中考专题-开放探索问题
中考总复习:开放探索题新编(答案已编好)
一、专题论述:近几年在各省、市的中考题中,出现了一批符合学生年龄特点和新课标要求的开放探索题。
开放探索题打破传统模式,构思新颖,被认为是当前培养创新意识、创造能力的最富有价值的数学问题。
而且,开放探索题与其它题型呈现融合的形势。
加大数学开放题在中考命题中的力度,是应试教育向素质教育转轨的重要体现,对发挥学生主体性方面具有得天独厚的优势,是培养学生主体意识的极好材料。
在2011年安徽中考题中,第9,10,14,22,23题都带有开放探索性质,分值39分,约占24%.在2012年安徽中考题中,第9,10,14,17,23题是开放探索题,分值35分,约占23%.在2013年安徽中考题中,第9,10,14,18,23题都是开放探索题,分值35分,约占23%.开放探究题的特点是:(1)条件多余或不足;(2)答案不固定;(3)问题一般没有明确的结论,没有固定的形式和方法,需要自己通过观察、分析、比较、概括、推理、判断等探索活动来确定所需求的结论或条件或方法.开放探索性问题可分为条件开放与探索问题、结论开放与探索问题、条件与结论开放与探索问题。
在解决开放探题的时候,需要解题者经过探索确定结论或补全条件,将开放性问题转化为封闭性问题,然后选择合适的解题途径完成最后的解答.这类题主要考查我们分析问题和解决问题的能力和创新意识.二、典例分析:考点一条件开放探索问题条件开放探索问题的特征是缺少确定的条件,并给出结论。
要求根据结论补充所需的条件,而满足结论的条件往往是不唯一的.典例1 (2012湖南郴州)如图,D、E分别是△ABC的边AB、AC上的点,连接DE,要使△ADE∽△ACB,还需添加一个条件(只需写一个).【解题指导】本题考查相似三角形的判定。
∵∠A是公共角,∴当∠ADE=∠C或∠AED=∠B时,△ADE∽△ACB(有两角对应相等的三角形相似);当AD:AC=AE:AB或AD•AB=AE•AC时,△ADE∽△ACB(两组对应边的比相等且夹角对应相等的两个三角形相似)。
中考规律探索型问题及答案
规 律 探1.如图,下面是按照一定规律画岀的“数形图”,经观察可以发现:图A 比图A i 多岀2个“树枝”比图A 多岀4个“树枝”,图A 比图A 3多岀8个“树枝”,……,照此规律,图A 比图A2多岀“树枝”()D. 124【答案】C的代数式表示)OQQG O 0-O 0 0 5第1个图形 第2个图形0 Q0 0 0 0 90 0 O0 Q Q 9 0 Qoo oo • a C 殆彷0 4 0 0 0O第3个图形第4个图形【答案】n(n 1) 4或n 2 n 4 3.观察下列算式:2① 1 X 3 - 2 = 3 - 4 = -1 ② 2 X 4 - 3 2 = 8 - 9 = -1③ 3 X 5 - 4 2 = 15 - 16 = -1④ _________________________6.观察下面的变形规律:1 1 1 11 1 11----- =1 — — • ------------ = — — — • -------- =———1 2 223233434解答下面的问题:2.将一些半径相同的小圆按如图所示的规律摆放,请仔细观察,第 n 个图形有个小圆 (用含n(1 )请你按以上规律写出第 4个算式; 2)把这个规律用含字母的式子表示出来;(3)你认为(2)中所写岀的式子一定成立吗?并说明理由. 【答案】解:⑴4 6 5224 25 1 ;2⑵答案不唯一.如n n 2 n 11 ;2 2 2⑶ n n 2 n 1 n 2n n 2n 11.4. 观察上面的图形,它们是按一定规律排列的,依照此规律,第 【答案】155. 先找规律,再填数: 22n n2n 1【答案】11006____ 个图形共有120个8.如下数表是由从1开始的连续自然数组成,观察规律并完成各题的解答(1) _______________________________ 表中第8行的最后一个数是 ___________________ ,它是自然数 的平方,第8行共有 ____________________________ 个数;(2) ______________________________________________ 用含n 的代数式表示:第 n 行的第一个数是 _____ ,最后一个数是 _____________________________________________ ,第n 行共有____________ 个 数;(3)求第n 行各数之和.【解】(1) 64,8,15;(2) (n 1)2 1,n 2,2n 1;(3)第2行各数之和等于 3X 3 ;第3行各数之和等于 5X 7;第4行各数之和等于 7 X 7-13 ;类似的,第n(1 )若n 为正整数,请你猜想n(n 1)(2) (3) 证明你猜想的结论; 1 .求和: 丄+…+3 42009 2010【答案】 1(1)(2) 证明:n 1 n(n 1)n n(n 1)n 1 n n(n 1)1 n(n 1)(3) 原式=1+…+42009 2010 2010200920107.设 S ,=1g 丄,S 2=1厶 12 22 22丄,X3232■V …,S.=1 A4 n(n【答案】S n1 1~~2n=[1S= (用含n 的代数式表示,其中2n1 1 k 1 [1 占2 2 A 1 爲]2 21 n(n 1)1 n(n1 1 1 ‘ S =(1厂)+(1 厂)+(1 厂尸…+(1n(n 1))2小n 2n n 1接下去利用拆项法1 n(n 1)即可求和.n 1设 S .. .3则行各数之和等于(2n 1)(n2 n 1) = 2 n3 3n2 3n 1.「、 2 32012上乙“ _ 人— 2 3 2012 — 2 3 4 2013 e. — — 2013八9.求 1+2+2+2+…+2 的值,可令 S=1+2+2+2+…+2 ,则 2S=2+2+2+2+…+2,因此 2S- S=2 - 1.仿照以上推理,计算出1+5+52+53+…+5 2012的值为( )选C.个小正方形。
中考二轮专题复习:第5课时 开放探索问题
第6课开放探索问题第一部分讲解部分一、专题诠释开放探究型问题,可分为开放型问题和探究型问题两类.开放型问题是相对于有明确条件和明确结论的封闭型问题而言的,它是条件或结论给定不完全、答案不唯一的一类问题.这类试题已成为近年中考的热点,重在考查同学们分析、探索能力以及思维的发散性,但难度适中.根据其特征大致可分为:条件开放型、结论开放型、方法开放型和编制开放型等四类.探究型问题是指命题中缺少一定的条件或无明确的结论,需要经过推断,补充并加以证明的一类问题.根据其特征大致可分为:条件探究型、结论探究型、规律探究型和存在性探究型等四类.二、解题策略与解法精讲由于开放探究型试题的知识覆盖面较大,综合性较强,灵活选择方法的要求较高,再加上题意新颖,构思精巧,具有相当的深度和难度,所以要求同学们在复习时,首先对于基础知识一定要复习全面,并力求扎实牢靠;其次是要加强对解答这类试题的练习,注意各知识点之间的因果联系,选择合适的解题途径完成最后的解答.由于题型新颖、综合性强、结构独特等,此类问题的一般解题思路并无固定模式或套路,但是可以从以下几个角度考虑:1.利用特殊值(特殊点、特殊数量、特殊线段、特殊位置等)进行归纳、概括,从特殊到一般,从而得出规律.2.反演推理法(反证法),即假设结论成立,根据假设进行推理,看是推导出矛盾还是能与已知条件一致.3.分类讨论法.当命题的题设和结论不惟一确定,难以统一解答时,则需要按可能出现的情况做到既不重复也不遗漏,分门别类加以讨论求解,将不同结论综合归纳得出正确结果.4.类比猜想法.即由一个问题的结论或解决方法类比猜想出另一个类似问题的结论或解决方法,并加以严密的论证.以上所述并不能全面概括此类命题的解题策略,因而具体操作时,应更注重数学思想方法的综合运用.三、考点精讲(一)开放型问题考点一:条件开放型:条件开放题是指结论给定,条件未知或不全,需探求与结论相对应的条件.解这种开放问题的一般思路是:由已知的结论反思题目应具备怎样的条件,即从题目的结论出发,逆向追索,逐步探求.例1:(2011江苏淮安)在四边形ABCD中,AB=DC,AD=BC.请再添加一个条件,使四边形ABCD是矩形.你添加的条件是.(写出一种即可)分析:已知两组对边相等,如果其对角线相等可得到△ABD≌△ABC≌ADC≌△BCD,进而得到,∠A=∠B=∠C=∠D=90°,使四边形ABCD是矩形.解:若四边形ABCD的对角线相等,则由AB=DC,AD=BC可得.△ABD≌△ABC≌ADC≌△BCD,所以四边形ABCD的四个内角相等分别等于90°即直角,所以四边形ABCD是矩形,故答案为:对角线相等.评注:此题属开放型题,考查的是矩形的判定,根据矩形的判定,关键是是要得到四个内角相等即直角.考点二:结论开放型:给出问题的条件,让解题者根据条件探索相应的结论并且符合条件的结论往往呈现多样性,这些问题都是结论开放问题.这类问题的解题思路是:充分利用已知条件或图形特征,进行猜想、类比、联想、归纳,透彻分析出给定条件下可能存在的结论,然后经过论证作出取舍.例2:(2011天津)已知一次函数的图象经过点(0,1),且满足y随x的增大而增大,则该一次函数的解析式可以为.分析:先设出一次函数的解析式,再根据一次函数的图象经过点(0,1)可确定出b的值,再根据y随x的增大而增大确定出k的符号即可.解:设一次函数的解析式为:y=kx+b(k≠0),∵一次函数的图象经过点(0,1),∴b=1,∵y随x的增大而增大,∴k>0,故答案为y=x+1(答案不唯一,可以是形如y=kx+1,k>0的一次函数).评注:本题考查的是一次函数的性质,即一次函数y=kx+b(k≠0)中,k>0,y随x的增大而增大,与y轴交于(0,b),当b>0时,(0,b)在y轴的正半轴上.考点三:条件和结论都开放的问题:此类问题没有明确的条件和结论,并且符合条件的结论具有多样性,因此必须认真观察与思考,将已知的信息集中分析,挖掘问题成立的条件或特定条件下的结论,多方面、多角度、多层次探索条件和结论,并进行证明或判断.例3:(2010•玉溪)如图,在平行四边形ABCD中,E是AD的中点,请添加适当条件后,构造出一对全等的三角形,并说明理由.分析:先连接BE,再过D作DF∥BE交BC于F,可构造全等三角形△ABE和△CDF.利用ABCD是平行四边形,可得出两个条件,再结合DE∥BF,BE∥DF,又可得一个平行四边形,那么利用其性质,可得DE=BF,结合AD=BC,等量减等量差相等,可证AE=CF,利用SAS可证三角形全等.解:添加的条件是连接BE,过D作DF∥BE交BC于点F,构造的全等三角形是△ABE 与△CDF.理由:∵平行四边形ABCD,AE=ED,∴在△ABE与△CDF中,AB=CD,∠EAB=∠FCD,又∵DE∥BF,DF∥BE,∴四边形BFDE是平行四边形,∴DE=BF ,又AD=BC ,∴AD ﹣DE=BC ﹣BF ,即AE=CF ,∴△ABE ≌△CDF .(答案不唯一,也可增加其它条件)评注:本题利用了平行四边形的性质和判定、全等三角形的判定、以及等量减等量差相等等知识.考点四:编制开放型:此类问题是指条件、结论、解题方法都不全或未知,而仅提供一种问题情境,需要我们补充条件,设计结论,寻求解法的一类题,它更具有开放性.例4:(2010年江苏盐城中考题)某校九年级两个班各为玉树地震灾区捐款1800元.已知2班比1班人均捐款多4元,2班的人数比1班的人数少10%.请你根据上述信息,就这两个班级的“人数”或“人均捐款”提出一个用分式方程....解决的问题,并写出解题过程. 分析:本题的等量关系是:两班捐款数之和为1800元;2班捐款数-1班捐款数=4元;1班人数=2班人数×90%,从而提问解答即可.解:解法一:求两个班人均捐款各多少元?设1班人均捐款x 元,则2班人均捐款(x +4)元,根据题意得1800x ·90%=1800x +4解得x =36 经检验x =36是原方程的根∴x +4=40答:1班人均捐36元,2班人均捐40元解法二:求两个班人数各多少人?设1班有x 人,则根据题意得1800x +4=180090x %解得x =50 ,经检验x =50是原方程的根∴90x % =45答:1班有50人,2班有45人.评注:对于此类编制开放型问题,是一类新型的开放型问题,它要求学生的思维较发散,写出符合题意的正确答案即可,难度要求不大,但学生容易犯想当然的错误,叙述不够准确,如单位的问题、符合实际等要求,在解题中应该注意防范.(二)探究型问题考点五:动态探索型:此类问题结论明确,而需探究发现使结论成立的条件的题目.例5:(2011•临沂)如图1,将三角板放在正方形ABCD 上,使三角板的直角顶点E 与正方形ABCD 的顶点A 重合,三角扳的一边交CD 于点F .另一边交CB 的延长线于点G .(1)求证:EF=EG ;(2)如图2,移动三角板,使顶点E 始终在正方形ABCD 的对角线AC 上,其他条件不变,(1)中的结论是否仍然成立?若成立,请给予证明:若不成立.请说明理由:(3)如图3,将(2)中的“正方形ABCD”改为“矩形ABCD”,且使三角板的一边经过点B ,其他条件不变,若AB=a 、BC=b ,求错误!未找到引用源。
开放探究题-中考数学
开放探究题-中考数学开放探索性试题在中考中越来越受到重视,由于条件与结论的不确定性,使得解题的方法与答案呈多样性,学生犹如八仙过海,各显神通。
探索性问题的特点是:问题一般没有明确的结论,没有固定的形式和方法,需要自己通过观察、分析、比较、概括、推理、判断等探索活动来确定所需求的结论或条件或方法,这类题主要考查学生分析问题和解决问题的能力和创新意识。
这类题对同学们的综合素质要求比较高,这类题往往作为中考试卷中的压轴题出现,在中考中所占比例在9%左右。
1.条件开放与探索给出问题的结论,让解题者分析探索使结论成立应具备的条件,而满足结论的条件往往不惟一,这样的问题是条件开放性问题。
它要求解题者善于从问题的结论出发,逆向追索,多途寻因。
[例1] 已知△ABC 内接于⊙O ,⑴当点O 与AB 有怎样的位置关系时,∠ACB 是直角?⑵在满足⑴的条件下,过点C 作直线交AB 于D ,当CD 与AB 有什么样的关系时,△ABC ∽△CBD ∽△ACD ? ⑶画出符合⑴、⑵题意的两种图形,使图形的CD =2cm 。
[解析]:⑴要使∠ACB =90°,弦AB 必须是直径,即O 应是AB 的中点;⑵当CD ⊥AB 时,结论成立;⑶由⑵知DB AD CD ⋅=2,即422==⋅DB AD ,可作直径AB 为5的⊙O ,在AB 上取一点D ,使AD =1,BD =4,过D 作CD⊥AB 交⊙O 于C 点,连结AC 、BC ,即得所求。
⑴当点O 在AB 上(即O 为AB 的中点)时,∠ACB 是直角; ⑵∵∠ACB 是直角,∴当CD ⊥AB 时,△ABC ∽△CBD ∽△ACD ;⑶作直径AB 为5的⊙O ,在AB 上取一点D ,使AD =1,BD =4,过D 点作CD ⊥AB 交⊙O 于C 点,连结AC 、BC ,即为所求(如下图所示)。
[评注]:本题是一个简单的几何条件探索题,它突破了过去“假设——求证”的封闭式论证,而是给出问题的结论,逆求结论成立的条件,强化了对学生通过观察、分析、猜想、推理、判断等探索活动的要求。
中考系列复习——探索型题目集锦
中考数学探索题\新题型训练1、我们平常用的数是十进制数,如2639=2×103+6×102+3×101+9×100,表示十进制的数要用10个数码(又叫数字):0,1,2,3,4,5,6,7,8,9。
在电子数字计算机中用的是二进制,只要两个数码:0和1。
如二进制中101=1×22+0×21+1×20等于十进制的数5,10111=1×24+0×23+1×22+1×21+1×20等于十进制中的数23,那么二进制中的1101等于十进制的数 。
2、从1开始,将连续的奇数相加,和的情况有如下规律:1=1=12;1+3=4=22;1+3+5=9=32;1+3+5+7=16=42;1+3+5+7+9=25=52;…按此规律请你猜想从1开始,将前10个奇数(即当最后一个奇数是19时),它们的和是 。
3、小王利用计算机设计了一个计算程序,输入和输出的数据如下表:输入 … 1 2 3 4 5 …输出……那么,当输入数据是8时,输出的数据是( )A 、B 、C 、D 、4、如下左图所示,摆第一个“小屋子”要5枚棋子,摆第二个要11枚棋子,摆第三个要17枚棋子,则摆第30个“小屋子”要 枚棋子.5、如下右图是某同学在沙滩上用石子摆成的小房子,观察图形的变化规律,写出第n 个小房子用了 块石子6、如下图是用棋子摆成的“上”字:第一个“上”字 第二个“上”字 第三个“上”字如果按照以上规律继续摆下去,那么通过观察,可以发现:(1)第四、第五个“上”字分别需用 和 枚棋子;(2)第n 个“上”字需用 枚棋子。
7、如图一串有黑有白,其排列有一定规律的珠子,被盒子遮住一部分,则这串珠子被盒子遮住的部分有_______颗.8、根据下列5个图形及相应点的个数的变化规律:猜想第6个图形有 个点,第n 个图形中有 个点。
中考探索开放性问题第2讲:开放探究题
A′D′ A′B′
=
AD AB
,即
AD-(a+c) 2 2AB-(a+c) 2 a+c AB-(b+d)=1,即 AB-(b+d) =1,即b+d=2.
第2讲┃ 开放探究题
• 解结论开放型问题时要充分利用已知条件或 图形特征,进行猜想、归纳、类比,透彻分析 出给定条件下可能存在的结论现象,然后经过 论证作出取舍,这是一种归纳类比型思维.它 要求解题者充分利用条件进行大胆而合理的猜 想,发现规律,得出结论,这类题主要考查解 题者的发散性思维能力和知识应用能力.
第2讲┃ 开放探究题
► 类型之二 结论开放型问题
• 例2 [2011·南通] 比较正五边形与正六边形, 可以发现它们的相同点和不同点.例如:它们 的一个相同点:正五边形的各边相等,正六边 形的各边也相等.它们的一个不同点:正五边 形不是中心对称图形,正六边形是中心对称图 形.
• 请你再写出它们的两个相同点和不同点.
第2讲┃ 开放探究题
• 解:设矩形蔬菜种植区域的宽为x_m,则长为2x_m.? • 根据题意,得x·2x=288. • 解这个方程,得x1=-12(不合题意,舍去),x2=12. • 所以温室的长为2×12+3+1=28(m), • 宽为12+1+1=14(m). • 答:当温室的长为28 m,宽为14 m时,矩形蔬菜种植
第2讲┃ 开放探究题
• 开放探究性问题是相对于有明确条件和结论 的封闭式问题而言的,它的特点是条件或结论 的不确定性、不唯一性.解此类题没有固定的 方法,学生需要通过观察、分析、比较、概括、 推理、判断等探索活动来确定所需求的条件或 结论或方法,此类题往往作为中考试卷中的压 轴题出现.
•
专第题2突讲破┃ 开五放┃ 开探放究探题究题
中考数学第二轮复习:开放探索问题
16
答案 所设计图形如下所示(答案不唯一,可供参考):
17
【例题6】 (2012· 广东佛山)(1)任选以下三个条件中的一个,求二次函 数y=ax2+bx+c的解析式;①y随x变化的部分数值规律如下表:
x
-1
0
1
2
3
y
0
3
4
3
0
18
②有序数对(-1,0)、(1,4)、(3,0)满足y=ax2+bx +c;
专题五 开放探索问题
1
专 题 解 读
2
考情透析
所谓开放探索问题是指已知条件、解题依据、解题 方法、问题结论这四项要素中,缺少解题要素两个 或两个以上,或者条件、结论有待探求、补充等.
3
思路分析
在解决开放探索问题的时候,需解题者经过探索确 定结论或补全条件,将开放性问题转化为封闭性问 题,然后选择合适的解题途径完成最后的解答.
2 3 (2)∠E=30°,CD= ,求⊙O 的半径 r. 3
9
分析 此题结论开放,可从不同角度去考虑,例 如圆中同弧所对的圆周角,也可以考虑直线之间 的位置关系,或从三角形全等与相似方面考虑.
解 (1)由切线的性质及垂径定理,结合题意,我们不
难得出如下结论: BC⊥AB,AD⊥BD,DF=FE,BD=BE,
7
分析 由已知BD=CD,又∠EDC=∠FDB,因 为三角形全等条件中必须是SSS,SAS,ASA或 AAS,故添加的条件是:DE=DF(或CE∥BF或 ∠ECD=∠FBD或∠DEC=∠DFB等).
证明 在△BDF和△CDE中,
∵BD=CD(已知), ∠EDC=∠FDB(对顶角相等),
DE=DF(添加),
【中考快递】2019届中考数学复习检测:专题一-开放探索问题(Word版,含答案)
一、选择题(每小题5分,共15分)1.(2018·莆田中考)等腰三角形的两条边长分别为3,6,那么它的周长为( )(A)15 (B)12(C)12或15 (D)不能确定2.如图,直线y=x+2与双曲线m 3y x -=在第二象限有两个交点,那么m 的取值范围在数轴上表示为( )3.(2017·宁波中考)如图,用邻边长分别为a ,b(a ﹤b)的矩形硬纸板裁出以a 为直径的两个半圆,再裁出与矩形的较长边、两个半圆均相切的两个小圆.把半圆作为圆锥形圣诞帽的侧面,小圆恰好能作为底面,从而做成两个圣诞帽(拼接处材料忽略不计),则a 与b 满足的关系式是( )(A)b =(B)b =(C)b =(D)b =二、填空题(每小题5分,共10分)4.已知x 2+x-1=0,则代数式2x 3+4x 2+3的值为________________________.5.(2018·潜江中考)已知ABCD 的周长为28,自顶点A 作AE ⊥CD 于点E ,AF ⊥CB 于点F.若AE=3,AF=4,则CE-CF=_______________.三、解答题(共25分)6.(12分)(2017·黄冈中考)新星小学门口有一直线马路,为方便学生过马路,交警在门口设有一定宽度的斑马线,斑马线的宽度为4 米,为安全起见,规定车头距斑马线后端的水平距离不得低于2 米,现有一旅游车在路口遇红灯刹车停下,汽车里司机与斑马线前后两端的视角分别为∠FAE =15° 和∠FAD=30° .司机距车头的水平距离为0.8 米,试问该旅游车停车是否符合上述安全标准(E,D,C,B 四点在平行于斑马线的同一直线上)?(tan152sin15cos151.7321.414)︒=︒=︒=≈≈参考数据:【探究创新】 7.(13分)(2017·河北中考)如图1和图2,在△ABC 中,AB=13,BC=14,cos ∠ABC=513. 探究如图1,AH ⊥BC 于点H,则AH=________,AC=________,△ABC 的面积S △ABC =__________.拓展 如图2,点D 在AC 上(可与点A,C 重合),分别过点A,C 作直线BD 的垂线,垂足为E,F,设BD=x,AE=m,CF=n.(当点D 与点A 重合时,我们认为S △ABD=0)(1)用含x,m 或n 的代数式表示S △ABD 及S △CBD ;(2)求(m+n)与x 的函数关系式,并求(m+n)的最大值和最小值;(3)对给定的一个x 值,有时只能确定唯一的点D,指出这样的x 的取值范围.发现请你确定一条直线,使得A,B,C 三点到这条直线的距离之和最小(不必写出过程),并写出这个最小值.参考答案1.【解析】选A.由题意可知:当6是腰时,三角形的周长是15;当3是腰时,3+3=6,不能组成三角形.2.【解析】选B.由题意可得m-3<0,故m<3;由直线y=x+2与双曲线m 3y x -=在第二象限有两个交点,可得m3x2x-+=,即x2+2x-(m-3)=0,即Δ=4+4(m-3)>0,所以m>2.综上,可得2<m<3,故选B.3.【解析】选D.如图,设小圆半径为r,由题意得112r2(a)22π=⋅π,解得1 r a.4 =在Rt△O1O2H中,O1O2=13r a a24+=,O1H=12b,211O H a r a.24=-=又O1O22=O1H2+O2H2,所以222311(a)(b)(a)424=+,解得b=故选D.4.【解析】把x2+x看成一个整体,得x2+x=1,所以2x3+4x2+3=2x3+2x2+2x2+3= 2x(x2+x)+2x2+3=2x+2x2+3=2(x2+x)+3=2+3=5.参考答案5.【解析】(1)当E,F分别在线段CD和CB上时,如图所示:设BC=x,DC=y,则根据题意可得:x y14 4x3y+=⎧⎨=⎩,,解得x6y8=⎧⎨=⎩,,即BC=6,DC=8,根据勾股定理可知DE BF==所以CE-CF=(862---=(2)当E,F分别在CD,CB的延长线上时,如图所示:同理可得答案226.【解析】由题意得:∠FAE=15°,∠FAD=30°,∴∠EAD=15°.∵FA∥BE, ∴∠AED=15°,即AD=DE=4米. 在Rt△ADB中,∠ADB=∠FAD=30°,∴BD=AD·cos30°4==3.464米,DC=BD-BC=3.464-0.8=2.664米>2米, ∴该车停车符合上述安全标准.7.【解析】探究 12 15 84拓展 (1)由三角形面积公式,得ABD CBD11S mx,S nx.22==(2)由(1)得CBDABD2S2Sm,n,x x==∴m+n=CBDABD2S2S168.x x x+=由于AC 边上的高为ABC2S28456, 15155⨯==∴x的取值范围是565≤x≤14.∵(m+n)随x的增大而减小,∴当x=565时,(m+n)的最大值为15;当x=14时,(m+n)的最小值为12.(3)x的取值范围是x=565或13<x≤14.发现 AC所在的直线,最小值为56 5.【高手支招】解压轴题时遇到困难的原因及应对策略原因:在解压轴题时遇到的困难可能来自多方面,如基础知识和基本技能欠缺、解题经验缺失或训练程度不够、自信心不足等,具体表现可能是“不知从何处下手,不知向何方前进”. 应对策略:在求解中考数学压轴题时,要重视一些数学思想方法的灵活应用.数学思想方法是解好压轴题的重要工具,也是保证压轴题能求解的“对而全、全而美”的重要前提.针对近年全国各地中考数学压轴题的特点,在学习中要狠抓基础知识的落实,因为基础知识是“不变量”,而所谓的考试“热点”只是与题目的形式有关.有效地解答中考压轴题的关键是要以不变应万变.加大综合题的训练力度,加强解题方法的训练,加强数学思想方法的渗透,注重“基本模式”的积累与变化。
中考数学专题训练第3课时开放探究题(含答案)
中考数学专题训练第3课时开放探究题(含答案)第3课时开放探究题开放探究题是一种新的题型,关于开放题的概念,主要有下列几种描述:(1)答案不固定或者条件不完备的习题成为开放题;(2)具有多种不同的解法或有多种可能的解答的问题称为开放题.开放探究题的特点是:(1)条件多余需选择,条件不足需补充;(2)答案不固定;(3)问题一般没有明确的结论,没有固定的形式和方法,需要自己通过观察、分析、比较、概括、推理、判断等探索活动来确定所需求的结论或条件或方法.开放探究题常见的类型有:(1)条件开放型:即问题的条件不完备或满足结论的条件不唯一;(2)结论开放型:即在给定的条件下,结论不唯一;(3)策略开放型:即思维策略与解题方法不唯一;(4)综合型:即条件、结论、策略中至少有两项均是开放的.在解决开放探究题的时候,需解题者经过探索确定结论或补全条件,将开放性问题转化为封闭性问题,然后选择合适的解题途径完成最后的解答.这类题主要考查我们分析问题和解决问题的能力和创新意识.类型之一条件开放型问题解这种类型的开放性问题的一般思路是:由已知的结论反思题目应具备怎样的条件,即从题目的结论出发,结合图形挖掘条件,逆向追索,逐步探寻,是一种分析型思维方式.它要求解题者善于从问题的结论出发,逆向追索,多途寻因。
1.(郴州市)已知四边形ABCD中,∠A=∠B=∠C=90°,若添加一个条件即可判定该四边形是正方形,那么这个条件可以是_________.2.(庆阳市)如下左图,D、E分别是△ABC的边AB、AC上的点,则使△AED∽△ABC的条件是类型之二结论开放型问题解决这种类型的问题的时候要充分利用已知条件或图形特征,进行猜想、归纳、类比,透彻分析出给定条件下可能存在的结论现象,然后经过论证作出取舍,这是一种归纳类比型思维.它要求解题者充分利用条件进行大胆而合理的猜想,发现规律,得出结论,这类题主要考查解题者的发散性思维和所学基本知识的应用能力。
2022年中考总复习专题---规律探索问题
2022年中考总复习专题---规律探索问题一、考题概述:最近几年,全国多数地市的中考都有找规律的题目,人们开始逐渐重视这一类数学题,研究发现数学规律题的解题思想,不但能够提高学生的考试成绩,而且更有助于创新型人才的培养。
但毕竟怎样才能把这种题目做好,是一个值得探究的问题,这类问题没有明确的知识方法可套,在现在的教科书上也很少触及这类问题。
纵观近几年的孝感中考试题,规律探索问题为必考内容,多数出现在填空题。
这类题目主要考查学生的综合分析问题和解决问题的能力。
现搜集整理此类题,望同学们从中总结经验和方法,以不变应万变。
二、常见类型及解法:常见三种类型:代数式中的规律、平面图形中的规律、空间图形中的规律。
解法有:观察法、函数法(即结果是一次函数式或二次函数式)、方程法等。
三、典例分析:1、(2007辽宁沈阳;代数式规律)有一组数:1,2,5,10,17,26,……,请观察这组数的构成规律,用你发现的规律确定第8个数为2、(2007山东日照;代数式规律)把正整数1,2,3,4,5,……,按如下规律排列:12,3,4,5,6,7,8,9,10,11,12,13,14,15,…………按此规律,可知第n行有个正整数。
3、(2022年广西梧州;平面图形规律)如图,是用火柴棍摆成的边长分别是1,2,3根火柴棍时的正方形.当边长为n根火柴棍时,设摆出的正方形所用的火柴棍的根数为,则=.(用n的代数式表示)……n=1n=2n=34、(2007年孝感;平面图形规律)如上图,依次连结一个边长为1的正方形各边的中点,得到第二个正方形,再依次连结第二个正方形各边的中点,得到第三个正方形,按此方法继续下去,则第六个正方形的面积是5、(2006年青岛;空间图形规律)如图,下列几何体是由棱长为1的小立方体按一定规律在地面上摆成的,若将露出的表面都涂上颜色(底面不涂色),则第n个几何体中只有两个..面涂色的小立方体共有.个。
6、(2022年陕西;空间图形规律)搭建如图①的单顶帐篷需要17根钢管,这样的帐篷按图②、图③的方式串起来搭建,则串7顶这样的帐篷需要根钢管。
中考数学专题复习 开放性问题-人教版初中九年级全册数学试题
开放性问题【专题点拨】开放探索问题是指已知条件、解题依据、解题方法、问题结论这四项要素中,缺少解题要素两个或两个以上,或者条件、结论有待探求、补充等.【解题策略】在解决开放探索问题的时候,需解题者经过探索确定结论或补全条件,将开放性问题转化为封闭性问题,然后选择合适的解题途径完成最后的解答.【典例解析】类型一:条件开放型问题例题1:(2016·某某省滨州市·14分)如图,已知抛物线y=﹣x2﹣x+2与x轴交于A、B两点,与y轴交于点C(1)求点A,B,C的坐标;(2)点E是此抛物线上的点,点F是其对称轴上的点,求以A,B,E,F为顶点的平行四边形的面积;(3)此抛物线的对称轴上是否存在点M,使得△ACM是等腰三角形?若存在,请求出点M的坐标;若不存在,请说明理由.【考点】二次函数综合题.【专题】压轴题;函数及其图象.【分析】(1)分别令y=0,x=0,即可解决问题.(2)由图象可知AB只能为平行四边形的边,易知点E坐标(﹣7,﹣)或(5,﹣),由此不难解决问题.(3)分A、C、M为顶点三种情形讨论,分别求解即可解决问题.【解答】解:(1)令y=0得﹣x2﹣x+2=0,∴x2+2x﹣8=0,x=﹣4或2,∴点A坐标(2,0),点B坐标(﹣4,0),令x=0,得y=2,∴点C坐标(0,2).(2)由图象可知AB只能为平行四边形的边,∵AB=EF=6,对称轴x=﹣1,∴点E的横坐标为﹣7或5,∴点E坐标(﹣7,﹣)或(5,﹣),此时点F(﹣1,﹣),∴以A,B,E,F为顶点的平行四边形的面积=6×=.(3)如图所示,①当C为顶点时,CM1=CA,CM2=CA,作M1N⊥OC于N,在RT△CM1N中,==,∴点M1坐标(﹣1,2+),点M2坐标(﹣1,2﹣).②当M3为顶点时,∵直线AC解析式为y=﹣x+1,线段AC的垂直平分线为y=x,∴点M3坐标为(﹣1,﹣1).③当点A为顶点的等腰三角形不存在.综上所述点M坐标为(﹣1,﹣1)或(﹣1,2+)或(﹣1.2﹣).【点评】本题考查二次函数综合题、平行四边形的判定和性质、勾股定理等知识,解题的关键是熟练掌握抛物线与坐标轴交点的求法,学会分类讨论的思想,属于中考压轴题.变式训练1:(2016·某某某某)如图,抛物线y=x2+bx+c与x轴交于A、B两点,B点坐标为(3,0),与y轴交于点C(0,﹣3)(1)求抛物线的解析式;(2)点P在抛物线位于第四象限的部分上运动,当四边形ABPC的面积最大时,求点P 的坐标和四边形ABPC的最大面积.(3)直线l经过A、C两点,点Q在抛物线位于y轴左侧的部分上运动,直线m经过点B和点Q,是否存在直线m,使得直线l、m与x轴围成的三角形和直线l、m与y轴围成的三角形相似?若存在,求出直线m的解析式,若不存在,请说明理由.类型二:结论开放型问题例题2:(2016·某某随州·3分)二次函数y=ax2+bx+c(a≠0)的部分图象如图所示,图象过点(﹣1,0),对称轴为直线x=2,下列结论:(1)4a+b=0;(2)9a+c>3b;(3)8a+7b+2c >0;(4)若点A(﹣3,y1)、点B(﹣,y2)、点C(,y3)在该函数图象上,则y1<y3<y2;(5)若方程a(x+1)(x﹣5)=﹣3的两根为x1和x2,且x1<x2,则x1<﹣1<5<x2.其中正确的结论有()A.2个 B.3个 C.4个 D.5个【解析】二次函数图象与系数的关系.(1)正确.根据对称轴公式计算即可.(2)错误,利用x=﹣3时,y<0,即可判断.(3)正确.由图象可知抛物线经过(﹣1,0)和(5,0),列出方程组求出a、b即可判断.(4)错误.利用函数图象即可判断.(5)正确.利用二次函数与二次不等式关系即可解决问题.【解答】解:(1)正确.∵﹣ =2,∴4a+b=0.故正确.(2)错误.∵x=﹣3时,y<0,∴9a﹣3b+c<0,∴9a+c<3b,故(2)错误.(3)正确.由图象可知抛物线经过(﹣1,0)和(5,0),∴解得,∴8a+7b+2c=8a﹣28a﹣10a=﹣30a,∵a<0,∴8a+7b=2c>0,故(3)正确.(4)错误,∵点A(﹣3,y1)、点B(﹣,y2)、点C(,y3),∵﹣2=,2﹣(﹣)=,∴<∴点C离对称轴的距离近,∴y3>y2,∵a<0,﹣3<﹣<2,∴y1<y2∴y1<y2<y3,故(4)错误.(5)正确.∵a<0,∴(x+1)(x﹣5)=﹣3/a>0,即(x+1)(x﹣5)>0,故x<﹣1或x>5,故(5)正确.∴正确的有三个,故选B.变式训练2:(2016·某某某某·3分)如图,抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=1,与x 轴的一个交点坐标为(﹣1,0),其部分图象如图所示,下列结论:①4ac<b2;②方程ax2+bx+c=0的两个根是x1=﹣1,x2=3;③3a+c>0④当y>0时,x的取值X围是﹣1≤x<3⑤当x<0时,y随x增大而增大其中结论正确的个数是()A.4个B.3个C.2个D.1个类型三:解题策略开放型例题3:(2014 年某某襄阳)如图 Z3-1,在△ABC 中,点D,E 分别在边 AC,AB 上,BD 与 CE 交于点 O,给出下列三个条件:①∠EBO=∠DCO;②BE=CD;③OB=OC.(1)上述三个条件中,由哪两个条件可以判定△ABC 是等腰三角形?(用序号写出所有成立的情形)(2)选择其中的成立条件进行证明。
初中数学-中考复习(21):开放型问题
专题复习:开放型问题一、中考专题诠释开放型问题是相对于有明确条件和明确结论的封闭型问题而言的,它是条件或结论给定不完全、答案不唯一的一类问题.这类试题已成为近年中考的热点,重在考查同学们分析、探索能力以及思维的发散性,但难度适中.根据其特征大致可分为:条件开放型、结论开放型、方法开放型和编制开放型等四类.二、解题策略与解法精讲解开放性的题目时,要先进行观察、试验、类比、归纳、猜测出结论或条件,然后严格证明;同时,通常要结合以下数学思想方法:分类讨论,数形结合,分析综合,归纳猜想,构建数学模型等。
考点一:条件开放型例1:写出一个过点(0,3),且函数值y随自变量x的增大而减小的一次函数关系式:.(填上一个答案即可)练习:已知(x1,y1),(x2,y2)为反比例函数kyx图象上的点,当x1<x2<0时,y1<y2,则k的一个值可为.(只需写出符合条件的一个k的值)考点二:结论开放型例2:请写一个图象在第二、四象限的反比例函数解析式:.练习:四川雅安发生地震后,某校九(1)班学生开展献爱心活动,积极向灾区捐款.如图是该班同学捐款的条形统计图.写出一条你从图中所获得的信息:.(只要与统计图中所提供的信息相符即可得分)考点三:条件和结论都开放的问题例3:如图,矩形ABCD中,以对角线BD为一边构造一个矩形BDEF,使得另一边EF过原矩形的顶点C.(1)设Rt△CBD的面积为S1,Rt△BFC的面积为S2,Rt△DCE的面积为S3,则S1S2+S3(用“>”、“=”、“<”填空);(2)写出如图中的三对相似三角形,并选择其中一对进行证明.练习:如图,△ABC与△CDE均是等腰直角三角形,∠ACB=∠DCE=90°,D在AB上,连结BE.请找出一对全等三角形,并说明理由.【课堂讲解】1.如图,在四边形ABCD中,AB∥CD,要使得四边形ABCD是平行四边形,应添加的条件是______(只填写一个条件,不使用图形以外的字母和线段).2.如图,在四边形ABCD中,对角线AC,BD交于点O,OA=OC,OB=OD,添加一个条件使四边形ABCD是菱形,那么所添加的条件可以是_______(写出一个即可).3.如图,已知△ABC中,AB=AC,点D、E在BC上,要使△ABD≌ACE,则只需添加一个适当的条件是___________.(只填一个即可)4.若反比例函数y=kx的图象在其每个象限内,y随x的增大而增大,则k的值可以是_______.(写出一个k的值)5.若函数y=1mx的图象在同一象限内,y随x增大而增大,则m的值可以是________(写出一个即可).6. 如图,梯形ABCD中,AD∥BC,点M是AD的中点,不添加辅助线,梯形满足条件时,有MB=MC(只填一个即可).7. 直线l过点M(-2,0),该直线的解析式可以写为________.(只写出一个即可)8. 如图,要使平行四边形ABCD是矩形,则应添加的条件是_______(添加一个条件即可).9. 请举反例说明命题“对于任意实数x,x2+5x+5的值总是整数”是假命题,你举的反例是(写出一个x的值即可)10.如图,点B、E、C、F在一条直线上,AB∥DE,BE=CF,请添加一个条件,使△ABC≌△DEF.11.如图,A,B,C三点在同一条直线上,∠A=∠C=90°,AB=CD,请添加一个适当的条件,使得△EAB≌△BCD.12.如图,已知∠B=∠C,添加一个条件使△ABD≌△ACE(不标注新的字母,不添加新的线段),你添加的条件是.13.如图,要使△ABC与△DBA相似,则只需添加一个适当的条件是(填一个即可)14.如图所示,弦AB、CD相交于点O,连结AD、BC,在不添加辅助线的情况下,请在图中找出一对相等的角,它们是.15.如图,AB是⊙O的弦,OC⊥AB于点C,连接OA、OB.点P是半径OB上任意一点,连接AP.若OA=5cm,OC=3cm,则AP的长度可能是cm(写出一个符合条件的数值即可)16.如图,AB是⊙O的直径,弦BC=4cm,F是弦BC的中点,∠ABC=60°.若动点E以1cm/s的速度从A点出发在AB上沿着A→B→A运动,设运动时间为t(s)(0≤t<16),连接EF,当△BEF是直角三角形时,t (s)的值为.(填出一个正确的即可)17.已知(x1,y1),(x2,y2)为反比例函数kyx图象上的点,当x1<x2<0时,y1<y2,则k的一个值可为.(只需写出符合条件的一个k的值)18. 已知:如图,在△ABC中,AB=AC,AD⊥BC,垂足为点D,AN是△ABC外角∠CAM的平分线,CE⊥AN,垂足为点E,(1)求证:四边形ADCE为矩形;(2)当△ABC满足什么条件时,四边形ADCE是一个正方形?并给出证明.19. 如图,在△ABC中,点D、E分别在边BC、AC上,连接AD、DE,且∠1=∠B=∠C.(1)由题设条件,请写出三个正确结论:(要求不再添加其他字母和辅助线,找结论过程中添加的字母和辅助线不能出现在结论中,不必证明)答:结论一:;结论二:;结论三:.(2)若∠B=45°,BC=2,当点D在BC上运动时(点D不与B、C重合),①求CE的最大值;②若△ADE是等腰三角形,求此时BD的长.(注意:在第(2)的求解过程中,若有运用(1)中得出的结论,须加以证明)20. 在菱形ABCD中,∠ABC=60°,E是对角线AC上一点,F是线段BC延长线上一点,且CF=AE,连接BE、EF.(1)若E是线段AC的中点,如图1,易证:BE=EF(不需证明);(2)若E 是线段AC 或AC 延长线上的任意一点,其它条件不变,如图2、图3,线段BE 、EF 有怎样的数量关系,直接写出你的猜想;并选择一种情况给予证明.【课堂训练】1.如图,点D 在△ABC 的边AC 上,要判定△ADB 与△ABC 相似,添加一个条件,不正确的是( )A .∠ABD=∠CB .∠ADB=∠ABC C. CD CB BD AB = D. ACAB AB AD =2. 如图,在10×10的网格中,每个小方格都是边长为1的小正方形,每个小正方形的顶点称为格点.若抛物线经过图中的三个格点,则以这三个格点为顶点的三角形称为抛物线的“内接格点三角形”.以O 为坐标原点建立如图所示的平面直角坐标系,若抛物线与网格对角线OB 的两个交点之间的距离为23且这两个交点与抛物线的顶点是抛物线的内接格点三角形的三个顶点,则满足上述条件且对称轴平行于y 轴的抛物线条数是( )A .16B .15C .14D .133. 如图,在四边形ABCD 中,点H 是BC 的中点,作射线AH ,在线段AH 及其延长线上分别取点E ,F ,连结BE ,CF .(1)请你添加一个条件,使得△BEH ≌△CFH ,你添加的条件是 ,并证明.(2)在问题(1)中,当BH 与EH 满足什么关系时,四边形BFCE 是矩形,请说明理由.4. 复习课中,教师给出关于x 的函数y =2kx 2﹣(4kx +1)x ﹣k +1(k 是实数).教师:请独立思考,并把探索发现的与该函数有关的结论(性质)写到黑板上.学生思考后,黑板上出现了一些结论.教师作为活动一员,又补充一些结论,并从中选出以下四条:①存在函数,其图象经过(1,0)点;②函数图象与坐标轴总有三个不同的交点;③当x>1时,不是y随x的增大而增大就是y随x的增大而减小;④若函数有最大值,则最大值比为正数,若函数有最小值,则最小值比为负数.教师:请你分别判断四条结论的真假,并给出理由.最后简单写出解决问题时所用的数学方法.5. 猜想与证明:如图1摆放矩形纸片ABCD与矩形纸片ECGF,使B、C、G三点在一条直线上,CE在边CD上,连接AF,若M为AF的中点,连接DM、ME,试猜想DM与ME的关系,并证明你的结论.拓展与延伸:(1)若将”猜想与证明“中的纸片换成正方形纸片ABCD与正方形纸片ECGF,其他条件不变,则DM和ME的关系为DM=DE.(2)如图2摆放正方形纸片ABCD与正方形纸片ECGF,使点F在边CD上,点M仍为AF的中点,试证明(1)中的结论仍然成立.6. 已知,在△ABC中,∠BAC=90°,∠ABC=45°,点D为直线BC上一动点(点D不与点B,C 重合).以AD为边作正方形ADEF,连接CF(1)如图1,当点D在线段BC上时.求证:CF+CD=BC;(2)如图2,当点D在线段BC的延长线上时,其他条件不变,请直接写出CF,BC,CD三条线段之间的关系;(3)如图3,当点D在线段BC的反向延长线上时,且点A,F分别在直线BC的两侧,其他条件不变;①请直接写出CF,BC,CD三条线段之间的关系;2对角线AE,DF相交于点O,连接OC.求OC的长度.②若正方形ADEF的边长为27. 在△ABC中,∠ACB=90°,∠A<45°,点O为AB中点,一个足够大的三角板的直角顶点与点O重合,一边OE经过点C,另一边OD与AC交于点M.(1)如图1,当∠A=30°时,求证:MC2=AM2+BC2;(2)如图2,当∠A≠30°时,(1)中的结论是否成立?如果成立,请说明理由;如果不成立,请写出你认为正确的结论,并说明理由;(3)将三角形ODE绕点O旋转,若直线OD与直线AC相交于点M,直线OE与直线BC相交于点N,连接MN,则MN2=AM2+BN2成立吗?答:(填“成立”或“不成立”)个性化教案(真题演练)1. (2013•昭通)如图,AB是⊙O的直径,弦BC=4cm,F是弦BC的中点,∠ABC=60°.若动点E以1cm/s 的速度从A点出发在AB上沿着A→B→A运动,设运动时间为t(s)(0≤t<16),连接EF,当△BEF是直角三角形时,t(s)的值为.(填出一个正确的即可)1对1出门考(_______年______月______日周_____)1. 写出一个你喜欢的实数k 的值 ,使得反比例函数xk y 2-=的图象在每一个象限内,y 随x 的增大而增大.2. 写出一个x 的值,使|x ﹣1|=x ﹣1成立,你写出的x 的值是 .3. 存在两个变量x 与y ,y 是x 的函数,该函数同时满足两个条件:①图象经过(1,1)点;②当x >0时,y 随x 的增大而减小,这个函数的解析式是 (写出一个即可).4. 如图,在△ABC 中,点D 是BC 的中点,作射线AD ,在线段AD及其延长线上分别取点E 、F ,连接CE 、BF .添加一个条件,使得△BDF ≌△CDE ,并加以证明.你添加的条件是 .(不添加辅助线).5. 先化简22)1111(2-÷+--x x x x ,然后从﹣2≤x≤2的范围内选择一个合适的整数作为x 的值代入求值.6. 在如图所示的三个函数图象中,有两个函数图象能近似地刻画如下a ,b 两个情境:情境a :小芳离开家不久,发现把作业本忘在家里,于是返回了家里找到了作业本再去学校;情境b :小芳从家出发,走了一段路程后,为了赶时间,以更快的速度前进.(1)情境a ,b 所对应的函数图象分别是 、 (填写序号);(2)请你为剩下的函数图象写出一个适合的情境.评语: 3A 作业:周一: 周二:周三: 周四:周五:作业要求在 月 日之前完成。
中考数学总复习第40课 探索型问题
- b =1,
2a
a=-1,
∴ -b2=1, 解得 b=2.
4a
即当顶点坐标为(1,1)时,a=-1.
- b =m, 2a
a=- 1 ,
当顶点坐标为 (m ,m ),m ≠0
时,
-b2=m , 4a
解得
b=2.
m
∴a 与 m 之间的关系式是:a=-m1 或 am+1=0.]
(2)∵a≠0,
∴y=ax2+bx=a
专题解读
1.探索型问题: 探索是人类认识客观世界过程中最生动,最活跃的思维活 动.探索问题主要考查学生探究、发现、总结问题的能力,主 要包括: (1)规律探索型问题; (2)结论探索型问题; (3)存在性探索型问题; (4)动态探索型问题. 2.解答探索型问题的注意事项: 由于探索型问题的题型新颖,综合性强,思维能力要求高,结 构独特,因此解题时并无固定模式,它要求解题者具有较扎实 的基本功,较强的观察力,丰富的想象力及综合分析问题的能 力.解题时要注意问题情境,注重思维的严密性,注意寻找问 题解决的切入口.有时也可采用以下方法来寻找突破口:(1)利 用特殊值(特殊点,特殊数量,特殊线段等)进行归纳,概括;(2) 反演推理法(反证法);(3)分类讨论法;(4)类比猜想法.
3,4 3
3,
-2 P2 3
3,4 3
3
;当∠PAO=90°时,P3
34 9
3,4 3
3 ;当∠POA=90°时,
-16 3,4 3
P4 9
3.
名师点拨
存在性探索问题是运用几何计算进行探索的综合型 问题,要注意相关的条件,可以先假设结论成立,然后通 过计算求相应的值,再作存在性的判断.
【预测演练 3】 如图 40-7,在△ABC 中,AB=AC=10 cm,BC=12 cm, 点 D 是 BC 边的中点.点 P 从点 B 出发,以 a(cm/s)(a>0)的速度沿 BA 匀速向点 A 运动;点 Q 同时以 1 cm/s 的速度从点 D 出发,沿 DB 匀 速向点 B 运动,其中一个动点到达端点时,另一个动点也随之停止运 动,设它们运动的时间为 t(s). (1)若 a=2,△BPQ∽△BDA (点 P 与点 D 对应),求 t 的值; (2)设点 M 在边 AC 上,四边形 PQCM 为平行四边形. ①若 a=5,求 PQ 的长; 2 ②是否存在实数 a,使得点 P 在∠ACB 的平分线上?若存在,请求 出 a 的值;若不存在,请说明理由.
中考专题复习——探索性问题归类
中考备考——探索性问题归类一、找规律问题 1.(07年11.)在五环图案内,分别填写五个数a ,b ,c ,d ,e ,如图: ,其中a ,b ,c 是三个连续偶数(a < b ),d ,e 是两个连续奇数(d < e ),且满足a b c d e ++=+,例如: .请你在0到20之间选择另一组符合条件的数填入右图:2. (08年12.)一组按规律排列的式子:a b 2-,25a b ,38a b -,411ab ,…(ab ≠0).其中第7个式子是________,第n 个式子是________(n 为正整数).3.(09年12.)如图,正方形纸片ABCD 的边长为1,M 、N 分别是AD 、BC 边上的点, 将纸片的一角沿过点B 的直线折叠,使点A 落在MN 上,落点记为A ′,折痕交AD 于点E .若 M 、N 分别是AD 、BC 边的中点,则A ′N =________;若M 、N 分别是AD 、BC 边上距DC 最近的n 等分点(n ≥2,且n 为整数),则A ′N =________(用含有n 的式子表示).4.(09.东城一模12).按一定规律排列的一列数依次为:1111112310152635,,,,,……,按此规律排列下去,这列数中的第9个数是 .A.861B.865 C.867 D.8696.已知:2222233+=⨯,2333388+=⨯,244441515+=⨯,…,若299a ab b+=⨯(a b ,为正整数),则ab =.7.观察下列顺序排列的等式:1234111111113243546a a a a =-=-=-=-,,,,….试猜想第n个等式(n 为正整数):n a = .8.观察图给出的四个点阵,s 表示每个点阵中的点的个数,按照图形中的点的个数变化规律,猜想第n 个点阵中的点的个数s 为 .9.用火柴棒按下图中的方式搭图形,按照第1个 1s =第2个 5s = 第3个 9s = 第4个13s = ……这种方式搭下去,搭第n 个图形需____________根火柴棒.10.(2009年泸州)如图1,已知Rt △ABC 中,AC=3,BC= 4,过直角顶点C 作CA 1⊥AB ,垂足为A 1,再过A 1作A 1C 1⊥BC ,垂足为C 1,过C 1作C 1A 2⊥AB ,垂足为A 2,再过A 2作A 2C 2⊥BC ,垂足为C 2,…,这样一直做下去,得到了一组线段CA 1,A 1C 1,12C A ,…,则CA 1= ,=5554C A A C 图211(08昌平一模)如图2,在Rt ABC △中,90C = ∠,12BC AC ==,,把边长分别为123n x x x x ,,,,的n 个正方形依次放入ABC △中:第一个正方形CM 1P 1N 1的顶点分别放在Rt ABC △的各边上;第二个正方形M 1M 2P 2N 2的顶点分别放在11Rt APM △的各边上,……,其他正方形依次放入。
中考数学开放性探索题的答题技巧
中考数学开放探究题的答题技巧(投《中考面对面》)娄方才在近几年的中考命题中,出现了越来越多的开放探究题,这对于培养创造性人才非常重要。
开放探究题是相对于传统封闭性题型而讲的。
传统的解答题或证明题,其条件和结论都由试题明确给出。
而开放探究题一般是思考方向不能明确,没有明确的结论,没有固定的形式,解题方法灵活多样,需要考生自己通过观察、分析、归纳、猜想、探究去发现、概括、得出结论,然后再予以证明。
它是在数学教育界提出“问题解决”背景下悄然兴起的一种新题型,对思维的灵活性、敏捷性、深刻性、发散性、批判性有更高的要求,能更好地考查考生的数学能力和创新能力。
现已成为中考命题热点之一,且题型形式新颖,表达方式多种多样,有的题目虽小,但富于思考,有的题兼具应用性、实践性和开放性。
其题型特点有条件的不确定性、结构的多样性、思维的多向性、解答的层次性、过程的探究性和知识的综合性等。
此类题型在中考命题中题量虽不大,但占分不少,常作为压轴题出现,需掌握做题有技巧,提高答题速度,加强正确率。
除了按部就班的解题方法外,还需要注意以下一些特殊的方法,因此考生掌握答题技巧是很有必要的。
笔者根据教学实践,对中考数学几类典型的开放探究题的答题技巧作以下初步分析。
一、条件开放型此类题型的明显特征是缺少确定的条件,问题所需补充的条件不是得出结论的必要条件,既所需补充的条件不能由结论推出。
一般来说,其答案包括:将所缺的条件补充完整以及根据自己所补条件形成的封闭题做出完整解答等两部分。
此类题目一般采用逆向思维,从结论出发,逆向追索,逐步探寻结论成立的条件,所以所填条件是开放的,答案是不唯一的。
例1(黔南中考)要使一个菱形成为正方形,则需增加的条件是。
解:可填有一个角是直角或对角线相等。
例2(丽水中考)已知任意四边形ABCD中,对角线AC、BD交于O点,且AB=CD,若只增加下列条件中的一个:①AO=BO ;②AC=BD ;③OC AO =BO DO;④∠OAD=∠OBC ,一定能使∠BAC=∠CDB 成立的可选条件是( )。
一道中考开放探索型问题详解
,
MNfAD.F} D f E C
所 以 四边 形 P AM 、NC E P F也均 为矩 形 ,
所 以 a P ・ E S 彤 ^ =M P = 矩 , ,
b PN ・ = PF= S ,
又 D是 对 角线 .
所 以 △ 用 △ .
l = 2, 3= 4, AC =6 — 0。
,
BE = 。 — 20
,
求
D.
纛 拓 展
习≯
1 .如 图 3. 加
一
4 .如 图 5, AO 6 。, B= 0 OP= c P 为 6 m,
A0 点 内 . F E、
是 △ABC 中位 线 . 为 DE 的 中 点 . M C 延 长 交 AB 于 , . v
m ^
求证 : 的 内 它
二
看成 . s
与 .D s 的 差.再 有 . △ s =
1
切 圆半径 r 等于 某条
高线 长 的三分 之一 .
3 .如 图 4. 设 A 是 圃的 直径 。 F、
圈 4
6s 帆 .△
2. 提 示 : ^ ( +b+c)・ S△ ∞= a r
() 2 当四边 形 A C 是平 行 四边形 , B D 且 A 为锐 角
时, 见图 2 ( ) , 1 中的 结论 是 否 成 立 ?请 说 明理 由 ;
^ E D
田 ( ) J a 2 日刘
sm
E。 AMsn , iA
AD ・ i A 。 ABsn
所 以
3 0 4 .5 。 .提 示 : 考 例 1 画 出 E、 参 . F点 。 连 0P, 0 。 P, =l 0 . 。 0 2 。 △咫 F周 长 为
中考冲刺创新开放与探究型问题--知识讲解(基础)
中考冲刺:创新、开放与探究型问题—知识讲解(基础)【中考展望】所谓开放探索型问题指的是有些数学问题的条件、结论或解决方法不确定或不唯一,需要根据题目的特点进行分析、探索,从而确定出符合要求的答案(一个、多个或所有答案)或探索出解决问题的多种方法.由于开放探究型问题对考查学生思维能力和创造能力有积极的作用,是近几年中考命题的一个热点.通常这类题目有以下几种类型:条件开放与探索,结论开放和探索,条件与结论都开放与探索及方案设计、命题组合型、问题开放型等.【方法点拨】1.利用特殊值(特殊点、特殊数量、特殊线段、特殊位置等)进行归纳、概括,从特殊到一般,从而得出规律.2.反演推理法(反证法),即假设结论成立,根据假设进行推理,看是推导出矛盾还是能与已知条件一致.3.分类讨论法.当命题的题设和结论不唯一确定,难以统一解答时,则需要按可能出现的情况做到既不重复也不遗漏,分门别类加以讨论求解,将不同结论综合归纳得出正确结果.4.类比猜想法.即由一个问题的结论或解决方法类比猜想出另一个类似问题的结论或解决方法,并加以严密的论证.以上所述并不能全面概括此类命题的解题策略,因而具体操作时,应更注重数学思想方法的综合运用.【典型例题】类型一、探究规律1.观察下列各式:222211⨯=+,333322⨯=+,444433⨯=+,555544⨯=+,…想一想,什么样的两数之积等于这两数之和?设n表示正整数,用关于n的等式表示这个规律.【思路点拨】所给各式中的两个数中,一个是分数,一个是整数,且分数的分子比分母大1,分子与整数相等,因此得出规律.【答案与解析】所给各式中的两个数中,一个是分数,一个是整数,且分数的分子比分母大1,分子与整数相等,因此得到规律:11(1)(1)n nn nn n+++=++(n为正整数)【总结升华】这个规律是否正确呢?可将等式左右两边分别化简,即能得出结论.对于“数字规律”的观察,要善于发现其中的变量与不变量,以及变量与项数之间的关系,将规律用代数式表示出来.举一反三:【变式】一根绳子,弯曲成如图(a)所示的形状,当用剪刀像图(b)那样沿虚线a把绳子剪断时,绳子被剪为5段;当用剪刀像图(c)那样沿虚线b(b∥a)把绳子再剪一次时,绳子被剪为9段,当用剪刀在虚线a,b之间把绳子再剪(n-2)次(剪刀的方向与a平行),这样一共剪n次时,绳子的段数是________ (用含n的代数式表示).【答案】首先,在剪0次时,有1段绳子;其次,每剪一次,绳子上多出4个断口,即绳子的段数增加4段,剪n次之后绳子的段数多出4n段.故剪n次时,绳子的段数是4n+1(n为正整数).类型二、条件开放型2.如图所示,四边形ABCD是矩形,O是它的中心,E,F是对角线AC上的点.(1)若________________________,则△DEC≌△BFA(请你填上能使结论成立的一个条件);(2)证明你的结论.【思路点拨】(1)已知了一边AD=BC,和一角(AD∥BC,∠DAC=∠BCA)相等.根据全等三角形的判定AAS、SAS、ASA 等,只要符合这些条件的都可以.(2)按照(1)中的条件根据全等三角形的判定进行证明即可.【答案与解析】解:(1)AE=CF;(OE=OF;DE⊥AC,BF⊥AC;DE∥BF等等)(2)以AE=CF为例.∵四边形ABCD是矩形,∴AB=CD,AB∥CD,∠DCE=∠BAF.又∵AE=CF.∴AC-AE=AC-CF.∴AF=CE,∴△DEG≌△BAF.【总结升华】这是一道探索条件、补充条件的开放型试题,解决这类问题的一般方法是:从结论出发,由果寻因,逆向推理,探寻出使结论成立的条件;有时也采取把可能产生结论的条件一一列出,逐个分析考察.举一反三:【变式】如图,飞机沿水平方向(A ,B 两点所在直线)飞行,前方有一座高山,为了避免飞机飞行过低,就必须测量山顶M 到飞行路线AB 的距离MN .飞机能够测量的数据有俯角和飞行距离(因安全因素,飞机不能飞到山顶的正上方N 处才测飞行距离),请设计一个求距离MN 的方案,要求:(1)指出需要测量的数据(用字母表示,并在图中标出);(2)用测出的数据写出求距离MN 的步骤.【答案】解:此题为开放题,答案不唯一,只要方案设计合理,可参照给分⑴如图,测出飞机在A 处对山顶的俯角为α,测出飞机在B 处对山顶的俯角为β,测出AB 的距离为d ,连接AM ,BM .⑵第一步,在AMN Rt ∆中,AN MN =αtan∴αtan MN AN =; 第二步,在BMN Rt ∆中,BNMN =βtan ∴βtan MNBN =;其中BN d AN +=,解得αββαtan tan tan tan -⋅⋅=d MN .类型三、结论开放型 3.已知:如图(a),Rt △ABC ≌Rt △ADE ,∠ABC =∠ADE =90°,试以图中标有字母的点为端点,连接两条线段,如果你所连接的两条线段满足相等、垂直或平行关系中的一种,那么请你把它写出来并证明.【思路点拨】此题需分三种情况讨论:第一种相等CD=BE,第二种垂直AF⊥BD,第三种是平行DB∥CE.首先利用全等三角形的性质,再利用三角形全等的判定定理分别进行证明即可.【答案与解析】解:可以写出的结论有:CD=BE,DB∥CE,AF⊥BD,AF⊥CE等.(1)如图(b),连接CD,BE,得CD=BE.证明:∵△ABC≌△ADE,∴AB=AD,AC=AE.又∠CAB=∠EAD,∴∠CAD=∠E1AB.∴△ADC≌△ABE.∴CD=BE.(2)如图(c),连接DB,CE,得DB∥CE.证明:∵△ABC≌△ADE,∴AD=AB.∴∠ADB=∠ABD.∵∠ABC=∠ADE,∴∠BDF=∠FBD.由AC=AE可得∠ACE=∠AEC.∵∠ACB=∠AED,∴∠FCE=∠FEC.∵∠BDF+∠FBD=∠FCE+∠FEC,∴∠FCE=∠DBF.∴DB∥CE.(3)如图(d),连接DB,AF,得AF⊥BD.∵△ABC≌△ADE,∴AD=AB,∠ABC=∠ADE=90°.又∵AF=AF,∴△ADF≌△ABF.∴∠DAF=∠BAF.∴AF⊥BD.(4)如图(e),连接CE、AF,得AF⊥CE.同(3)得∠DAF=∠BAF.可得∠CAF =∠EAF .∴AF ⊥BD .【总结升华】本题考查了全等三角形的判定及性质;要对全等三角形的性质及三角形全等的判断定理进行熟练掌握、反复利用,达到举一反三.举一反三:【高清课堂:创新、开放与探究型问题 例2】【变式】数学课上,李老师出示了这样一道题目:如图1,正方形ABCD 的边长为12,P 为边BC 延长线上的一点,E 为DP 的中点,DP 的垂直平分线交边DC 于M ,交边AB 的延长线于N.当CP=6时,EM 与EN 的比值是多少?经过思考,小明展示了一种正确的解题思路:过E 作直线平行于BC 交DC ,AB 分别于F ,G ,如图2,则可得:DF DE FC EP=,因为DE EP =,所以DF FC =.可求出EF 和EG 的值,进而可求得EM 与EN 的比值. (1) 请按照小明的思路写出求解过程.(2) 小东又对此题作了进一步探究,得出了DP MN =的结论.你认为小东的这个结论正确吗?如果正确,请给予证明;如果不正确,请说明理由.【答案】 (1)解:过E 作直线平行于BC 交DC ,AB 分别于点F ,G ,则DF DE FC EP =,EM EF EN EG=,12GF BC ==. ∵DE EP =,∴DF FC =.∴116322EF CP ==⨯=,12315EG GF EF =+=+=.∴31155EM EF EN EG ===. (2)证明:作M H ∥BC 交AB 于点H ,则MH CB CD ==,90MHN ∠=︒.∵1809090DCP ∠=︒-︒=︒,∴DCP MHN ∠=∠.∵90MNH CMN DME CDP ∠=∠=∠=︒-∠,90DPC CDP ∠=︒-∠,∴DPC MNH ∠=∠.∴DPC MNH ∆≅∆.∴DP MN =.类型四、动态探究型 4.如图所示,AB ,AC 分别是⊙O 的直径和弦,D 为劣弧AC 上一点,DE ⊥AB 于点H ,交⊙O 于点E ,交AC 于点F ,P 为.ED 的延长线一点.(1)当△PCF 满足什么条件时,PC 与⊙O 相切?为什么?(2)点D 在劣弧AC 的什么位置时,才能使AD 2=DE ·DF ?为什么? 【思路点拨】(1)连接OC .要使PC 与⊙O 相切,则只需∠PCO =90°即可.由∠OCA =∠OAC ,∠PFC =∠AFH ,即可寻找出△PCF 所要满足的条件;(2)要使AD 2=DE ·DF ,即AD DF DE AD=,也就是要使△DAF ∽△DEA ,这样问题就较容易解决了. 【答案与解析】解: (1)当PC =PF(或∠PCF =∠PFC ,或△PCF 是等边三角形)时,PC 与⊙O 相切.证明:连接OC .∵PC =PF ,∴∠PCF =∠PFC .∴∠PCO =∠PCF+∠OCA =∠PFC+∠OAC =∠AFH+∠OAC =90°.∴PC 与⊙O 相切.(2)当点D 是AC 的中点时,AD 2=DE ·DF .连接AE ,∵AD CD =,∴∠DAF =∠DEA .又∴∠ADF =∠EDA .∴△DAF ∽△DEA . ∴AD DF DE AD=,∴AD 2=DE ·DF . 【总结升华】本题是探索条件半开放题,在解决这类问题时,我们常从要获得的结论出发来探求该结论成立的条件.如第(1)小题中,若要PC 与⊙O 相切,则我们需要怎样的条件;第(2)小题也是如此.类型五、创新型5.认真观察图3的4个图中阴影部分构成的图案,回答下列问题:(1)请写出这四个图案都具有的两个共同特征.特征1:_________________________________________________;特征2:_________________________________________________.(2)请在图4中设计出你心中最美丽的图案,使它也具备你所写出的上述特征【思路点拨】本题主要考查轴对称图形,中心对称图形的知识点,以及学生的观察能力及空间想象能力.【答案与解析】(1)特征1:都是轴对称图形;特征2:都是中心对称图形;特征3:这些图形的面积都等于4个单位面积等.(2)满足条件的图形有很多,只要画正确一个,就可以得满分.图4 图3图5【总结升华】本题为开放型试题,答案并不唯一,只要考生能够写出一种符合要求的情景即可,该题为考生提供了一个广阔的发挥空间,但是学生必须通过前四个图形发现其中蕴涵的规律,依照此规律来画出自己想象中的美妙图形.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
【本讲教育信息】一、教学内容:专题五:开放探索问题二、知识要点:开放与探索性问题是指命题中缺少一定的条件或无明确的结论,需要经过推断、补充并加以证明的题型,一般分为三类:①条件探究型题;②结论探究型题;③探究存在型题。
条件探究型题是指所给问题中结论明确,需要完备条件的题目。
结论探究型题是指题目中结论不确定,不唯一,或题目结论需要类比,引申推广,或题目给出特例,要通过归纳总结出一般结论。
探究存在型题是指在一定的前提下,需探究发现某种数学关系是否存在的题目。
三、考点分析:开放探索性问题需由解题者依题意进行探索,确定结论或补全条件或选择不同的解题策略后再进行解题。
开放探索题采用的题型有填空题、选择题,但多数为解答题,所占分数约为全卷总分的8%~10%,难度较大。
【典型例题】题型一问题中条件不足,探索充分条件一种是直接补齐条件,使题目结论成立;另一种是需要我们作出探索去补齐条件,使题目结论成立。
这两种情况所需补充的条件往往不唯一。
例1.如图所示,D、E是△ABC中BC边上的两点,AD=AE,要证明△ABE≌△ACD,还应补充什么条件?分析:这是一道条件开放题,解题关键是由AD=AE,可以得出∠1=∠2,这样要证明三角形全等就已经具备了两个条件。
在△ABE和△ACD中只需要再有一个条件,即可证明△ABE≌△ACD。
解:可补充以下条件之一:(1)BE=CD(SAS);(2)BD=CE(此时BE=CD);(3)∠BAE=∠CAD(ASA);(4)∠BAD=∠CAE (此时∠BAE=∠CAD);(5)∠B=∠C(AAS);(6)AB=AC(此时∠B=∠C),……。
评析:本题应充分利用已掌握的知识,从多个角度去思考、分析,并大胆猜想,寻求尽可能多的方法。
例2.已知△ABC内接于⊙O,(1)当点O与AB有怎样的位置关系时,∠ACB是直角?(2)在满足(1)的条件下,过点C作直线交AB于D,当CD与AB有什么样的关系时,△ABC∽△CBD∽△ACD?(3)画出符合(1)、(2)题意的图形,使图形中的CD=2cm。
分析:(1)要使∠ACB=90°,弦AB必须是直径,即O应是AB的中点;(2)当CD⊥AB时,结论成立;(3)由(2)知CD2=AD·DB,即AD·DB=22=4,可作直径AB为5的⊙O,在AB上取一点D,使AD=1,BD=4,过D作CD⊥AB交⊙O于C点,连结AC、BC,即得所求。
解:(1)当点O在AB上(即O为AB的中点)时,∠ACB是直角;(2)∵∠ACB是直角,∴当CD⊥AB时,△ABC∽△CBD∽△ACD;(3)作直径AB为5的⊙O,在AB上取一点D,使AD=1,BD=4,过D点作CD⊥AB交⊙O于C点,连结AC、BC,即为所求(如下图所示)。
评析:本题是一个简单的几何条件探索题,它突破了过去“假设——求证”的封闭式论证,而是给出问题的结论,逆求结论成立的条件,强化了对学生通过观察、分析、猜想、推理、判断等探索活动分析和解决问题的要求。
看似平常,实际上非常精彩。
题型二题目中给出明确条件,探索多种结论给出问题的条件,让解题者根据条件探索相应的结论,并且符合条件的结论往往呈现多样性。
例3.将两块完全相同的等腰直角三角形摆成如图的样子,假设图形中的所有点、线都在同一平面内,回答下列问题:(1)图中共有多少个三角形?把它们一一写出来;(2)图中有相似(不包括全等)三角形吗?如果有,就把它们一一写出来。
分析:(1)先看△ABC中,一一数来共有6个三角形,再加上△AFG,共七个三角形;(2)由于∠DAE=∠B =∠C=45°,∠ADE=∠B+∠1=45°+∠1=∠BAE,同理∠AED=∠CAD,可得出△ADE∽△BAE∽△CDA。
解:(1)共有七个三角形,它们是:△ABD、△ABE、△ABC、△ADE、△ADC、△AEC、△AFG。
(2)有相似三角形,它们是:△ADE∽△BAE,△BAE∽△CDA,△ADE∽△CDA(或△ADE∽△BAE∽△CDA)。
评析:本题为考生提供了广阔的探究空间,通过分析、判断,有利于学生创新意识的形成和思维能力的培养。
题型三变换某个题设条件后,探索结论的存在性相应的结论的“存在性”需要解题者进行推断,甚至要求解题者探求条件在变化中的结论。
它要求解题者充分利用条件进行大胆而合理的猜想,发现规律,得出结论,这类题主要考查解题者的发散性思维和对所学基本知识的应用能力。
例4.如图所示,以等腰三角形ABC的一腰AB为直径的⊙O交BC于D,过D作DE⊥AC于E,可得结论DE是⊙O的切线。
问:(1)若点O在AB上向点B移动,以O为圆心,OB长为半径的圆仍交BC于D,DE⊥AC的条件不变,那么上述结论是否还成立?请说明理由。
(2)如果AB=AC=5cm,sinA=0.6,那么圆心O在AB的什么位置时,⊙O与AC相切?分析:(1)连结OD,∵OB=OD,∴∠OBD=∠ODB=∠C,∴OD∥AC,从而可得OD⊥DE,结论仍然成立。
(2)若⊙O与AC相切,设切点为F,连结OF,则由Rt△AOF中可求得解:(1)结论仍然成立。
如图①所示,连结OD,则OD=OB,∠OBD=∠ODB。
又AB=AC,∴∠B=∠C,∴∠ODB=∠C,∴OD∥AC。
∵DE⊥AC,∴OD⊥DE,∴DE是⊙O的切线。
(2)如图②所示,若AC与⊙O切于点F,连结OF,则OF⊥AC,即△AOF是直角三角形,即当时,⊙O与AC相切。
评析:本例的两小题都属于结论不确定性的开放性问题。
第(1)小题是直接从题设条件出发探求结论是否成立;第(2)小题是从题设的结论出发来探求令结论成立的条件,这也是解决这类问题的常用方法。
例5.已知△ABC中,AB=5,BC=3,AC=4,PQ∥AB,P点在AC上(与点A、C不重合),Q点在BC上。
(1)当△PQC的面积与四边形PABQ的面积相等时,求CP的长;(2)当△PQC的周长与四边形PABQ的周长相等时,求CP的长;(3)试问,在AB上是否存在点M,使得△PQM为等腰直角三角形?若不存在,请说明理由;若存在,请求出PQ 的长。
分析:本题是纯几何探索性问题,解这类题时,应先假设结论存在。
若从已知条件和定义、定理出发,进行推理或计算得出相应的结论,则结论确实存在;若推证出现矛盾或计算无解,则结论不存在。
(3)如下图,△PQM为等腰直角三角形可能有两种情况:①由左图假设,∠MPQ=90°,PM=PQ时,由勾股定理逆定理则得∠C=90°。
∴△ABC的边AB上的高为设PM=PQ=x,∵PQ∥AB,∴△CPQ∽△CAB。
解之得②由右图所示,假设∠PMQ=90°,MP=MQ时,M到PQ的距离为PQ。
设PQ=x,∴综上所述,在AB上存在点M,使△PQM为等腰直角三角形。
评析:“存在性”探索题,往往与传统的综合题相结合,来加大对考生分析、探索能力的考查,这类问题的情景新颖,富有挑战性,是启迪智慧的好素材。
题型四组合型开放与探索例6.课外兴趣小组活动时,许老师出示了如下问题,如图①,已知四边形ABCD中,AC平分∠DAB,∠DAB=60°,∠B与∠D互补,求证:小敏反复探索,不得其解,她想,若将四边形ABCD特殊化,看能否解决该问题。
(1)从特殊情况入手,添加条件:“∠B=∠D”,如图②,可证:(请你完成证明)(2)解决原问题,受到(1)的启发,在原问题中,添加辅助线,如图③所示,过C点分别作AB、AD的垂线,垂足分别为E、F。
(请你补全证明)分析:本题的转换思想是数学中的重要思想,可以利用30°角所对应的直角边等于斜边的一半及三角函数相关定理解决此题,对于(2)问题可以转化为(1)中的情况来解决。
解:(1)∵∠B=∠D=90°,∠CAB=∠CAD=30°,(2)由(1)知,AE+AF=AC。
∵AC为角平分线,CF⊥AD,CE⊥AB,∴CE=CF。
而∠ABC与∠D互补,∠ABC与∠CBE也互补,∴∠D=∠CBE,∴Rt△CDF≌Rt△CBE,∴DF=BE,∴AB+AD=AB+(AF+FD)=(AB+BE)+AF=AE+AF=AC。
评析:本题是一道组合型开放性问题,是条件和结论“双开放”。
此类题目立足于常见的几何图形,所用基础知识是三角形全等的判定等知识。
【方法总结】解开放探索性问题不能墨守成规,需进行大胆而合理的猜想,发现规律,得出结论,这类题主要考查解题者的发散性思维和对所学基本知识的应用能力。
【模拟试题】(答题时间:50分钟)一、选择题1. 如图,已知AB=AD,那么添加下列一个条件后,仍无法判定△ABC≌△ADC的是()A. CB=CDB. ∠BAC=∠DACC. ∠BCA=∠DCAD. ∠B=∠D=90°*2. 在矩形ABCD中,AB=1,AD=,AF平分∠DAB,过C点作CE⊥BD于E.延长AF、EC交于点H,下列结论中:①AF=FH;②BO=BF;③CA=CH;④BE=3ED。
正确的是()A. ②③B. ③④C. ①②④D. ②③④二、填空题1. 在△ABC中,AB=AC=12cm,BC=6cm,D为BC的中点,动点P从B点出发,以每秒1cm的速度沿B→A→C的方向运动。
设运动时间为t,那么当t=__________秒时,过D、P两点的直线将△ABC的周长分成两个部分,使其中一部分是另一部分的2倍。
*2. 如图⊙O1和⊙O2的半径分别为1和3,连接O1O2,交⊙O2于点P,O1O2=8。
若将⊙O1绕点P按顺时针方向旋转360°,则⊙O1与⊙O2共相切__________次。
三、解答题1. 某初一学生在做作业时,不慎将墨水瓶打翻,使一道作业题只看到如下字样:“甲、乙两地相距40km,摩托车的速度为45km/h,运货汽车的速度为35km/h,?”(涂黑部分表示被墨水覆盖的若干文字)请将这道作业题补充完整,并列方程解答。
2. 鲁西西开始研究整数的特征。
她发现:4=22-02,12=42-22,20=62-42。
4、12、20这些正整数都能表示为两个连续偶数的平方差,她称这些正整数为“和谐数”。
现在请你在鲁西西研究的基础上,进一步探究下列问题:(1)判断28、2008是否为“和谐数”;(2)根据上述判断,请你推广你的结论,指出判断一个正整数是否为“和谐数”的标准;(3)更进一步探究:两个连续奇数的平方差(取正数)是“和谐数”吗?为什么?3. 如图,在等腰梯形ABCD中,∠C=60°,AD∥BC,且AD=DC,E、F分别在AD、DC的延长线上,且DE=CF,AF、BE交于点P。
(1)求证:AF=BE;(2)请你猜测∠BPF的度数,并证明你的结论。