2016年北师大八年级上第6章数据的分析单元试卷含答案解析

合集下载

北师大版八年级上第六章数据的分析单元测试含答案解析

北师大版八年级上第六章数据的分析单元测试含答案解析

《第6章数据的分析》一、选择题1.已知一组数据:12,5,9,5,14,下列说法不正确的是()A.平均数是9 B.极差是5 C.众数是5 D.中位数是92.某市测得一周PM2.5的日均值(单位:)如下:50,40,75,50,37,50,40,这组数据的中位数和众数分别是()A.50和50 B.50和40 C.40和50 D.40和403.已知一组数据3,a,4,5的众数为4,则这组数据的平均数为()A.3 B.4 C.5 D.64.甲、乙、丙、丁四位同学五次数学测验成绩统计如表.如果从这四位同学中,选出一位成绩较好且状态稳定的同学参加全国数学联赛,那么应选()甲乙丙丁平均数80 85 85 80方差42 42 54 59A.甲B.乙C.丙D.丁5.期中考试后,班里有两位同学议论他们所在小组同学的数学成绩,小明说:“我们组成绩是86分的同学最多”,小英说:“我们组的7位同学成绩排在最中间的恰好也是86分”,上面两位同学的话能反映出的统计量是()A.众数和平均数 B.平均数和中位数C.众数和方差D.众数和中位数6.已知一组数据10,8,9,x,5的众数是8,那么这组数据的方差是()A.2.8 B.C.2 D.57.已知:一组数据x1,x2,x3,x4,x5的平均数是2,方差是,那么另一组数据3x1﹣2,3x2﹣2,3x3﹣2,3x4﹣2,3x5﹣2的平均数和方差分别是()A.2,B.2,1 C.4,D.4,38.为了估计湖中有多少条鱼,先从湖中捕捉50条鱼做记号,然后放回湖里,经过一段时间,等带记号的鱼完全混于鱼群中之后,再捕捞第二次,鱼共200条,有10条做了记号,则估计湖里有多少条鱼()A.400条B.500条C.800条D.1000条9.某校初一年级有六个班,一次测试后,分别求得各个班级学生成绩的平均数,它们不完全相同,下列说法正确的是()A.全年级学生的平均成绩一定在这六个平均成绩的最小值与最大值之间B.将六个平均成绩之和除以6,就得到全年级学生的平均成绩C.这六个平均成绩的中位数就是全年级学生的平均成绩D.这六个平均成绩的众数不可能是全年级学生的平均成绩10.有一组数据7、11、12、7、7、8、11.下列说法错误的是()A.中位数是7 B.平均数是9 C.众数是7 D.极差是5二、填空题11.一组数据2、﹣2、4、1、0的中位数是______.12.近年来,义乌市民用汽车拥有量持续增长,2007年至2011年我市民用汽车拥有量依次约为(单位:万辆):11,13,15,19,x,这五个数的平均数为16.2,则x的值为______.13.李好在六月连续几天同一时刻观察电表显示的度数,记录如下:日期1号2号3号4号5号6号7号8号…30号电表显示(度)120 123 127 132 138 141 145 148 …估计李好家六月份总月电量是______度.15.商店某天销售了11件衬衫,其领口尺寸统计如下表:领口尺寸(单位:cm)38 39 40 41 42件数 1 4 3 1 2则这11件衬衫领口尺寸的众数是______cm,中位数是______cm.16.已知三个不相等的正整数的平均数,中位数都是3,则这三个数分别为______.17.已知一个样本:1,3,5,x,2,它的平均数为3,则这个样本的方差是______.18.甲,乙两班举行电脑汉字输入比赛,参赛学生每分钟输入汉字的个数统计结果如下表:班级参赛人数中位数方差平均字数甲55 149 191 135乙55 151 110 135某同学分析上表后得出如下结论:①甲、乙两班学生成绩的平均水平相同;②乙班优秀的人数多于甲班优秀的人数19.一次演讲比赛,评委将从演讲内容、演讲能力、演讲效果三个方面为选手打分,各项成绩均按百分制,然后再按演讲内容:演讲能力:演讲效果=5:4:1的比例计算选手的综合成绩(百分制).进入决赛的前两名选手的单项成绩如下表所示:选手演讲内容演讲能力演讲效果A 85 95 95B 95 85 95请决出两人的名次.20.广州市努力改善空气质量,近年来空气质量明显好转,根据广州市环境保护局公布的2006﹣2010这五年各年的全年空气质量优良的天数,绘制折线图如图.根据图中信息回答:(1)这五年的全年空气质量优良天数的中位数是______,极差是______.(2)这五年的全年空气质量优良天数与它前一年相比,增加最多的是______年(填写年份).(3)求这五年的全年空气质量优良天数的平均数.21.某班实行小组量化考核制,为了了解同学们的学习情况,王老师对甲、乙两个小组连续六周的综合评价得分进行了统计,并将得到的数据制成如下的统计表:周次组别一二三四五六甲组12 15 16 14 14 13乙组9 14 10 17 16 18(1)请根据上表中的数据完成下表;(注:方差的计算结果精确到0.1)(2)根据综合评价得分统计表中的数据,请在图中画出甲、乙两组综合评价得分的折线统计图;(3)由折线统计图中的信息,请分别对甲、乙两个小组连续六周的学习情况做出简要评价.平均数中位数方差甲组______ ______ ______乙组______ ______ ______23.“最美女教师”张丽莉,为抢救两名学生,以致双腿高位截肢,社会各界纷纷为她捐款,我市某中学九年级一班全体同学参加了捐款活动,该班同学捐款情况的部分统计图如图所示:(1)求该班的总人数;(2)将条形图补充完整,并写出捐款总额的众数;(3)该班平均每人捐款多少元?24.市射击队为从甲、乙两名运动员中选拔一人参加省比赛,对他们进行了六次测试,测试成绩如下表(单位:环):第一次第二次第三次第四次第五次第六次甲10 8 9 8 10 9乙10 7 10 10 9 8(1)根据表格中的数据,分别计算甲、乙的平均成绩.(2)分别计算甲、乙六次测试成绩的方差;(3)根据(1)、(2)计算的结果,你认为推荐谁参加省比赛更合适,请说明理由.《第6章数据的分析》参考答案一、选择题1.已知一组数据:12,5,9,5,14,下列说法不正确的是()A.平均数是9 B.极差是5 C.众数是5 D.中位数是9【解答】解:这组数据的平均数为: =9,极差为:14﹣5=9,众数为:5,中位数为:9.故选B.2.某市测得一周PM2.5的日均值(单位:)如下:50,40,75,50,37,50,40,这组数据的中位数和众数分别是()A.50和50 B.50和40 C.40和50 D.40和40【解答】解:从小到大排列此数据为:37、40、40、50、50、50、75,数据50出现了三次最多,所以50为众数;50处在第4位是中位数.故选:A.3.已知一组数据3,a,4,5的众数为4,则这组数据的平均数为()A.3 B.4 C.5 D.6【解答】解:数据3,a,4,5的众数为4,即4次数最多;即a=4.则其平均数为(3+4+4+5)÷4=4.故选B.4.甲、乙、丙、丁四位同学五次数学测验成绩统计如表.如果从这四位同学中,选出一位成绩较好且状态稳定的同学参加全国数学联赛,那么应选()甲 乙 丙 丁 平均数 80 85 85 80 方 差42425459A .甲B .乙C .丙D .丁【解答】解:由于乙的方差较小、平均数较大,故选乙. 故选:B .5.期中考试后,班里有两位同学议论他们所在小组同学的数学成绩,小明说:“我们组成绩是86分的同学最多”,小英说:“我们组的7位同学成绩排在最中间的恰好也是86分”,上面两位同学的话能反映出的统计量是( )A .众数和平均数B .平均数和中位数C .众数和方差D .众数和中位数【解答】解:在一组数据中出现次数最多的数是这组数据的众数,排在中间位置的数是中位数, 故选:D .6.已知一组数据10,8,9,x ,5的众数是8,那么这组数据的方差是( ) A .2.8 B .C .2D .5【解答】解:因为一组数据10,8,9,x ,5的众数是8,所以x=8.于是这组数据为10,8,9,8,5. 该组数据的平均数为:(10+8+9+8+5)=8,方差S 2= [(10﹣8)2+(8﹣8)2+(9﹣8)2+(8﹣8)2+(5﹣8)2]= =2.8.故选:A .7.已知:一组数据x 1,x 2,x 3,x 4,x 5的平均数是2,方差是,那么另一组数据3x 1﹣2,3x 2﹣2,3x 3﹣2,3x 4﹣2,3x 5﹣2的平均数和方差分别是( ) A .2, B .2,1 C .4, D .4,3【解答】解:∵x 1,x 2,…,x 5的平均数是2,则x 1+x 2+…+x 5=2×5=10. ∴数据3x 1﹣2,3x 2﹣2,3x 3﹣2,3x 4﹣2,3x 5﹣2的平均数是:′= [(3x 1﹣2)+(3x 2﹣2)+(3x 3﹣2)+(3x 4﹣2)+(3x 5﹣2)]= [3×(x 1+x 2+…+x 5)﹣10]=4,S′2=×[(3x1﹣2﹣4)2+(3x2﹣2﹣4)2+…+(3x5﹣2﹣4)2],=×[(3x1﹣6)2+…+(3x5﹣6)2]=9× [(x1﹣2)2+(x2﹣2)2+…+(x5﹣2)2]=3.故选D.8.为了估计湖中有多少条鱼,先从湖中捕捉50条鱼做记号,然后放回湖里,经过一段时间,等带记号的鱼完全混于鱼群中之后,再捕捞第二次,鱼共200条,有10条做了记号,则估计湖里有多少条鱼()A.400条B.500条C.800条D.1000条【解答】解:设湖中有x条鱼,则200:10=x:50,解得x=1 000(条).故选D.9.某校初一年级有六个班,一次测试后,分别求得各个班级学生成绩的平均数,它们不完全相同,下列说法正确的是()A.全年级学生的平均成绩一定在这六个平均成绩的最小值与最大值之间B.将六个平均成绩之和除以6,就得到全年级学生的平均成绩C.这六个平均成绩的中位数就是全年级学生的平均成绩D.这六个平均成绩的众数不可能是全年级学生的平均成绩【解答】解:A、全年级学生的平均成绩一定在这六个平均成绩的最小值与最大值之间,正确;B、可能会出现各班的人数不等,所以,6个的班总平均成绩就不能简单的6个的班的平均成绩相加再除以6,故错误;C、中位数和平均数是不同的概念,故错误;D、六个平均成绩的众数也可能是全年级学生的平均成绩,故错误;故选A.10.有一组数据7、11、12、7、7、8、11.下列说法错误的是()A.中位数是7 B.平均数是9 C.众数是7 D.极差是5【解答】解:这组数据按照从小到大的顺序排列为:7、7、7、8、11、11、12,则中位数为:8,平均数为: =9,众数为:7,极差为:12﹣7=5.故选:A.二、填空题11.一组数据2、﹣2、4、1、0的中位数是 1 .【解答】解:从小到大排列此数据为:﹣2、0、1、2、4,处在中间位置的是1,则1为中位数.所以本题这组数据的中位数是1.故答案为1.12.近年来,义乌市民用汽车拥有量持续增长,2007年至2011年我市民用汽车拥有量依次约为(单位:万辆):11,13,15,19,x,这五个数的平均数为16.2,则x的值为23 .【解答】解:根据题意得:(11+13+15+19+x)÷5=16.2,解得:x=23,则x的值为23;故答案为:23.13.李好在六月连续几天同一时刻观察电表显示的度数,记录如下:日期1号2号3号4号5号6号7号8号…30号电表显示(度)120 123 127 132 138 141 145 148 …估计李好家六月份总月电量是120 度.【解答】解:×30=120(度).15.商店某天销售了11件衬衫,其领口尺寸统计如下表:领口尺寸(单位:cm)38 39 40 41 42件数 1 4 3 1 2则这11件衬衫领口尺寸的众数是39 cm,中位数是40 cm.【解答】解:同一尺寸最多的是39cm,共有4件,所以,众数是39cm,11件衬衫按照尺寸从小到大排列,第6件的尺寸是40cm,所以中位数是40cm.故答案为:39,40.16.已知三个不相等的正整数的平均数,中位数都是3,则这三个数分别为1,3,5或2,3,4 .【解答】解:因为这三个不相等的正整数的中位数是3,设这三个正整数为a,3,b(a<3<b);其平均数是3,有(a+b+3)=3,即a+b=6.且a b为正整数,故a可取1,2,分别求得b的值为5,4.故这三个数分别为1,3,5或2,3,4.故填1,3,5或2,3,4.17.已知一个样本:1,3,5,x,2,它的平均数为3,则这个样本的方差是 2 .【解答】解:∵1,3,x,2,5,它的平均数是3,∴(1+3+x+2+5)÷5=3,∴x=4,∴S2= [(1﹣3)2+(3﹣3)2+(4﹣3)2+(2﹣3)2+(5﹣3)2]=2;∴这个样本的方差是2.故答案为:2.18.甲,乙两班举行电脑汉字输入比赛,参赛学生每分钟输入汉字的个数统计结果如下表:班级参赛人数中位数方差平均字数甲55 149 191 135乙55 151 110 135某同学分析上表后得出如下结论:①甲、乙两班学生成绩的平均水平相同;②乙班优秀的人数多于甲班优秀的人数19.一次演讲比赛,评委将从演讲内容、演讲能力、演讲效果三个方面为选手打分,各项成绩均按百分制,然后再按演讲内容:演讲能力:演讲效果=5:4:1的比例计算选手的综合成绩(百分制).进入决赛的前两名选手的单项成绩如下表所示:选手演讲内容演讲能力演讲效果A 85 95 95B 95 85 95请决出两人的名次.【解答】解:选手A的最后得分是:(85×5+95×4+95×1)÷(5+4+1)=900÷10=90,选手B最后得分是:(95×5+85×4+95×1)÷(5+4+1)=910÷10=91.由上可知选手B获得第一名,选手A获得第二名.20.广州市努力改善空气质量,近年来空气质量明显好转,根据广州市环境保护局公布的2006﹣2010这五年各年的全年空气质量优良的天数,绘制折线图如图.根据图中信息回答:(1)这五年的全年空气质量优良天数的中位数是345 ,极差是24 .(2)这五年的全年空气质量优良天数与它前一年相比,增加最多的是2008 年(填写年份).(3)求这五年的全年空气质量优良天数的平均数.【解答】解:(1)这五年的全年空气质量优良天数按照从小到大排列如下:333、334、345、347、357,所以中位数是345;极差是:357﹣333=24;(2)2007年与2006年相比,333﹣334=﹣1,2008年与2007年相比,345﹣333=12,2009年与2008年相比,347﹣345=2,2010年与2009年相比,357﹣347=10,所以增加最多的是2008年;(3)这五年的全年空气质量优良天数的平均数===343.2天.21.某班实行小组量化考核制,为了了解同学们的学习情况,王老师对甲、乙两个小组连续六周的综合评价得分进行了统计,并将得到的数据制成如下的统计表:周次组别一二三四五六甲组12 15 16 14 14 13乙组9 14 10 17 16 18(1)请根据上表中的数据完成下表;(注:方差的计算结果精确到0.1)(2)根据综合评价得分统计表中的数据,请在图中画出甲、乙两组综合评价得分的折线统计图;(3)由折线统计图中的信息,请分别对甲、乙两个小组连续六周的学习情况做出简要评价.平均数中位数方差甲组14 14 1.7乙组14 15 11.7【解答】解:(1)填表如下:平均数中位数方差甲组14 14 1.7乙组14 15 11.7(2)如图:(3)从折线图可看出:甲组成绩相对稳定,但进步不大,且略有下降趋势;乙组成绩不够稳定,但进步较快,呈上升趋势.23.“最美女教师”张丽莉,为抢救两名学生,以致双腿高位截肢,社会各界纷纷为她捐款,我市某中学九年级一班全体同学参加了捐款活动,该班同学捐款情况的部分统计图如图所示:(1)求该班的总人数;(2)将条形图补充完整,并写出捐款总额的众数;(3)该班平均每人捐款多少元?【解答】解:(1)=50(人).该班总人数为50人;(2)捐款10元的人数:50﹣9﹣14﹣7﹣4=50﹣34=16,图形补充如右图所示,众数是10;(3)(5×9+10×16+15×14+20×7+25×4)=×655=13.1元,因此,该班平均每人捐款13.1元.24.市射击队为从甲、乙两名运动员中选拔一人参加省比赛,对他们进行了六次测试,测试成绩如下表(单位:环):第一次第二次第三次第四次第五次第六次甲10 8 9 8 10 9乙10 7 10 10 9 8(1)根据表格中的数据,分别计算甲、乙的平均成绩.(2)分别计算甲、乙六次测试成绩的方差;(3)根据(1)、(2)计算的结果,你认为推荐谁参加省比赛更合适,请说明理由.【解答】解:(1)甲的平均成绩是:(10+8+9+8+10+9)÷6=9,乙的平均成绩是:(10+7+10+10+9+8)÷6=9;(2)甲的方差= [(10﹣9)2+(8﹣9)2+(9﹣9)2+(8﹣9)2+(10﹣9)2+(9﹣9)2]=.乙的方差= [(10﹣9)2+(7﹣9)2+(10﹣9)2+(10﹣9)2+(9﹣9)2+(8﹣9)2]=.(3)推荐甲参加全国比赛更合适,理由如下:两人的平均成绩相等,说明实力相当;但甲的六次测试成绩的方差比乙小,说明甲发挥较为稳定,故推荐甲参加比赛更合适.。

北师大版八年级上册数学第六章 数据的分析含答案

北师大版八年级上册数学第六章 数据的分析含答案

北师大版八年级上册数学第六章数据的分析含答案一、单选题(共15题,共计45分)1、学校组织朗诵比赛,有11位同学晋级决赛,每位选手得分各不相同.如果小杰想要确定自己是否进入前6名,那么除了自己的得分以外,他还要了解这11名同学得分的()A.平均数B.中位数C.众数D.方差2、下列统计量中,能够刻画一组数据的离散程度的是()A.方差或标准差B.平均数或中位数C.众数或频率D.频数或众数3、下列说法正确的是()A.了解全国中学生最喜爱哪位歌手,适合全面调查.B.甲乙两种麦种,连续3年的平均亩产量相同,它们的方差为:S甲2=5,S乙2=0.5,则甲麦种产量比较稳. C.某次朗读比赛中预设半数晋级,某同学想知道自己是否晋级,除知道自己的成绩外,还需要知道平均成绩. D.一组数据:3,2,5,5,4,6的众数是5.4、甲、乙两名同学本学期五次引体向上的测试成绩(个数)成绩如图所示,下列判断正确的是()A.甲的成绩比乙稳定B.甲的最好成绩比乙高C.甲的成绩的平均数比乙大D.甲的成绩的中位数比乙大5、某学习小组6人的一次数学测验成绩分别为50分,100分,60分,70分,80分,60分,则这次成绩的中位数、众数分别为()A.60分, 60分B.70分,60分C.70分,80分D.65分,60分6、某选手在歌咏比赛中的成绩:8.0、8.3、8.5、8.5、9.2、9.7.则该组数据的众数和极差分别是()A.8.5、0.7B.8.5、1.7C.8.0、0.7D.8.0、1.77、李老师为了解学生在家的阅读情况,随机抽样调查了20名学生某一天的阅读时间,具体情况统计如下:阅读时间(小时)1 1.5 2 2.5 3学生人数(名) 1 2 8 6 3则关于这20名学生阅读时间所组成的一组数据中,下列说法正确的是()A.中位数是2B.中位数是2.5C.众数是8D.众数是38、能清楚地反映事物的变化情况的统计图为()A.扇形统计图B.条形统计图C.折线统计图D.以上都可以9、某车间5名工人日加工零件数分别为6,10,4,5,4,则这组数据的中位数和众数分别是()A.4,5B.5,4C.6,4D.10,610、在《数据分析》章节测试中,“勇往直前”学习小组7位同学的成绩分别是92,88,95,93,96,95,94.这组数据的中位数和众数分别是()A.94,94B.94,95C.93,95D.93,9611、一组数据1,3,4,4,4,5,5,6的众数和方差分别是()A.4,1B.4,2C.5,1D.5,212、甲、乙、丙、丁四人进行射箭测试,每人10次,测试成绩的平均数都是8.9环,方差分别是s甲2=0.45,s乙2=0.50,s丙2=0.55,s丁2=0.65,则测试成绩最稳定的是()A.甲B.乙C.丙D.丁13、某班七个兴趣小组人数分别为4,4,5,5,x,6,7,已知这组数据的平均数是5,则这组数据的众数和中位数分别是()A.4,5B.4,4C.5,4D.5,514、在一次体育测试中,小芳所在小组8人的成绩分别是:46,47,48,48,49,49,49,50,则8人体育成绩的中位数是 ( )A.47B.48C.48.5D.4915、我市某中学九年级(1)班为开展“阳光体育运动”,决定自筹资金为班级购买体育器材,全班50名同学捐款情况如下表:人数 3 6 11 11 13 6问该班同学捐款金额的众数和中位数分别是()A.13,11B.25,30C.20,25D.25,20二、填空题(共10题,共计30分)16、小张和小李去练习射击,第一轮10发子弹打完后,两人的成绩如图所示.根据图中的信息,小张和小李两人中成绩较稳定的是________.17、一组数据1,3,8,9,6,4的中位数是________.18、甲乙两人8次射击的成绩如图所示(单位:环)根据图中的信息判断,这8次射击中成绩比较稳定的是________(填“甲”或“乙”)19、有两名学员小林和小明练习射击,第一轮10枪打完后两人打靶的环数如图所示,通常新手的成绩不太稳定,那么根据图中的信息,估计小林和小明两人中新手是________.20、为了解当地气温变化情况,某研究小组记录了寒假期间连续6天的最高气温,结果如下(单位:℃):﹣6,﹣3,x,2,﹣1,3,若这组数据的中位数是﹣1,在下列结论中:①方差是8;②极差是9;③众数是﹣1;④平均数是﹣1,其中正确的序号是________.21、甲、乙两台机床同时加工一批直径为100毫米的零件,为了检验产品的质量,从产品中随机抽查6件进行测量,测得的数据如下:(单位:毫米)甲机床:99 98 100 100 103乙机床:99 100 102 99 100 100则加工这批零件性能较好的机床是________.22、今年3月份某周,我市每天的最高气温(单位:℃)12,11,10,15,16,15,12,若这组数据的中位数是________.23、已知一组数据-3,x,-2,3,2,6的中位数为2,则其众数是________.24、如图是甲、乙两名射击运动员10次射击成绩的统计表和折线统计图.平均数中位数众数甲8 8 8乙8 8 8你认为甲、乙两名运动员,________的射击成绩更稳定.(填甲或乙)25、一组数据:-3,5,9,12,-6的极差是________ .三、解答题(共6题,共计25分)26、某公司欲招聘一名工作人员,对甲、乙两位应聘者进行面试和笔试,他们的成绩(百分制)如表所示.某公司分别赋予面试成绩和笔试成绩7和3的权,平均成绩高的被录取,判断谁将被录取,并说明理由.27、某养鸡场有2500只鸡准备对外出售.从中随机抽取了一部分鸡,根据它们的质量(单位:),绘制出如下的统计图①和图②.请根据相关信息,解答下列问题:(Ⅰ)图①中的值为_▲__;(Ⅱ)求统计的这组数据的平均数、众数和中位数;(Ⅲ)根据样本数据,估计这2500只鸡中,质量为的约有多少只?28、为了考察甲、乙两种成熟期小麦的株高长势情况,现从中随机抽取6株,并测得它们的株高(单位:cm)如下表所示:甲63 66 63 61 64 61乙63 65 60 63 64 63(Ⅰ)请分别计算表内两组数据的方差,并借此比较哪种小麦的株高长势比较整齐?(Ⅱ)现将进行两种小麦优良品种杂交实验,需从表内的甲、乙两种小麦中,各随机抽取一株进行配对,以预估整体配对情况,请你用列表法或画树状图的方法,求所抽取的两株配对小麦株高恰好都等于各自平均株高的概率.29、请你设计一个调查方案,了解自己班的同学每位家庭的月用水量情况.30、某同学进行社会调查,随机抽查了某地15个家庭的收入情况,数据如表:年收入(万2 2.5345 9 13元)家庭个数 1 3 5 2 2 1 1(1)求这15个家庭年收入的平均数、中位数、众数;(2)你认为用(1)中的哪个数据来代表15个家庭年收入的一般水平较为合适?请简要说明理由.参考答案一、单选题(共15题,共计45分)2、A3、D4、A5、D6、B7、A8、C9、B10、B11、B12、A13、A14、C15、D二、填空题(共10题,共计30分)16、17、19、20、21、22、23、24、25、三、解答题(共6题,共计25分)26、29、。

北师大版八年级数学上册第六章 数据的分析 单元测试试题(含答案)

北师大版八年级数学上册第六章 数据的分析  单元测试试题(含答案)

北师大版八年级数学上册第六章数据的分析单元测试题一、选择题(每小题4分,共40分)1.某球员参加一场篮球比赛,比赛分4节进行,该球员每节得分如折线统计图所示,则该球员平均每节得分为(B)A.7分B.8分C.9分D.10分2.某校羽毛球训练队共有8名队员,他们的年龄(单位:岁)分别为:12,13,13,14,12,13,15,13,则他们年龄的众数为(B)A.12 B.13 C.14 D.153.已知一组数据:4,-1,5,9,7,6,7,则这组数据的极差是(A)A.10 B.9 C.8 D.74.在某市举办的垂钓比赛上,5名垂钓爱好者参加了比赛,比赛结束后,统计了他们各自的钓鱼条数,成绩如下:4,5,10,6,10.则这组数据的中位数是(B)A.5 B.6 C.7 D.105.某住宅小区六月份1日至5日每天用水量变化情况如图所示.那么这5天平均每天的用水量是(C)A.30吨B.31吨C.32吨D.33吨6.某校在一次学生演讲比赛中共有11个评委,统计每位选手得分时,采用了去掉一个最高分和一个最低分,然后再计算其余给分的平均数.这种计分方法对所有评委给出的11个分数一定不产生影响的是(B)A.平均数 B.中位数C.方差 D.众数7.如果一组数据x1,x2,…,x n的方差是3,那么另一组数据x1+5,x2+5,…,x n+5的方差是(A)A.3 B.8 C.9 D.148.某销售部门有7名员工,所有员工的月工资情况如下表所示(单位:元).则比较合理反映该部门员工工资的一般水平的数据是(C)A.平均数 B.平均数和众数C.中位数和众数 D.平均数和中位数9.某校举行“汉字听写比赛”,5个班级代表队的正确答题数如图.这5个正确答题数所组成的一组数据的中位数和众数分别是(D)A.10,15 B.13,15C.13,20 D.15,1510.李老师为了了解学生暑期在家的阅读情况,随机调查了20名学生某一天的阅读小时数,具体情况统计如下:则关于这20名学生阅读小时的说法正确的是(B)A.众数是8 B.中位数是3C.平均数是3 D.方差是0.34二、填空题(每小题4分,共20分)11.李老师最近6个月的手机话费(单位:元)分别为:27,36,54,29,38,42,这组数据的中位数是37.12.甲、乙、丙三人进行射击测试,每人10次射击成绩的平均值都是8.9环,方差分别是s2甲=0.53,s2乙=0.51,s2丙=0.43,则三人中成绩最稳定的是丙(填“甲”“乙”或“丙”).13.在学校的歌咏比赛中,10名选手的成绩如统计图所示,则这10名选手成绩的众数是90.14.某餐厅供应单价为10元、18元、25元三种价格的抓饭,如图是该餐厅某月销售抓饭情况的扇形统计图,根据该统计图可算得该餐厅销售抓饭的平均单价为17元.15.一组数据2,3,x,y,12中,唯一的众数是12,平均数是6,这组数据的中位数是3.三、解答题(共40分)16.(8分)某市举行一次少年滑冰比赛,各年龄组的参赛人数如下表所示:(1)求全体参赛选手年龄的众数、中位数;(2)小明说,他所在年龄组的参赛人数占全体参赛人数的28%.你认为小明是哪个年龄组的选手?请说明理由.解:(1)众数是14岁,中位数是15岁.(2)因为全体参赛选手的人数为5+19+12+14=50(名),又因为50×28%=14(名),所以小明是16岁年龄组的选手.17.(10分)(太原期末)学校举行广播操比赛,八年级三个班的各项得分及三项得分的平均数如下(单位:分).根据表中信息回答下列问题:(1)学校将“服装统一” “队形整齐” “动作规范”三项按2∶3∶5的比例计算各班成绩,求八年级三个班的成绩;(2)由表中三项得分的平均数可知二班排名第一,在(1)的条件下,二班成绩的排名发生了变化,请你说明二班成绩排名发生变化的原因.解:(1)一班成绩为80×2+84×3+88×52+3+5=85.2(分),二班成绩为97×2+78×3+80×52+3+5=82.8(分),三班成绩为90×2+78×3+84×52+3+5=83.4(分).(2)原因:按照2∶3∶5的比例计算成绩时,“队形整齐”与“动作规范”两项所占权重较大,而二班这两项得分较低,所以最后的成绩排名发生了变化.18.(10分)(淄博中考)为了“天更蓝,水更绿”,某市政府加大了对空气污染的治理力度,经过几年的努力,空气质量明显改善,现收集了该市连续30天的空气质量情况作为样本,整理并制作了如下表格和一幅不完整的条形统计图:说明:环境空气质量指数(AQI)技术规定:ω≤50时,空气质量为优;51≤ω≤100时,空气质量为良;101≤ω≤150时,空气质量为轻度污染;151≤ω≤200时,空气质量为中度污染……根据上述信息,解答下列问题:(1)直接写出空气污染指数这组数据的众数90,中位数90;(2)请补全空气质量天数条形统计图;(3)健康专家温馨提示:空气污染指数在100以下适合做户外运动.请根据以上信息,估计该市居民一年(以365天计)中有多少天适合做户外运动?解:(2)由题意,得轻度污染的天数为30-3-15=12(天).补全统计图如图.(3)该市居民一年(以365天计)中适合做户外运动的天数为18÷30×365=219(天).19.(12分)某学校八年级共有三个班,都参加了学校举行的书法绘画大赛,三个班根据初赛成绩分别选出了10名同学参加决赛,这些选手的决赛成绩(满分100分)如下表所示:解答下列问题:(1)请填写下表:(2)请从以下两个不同的角度对三个班级的决赛成绩进行分析:①从平均数和众数相结合看(分析哪个班级成绩好些);②从平均数和中位数相结合看(分析哪个班级成绩好些).(3)如果在每个班级参加决赛的选手中分别选出3人参加总决赛,你认为哪个班级的实力更强一些?请简要说明理由.解:(2)①从平均数和众数相结合看,八年级2班成绩比较好.②从平均数和中位数相结合看,八年级1班成绩比较好.(3)八年级3班更强一些.理由:因为八年级3班前三名的成绩为97,96,92,八年级2班前三名的成绩为97,88,88,八年级1班前三名的成绩为99,91,89,所以八年级3班的实力更强一些.。

北师大版八年级数学上册第6章《数据的分析》单元复习测试题(含答案)

北师大版八年级数学上册第6章《数据的分析》单元复习测试题(含答案)

北师大版八年级数学上册第6章《数据的分析》单元复习测试题一、选择题(共8小题,4*8=32)1. 有一组数据:1,3,3,4,5,这组数据的众数为( )A.1B.3C.4D.52. 小明和小强同学分别统计了自己最近10次“一分钟跳绳”的成绩,下列统计量中能用来比较两人成绩稳定程度的是( )A.平均数B.中位数C.方差D.众数3. 在2016年的体育中考中,某校6名学生的体育成绩统计如图,则这组数据的众数、中位数、方差依次是( )A.18,18,1 B.18,17.5,3 C.18,18,3 D.18,17.5,14. 小明在统计某市6月1日到10日每一天最高气温的变化情况时制作的折线图如图所示,则这10天最高气温的中位数和众数分别是()A.33℃,33℃B.33℃,32℃C.34℃,33℃D.35℃,33℃5. 某老师为了解学生周末学习时间的情况,在所任班级中随机调查了10名学生,绘成如图所示的条形统计图,则这10名学生周末学习的平均时间是()A.1小时B.2小时C.3小时D.4小时6. 丽华根据演讲比赛中九位评委所给的分数作了如下表格:平均数中位数众数方差8.5 8.3 8.1 0.15如果去掉一个最高分和一个最低分,则表中数据不发生变化的是( )A.平均数B.众数C.方差D.中位数7. 某射击队要从甲、乙、丙、丁四人中选拔一名选手参赛,在选拔赛中,每人射击10次,然后从他们的成绩平均数(环)及方差(环2)两个因素进行分析,甲、乙、丙的成绩分析如下表所示,丁的成绩如图所示.甲乙丙平均数7.9 7.9 8.0方差 3.29 0.49 1.8根据以上图表信息,参赛选手应选()A.甲B.乙C.丙D.丁8. 如果一组数据a1,a2,a3,…,a n的方差是2,那么一组新数据2a1,2a2,…,2a n的方差是()A.2 B.4 C.8 D.16二.填空题(共6小题,4*6=24)9.已知某一组数据x1,x2,x3,x4,x5的平均数是2,那么另一组数据3x1-2,3x2-2,3x3-2,3x4-2,3x5-2的平均数是__ __.10. 某项目六名礼仪小姐的身高(单位:cm)如下:168,166,168,167,169,168,则她们身高的众数是_____________________.11. 一组数据:1,2,3,4,x,其中位数与平均数相同,则x的值为______________________.12. 为了解某班学生体育锻炼的用时情况,收集了该班学生一天用于体育锻炼的时间(单位:小时),整理成如图的统计图.则该班学生这天用于体育锻炼的平均时间为_______小时.13. 甲、乙、丙三人进行飞镖比赛,已知他们每人五次投得的成绩如图所示,那么三人中成绩最稳定的是________.14. 某班进行个人投篮比赛,受污损的下表记录了在规定时间内投进几个球的人数分布情况,已知进球3个或3个以上的人平均每人投进3.5个球,进球4个或4个以下的人平均每人投进2.5个球,则投进3个球的有__ __人,投进4个球的有__ __人.进球数n(个) 0 1 2 3 4 5投进n个球的人数 1 2 7 2三.解答题(共5小题,44分)15.(6分) 在“全民读书月”活动中,小明调查了班级里40名同学本学期计划购买课外书的花费情况,并将结果绘制成如图所示的统计图,请根据相关信息,解答下列问题:(直接填写结果)(1)本次调本获取的样本数据的众数是__ __;(2)这次调查获取的样本数据的中位数是__ __;(3)若该校共有学生1000人,根据样本数据,估计本学期计划购买课外书花费50元的学生有多少人?16.(8分) )某乡镇外出务工人员共40名,为了了解他们在一个月内的收入情况,随机抽取10名外出务工人员在某月的收入(单位:元)情况为:2500,2100,3000,2500,3000,4000,3000,2400,2400,3000.(1)求这10名务工人员在这一个月内收入的众数、中位数;(2)求这10名务工人员在这一个月内收入的平均数,并根据计算结果估计该乡镇所有务工人员在这一个月的总收入.17.(8分) 八(2)班组织了一次经典朗读比赛,甲、乙两队各10人的比赛成绩如下表(10分制):(1)甲队成绩的中位数是分,乙队成绩的众数是分;(2)计算乙队的平均成绩和方差;(3)已知甲队成绩的方差是1.4,则成绩较为整齐的是队.18.(10分) 我市自开展“学习新思想,做好接班人”主题阅读活动以来,受到各校的广泛关注和同学们的积极响应,某校为了解全校学生主题阅读的情况,随机抽查了部分学生在某一周主题阅读文章的篇数,并制成下列统计图表.某校抽查的学生文章阅读的篇数统计表文章阅读的篇数(篇) 3 4 5 6 7及以上人数(人) 20 28 m 16 12请根据统计图表中的信息,解答下列问题:(1)求被抽查的学生人数和m的值;(2)求本次抽查的学生文章阅读篇数的中位数和众数;(3)若该校共有800名学生,根据抽查结果,估计该校学生在这一周内文章阅读的篇数为4篇的人数.19.(12分) 我校准备挑选一名跳高运动员参加江东区中学生运动会,对跳高运动队的甲、乙两名运动员进行了8次选拔比赛,他们的成绩(单位:cm)如下:甲:170165168169172173168167乙:160173172161162171170175(1)甲、乙两名运动员的跳高平均成绩分别是多少?(2)哪名运动员的成绩更为稳定?为什么?(3)若预测,跳过165cm(包括165cm)就很可能获得冠军.该校为了获得冠军,可能选哪位运动员参赛?若预测跳过170cm(包括170cm)才能获得冠军呢?参考答案1-4BCAA 5-8CBDC 9.4 10.168 cm 11.0或2.5或5 12.1.15 13.乙 14.9,3 15.解:(1)30元 (2)50元 (3)250人16.解:(1)众数为3000,中位数是2750 (2)平均数是2790,该乡镇所有务工人员在这一个月的总收入为111600元 17.解:(1)9.5 10(2)乙队的平均成绩是110(10×4+8×2+7+9×3)=9,则方差是110[4×(10﹣9)2+2×(8﹣9)2+(7﹣9)2+3×(9﹣9)2]=1. (3)乙18.解:(1)被调查的总人数为16÷16%=100(人),m =100-(20+28+16+12)=24 (2)由于共有100个数据,其中位数为第50,51个数据的平均数,而第50,51个数据均为5篇,所以中位数为5篇,出现次数最多的是4篇,所以众数为4篇(3)估计该校学生在这一周内文章阅读的篇数为4篇的人数为800×28100=224(人)19.解:(1)甲的平均成绩为18(170+165+168+169+172+173+168+167)=169(cm),乙的平均成绩为18(160+173+172+161+162+171+170+175)=168(cm).(2)s 2甲=18×[(170-169)2+(165-169)2+…+(168-169)2+(167-169)2]=6(cm 2),s 2乙=18×[(160-168)2+(173-168)2+…+(170-168)2+(175-168)2]=31.5(cm 2).∵s 2甲<s 2乙,∴甲运动员的成绩更稳定.(3)若跳过165cm(包括165cm)就很可能获得冠军,则在8次成绩中,甲8次都跳过了165cm ,而乙只有5次,所以应选甲运动员参赛;若跳过170cm(包括170cm)才能获得冠军,则在8次成绩中,甲只有3次都跳过了170cm ,而乙有5次,所以应选乙运动员参赛。

北师大版八年级上册数学第六章 数据的分析 单元测试卷(含答案解析)

北师大版八年级上册数学第六章 数据的分析 单元测试卷(含答案解析)

北师大版八年级上册数学第六章数据的分析单元测试卷一、单选题1.一组数据6,7,8,9,10,这组数据的平均数是()A.6B.7C.8D.92.“魅力凉都”六盘水某周连续7天的最高气温(单位℃)是18,22,22,23,24,25,26,则这组数据的中位数是()A.18B.22C.23D.243.小张五次数学考试成绩分别为:86分、78分、80分、85分、92分,李老师想了解小张数学成绩波动情况,则李老师最关注小张数学成绩的()A.方差B.众数C.中位数D.平均数4.一组数据1,2,3,5,3,4,10的极差、众数分别是()A.3,3B.9,3C.5,4D.6,10 5.甲、乙、丙、丁四人参加训练,近期的10次百米测试平均成绩都是13.2秒,方差如下表所示则这四人中发挥最稳定的是()A.甲B.乙C.丙D.丁6.某球员参加一场篮球比赛,比赛分4节进行,该球员每节得分如折线统计图所示,则该球员平均每节得分为()A.7分B.8分C.9分D.10分7.一组数据的算术平均数是40,将这组数据中的每一个数据都减去5后,所得的新的一组数据的平均数是()A.40B.35C.25D.58.某电脑公司销售部为了定制下个月的销售计划,对20位销售人员本月的销售量(单位:台)进行了统计,绘制成如图所示的统计图,则这20位销售人员本月销售量的中位数、众数分别是()A.20台,14台B.19台,20台C.20台,20台D.25台,20台9.某青年排球队12名队员的年龄情况如下:则这个队队员年龄的众数和中位数是()A.19,19B.19,20C.19,20.5D.20,1910.若一组数据2,3,4,5,x的方差与另一组数据5,6,7,8,9的方差相等,则x 的值为().A.1B.6C.1或6D.5或611.如图是某单元楼居民六月份的用电(单位:度)情况,则关于用电量描述不正确的是()A.众数为30B.中位数为30C.平均数为24D.方差为84 12.某次期中考试,小明、小亮的语文、数学、英语三科的分数如下:如果将语文、数学、英语这三科的权重比由3:5:2变成5:3:2,那么分数变化情况是()A.小明增加的分数多B.小亮增加的分数多C .两人增加的分数一样多D .两人的分数都减少了13.如图是成都市某周内日最高气温的折线统计图,关于这7天的日最高气温的说法正确的是( )A .极差是8℃B .众数是28℃C .中位数是24℃D .平均数是26℃14.若一组数据1a ,2a ,3a 的平均数为4,方差为3,那么数据12a +,22a +,32a +的平均数和方差分别是( ) A .4, 3B .6, 3C .3, 4D .6 515.A 、B 、C 、D 、E 五名射击运动员在一次比赛中的平均成绩是80环,而A 、B 、C 三人的平均成绩是78环,那么下列说法中一定正确的是( ) A .D 、E 的成绩比其他三人好 B .B 、E 两人的平均成绩是83环 C .最高分得主不是A 、B 、CD .D 、E 中至少有1人的成绩不少于83环。

北师大版八年级数学上册 第六章 数据的分析 单元测试卷(含答案解析)

北师大版八年级数学上册 第六章 数据的分析 单元测试卷(含答案解析)

北师大版八年级数学上册第六章数据的分析单元测试卷(满分120分;时间:120分钟)一、选择题(本题共计8 小题,每题3 分,共计24分,)1. 若一组数据1,2,3,7,x的平均数是3,则这组数的众数是()A.1B.2C.3D.72. 某数学兴趣小组6名成员通过一次数学竞赛进行组内评比,他们的成绩分别是89,92,91,93,96,91,则关于这组数据说法正确的有()A.中位数是92.5B.平均数是92C.众数是96D.方差是53. 在我市今年慈善公益万人行活动中,某校九年级有50人参与了公益捐款,捐款金额的条形统计图如图.捐款金额的众数和中位数分别是()A.10,20B.20,50C.20,35D.10,354. 某校要进行篮球选拔,参加选拔的同学身高如下表所示:则这些身高的中位数,众数分别为()A.1.65,1.70B.1.65,1.75C.1.70,1.70D.1.70,1.755. 在郴州市中小学“创园林城市,创卫生城市,创文明城市”演讲比赛中,5位评委给靓靓同学的评分如下:9.0,9.2,9.2,9.1,9.5,则这5个数据的平均数和众数分别是()A.9.1,9.2B.9.2,9.2C.9.2,9.3D.9.3,9.26. 小明与小华本学期都参加了5次数学考试(总分均为100分),数学老师想判断这两位同学的数学成绩谁更稳定,在作统计分析时,老师需比较这两人5次数学成绩的()A.平均数B.方差C.众数D.中位数7. 一组数据1,2,3,4,5.关于这组数据,下列说法不正确的是()A.平均数是3B.中位数是4C.极差是4D.方差是28. 甲乙两同学在7次体育测试中成绩如折线图,下列说法正确的是()A.甲同学7次测试成绩的众数为20和30,中位数为30B.乙同学7次测试成绩的中位数为30,7次测试成绩中甲同学成绩较稳定C.甲同学7次测试成绩的众数为20,中位数为30D.乙同学7次测试成绩的众数为10和30,7次测试成绩中乙同学成绩较稳定二、填空题(本题共计10 小题,每题3 分,共计30分,)9. 要反映无锡一周内每天的最高气温的变化情况,宜采用________统计图.10. 为了创建文化校园,某初中l1个班级举行班级文化建设比赛,学校设置了5个获奖名额,得分均不相同.若知道某班的得分,要判断该班能否获奖,只需知道这11个班级得分的________.11. 某地在一周内每天的最高气温(∘C)分别是:24,20,22,23,25,23,21,则这组数据的极差是________∘C.12. 若s2=14[(3.2−x¯)2+(5.7−x¯)2+(4.3−x¯)2+(6.8−x¯)2]是李华同学在求一组数据的方差时,写出的计算过程,则其中的x ¯=________.13. 甲、乙的5次打靶成绩如图所示,估计甲、乙两人方差较大的是________(填甲或乙 ).14. 图为某同学参加今年六月份的全县中学生生物竞赛每个月他的测验成绩,则他的五次成绩的平均数为________.15. 某同学进行社会调查,随机抽查了某个地区的20个家庭的年收入情况,并绘制了统计图,请你根据统计图给出的信息回答:(1)这20个家庭的年平均收入为________万元;(2)样本中的中位数是________万元,众数是________万元;(3)在平均数,众数两数中,________更能反映这个地区家庭的年收入水平.。

北师大版八年级上册数学 第六章 数据的分析 单元测试(含解析)

北师大版八年级上册数学 第六章 数据的分析 单元测试(含解析)

第六章数据的分析单元测试一.选择题1.某校5个环保小队参加植树活动,平均每组植树10棵,已知第一、二、三、五组分别植树9棵、12棵、9棵、8棵,则第四小组植树()A.7棵B.9棵C.10棵D.12棵2.一组数据2,x,﹣2,1,3的平均数是0.8,则x的值是()A.﹣3.2B.﹣1C.0D.13.甲乙丙丁4位同学的平均身高1.65米,而甲乙丙3位同学的平均身高1.63米,下列说法一定正确的是()A.4人丁最高B.丁身高1.71米C.4人身高中位数1.63D.4人甲最高4.在某市举办的主题为“英雄武汉”的网络演讲比赛中,七位选手的得分分别为:88,84,87,90,86,92,94,则这组数据的中位数是()A.86B.88C.90D.925.九九重阳节期间,某班学生积极参加向敬老院孤寡老人献爱心活动,该班50名学生的捐款统计情况如表:金额/元5102050100人数6171485则他们捐款金额的众数和中位数分别是()A.100,10B.10,20C.17,10D.17,206.某中学为了解“停课不停学”期间学生在家的学习情况,随机抽查了40名学生每天做家庭作业的时间,并将调查结果统计如表所示,则这40名学生每天做家庭作业的时间的众数和中位数分别为()60708090100110120每天做家庭作业的时间(分钟)人数(名)2459875 A.90,90B.100,95C.90,95D.100,1007.为了解学生体育锻炼的用时情况,陈老师对本班50名学生一天的锻炼时间进行调查,并将结果绘制成如图统计图,那么一天锻炼时间为1小时的人数占全班人数的()A.14%B.16%C.20%D.50%8.甲、乙、丙、丁四位同学五次数学测验的成绩的平均数相同,五次测验的方差如表.如果从四位同学中选出一位状态稳定的同学参加全国数学联赛,那么应选择()甲乙丙丁方差425519 A.甲B.乙C.丙D.丁9.某公司的生产量在1﹣7月份的增长变化情况如图所示,从图上看,下列结论正确的是()A.这七个月中,每月的生产量不断增加B.1月份生产量最大C.2﹣6月生产量逐月减少D.这七个月中,生产量有增加有减少10.某班级开展“好书伴成长”读书活动,统计了1至7月份该班同学每月阅读课外书的数量,绘制了折线统计图,下列说法正确的是()A.每月阅读课外书本数的众数是45B.每月阅读课外书本数的中位数是58C.从2到6月份阅读课外书的本数逐月下降D.从1到7月份每月阅读课外书本数的最大值比最小值多45二.填空题11.学校将平时成绩、期中成绩和期末成绩按3:3:4计算学生的学期平均成绩.若某同学的数学平时成绩、期中成绩和期末成绩分别是90分、85分、90分,则该同学数学学期平均成绩是分.12.若5个正数a1,a2,a3,a4,a5的平均数是a,则a1,a2,0,a3,a4,a5的平均数是.13.为了解学生暑期在家的阅读情况,随机调查了30名学生某一天的阅读小时数,具体统计如下:阅读时间(小时)2 2.53 3.54学生人数(名)128163则关于这30名学生阅读小时的众数是.14.在从小到大排列的五个整数中,中位数是2,唯一的众数是4,则这五个数和的最大值是.15.在某校举行的数学竞赛中,某班10名学生的成绩统计如图所示,则这10名学生成绩的众数是分.16.某市5月1~7日的平均气温如图所示,则这七日平均气温的中位数是.17.甲、乙两人各打靶5次,已知甲所中的环数是8,7,9,7,9,乙所中的环数的平均数是8,方差是0.5,那么的射击成绩比较稳定.18.已知一组数据x1,x2,…x n的方差是2,则另一组数据x1﹣a,x2﹣a,…,x n﹣a的方差是.19.为保证中小学生每天锻炼一小时,某校开展了形式多样的体育活动项目,小明对某班同学参加锻炼的情况进行了统计,并绘制了如图的统计图(1)和图(2),则扇形统计图(2)中表示“足球”项目扇形的圆心角的度数为.20.有一学校为了解九年级学生某次体育测试成绩,现对这次体育测试成绩进行随机抽样调查,结果统计如下,其中扇形统计图(如图)中C等级所在扇形的圆心角为36°.被抽取的体育测试成绩频数分布表等级成绩(分)频数(人数)A36<x≤4019B32<x≤36bC28<x≤325D24<x≤284E20<x≤242合计a 请你根据以上图表提供的信息,解答下列问题:(1)a=,b=.(2)A等级的频率是.(3)在扇形统计图中,B等级所对应的圆心角是度.三.解答题21.某中学在“书香校园”读书活动中,为了解学生的课外读书情况,学校从各年级随机抽样调查了部分学生在一周内的课外阅读时间,绘制了如图的统计图.请根据图中信息,解答下列问题:(1)被抽查学生课外阅读时间的众数为(h),中位数为(h);(2)若该学校共有1200名学生,请你估算该校学生一周内课外阅读时间不少于3h的学生人数.22.某校为了解七年级学生对“预防新冠病毒知识”的掌握情况,从七年级随机抽取了50名学生进行测试,并对测试成绩(百分制)进行整理、描述和分析,部分信息如下:a.测试成绩频数分布表分数50≤x<6060≤x<7070≤x<8080≤x<9090≤x<100频数6101115m b.成绩在70≤x<80这一组的是:70 72 74 75 76 76 77 77 77 78 79根据以上信息,回答下列问题:(1)表中m=;(2)这50名学生测试成绩的中位数是,众数落在80≤x<90范围内(填“一定”或“不一定”);(3)该校七年级学生有500人,假设全部参加此次测试,请估计成绩不低于75分的人数.23.习总书记说:“读书可以让人保持思想活力,让人得到智慧启发,让人滋养浩然之气”巴川量子中学响应号召,鼓励师生利用课余时间广泛阅读,学校文学社为了解学生课外阅读情况,抽样调查了部分学生每周用于课外阅读的时间,过程如下:(一)数据收集:从全校随机抽取20名学生,进行每周用于课外阅读时间的调查,数据如下(单位:min):306081504411013014690100 6080120140758110308192(二)整理数据:按如下分段整理样本数据:0≤x<4040≤x<8080≤x<120120≤x<160课外阅读时间(min)等级D C B A人数3584(三)分析数据:补全下列表格中的统计量:平均数中位数众数80a b (四)得出结论(1)表格中的数据a=,b=.(2)如果学校现有学生1000人,估计全校等级为“B”的学生人数;(3)假设平均阅读一本课外书的时间为320分钟,请你用样本平均数估计该校学生每人一年(按52周计算)平均阅读课外书的数量.24.如图是我国某市200年9月1﹣7日甲型H1N1流感病例数资料,请根据此图回答问题:(1)2009年9月1﹣7日甲型H1N1流感病例总数是多少?(2)发病最高日人数是发病最低日人数的几倍?(3)在9月3﹣5日发病的人数占这段时间病例总数的几分之几?25.甲、乙两名同学本学期的五次数学测试成绩如下(单位:分):第1次第2次第3次第4次第5次甲8683908086乙7882848992(1)完成下表:中位数平均数方差甲85乙848524.8(2)请运用所学的统计知识,从两个不同角度评价甲、乙两人的数学成绩.26.在新的教学改革的推动下,某中学初一年级积极推进未来小班教学.为了了解一段时间以来的数学小班教学的学习效果,年级组织了多次定时测试,现随机选取甲、乙两个班,从中各抽取20名同学在某一次定时测试中的数学成绩,过程如下,请补充完整.收集数据:甲班的20名同学的数学成绩统计(单位:分)86 90 60 76 92 83 56 76 85 7096 96 90 68 78 80 68 96 85 81乙班的20名同学的数学成绩统计(单位:分)78 96 75 76 82 87 60 54 87 72100 82 78 86 70 92 76 80 98 78整理数据:(成绩得分用x表示)数量分数/班级0≤x<6060≤x<7070≤x<8080≤x<9090≤x≤100甲班(人数)13466乙班(人数)11864分析数据,请回答下列问题:(1)完成下表:平均分中位数众数甲班80.6a=96乙班80.3579b=(2)在甲班成绩得分的扇形图中,成绩在60≤x<70的扇形所对的圆心角α的度数为,c=.(3)根据以上数据,你认为班(填“甲”或“乙”)的同学的学习效果更好一些,你的理由是;(4)若此次数学成绩不低于80分为优秀,请估计全年级1000人中优秀人数为多少?参考答案1.解:设第四小组植树x株,由题意得:9+12+9+x+8=10×5,解得,x=12,则第四小组植树12棵;故选:D.2.解:∵数据2,x,﹣2,1,3的平均数是0.8,∴2+x﹣2+1+3=5×0.8,解得x=0,故选:C.3.解:丁同学的身高为:1.65×4﹣1.63×3=1.71(米);故选:B.4.解:将这组数据从小到大的顺序排列为:84,86,87,88,90,92,94,处于中间位置的是88,则这组数据的中位数是88.故选:B.5.解:根据题意可知捐款10元的人数有17人,人数最多,即10元是捐款金额的众数,把50名同学捐款从小到大排列,最中间的两个数是20,20,中位数是20元.故选:B.6.解:由图表可得:∵某中学40名学生每天做家庭作业的时间为90分钟的有9人,最多,∴这40名学生每天做家庭作业的时间的众数为:90分;∵40个数据中,第20,21个数据的平均数是中位数,而第20,21个数据分别是90,100,∴中位数为:95分.故选:C.7.解:由题意可得,25÷50×100%=0.5×100%。

北师大版八年级上册数学单元测试卷附答案第六章 数据的分析

北师大版八年级上册数学单元测试卷附答案第六章 数据的分析

第六章数据的分析一、选择题(共20小题;共100分)1. 一组数据,,,,,的众数是A. B. C. D.2. 要反映我区月日至日这一周每天的最高气温的变化趋势,宜采用A. 条形统计图B. 折线统计图C. 扇形统计图D. 频数分布统计图3. 为了解某一路口某一时段的汽车流量,小明同学连续天在同一时段统计通过该路口的汽车数量(单位:辆),将统计结果绘制成如图所示的折线统计图:由此估计一个月(天)该时段通过该路口的汽车数量超过辆的天数为A. 天B. 天C. 天D. 天4. 我国古代数学名著《九章算术》有“米谷粒分”题:粮仓开仓收粮,有人送来米石,验得米内夹谷,抽样取米一把,数得粒内夹谷粒,则这批米内夹谷约为A. 石B. 石C. 石D. 石5. 某交警在一个路口统计的某时段来往车辆的车速情况如表:则上述车速的中位数和众数分别是A. ,B. ,C. ,D. ,6. 某班抽取名同学参加体能测试,成绩如下(单位:分):,,,,,.下列表述不正确的是A. 众数是B. 中位数是C. 平均数是D. 方差是7. 某校举行汉字听写大赛,参赛学生的成绩如下表:对于这组数据,下列说法错误的是A. 平均数是B. 中位数是C. 众数是D. 极差是8. 空气污染物主要包括可吸入颗粒物(PM )、细颗粒物(PM ),臭氧、二氧化硫、氮氧化物、一氧化碳六类,为了刻画每一类污染物所占的比例,最适合使用的统计图是A. 折线统计图B. 条形统计图C. 扇形统计图D. 以上均可以9. 频数分布直方图的纵轴表示A. B. C. D.10. 某商场今年月的商品销售总额一共是万元,图①表示的是其中每个月销售总额的情况,图②表示的是商场服装部各月销售额占商场当月销售总额的百分比情况,观察图①、图②,下列说法不正确的是A. 月份商场的销售总额是万元B. 月份商场服装部的销售额是万元C. 月份商场服装部的销售额比月份减少了D. 月份商场服装部的销售额比月份减少了11. “享受光影文化,感受城市魅力”,年月日第八届北京国际电影节顺利举办.下面的统计图反映了北京国际电影节.电影市场的有关情况.根据统计图提供的信息,下列推断合理的是A. 两届相比较,所占比例最稳定的是动作冒险(含战争)类B. 两届相比较,所占比例增长最多的是剧情类C. 第八届悬疑惊悚犯罪类申报数量比第六届倍还多D. 在第六届中,所占比例居前三位的类型是悬疑惊悚犯罪类、剧情类和爱情类12. 五名女生的体重(单位:)分别为:,,,,,这组数据的众数和中位数分别是A. ,B. ,C. ,D. ,13. 某班获得奖励的情况如表,已知该班共有人获得奖励,其中获得且只获得两项奖励的有人,那么该班获得奖励最多的一位同学获得的奖励可能有A. 项B. 项C. 项D. 项14. 如图是成都市某周内日最高气温的折线统计图,关于这天的日最高气温的说法正确的是A. 极差是B. 众数是C. 中位数是D. 平均数是15. 如图的统计图反映了我国年到年国内生产总值情况(以下数据摘自国家统计局《中华人民共和国年国民经济和社会发展统计公报》).根据统计图提供的信息,下列推断不合理的是A. 与年相比,年我国国内生产总值有所增长B. 年,我国国内生产总值的增长率逐年降低C. 年,我国国内生产总值的平均增长率约为D. 年比年我国国内生产总值增长的多16. 下面的折线图描述了某地某日的气温变化情况,根据图中信息,下列说法错误的是。

北师大八年级数学上册:第六章数据的分析单元测试题(含答案)

北师大八年级数学上册:第六章数据的分析单元测试题(含答案)

第六章数据的分析综合测评一、选择题(每小题3分,共30分)1.一组数据6,7,8,9,10,这组数据的平均数是()A.6 B.7 C.8 D.92.已知一组数据75,80,80,85,90,那么这组数据的众数和中位数分别为()A.75,80 B.80,85 C.80,90 D.80,803.九年级某班12名同学练习定点投篮,每人各投10次,进球数统计如下:进球数(1 2 3 4 5 7个)人数(人) 1 1 4 2 3 1这12名同学进球数的众数是()A.3.75B.3C.3.5D.74. 教练要从甲、乙两名射击运动员中选一名成绩较稳定的运动员参加比赛.两人在相同条件下各射出5发子弹,命中环数如下:甲:9,8,7,7,9;乙:10,8,9,7,6.应该选择参加比赛的是()A.甲B.乙C.甲、乙都可以D.无法确定5. (2021年临沂)某老师为了解学生周末学习时间的情况,在所任班级中随机调查了10名学生,绘成图1所示的条形统计图,则这10名学生周末学习的平均时间是()A.1小时B.2小时C.3小时D.4小时图1 图26. 某电脑公司销售部为了定制下个月的销售计划,对20位销售人员本月的销售量(单位:台)进行了统计,绘制成图2所示的统计图,则这20位销售人员本月销售量的中位数、众数分别是()A.20台,14台B.19台,20台C.20台,20台D.25台,20台7. 若一组数据2,3,4,5,x的方差与另一组数据5,6,7,8,9的方差相等,则x的值为()A.1 B.6 C.1或6 D.5或68.九年级体育素质测试,某小组5名同学成绩如下表所示,其中有两个数据被遮盖:那么被遮盖的两个数据依次是()A.35,2B.36,4C.35,3D.36,39. 某校有25名同学参加某比赛,预赛成绩各不相同,取前13名参加决赛,其中一名同学已经知道自己的成绩,能否进入决赛,只需要再知道这25名同学成绩的()A.中位数B.最高分C.方差D.平均数10. 下表是某校合唱团成员的年龄分布情况:年龄/岁13 14 15 16频数 5 15 x 10﹣x对于不同的x,下列关于年龄的统计量不会发生改变的是()A.平均数、中位数B.中位数、方差C.平均数、方差D.众数、中位数二、填空题(每小题4分,共32分)11. 某学习小组有8人,在一次数学测验中的成绩分别是102,115,100,105,92,105,85,104,则他们成绩的平均数是_____________.12. 某超市决定招聘广告策划人员一名,一位应聘者三项素质测试的成绩如下表:测试项目创新能力综合知识语言表达测试成绩(分)70 80 92将创新能力、综合知识和语言表达三项测试成绩按5∶3∶2的比例计入总成绩,则该应聘者的总成绩是_____________分.13某校九年级(1)班40名同学中,14岁的有1人,15岁的有21人,16岁的有16人,17岁的有2人,则这个班同学年龄的中位数是___________岁.14.已知一组数据3,3,4,7,8,则这组数据的方差为____________.15.若干名同学制作卡通图片,他们制作的卡通图片张数的条形统计图如图3所示,设他们制作的卡通图片张数的平均数为a,中位数为b,众数为c,则a,b,c的大小关系为________.图316. 一组数据2,x,4,6,7,已知这组数据的众数是6,那么这组数据的方差是________.17.两组数据3,a,2b,5与a,6,b的平均数都是8,若将这两组数据合并为一组数据,则这组新数据的众数为________,中位数为________.18. 下表记录了甲、乙、丙、丁四名跳高运动员最近几次选拔赛成绩的平均数与方差:甲乙丙丁根据表中数据,要从中选择一名成绩好且发挥稳定的运动员参加比赛,应该选择____________.三、解答题(共58分)19.(8分)在一次男子马拉松长跑比赛中,随机抽得12名选手所用的时间(单位:分)得到如下样本数据:140146143175125164134155152168162148(1)计算该样本数据的中位数和平均数;(2)如果一名选手的成绩是147分,请你依据样本数据的中位数,推断他的成绩如何?20.(2021年盐城)(8分)甲、乙两位同学参加数学综合素质测试,各项成绩如下(单位:分):(1)分别计算甲、乙成绩的中位数;(2)如果数与代数、空间与图形、统计与概率、综合与实践的成绩按3︰3︰2︰2计算,那么甲、乙的数学综合素质成绩分别为多少分?21. (8分)从甲、乙两名同学中选拔一人参加“中华好诗词”大赛,在相同的测试条件下,两人5次测试成绩(单位:分)如下:甲:79,86,82,85,83;乙:88,79,90,81,72.请回答下列问题:(1)甲成绩的平均数是,乙成绩的平均数是;(2)经计算知2s甲=6,2s乙=42,你认为选谁参加比赛更合适,说明理由.22.(10分)八(2)班组织了一次经典朗读比赛,甲、乙两队各10人的比赛成绩如下表(10分制):甲7 8 9 7 10 10 9 10 10 10 乙10 8 7 9 8 10 10 9 10 9 (1)甲队成绩的中位数是分,乙队成绩的众数是分;(2)计算乙队的平均成绩和方差;(3)已知甲队成绩的方差是1.4,则成绩较为整齐的是队.23.(12分)某校九年级学生开展踢毽子比赛活动,每班派5名学生参加,按团体总分多少排列名次,在规定时间内每人踢100个以上(含100个)为优秀.下表是成绩最好的甲班和乙班5名学生的比赛数据(单位:个):1号2号3号4号5号总成绩甲班100 98 110 89 103 500乙班89 100 95 119 97 500经统计发现两班总成绩相等,只好将数据中的其他信息作为参考.根据要求回答下列问题:(1)计算两班的优秀率;(2)求两班比赛数据的中位数;(3)求两班比赛数据的方差;(4)根据以上三条信息,你认为应该把冠军奖状发给哪一个班级?简述理由.24.(12分)为了普及环保知识,增强环保意识,某中学组织了环保知识竞赛活动.七、八、九三个年级根据初赛成绩分别选出了10名同学参加决赛,这些选手的决赛成绩(满分为100分)如下表所示:决赛成绩(单位:分)七年级80 86 88 80 88 99 80 74 91 89八年级85 85 87 97 85 76 88 77 87 88九年级82 80 78 78 81 96 97 88 89 86(1)请你填写下表:平均数众数中位数七年级85.5 87八年级85.5 85九年级84(2)请从以下两个不同的角度对三个年级的决赛成绩进行分析:①从平均数和众数相结合看(分析哪个年级成绩好些);②从平均数和中位数相结合看(分析哪个年级成绩好些).(3)如果在每个年级参加决赛的选手中分别选出3人参加总决赛,你认为哪个年级的实力更强一些?并说明理由.附加题(15分,不计入总分)25. 小红的奶奶开了一个金键牛奶销售店,主要经营“金键学生奶”、“金键酸牛奶”、“金键原味奶”,由于经营不善,经常导致牛奶滞销(没卖完)或脱销(量不够),为此细心的小红结合所学知识帮奶奶统计了一个星期牛奶的销售情况,并绘制成下表:(1)计算各品种牛奶的日平均销售量,并说明哪种牛奶销量最高;(2)计算各品种牛奶的方差(保留两位小数),并比较哪种牛奶销量最稳定;(3)假如你是小红,会给奶奶哪些建议?第六章数据的分析综合测评参考答案一、1. C 2. D 3. B 4. A 5. C 6. C 7. C 8. B 9. A 10. D二、11. 101 12. 77.413. 15 14. 4.415. c<a<b16. 3.2 17.12 6 18.甲三、19. 解:(1)将样本数据按从小到大的顺序排列,得到最中间两个数据是148,152,所以中位数为150分,平均数为112(140+146+143+…+148)=151(分).(2)由(1)知样本数据的中位数为150分,可以估计这次马拉松比赛有一半选手的成绩快于150分,这名选手的成绩为147分,快于中位数150分,可以推断他的成绩比一半以上选手的成绩好.20. 解:(1)将甲的成绩按从小到大的顺序排列为89,90,90,93,中位数为90;将乙的成绩按从小到大的顺序排列为86,92,94,94,中位数为(92+94)÷2=93.(2)甲的数学综合素质成绩为90×310+93×310+89×210+90×210=27+27.9+17.8+18=90.7(分);乙的数学综合素质成绩为94×310+92×310+94×210+86×210=28.2+27.6+18.8+17.2=91.8(分).21. 解:(1)83 82(2)选甲参加比赛更合适.理由如下:∵甲成绩的平均数>乙成绩的平均数,且2s甲<2s乙,∴甲的平均成绩高于乙,且甲的成绩更稳定,故选拔甲参加比赛更合适.22. 解:(1)9.5 10(2)乙队的平均成绩是110(10×4+8×2+7+9×3)=9,则方差是110[4×(10﹣9)2+2×(8﹣9)2+(7﹣9)2+3×(9﹣9)2]=1.(3)乙23.解:(1)甲班踢100个以上(含100个)的人数是3,则优秀率是60%;乙班踢100个以上(含100个)的人数是2,则优秀率是40%.(2)甲班比赛数据的中位数是100,乙班比赛数据的中位数是97.(3)因为两班的总分均为500,所以平均数都为100.2 s 甲=15[(100﹣100)2+(98﹣100)2+(110﹣100)2+(89﹣100)2+(103﹣100)2]=46.8;2 s 乙=15[(89﹣100)2+(100﹣100)2+(95﹣100)2+(119﹣100)2+(97﹣100)2]=103.2.(4)应把冠军奖状给甲班.理由:甲班的优秀率、中位数都高于乙班,甲班的方差小于乙班,说明甲班成绩更稳定.24.解:(1)表从上到下、从左到右依次填80,86,85.5,78(2)①八年级的成绩更好一些.②七年级的成绩好一些.(3)九年级的实力较强.理由:如果从三个年级中分别选出3人参加总决赛,可以看到九年级的高分较多,成绩更好一些.25.解:(1)金键学生奶的平均数是3,金键酸牛奶的平均数是80,金键原味奶的平均数是40,金键酸牛奶的销量最高.(2)学生奶的方差=17[(2﹣3)2+2×(1﹣3)2+2×(0﹣3)2+(9﹣3)2+(8﹣3)2]≈12.57;酸牛奶的方差=17[2×(70﹣80)2+(80﹣80)2+(75﹣80)2+(84﹣80)2+(81﹣80)2+(100﹣80)2]≈91.71;原味奶的方差=17[(40﹣40)2+2×(30﹣40)2+(35﹣40)2+(38﹣40)2+(47﹣40)2+(60﹣40)2]≈96.86.金键学生奶销量最稳定.(3)答案不唯一,合理即可.如建议学生奶平常尽量少进或不进,周末可以进几瓶.。

北师大版八年级数学上册 第六章 数据的分析《名校课堂》2016年秋单元测试(含答案)

北师大版八年级数学上册 第六章 数据的分析《名校课堂》2016年秋单元测试(含答案)

第六章数据的分析单元测试(BJ)(时间:120分钟 满分:150分)一、选择题(本大题共15小题,每小题3分,共45分)题号123456789101112131415答案1.2015年7月某日我国部分城市的最高气温统计如下表所示:城市武汉成都北京上海海南南京拉萨深圳气温(℃)2727242528282326请问这组数据的平均数是( )A.24 B.25 C.26 D.272.数据1,2,5,3,5,4,2的中位数是( )A.1 B.2 C.3 D.53.在某次体育测试中,八年级(一)班六位同学的立定跳远成绩(单位:米)分别是:1.83,1.85,1.96,2.08,1.83,1.98,则这组数据的众数是( )A.1.83米B.1. 85米C.2.08米D.1.96米4.孟子故里2015年7月份某周的最高气温(单位:℃)分别为32,34,33,26,29,35,36,这组数据的极差为( ) A.29 ℃B.28 ℃C.8 ℃D.10 ℃5.在端午节到来之前,儿童福利院对全体小朋友爱吃哪几种粽子作调查,以决定最终买哪种粽子.下面的调查数据中最值得关注的是( )A.方差B.平均数C.中位数D.众数6.临近中考,老师将小华同学“考前五套卷”数学分数统计如下:101,98,103,101,98,老师判断小华成绩还算比较稳定,老师判断的依据是( )A.众数B.平均数C.中位数D.方差7.种菜能手李大叔种植了一批新品种黄瓜.为了考查这种黄瓜的生长情况,李大叔抽查了部分黄瓜根数,并制成如图所示的条形图,则抽查的这部分黄瓜株上所结黄瓜根数的中位数和众数分别是( )A.13.5,20 B.15,5 C.13.5,14 D.13,148.某中学随机地调查了50名学生,了解他们一周在校的体育锻炼时间,结果如下表所示:时间(小时)5678人数1015205则这50名学生这一周在校的平均体育锻炼时间是() A .6.2小时B .6.4小时C .6.5小时D .7小时9.已知数据:-4、1、2、-1、2,则下列结论错误的是( ) A .中位数为1B .方差为26C .众数为2D .平均数为010.已知x 1、x 2、x 3的平均数是x ,那么3x 1+5,3x 2+5,3x 3+5的平均数是( ) A .xB .3xC .3x +5D .不能确定11.在某城市,80%的家庭年收入不少于2.5万元,下面一定不少于2.5万元的是( ) A .年收入的平均数 B .年收入的中位数 C .年收入的众数D .年收入的平均数和众数12.如果一组数据x 1,x 2,…,x n 的方差是3,则另一组数据x 1+5,x 2+5,…,x n +5的方差是( ) A .3B .8C .9D .1413.在转盘游戏活动中,小颖根据实验数据绘制出下面的扇形统计图,则每转动一次转盘所获购物券金额的平均数是( )①获得100元的购物券;②获得50元的购物券;③获得20元的购物券;④没有获得购物券A .22.5元B .42.5元C .56元D .以上都不对2314.对某校八年级随机抽取若干名学生进行体能测试,成绩记为1分,2分,3分,4分共四个等级,将调查结果绘制成如图所示的条形统计图和扇形统计图,根据图中信息,这些学生的平均分数是( )A .2.25分B .2.5分C .2.95分D .3分15.甲、乙两班举行电脑汉字输入比赛,参赛学生每分钟输入汉字的个数统计结果如下表:班级参赛人数中位数方差平均数甲55149191135乙55151110135某同学分析上表后得出如下结论:①甲、乙两班学生成绩平均水平相同;②乙班优秀的人数多于甲班优秀的人数(每分钟输入汉字≥150个为优秀);③甲班成绩的波动比乙班大.上述结论正确的是( ) A .①②③B .①②C .①③D .②③二、填空题(本大题共5小题,每小题5分,共25分)16.某次能力测试中,10人的成绩统计如下表,则这10人成绩的众数为______.分数54321人数3122217.某校八年级(一)班40名同学中,13岁的有2人,15岁的有20人,16岁的有15人,17岁的有3人,则这个班同学年龄的中位数是________岁.18.某茶厂用甲、乙两台分装机分装某种茶叶(每袋茶叶的标准质量为200 g ).为了监控分装质量,该厂从它们各自分装的茶叶中随机抽取了50袋,测得它们的实际质量如下:平均数(g )方差甲分装机20016.23乙分装机2005.84则这两台分装机中,分装的茶叶质量更稳定的是________.(填“甲”或“乙”)19.一组数据2,4,x ,2,4,7的众数是2,则这组数据的平均数、中位数分别为________.20.跳远运动员李刚对训练效果进行测试,6次跳远的成绩如下(单位:m ):7.6,7.8,7.7,7.8,8.0,7.9.这六次成绩的平均数为7.8,方差为.如果李刚再跳两次,成绩分别为7.7,7.9.则李刚这8次跳远成绩的方差160________(填“变大”“不变”或“变小”).三、解答题(本大题共7小题,共80分)21.(8分)老师计算学生的学期总评成绩时按照如下的标准:平时作业占10%,单元测验占30%,期中考试占25%,期末考试占35%.小丽和小明的成绩如下表所示:学生平时作业单元测验期中考试期末考试小丽80757188小明76807090请你通过计算,比较谁的学期总评成绩高?22.(8分)如图是根据某班女生的体重测量结果绘制的统计图.根据图中信息,回答下列问题:(1)求该班女生体重的中位数;(2)求该班女生的平均体重.23.(10分)从甲、乙、丙三个厂家生产的同一种产品中抽取8件产品,对其使用寿命跟踪调查.结果如下(单位:年):甲: 3 4 5 6 8 8 9 10乙: 4 6 6 6 8 9 12 13丙: 3 3 4 7 9 10 11 12三个厂家在广告中都称该产品的使用寿命是8年,请根据结果来判断厂家在广告中分别运用了平均数、众数、中位数的哪一种集中趋势的特征数.24.(12分)某语文老师为了了解中考普通话考试的成绩情况,从所任教的九年级(1)、(2)两班各随机抽取了10名学生的得分,如图所示:(1)利用图中的信息,补全下表:班级平均数(分)中位数(分)众数(分)九(1)班1616九(2)班16(2)若把16分以上(含16分)记为“优秀”,两班各有60名学生,请估计两班各有多少名学生成绩优秀.25.(12分)我区很多学校开展了大课间活动.某校初三(1)班抽查了10名同学每分钟仰卧起坐的次数,数据如下(单位:次):51,69,64,52,64,72,48,52,76,52.(1)求这组数据的众数和中位数;(2)在对初三(2)班10名同学每分钟仰卧起坐次数的抽查中,已知这组数据的平均数正好与初三(1)班上述数据的平均数相同,且除众数(唯一)之外的6个数之和为348.求这组数据的众数.26.(14分)某社区准备在甲、乙两位射箭爱好者中选出一人参加集训,两人各射了5箭,他们的总成绩(单位:环)相同,小宇根据他们的成绩绘制了如下尚不完整的统计图表,并计算了甲成绩的平均数和方差(见小宇的作业).小宇的作业:解:x 甲=(9+4+7+4+6)=6,15s =[(9-6)2+(4-6)2+(7-6)2+(4-6)2+(6-6)2]2甲15=(9+4+1+4+0)15=3.6.甲、乙两人射箭成绩统计表第1次第2次第3次第4次第5次甲成绩94746乙成绩757a7(1)a =________,x 乙=________;(2)请完成图中表示乙成绩变化情况的折线;(3)①观察图,可看出________的成绩比较稳定(填“甲”或“乙”).参照小宇的计算方法,计算乙成绩的方差,并验证你的判断;②请你从平均数和方差的角度分析,谁将被选中.27.(16分)我市某中学举行“中国梦·校园好声音”歌手大赛,高、初中部根据初赛成绩,各选出5名选手组成初中代表队和高中代表队参加学校决赛.两个队各选出的5名选手的决赛成绩(满分为100分)如图所示.(1)根据图示填写上表;平均数(分)中位数(分)众数(分)初中部85高中部85100(2)结合两队成绩的平均数和中位数,分析哪个队的决赛成绩较好;(3)计算两队决赛成绩的方差并判断哪一个代表队选手成绩较为稳定.参考答案1.C2.C3.A4.D5.D6.D7.C8.B9.B 10.C 11.B 12.A 13.A 14.C 15.A 16.5 17.15 18.乙 19.3.5,3 20.变小21.小丽的成绩是80×10%+75×30%+71×25%+88×35%=79.05(分),小明的成绩是76×10%+80×30%+70×25%+90×35%=80.6(分),所以小明的学期总评成绩高. 22.(1)该班女生体重的中位数是39 kg .(2)=39.625(kg ). 34+35×2+38×5+40×5+45×2+501623.甲厂用众数,乙厂用平均数,丙厂用中位数. 24.(1)16 16 14 (2)因为60×=42(名),60×=36(名),710610所以九(1)班有42名学生成绩优秀,九(2)班有36名学生成绩优秀.25.(1)众数为52;这组数据从小到大重新排列为48,51,52,52,52,64,64,69,72,76.因为居中的两个数分别为:52和64,(52+64)÷2=58,所以这组数据的中位数为58.(2)三(1)数据的平均数为x =(48+51+52+52+52+64+64+69+72+76)=60.110设三(2)班数据的众数为x ,由题意,得4x +348=10×60.解得x =63.所以这组数据的众数为63. 26.(1)4 6 (2)图略.(3)①乙 s =[(7-6)2+(5-6)2+(7-6)2+(4-6)2+(7-6)2]=(1+1+1+4+1)=1.6,由于s <s ,2乙15152乙2甲所以上述判断正确.②因为两人成绩的平均水平(平均数)相同,乙的成绩比甲稳定,所以乙将被选中. 27.(1)85 85 80 (2)初中部成绩好些.因为两个队的平均数都相同,初中部的中位数高,所以在平均数相同的情况下中位数高的初中部成绩好些.(3)因为s =×[(75-85)2+(80-85)2+(85-85)2+(85-85)2+(100-85)2]=70,s =×[(70-85)2+(100-85)21152152+(100-85)2+(75-85)2+(80-85)2]=160.所以s <s ,因此,初中代表队选手成绩较为稳定.212。

北师大版八年级数学上册试题 第6章 数据的分析 章节测试卷(含解析)

北师大版八年级数学上册试题 第6章 数据的分析 章节测试卷(含解析)

第6章《数据的分析》章节测试卷、一.选择题(共10小题,满分30分,每小题3分)1.八(1)班的学生从第一学期到第二学期时,下列有关年龄的统计量不变的是()A.平均年龄B.年龄的方差C.年龄的众数D.年龄的中位数2.小明家1至6月份的用水量统计如图所示,关于这组数据,下列说法中错误的是()吨2 A.众数是6吨B.平均数是5吨C.中位数是5吨D.方差是433.某校八年级学生参加每分钟跳绳的测试,并随机抽取部分学生的成绩制成了频数分布直方图(如图),若取每组的组中值作为本小组的均值,则抽取的部分学生每分钟跳绳次数的平均值(结果取整数)为()A.87次B.110次C.112次D.120次4.如图所示的扇形统计图描述了某校学生对课后延时服务的打分情况(满分5分),则所打分数的众数是()A.3分B.3.55分C.4分D.45%5.八位评委对参加演讲比赛的选手评分,比赛规则规定要去掉一个最高分和一个最低分,然后计算剩下的6个分数的平均分作为选手的比赛得分,规则“去掉一个最高分和一个最低分”一定不会影响这组数据的()A.平均数B.中位数C.极差D.众数6.育新中学八年级六班有53人.一次月考后,数学老师对数学成绩进行了统计.由于有三人因事没有参加本次月考,因此计算其他50人的平均分为90分,方差s2=40.后来三进行了补考,数学成绩分别为88分,90分,92分.加入这三人的成绩后,下列说法正确的是()A.平均分和方差都改变B.平均分不变,方差变大C.平均分不变,方差变小D.平均分和方差都不变7.一组数据的方差为s2,将这组数据中每个数据都除以3,所得新数据的方差是()A.13s2B.3s2C.19s2D.9s28.(3分)某同学各科成绩如图所示,则其成绩的中位数是()A.75分B.75.5分C.76分D.77分9.第1组数据为:0、0、0、1、1、1,第2组数据为:m 个00、0、⋯、0、n 个11、1、⋯、1,其中m 、n 是正整数.下列结论:①当m=n 时,两组数据的平均数相等;②当m>n 时,第1组数据的平均数小于第2组数据的平均数;③当m<n 时,第1组数据的中位数小于第2组数据的中位数;④当m =n 时,第2组数据的方差小于第1组数据的方差.其中正确的是( )A .①②B .②③C .①③D .②④10.某数学兴趣小组对我县祁禄山的红军小道的长度进行n 次测量,得到n 个结果x 1,x 2,x 3,…,x n (单位:km ).如果用x 作为这条路线长度的近似值,要使得(x −x 1)2+(x −x 2)2+⋅⋅⋅+(x −x n )2的值最小,x 应选取这n 次测量结果的( )A .中位数B .众数C .平均数D .最小值二.填空题(共6小题,满分18分,每小题3分)11.某学校开展“齐诵满江红,传承报国志”诵读比赛,八年级准备从小乐和小涵两位同学中选拔一位同学参加决赛,如图是小乐和小涵两位同学参加5次选拔赛的测试成绩(满分为100分)折线统计图,若选择一位成绩优异且稳定的同学参赛,推选参加决赛的同学是 (填“小乐”或“小涵”).12.有一组数据:a,b,c,d,e(a <b <c <d <e).将这组数据改变为a −2,b,c,d,e +2.设这组数据改变前后的方差分别是s 21,s 22,则s 21与s 22的大小关系是 .13.两组数据:3,a ,2b ,5与a ,6,b 的平均数都是6,若将这两组数据合并为一组数据,则这组新数据的众数为 .14.甲、乙、丙三种糖果的售价分别为每千克6元、每千克7元、每千克8元,若将甲种糖果6千克,乙种糖果10千克,丙种糖果4千克混合在一起,则混合后的糖果的售价应定为每千克元.15.若质数a,b满足a2−9b−4=0,则数据a,b,2,3的中位数是.16.若五个整数由小到大排列后,中位数为4,唯一的众数为2,则这组数据之和的最小值是.三.解答题(共7小题,满分52分)17.(6分)已知一组数据:x,10,12,6的中位数与平均数相等,求x的值.18.(6分)校园广播站招聘小记者,对应聘同学分别进行笔试(含阅读能力、思维能力和表达能力三项测试)和面试,应聘者小成同学成绩(单位:分)如下表:笔试面试阅读能力思维能力表达能力92成绩889086(1)请求出小成同学的笔试平均成绩;(2)如果笔试平均成绩与面试成绩按6:4的比例确定总成绩,请求出小成同学的总成绩.19.(8分)甲、乙两名队员参加射击训练,成绩分别被制成下列两个统计图:根据以上信息,整理分析数据如下:平均成绩/环中位数/环众数/环方差甲a77 1.2乙7b c d(1)写出表格中a,b,c,d的值:(2)分别运用表中的四个统计量,简要分析这两名队员的射击训练成绩.若选派其中一名参赛,你认为应选哪名队员?20.(8分)近些年来,我国航天事业飞速发展.今年5月30日,搭载神舟十六号载人飞船的长征二号F遥十六运载火箭,在酒泉卫星发射中心发射升空,神舟十六号航天员乘组由景海鹏、朱杨柱、桂海潮3名航天员组成,发射取得圆满成功.而“天宫课堂”让广大人民尤其是青少年学到了很多科学知识,激发了更多人的航天梦.为普及科学知识,某校开展了“天宫课堂”知识竞赛.为了解七、八年级学生(八年级有600名学生、八年级有800名学生)的竞赛情况,现从两个年级各随机抽取20名学生的成绩(百分制)进行分析.过程如下:【收集数据】八年级20名学生成绩:62,52,58,67,70,69,75,73,75,75,80,78,77,90,81,84,86,88,94,98;八年级20名学生成绩在80≤x<90的分数:83,85,87,81,80,84,82;【整理数据】按照分数段,整理、描述两组样本数据:年级x<7070≤x<8080≤x<9090≤x≤10八年级5a53八年级3674【分析数据】两组样本数据的平均数、中位数、众数、方差如表所示:年级平均数中位数众数方差八年级76.676b131八年级76.6c78124(1)直接写出a、b、c的值;(2)根据抽样调查数据,估计全校七、八年级“天宫课堂”竞赛成绩为优秀(80分及以上)的共有多少人?【得出结论】(3)通过以上分析,你认为这两个年级中哪个年级对“天宫课堂”知识掌握情况更好一些,并说明推断的合理性(写出一条理由即可).21.(8分)每年4月中上旬的体育考试,是初三同学们决胜中考的第一关,为了解我校初2023届学生的体育训练情况,对初2023届学生进行了一次体育机器模拟测试.测试完成后,在初2023届的学生中随机抽取了20名男生,20名女生的本次体育机考的测试成绩,对数据进行整理分析,并给出了下列信息:①20名女生的测试成绩统计如下:44,47,48,45,50,49,45,50,48,49,50,50,44,50,43,50,44,50,49,45.②抽取的20名男生的测试成绩扇形统计图如图:③抽取的20名男生成绩得分用x表示,共分成五组:A:40<x≤42;B:42<x≤44;C:44<x≤46;D:46<x≤48;E:48<x≤50.其中,抽取的20名男生的测试成绩中,D组的成绩如下:47,48,48,47,48,48.④抽取男生与女生的学生的测试成绩的平均数、中位数、众数如表所示:性别平均数中位数众数女生47.548.5c男生47.5b49(1)根据以上信息可以求出:a=______,b=______,c=______;(2)结合以上的数据分析,针对本次的体育测试成绩中,你认为此次的体育测试成绩男生与女生谁更好?请说明理由(理由写出一条即可);(3)若初2023届学生中男生有600人,女生有550人,(规定49分及以上为优秀)请估计该校初2023届参加此次体育测试的学生中成绩为优秀的学生人数.22.(8分)某校为了解八年级800名学生跳绳情况,从八年级学生中随机抽取50名学生进行1分钟跳绳测试,并对测试成绩进行统计,绘制了如下统计表.组别1分钟跳绳个数n频数组内学生平均1分钟跳绳个数A n<100680B100≤n<13015120C130≤n<16020145D n≥1609180其中C组同学跳绳个数:130,134,135,136,138,140,142,142,143,144,145,145,147,148,150,152,155,157,158,159.根据以上信息,回答下列问题:(1)这50名学生1分钟跳绳个数的中位数是_______;(2)求这50名学生1分钟跳绳个数的平均数;(3)若跳绳个数超过140个为优秀,则该校八年级学生跳绳成绩优秀的约有多少人?23.(8分)甲、乙两名队员练习射击,每次射击的环数为整数,两人各射击10次,其成绩分别绘制成如图1、图2所示的统计图,两幅图均有部分被污染,两名队员10次的射击成绩整理后,得到的统计表如下表所示.平均数中位数众数方差甲a7b 1.8乙7c83(1)甲队员射中7环的次数为___________;(2)统计表中a=___________;b=___________;c=___________;(3)___________队员的发挥更稳定;(4)乙队员补射1次后,成绩为m环,据统计乙队员这11次射击成绩的中位数比c大0.5,则m的最小值为___________.答案与试题一.选择题1.B【分析】根据当数据都加上一个数时的平均数、方差、众数、中位数的变化特征逐项判断即可解答.【详解】解:由题意知,八年级一班的学生升八年级时,每个同学的年龄都加1,其中平均年龄加1,众数加1,中位数加1,方差不变,故A、C、D不符合要求;B符合要求.故选:B.2.C【分析】根据众数、平均数、中位数和方差的定义计算各量,然后对各选项进行判断.【详解】∵这组数据的6出现了3次,3,4,5各出现了1次,∴众数为6吨,∵平均数为3+4+5+6×36=5吨,方差为[(4−5)2+(3−5)2+(5−5)2+(6−5)2×3]6=43吨2,中位数是6+52= 5.5吨,∴A,B,D选项正确,不符合题意,C选项错误,符合题意,故选:C3.C【分析】根据众数的定义求解即可【详解】解:∵45%>25%>15%>10%>5%,∴由扇形统计图知,得4分的人数占总人数的45%,人数最多,所以所打分数的众数为4分,故选:C.5.B【分析】根据平均数、中位数、众数、极差的意义分别判断即可得到答案.【详解】去掉一个最高分和一个最低分后一定会影响平均分、极差,有可能影响众数,但是这组数据的中间两个数没有变化故一定不会影响中位数,故选:B.6.C【分析】分别求出加入三人成绩后的平均分、方差,然后比较大小即可.【详解】解:由题意知,加入三人成绩后的平均分为:90×50+88+90+9253=90,∴平均分不变,方差为:40×50+(88−90)2+(90−90)2+(92−90)253≈37.9,∵37.9<40,∴方差变小,故选:C.7.C【分析】本题主要考查的是方差的求法.解答此类问题,通常用x1,x2,…,x n表示出已知数据的平均数与方差,再根据题意用x1,x2,…,x n表示出新数据的平均数与方差,寻找新数据的平均数与原来数据平均数之间的关系.【详解】设原数据为x1,x2,…,x n,其平均数为x,方差为s2.根据题意,得新数据为13x1,13x2,…,13x n,其平均数为13x.根据方差的定义可知,新数据的方差为1n[(13x1−13x)2+(13x2−13x)2+⋯+(13x n−13x)2]=19×1n[(x1−x)2+(x2−x)2+⋯+(x n−x)2]=19s2.故选C.【点睛】本题考查平均数与方差,会分别利用方差和平均数的公式去表示方差和平均数是解题的关键.其次根据题意给代数式进行等量变形也非常重要.8.(3分)(2023春·江西九江·八年级统考期中)某同学各科成绩如图所示,则其成绩的中位数是()9.C【分析】根据平均数的定义,中位数的定义,方差的定义对每一项判断解答即可.【详解】解:∵第1组数据为:0、0、0、1、1、1,∴第1组数据的平均数为0+0+0+1+1+16=12,∵第2组数据为:m个00、0、⋯、0、n个11、1、⋯、1,∴第2组数据平均数为m×0+n×1m+n =nm+n,∵m=n,∴第2组数据平均数nm+n =n2n=12,∴当m=n时,两组数据的平均数相等,故①正确;∵当m>n时,m+n>2n,∴第2组数据平均数nm+n <n2n=12,∴第1组数据的平均数大于第2组数据的平均数,故②错误;∵第1组数据为:0、0、0、1、1、1,∴第1组数据的中位数为0+12=12,∵第2组数据为:m个00、0、⋯、0、n个11、1、⋯、1,∴当m<n时,若m+n为奇数时,第2组数据的中位数为1;若m+n偶数,第2组数据的中位数是为1,∴当m<n时,第2组的中位数为1,当m<n时,第1组数据的中位数小于第2组数据的中位数,故③正确;∵第1组数据为:0、0、0、1、1、1,∴第1组数据方差:3×(0−0.5)2+3×(1−0.5)26=0.25,∵第2组数据为:m个00、0、⋯、0、n个11、1、⋯、1,∴第2组数据的方差为m(0−0.5)2+n(1−0.5)2m+n=0.25,∴当m=n时,第2组数据的方差等于第1组数据的方差,∴正确的序号为①③,故选C.10.C【分析】先设出y=(x﹣x1)2+(x﹣x2)2+(x﹣x3)2+…+(x﹣xn)2,然后进行整理得出y=nx2﹣2(x1+x2+x3+…+xn)x+(x12+x22+x32+…+xn2),再求出二次函数的最小值,再根据x的取值即可得出答案.【详解】解:设y=(x﹣x1)2+(x﹣x2)2+(x﹣x3)2+…+(x﹣xn)2 y=x2﹣2xx1+x12+x2﹣2xx2+x22+x2﹣2xx3+x32+…+x2﹣2xxn+xn2y=nx2﹣2(x1+x2+x3+…+xn)x+(x12+x22+x32+…+xn2),则当x=−﹣2(x1+x2+x3+…+x n)2n =x1+x2+x3+…+x nn时,二次函数y=nx2﹣2(x1+x2+x3+…+xn)x+(x12+x22+x32+…+xn2)最小,∴x所取平均数时,结果最小,故选:C.二.填空题11.解:根据题意得:x小乐=85+90+60+70+905=79,S2小乐=15[(85−79)2+(90−79)2+(60−79)2+(70−79)2+(90−79)2]=144,x小涵=80+80+90+85+905=85,S2小涵=15[(80−85)2+(80−85)2+(90−85)2+(85−85)2+(90−85)2]=20,∵x小涵>x小乐,S2小涵<S2小乐,∴小涵的成绩优异且稳定,∴推选参加决赛的同学是小涵,故答案为:小涵.12.S21<S22【分析】设数据a,b,c,d,e的平均数为x,根据平均数的定义得出数据a−2,b,c,d,e+2的平均数也为x,再利用方差的定义分别求出s21,s22,进而比较大小.【详解】解:设数据a,b,c,d,e的平均数为x,则数据a−2,b,c,d,e+2的平均数也为x,∵s21=15[(a−x)2+(b−x)2+…+(e−x)2],s22=15[(a−2−x)2+(b−x)2+…+(e+2−x)2]=15[(a−x)2+(b−x)2+…+(e−x)2−4(a−x)+4+4(e−x)+4]=15[(a−x)2+(b−x)2+…+(e−x)2+4(e−a)+8]∴s22=S21+15[4(e−a)+8]∵a<e,∴s21<s22.故答案为s21<s22.13.8【分析】根据平均数的意义,求出a、b的值,进而确定两组数据,再合并成一组,找出出现次数最多的数据即可.【详解】解:由题意得,{3+a+2b+5=4×6a+6+b=3×6,解得{a=8b=4,这两组数合并成一组新数据为:3,8,8.5,8,6,4,在这组新数据中,出现次数最多的是8,因此众数是8,故答案为:8.14.6.9【分析】先根据甲种糖果6千克,乙种糖果10千克,丙种糖果4千克求出混合后的糖果甲、乙、丙比,再用各自所占比乘各自的售货单价相加即可.【详解】解:若将甲种糖果6千克,乙种糖果10千克,丙种糖果4千克混合在一起,则混合后的糖果甲、乙、丙比为3:5:2,∴混合后的糖果的售价每千克应定为310×6+510×7+210×8= 6.9(元),故答案为:6.9.15.4或7【分析】由题意知a2−4=9b,即(a+2)(a−2)=9b,且a,b是质数,可得{a+2=9a−2=b或{a+2=b a−2=9或{a+2=9ba−2=1或{a+2=3ba−2=3,解方程组可得满足要求的a,b的值,然后根据中位数是第二、三位数的平均数求解即可.【详解】解:由题意知a2−4=9b,即(a+2)(a−2)=9b,且a,b是质数,∴{a+2=9a−2=b 或{a+2=ba−2=9或{a+2=9ba−2=1或{a+2=3ba−2=3,解得{a=7b=5,{a=11b=13,{a=3b=59(舍去),{a=5b=73(舍去),当{a=7b=5时,2,3,5,7的中位数为3+52=4;当{a=11b=13时,2,3,11,13的中位数为3+112=7;∴数据a,b,2,3的中位数是4或7,故答案为:4或7.16.19【分析】根据“五个整数由小到大排列后,中位数为4,唯一的众数为2”,可知此组数据的第三个数是4,第一个和第二个数是2,据此可知当第四个数是5,第五个数是6时和最小.【详解】∵中位数为4∴中间的数为4,又∵众数是2∴前两个数是2,∵众数2是唯一的,∴第四个和第五个数不能相同,为5和6,∴当这5个整数分别是2,2,4,5,6时,和最小,最小是2+2+4+5+6=19,故答案为19.三.解答题17.解:①当x≤6时,这组数据按从小到大顺序排列为x,6,10,12由题意得x+6+10+124=6+102则x=4②当6<x≤10时,这组数据按从小到大顺序排列为6,x,10,12由题意得x+6+10+124=x+102则x=8③当10<x≤12时,这组数据按从小到大顺序排列为6,10,x,12由题意得x+6+10+124=x+102则x=8(舍)④当x>12时,这组数据按从小到大顺序排列为6,10,12,x由题意得x+6+10+124=10+122则x=16综上所述:x=4或8或16.18.(1)解:由题意可得:88+90+863=88(分)∴小成同学面试平均成绩为88分;(2)解:(88×6+92×4)÷(6+4)=89.6(分)∴小成同学的最终成绩为89.6分.19.解:(1)甲的平均成绩a=5×1+6×2+7×4+8×2+9×11+2+4+2+1=7(环),∵乙射击的成绩从小到大从新排列为:3、4、6、7、7、8、8、8、9、10,∴乙射击成绩的中位数b=7+82=7.5(环),又∵乙射击的成绩从小到大从新排列为:3、4、6、7、7、8、8、8、9、10,∴乙射击成绩的众数:c=8(环)其方差为:d=110[(3−7)2+(4−7)2+(6−7)2+(7−7)2+3×(8−7)2+(9−7)2+(10−7)2]=110×(16+9+1+0+3+4+9)=110×42=4.2;(2)从平均成绩看甲、乙二人的成绩相等均为7环,从中位数看甲射中7环以上的次数小于乙,从众数看甲射中7环的次数最多而乙射中8环的次数最多,从方差看甲的成绩比乙的成绩稳定,综合以上各因素,若选派一名学生参加比赛的话,可选择乙参赛,因为乙获得高分的可能更大.20.(1)解:根据八年级20名学生成绩,分数段在70≤x<80的有7人,即a=7;八年级20名学生成绩中,75分的有3人,人数最多,故b=75;根据八年级分数段可得,中位数在80≤x<90分数段中,将80≤x<90分数段中的分数按照从小到大排列为80,81,82,83,84,85,87,故八年级的中位数是80+812=80.5;故a、b、c的值分别为:7,75,80.5.(2)解:七、八年级“天宫课堂”竞赛成绩为优秀人数为:600×820+800×1120=680人;故根据抽样调查数据,估计全校七、八年级“天宫课堂”竞赛成绩为优秀(80分及以上)的共有680人.(3)八年级对“天宫课堂”知识掌握情况更好一些,∵八年级的中位数和众数都高于八年级,且方差小于八年级的方差,说明八年级的成绩更加稳定一些.21.(1)由题意可得:a%=1−(5%+5%+30%+45%)=15%,∴a=15,由已知可得男生各组人数分别如下:A、B、C三组总人数为:20×(5%+5%+15%)=5,D组:20×30%=6,E组:20×45 %=9,∴男生成绩按照从低到高排序,排在第10和第11位的都为48,∴b=48,把女生成绩从低到高排序为:43,44,44,44,45,45,45,47,48,48,49,49,49,50,50,50,50,50,50,50,∴根据众数的意义可得c=50,故答案为:15;48;50;(2)∵在本次测试中,男生成绩和女生成绩的平均数相同,女生成绩的中位数与众数都比男生成绩的中位数与众数较高,∴此次的体育测试成绩女生更好;(3)由数据可知:男生E组数据48<x≤50均为优秀,女生优秀人数为10人,∴600×45%+550×1020=545(人),∴该校初2023届参加此次体育测试的学生中成绩为优秀的学生为545人.故答案为:545人.22.(1)根据数据可知中位数在C组,由C组数据同学跳绳个数:130,134,135,136,138,140,142,142,143,144,145,145,147,148,150,152,155,157,158,159.可得这50名学生1分钟跳绳个数的中位数是137.故答案为:137.(2)150(80×6+120×15+145×20+180×9)=150×7800=156.答:这50名学生1分钟跳绳个数的平均数为156;(3)14+950×800=368(人)答:该校八年级学生跳绳成绩优秀的约有368人.23.(1)解:由条形统计图可得成绩为7环的次数为10−2−1−1−2=4(次),故答案为:4;(2)解:平均数a=5×2+6×1+7×4+8×1+9×210=7,众数b=7,由折线统计图可得剩余两次的成绩和为7×10−3−6−4−8−7−8−10−9=15,∵众数为8,∴剩余两次的成绩为7和8,将乙的10次成绩从大到小依次排序为10,9,8,8,8,7,7,6,4,3,∴中位数c=8+72=7.5,故答案为:7,7,7.5;(3)解:∵方差1.8<2,∴甲队员的发挥更稳定,理由是方差越小稳定性越好,故答案为:甲;(4)解:由题意知,乙队员11次射箭成绩的中位数为7.5+0.5=8,即乙的11次成绩从大到小依次排序中第6次成绩为8,∴m≥8,∴m的最小值为8,故答案为:8..。

北师大版八年级上册 第六章 数据的分析 检测题 含答案

北师大版八年级上册 第六章 数据的分析 检测题 含答案

北师大版八年级上册 第六章 数据的分析 检测题 含答案填空题某果园有果树200棵,从中随机抽取5棵,每棵果树的产量如下:(单位:kg)98? 102? 97? 103? 105这棵果树的平均产量为 kg,估计这棵果树的总产量约为 kg.【答案】【解析】抽取的5棵果树的平均产量为;估计这棵果树的总产量约为.解答题商场对每一个营业员在当月某种商品销售件数统计如下:解答下列问题(1)设营业员的月销售件数为x(单位:件),商场规定:当x<15时为不称职;当15≤x<20时为基本称职;当20≤x<25为称职;当x≥25时为优秀.试求出优秀营业员人数所占百分比;(2)根据(1)中规定,计算所有优秀和称职的营业员中月销售件数的中位数和众数; (3)为了调动营业员的工作积极性,商场决定制定月销售件数奖励标准,凡达到或者超过这个标准的营业员将受到奖励。

如果要使得所有优秀和称职的营业员中至少有一半能获奖,你认为这个奖励标准应定为多少件合适?并简述其理由.【答案】(1)优秀营业员人数所占百分比 ?(2)所有优秀和称职的营业员中月销售件数的中位数22、众数20.(3) 奖励标准应定为22件.中位数是一个位置代表值,它处于这组数据的中间位置,因此大于或者等于中位数的数据至少有一半.所以奖励标准应定为22件.【解析】(1)首先求出总人数与优秀营业员人数,进而求出优秀营业员人数所占百分比, (2)根据中位数、众数的意义解答即可.(3)如果要使得称职和优秀这两个层次的所有营业员的半数摆布能获奖,月销售额奖励标准可以定为称职和优秀这两个层次销售额的中位数,因为中位数以上的人数占总人数的一半摆布选择题某校在开展“爱心捐助”的活动中,九年级一班六名同学捐款的数额分别为:8,10,10,4,8,10(单位:元),这组数据的众数是(? )A. 10B. 9C. 8D. 4【答案】A【解析】众数。

选择题自然数4,5,5,x,y从小到大罗列后,其中位数为4,如果这组数据惟一的众数是5,那么,所有满足条件的x,y中,x+y的最大值是(? )A.3 B.4 C.5 D.6【答案】C【解析】试题分析:找中位数要把数据按从小到大的顺序罗列,位于最中间的一个数(或者两个数的平均数)为中位数;众数是一组数据中浮现次数最多的数据,注意众数可以不止一个.解:惟一的众数是5,中位数为4,故x,y不相等且x<4,y<4.x、y的取值为0,1,2,3,则x+y的最大值为2+3=5.故选C.解答题我们约定:如果身高在选定标准的±2%范围之内都称为“普通身高”.为了解某校九年级男生中具有“普通身高”的人数,我们从该校九年级男生中随机选出10名男生,分别测量出他们的身高(单位:cm)采集并整理如下统计表:男生序号①②③④⑤⑥⑦⑧⑨⑩身高163171173159161174164166169164根据以上表格信息,解答如下问题:(1)计算这组数据的三个统计量:平均数、中位数和众数;(2)请你选择一个统计量作为选定标准,找出这10名具有“普通身高”的是哪几位男生?并说明理由;(3)若该年级共有280名男生,按(2)中选定标准,请你估算出该年级男生中“普通身高”的人数约有多少名?【答案】(1)平均数为166.4cm,中位数为165cm,众数为164cm;(2)选平均数作为标准:⑦、⑧、⑨、⑩男生的身高具有“普通身高”,选中位数作为标准:此时①、⑦、⑧、⑩男生的身高具有“普通身高”;选众数作为标准:此时①、⑤、⑦、⑧、⑩男生的身高具有“普通身高”,(3)以平均数作为标准,估计全年级男生中“普通身高”的人数约为:280×0.4=112(人)以中位数作为标准,估计全年级男生中“普通身高”的人数约为:280×0.4=112(人) 以众数数作为标准,估计全年级男生中“普通身高”的人数约为:280×0.5=140(人). 【解析】试题分析:(1)根据平均数、中位数和众数的定义分别进行计算,即可求出答案; (2)根据选平均数作为标准,得出身高x满足166.4×(1-2%)≤x≤166.4×(1+2%)为“普通身高”,从而得出⑦、⑧、⑨、⑩男生的身高具有“普通身高”;根据选中位数作为标准,得出身高x满足165×(1-2%)≤x≤165×(1+2%),为“普通身高”,从而得出①、⑦、⑧、⑩男生的身高具有“普通身高”;根据选众数作为标准,得出身高x满足164×(1-2%)≤x≤164×(1+2%)为“普通身高”,此时得出①、⑤、⑦、⑧、⑩男生的身高具有“普通身高”.(3)分三种情况讨论,(1)以平均数作为标准(2)以中位数作为标准(3)以众数数作为标准;分别用总人数乘以所占的百分比,即可得出普通身高的人数.(1)平均数为:(163+171+173+159+161+174+164+166+169+164)÷10=166.4cm中位数为:(166+164)÷2=165cm众数为:164cm;(2)三个标准任选一个,选平均数作为标准:身高x满足166.4×(1-2%)≤x≤166.4×(1+2%),即163.072≤x≤169.728时为“普通身高”, 此时⑦、⑧、⑨、⑩男生的身高具有“普通身高”,选中位数作为标准:身高x满足165×(1-2%)≤x≤165×(1+2%),即161.7≤x≤168.3时为“普通身高”,此时①、⑦、⑧、⑩男生的身高具有“普通身高”;选众数作为标准:身高x满足164×(1-2%)≤x≤164×(1+2%),即160.72≤x≤167.28时为“普通身高”,此时①、⑤、⑦、⑧、⑩男生的身高具有“普通身高”;(3)三个标准任选一个,以平均数作为标准,估计全年级男生中“普通身高”的人数约为:280×0.4=112(人)以中位数作为标准,估计全年级男生中“普通身高”的人数约为:280×0.4=112(人)以众数数作为标准,估计全年级男生中“普通身高”的人数约为:280×0.5=140(人).解答题甲、乙两人在相同条件下各射靶10次,每次射靶的成绩情况如图所示:(1)请填写下表:平均数方差中位数命中9环及以上的次数甲71.21乙5.4(2)请从下列四个不同的角度对这次测试结果进行分析:①从平均数和方差相结合看;②从平均数和中位数相结合看(分析谁的成绩好些);③从平均数和命中9环以上的次数相结合看(分析谁的成绩好些);④从折线图上两人射击命中环数的走势看(分析谁更有潜力). 【答案】(1)如表平均数方差中位数命中9环及以上的次数甲 71.271乙75.47.53(2)①甲、乙平均成绩一样,甲方差较小,甲发挥更稳定.②从平均数和中位数相结合看,乙的成绩更好些.③从平均数和命中9环以上的次数相结合看,说明乙的成绩好些.④乙的成绩呈上升趋势,乙更有潜力.【解析】(1)根据平均数、中位数、方差的求法.(2)①平均数相同的情况下,比较方差看谁更为稳定.②乙的中位数比甲大,说明乙中间水平比甲高.③乙命中9环以上的次数是3次,而甲惟独一次.④从折线统计图上看,乙在不断地上升,并且得到较高环次数也较多,说明乙具备潜力.解答题下表是某校九年级(1)班20名学生某次数学测验的成绩统计表:成绩(分)60708090100人数(人)15xy2(1)若这20名学生成绩的平均分数为82分,求x和y的值;(2)在(1)的条件下,设这20名学生本次测验成绩的众数为a,中位数为b,求a,b的值.【答案】(1)x=5,y=7;(2)a=90,b=80.【解析】试题分析:(1)根据人数是20,平均分是82列二元一次方程组求解;(2)根据众数和中位数的定义求解.试题解析:(1)根据题意得, ,解得x=5,y=7.所以x=5,y=7.(2)这20个数据中90浮现的次数最多,所以众数是90;排在最中间的两个数都是80,所以中位数是80. 故a=90,b=80.填空题已知一组数据x1,x2,x3,x4的平均数是2,则数据2x1+3,2x2+3,2x3+3,2x4+3的平均数是___.【答案】7【解析】根据题意得,所以=.故答案为7.填空题跳远运动员李刚对训练进行测试,6次跳远的成绩如下:7.6,7.8,7.7,7.8,8.0,7.9(单位:m).这六次成绩的平均数为7.8,方差为____(精确到0.001).如果李刚再跳两次,成绩分别为7.7,7.9,则李刚这8次跳远成绩的方差____(填“变大”、“不变”或者“变小”). 【答案】? 0.017? 变小【解析】前6次的方差为.8次的方差为.因为0.017>0.015,所以方差变小.故答案为(1). 0.017;(2). 变小.选择题在2022年的体育中考中,某校6名学生的体育成绩统计如图,则这组数据的众数、中位数、方差挨次是(? )A. 18,18,1B. 18,17.5,3C. 18,18,3D. 18,17.5,1【答案】A【解析】18浮现的次数最多,故众数是18;这6个数从小到大罗列:17,17,18,18,18,20,故中位数是 =18;∵ =(17×2+18×3+20)÷6=18,∴S2= =1;故选A.选择题丽华根据演讲比赛中九位评委所给的分数作了如下表格: 平均数中位数众数方差8.58.38.10.15如果去掉一个最高分和一个最低分,则表中数据一定不发生变化的是( )A. 平均数B. 众数C. 方差D. 中位数【答案】D【解析】去掉一个最高分和一个最低分对中位数没有影响,故选D.选择题有19位同学参加歌咏比赛,所得的分数互不相同,取得分前10位的同学进入决赛,某同学知道自己的分数后,要判断自己能否进入决赛,他只需知道这19位同学分数的(? ) A. 平均数 B. 中位数 C. 众数 D. 方差【答案】B【解析】试题分析:因为第10名同学的成绩排在中间位置,即是中位数.所以需知道这19位同学成绩的中位数.解:19位同学参加歌咏比赛,所得的分数互不相同,取得前10位同学进入决赛,中位数就是第10位,于是要判断自己能否进入决赛,他只需知道这19位同学的中位数就可以. 故选:B.选择题为了解某公司员工的年工资情况,小王随机调查了10位员工,某年工资(单位:万元)如下:3,3,3,4,5,5,6,6,8,20.下列统计量中,能合理反映该公司员工年工资水平的是(? )A. 方差B. 众数C. 中位数D. 平均数【答案】C【解析】中位数是一组数据从小到大(或者从大到小)重新罗列后,最中间的那个数(最中间两个数的平均数),反映的是一组数据的中间水平。

(常考题)北师大版初中数学八年级数学上册第六单元《数据的分析》测试卷(答案解析)(1)

(常考题)北师大版初中数学八年级数学上册第六单元《数据的分析》测试卷(答案解析)(1)

一、选择题1.一组数据由5个整数组成,已知中位数是10,唯一众数是12,则这组数据和的最大值可能是( ) A .50B .51C .52D .532.小明在计算一组数据的方差时,列出的公式如下222221(7)(8)(8)(8)s x x x x n⎡=-+-+-+-+⎣2(9)x ⎤-⎦,根据公式信息,下列说法中,错误的是( ) A .数据个数是5B .数据平均数是8C .数据众数是8D .数据方差是153.在某次演讲比赛中,五位评委给选手圆圆打分,得到互不相等的五个得分.若去掉一个最低分,平均分为x ;去掉一个最高分,平均分为y ;同时去掉一个最高分和一个最低分,平均分为z ,则( ) A .y z x >>B .x z y >>C .y x z >>D .z y x >>4.“按情就是命令,防控就是责任!”在去年新冠肺炎疫情爆发期间,我区教师发扬不畏艰险、无私奉献的精神,挺身而出,协助社区做好疫情监测、排查、防控等工作.现将50名教师参加社区工作时间t (单位:天)的情况统计如下:①平均数一定在40~50之间; ②平均数可能在40~50之间; ③中位数一定是45; ④众数一定是50. 其中正确的推断是( ) A .①④B .②③C .③④D .②③④5.如图是某商场一天的运动鞋销售量情况统计图.这些运动鞋的尺码组成的一组数据中,众数和中位数分别为( )A .25,25B .25,24.5C .24.5,25D .24.5,24.56.双十一期间,某超市以优惠价销售,,,,A B C D E 坚果五种礼盒,它们的单价分别为90元、80元,70元,60元,50元,当天销售情况如图所示,则当天销售坚果礼盒的平均售价为( )A .75元B .70元C .66.5元D .65元7.为了调查某校同学的体质健康状况,随机抽查了若干名同学的每天锻炼时间如表: 每天锻炼时间(分钟) 20 40 60 90 学生数2341则关于这些同学的每天锻炼时间,下列说法错误的是( ) A .众数是60B .平均数是21C .抽查了10个同学D .中位数是508.甲、乙、丙、丁四人进行射击测试,每人10次射击成绩的平均数都是9.3环,方差分别为2=0.54S 甲,20.62S =乙,20.56S =丙,2=0.45S 丁,则成绩最稳定的是( )A .甲B .乙C .丙D .丁9.某校为了解学生在校一周体育锻炼时间,随机调查了35名学生,调查结果列表如下: 锻炼时间/h 5 6 7 8 人数615104则这35名学生在校一周体育锻炼时间的中位数和众数分别为( ) A .6h ,6hB .6h ,15hC .6.5h ,6hD .6.5h ,15h10.在一次射击练习中,某运动员命中的环数是7,9,9,10,10,其中9是( )A .平均数B .中位数C .众数D .既是平均数和中位数,又是众数11.已知第一组数据:12,14,16,18的方差为S 12;第二组数据:32,34,36,38的方差为S 22;第三组数据:2020,2019,2018,2017的方差为S 32,则S 12,S 22,S 32的大小关系表示正确的是( ) A .S 12>S 22>S 32 B .S 12=S 22>S 32 C .S 12<S 22<S 32D .S 12=S 22<S 3212.为了解九年级()1班学生某天的体温情况,班长把所有同学当天上报的体温(单位:C )绘制成了如下统计表.这组体温数据的众数是( ) 人数(人A .36.2CB .36.3C C .36.4CD .36.5C二、填空题13.某校八年级(1)班第一小组5名学生的身高(单位:cm ):158,162,159,165,162.则这5名同学身高的众数是_____.14.一组数据:25,29,20,x ,14,它的中位数是24,则这组数据的平均数为_____.15.设甲组数据:6,6,6,6,的方差为2,S 甲乙组数据:1,1,2的方差为2S 乙,则2S 甲与2S 乙的大小关系是________.16.数据6,5,x ,4,7的平均数是5,那么这组数据的方差为________;17.甲、乙两个样本,甲的方差为0.102,乙的方差为0.06,哪个样本的数据波动大?答:________.18.某学校八年级3班有50名同学,30名男生的平均身高为170,20cm 名女生的平均身高160cm ,则全班学生的平均身高是__________cm .19.已知一组数据的方差S 2=15[(6﹣10)2+(9﹣10)2+(a ﹣10)2+(11﹣10)2+(b ﹣10)2]=6.8,则a 2+b 2的值为_____.20.某班组织了一次经典朗读比赛,甲、乙两队各10人的比赛成绩如下表(10分制):已知甲队成绩的方差是1.4,则成绩较为整齐的是__________队.三、解答题21.“防控疫情,全民力行”,某中学开展防疫知识线上竞赛活动,八年级(1),(2)班各选出5名选手参加竞赛,两个班选出的5名选手的竞赛成绩(满分为100分)如图所示.(1)请你计算两个班的平均成绩各是多少分;(2)写出两个班竞赛成绩的中位数,结合两班竞赛成绩的平均数和中位数,你认为哪个班的竞赛成绩较好:(3)已知八(2)班竞赛成绩的方差是114,请计算八(1)班竞赛成绩的方差,并说明哪个班的成绩较为整齐.22.“赏中华诗词,寻文化基因,品生活之美”,某校举办了首届“中国诗词比赛”,全校师生同时默写50首古诗,每正确默写出一首古诗得2分,结果有600名学生进入决赛,从进入决赛的600名学生中随机抽取40名学生进行成绩分析,根据比赛成绩绘制出部分频数分布表和部分频数分布直方图如下列图表 组别 成绩x (分)频数(人数) 第1组 6068x ≤< 4 第2组 6876x ≤< 8 第3组 7684x ≤<12 第4组 8492x ≤< a 第5组92100x ≤<10抽取学生比赛成绩频数分布直方图第3组12名学生的比赛成绩为:76、76、78、78、78、78、78、78、80、80、80、82,请结合以上数据信息完成下列各题:(1)求a的值,并将频数分布直方图补充完整.(2)求所抽取的40名学生比赛成绩的中位数.(3)若比赛成绩不低于84分的为优秀,估计进入决赛的学生中有多少名学生的比赛成绩为优秀?23.珍爱生命,增强安全意识.新学期开始,某校开展“开学安全第一课”知识竞赛,并从五年级、八年级年级各随机抽取10名学生的竞赛成绩进行统计.整理如下:八年级抽取的学生竞赛成绩:80,60,80,90,80,90,90,50,100,90.五年级抽取的学生竞赛成绩条形统计图:五年级、八年级抽取的学生竞赛成绩统计表:年级平均数众数中位数五年级817080八年级81a b(1)a=______,b=______;(2)该校五年级的2000名学生和八年级的1000名学生参加了此次竞赛活动,请估计这两个年级竞赛成绩达到90分及以上的学生共有多少名?(3)根据以上数据分析,两个年级“开学安全第一课”知识竞赛的学生成绩谁更优秀?请选取一个方面进行解释评价.24.为帮助学生了解“预防新型冠状病毒”的有关知识,学校组织了一次线上知识培训,培训结束后进行测试.试题的满分为20分.为了解学生的成绩情况,从七、八年级学生中各随机抽取了20名学生的成绩进行了整理、描述和分析.下面给出了部分信息:抽取的20名七年级学生成绩是:20,20,20,20,19,19,19,19,18,18,18,18,18,18,18,17,16,16,15,14.抽取的40名学生成绩统计表性别七年级八年级平均分1818众数a b中位数18c方差 2.7 2.7根据以上信息,解答下列问题:(1)直接写出表中a,b,c的值:a=,b=,c=.(2)在这次测试中,你认为是七年级学生成绩好,还是八年级学生成绩好?请说明理由.(3)若九年级随机抽取20名学生的成绩的方差为2.5,则年级成绩更稳定(填“七”或“八”或“九”).25.某商店1~6周销售甲、乙两种品牌冰箱的数量如表(表Ⅰ)所示(单位:台):第1周第2周第3周第4周第5周第6周甲9101091210乙1312711107平均数中位数众数甲10乙107(2)老师计算了乙品牌冰箱销量的方差:S乙2=16[(13﹣10)2+(12﹣10)2+(7﹣10)2+(11﹣10)2+(10﹣10)2+(7﹣10)2]=163(台2).请你计算甲品牌冰箱销量的方差,根据计算结果,建议商家可多采购哪一种品牌冰箱?为什么?26.2020年是全面建成小康社会目标实现之年,是全面打赢脱贫攻坚战收官之年.为了让老师们更好地了解国家的宏观政策及具体措施,某学校领导组织全体教师利用“学习强国APP”对相关知识进行学习并组织定时测试(总分为100分).现从该校中随机抽取20名教师的测试成绩进行分析,过程如下:收集数据20名教师的测试成绩如下(单位:分)76,83,71,100,81,100,82,88,95,90,100,86,89,93,86,100,96,100,92,90整理数据请你按如下表格分组整理、描述样本数据,并把下列表格补充完整.(1)用样本中的统计量估计全校教师的测试成绩等级为;(2)若该校共有教师210人,请估计该校教师的测试成绩等级为D,E的总人数.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】利用中位数和众数的定义可判定后面三个数为10,12,12,所以前面两个数为8和9时,这组数据和最大.【详解】解:∵中位数是10,唯一众数是12,∴这5个数按由小到大排列时,后面三个数为10,12,12,当前面两个数为8和9时,这组数据和最大,最大值为51.故选:B.【点睛】本题考查了众数:一组数据中出现次数最多的数据叫做众数.也考查了中位数.2.D解析:D 【分析】根据题目中的方差公式,众数的定义以及平均数的求法即可进行判断; 【详解】根据方差的公式可知样本容量为5,故A 正确;样本的平均数为:78889=85++++ ,故B 正确;样本的众数为8,故C 正确;样本的方差为:()()()()()22222212788888898558=s ⎡⎤=-+-+-+-+-⎣⎦,故D 错误; 故选:D . 【点睛】本题考查了方差、样本容量、平均数、众数,解答本题的关键是明确题意,会求一组数据的方差、样本容量、平均数以及众数.3.B解析:B 【分析】根据题意,可以判断x 、y 、z 的大小关系,从而可以解答本题. 【详解】解:由题意可得,去掉一个最低分,平均分为x ,此时x 的值最大;若去掉一个最高分,平均分为y ,则此时的y 一定小于同时去掉一个最高分和一个最低分后的平均分为z , 故x z y >>, 故选:B . 【点睛】本题考查算术平均数,解答本题的关键是明确算术平均数的含义.4.B解析:B 【分析】先按平均数公式列出代数式,50t ≥取最小值40.8x =,当73t >天时平均数大于50天,按中位数定义将数据排序,第25与26的平均数在45天,众数定义是t 即可判断. 【详解】1542563574513201040205050l lx ⨯+⨯+⨯+⨯++==,4220+5l x +=,50t ≥,4220+20+20.8=40.85tx +=≥,4220+505tx +=>,73t >,当73t >天时平均数大于50天,中位数:按表知数据已经排序,第25与26的平均数在45天, 众数:t(50t ≥),②平均数可能在40~50之间正确,③中位数一定是45正确.①平均数一定在40~50之间不正确,④众数一定是50不正确. 其中正确的推断是②,③ 故选择:B . 【点睛】本题考查平均数,中位数,众数,掌握平均数,中位数,众数的定义,会根据具体内容确定平均数,中位数,以及众数是解题关键.5.B解析:B 【分析】先从统计图中得到数据,然后根据众数和中位数的定义判断. 【详解】从小到大排列此数据为:23.5、24、24、24.5、24.5、24.5、25、25、25、25,25.5, 数据25出现了4次最多为众数, 共11个数,中间的数是24.5, ∴24.5为中位数.所以本题这组数据的众数是25,中位数是24.5. 故选:B . 【点睛】本题考查了中位数和众数,找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求,如果是偶数个则找中间两位数的平均数.注意众数可以不止一个.6.C解析:C 【分析】根据题目中的数据和加权平均数的计算方法,可以得到当天销售坚果礼盒的平均售价. 【详解】90×10%+80×20%+70×25%+60×15%+50×30% =9+16+17.5+9+15 =66.5(元)即当天销售坚果礼盒的平均售价为66.5元,故选:C.【点睛】本题考查加权平均数,解答本题的关键是明确加权平均数的计算方法,会求一组数据的加权平均数.7.B解析:B【分析】根据众数、中位数和平均数的定义分别对每一项进行分析即可.【详解】解:A、60出现了4次,出现的次数最多,则众数是60,故A选项说法正确;B、这组数据的平均数是:(20×2+40×3+60×4+90×1)÷10=49,故B选项说法错误;C、调查的户数是2+3+4+1=10,故C选项说法正确;D、把这组数据从小到大排列,最中间的两个数的平均数是(40+60)÷2=50,则中位数是50,故D选项说法正确;故选B.【点睛】此题考查了众数、中位数和平均数,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数;众数是一组数据中出现次数最多的数.8.D解析:D【分析】直接利用方差是反映一组数据的波动大小的一个量,方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好,进而分析即可.【详解】解:∵S甲2=0.54,S乙2=0.62,S丙2=0.56,S丁2=0.45∴S丁2<S甲2<S丙2<S乙2,∴成绩最稳定的是丁.故选:D.【点睛】本题考查方差,正确理解方差的意义是解题关键.9.A解析:A【分析】直接利用众数和中位数的概念求解即可得到答案.【详解】解:∵锻炼6h的人人数最多,∴这组数据的众数为6h ,又∵调查总人数为35人,中位数为第18个数据,即中位数为6h ,故选:A .【点睛】本题主要考查众数和中位数,解题的关键是掌握众数和中位数的概念.10.D解析:D【解析】试题数据按从小到大顺序排列为7,9,9,10,10,所以中位数是9;数据9和10都出现了两次,出现次数最多,所以众数是9和10;平均数=(7+9+9+10+10)÷5=9.∴此题中9既是平均数和中位数,又是众数.故选D .点睛:平均数是指在一组数据中所有数据之和再除以数据的个数;在一组数据中出现次数最多的数据叫做这一组数据的众数,注意众数不止一个;中位数是指将一组数据按大小顺序排列后,处在最中间的一个数(或处在最中间的两个数的平均数).11.B解析:B【分析】先计算出三组数据的平均数,再根据方差的定义计算出方差,从而得出答案.【详解】解:∵1x =12141618154+++=,2x =32343638354+++=,3x =20202019201820172018.54+++=, ∴S 12=14×[(12﹣15)2+(14﹣15)2+(16﹣15)2+(18﹣15)2]=5, S 22=14×[(32﹣35)2+(34﹣35)2+(36﹣35)2+(38﹣35)2]=5, S 32=14×[(2020﹣2018.5)2+(2019﹣2018.5)2+(2018﹣2018.5)2+(2017﹣2018.5)2]=54, ∴S 12=S 22>S 32,故选:B .【点睛】本题主要考查了平均数、方差的计算,准确计算是解题的关键.12.C解析:C【分析】直接利用众数的概念求解可得.【详解】解:∵在这组数据中,36.4出现了10次,次数最多,∴学生体温数据的众数是36.4C,故选:C.【点睛】本题考查众数,解题关键是熟练掌握一组数据中出现次数最多的数据叫做众数.二、填空题13.162cm【分析】一组数据中出现次数最多的数据叫做众数结合所给的数据即可得出答案【详解】解:身高162的人数最多故该小组5名同学身高的众数是162cm故答案为:162cm【点睛】本题考查了众数的知识解析:162cm【分析】一组数据中出现次数最多的数据叫做众数,结合所给的数据即可得出答案.【详解】解:身高162的人数最多,故该小组5名同学身高的众数是162cm.故答案为:162cm.【点睛】本题考查了众数的知识,掌握众数的定义是解题的关键.14.4【解析】∵一组数据:252920x14它的中位数是24所以x=24∴这组数据为1420242529∴平均数=(14+20+24+25+29)÷5=224故答案是:224【点睛】找中位数的时候一定要解析:4【解析】∵一组数据:25,29,20,x,14,它的中位数是24,所以x=24,∴这组数据为14,20,24,25,29,∴平均数=(14+20+24+25+29)÷5=22.4.故答案是:22.4.【点睛】找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求,如果是偶数个则找中间两位数的平均数.15.【分析】根据方差的意义进行判断即可【详解】解:因为甲组的数据都相等没有波动而乙组数有波动所以s甲2<s乙2故答案为:s甲2<s乙2【点睛】本题考查了方差:方差是反映一组数据的波动大小的一个量方差越大 解析:22S S 乙甲【分析】根据方差的意义进行判断即可.【详解】解:因为甲组的数据都相等,没有波动,而乙组数有波动,所以s 甲2<s 乙2.故答案为:s 甲2<s 乙2.【点睛】本题考查了方差:方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好. 16.2【分析】先根据平均数的计算公式求出x 再利用方差的计算公式计算即可【详解】(6+5+x +4+7)=5解得x =3s2=(6−5)2+(5−5)2+(3−5)2+(4−5)2+(7−5)2=2故答案为:解析:2【分析】先根据平均数的计算公式求出x ,再利用方差的计算公式计算即可.【详解】15(6+5+x +4+7)=5, 解得x =3,s 2=15[(6−5)2+(5−5)2+(3−5)2+(4−5)2+(7−5)2]=2. 故答案为:2.【点睛】 本题考查的是方差、平均数的计算,掌握算术平均数的计算公式、方差的计算公式S 2=1n[(x 1−x )2+(x 2−x )2+…+(x n −x )2]是解题的关键. 17.甲的波动比乙的波动大【分析】根据方差的定义方差越小数据越稳定故可得到正确答案【详解】解:根据方差的意义甲样本的方差大于乙样本的方差故甲的波动比乙的波动大故答案:甲的波动比乙的波动大【点睛】本题考查方 解析:甲的波动比乙的波动大.【分析】根据方差的定义,方差越小数据越稳定,故可得到正确答案.【详解】解:根据方差的意义,甲样本的方差大于乙样本的方差,故甲的波动比乙的波动大. 故答案:甲的波动比乙的波动大.【点睛】本题考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.18.【分析】只要运用求平均数公式:即可求得全班学生的平均身高【详解】全班学生的平均身高是:故答案为:166【点睛】本题考查的是样本平均数的求法熟记公式是解决本题的关键解析:166【分析】 只要运用求平均数公式:12n x n x x x ++⋯+=即可求得全班学生的平均身高. 【详解】 全班学生的平均身高是:()301702016016650x cm ⨯+⨯==. 故答案为:166.【点睛】本题考查的是样本平均数的求法.熟记公式是解决本题的关键. 19.296【分析】先根据方差公式得出平均数为10进而求出a+b=24再根据方程公式计算得到展开代入即可求解【详解】解:∵一组数据的方差S2=(6﹣10)2+(9﹣10)2+(a ﹣10)2+(11﹣10)解析:296【分析】先根据方差公式得出平均数为10,进而求出a+b=24,再根据方程公式计算得到()()22101016a b -+-=,展开代入即可求解.【详解】 解:∵一组数据的方差S 2=15[(6﹣10)2+(9﹣10)2+(a ﹣10)2+(11﹣10)2+(b ﹣10)2]=6.8,∴这组数据的的平均数是10, ∴6911105a b ++++=, ∴a+b=24, ∵S 2=15[(6﹣10)2+(9﹣10)2+(a ﹣10)2+(11﹣10)2+(b ﹣10)2]=6.8, ∴()()221611011034a b ++-++-=,即 ()()22101016a b -+-=,∴222020184a b a b +--=-,∴()22184201842024296a b a b +=-++=-+⨯=. 故答案为:296【点睛】本题考查了一组数据的方差公式,完全平方公式,理解方差公式意义是解题关键. 20.乙【分析】根据平均数与方差的计算公式分别计算出两队的平均数和方差根据甲队与乙队的方差进行比较即可得答案【详解】甲队的平均数=(7+8+9+7+10+10+9+10+10+10)=9甲队的方差S 甲2=解析:乙【分析】根据平均数与方差的计算公式分别计算出两队的平均数和方差,根据甲队与乙队的方差进行比较即可得答案.【详解】甲队的平均数=110(7+8+9+7+10+10+9+10+10+10)=9, 甲队的方差S 甲2=110[(7-9)2+(8-9)2+(9-9)2+……+(10-9)2]=1.4, 乙队的平均数=110(10+8+7+9+8+10+10+9+10+9)=9, 乙队的方差S 乙2=110[(10-9)2+(8-9)2+(7-9)2+……+(9-9)2]=1, ∵甲队的平均数=乙队的平均数,S 甲2>S 乙2,∴成绩较为整齐的是乙队,故答案为:乙【点睛】 此题主要考查平均数与方差,方差是刻画波动大小的重要数据,方差越小,波动越小,稳定性也越好,反之也成立;熟知平均数与方差的求解公式及方差的性质是解题关键.三、解答题21.(1)八1班86分;八2班86分;(2)八1班的中位数是80分,八2班的中位数是85分,八2班成绩好;(3)八1班方差为64;八1班成绩整齐【分析】(1)根据已知数据求解平均数即可;(2)根据中位数做决策即可;(3)根据方差进行比较即可;【详解】解:(1)八(1)班的平均成绩是:()180809080100865⨯++++=(分):八(2)班的平均成绩是:()180100957085865⨯++++=(分);(2)八(1)班的成绩分别为80,80,80,90,100,∴八(1)班的中位数是80分,八(2)班的成绩分别为:70,80,85,95,100,∴八(2)班的中位数是85分,∵八(1)班的平均成绩是86分,八(2)班的平均成绩是86分,八(1)班的中位数是80分,八(2)班的中位数是85分,∴八年级(2)班竞赛成绩较好;(3)八(1)班的成绩比较稳定,理由:八(1)班的方差是:()()()()()2222221?1808680869086808610086645S ⎡⎤=⨯-+-+-+-+-=⎣⎦班, 八(2)班的方差是114,∵八(1)班的方差小于八(2)班的方差,∴八(1)班的成绩比较稳定.【点睛】本题主要考查了根据中位数和方差做决策,准确分析判断是解题的关键.22.(1)a =6,统计图见详解;(2)79分;(3)240名【分析】(1)根据题意和频数分布表中的数据可以求得a 的值,进而把频数分布直方图补充完整; (2)根据中位数的定义以及第3组12名学生的比赛成绩,即可得到答案;(3)根据频数分布表中的数据算出优秀学生的比例,再乘以600,即可求解.【详解】解:(1)a =40−4−8−12−10=6,补全的频数分布直方图如右图所示;抽取学生比赛成绩频数分布直方图(2)∵第一组有4名,第二组8名,第3组12名学生的比赛成绩为:76、76、78、78、78、78、78、78、80、80、80、82,∴中位数是(78+80)÷2=79(分);(3)600×61040+=240(名), 答:进入决赛的学生中有240名学生的比赛成绩为优秀.【点睛】本题考查频数分布直方图、频数分布表、用样本估计总体、中位数,解答本题的关键是明确题意,利用数形结合的思想解答.23.(1)90,85;(2)估计这两个年级竞赛成绩达到90分及以上的学生共有1300名;(3)八年级“开学安全第一课”知识竞赛的学生成绩更优秀.【分析】(1)由八年级抽取的学生竞赛成绩结合众数和中位数的定义即可求解;(2)利用样本估计总体思想求解可得;(3)由八年级的中位数高于五年级的中位数,可得八年级“开学安全第一课”知识竞赛的学生成绩谁更优秀.【详解】解:(1)按照从小到大的顺序排列为50,60,80,80,80,90,90,90,90,100,一共10个数据,则a=90,b=80902+=85.故答案为:90,85;(2)45 2000100013001010⨯+⨯=(名).答:估计这两个年级竞赛成绩达到90分及以上的学生共有1300名;(3)∵平均数相等,八年级的众数和中位数高于五年级的众数和中位数,∴八年级“开学安全第一课”知识竞赛的学生成绩更优秀.【点睛】本题考查中位数、众数、平均数的意义和计算方法,以及样本估计总体,理解各个概念的内涵和计算方法是解题的关键.24.(1)18,19,18.5;(2)八年级成绩好,见解析;(3)九【分析】(1)根据众数和中位数的定义解决问题;(2)利用两年级成绩的平均数、方差都相同,则通过比较中位数的大小比较成绩;(3)根据方差的意义求解即可.【详解】解:(1)七年级20名学生成绩的众数a=18,八年级成绩的众数b=19,中位数c=18+192=18.5;(2)八年级的成绩好,∵七年级与八年级成绩的平均分和方差相等,而八年级的中位数大于七年级的中位数,即八年级高分人数稍多,∴八年级的成绩好;(3)∵七、八、九年级成绩的方差分别为2.7、2.7、2.5,∴九年级成绩的方差最小,∴九年级成绩更稳定,故答案为:九.【点睛】本题考查了方差、中位数、众数及折线统计图,解题的关键是掌握众数、中位数的概念及样本估计总体思想的运用.25.(1)10、10、10.5;(2)2=1S 甲,216=3乙S ,甲品牌冰箱的销售量比较稳定,建议商家可多采购甲品牌冰箱,理由见解析【分析】(1)将两种品牌冰箱销售量重新排列,再根据平均数、众数和中位数的概念求解即可; (2)先计算出甲品牌冰箱销售数量的方差,再根据方差的意义求解即可.【详解】解:(1)甲品牌销售数量从小到大排列为:9、9、10、10、10、12, 所以甲品牌销售数量的平均数为92103126⨯+⨯+=10(台),众数为10台, 乙品牌销售数量从小到大排列为7、7、10、11、12、13, 所以乙品牌销售数量的中位数为10112+=10.5(台), 补全表格如下:(2)建议商家可多采购甲品牌冰箱,∵甲品牌冰箱销量的方差2S 甲=16×[(9﹣10)2×2+(10﹣10)2×3+(12﹣10)2]=1,S 乙2=163, ∴2S 甲<S 乙2,∴甲品牌冰箱的销售量比较稳定,建议商家可多采购甲品牌冰箱.【点睛】本题考查了方差的含义和求法,要熟练掌握,解答此题的关键是要明确:方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好,也考查平均数、众数和中位数的定义. 26.整理数据:见解析;分析数据:见解析;(1)E ;(2)189人【分析】(1)先将数据排序,求出中位数,再完成表格,根据平均数与中位数作决策即可;(2)利用样本中D级以上人数所占比例乘以该校教师人数计算即可.【详解】解:将数据排序得71,76,81,82,83,86,86,88,89,90,90,92,93,95,96,100,100,100,100,100,根据中位数定义第10与11两数据都是90,为此中位数是90分,整理数据,补充表格如下:为E,故答案为:E.(2)该校共有教师210人,抽样20人中D级以上的人数为18人,估计该校教师的测试成绩等级为D级以上的人数为1821018920⨯=人.【点睛】本题考查数据统计,中位数,平均数,利用样本估计总体,掌握数据统计方法,中位数计算方法,平均数公式,会利用样本估计总体是解题关键.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2.某市测得一周 PM2.5 的日均值(单位:)如下:50,40,75,50,37,50,40,这组数据的中
位数和众数分别是( )
A.50 和 50B.50 和 40C.40 和 50D.40 和 40
3.已知一组数据 3,a,4,5 的众数为 4,则这组数据的平均数为( )
(度)
估计李好家六月份总月电量是 度.
15.商店某天销售了 11 件衬衫,其领口尺寸统计如下表:
领口尺寸(单位:
38 39 40 41 42
cm)
件数 1 4 3 1 2
13.李好在六月连续几天同一时刻观察电表显示的度数,记录如下:
日期 1 号 2 号 3 号 4 号 5 号 6 号 7 号 8 号 … 30 号
电表显示
120 123 127 132 138 141 145 148 …
北师大新版八年级数学上册《第 6 章 数据的分析》单元测试卷
一、选择题
1.已知一组数据:12,5,9,5,14,下列说法不正确的是( )
A.平均数是 9B.极差是 5C.众数是 5D.中位数是 9
第 1 页(共 20 页)
8.为了估计湖中有多少条鱼,先从湖中捕捉 50 条鱼做记号,然后放回湖里,经过一段时间,等带
记号的鱼完全混于鱼群中之后,再捕捞第二次,鱼共 200 条,有 10 条做了记号,则估计湖里有多
A.2.8B. C.2D.5
7.已知:一组数据 x1,x2,x3,x4,x5 的平均数是 2,方差是 ,那么另一组数据 3x1﹣2,3x2﹣2,
3x3﹣2,3x4﹣2,3x5﹣2 的平均数和方差分别是( )
A.2, B.2,1C.4, D.4,3
(1)请根据上表中的数据完成下表;(注:方差的计算结果精确到 0.1)
(2)根据综合评价得分统计表中的数据,请在图中画出甲、乙两组综合评价得分的折线统计图;
(3)由折线统计图中的信息,请分别对甲、乙两个小组连续六周的学习情况做出简要评价.
第 2 页(共 20 页)
18.甲,乙两班举行电脑汉字输入比赛,参赛学生每分钟输入汉字的个数统计结果如下表:
参赛人 平均字 班级 中位数 方差 二、填空题 11.一组数据 2、﹣2、4、1、0 的中位数是 .
12.近年来,义乌市民用汽车拥有量持续增长,2007 年至 2011 年我市民用汽车拥有量依次约为
(单位:万辆):11,13,15,19,x,这五个数的平均数为 16.2,则 x 的值为 .
21.某班实行小组量化考核制,为了了解同学们的学习情况,王老师对甲、乙两个小组连续六周的
综合评价得分进行了统计,并将得到的数据制成如下的统计表:
周次
23.市射击队为从甲、乙两名运动员中选拔一人参加省比赛,对他们进行了六次测试,测试成绩如
下表(单位:环):
第一次 第二次 第三次 第四次 第五次 第六次
于甲班优秀的人数
19.一次演讲比赛,评委将从演讲内容、演讲能力、演讲效果三个方面为选手打分,各项成绩均按
百分制,然后再按演讲内容:演讲能力:演讲效果=5:4:1 的比例计算选手的综合成绩(百分
制).进入决赛的前两名选手的单项成绩如下表所示:
第 3 页(共 20 页)
组别 一 二 三 四 五 六
甲组 12 15 16 14 14 13
乙组 9 14 10 17 16 18
数 数
甲 55 149 191 135
乙 55 151 110 135
某同学分析上表后得出如下结论:①甲、乙两班学生成绩的平均水平相同;②乙班优秀的人数多
少条鱼( )
A.400 条 B.500 条 C.800 条 D.1000 条
9.某校初一年级有六个班,一次测试后,分别求得各个班级学生成绩的平均数,它们不完全相
同,下列说法正确的是( )
A.全年级学生的平均成绩一定在这六个平均成绩的最小值与最大值之间
B.将六个平均成绩之和除以 6,就得到全年级学生的平均成绩
则这 11 件衬衫领口尺寸的众数是 cm,中位数是 cm.
16.已知三个不相等的正整数的平均数,中位数都是 3,则这三个数分别为 .
17.已知一个样本:1,3,5,x,2,它的平均数为 3,则这个样本的方差是 .
A.3B.4C.5D.6
4.甲、乙、丙、丁四位同学五次数学测验成绩统计如表.如果从这四位同学中,选出一位成绩较
好且状态稳定的同学参加全国数学联赛,那么应选( )
甲 乙 丙 丁
22.“最美女教师”张丽莉,为抢救两名学生,以致双腿高位截肢,社会各界纷纷为她捐款,我市某
中学九年级一班全体同学参加了捐款活动,该班同学捐款情况的部分统计图如图所示:
(1)求该班的总人数;
(2)将条形图补充完整,并写出捐款总额的众数;
(3)该班平均每人捐款多少元?
第 4 页(共 20 页)
分的同学最多”,小英说:“我们组的 7 位同学成绩排在最中间的恰好也是 86 分”,上面两位同学的
话能反映出的统计量是( )
A.众数和平均数 B.平均数和中位数
C.众数和方差 D.众数和中位数
6.已知一组数据 10,8,9,x,5 的众数是 8,那么这组数据的方差是( )
甲 10 8 9 8 10 9
乙 10 7 10 10 9 8
(1)根据表格中的数据,分别计算甲、乙的平均成绩.
平均数 中位数 方差
甲组
乙组
(2)分别计算甲、乙六次测试成绩的方差;
(3)根据(1)、(2)计算的结果,你认为推荐谁参加省比赛更合适,请说明理由.
第 5 页(共 20 页)
选手 演讲内容 演讲能力 演讲效果
A 85 95 95
B 95 85 95
请决出两人的名次.
20.广州市努力改善空气质量,近年来空气质量明显好转,根据广州市环境保护局公布的
C.这六个平均成绩的中位数就是全年级学生的平均成绩
D.这六个平均成绩的众数不可能是全年级学生的平均成绩
10.有一组数据 7、11、12、7、7、8、11.下列说法错误的是( )
A.中位数是 7B.平均数是 9C.众数是 7D.极差是 5
平均数 80 85 85 80
方 差 42 42 54 59
A.甲 B.乙 C.丙 D.丁
5.期中考试后,班里有两位同学议论他们所在小组同学的数学成绩,小明说:“我们组成绩是 86
2006﹣2010 这五年各年的全年空气质量优良的天数,绘制折线图如图.根据图中信息回答:
(1)这五年的全年空气质量优良天数的中位数是 ,极差是 .
(2)这五年的全年空气质量优良天数与它前一年相比,增加最多的是 年(填写年
份).
(3)求这五年的全年空气质量优良天数的平均数.
相关文档
最新文档