九年级数学上册 第三章 概率的进一步认识 1 用树状图和表格法求概率教案 北师大版
最新北师大版初三数学上册第三章概率的进一步认识全单元教案设计含教学反思
第三章 概率的进一步认识1 用树状图或表格求概率教学目标1.了解重复试验时频率可作为事件发生的概率的估计值.2.会借助树状图或列表法计算涉及两步试验的随机事件发生的概率.重点借助树状图或列表法计算涉及两步试验的随机事件发生的概率.难点学会选择适当的方法计算涉及两步试验的随机事件发生的概率.一、情境导入教师:抛掷一枚均匀的硬币,硬币落下后,会出现几种情况?教师:你认为正面朝上和反面朝上的可能性相同吗?二、探究新知1.课件出示:小颖、小明和小凡都想去看周末电影,但只有一张电影票,三人决定一起做游戏,谁获胜谁就去看电影.游戏规则如下:连续掷两枚质地均匀的硬币,若两枚正面朝上,则小明获胜;若两枚反面朝上,则小颖获胜;若一枚正面朝上、一枚反面朝上,则小凡获胜.你认为这个游戏公平吗?学生分小组进行试验,然后累计各组的试验数据,分别计算“两枚正面朝上”“两枚反面朝上”“一枚正面朝上、一枚反面朝上”这三个事件发生的频数与频率,并由此估计这三个事件发生的概率.教师巡视指导个别有困难的学生.教师:通过刚才的试验,你认为这个游戏公平吗?引导学生思考:在上面掷硬币的试验中,(1)(1)掷第一枚硬币可能出现哪些结果?它们发生的可能性是否一样?掷第一枚硬币可能出现哪些结果?它们发生的可能性是否一样?(2)(2)掷第二枚硬币可能出现哪些结果?它们发生的可能性是否一样?掷第二枚硬币可能出现哪些结果?它们发生的可能性是否一样?(3)(3)在第一枚硬币正面朝上的情况下,在第一枚硬币正面朝上的情况下,第二枚硬币可能出现哪些结果?它们发生的可能性是否一样?如果第一枚硬币反面朝上呢?学生分小组讨论后给出答案,教师点评并进一步讲解:为了方便理解,我们通常借助画树状图或画表格列出所有可能出现的结果.①用树状图列出所有可能出现的结果:此图类似于树的形状,所以称为树状图.②用列表法列举所有可能出现的结果:第二枚硬币第一枚硬币 正 反正 (正,正正,正) ) (正,反正,反) )反 (反,正反,正) ) (反,反反,反) )共有4种结果,每种结果出现的可能性相同,其中,小明获胜的结果有1种:种:((正,正正,正)),所以小明获胜的概率是14;小颖获胜的结果有1种:种:((反,反反,反)),所以小颖获胜的概率是14;小凡获胜的结果有2种:种:((正,反正,反)()()(反,正反,正反,正)),所以小凡获胜的概率是24=12.因此,这个游戏对三人是不公平的.教师:利用树状图或表格的优点是什么?什么时候用树状图比较方便?什么时候用表格比较方便? 引导学生得出:引导学生得出:(1)(1)(1)利用树状图或表格可以不重复、利用树状图或表格可以不重复、利用树状图或表格可以不重复、不遗漏地列出所有可能出现的结果,从而比较方不遗漏地列出所有可能出现的结果,从而比较方便地求出某些事件发生的概率.便地求出某些事件发生的概率.(2)(2)(2)当试验包含两步时,列表法比较方便,也可以用树状图法;当试验在当试验包含两步时,列表法比较方便,也可以用树状图法;当试验在三步或三步以上时,用树状图法方便.2.课件出示:小颖为学校联欢会设计了一个“配紫色”游戏:下面是两个可以自由转动的转盘,每个转盘被分成相等的几个扇形.游戏者同时转动两个转盘,如果转盘A 转出了红色,转盘B 转出了蓝色,那么他就赢了,因为红色和蓝色在一起配成了紫色.(1)(1)利用画树状图或列表的方法表示游戏所有可能出现的结果.利用画树状图或列表的方法表示游戏所有可能出现的结果. (2)(2)游戏者获胜的概率是多少?游戏者获胜的概率是多少? 学生独立完成后汇报答案,教师点评. 3.课件出示:用如图所示的转盘进行“配紫色”游戏.(1)(1)小颖制作了下图,并据此求出游戏者获胜的概率是小颖制作了下图,并据此求出游戏者获胜的概率是12.(2)(2)小亮则先把转盘小亮则先把转盘A 的红色区域等分成2份,分别记作“红色1”“红色2”,然后制作了下表,据此求出游戏者获胜的概率也是12.B 盘 A 盘 红色蓝色红色1 (红1,红,红) ) (红1,蓝,蓝) ) 红色2 (红2,红,红) ) (红2,蓝,蓝) ) 蓝色(蓝,红蓝,红) )(蓝,蓝蓝,蓝) )教师:你认为谁做得对?说说你的理由.学生思考后举手回答,教师点评,并提出问题:用画树状图和列表的方法求概率时应注意些什么? 引导学生得出:用画树状图和列表的方法求概率时应注意各种结果出现的可能性必须相同. 三、举例分析例1 (课件出示教材第62页例1)学生小组内讨论交流,教师板书规范书写过程.解:因为小明和小颖每次出现这三种手势的可能性相同,所以可以利用树状图列出所有可能出现的结果:总共有9种可能的结果,每种结果出现的可能性相同.其中,两人手势相同的结果有3种:种:((石头,石头石头,石头)()()(剪刀,剪刀剪刀,剪刀剪刀,剪刀)()()(布,布布,布布,布)),所以小凡获胜的概率为39=13;小明胜小颖的结果有3种:种:((石头,剪刀石头,剪刀)()()(剪刀,布剪刀,布剪刀,布)()()(布,石头布,石头布,石头)),所以小明获胜的概率为39=13; 小颖胜小明的结果也有3种:种:((剪刀,石头剪刀,石头)()()(布,剪刀布,剪刀布,剪刀)()()(石头,布石头,布石头,布)),所以小颖获胜的概率为39=13.因此,这个游戏对三人是公平的.例2 (课件出示教材第67页例2)学生独立完成,教师巡视指导,集体讲评.四、练习巩固1.教材第61页“随堂练习”.2.教材第64页“随堂练习”.3.教材第67页“随堂练习”.五、小结1.通过本节课的学习,你有什么收获?2.利用画树状图和列表的方法求概率时应注意些什么?六、课外作业1.教材第62页习题3.1第1,2题.2.教材第64页习题3.2第2题.3.教材第68页习题3.3第1题.教学反思本节课的内容是利用画树状图和列表的方法求概率.在教学过程中,让学生通过例子比较两种方法的使用条件.体现学生的主体地位,引导学生主动探讨新知识.创造轻松的课堂氛围,使学生愉快地学习.2 用频率估计概率教学目标1.能用试验的方法估计一些复杂随机事件发生的概率.2.理解当试验次数足够大时,试验频率将稳定于理论概率.3.经历试验、统计等活动过程,在活动中进一步发展学生合作交流的意识和能力.重点掌握用频率估计概率的条件及方法. 难点用试验的方法估计复杂随机事件的概率. 一、复习导入1.用列举法求概率的条件是什么? 2.用列举法求概率的方法是什么? 3.A =(事件事件)),P(A)P(A)的取值范围是什么?的取值范围是什么?4.列表法、树状图法是不是列举法,在什么时候运用这种方法? 教师指名学生回答.教师点评:(1)(1)用列举法求概率的条件是:①每次试验中,可能出现的结果是有限的;②每次试验中,各种结果用列举法求概率的条件是:①每次试验中,可能出现的结果是有限的;②每次试验中,各种结果发生的可能性相等.(2)(2)每次试验中,有每次试验中,有n 种可能结果种可能结果((有限个有限个)),发生的可能性相等;事件A 包含m 种结果,则P(A)P(A)==m n. (3)0≤P(A)≤1,其中不可能事件B ,P(B)P(B)==0,必然事件C ,P(C)P(C)==1.(4)(4)列表法、列表法、树状图法是列举法,在列出的所有结果很多或一次试验要涉及3个或更多的因素时采用这种方法.教师:前面的列举法只能在所有可能是等可能并且有限个的大前提下进行,如果不满足这两个条件,是否还可以应用以上的方法呢?这节课我们一起来探究.二、探究新知 1.课件出示:某林业部门要考察某种幼树在一定条件下的移植成活率. (1)(1)能够用列举法求出成活率吗?为什么?能够用列举法求出成活率吗?为什么? (2)(2)用什么方法求出成活率呢?用什么方法求出成活率呢? (3)(3)请完成下表,并求出移植成活率.请完成下表,并求出移植成活率.移植总数移植总数(n) (n)成活数成活数(m) (m)成活的频率成活的频率((mn )10 8 0.8 50 47 270 235 0.817 400 369 75 662 1 500 1 335 0.890 3 500 3 203 0.914 7 000 6 335 900 8 073 14 00012 6280.902学生思考后给出答案,教师点评:(1)(1)由于移植总数无限,每一棵小苗成活的可能性不相等,所以不能用列举出求出成活率.由于移植总数无限,每一棵小苗成活的可能性不相等,所以不能用列举出求出成活率. (2)(2)应该用频率来估计概率.应该用频率来估计概率. (3)(3)移植成活率大约是移植成活率大约是0.9. 2.课件出示:一个口袋中有红球、白球共10个,这些球除颜色外都相同,如果不将球倒出来数,那么你能设计一个试验方案,估计其中红球与白球的比例吗?学生分小组讨论交流并得出可行方案.方案1:每次随机摸出一球并记录颜色,然后将球放回,搅匀,当次数越多,试验频率将稳定于理论概率.方案2:每次随机摸出6个球,并记录其中红球与白球的比例,然后将球放回,搅匀,当次数越多,试验频率将稳定于理论概率.3.课件出示:某水果公司以2元/千克的成本新进了10 000千克的柑橘,如果公司希望这种柑橘能够获得利润5 000元,那么在出售柑橘元,那么在出售柑橘((已经去掉损坏的柑橘已经去掉损坏的柑橘))时,每千克大约定价为多少元比较合适?销售人员首先从所有的柑橘中随机地抽取若干柑橘,进行了“柑橘损坏表”统计,并把获得的数据记录在下表中,请你帮忙完成下表.柑橘总 质量质量//千克损坏柑橘 质量质量//千克 柑橘损坏的频率 50 5.50 0.110 100 10.50 0.105 150 15.50 200 19.42 250 24.25 300 30.93 350 35.32 400 39.24 450 44.57 50051.540.103学生完成后给出答案,教师点评. 4.课件出示:一个学习小组有6名男生、名男生、33名女生,老师要从小组的学生中先后随机地抽取3人参加几项测试,并且每名学生都可被重复抽取,你能设计一种试验来估计“被抽取的3人中有2名男生、名男生、11名女生”的概率吗?学生分小组讨论后给出答案,教师点评分析:因为要做“从这9人中抽取3人”的试验的工作量很大,我们可用下面的方法来估计概率:取9张形状完全相同的卡片,在6张卡片上分别写上1~6来表示男生,在其余的3张卡片上分别写上7~9来表示女生,把9张卡片混合起来并搅拌均匀.从卡片中抽3次,随机抽取,每次抽取1张后放回,并记录结果,经大量重复试验,就能够计算相关频率,估计出“被抽取的3人中有2名男生、名男生、11名女生”的概率.教师:通过上面的学习,你能归纳出什么知识呢?引导学生得出:引导学生得出:(1)(1)(1)当试验的所有可能结果不是有限个,或各种可能结果发生的可能性不相等时,当试验的所有可能结果不是有限个,或各种可能结果发生的可能性不相等时,当试验的所有可能结果不是有限个,或各种可能结果发生的可能性不相等时,可可以通过统计频率来估计概率.(2)(2)在同样条件下,大量重复试验时,根据一个随机事件发生的频率所逐渐稳定到的常数,可以估计在同样条件下,大量重复试验时,根据一个随机事件发生的频率所逐渐稳定到的常数,可以估计这个事件发生的概率.三、练习巩固教材第70页“随堂练习”第1,2题. 四、小结1.通过本节课的学习,你有什么收获? 2.用频率估计概率的条件是什么? 3.用频率估计概率的方法是什么? 五、课外作业教材第71页习题3.4第1,2题.教学反思本节课从统计式试验频率的角度去研究一些随机试验中事件的概率,本节课从统计式试验频率的角度去研究一些随机试验中事件的概率,由于此方法不受列举法求概率由于此方法不受列举法求概率的两个条件的限制,所以本节课要强调的是在什么情况下用这种方法,怎么用这种方法求概率也是本节的重点和难点之所在.在教学过程中,让学生通过复习和比较列举法引入:每次试验的所有可能结果不是有限个,或各种可能结果发生的可能性不相等时,利用频率求概率的方法.使学生更清楚地明白这两种方法的使用方法及其特点.课堂上,运用生活中的例子,让学生体验生活中的数学.。
九年级数学上册 第三章 概率的进一步认识 31 用树状图或表格求概率 第1课时 用树状图或表格求概率
第三章概率的进一步认识1用树状图或表格求概率第1课时用树状图或表格求概率的图示,我们改进之后可以形成如下形式:(利用多媒体出示以下内容)处理方式:学生结合自主探究题目,独自思考2分钟左右后在小组内进行讨论交流;然后利用幻灯片对第(1)(2)题找1~2个学生进行回答,第(3)题在学生回答后提出“你能否尝试用图形表示它们的结果?”在学生思考讨论后,根据巡查中学生出现的情况,找3~4个学生在黑板上展示其讨论结果.对学生在黑板上展示的讨论结果中出现的问题,进行针对性的修改,并利用多媒体展示规X地利用“树状图”或“列表法”列举所有可能出现的结果.活动三:开放训练体现应用【应用举例】我们已经能够利用“树状图”或“列表法”来列举一个事件发生可能出现的所有结果,你能利用所学知识帮助小颖解决这个问题吗?请同学们仔细审题,完整地写下你的答案.(多媒体出示学以致用题目)例如图3-1-4,小颖有两件上衣,分别是红色和白色,有两条裤子,分别为黑色和白色,她随机拿出一件上衣和一条裤子穿上,恰好是白色上衣和白色裤子的概率是多少?本环节的设计既让学生练习了用“树状图”或“列表法”求概率的方法,同时又规X了用“树状图”或“列表法”求概率的解题步骤.处理方式:找2个学生在黑板上进行展示,其他学生在练习本上处理,然后针对学生出现的问题进行纠正,在解题过程中,要特别强调列表或树状图后文字语言的描述,从而使解题过程更加规X.【拓展提升】例(回归开始的问题类型,加以巩固提升本节课知识)一个盒子中装有一个红球、一个白球.这些球除颜色外都学生一般相同,从中随机地摸出一个球,记下颜色后放回,再从中随机都会用树状图或摸出一个球.求:表格求出某些事(1)两次都摸到红球的概率;件发生的概率,也(2)两次摸到不同颜色球的概率;能体会到这种方(3)只有一X电影票,通过做这样一个游戏,谁获胜谁就去法的简便性,但是看电影.如果是你,你如何选择?容易忽略各种情处理方式:如果学生没想到这些方法,教师可以以呈现表况出现的可能性格或者提问的方式等引出这些不同的求法,从而引出列表法.用是相同的这个条树状图或表格可以方便地求出某些事件发生的概率.在借助于件.树状图或表格求某些事件发生的概率时,必须保证各种情况出现的可能性是相同的.(续表)【当堂训练】学以致用,当堂。
九年级数学上册第三章概率的进一步认识复习教案2新版北师大版
九年级数学上册第三章概率的进一步认识复习教案2新版北师大版教学目标1、运用树状图和列表法计算简单事件发生的概率,用试验或模拟试验的方法估计一些复杂随机事件发生的概率;2、体会频率与概率之间的关系。
知识梳理1、频率与概率的含义频数:在数据统计中,每个对象出现的次数为频数。
频率:每个对象出现的次数与总次数的比值为频率,即总次数频数频率 。
概率:表示某事件发生的可能性大小,即一个事件发生的可能性大小的数值。
2、频率与概率的关系当试验次数很大时,某个事件发生的频率稳定在相应的概率附近。
3、运用树状图或列表法求概率(1)树状图法是将试验中的第一步的结果写在第一层,第二步的结果写在第二层,以此类推……把事件所有可能的结果一一列出,有利于帮助我们分析问题,既形象直观又条理分明。
(2)列表法,当一次试验涉及两个步骤时,将其中一个步骤作为行,另一个步骤作为列,列为表格,将事件所有可能的结果列在表格里。
注意:各种结果出现的可能性相同;涉及3个或更多因素时,用树状图较简便本章中运用列表法或画树状图法求随机事件发生的概率是历年中考的热点内容,运用随机事件发生的频率估计概率在中考中也经常考查,这两类考题多以解答题的形式出现。
例题学习例1、一个透明的袋子装了三个小球,他们除了分别标有1、3、5不同外,其他完全相同,从袋子中摸出一球后放回,再摸出一球,则两次摸出的球数字之和为6的概率为跟踪练习:如图1转盘被等分成三个扇形,并分别标上1,2,3和6,7,8,若同时转动两个转盘各一次,转盘停止后,指针指向的数字和为偶数的概率为例2、现有四张完全相同的卡片,上面分别标有数字-1、-2、3、4,把这些卡片背面朝上洗匀,然后从中随机抽取两张,则这两张卡片上的数字之积为负数的概率是跟踪练习:某校决定从三名男生和两名女生中选出两名同学担任艺术节文艺演出的主持人,则选出的恰为一男一女的概率为例3、某运动员在同一条件下射击,结果如下表:(2)这个运动员射击一次击中靶心的概率为多少跟踪练习:在一个黑暗的箱子里面放有a个除颜色外完全相同的球,这a个球中有3个红球,若每次搅匀后任意摸出一球记下颜色再放回箱子,通过大量反复试验,摸到红球的频率稳定在20%,那么可以推算a 的值为当堂检测:1、下列说法正确的有()①掷一枚均匀硬币,正面朝上的概率可能为0②某事件发生的概率为1/2,说明在重复两次实验中,必有一次发生③一个袋子里有100个球,小明摸了8次,每次都摸到白球,结论:袋子里面只有白球④将两枚一元硬币同时抛下,可能出现的情形有:两枚均为正面、两枚均为反面、一正一反,所以出现一正一反的概率为1/3A、0个B、1个C、2个D、4个2、甲乙两名同学在一次实验中得到的频率图如图所示,则符合这一结果的实验可能是()A、掷一枚正六面体的骰子,出现1点的概率B、从一个装有2个白球和一个红球的袋子中任取一个红球的概率C、抛一枚硬币,出现正面的概率D、任意写一个整数,能被2整除的概率3、如图2,两个可自由转动的转盘做配紫色游戏,分别旋转两个转盘,若其中一个转出红色一个转出蓝色则可配成紫色,那么配成紫色的概率为4、某校考试要求考生先在三个笔试题B1、B2、B3中抽取一个,再在三个上机题J1、J2、J3中抽取一个进行考试,小亮在看不到题的情况下在笔试题和上机题中随机各抽取一个题。
北师大版数学九年级上册3.1《用树状图或表格求概率(三)》 教案
北师大版数学九年级上册3.1《用树状图或表格求概率(三)》教案一. 教材分析《北师大版数学九年级上册3.1《用树状图或表格求概率(三)》》这一节主要讲述了如何利用树状图或表格来求解概率问题。
本节课的内容是学生在学习了概率的基本知识、如何列举等可能结果和如何求解概率之后的内容,是进一步培养学生解决实际问题的能力,使学生能够灵活运用所学的知识来解决生活中的问题。
二. 学情分析学生在学习这一节之前,已经学习了概率的基本概念,掌握了如何列举等可能的结果和求解概率的方法。
但是,对于如何利用树状图或表格来求解概率问题,可能还存在一定的困难。
因此,在教学过程中,我需要引导学生将已学的知识运用到实际问题中,通过实际问题来理解和掌握如何利用树状图或表格来求解概率问题的方法。
三. 教学目标1.理解并掌握如何利用树状图或表格来求解概率问题的方法。
2.能够灵活运用所学的知识来解决实际问题。
3.培养学生的逻辑思维能力和解决问题的能力。
四. 教学重难点1.重点:如何利用树状图或表格来求解概率问题的方法。
2.难点:如何引导学生将所学的知识运用到实际问题中,灵活求解概率问题。
五. 教学方法采用问题驱动的教学方法,通过引导学生解决实际问题,让学生理解和掌握如何利用树状图或表格来求解概率问题的方法。
在教学过程中,注重培养学生的逻辑思维能力和解决问题的能力。
六. 教学准备1.准备相关的实际问题,用于引导学生解决概率问题。
2.准备树状图和表格,用于辅助学生理解和掌握求解概率问题的方法。
七. 教学过程1.导入(5分钟)通过一个简单的实际问题,引导学生思考如何求解概率问题。
例如:一个袋子里有5个红球和4个蓝球,随机取出一个球,求取到红球的概率。
2.呈现(10分钟)呈现树状图和表格,引导学生理解树状图和表格的作用,以及如何利用它们来求解概率问题。
通过具体的例子,解释树状图和表格的每一项代表什么,如何计算概率。
3.操练(10分钟)让学生分组,每组解决一个实际问题,利用树状图或表格来求解概率问题。
北师大版九年级数学上册第三章《概率的进一步认识》用树状图或表格求概率教案
第三章 概率的进一步认识教案第1课时 用树状图或表格求概率教案1.会用画树状图或列表的方法计算简单随机事件发生的概率;(重点)2.能用画树状图或列表的方法不重不漏地列举事件发生的所有可能情况,会用概率的相关知识解决实际问题.(难点)一、情景导入游戏:小明对小亮说:“我向空中抛2枚同样的一元硬币,如果落地后一正一反,算我赢,如果落地后两面一样,算你赢.”结果小亮欣然答应,请问:你觉得这个游戏公平吗?二、合作探究探究点:用树状图或表格求概率 【类型一】 两步决定的概率问题明华外出游玩时带了2件上衣(白色、米色)和3条裤子(蓝色、黑色、棕色),他任意拿出一件上衣和一条裤子恰好是白色和黑色的概率是多少?解析:可采用画树状图或列表法把所有的情况都列举出来. 解:解法1:画树状图如图所示:由图中可知共有6种可能,而白衣、黑裤只有1种可能,概率为16;解法2:将可能出现的结果列表如下:裤子上衣 蓝色 黑色 棕色 白色 (白,蓝) (白,黑) (白,棕) 米色(米,蓝)(米,黑)(米,棕)由表可知共有6种可能,而白衣、黑裤只有1种可能,概率为16.方法总结:求某随机事件的概率,一般需要用画树状图或列表两种方法将所有可能发生结果一一列举出来,再求所关注的结果在所有结果中占的比值.【类型二】 两步以上决定的概率问题小可、子宣、欣怡三人在一起做游戏时,需要确定做游戏的先后顺序,她们约定用“石头、剪子、布”的方式确定,那么在一个回合中,三个人都出“剪子”的概率是多少?解:用树状图分析所有可能的结果,如图.由树状图可知所有可能的结果有27种,三人都出“剪子”的结果只有1种,所以在一个回合中三个人都出“剪子”的概率为127.方法总结:当一次试验涉及三个或更多的因素时,为了不重不漏地列出所有可能的结果,通常采用树状图.【类型三】 有无放回试验一只箱子里共有3个球,其中有2个白球,1个红球,它们除了颜色外均相同. (1)从箱子中任意摸出一个球,不将它放回箱子,搅匀后再摸出一个球,求两次摸出的球都是白球的概率;(2)从箱子中任意摸出一个球,将它放回箱子,搅匀后再摸出一个球,求两次摸出的球都是白球的概率.解析:题中(1)(2)的区别在于第一次摸出的球是否放回了箱子.由题可知,第二次摸球时(1)的箱子中应减少第一次摸出的那个球,那么还剩两个球可以摸,而(2)的箱子中还是有三个球可以摸.所以,两个白球应该区别开来,我们用“白1”“白2”表示.解:(1)列表如下:第一次第二次白1 白2 红 白1 —— (白2,白1)(红,白1) 白2 (白1,白2) —— (红,白2)红(白1,红)(白2,红)——由上表可知,共有6种结果,且每种结果是等可能的,其中两次摸出白球的结果有2种,所以P (两次摸出的球都是白球)=26=13;(2)列表如下:第一次第二次白1 白2 红 白1 (白1,白1) (白2,白1) (红,白1) 白2 (白1,白2) (白2,白2) (红,白2) 红(白1,红)(白2,红)(红,红)由上表可知,共有9种结果,且每种结果是等可能的,其中两次摸出白球的结果有4种,所以P (两次摸出的球都是白球)=49.方法总结:在试验中,常出现“放回”和“不放回”两种情况,即是否重复进行的事件,在求概率时要正确区分,如利用列表法求概率时,不重复在列表中有空格,重复在列表中则不会出现空格.三、板书设计用树状图或表格求概率⎩⎨⎧画树状图法列表法第1课时 用树状图或表格求概率教 学 目 标教学知识点:学习用树状图和列表法计算随机事件发生的概率.能力训练要求:1.培养学生合作交流的意识和能力;2.提高学生对所研究问题的反思和拓广的能力,逐步形成良好的反思意识.情感与价值观要求:积极参与数学活动,经历成功与失败,获得成功感,提高学习数学的兴趣.重 点 用树状图和列表法计算随机事件发生的概率.难 点 通过两种求概率方法的选择使用,理解两种方法各自的特点,并能根据不同情境选择适当的方法.教学过程:一、创设问题,引入新课游戏:小明对小亮说:“我向空中抛2枚同样的—元硬币,如果落地后一正一反,你给我10元钱,如果落地后两面一样,我给你10元线.”结果小亮欣然答应,请问,你觉得这个游戏公平吗?分析得很好,当然,这只是个数学游戏.教师只是想用此介绍一些概率问题,而国家规定中小学生是不能参与购买彩票的,而赌博更是有百害而无一益的噢!下面我们再来看一个游戏. 二、引入新课如果有两组牌,它们的牌面数字分别是1,2,3.那么从每组牌中各摸出一张牌,两张牌的牌面数字和为几的概率最大?两张牌的牌面数字和等于4的概率是多少呢? 小明的做法:总共有9种情况,每种情况发生的可能性相同,而两张牌的牌面数字和等于4的情况出现得最多,共3次,因此牌面数字和等于4的概率最大,概率为93,即31.小颖的做法:通过列下表得到牌面数字和等于4的概率为51.牌面数字的可能值 23456相应的概率 5151 51 51 51]小亮的做法:也用了列表的方法,可我得到牌面数字和等于4的概率为31.第一张牌的牌 面数字第二张 牌的牌面数1 2 3 1 (1,1) (1,2) (1,3) 2 (2,1) (2,2) (2,3) 3(3,1)(3,2)(3,3)你认为谁做得对?说说你的理由.小颖和小亮都用了列表法,而小颖的做法是错误的,小亮的做法是正确的.你认为用列表法求概率时要注意些什么?用列表法求概率时应注意各种情况出现的可能性务必相同.从小亮的表格中你还能获得哪些事件发生的概率呢?用树状图或列表的方法求出:1.将两枚均匀的一元硬币抛出去,两个都是正面朝上的概率是多少?2.掷两枚骰子.它们的点数和可能有哪些值?求出点数和为6的概率.探索活动:( 教材P62 例1)小明、小颖和小凡做“石头、剪刀、布”的游戏游戏规则如下:由小明和小颖玩“石头、剪刀、布”游戏,如果两人的手势相同,那么小凡获胜;如果两人手势不同,那么按照“石头胜剪刀,剪刀胜布,布胜石头”的规则决定小明和小颖中的获胜者.。
九年级数学上册 第三章 概率的进一步认识 1 用树状图或表格求概率 用树状图或列表法求概率解决实际问
九年级数学上册第三章概率的进一步认识1 用树状图或表格求概率用树状图或列表法求概率解决实际问题素材(新版)北师大版编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(九年级数学上册第三章概率的进一步认识1 用树状图或表格求概率用树状图或列表法求概率解决实际问题素材(新版)北师大版)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为九年级数学上册第三章概率的进一步认识 1 用树状图或表格求概率用树状图或列表法求概率解决实际问题素材(新版)北师大版的全部内容。
用树状图或列表法求概率解决实际问题答案:运用这两种方法解决实际问题,要考虑事件涉及到的因素,当事件有两个因素时,用列表法比较简单;当事件中涉及到3个或更多因素时,选用画树状图较为简单。
【举一反三】典题:(2014·陇南)在一个不透明的布袋里装有4个标号为1、2、3、4的小球,它们的材质、形状、大小完全相同,小凯从布袋里随机取出一个小球,记下数字为x,小敏从剩下的3个小球中随机取出一个小球,记下数字为y,这样确定了点P的坐标(x,y).(1)请你运用画树状图或列表的方法,写出点P所有可能的坐标;(2)求点(x,y)在函数y=﹣x+5图象上的概率.思路导引:(1)首先根据题意画出表格,即可得到P的所以坐标;(2)然后由表格求得所有等可能的结果与数字x、y满足y=﹣x+5的情况,再利用概率公式求解即可求得答案标准答案:解:列表得:(1)点P所有可能的坐标有:(1,2),(1,3),(1,4),(2,1),(2,3),(2,4),(3,1),(3,2),(3,4),(4,1),(4,2),(4,3)共12种;(2)∵共有12种等可能的结果,其中在函数y=﹣x+5图象上的有4种,即:(1,4),(2,3),(3,2),(4,1)∴点P(x,y)在函数y=﹣x+5图象上的概率为:P=.。
九年级数学上册第三章概率的进一步认识 全章学案 新版北师大版
第三章概率的进一步认识3.1 用树状图或表格求概率第1课时用树状图或表格求概率一、读一读(学习目标)1.学会用树状图和列表法计算涉及两步试验的随机事件发生的概率。
2. 进一步经历用树状图、列表法计算两步以上随机实验的概率的过程.二、试一试(一)计算涉及两步试验的随机事件发生的概率1.认真阅读课本60页—61页内容并完成下列问题。
(1)现有两组相同的牌,每组两张。
牌面数字分别为1和2. (如右图)从每组牌中各摸出一张,在一次试验中,如果摸得第一张牌的牌面数字为1,那么摸第二张牌时,摸得牌面数字为几的可能性大?如果摸得第二张牌的牌面数字为2呢?要写出解答的过程。
(2)随机掷一枚均匀的硬币两次,至少有一次反面朝上的概率是多少?(用两种方法解答)(3)小颖有两件上衣,分别是红色和白色,有两条裤子,分别是黑色和白色,她随机拿出一件上衣和一条裤子穿上,恰好是白色上衣和白色裤子的概率是多少?(二)计算涉及两步以上试验的随机事件发生的概率认真阅读课本62页—63页,思考课本中提出的问题。
例1.小明、小颖和小凡做“石头、剪刀、布”游戏。
游戏规则如下:由小明和小颖做“石头、剪刀、布”游戏,如果两个人手势相同,那么小凡胜;如果两人手势不同,那么按照“石头胜剪刀,剪刀胜布,布胜拳头”的规则决定小明和小颖中的获胜者。
做一做:例2.小明和小军两人一起做游戏。
游戏规则如下:每人从1,2,…,12中任选一个数,然后两个人各掷一次质地均匀的骰子,谁事先选择的数等于两人掷得的点数和谁就获胜;如果两个人选择的数都不等于掷得的点数之和;就再做一次上述游戏,直至决出胜负。
如果你是游戏者你会选择哪个数?三、练一练1.掷一枚均匀的硬币2次,2次抛掷的结果都是正面朝上的概率是_______________.2.随机掷三枚硬币,出现三个正面朝上的概率是___________________3.一只箱子里面有3个球,其中2个白球,1个红球,他们出颜色外均相同。
《用树状图或表格求概率》示范公开课教学设计【北师大版九年级数学上册】第1课时
第三章概率的进一步认识3.1 用树状图或表格求概率第 1 课时教学设计一、教学目标1.经历猜测、试验、收集试验数据、分析试验结果等活动过程,进一步体验数据的随机性,记录数学活动经验.2.通过试验进一步感受随机事件发生的频率的稳定性,理解事件发生频率与概率的关系,并能用试验频率估计事件发生的概率,加深对概率意义的理解.3.能运用画树状图和列表的方法计算一些简单事件的概率.4.能利用概率解决一些简单的实际问题,理解概率对日常生活和生产实践的指导作用,体会概率是描述随机现象的数学模型,发展应用意识.5.在试验和收集数据的活动过程中,发展合作交流的意识和发现问题、提出问题的能力.二、教学重点及难点重点:会用树状图和列表的方法计算随机事件发生的概率.难点:理解事件出现的等可能性,正确地分析出两步试验中出现的所有情况.三、教学用具多媒体课件.四、相关资源《掷一枚质地均匀的骰子》动画,《用列举法求概率——画树状图法》动画.五、教学过程【复习引入】问题(1)具有何种特点的试验称为古典概型?(2)对于古典概型的试验,如何求事件的概率?师生活动:教师利用多媒体出示问题,学生回答:(1)一次试验中,可能出现的结果有有限多个;各种结果发生的可能性相等.具有以上特点的试验称为古典概型.(2)对于古典概型的试验,我们可以从事件所包含的各种可能的结果在全部可能的试验结果中所占的比分析出事件的概率.一般地,如果在一次试验中,有种可能的结果,并且它们发生的可能性都相等,事件A 包含其中的种结果,那么事件A 发生的概率为. 设计意图:通过问答的方式,帮助学生回忆学过的知识,为本节课的学习准备好知识基础.【探究新知】列举法:在一次试验中,如果可能出现的结果只有有限个,且各种结果出现的可能性大小相等,那么我们可以通过列举试验结果的方法,求出随机事件发生的概率,这种求概率的方法叫列举法.师生活动:教师讲授,学生聆听,掌握列举法的定义.设计意图:因为教材没有列举法的概念,通过教师讲授,使学生对列举法有初步的认识.小明、小颖和小凡都想去看周末电影,但只有一张电影票,三人决定一起做游戏,谁获胜谁就去看电影.游戏规则如下:连续掷两枚质地均匀的硬币,若两枚正面朝上,则小明获胜;若两枚反面朝上,则小颖获胜;若一枚正面朝上、一枚反面朝上,则小凡获胜.你认为这个游戏公平吗?做一做:连续掷两枚质地均匀的硬币,“两枚正面朝上”、“两枚反面朝上”、“一枚正面朝上,一枚反面朝上”这三个事件发生的概率相同吗?先分组进行试验,然后累计各组的试验数据,分别计算这三个事件复习的频数与频率,并由此估计这三个事件发生的概率.师生活动:教师出示问题,学生分组进行试验,交流数据并累计各组数据后再计算. 设计意图:通过实际问题中的游戏背景引入,激发学生的学习兴趣.由学生亲自动手进行试验,经历猜测、试验、收集试验数据、分析试验结果等活动过程,进一步体验数据的随机性.学生通过交流与合作,体会到与他人合作交流的重要性,发展学生合作交流的意识与能力.当试验次数越多,频率稳定,用频率估计事件发生的概率.议一议:在上面掷硬币的试验中,(1)掷第一枚硬币可能出现哪些结果?它们发生的可能性是否一样?n m ()m P A n(2)掷第二枚硬币可能出现哪些结果?它们发生的可能性是否一样?(3)在第一枚硬币正面朝上的情况下,第二枚硬币可能出现哪些结果?它们发生的可能性是否一样?如果第一枚硬币反面朝上呢?师生活动:教师出示问题,学生思考、讨论,教师分析、引导.教师分析:由于硬币质地均匀,因此掷第一枚硬币时出现“正面朝上”和“反面朝上”的概率相同;无论掷第一枚硬币出现怎样的结果,掷第二枚硬币时出现“正面朝上”和“反面朝上”的概率都是相同的.本题中掷第一枚硬币和掷第二枚硬币是两个相互独立的事件.解:(1)掷第一枚硬币可能出现“正面朝上”和“反面朝上”两种结果;它们发生的可能性一样.(2)掷第二枚硬币也是可能出现“正面朝上”和“反面朝上”两种结果;它们发生的可能性一样.(3)在第一枚硬币正面朝上的情况下,第二枚硬币可能出现“正面朝上”和“反面朝上”;它们发生的可能性相同;如果第一枚硬币反面朝上也一样.利用树状图或表格列出所有可能出现的结果:总共有4种结果,每种结果出现的可能性相同.其中,小明获胜的结果有1种:(正,正),所以小明获胜的概率是14;小颖获胜的结果有1种:(反,反),所以小颖获胜的概率也是14;小凡获胜的结果有2种:(正,反),(反,正),所以小凡获胜的概率是24.因此,这个游戏对三人是不公平的.归纳利用树状图或表格,我们可以不重复、不遗漏地列出所有可能的结果,从而比较方便地求出某些事件发生的概率.思考利用画树状图和列表的方法求概率时应注意些什么?师生活动:教师出示问题,学生思考、讨论,教师找学生代表回答,最后师生共同得出答案.答:利用画树状图和列表的方法求概率时,应注意各种结果出现的可能性要相同.设计意图:通过这个问题,让学生知道利用树状图和列表的方法求概率时各种结果出现的可能性要相同.如果学生用其他的方法不重复、不遗漏地列出所有的结果,也应给予鼓励,但引导学生对不同列举方法进行比较,使学生体会画树状图、列表这两种方法的优越性.【典例精析】例小颖有两件上衣,分别为红色和白色,有两条裤子,分别为黑色和白色,她随机拿出一件上衣和一条裤子穿上,恰好是白色上衣和白色裤子的概率是多少?解:画树状图得:共有4种等可能的结果,恰好是白色上衣和白色裤子的有1种情况,恰好是白色上衣和白色裤子的概率是:1 4 .设计意图:指导学生如何规范应用列表法解决概率问题.此外,对于本题,教师也可以让学生用画树状图法解答.【课堂练习】1.不透明的袋子中装有编号为1,2,3的三个质地均匀、大小相同的球,从中随机取出一球记下编号后,放入袋中搅匀,再从袋中随机取出一球,两次所取球的编号相同的概率为().A.19B.16C.13D.122.在一个不透明的口袋中有4个完全相同的小球,把它们分别标号为1,2,3,4,随机地摸出一个小球然后放回,再随机地摸出一个小球.则两次摸出的小球的标号的和等于6的概率为().A.116B.18C.316D.143.小明对小红说:“我们来做一个游戏,我向空中扔3个硬币,如果它们落地后全是正面朝上,你就得10分,如果它们全是反面朝上,你也得10分,但是,如果它们落地时是其他情况,我就得5分,得分多者获胜,好不好?”小红说:“让我考虑一分钟,至少有两枚硬币必定情况相同,因为如果有两枚情况不同,则第三枚一定会与这两枚硬币之一情况相同.而如果两枚情况相同,则第三枚与其他两枚情况相同或情况不同的可能性一样.因此,3枚硬币情况完全相同或情况不完全相同的可能性是一样的.但是小明是用5分来赌它们的,这分明对我有利,好吧,小明,我和你做这个游戏!”请问:小红的推理正确吗?参考答案1.C.2.C.3.解:首先利用树状图列出3枚硬币落地时的所有可能结果:由图可知总共有(正,正,正),(正,正,反),(正,反,正),(正,反,反),(反,正,正),(反,正,反),(反,反,正),(反,反,反)8种结果,每种结果出现的可能性都相等,其中3枚情况完全相同的概率是14,3枚情况不完全相同的概率是34.因为14×10<34×5,所以这个游戏规则不公平,对小明有利.小红的推理不正确.设计意图:让学生加深对所学知识的理解.六、课堂小结1.列举法的定义:在一次试验中,如果可能出现的结果只有有限个,且各种结果出现的可能性大小相等,那么我们可以通过列举试验结果的方法,求出随机事件发生的概率,这种求概率的方法叫列举法.2.适合用列表法解决概率的情况:当一次试验涉及两个因素(例如掷两枚骰子),并且可能出现的结果数目较多时,为不重不漏地列出所有可能的结果,通常采用列表法.我们不妨把两枚骰子分别记为第1枚和第2枚,这样就可以用方形表格列举出所有可能出现的结果.3.适合用画树状图法解决概率的情况:用树状图列举出的结果看起来一目了然,当事件要经过多次步骤(三步以上含三步)完成时,用这种“画树状图”的方法求事件的概率很有效.注意:利用画树状图和列表的方法求概率时,应注意各种结果出现的可能性要相同.师生活动:教师引导学生归纳、总结本节课所学内容.设计意图:帮助学生养成系统整理知识的学习习惯,加深认识,深化提高,形成学生自己的知识体系.七、板书设计3.1 用树状图或表格求概率(1)1.列举法的定义2.用树状图或表格求概率。
九年级数学上册第三章概率的进一步认识3.1用树状图或表格求概率第3课时利用概率玩转盘游戏素材新版北师大版
第三章概率的进一步认识1用树状图或表格求概率第3课时配紫色游戏素材一新课导入设计情景导入置疑导入归纳导入类比导入激趣同学们,前面我们已经学习了用树状图或列表求简单事件的概率,本节课我们继续来学习用树状图或列表求简单事件的概率,概率是对随机现象的一种数学描述,它可以帮助我们更好地认识随机现象,并对生活中的一些不确定情况作出自己的决策.[说明与建议] 说明:通过教师启发,使学生进一步巩固用树状图或列表求概率,有利于明确学习目标.建议:在引入时可以适当添加一些实际问题,从而培养学生应用所学知识解决问题的能力,提高学生分析问题、解决问题的能力.小颖为学校联欢会设计了一个“配紫色”游戏:下面是两个可以自由转动的转盘,如图3-1-27,每个转盘被分成相等的几个扇形.游戏规则:游戏者同时转动两个转盘,如果转盘A转出了红色,转盘B转出了蓝色,那么他就赢了,因为红色和蓝色在一起配成了紫色.图3-1-27(1)利用树状图或列表的方法表示游戏者所有可能出现的结果;(2)游戏者获胜的概率是多少?[说明与建议] 说明:以“配紫色”游戏为主要情境,复习回顾了上节课所学知识,让学生再次经历利用树状图或列表的方法求出概率并解决问题的过程.建议:先让一位学生动手转动转盘,再让另一位学生口述转动转盘A会有几种结果,转动转盘B会有几种结果.然后再让另外两名学生根据自己选择的方法分别表示游戏者所有可能出现的结果,其余学生在练习本上进行画图求解.完成后让其他学生进行点评,教师及时强调画树状图或列表时要不重不漏.素材二教材母体挖掘65页想一想用图3-1-28所示的转盘进行“配紫色”游戏.图3-1-28小颖制作了下图,并据此求出游戏者获胜的概率为12;图3-1-29小亮则先把转盘A 的红色区域等分成2份,分别记作“红色1”“红色2”,然后制作了下表,据此求出游戏者获胜的概率也是12.你认为谁做得对?说说你的理由. 【模型建立】转盘游戏中,双转盘游戏倍受命题者的青睐.双转盘问题一般包括数字的奇偶性问题、配色问题及游戏是否公平问题等.【变式变形】1.[杭州中考] 让图3-1-30中两个转盘分别自由转动一次,当转盘停止转动时,两个指针分别落在某两个数所表示的区域,则这两个数的和是2的倍数或是3的倍数的概率等于(C )图3-1-30A .316B .38C .58D .13162.如图3-1-31,有两个可以自由转动的均匀转盘A ,B ,转盘A 被均匀地分成4等份,每份分别标上1、2、3、4四个数字;转盘B 被均匀地分成6等份,每份分别标上1、2、3、4、5、6六个数字.有人为甲、乙两人设计了一个游戏,其规则如下:图3-1-31同时自由转动转盘A 与B ,转盘停止后,指针各指向一个数字(如果指针恰好指在分格线上,那么重转一次,直到指针指向某一数字为止),用所指的两个数作乘积,如果得到的积是偶数,那么甲胜;如果得到的积是奇数,那么乙胜(如转盘A 指针指向3,转盘B 指针指向5,3×5=15,按规则乙胜).你认为这样的规则是否公平?请说明理由;如果不公平,请你设计一个公平的规则,并说明理由.[答案:不公平,其他略]素材三 考情考向分析[命题角度1] 单次抽样的概率初中阶段所考查的概率问题都是有限等可能概率,其概率P(A)=mn (n 是基本事件的总和,m 是满足条件的基本事件数).例 [淮安中考] 一个不透明的袋子中装有1个白球和3个红球,这些球除颜色外都相同,搅匀后从中任意摸出1个球,则摸出红球的概率为__34__.[命题角度2] 多次无放回抽样的概率无放回抽样与有放回抽样的区别在于取出的小球不再放回,其解决方法也有两个:第一个方法是P(A)=mn ,第二个方法是依次算好每次抽取的概率,然后把每次抽取的概率相乘即得多次抽取的概率.例 [玉林中考] 一个盒子内装有大小、形状相同的四个球,其中红球1个、绿球1个、白球2个,小明摸出一个球不放回,再摸出一个球,则两次都摸到白球的概率是(C )A .12B .14C .16D .112[命题角度3] 多次有放回型抽样的概率我们举个例子来说明多次有放回型抽样的概率:设袋中有n 个小球,现从中依次摸球,每次摸一个,如果摸出一个后,仍放回原袋中,然后再摸下一个,这种摸球方法就是有放回的抽样.有放回抽样解决的方案有两种:一种是P(A)=mn ,还有一种是先计算第一次摸球的概率,如果摸球n 次就求(P(A))n,(P(A))n就是所求的概率.例 [昆明中考] 九年级某班同学在毕业晚会中进行抽奖活动,在一个不透明的口袋中有三个完全相同的小球,把它们分别标号为1,2,3,随机摸出一个小球记下标号后放回摇匀,再从中随机摸出一个小球记下标号.(1)请用列表或画树状图的方法(只选择其中一种),表示两次摸出小球上的标号的所有结果;(2)规定当两次摸出的小球标号相同时中奖,求中奖的概率.[答案:(1)略 (2)13]素材四 教材习题答案P67随堂练习用如图所示的两个转盘进行“配紫色”游戏,每个转盘都被分成面积相等的三个扇形,配得紫色的概率是多少?解:29.P68习题3.31.用如图所示的两个转盘进行“配紫色”游戏,配得紫色的概率是多少?解:59.2.一个盒子中装有三个红球和两个白球,这些球除颜色外都相同.从中随机摸出一个球,记下颜色后放回,再从中随机摸出一个球,求两次摸到相同颜色的球的概率.解:1325.3.有两组卡片,第一组卡片上写有A ,B ,B ,第二组卡片上写有A ,B ,B ,C ,C.分别利用画树状图和列表的方法,求从每组卡片中各抽出一张,都抽到B 的概率.解:树状图法:∴都抽到B 的概率为415.4.设计两个转盘进行“配紫色”游戏,使配得紫色的概率是13.解:略.素材五 图书增值练习专题一 用树状图和列表法计算事件发生的概率1. 一个不透明的口袋中有4个除标号外完全相同的小球,这4个小球分别标号为1,2,3,4.(1)随机摸取一个小球,求恰好摸到标号为2的小球的概率;(2)随机摸取一个小球记下标号然后放回,再随机摸取一个小球,求两次摸取的小 球的标号的和为3的概率. 2. 甲、乙两个盒子中装有质地、大小相同的小球,甲盒中有2个白球,1个黄球和1个蓝球;乙盒中有1个白球,2个黄球和若干个蓝球.从乙盒中任意摸取一球为蓝球 的概率是从甲盒中任意摸取一球为蓝球的概率的2倍. (1)求乙盒中蓝球的个数;(2)从甲、乙两盒中分别任意摸取一球,求这两球均为蓝球的概率.专题二 概率的应用3.(2009·重庆)有一个可以自由转动的转盘,被分成了4个相同的扇形,分别标有数1、2、3、4(如图所示),另有一个不透明的口袋装有分别标有数0、1、3的三个小球(除数不同外,其余都相同).小亮转动一次转盘,停止后指针指向某一扇形,扇形内的数是小亮的幸运数,小红任意摸出一个小球,小球上的数是小红的吉祥数,然后计算这两个数的积.(1)请你用画树状图或列表的方法,求这两个数的积为0的概率;(2)小亮与小红做游戏,规则是:若这两个数的积为奇数,小亮赢;否则,小红赢.你认4.小婷和小英做游戏,她们在一个盒子里装了标号为1、2、3、4的四个乒乓球,现在小婷从盒子里随机摸出一个乒乓球后,小英再从盒子里剩下的三个乒乓球中随机摸出第二个乒乓球,如果摸出的乒乓球上的数字和为4或5,则小婷获胜,否则小英获胜,你认为这个游戏对她们公平吗?请说理由. 【知识要点】用树状图和列表法计算涉及两步实验的随机事件发生的概率. 【方法技巧】列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件,概率问题要注意分清放回与不放回,结果是完全不一样的. 答案1 解:(1)由图可知:共18块方砖,其中白色8块,黑色10块.故小皮球停留在黑色方砖上的概率是;小皮球停留在白色方砖上的概率是. (2)因为,所以小皮球停留在黑色方砖上的概率大于停留在白色方砖上的概率.要使这两个概率相等,可改变第二行第4列中的方砖颜色,黑色方砖改为白色方砖.答案不唯一,回答正确即可.2. 解:(1)显然,随机摸取一个小球,恰好摸到标号为2的小球的概率为14; (2)所以有可能的情况为: (1,1),(1,2),(1,3),(1,4),(2,1),(2,2),(2,3),(2,4),(3,1),(3,2),(3,3),(3,4),(4,1),(4,2),(4,3),(4,4).而两次摸取的小球的标号的和为3的情况有(1,2),(2,1),所以其概率为21168. 3. (1)画树状图如下:或列表如下:由树状图或表格可知,所有结果有12种,积为0的有4种,∴P (积为0)=412=13; (2)不公平.∵P (积为奇数)=812=23,P (积为偶数)=412=13,∴该游戏不公平.可以改为:若这两个数的积大于2,小亮赢;否则小红赢.(答案不唯一) 4、可列表1 0 1 32 0 13 3 0 1 34 0 1 3 开始小亮 小红 积13 02639412由表中可以看出:小婷获胜的概率为6÷12=0.5 所以游戏是公平的素材六 数学素养提升“一次抽取2个”概率类问题的探究引例:一个盒子里有6个除颜色外其余都相同的玻璃球,3个红色,1个黄色,2个白色,现随机从盒子中一次取出2个球,求这两个球都是白球的概率是多少?分析;大家知道求解概率问题我们常用列树状图或列表的方法解决.现在我们仍遵循常规的思路来探索解决.我们用A 1、A 2、A 3分别表示3个红球,B 表示黄球,C 1、C 2 表示两个白球,列表如下:列出表格之后有的同学不加深入的思考分析,观察表格便机械地得出共有36种可能的结果,其中一次取出2个白球(C 1C 1、C 1C 2或C 2C 1、C 2C 2)共有4种情况,因而两个球都是白球的概率为P =364=91. 熟不知上述辛辛苦苦探究得到的答案是错误的,原因出在何处呢?仔细分析上述解法,从列表中可以发现:6种情况(11、22、33、、C 1C 1、C 2C 2)根本不会出现,(因为一个球不可能取2次);其次一次取两个球,表中列出的A 2A 1、A 1A 2……等等,实际上是一种情况,因而表格中的以对角线为分界线的右上部分与左下部分是相同的(重复),所以我们计算出现的所有可能的情况时只需选择右上部分情况加以统计即可.共有5+4+3+2+1=15,其中均为白球只有(C 1C 2)1种情况,因此随机从盒子中一次取出2个球,这两个球都是白球的概率为P =151. 爱因斯坦说过:“从新的角度看待旧的问题,需要有创造性的想象能力”.如果我们把表中的表示“球”的字母A 1、A 2、B 、C 1、C 2,看作线段的端点,那么一次取2个球,就可以看作以这2个字母为端点连成一条线段,显然线段A 2A 1、A 1A 2表示同一条线段,从而说明一次取2个球(先取球A 1再取球A 2 与先取到球A 2再取到球A 1)实际上是一种情况,因此一次取2个问题的概率,我们可以借助计算线段的条数模型来计算.。
北师大版九年级数学(上)第三章概率的进一步认识3.1用树状图或表格求概率(第一课时).
3.1用树状图或列表求概率(第一课时)一、课标要求:(一)内容要求1.了解利用数据可以进行统计推断,发展建立数据分析观念;感受随机现象的特点。
2.能通过列表、画树状图等方法列出简单随机事件所有可能的结果,以及指定事件发生的所有可能结果,了解事件的概率。
(二)数学思想方法(核心概念):本节课是简单的两步实验,可以通过计算得到它的概率,所渗透的数学思想是:转化、类比、在树状图中体会几何直观。
本节课的核心概念为:模型思想、数据分析观念、应用意识。
二、教材与学情分析(一)教材分析:本节课是九年级上册第三章《概率的进一步认识》第一节第一课时,通过七年级下册“概率初步”的学习,学生已经通过试验、统计等活动感受随机事件发生频率的稳定性即“当试验次数很大时,事件发生的频率稳定在相应概率的附近”;体会到概率是描述随机现象的数学模型。
学生已经获得概率的计算有两种方式:理论计算和试验估算。
本章第一节通过游戏活动,让学生经历猜测、试验、收集数据、分析数据等活动过程,然后学习计算这类事件发生概率的两种方法---画树状图和列表法。
本节共三课时,第一课时通过一个试验活动引出求概率的树状图和列表法,第二课时和第三课时分别选择不同的情境,让学生经历利用画树状图和列表法求出概率并解决问题的过程。
(二)学情分析:1.学习条件和起点能力分析学生已经认识到现实生活中存在大量的随机事件,初步感受到数据的随机性,并研究了一些简单随机事件发生的概率,对一些现象做出了合理的解释,对游戏活动的公平性可借助概率作出评判;学生已经感受到了频率的稳定性,能理解在大量重复试验的基础上,可用试验频率估计事件发生的概率。
2.学生在七年级已经通过试验、统计等活动感受随机事件发生的频率的稳定性即“当试验次数很大时,事件发生的频率稳定在相应概率的附近”,初步体会概率是描述随机现象的数学模型,实验的过程就是渗透“概率模型思想”的过程,通过之前的学习学生大脑中初步建立起了“概率是刻画现实世界随机事件发生可能性大小的重要模型”,具备了将实际问题转化为相应的概率模型的意识、模型化思维和应用意识。
九年级上册第三章概率的进一步认识3-1用树状图或表格求概率第3课时配紫色游戏教案新版北师大版
3.1用树状图或表格求概率第3课时“配紫色”游戏教学目标1.经历利用树状图和列表法求概率的过程,在活动中进一步发展学生的合作交流意识及反思的习惯.2.鼓励学生思维的多样性,提高应用所学知识解决问题的能力.教学重难点【教学重点】借助于树状图、列表法计算随机事件的概率.【教学难点】在利用树状图或列表法求概率时,各种情况出现可能性不同时的情况处理.课前准备课件.教学过程一、情景导入为活跃联欢晚会的气氛,组织者设计了以下转盘游戏:A、B两个带指针的转盘分别被分成三个面积相等的扇形,转盘A上的数字分别是1,6,8,转盘B上的数字分别是4,5,7(两个转盘除表面数字不同外,其他完全相同).每次选择2名同学分别拨动A、B两个转盘上的指针,使之产生旋转,指针停止后所指数字较大的一方为获胜者,负者则表演一个节目(若箭头恰好停留在分界线上,则重转一次).作为游戏者,你会选择哪个装置呢?并请说明理由.二、合作探究探究点一:用表格或树状图求“配紫色”概率用如图所示的两个转盘进行“配紫色”游戏,配得紫色的概率是多少?解析:由图可知,转动A转盘时会出现三种可能的结果,但转出红色的可能性大些;转动B转盘时会出现两种可能的结果,但转出蓝色的可能性大些.由于这几种结果发生的可能性不等,所以不能直接用树状图或列表法表示试验出现的所有可能结果,而是要先将其转化.由图可知A转盘中红色区域是白色或蓝色的2倍,因此可将红色区域2等分.同理,可将B 转盘中的蓝色区域2等分,从而将其转化为等可能性试验后,再用表格或树状图进行列举求解.解:将A转盘中“红”区域2等分,B转盘“蓝”区域2等分后列表如下:从表中可知该试验共有12种等可能结果,由于红色和蓝色在一起配成了紫色,所以能配成紫色的有5种结果,所以P (紫色)=512.方法总结:(1)在一些试验中,包含的几种结果发生的可能性不等时,应先通过转化将其转化为有限等可能性试验,再利用树状图或表格来求其发生的概率.(2)在不等可能性试验转化为有限等可能性试验时,要抓住各种结果之间的联系——“倍、分”关系,根据它们之间的联系采用合适的方法.探究点二:概率与游戏的综合运用王铮擅长球类运动,课外活动时,足球队、篮球队都力邀他到自己的阵营,王铮左右为难,最后决定通过掷硬币来确定.游戏规则如下:连续抛掷硬币三次,如果两次正面朝上一次正面朝下,则王铮加入足球阵营;如果两次反面朝上,一次反面朝下,则王铮加入篮球阵营.(1)用画树状图的方法表示三次抛掷硬币的所有结果; (2)这个游戏规则对两个球队是否公平?为什么? 解:(1)根据题意画出树状图,如图.(2)这个游戏规则对两个球队公平.理由如下:两次正面朝上一次正面朝下有3种结果,正正反,正反正,反正正; 两次反面朝上一次反面朝下有3种结果,正反反,反正反,反反正. 所以P (王铮去足球队)=P (王铮去篮球队)=38.方法总结:判断游戏是否公平这类问题,实际是比较两个事件概率大小的问题,因此判断之前,先要计算两事件发生的概率的大小. 三、板书设计概率与游戏的综合运用⎩⎨⎧配紫色判断游戏公平性四、教学反思经历实验、画图、列表等活动,学生在具体情境中分析事件,计算其发生的概率.渗透数形结合、分类讨论思想,提高分析问题和解决问题的能力.通过丰富的数学活动,交流成功的经验,体验数学活动充满着探索和创造,体会数学的应用价值,培养积极思维的学习习惯.。
北师大版九年级数学上册《概率的进一步认识——用树状图或表格求概率》教学PPT课件(3篇)
例题精讲
知识点 1 利用画树状图法或列表法求复杂的等可能事件的概率 例1 (教材 P64 随堂练习)有三张大小一样而画面不同的画片,先将每 一张从中间剪开,分成上下两部分;然后把三张画片的上半部分都放在 第一个盒子中,把下半部分都放在第二个盒子中.分别摇匀后,从每个 盒子中各随机地摸出一张,求这两张恰好能拼成原来的一幅画的概率.
知识点 2 不同颜色球的数目不等的摸球游戏中的概 率
例2 (教材 P67 例 2)一个盒子中装有两个红球,两个白球 和一个蓝球,这些球除颜色外都相同,从中随机摸出一个球, 记下颜色后放回,再从中随机摸出一个球,求两次摸到的球 的颜色能配成紫色的概率.
【思路点拨】(红色和蓝色可以配成紫色)画树状图展示 所有 25 种等可能的结果数,再找出红色和蓝色的结果数,根 据概率公式求解.
不遗漏
2. 判断游戏公平性,先计算游戏双方获胜的概率,如果 概率相等,则游戏公平;如果不相等,则游戏不公平.
第三章 概率的进一步认识
3.1 用树状图或表格求概率
第3课时
教学目标
能借助画树状图或列表计算与转盘有关的配色游戏及数 目不等型游戏中的概率.(重难点)
课前预习
预习反馈
1. 用图中两个可自由转动的转盘做“配紫色”游戏:分别旋转两
上的数字之和为 5 的概率是 3 .
例题精讲 知识点 1 转盘配紫色游戏中的概率
例1 小明和小亮用下面两个可以自由转动的转盘做“配 紫色”游戏(红色和蓝色在一起能配成紫色),同时随机转动这 两个转盘,若能配成紫色,则小明胜,否则小亮胜,这个游 戏对双方公平吗?请用列表或画树状图的方法说明理由.
北师大版数学九年级上册3.1《用树状图或表格求概率(三)》 说课稿
北师大版数学九年级上册3.1《用树状图或求概率(三)》说课稿一. 教材分析北师大版数学九年级上册3.1《用树状图或求概率(三)》这一节主要讲述了如何利用树状图和来求解概率问题。
在此之前,学生已经学习了概率的基本概念和如何通过枚举法来求解简单事件的概率。
本节课的内容是在此基础上,进一步引导学生利用树状图和来求解更复杂的事件概率,从而培养学生的逻辑思维能力和解决问题的能力。
二. 学情分析九年级的学生已经具备了一定的数学基础,对于概率的概念和基本求解方法有一定的了解。
但是,他们在解决实际问题时,还存在着一定的困难,特别是对于如何利用树状图和来求解概率问题,部分学生可能会感到困惑。
因此,在教学过程中,我需要关注这部分学生的学习情况,引导他们积极参与课堂讨论,提高他们的学习兴趣和自信心。
三. 说教学目标1.知识与技能目标:使学生掌握利用树状图和求解概率问题的方法,能够独立完成相关的习题。
2.过程与方法目标:通过小组合作、讨论等方式,培养学生的团队协作能力和解决问题的能力。
3.情感态度与价值观目标:激发学生对数学学科的兴趣,培养他们积极思考、勇于探索的精神风貌。
四. 说教学重难点1.教学重点:利用树状图和求解概率问题的方法。
2.教学难点:如何引导学生理解并运用树状图和来解决实际问题。
五. 说教学方法与手段1.教学方法:采用问题驱动法、案例教学法和小组合作法,引导学生主动参与课堂讨论,提高他们的学习兴趣和积极性。
2.教学手段:利用多媒体课件、黑板、粉笔等传统教学工具,结合树状图和,帮助学生直观地理解概率问题的求解过程。
六. 说教学过程1.导入新课:通过一个简单的概率问题,引发学生对利用树状图和求解概率问题的兴趣。
2.讲解方法:介绍树状图和求解概率问题的基本方法,结合具体案例进行讲解。
3.课堂练习:布置一些具有代表性的习题,让学生独立完成,巩固所学知识。
4.小组讨论:学生进行小组讨论,共同解决一个实际概率问题,培养学生的团队协作能力和解决问题的能力。
3.1.1 用树状图或表格求概率 教案 北师大版数学
3.1.1 用树状图或表格求概率教案
一枚硬币时出现“正面朝上”和“反面朝上”的概率相同;无论掷第一枚硬币出现怎样的结果,掷第二枚硬币时出现“正面朝上”和“反面朝上”的概率都是相同的.
指出:我们通常利用树状图或表格列出所有可能出现的结果.
现在再来解决刚开始的问题:做一做:小明、小凡和小颖都想去看周末电影,但只有一张电影票.三人决定一起做连续抛掷两枚均匀的硬币游戏,谁获胜谁就去看电影.
小明:两枚正面朝上,我获胜
小颖:两枚反面朝上,我获胜
小凡:一枚正面朝上、一枚反面朝上,我获胜
你认为这个游戏公平吗?
解:连续掷两枚均匀的硬币总共有4种结果,每种结果出现的可能性相同.其中:
小明获胜的结果有1种:(正,正),所以小明获胜的概率
是1 4;
小颖获胜的结果有1种:(反,反),所以小颖获胜的概率
也是1 4;
小凡获胜的结果有2种:(正,反)(反,正),所以小凡获
胜的概率是21 42
;
因此,这个游戏对三人是不公平的.
归纳:利用树状图或表格,我们可以不重复、不遗漏地列出所有可能的结果,从而比较方便地求出某些事件发生的概率.
一只箱子里面有3个球,其中2个白球,1个红球,他们1.在一个不透明的袋中装有2个黄球和2个红球,它们除颜色外没有其他区别,从袋中任意摸出一个球,然后放回搅匀,再从袋中任意摸一个球,那么两次都摸到黄球的概率是( )
A. B.
C. D.
2. 一个袋中有2个红球,2个黄球,每个球除颜色外都相同,从中一次摸出2个球,2个球都是红球的可能性( )
A. B.
C.
D.
基础作业
21
41
6121
4161
树状图。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
概率的进一步认识
环
节
二
课中作业
随机掷一枚硬币两次,
两次都是正面朝上的概率是多少?
(2)至少有一次正面朝上的概率是多少?
环节三学生先尝试完成,然后2个学生用两种方法板演,师生共同订正
(2)让学生根据例1自己设计问题考其他同学,其他学生解答
课中作业
1、小王夫妇第一胎生了女孩,如果政策允许生第二胎,那么他们第二胎生男孩和生女孩哪种可能性哪种大? 生男孩的概率是多少?
2、小明正在做扔硬币的试验,他已经扔了3次硬币,不巧的是这3次都是正面朝上.那么,你认为小明第4次扔硬币,出现正面朝上的可能性和反面朝上的可能性哪种大? 概率分别是多少?
课后作业设计:
小明和小丽在玩“棒子,老虎, 鸡,虫”的游戏----- 游戏规则:两人同时喊,
其中棒子打老虎,老虎吃鸡,鸡吃虫,虫吃棒子, 被吃或被打者输。
(1)同桌
(修改人:)
板书设计:
画树状图法用树状图或表格求概率
列表法。