最新华师大版九年级数学上册244解直角三角形第

合集下载

华师大版九年级数学上册课件:24.4解直角三角形(2)

华师大版九年级数学上册课件:24.4解直角三角形(2)

• 不习惯读书进修的人,常会自满于现状,觉得再没有什么事情需要学习,于是他们不进则退。经验丰富的人读书用两只眼睛,一只眼睛看到纸面 上的话,另一眼睛看到纸的背面。2022年4月12日星期二下午6时6分53秒18:06:5322.4.12
• 书籍是屹立在时间的汪洋大海中的灯塔。2022年4月下午6时6分22.4.1218:06April 12, 2022 • 正确的略读可使人用很少的时间接触大量的文献,并挑选出有意义的部分。2022年4月12日星期二6时6分53秒18:06:5312 April 2022 • 书籍是屹立在时间的汪洋大海中的灯塔。
AB AD sin 60 10 (3 米
答:塔高为10 3米
练习1.某飞机与空中A处探测到目标 C,此时飞行高度AC=1200米, 从飞机上看地平面控制点B的 俯角α=16°31′,求飞机A到 控制点B的距离。
分析:解决此类实际问题的关键是画出正 确的示意图,能说出 题目中每句话对 应图中哪个角或边,将实际问题转化 直角三角形的问题来解决。
24.4 解直角三角形
在RtABC中,C 90
A
1.三边关系 a2 b2 c2 (勾股定理 ) b c
2.锐角关系 A B 90
3. 边角关系
90度
C
a
B
sin A a , cos A b , tan A a , cot A b
c
c
b
a
sin B b , cos A a , tan B b , cot B a
谢谢观赏
You made my day!
我们,还在路上……
练习3 . 如图,沿AC方向开山修渠.为了加
快施工进度,要在小山的另一边同时施 工.从AC上的一点B取∠ABD=140°, BD=520米,∠D=50°.那么开挖点E离D多 远(精确到0.1米),正好能使A,C,E成一直 线?

华师大版初中数学九年级上册24.4《解直角三角形》ppt课件

华师大版初中数学九年级上册24.4《解直角三角形》ppt课件

1、解直角三角形除直角外,至少要知道 两个元素(这两个元素中至少有一条边 ) 2、解直角三角形的条件可分为两大类:
①、已知一锐角、一边
(一锐角、一直角边或一斜边)
②、已知两边
(一直角边,一斜边或者两条直角边)
解直角三角形的依据
(1)三边之间的关系: a2+b2=c2(勾股定理)
(2)锐角之间的关系: ∠ A+ ∠ B= 90º B
可以求出2001年纠偏后塔身中心线与垂直中心线的夹角. 你愿意试着计算一下吗?
复习
30°、45°、60°角的正弦值、余弦值和正切值如下表:
锐角a
三角函数 sin a cos a tan a
30°
1 2 3 2
3 3
45°
2 2
2 2
1
60°
3 2
1 2
3
对于sinα与tanα,角度越大,函数值也越大;(带正) 对于cosα,角度越大,函数值越小。
宁乘勿除,化斜为直”
如图,在Rt△ABC中,∠C=90°,AC=6, ∠BAC的 平分线AD 4 3 ,解这个直角三角形。
解:cos CAD AC 6 3
AD 4 3 2
CAD 30
A
6 43
因为AD平分∠BAC
C
D
B
CAB 60,B 30
AB 12, BC 6 3
练习
1.在Rt△ABC中,∠C=90°,根据下列条件解直角三角形;
(2)
∠B=72°,c = 14.
解:
sin B b c
A c=14 b
b c sin B 14sin 72 13.3
B aC
cos B a c
a c cos B 14 cos 72 4.34

24. 解直角三角形及一般应用 PPT课件(华师大版)

24.  解直角三角形及一般应用 PPT课件(华师大版)


添设 辅助线解
解 直 角 三 角 形

直角 三角形
导引:在Rt△BCD中,求出BC与BD的长,再求出甲、乙所
用的时间,比较其大小即可知道谁先到达B处.
解:乙先到达B处.理由:由题意得∠BCD=55°,
∠BDC=90°,
∵tan∠BCD= BD , CD
∴BD=CD·tan∠BCD=40×tan 55°≈57.2(m),
CD
又cos∠BCD= ,
BC
【例3】〈浙江温州〉某海滨浴场东西走向的海岸线可近似看成直线l (如图).救生员甲在A处的瞭望台上视察海面情况,发现其正 北方向的B处有人发出求救信号.他立即沿AB方向径直前往 救援,同时通知正在海岸线上巡逻的救生员乙.乙立刻从C处 入海,径直向B处游去.甲在乙入海10 s后赶到海 岸线上的D处,再向B处游去.若CD=40 m,B在 C的北偏东35°方向上,甲、乙的游泳速度都是2 m/s.谁先到达B处?请说明理由.(参考数据:sin 55°≈0.82,cos 55°≈0.57,tan 55°≈1.43)
b
(3)利用∠B=90°-∠A求出∠B的度数.
1 (兰州)如图,△ABC中,∠B=90°,BC=2AB,则cos A =( )
A. 5 B. 1
2
Байду номын сангаас
2
C.2 5 5
D. 5 5
2 如图,四边形ABCD是梯形,AD∥BC,CA是∠BCD的 平分线,且AB⊥AC,AB=4,AD=6,则tan B=( )
【例1】在Rt△ABC中,a,b,c分别是∠A,∠B,∠C
的对边,∠C=90°,a=6,b= 2 3,解这个
直角三角形.
导引:先画出Rt△ABC,标注已知量,根据勾股定理 求出斜边长,然后根据正切的定义求出∠A的 度数,再利用∠B=90°-∠A求出∠B的度数.

华师大版初中数学九年级上册24.4《解直角三角形(第1课时)教案(含答案)

华师大版初中数学九年级上册24.4《解直角三角形(第1课时)教案(含答案)

华师大版初中数学重点知识精选掌握知识点,多做练习题,基础知识很重要!华师大初中数学和你一起共同进步学业有成!24.4 解直角三角形第1课时解直角三角形【知识与技能】1.使学生理解解直角三角形的意义;2.能运用直角三角形的三个关系式解直角三角形.【过程与方法】让学生学会用直角三角形的有关知识去解决某些简单的实际问题,从而进一步把形和数结合起来,提高分析和解决问题的能力.【情感态度】通过对问题情境的讨论,以及对解直角三角形所需的最简条件的探究,培养学生的问题意识,体验经历运用数学知识解决一些简单的实际问题,渗透“数学建模”的思想.【教学重点】用直角三角形的三个关系式解直角三角形.【教学难点】用直角三角形的有关知识去解决简单的实际问题.一、情境导入,初步认识前面的课时中,我们学习了直角三角形的边角关系,下面我们通过一道例题来看看大家掌握得怎样.例在Rt△ABC中,∠C=90°,AB=5,BC=3,求∠A的各个三角函数值.二、思考探究,获取新知把握好直角三角形边角之间的各种关系,我们就能解决直角三角形有关的实际问题了.例1如图,一棵大树在一次强烈的地震中于离地面5米折断倒下,树顶在离树根12米处,大树在折断之前高多少?例子中,能求出折断的树干之间的夹角吗?学生结合引例讨论,得出结论:利用锐角三角函数的逆过程.通过上面的例子,你们知道“解直角三角形”的含义吗?学生讨论得出“解直角三角形”的含义:在直角三角形中,由已知元素求出未知元素的过程,叫做解直角三角形.【教学说明】学生讨论过程中需使其理解三角形中“元素”的内涵,至于“元素”的定义不作深究.问:上面例子中,若要完整解该直角三角形,还需求出哪些元素?能求出来吗? 学生结合定义讨论目标和方法,得出结论:利用两锐角互余.【探索新知】问:上面的例子是给了两条边.那么,如果给出一个角和一条边,能不能求出其他元素呢?例2如图,东西两炮台A 、B 相距2000米,同时发现入侵敌舰C ,在炮台A 处测得敌舰C 在它的南偏东40°的方向,在炮台B 处测得敌舰C 在它的正南方,试求敌舰与两炮台的距离(精确到1米).解:在Rt △ABC 中,∵∠CAB=90°-∠DAC=50°,BCAB=tan ∠CAB,∴BC=AB·tan ∠CAB=2000×tan50°≈2384(米). ∵AB AC=cos50°, ∴AC=20005050AB cos cos =︒︒≈3111(米). 答:敌舰与A 、B 两炮台的距离分别约为3111米和2384米.问:AC 还可以用哪种方法求?学生讨论得出各种解法,分析比较,得出:使用题目中原有的条件,可使结果更精确. 问:通过对上面两个例题的学习,如果让你设计一个关于解直角三角形的题目,你会给题目几个条件?如果只给两个角,可以吗?(几个学生展示)学生讨论分析,得出结论.问:通过上面两个例子的学习,你们知道解直角三角形有几种情况吗?学生交流讨论归纳:解直角三角形,只有下面两种情况:(1)已知两条边;(2)已知一条边和一个锐角.【教学说明】使学生体会到“在直角三角形中,除直角外,只要知道其中2个元素(至相信自己,就能走向成功的第一步教师不光要传授知识,还要告诉学生学会生活。

华东师大版九年级数学上册课件:24.解直角三角形的应用(方向角、俯角、仰角)

华东师大版九年级数学上册课件:24.解直角三角形的应用(方向角、俯角、仰角)
∴ = 2MN = 2
N = 3MN = 3
∆中,∵ ∠BNM = 90°, ∠MBN = 45°
∴ BN = MN = ,
∵AN+BN=AB
BM= 2MN = 2
∴ 3 + = 300(√3 + 1)
∴ = 2 = 600
∴ = 300
∴ = 2 = 300 2
在地平面上取一点C,用测量仪测得点A的仰角为45°,
再向后退20米取一点D,使点D在BC的延长线上,此时测
得点A的仰角为30°,已知测量仪的高为1.5米,求建筑
物AB的高度.

解:∆中, =
=
tan45°

∆中, =
= 3
tan30°
∴ = −
在教室的窗台前看操场上的旗杆,心想:“站
在二楼可以利用解直角三角形测得旗杆的高度
吗?”他望着旗杆顶端和旗杆底部,可以测得
视线与水平线之间的夹角各一个,但是,这两
个角怎样命名区分呢?
【自主学习】阅读教材第113—114页,并完
成下列各题
如图,∠CAE,∠DAE在测量
中各叫什么角呢?
∠CAE叫做仰角
∠DAE叫俯角
为α,AC=7米,则树高BC为 7tan 米.
2.如图,在建筑平台CD的顶部C处,测得大
树AB的顶部A的仰角为45°,测得大树AB的
底部B的俯角为30°,已知平台CD的高度为5
m,则大树的高度为 5 3 + 5 _m(结果保留
根号).
及时反馈一
1.如图,为了测量顶部不能到达的建筑物AB的高度,先
∴ 与 之间的距离为100海里
∴ = 50
(2)已知距观测点D处50海里范围内有暗礁.

华东师大版)九年级数学上册《24.4解直角三角形》教学设计

华东师大版)九年级数学上册《24.4解直角三角形》教学设计
1.利用多媒体展示生活中常见的直角三角形实物图,如楼梯、墙壁与地面形成的直角三角形等,引导学生观察并思考这些直角三角形的特点和作用。
2.提问:“我们已经学习了勾股定理,那么如何利用勾股定理来解决直角三角形中的未知问题呢?”通过这个问题,引发学生对解直角三角形方法的思考。
3.引导学生回顾Βιβλιοθήκη 股定理的内容,为新课的学习做好知识铺垫。
c.正切函数:在直角三角形中,对于角A,正切函数定义为对边与邻边的比值,即tanA =对边/邻边。
2.通过具体实例,讲解如何运用三角函数解决直角三角形中的未知问题,如求角度和边长。
3.结合计算器,让学生学会计算三角函数的值,并解决实际问题。
(三)学生小组讨论
1.将学生分成小组,每组讨论以下问题:
a.如何利用三角函数解决实际问题?
三、教学重难点和教学设想
(一)教学重难点
1.理解并掌握三角函数的定义和性质,特别是正弦、余弦、正切函数在实际问题中的应用。
2.能够运用勾股定理和三角函数解决直角三角形中的未知角度和边长问题,以及解决一些实际问题。
3.培养学生运用数形结合、分类讨论等数学思想方法分析和解决问题的能力。
(二)教学设想
1.教学导入:通过生活中的实例,如测量旗杆高度、楼间距等,引出解直角三角形的问题,激发学生的学习兴趣,使其认识到数学与现实生活的紧密联系。
4.教学策略:
a.分层教学:针对学生的不同水平,设计不同难度的练习题,使每个学生都能在原有基础上得到提高。
b.适时反馈:在教学过程中,及时关注学生的学习情况,给予针对性的指导和鼓励,提高学生的学习信心。
5.教学评价:
a.过程性评价:关注学生在课堂讨论、实践操作等方面的表现,鼓励学生积极参与,培养其探究精神和创新能力。

华师大版九年级数学上册24.4.1解直角三角形教学设计

华师大版九年级数学上册24.4.1解直角三角形教学设计
6.巩固拓展,提高能力:设计丰富的课堂练习和课后作业,让学生在练习中巩固所学知识,提高解题能力。同时,拓展学生的思维,引导学生探索解直角三角形的其他方法。
7.评价与反思,促进成长:采用多元化评价方式,关注学生的过程表现和成果展示。引导学生进行自我反思,发现不足,制定改进措施,促进学生的成长。
8.融入信息技术,提高教学效果:利用多媒体、网络等信息技术手段,形象生动地展示解题过程,提高课堂教学效果。
3.突破难点,强化方法:通过讲解和演示,引导学生理解并掌握三角函数的定义和用法,结合具体例题,让学生在实际操作中突破难点。
4.合作学习,培养团队精神:组织学生进行小组讨论、交流,共同解决问题。教师在此过程中,引导学生学会倾听、表达、协作,培养团队精神。
5.创设互动课堂,提高学生参与度:鼓励学生提问、发表见解,教师及时给予反馈,营造积极向上的课堂氛围,提高学生的课堂参与度。
1.学生对勾股定理的应用还不够熟练,需要在实际例题中加强训练,提高解题速度和准确率。
2.学生对三角函数的理解和应用尚处于起步阶段,需要通过具体实例,让学生感受三角函数在解直角三角形中的价值。
3.部分学生对数学学习的兴趣不高,需要设计有趣、富有挑战性的教学活动,激发学生的学习热情。
4.学生在团队合作中,可能存在沟通不畅、分工不明确等问题,教师需引导学生学会相互协作,提高团队效率。
(二)讲授新知
1.讲解勾股定理法:通过具体例题,让学生理解并掌握如何运用勾股定理求解直角三角形的边长。
2.介绍三角函数法:讲解正弦、余弦、正切函数的定义和性质,引导学生学会运用三角函数求解直角三角形中的未知角度。
3.结合实际例题,展示如何运用勾股定理法和三角函数法求解直角三角形,让学生直观地感受解题过程。

华师大版九年级数学上册2441解直角三角形教案.docx

华师大版九年级数学上册2441解直角三角形教案.docx

24.4. 1解直角三角形一、教学目标知识与技能1・使学生理解解直角三角形的意义;2.能运用直角三角形的三个关系式解直角三角形.过程与方法让学生学会用直角三角形的有关知识去解决某些简单的实际问题,从而进一步把形和数结合起来,提高分析和解决问题的能力.情感态度通过対问题情境的讨论,以及对解直角三角形所需的最简条件的探究,培养学生的问题意识,体验经历运用数学知识解决一些简单的实际问题,渗透“数学建模”的思想.二、教学重点用直角三角形的三个关系式解直角三角形.三、教学难点用直角三角形的有关知识去解决简单的实际问题.四、学生学情分析(一)从学生的年龄特征和认知特征来看:九年级学生的思维活跃,接受能力较强,具备了一定的数学探允活动经验和应用数学的意•识.(二)从学生己具备的知识和技能来看:九年级学生己经掌握直角三角形边(勾股定理)、角的关系,能灵活运用相似图形的性质及判定方法解决问题,有较强的推理证明能力,这为顺利完成本节课的教学任务打下了基础.五、教学策略分析本节课的教法采用的是情境引导法和探究发现法.在教学过程屮,通过适宜的问题情境引发新的认知冲突;建立知识间的联系.教师通过引导、指导、反馈、评价,不断激发学生对问题的好奇心,使其在积极的自主活动中主动参与解直角三角形的思路建构过程,并运用数学知识解决实际问题,亨受数学学习带来的乐趣.本节课的学习方法采用自主探究法与合作交流法相结合.本节课数学活动贯穿始终,既有学生自主探究的,也有小组合作交流的,旨在让学生从自主探究屮发展,从合作交流屮提I司•五、教学过程(一)复习引入(学生自主完成5分钟)在RtAABC中,ZC=90° , AB=5, BC=3,求ZA的各个三角函数值.问:一个直角三角形有儿个元素?它们之间有什么关系?(1)三边之间关系(2)锐角之间关系(3)边叫之间关系sinA= . cosA二tanA=(二)探索新知1.背景问题(根据问题导向自我学习10分钟、5分钟教师引导归纳,规范儿何语言书写格式)如图,一棵大树在一次强烈的地震中于离地面5米折断倒下,树顶在离树根12米处,大树在折断之前高多少?例子中,能求出折断的树干之间的夹角吗?探究①:在背景问题的条件下,给定什么条件问题补充:1、实例图形能够简化为怎样的几何图形?2、己知了直角三角形的什么边?分別是()、(-),未知的是直角三角形的什么边?()3、根据()定理,可以求出直角三角形的斜边?此定理为:()4、大树的高•度实际上是有直角三角形的()与()的和。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档