()220y px p =>的焦点为F ,准线为l ,过点F 的直线交拋物线于,A B 两点,过点A 作准线l 的垂线,垂足为E ,当A 点坐标为()03,y 时,AEF ∆为正三角形,则此时OAB ∆的面积为( ) A .433 B .3 C .233D .3312.已知函数()()1ln 1,121,1x x x f x x -⎧->⎪=⎨+≤⎪⎩,则方程()()()3204f f x f x ⎡⎤-+=⎢⎥⎣⎦的实根个数为( )A .6B .5C .4D .3第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13.已知函数()21tan 322f x x x πθθ⎛⎫=++≠ ⎪⎝⎭在区间3,13⎡⎤-⎢⎥⎣⎦上是单调函数,其中θ是直线l 的倾斜角,则θ的所可能取值范围为 .14.若ABC ∆的三内角,,A B C 满足:sin :sin :sin 2:3:3A B C =,则以2B 为一内角且其对边长为22的三角形的外接圆的面积为 .15.已知实数,x y 满足022x yy x y ≤-⎧⎪≥⎨⎪+≤-⎩,且()1,1m a x =+-,()1,n y a =+,若m n ⊥,则实数a 的最大值是 .16.已知函数()()()()()22,,1ln 1f x kx x g x x h x x x =+==++,若当[]1,x e ∈时,不等式组()()()()2f x g x f x x h x ⎧≥⎪⎨-≤⎪⎩恒成立,则实数k 的取值范围为 .三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17. 已知数列{}n b 是首项为1的等差数列,数列{}n a 满足1310n n a a +--=,且3211,1b a a +==. (1)求数列{}n a 的通项公式;(2)令n n n c a b =⋅,求数列{}n c 的前n 项和n T .18. 2016年1月1日,我国实行全面二孩政策,同时也对妇幼保健工作提出了更高的要求.某城市实行网格化管理,该市妇联在网格1与网格2两个区域内随机抽取12个刚满8个月的婴儿的体重信息,休重分布数据的茎叶图如图所示(中位:斤,2斤=1千克).体重不超过9.8kg 的为合格.(1)从网格1与网格2分别随机抽取2个婴儿,求网格1至少一个 婴儿体重合格且网格2至少一个婴儿体重合格的概率;(2)妇联从网格1内8个婴儿中随机抽取4个进行抽检,若至少2个 婴儿合格,则抽检通过,若至少3个合格,则抽检为良好.求网格1在抽检通过的条件下,获得抽检为良好的概率;(3)若从网格1与网格2内12个婴儿中随机抽取2个,用X 表示网格2内婴儿的个数,求X 的分布列与数学期望.19. 如图所示,四边形ABCD 为菱形,且120,2//ABC AB BE DF ∠=︒=,,且3BE DF ==,DF ⊥平面ABCD .(1)求证:平面ABE ⊥平面ABCD ;(2)求平面AEF 与平面ABE 所成锐二面角的正弦值.20.已知椭圆()2222:10x y C a b a b +=>>的离心率为32,,4a M b ⎛⎫ ⎪⎝⎭为焦点是1,02⎛⎫⎪⎝⎭的抛物线上一点,H 为直线y a =-上任一点,,A B 分别为椭圆C 的上,下顶点,且,,A B H 三点的连线可以构成三角形. (1)求椭圆C 的方程;(2)直线,HA HB 与椭圆C 的另一交点分别交于点,D E ,求证:直线DE 过定点.21. 已知函数()ln ,xe f x a x ax a R x =--+∈.(1)当0a <时,讨论()f x 的单调性;(2)设()()()g x f x xf x '=+,若关于x 的不等式()()212xx g x e a x ≤-++-在[]1,2上有解,求a 的取值范围.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.22.选修4-4:坐标系与参数方程在极坐标系中,直线l 的极坐标方程为sin 224πρθ⎛⎫+= ⎪⎝⎭,现以极点O 为原点,极轴为x 轴的非负半轴建立平面直角坐标系,曲线1C 的参数方程为12cos 22sin x y ϕϕ=-+⎧⎨=-+⎩(ϕ为参数).(1)求直线l 的直角坐标方程和曲线1C 的普通方程;(2)若曲线2C 为曲线1C 关于直线l 的对称曲线,点,A B 分别为曲线1C 、曲线2C 上的动点,点P 坐标为()2,2,求AP BP +的最小值.23.选修4-5:不等式选讲已知函数()12,f x x x m m R =++--∈. (1)若5m =,求不等式()0f x >的解集;(2)若对于任意x R ∈,不等式()2f x ≥恒成立,求m 的取值范围.试卷答案一、选择题1-5: ADABB 6-10: DCCDD 11、12:AC二、填空题13. 3,,6224ππππ⎡⎫⎛⎤⋃⎪ ⎢⎥⎣⎭⎝⎦14.8116π 15. 12 16.[]2,2e -三、解答题17. (1)∵1310n n a a +--=,∴131n n a a +=+,∴111322n n a a +⎛⎫+=+ ⎪⎝⎭, ∴12n a ⎧⎫+⎨⎬⎩⎭是首项为32,公比为3的等比数列,∴113322n n a -+=⨯,即312n n a -=.(2)由(1)知,232311132b a -=-=-=,∴33n b n n =+-=,则322n n n nc ⋅=-,∴()()2111323324n n n n T n +=⨯+⨯++⨯-,令213233n n S n =⨯+⨯++⨯,① 231313233n n S n +=⨯+⨯++⨯,②①-②得1211133132333333222n n n n n n S n n n ++++-⎛⎫-=+++-⨯=-⨯=-- ⎪⎝⎭∴()121334n n n S +-⋅+=.∴()()12133218n n n n n T +-⋅+-+=.18.(1)由茎叶图知,网格1内体重合格的婴儿数为4,网格2内体重合格的婴儿数为2,则所求概率22422284551184C C P C C ⎛⎫⎛⎫=--= ⎪⎪⎝⎭⎝⎭.(2)设事件A 表示“2个合格,2个不合格”;事件B 表示“3个合格,1个不合格”; 事件C 表示“4个全合格”;事件D 表示“抽检通过”;事件E 表示“抽检良好”.∴()()()()22314444444448885370C C C C C PD P A P B P C C C C =++=++=, ()()()31444444881770C C C P E P B P C C C =+=+=,则所求概率()()1753P D P P E ==.(3)由题意知,X 的所有可能取值为0,1,2.∴()2821214033C P X C ===,()114821216133C C P X C ===,()242121211C P X C ===,∴X 的分布列为∴()1416120123333113E X =⨯+⨯+⨯=. 19.(1)∵//,BE DF DF ⊥平面ABCD ,∴BE ⊥平面ABCD , 又BE ⊂平面ABE ,∴平面ABE ⊥平面ABCD .(2)设AC 与BD 的交点为O ,建立如图所示的空间直角坐标系O xyz -, 则()()()()3,0,0,0,1,0,0,1,3,0,1,3AB E F -,∴()()()0,2,0,3,1,3,3,1,0EF AE AB =-=-=-设平面AEF 的法向量为()1111,,n x y z =,则1100EF n AE n ⎧⋅=⎪⎨⋅=⎪⎩,即111120330y x y z -=⎧⎪⎨-++=⎪⎩,令11x =,则110,0y z ==,∴()11,0,1n =.设平面ABE 的法向量为()2222,,n x y z =,则2200AE n AB n ⎧⋅=⎪⎨⋅=⎪⎩,即2222233030x y z x y ⎧-++=⎪⎨-+=⎪⎩, 令21x =,则223,0y z ==,∴()21,3,0n =. ∴12121212cos ,422n n n n n n ⋅===⨯⋅,∴1214sin ,4n n =,∴平面AEF 与平面ABE 所成锐二面角的正弦值为144. 20.(1由题意知,22223224c aa b a b c ⎧=⎪⎪⎪=⨯⎨⎪⎪=+⎪⎩,解得213a b c ⎧=⎪=⎨⎪=⎩,∴椭圆C 的方程为2214x y +=.(2)设点()(),20H m m -≠,易知()()0,1,0,1A B -, ∴直线HA 的方程为31y x m =-+,直线HB 的方程为11y x m=--. 联立223114y x m x y ⎧=-+⎪⎪⎨⎪+=⎪⎩,得22362410x x m m ⎛⎫+-= ⎪⎝⎭,∴2222436,3636D D m m x y m m -==++, 冋理可得22284,44E E m m x y m m--==++, ∴直线DE 的斜率为21216m k m-=,∴直线DE 的方程为222241284164m m m y x m m m --⎛⎫-=+ ⎪++⎝⎭,即2121162m y x m -=-, ∴直线DE 过定点10,2⎛⎫- ⎪⎝⎭.21.(1)由题意知,()()()221xx xax e x a xe e f x a x x x ---'=--+=,令()()()1xF x ax e x =--,当0a <时,0xax e-<恒成立,∴当1x >时,()0F x <;当01x <<时,()0F x >, ∴函数()f x 在()0,1上单调递增,在()1,+∞上单调递减. (2)∵()()()g x f x xf x '=+,∴()ln 2x g x a x e ax a =--+-, 由题意知,存在[]01,2x ∈,使得()()0200012x x g x e a x ≤-++-成立.即存在[]01,2x ∈,使得()2000ln 102x a x a x a -++--≤成立,令()()[]2ln 1,1,22x h x a x a x a x =-++--∈,∴()()()[]11,1,2x a x ah x a x x x x---'=++-=-∈.①1a ≤时,[]1,2x ∈,则()0h x '≤,∴函数()h x 在[]1,2上单调递减, ∴()()min 2ln 20h x h a a ==-+≤成立,解得0a ≤,∴0a ≤;②当12a <<时,令()0h x '>,解得1x a <<;令()0h x '<,解得2a x <<, ∴函数()h x 在[]1,a 上单调递增,在[],2a 上单调递减, 又()112h =,∴()2ln 20h a a =-+≤,解得0a ≤,∴a 无解; ③当2a ≥时,[]1,2x ∈,则()0h x '≥,∴函数()h x 在[]1,2上单调递增, ∴()()min 1102h x h ==>,不符合题意,舍去; 综上所述,a 的取值范围为(],0-∞.22.(1)∵sin 224πρθ⎛⎫+= ⎪⎝⎭,∴22cos sin 2222ρθρθ+=,即cos sin 4ρθρθ+=,∴直线l 的直角坐标方程为40x y +-=; ∵12cos 22sin x y ϕϕ=-+⎧⎨=-+⎩,∴曲线1C 的普通方程为()()22124x y +++=. (2) ∵点P 在直线4x y +=上,根据对称性,AP 的最小值与BP 的最小值相等, 曲线1C 是以()1,2--为圆心,半径2r =的圆.∴()()221min 212223AP PC r =-=+++-=,则AP BP +的最小值为236⨯=.23.(1)令()21,1123,1221,2x x g x x x x x x -+≤-⎧⎪=++-=-<≤⎨⎪->⎩.当5m =时,()0f x >等价于1215x x ≤-⎧⎨-+>⎩或1235x -<≤⎧⎨>⎩或2215x x >⎧⎨->⎩,解得2x <-或∅或3x >,∴不等式() 0f x >的解集为()(),23,-∞-⋃+∞. (2)由题意知,122m x x ≤++--在R 上恒成立, 又()()1221221x x x x ++--≥+---=, ∴1m ≤,即m 的取值范围是(],1-∞.。
【全国市级联考】内蒙古赤峰市2018届高三上学期期末考试数学(理)试题(解析版)
2018年赤峰市高三期末考试试卷理科数学一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 若,则复数()A. B. C. D.【答案】D【解析】∵∴故选D.2. 集合, ,若,则()A. B. C. D.【答案】C【解析】∵集合,,∴是方程的解,即∴∴,故选C3. 若变量满足约束条件,则的最大值是()A. B. 0 C. D.【答案】D【解析】作出约束条件的可行域如图:则满足条件的区域为三角形,平移直线可知经过点时,目标函数取最大值,为. 故选D.点睛:本题主要考查线性规划中利用可行域求目标函数的最值,属简单题.求目标函数最值的一般步骤是“一画、二移、三求”:(1)作出可行域(一定要注意是实线还是虚线);(2)找到目标函数对应的最优解对应点(在可行域内平移变形后的目标函数,最先通过或最后通过的顶点就是最优解);(3)将最优解坐标代入目标函数求出最值.4. 已知的面积是,, ,则()A. 5B. 或1C. 5或1D.【答案】B【解析】∵,,∴①若为钝角,则,由余弦定理得,.............................. 解得;②若为锐角,则,同理得.故选B.5. 在一次连环交通事故中,只有一个人需要负主要责任,但在警察询问时,甲说:“主要责任在乙”;乙说:“丙应负主要责任”;丙说“甲说的对”;丁说:“反正我没有责任”.四人中只有一个人说的是真话,则该事故中需要负主要责任的人是()A. 甲B. 乙C. 丙D. 丁【答案】A【解析】①假定甲说的是真话,则丙说“甲说的对”也是真话,这与四人中只有一个人说的是正矛盾,所以假设不成立,故甲说的是假话;②假定乙说的是真话,则丁说“反正我没有责任”也为真话,这与四人中只有一个人说的是正矛盾,所以假设不成立,故乙说的是假话;③假定丙说的是真话,由①知甲说的也是真话,这与四人中只有一个人说的是正矛盾,所以假设不成立,故丙说的是假话;综上可得,丁说的真话,甲乙丙三人说的均为假话,即乙丙丁没有责任,所以甲负主要责任,故选A. 6. 一个长方体被一平面截去一部分后,所剩几何体的三视图如图所示,则该几何体的体积为()A. 36B. 48C. 64D. 72【答案】B【解析】由题设中提供的三视图可以看出该几何体是一个长方体去掉一个上底是直角梯形,下底是直角三角形的棱台的剩余部分。
2018年高三最新 广东省六校2018届高三第三次联考数学试题(理科) 精品
广东省六校2018届高三第三次联考东莞中学 中山纪念中学 珠海一中 广州二中 深圳实验中学 惠州一中数学(理科)试卷本试卷共4页,21小题,满分150分.考试用时120分钟.注意事项:1.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑,如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试卷上.2.非选择题必须用黑色字迹钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液.不按以上要求作答的答案无效.一、选择题:本大题共8小题,每小题5分,满分40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}2,1,0=M ,{}M a a x x N ∈==,2,则集合=N M A .}0{B .}1,0{C .}2,1{D .}2,0{2.设a 是实数,且211i i a +++是实数,则=a A .21B .1C .23D .23.已知函数)sin(2)(ϕω+=x x f (其中0>ω,2πϕ<)的最小正周期是π,且3)0(=f ,则 A .21=ω,6πϕ= B .21=ω,3πϕ=C .2=ω,6πϕ=D .2=ω,3πϕ=4.下列四个命题中,真命题的个数为(1)如果两个平面有三个公共点,那么这两个平面重合; (2)两条直线可以确定一个平面;(3)若α∈M ,β∈M ,l =⋂βα,则l M ∈; (4)空间中,相交于同一点的三直线在同一平面内. A .1B .2C .3D .45.已知⎩⎨⎧>+-≤=0,1)1(0,cos )(x x f x x x f π,则)34()34(-+f f 的值为A .2-B .1-C .1D .26.设)('x f 是函数)(x f 的导函数,将)(x f y =和)('x f y =的图像画在同一个直角坐标系中,不可能正确的是A .B .C .D .7.设1e ,2e 分别为具有公共焦点1F 与2F 的椭圆和双曲线的离心率,P 为两曲线的一个公共点,且满足021=⋅PF PF ,则2212221)(e e e e +的值为 A .21 B .1 C .2 D .不确定8.已知1)1,1(=f ,*),(N n m f ∈(m 、*)N n ∈,且对任意m 、*N n ∈都有: ①2),()1,(+=+n m f n m f ;②)1,(2)1,1(m f m f =+.给出以下三个结论:(1)9)5,1(=f ;(2)16)1,5(=f ;(3)26)6,5(=f . 其中正确的个数为 A .3 B .2 C .1 D .0二、填空题:本大题共7小题,每小题5分,满分30分.其中13~15题是选做题,考生只能选做二题,三题全答的,只计算前两题得分.9.圆心为)1,1(且与直线4=+y x 相切的圆的方程是_______________. 10.向量、3=5=7=-,则、的夹角为________. 11.若把英语单词“good ”的字母顺序写错了,则可能出现的错误共有_______种. 12.如右图,一个空间几何体的主视图、左视图是周长为4一个内角为060的菱形,俯视图是圆及其圆心,那么这个几何体的表面积为________.13.(坐标系与参数方程选做题)极坐标系下,直线2)4cos(=-πθρ 与圆2=ρ的公共点个数是________.俯视图左视图主视图EDCBAPB14.(不等式选讲选做题)x 、0>y ,1=+y x ,则)1)(1(yy x x ++的最小值为______. 15.(几何证明选讲选做题)如图所示,等腰三角形ABC 的底边AC 长为6 , 其外接圆的半径长为5, 则三角形ABC 的面积是________.三、解答题:本大题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤. 16.(本小题满分12分)设集合{}42<=x x A ,⎭⎬⎫⎩⎨⎧+<=341x x B . (1)求集合B A ;(2)若不等式022<++b ax x 的解集为B ,求a ,b 的值.17.(本小题满分12分)已知函数x x x f 2sin 21)12(cos )(2++=π. (1)求)(x f 的最值; (2)求)(x f 的单调增区间.18.(本小题满分14分)如图,四棱锥ABCD P -中,⊥PA 底面ABCD ,AD AB ⊥,CD AC ⊥,︒=∠60ABC ,BC AB PA ==,E 是PC 的中点.(1)求证:AE CD ⊥; (2)求证:⊥PD 面ABE ;(3)求二面角C PD A --的平面角的正弦值.19.(本小题满分14分)已知抛物线2:ax y C =(a 为非零常数)的焦点为F ,点P 为抛物线C 上一个动点,过点P 且与抛物线C 相切的直线记为L .(1)求F 的坐标;(2)当点P 在何处时,点F 到直线L 的距离最小?20.(本小题满分14分)数列{}n a 是以a 为首项,q 为公比的等比数列.令n n a a a b ----= 211,n n b b b c ----= 212,*N n ∈.(1)试用a 、q 表示n b 和n c ;(2)若0<a ,0>q 且1≠q ,试比较n c 与1+n c 的大小;(3)是否存在实数对),(q a ,其中1≠q ,使{}n c 成等比数列.若存在,求出实数对),(q a 和{}n c ;若不存在,请说明理由.21.(本小题满分14分)设函数x b x x f ln )1()(2+-=,其中b 为常数. (1)当21>b 时,判断函数()f x 在定义域上的单调性; (2)若函数()f x 的有极值点,求b 的取值范围及()f x 的极值点; (3)求证对任意不小于3的正整数n ,不等式n n n n1ln )1ln(12<-+<都成立.广东省六校2018届高三第三次联考东莞中学 中山纪念中学 珠海一中 广州二中 深圳实验中学 惠州一中数学(理科)试卷参考答案一、选择题:本大题共8小题,每小题5分,满分40分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.D2.B3.D4.A5.C6.D7.C8.A二、填空题:本大题共7小题,每小题5分,满分30分.其中13~15题是选做题,考生只能选做二题,三题全答的,只计算前两题得分. 9.2)1()1(22=-+-y x 10.︒120(或π32) 11.11 12.π13.114.425 15.3三、解答题:本大题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤. 16.(本小题满分12分)解:{}{}2242<<-=<=x x x x A ,……………………………………………… 3分{}13031341<<-=⎭⎬⎫⎩⎨⎧<+-=⎭⎬⎫⎩⎨⎧+<=x x x x x x x B ,……………………… 3分(1){}12<<-=∴x x B A ;……………………………………………………. 2分 (2)因为022<++b ax x 的解集为{}13<<-=x x B ,所以13和-为022=++b ax x 的两根,……………………………………… 2分故⎪⎪⎩⎪⎪⎨⎧⨯-=+-=-132132b a,所以4=a ,6-=b .……………………………………. 2分17.(本小题满分12分) 解: x x x f 2sin 21)]62cos(1[21)(+++=π………………………………………… 2分 ]2sin )6sin 2sin 6cos 2(cos 1[21x x x +-+=ππ)2sin 212cos 231(21x x ++=………………………………………… 2分 21)32sin(21++=πx ……………………………………………………. 2分 (1))(x f 的最大值为1、最小值为0;……………………………………………… 2分 (2))(x f 单调增,故]22,22[32πππππ+-∈+k k x ,…………………………… 2分即)](12,125[Z k k k x ∈+-∈ππππ, 从而)(x f 的单调增区间为)](12,125[Z k k k ∈+-ππππ.…………………… 2分18.(本小题满分14分)(1)证明:⊥PA 底面ABCD ,PA CD ⊥∴又AC CD ⊥,A AC PA =⋂,故⊥CD 面PAC⊆AE 面PAC ,故AE CD ⊥………………………………………………… 4分(2)证明:BC AB PA ==,︒=∠60ABC ,故AC PA =E 是PC 的中点,故PC AE ⊥由(1)知AE CD ⊥,从而⊥AE 面PCD ,故PD AE ⊥易知PD BA ⊥,故⊥PD 面ABE ……………………………………………… 5分 (3)过点A 作PD AF ⊥,垂足为F ,连结EF .由(2)知,⊥AE 面PCD ,故AFE ∠是二面角C PD A --的一个平面角. 设a AC =,则a AE 22=,a AD 32=,a PD 37= 从而a PD AD PA AF 72=⋅=,故414sin ==∠AF AE AFE .……………… 5分 说明:如学生用向量法解题,则建立坐标系给2分,写出相关点的坐标给2分,第(1)问正确给2分,第(2)问正确给4分,第(3)问正确给4分。
2018届吉林省长春市普通高中高三一模考试数学试题卷
2018届吉林省长春市普通高中高三一模考试题数学试题卷(理科)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 设为虚数单位,则(?1+2i)(2?i)=()A. 5iB. ?5iC. 5D. -5【答案】A【解析】由题意可得:(?1+2i)(2?i)=?2+4i+i?2i2=5i.本题选择A选项.2. 集合{a,b,c}的子集的个数为()A. 4B. 7C. 8D. 16【答案】C【解析】集合{a,b,c}含有3个元素,则其子集的个数为23=8.本题选择C选项.3. 若图是某学校某年级的三个班在一学期内的六次数学测试的平均成绩y关于测试序号x的函数图像,为了容易看出一个班级的成绩变化,将离散的点用虚线连接,根据图像,给出下列结论:①一班成绩始终高于年级平均水平,整体成绩比较好;②二班成绩不够稳定,波动程度较大;③三班成绩虽然多数时间低于年级平均水平,但在稳步提升.其中正确结论的个数为()A. 0B. 1C. 2D. 3【答案】D【解析】通过函数图象,可以看出①②③均正确.故选D.4. 等差数列{a n}中,已知|a6|=|a11|,且公差d>0,则其前n项和取最小值时的n的值为()A. 6B. 7C. 8D. 9【答案】C【解析】因为等差数列中,,所以,有,所以当时前项和取最小值.故选C......................5. 已知某班级部分同学一次测验的成绩统计如图,则其中位数和众数分别为()A. 95,94B. 92,86C. 99,86D. 95,91【答案】B【解析】由茎叶图可知,中位数为92,众数为86. 故选B.6. 若角α的顶点为坐标原点,始边在x轴的非负半轴上,终边在直线y=?√3x上,则角α的取值集合是()A. {α|α=2kπ?π3,k∈Z} B. {α|α=2kπ+2π3,k∈Z}C. {α|α=kπ?2π3,k∈Z} D. {α|α=kπ?π3,k∈Z}【答案】D【解析】因为直线y=?√3x的倾斜角是2π3,所以终边落在直线y=?√3x上的角的取值集合为{α|α=kπ?π3,k∈Z}或者{α|α=kπ+2π3,k∈Z}.故选D.7. 已知x>0,y>0,且4x+y=xy,则x+y的最小值为()A. 8B. 9C. 12D. 16【答案】B【解析】由题意可得:4y +1x=1,则:x+y=(x+y)(4y +1x)=5+4xy+yx≥5+2√4xy×yx=9,当且仅当x=3,y=6时等号成立,综上可得:则x+y的最小值为9.本题选择B选项.点睛:在应用基本不等式求最值时,要把握不等式成立的三个条件,就是“一正——各项均为正;二定——积或和为定值;三相等——等号能否取得”,若忽略了某个条件,就会出现错误.8. 《九章算术》卷五商功中有如下问题:今有刍甍,下广三丈,袤四丈,上袤二丈,无广,高一丈,问积几何.刍甍:底面为矩形的屋脊状的几何体(网格纸中粗线部分为其三视图,设网格纸上每个小正方形的边长为1丈),那么该刍甍的体积为()A. 4立方丈B. 5立方丈C. 6立方丈D. 12立方丈【答案】B【解析】由已知可将刍甍切割成一个三棱柱和一个四棱锥,三棱柱的体积为3,四棱锥的体积为2,则刍甍的体积为5.故选B.9. 已知矩形ABCD的顶点都在球心为O,半径为R的球面上,AB=6,BC=2√3,且四棱锥O?ABCD的体积为8√3,则R等于()A. 4B. 2√3C. 4√7D. √139【答案】A【解析】由题意可知球心到平面ABCD的距离 2,矩形ABCD所在圆的半径为2√3,从而球的半径R=4.故选A.10. 已知某算法的程序框图如图所示,则该算法的功能是()A. 求首项为1,公差为2的等差数列前2017项和B. 求首项为1,公差为2的等差数列前2018项和C. 求首项为1,公差为4的等差数列前1009项和D. 求首项为1,公差为4的等差数列前1010项和【答案】C【解析】由题意可知S=1+5+9+?+4033,为求首项为1,公差为4的等差数列的前1009项和.故选C.点睛:算法与流程图的考查,侧重于对流程图循环结构的考查.先明晰算法及流程图的相关概念,包括选择结构、循环结构、伪代码,其次要重视循环起点条件、循环次数、循环终止条件,更要通过循环规律,明确流程图研究的数学问题,是求和还是求项.11. 已知O为坐标原点,设F1,F2分别是双曲线x2?y2=1的左、右焦点,点P为双曲线上任一点,过点F1作∠F1PF2的平分线的垂线,垂足为H,则|OH|=()A. 1B. 2C. 4D. 12【答案】A【解析】延长交于点,由角分线性质可知根据双曲线的定义,,从而,在中,为其中位线,故.故选A.点睛:对于圆锥曲线问题,善用利用定义求解,注意数形结合,画出合理草图,巧妙转化.12. 已知定义在R上的奇函数f(x)满足f(x+π)=f(?x),当x∈[0,π2]时,f(x)=√x,则函数g(x)=(x?π)f(x)?1在区间[?3π2,3π]上所有零点之和为()A. πB. 2πC. 3πD. 4π【答案】D【解析】f(x+π)=f(−x)=?f(x)?T=2π,g(x)=(x−π)f(x)−1=0?f(x)=1x?π作图如下:,四个交点分别关于(π,0)对称,所以零点之和为2×2π=4π,选D.点睛:对于方程解的个数(或函数零点个数)问题,可利用函数的值域或最值,结合函数的单调性、草图确定其中参数范围.从图象的最高点、最低点,分析函数的最值、极值;从图象的对称性,分析函数的奇偶性;从图象的走向趋势,分析函数的单调性、周期性等.二、填空题(每题5分,满分20分,将答案填在答题纸上)13. 已知角α,β满足?π2<α?β<π2,0<α+β<π,则3α?β的取值范围是__________.【答案】(?π,2π)【解析】结合题意可知:3α?β=2(α?β)+(α+β),且:2(α?β)∈(?π,π),(α+β)∈(0,π),利用不等式的性质可知:3α−β的取值范围是(−π,2π).点睛:利用不等式性质求某些代数式的取值范围时,多次运用不等式的性质时有可能扩大变量的取值范围.解决此类问题一般是利用整体思想,通过“一次性”不等关系的运算求得待求整体的范围,是避免错误的有效途径.14. 已知平面内三个不共线向量a ⃑,b ⃑⃑,c ⃑两两夹角相等,且|a ⃑|=|b ⃑⃑|=1,|c ⃑|=3,则|a ⃑+b ⃑⃑+c ⃑|=__________. 【答案】2【解析】因为平面内三个不共线向量a ⃑,b ⃑⃑,c ⃑两两夹角相等,所以由题意可知,a ⃑,b ⃑⃑,c ⃑的夹角为120°,又知|a ⃑|=|b ⃑⃑|=1,|c ⃑|=3,所以a ⃑.b ⃑⃑=?12 ,a ⃑?c ⃑=b ⃑⃑?c ⃑=?32,|a ⃑+b ⃑⃑+c ⃑|= √1+1+9+2×(?12)+2×(?32)+2×(?32)=2 故答案为2.15. 在ΔABC 中,三个内角A,B,C 的对边分别为a,b,c ,若(12b?sinC)cosA =sinAcosC ,且a =2√3,ΔABC 面积的最大值为__________. 【答案】3√3【解析】由(12b −sinC)cosA =sinAcosC 可得12bcosA =sin (A +C )=sinB ,cosA2=sinB b=sinA a,得 tanA =√3,A =π3,由余弦定理12=b 2+c 2?bc ≥2bc?bc =bc , ΔABC 面积的最大值为12×12×√32=3√3,当且仅当b =c 时取到最大值,故答案为3√3.【方法点睛】本题主要考查正弦定理及余弦定理的应用以及三角形面积公式,属于难题.在解与三角形有关的问题时,正弦定理、余弦定理是两个主要依据. 除了直接利用两定理求边和角以外,恒等变形过程中,一般来说 ,当条件中同时出现ab 及b 2 、a 2 时,往往用余弦定理,而题设中如果边和正弦、余弦函数交叉出现时,往往运用正弦定理将边化为正弦函数再结合和、差、倍角的正余弦公式进行解答. 16. 已知圆锥的侧面展开图是半径为3的扇形,则圆锥体积的最大值为__________. 【答案】2√3π【解析】设圆锥的底面半径为R ,由题意可得其体积为:V =13Sℎ=13×πR 2×√9?R 2=2π×√R 2×R 2×(9?R 2)=23π×3√3=2√3π.当且仅当R =√6时等号成立.综上可得圆锥体积的最大值为2√3π.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.(一)必考题:共60分.17. 已知数列{a n}的前n项和S n=2n+1+n?2.(Ⅰ)求数列{a n}的通项公式;(Ⅱ)设b n=log2(a n?1),求证:1b1b2+1b2b3+1b3b4+?+1b n b n+1<1.【答案】(Ⅰ)a n=2n+1;(Ⅱ)证明见解析.【解析】试题分析:(Ⅰ)利用已知条件,推出新数列是等比数列,然后求数列{a n}的通项公式;(Ⅱ)化简b n=log2(a n?1)=log22n=n,则1b n b n+1=1n−1n+1,利用裂项相消法和,再根据放缩法即可证明结果.试题解析:(Ⅰ)由{S n=2n+1+n−2S n−1=2n+(n−1)−2(n≥2),则a n=2n+1(n≥2). 当n=1时,a1=S1=3,综上a n=2n+1.(Ⅱ)由b n=log2(a n−1)=log22n=n.1 b1b2+1b2b3+1b3b4+...+1b n b n+1=11×2+12×3+13×4+...+1n(n+1)=(1−12)+(12−13)+(13−14)+...+(1n−1n+1)=1−1n+1<1. 得证.18. 长春市的“名师云课”活动自开展以来获得广大家长和学生的高度赞誉,在我市推出的第二季名师云课中,数学学科共计推出36节云课,为了更好地将课程内容呈现给学生,现对某一时段云课的点击量进行统计:(Ⅰ)现从36节云课中采用分层抽样的方式选出6节,求选出的点击量超过3000的节数.(Ⅱ)为了更好地搭建云课平台,现将云课进行剪辑,若点击量在区间[0,1000]内,则需要花费40分钟进行剪辑,若点击量在区间(1000,3000]内,则需要花费20分钟进行剪辑,点击量超过3000,则不需要剪辑,现从(Ⅰ)中选出的6节课中随机取出2节课进行剪辑,求剪辑时间X的分布列与数学期望.【答案】(Ⅰ)2;(Ⅱ)1003.【解析】试题分析:(Ⅰ)因为 36节云课中采用分层抽样的方式选出6节,所以12节应选出12×636=2节;(Ⅱ)X的所有可能取值为0,1,2,3,根据古典概型概率公式分别求出各随机变量的概率,从而可得分布列,由期望公式可得结果..试题解析:(Ⅰ)根据分层抽样,选出的6节课中有2节点击量超过3000. (Ⅱ)X的可能取值为0,20,40,60P(X=0)=1C62=115P(X=20)=C31C21C62=615=25P(X=40)=C21+C32C62=515=13P(X=60)=C31C62=315=15则X的分布列为0 20 40 60即EX=1003.19. 如图,四棱锥P?ABCD中,底面ABCD为菱形,PA⊥平面ABCD,E为PD的中点.(Ⅰ)证明:PB∥平面AEC;(Ⅱ)设PA=1,∠ABC=60°,三棱锥E?ACD的体积为√38,求二面角D?AE?C的余弦值.【答案】(Ⅰ)证明见解析;(Ⅱ)√1313.【解析】试题分析:(Ⅰ) )连接BD交AC于点O,连接OE,根据中位线定理可得PB//OE,由线面平行的判定定理即可证明PB//平面AEC;(Ⅱ)以点A为原点,以AM方向为x轴,以AD方向为y轴,以AP方向为z轴,建立空间直角坐标系,分别求出平面CAE与平面DAE的一个法向量,根据空间向量夹角余弦公式,可得结果.试题解析:(Ⅰ)连接BD交AC于点O,连接OE在△PBD中,PE =DEBO =DO }?PB//OE OE?平面ACE PB?平面ACE}?PB//平面ACE(Ⅱ)V P−ABCD =2V P−ACD =4V E−ACD =√32,设菱形ABCD 的边长为aV P−ABCD =13S ?ABCD ?PA =13×(2×√34a 2)×1=√32,则a =√3.取BC 中点M ,连接AM .以点A 为原点,以AM 方向为x 轴,以AD 方向为y 轴,以AP 方向为z 轴, 建立如图所示坐标系.D(0,√3,0),A(0,0,0),E(0,√32,12),C(32,√32,0) AE⃑⃑⃑⃑⃑⃑=(0,√32,12),AC ⃑⃑⃑⃑⃑⃑=(32,√32,0), n 1⃑⃑⃑⃑⃑=(1,−√3,3),n 2⃑⃑⃑⃑⃑=(1,0,0) cosθ=|n1⃑⃑⃑⃑⃑⃑?n 2⃑⃑⃑⃑⃑⃑||n 1⃑⃑⃑⃑⃑⃑|?|n 2⃑⃑⃑⃑⃑⃑|=√1+3+9=√1313, 即二面角D −AE −C 的余弦值为√1313.【方法点晴】本题主要考查线面平行的判定定理以及利用空间向量求二面角,属于难题.空间向量解答立体几何问题的一般步骤是:(1)观察图形,建立恰当的空间直角坐标系;(2)写出相应点的坐标,求出相应直线的方向向量;(3)设出相应平面的法向量,利用两直线垂直数量积为零列出方程组求出法向量;(4)将空间位置关系转化为向量关系;(5)根据定理结论求出相应的角和距离. 20. 已知椭圆C 的两个焦点为F 1(?1,0),F 2(1,0),且经过点E(√3,√32).(Ⅰ)求椭圆C 的方程;(Ⅱ)过F 1的直线与椭圆C 交于A,B 两点(点A 位于x 轴上方),若AF 1⃑⃑⃑⃑⃑⃑⃑⃑=λF 1B ⃑⃑⃑⃑⃑⃑⃑⃑,且2≤λ<3,求直线的斜率k 的取值范围. 【答案】(Ⅰ)x 24+y 23=1;(Ⅱ)0<k ≤√52. 【解析】试题分析:(1)由题意可得a =2,c =1,b =√3,则椭圆方程为x 24+y 23=1. (2)联立直线与椭圆的方程,结合韦达定理得到关于实数k 的不等式,求解不等式可得直线的斜率k 的取值范围是k=√52. 试题解析:(1)由椭圆定义2a =|EF 1|+|EF 2|=4,有a =2,c =1,b =√3,从而x 24+y 23=1.(2)设直线l:y =k (x +1)(k >0),有{y =k (x +1)x 24+y 23=1 ,整理得(3k 2+4)y 2−6k y −9=0, 设A (x 1,y 1),B (x 2,y 2),有y 1=−λy 2,y 1y 2=−λ(1−λ)2(y 1+y 2)2,(1−λ)2λ=43+4k 2,λ+1λ−2=43+4k 2, 由于2≤λ<3,所以12≤λ+1λ−2<43,12≤43+4k 2<43,解得0<k ≤√52. 3+4k 2=8,k =±√52,由已知k =√52.21. 已知函数f (x )=e x ,g (x )=ln (x +a )+b .(Ⅰ)若函数f (x )与g (x )的图像在点(0,1)处有相同的切线,求a,b 的值; (Ⅱ)当b =0时,f (x )?g (x )>0恒成立,求整数a 的最大值;(Ⅲ)证明:ln2+(ln3?ln2)2+(ln4?ln3)3 +?+[ln(n +1)?lnn]n <ee?1. 【答案】(Ⅰ)1,1;(Ⅱ)2;(Ⅲ)证明见解析.【解析】试题分析:(Ⅰ)求出f′(x )与g′(x ),由f(1)=g(1)且f ′(1)=g ′(1)解方程组可求a,b 的值;(Ⅱ)f (x )−g (x )>0恒成立等价于e x ≥ln(x +a)恒成立,先证明当a ≤2时恒成立,再证明a ≥3时不恒成立,进而可得结果;(Ⅲ))由e x >ln(x +2),令x =−n+1n,即e−n+1n>ln(−n+1n+2),即e −n+1>ln n (−n+1n+2),令n =1,2,3,4... ,各式相加即可得结果.试题解析:(Ⅰ)由题意可知,f(x)和g(x)在(0,1)处有相同的切线, 即在(0,1)处f(1)=g(1)且f ′(1)=g ′(1), 解得a =1,b =1.(Ⅱ)现证明e x ≥x +1,设F(x)=e x −x −1, 令F ′(x)=e x −1=0,即x =0,因此F(x)min =F(0)=0,即F(x)≥0恒成立, 即e x ≥x +1, 同理可证lnx ≤x −1.由题意,当a ≤2时,e x ≥x +1且ln(x +2)≤x +1,即e x ≥x +1≥ln(x +2), 即a =2时,f(x)−g(x)>0成立.当a ≥3时,e 0<lna ,即e x ≥ln(x +a)不恒成立. 因此整数a 的最大值为2. (Ⅲ)由e x >ln(x +2),令x =−n+1n,即e−n+1n>ln(−n+1n+2),即e −n+1>ln n (−n+1n+2)由此可知,当n =1时,e 0>ln2, 当n =2时,e −1>(ln3−ln2)2, 当n =3时,e −2>(ln4−ln3)3, ……当n =n 时,e −n+1>[ln(n +1)−lnn]n .综上:e 0+e −1+e −2+...+e −n+1>ln2+(ln3−ln2)2+(ln4−ln3)3+...+[ln(n +1)−lnn]n11−1e>e 0+e −1+e −2+...+e −n+1>ln2+(ln3−ln2)2+(ln4−ln3)3+...+[ln (n +1)−lnn ]n .即ln2+(ln3−ln2)2+(ln4−ln3)3+...+[ln(n +1)−lnn]n <ee−1.(二)选考题:请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.22. 选修4-4:坐标系与参数方程以直角坐标系的原点O 为极点,x 轴的正半轴为极轴建立极坐标系,已知点P 的直角坐标为(1,2),点M 的极坐标为(3,π2),若直线过点P ,且倾斜角为π6,圆C 以M 圆心,3为半径. (Ⅰ)求直线的参数方程和圆C 的极坐标方程; (Ⅱ)设直线与圆C 相交于A,B 两点,求|PA|?|PB|. 【答案】(Ⅰ){x =1+√32ty =2+12t(t 为参数),ρ=6sinθ;(Ⅱ)7. 【解析】试题分析:(1)根据直线参数方程形式直接写出直线的参数方程,根据直角三角形关系得ρ=6sinθ,即为圆C 的极坐标方程(2)利用ρsinθ=y,x 2+y 2=ρ2将圆C 的极坐标方程化为直接坐标方程,将直线参数方程代入,利用韦达定理及参数几何意义得|PA |?|PB |=|t 1t 2|=7 试题解析:(Ⅰ)直线的参数方程为{x =1+√32t,y =2+12t, (t 为参数), 圆的极坐标方程为ρ=6sinθ .(Ⅱ)把{x =1+√32t,y =2+12t,代入x 2+(y −3)2=9,得t 2+(√3−1)t −7=0, ∴t 1t 2=−7,设点A,B 对应的参数分别为t 1,t 2,则|PA |=|t 1|,|PB |=|t 2|,|PA |?|PB |=7. 23. 选修4-5:不等式选讲设不等式||x +1|?|x?1||<2的解集为A .(Ⅰ)求集合A ;(Ⅱ)若a,b,c ∈A ,求证:|1?abcab?c |>1.【答案】(Ⅰ){x|?1<x <1};(Ⅱ)证明见解析.【解析】试题分析:(1)根据绝对值定义将不等式化为三个不等式组,分别求解,最后求并集(2)利用分析法证明,将所求不等式转化为(1−a 2b 2)(1−c 2)>0,再根据a,b,c ∈A ,证明(1−a 2b 2)(1−c 2)>0试题解析:(1)由已知,令f(x)=|x +1|−|x −1|={2(x ≥1)2x(−1<x <1)−2(x ≤−1)由|f(x)|<2得A ={x|−1<x <1}.(2)要证|1−abcab−c |>1,只需证|1−abc|>|ab −c|,只需证1+a 2b 2c 2>a 2b 2+c 2,只需证1−a 2b 2>c 2(1−a 2b 2)只需证(1−a 2b 2)(1−c 2)>0,由a,b,c ∈A ,则(1−a 2b 2)(1−c 2)>0恒成立.点睛:(1)分析法是证明不等式的重要方法,当所证不等式不能使用比较法且与重要不等式、基本不等式没有直接联系,较难发现条件和结论之间的关系时,可用分析法来寻找证明途径,使用分析法证明的关键是推理的每一步必须可逆.(2)利用综合法证明不等式,关键是利用好已知条件和已经证明过的重要不等式.。
精品解析:【全国百强校】河北省衡水中学2023届高三9月大联考数学(理)试题(解析版)
衡水金卷2018届全国高三大联考理数第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出地四个选项中,只有一项是符合题目要求地.1. 已知集合,,则()A. B.C. D.【解析】C【解析】..................................所以,.故选C.2. 记复数地虚部为,已知复数(为虚数单位),则为()A. B. C. D.【解析】B【解析】.故地虚部为-3,即.故选B.3. 已知曲线在点处地切线地倾斜角为,则()A. B. C. D.【解析】C【解析】由,得,故.故选C.4. 2023年8月1日是中国人民解放军建军90周年,中国人民银行为此发行了以此为主题地金银纪念币.如下图所示是一枚8克圆形金质纪念币,直径,面额100元.为了测算图中军旗部分地面积,现用1粒芝麻向硬币内投掷100次,其中恰有30次落在军旗内,据此可估计军旗地面积大约是()A. B. C. D.【解析】B【解析】利用古典概型近似几何概型可得,芝麻落在军旗内地概率为,设军旗地面积为S,由题意可得:.本题选择B选项.5. 已知双曲线:(,)地渐近线经过圆:地圆心,则双曲线地离心率为()A. B. C. D.【解析】A【解析】圆:地圆心为,双曲线地渐近线为.依题意得.故其离心率为.故选A.6. 已知数列为等比数列,且,则()A. B. C. D.【解析】A【解析】依题意,得,所以.由,得,或(由于与同号,故舍去).所以..故选A.7. 执行如图地程序框图,若输出地地值为,则①中应填()A. B. C. D.【解析】C【解析】由图,可知.故①中应填.故选C.8. 已知函数为内地奇函数,且当时,,记,,,则,,间地大小关系是()A. B. C. D.【解析】D【解析】函数是奇函数,则,即当时,,构造函数,满足,则函数是偶函数,则,当时,,据此可得:,即偶函数在区间上单调递减,且:,结合函数地单调性可得:,即:.本题选择D选项.点睛:对于比较大小、求值或范围地问题,一般先利用函数地奇偶性得出区间上地单调性,再利用其单调性脱去函数地符号"f",转化为考查函数地单调性地问题或解不等式(组)地问题,若f(x)为偶函数,则f(-x)=f(x)=f(|x|).9. 已知一几何体地三视图如下图所示,俯视图是一个等腰直角三角形和半圆,则该几何体地体积为()A. B. C. D.【解析】A【解析】由三视图可知该几何体是一个半圆柱与一个地面是等腰直角三角形地三棱锥构成地组合体,故其体积.故选A.点睛:思考三视图还原空间几何体首先应深刻理解三视图之间地关系,遵循"长对正,高平齐,宽相等"地基本原则,其内涵为正视图地高是几何体地高,长是几何体地长;俯视图地长是几何体地长,宽是几何体地宽;侧视图地高是几何体地高,宽是几何体地宽.由三视图画出直观图地步骤和思考方法:1、首先看俯视图,根据俯视图画出几何体地面地直观图;2、观察正视图和侧视图找到几何体前、后、左、右地高度;3、画出整体,然后再根据三视图进行调整.10. 已知函数(,)地部分图像如下图所示,其中.记命题:,命题:将地图象向右平移个单位,得到函数地图象,则以下判断正确地是()A. 为真B. 为假C. 为真D. 为真【解析】D【解析】由,可得.解得.因为,所以,故为真命题;将图象所有点向右平移个单位,得.地图象,故为假命题,所以为假,为真,为假,为真.故选D.11. 抛物线有如下光学性质:过焦点地光线经抛物线反射后得到地光线平行于抛物线地对称轴;反之,平行于抛物线地对称轴地入射光线经抛物线反射后必过抛物线地焦点.已知抛物线地焦点为,一条平行于轴地光线从点射出,经过抛物线上地点反射后,再经抛物线上地另一点射出,则地周长为()A. B. C. D.【解析】B【解析】令,得,即.由抛物线地光学性质可知经过焦点,设直线地方程为,代入.消去,得.则,所以..将代入得,故.故.故地周长为.故选B.点睛:抛物线地光学性质:从抛物线地焦点发出地光线或声波在经过抛物线周上反射后,反射光线平行于抛物线地对称轴.12. 已知数列与地前项和分别为,,且,,,,若,恒成立,则地最小值是()A. B. C. D.【解析】B【解析】已知,,两式子做差得到,故数列是等差数列,由等差数列地通项公式得到,故,故裂项求和得到,由条件恒成立,得到K 地最小值为.故解析选B .点睛:本题考查到了通项公式地求法,从而得到数列是等差数列,再求出,根据裂项求和地方法可以求出前n 项和。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高三第二次周练(理)一. 选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知集合{}220,A x x x x =--≤∈Z ,则集合A 非空子集的个数为 A.14 B.15 C.16 D.172. 已知等差数列{}n a 的公差为2,前n 项和为n S ,且10100S =,则7a 的值为A.11B.12C.13D.143. 下列命题中的假命题是( )A. B.C.D.4.若01,1a b c <<>>,则A .1ab c ⎛⎫< ⎪⎝⎭B .c a c b a b ->- C .11a a c b --< D .log log c b a a < 5. 在平行四边形ABCD 中,AD =1,60BAD ∠=︒,E 为CD 的中点.若1=⋅BE AC ,则AB 的长为( ) A .14B .12C .1D .26. 设函数,若,则实数a 的值为( )A. B. C. 或 D.7. 直线3x + 4y + 2 = 0与圆x 2 + y 2 + 4x = 0交于A ,B 两点,则线段AB 的垂直平分线的方程是 ( )A 4x -3y -2 = 0B 4x -3y -8 = 0C 4x - 3y + 8= 0D 4x +3y + 8 = 0 8. 设、,已知,,且(,),则的最大值是( )A. 1B. 2C.D.9. 若将函数)0)(2cos(3)2sin()(πϕϕϕ<<+++=x x x f 的图象向左平移4π个单位长度,平移后的图象关于点)0,2(π对称,则函数)cos()(ϕ+=x x g 在]6,2[ππ-上的最小值( ) A .21-B .23-C .22 D .21 10.已知直线l ⊥平面α,直线m ⊂平面β,下面四个命题 (1)α∥β⇒l ⊥m (2) α⊥β⇒l ∥m(3) l ∥m ⇒α⊥β (4) l ⊥m ⇒α∥β中正确的两个命题是( ) A.(1)与(3) B.(3) 与(4) C.(2)与 (4) D.(1)与(2)11. 已知函数(),0,ln ,0x e x f x x x ⎧-≤=⎨>⎩(e 为自然对数的底数),若关于x 的方程()0f x a +=有两个不相等的实根,则a 的取值范围是 A.1a >-B.11a -<<C.01a <≤D.1a <12.在数列{}n a 中,已知)1*n a n +=∀∈N ,则数列{}n a 满足:()1*n n a a n +<∀∈N 的充要条件为A.11>-aB.13>aC.1113或<->a aD.113-<<a 二、填空题:本大题共4小题,每小题5分.13.设变量x 、y 满足约束条件22,1,1,x y x y x y -≤⎧⎪-≥-⎨⎪+≥⎩则3z x y =-的最大值为______.14. 已知数列{}n a ,若数列{}13n n a -的前n 项和11655n n T =⨯-,则5a 的值为________.15. .已知向量||||b b a =-,|||2|b b a =-,则向量b a ,的夹角为___________________ 16.已知若对任意一个单位向量e ,满足:()2+⋅≤a b e 成立,则⋅a b 的最大值是. 三、解答题:17. 如图,在ABC ∆中,P 是BC 边上的一点,60APC ∠=︒,AB =4APPB +=.(1)求BP 的长; (2)若4AC =,求cos ACP ∠的值.18. 四棱锥-P ABCD 中,底面A B C D 是平行四边形,2,60BC AB ABC =∠=︒,=PA PB ,点M 为AB 的中点。
(Ⅰ)在棱PD 上作点N ,使得AN ∥平面PMC(Ⅱ)若⊥P B A C ,且直线PC 与平面PAB 所成的角是45︒,求二面角--M PC A 的余弦值19. 在ABC ∆中,角C B A ,,的对边分别是c b a ,,, 60=C ,b c 32=. (1)求角B A ,的大小;(2)若D 为边AC 上一点,且4=a ,BCD ∆的面积为3,求BD 的长.20. 已知圆心在x 轴上的圆C 过点和,圆D 的方程为2+y 2=4.(1)求圆C 的方程;(2)由圆D 上的动点P 向圆C 作两条切线分别交y 轴于A ,B 两点,求的取值范围.21.已知各项均不相等的等差数列{}n a 的前四项和413714,,,S a a a =且成等比. (1)求数列{}n a 的通项公式; (2)设11{}n n n T n a a +为数列的前项和,若*1n n T a n N λ+≤∈对一切恒成立,求实数λ的最大值.22. 已知函数()()21ln 112f x x x ax a x =-+-+(其中a ∈R ),且曲线()y f x =在1x =处的切线与x 轴平行. (Ⅰ)求a 的值;(Ⅱ)求()f x 的单调区间;(III )若122x x +=,试比较()()12f x f x +与1的大小关系.理科数学参考答案及评分标准1.B2. D3.C4.D5. B6.B7C 8.A 9. D10.A 11.c 12.B13.5 14.16 15. 30 16.117. 解:(1)由已知,得120APB ∠=︒………………………………………………1分又AB =4AP BP +=, 在ABP ∆中,由余弦定理,得(()()222424cos120BP BP BP BP =+--⨯⨯-︒,……………………4分整理,得2440BP BP -+=.解得2BP =.…………………………………………6分(2)由(1)知,2AP =, 所以在ACP ∆中,由正弦定理.得sin 60sin AC APACP=︒∠,…………………………8分解得4sin 25ACP ∠==.………………………………………………………9分因为2<AP AC <,从而ACP APC ∠<,即ACP ∠是锐角,……11分所以3cos 5ACP ∠==.……………………………………………………12分18.(Ⅰ)点N 为PD 中点.下证:取PD 中点N ,PC 中点Q ,连结AN ,QN ,MQ , 在∆PCD 中,,N Q 分别是所在边PD ,PC 的中点, 则NQ CD ∥且1=2NQ CD .----------1分 因为点M 为AB 中点,=AB CD , 所以NQ AM ∥且NQ AM =.---------2分所以四边形AMQN 是平行四边形, 所以AN MQ ∥.----------3分又因为⊄AN 平面PMC ,MQ ⊂平面PMC , 所以AN ∥平面PMC .---------4分(Ⅱ)在∆ABC 中,2=BC AB ,60ABC ∠=︒, 设=AB a ,则2=BC a ,由余弦定理有:2222cos60AC AB BC AB BC =+-⋅⋅︒=,则222=+BC AB AC ,由勾股定理的逆定理可得:⊥AC AB .----------5分 又因为⊥PB AC ,PB AB B = ,,PB AB ⊂平面PAB ,所以平面⊥AC PAB . 因为PM PAB ⊂平面,所以⊥AC PM .因为=PA PB ,点M 为线段AB 的中点,所以⊥PM AB , 因此,,PM AB AC 两两垂直.------------6分以A 为原点,分别以,AB AC 所在直线为,x y 轴,建立空间直角坐标系.因为直线PC 与平面PAB 的所成角是45︒, 所以45CPA ∠=︒,所以Rt CAP ∆是等腰直角三角形,所以==PA CA .---------7分则()0,0,0A ,,0,02a M ⎛⎫ ⎪⎝⎭,22a P ⎛⎫ ⎪ ⎪⎝⎭,(),0C ,MP ⎛= ⎝⎭,,02a MC ⎛⎫=- ⎪⎝⎭ .-----------8分 设平面PMC 的一个法向量为()1,,x y z =n ,则110,0,n MP n MC ⎧⋅=⎪⎨⋅=⎪⎩即0,0,z x =⎧⎪⎨-+=⎪⎩得()1n = , 同理可得,平面PAC的一个法向量为()2=n ,--------10分xD则121212cos ,13n n n n ⋅<>==-n n .------------11分 由图可得所求二面角的平面角为锐角, 所以二面角--M PC A的余弦值为13.---------------12分19. (1) 75,45A B ︒︒==(2) BD =2021 (1) 1n a n =+ (2) max 16λ=22.(1)()()ln 2f x x ax a '=-+-----------1分 由题意得()10f '=----------2分 则1a =,且验证()10f ≠----------3分 所以1a =成立----------4分(2)由(1)得:()21ln 12f x x x x =-+,定义域为()0,+∞,---------5分 令()g x =()ln 1f x x x '=-+ 则()1(1)0,1g g x x'==----------6分 当()0,1x ∈时,()0g x '> 当()1,x ∈+∞时,()0g x '< 则()g x 的最大值为()10g =则对于任意的()0,x ∈+∞,都有()0f x '≤---------7分()f x 的单调区间为()0,+∞---------8分(3)()21ln 12f x x x x =-+.由122x x +=得,212x x =-,()()()()1211121f x f x f x f x +-=+--.9分 令()()()21F x f x f x =+--=()()2ln 2ln 221x x x x x x +---+-,02x <<.()F x '=()ln ln 222x x x ---+,10分令()()G x F x '=,()()()22111222x G x x x x x -'=+-=--. 当02x <<时,()0G x '≥,()G x 单调递增,即()F x '单调递增.11分又()10F '=,所以当01x <≤时,()0F x '≤,()F x 单调递减;当12x <<时,()0F x '>,()F x 递增.所以()()min 10F x F ==,即()0F x ≥,所以()()121f x f x +≥.12分。