基于热电偶的温度测量电路设计

合集下载

基于热电偶的温度测试仪设计

基于热电偶的温度测试仪设计

基于热电偶的温度测试仪设计摘要:基于热电偶的温度测试仪,该仪器是以AT89C51单片机为核心,由AD590,由热电偶测量热端温度T,该热电偶采用K型热集成温度传感器测量冷端温度T电偶(镍铬-镍硅热电偶)。

它们分别经过I/V转换和线性放大,分时进行A/D转换,转换后的数字信号送入AT89C51单片机,经单片机运算处理,转换成ROM地址,再通过二次查表法计算出实际温度值,此值送4位共阴极LED数码管显示。

该热电偶测温仪的软件用C语言编写,采用模块化结构设计。

关键词:热电偶,冷端温度补偿,89C51单片机,ADC0809,线性化标度变换Abstract:Thermocouple-based temperature testing instrument, the instrument is based on AT89C51 microcontroller as the core, from AD590 integrated temperature sensor measures the cold junction temperature T0, measured by the thermocouple hot-side temperature T, the use of K-Thermocouple Thermocouple ( Ni-Cr - Ni-Si thermocouple). They are through the I / V conversion and linear amplification, time for A / D conversion, the converted digital signal into the AT89C51 microcontroller, microcontroller operation after processing into ROM address, and then through the second look-up table method to calculate the actual temperature value, this value is sent to four common cathode LED digital tube display. The thermocouple thermometer software with C language, using a modular structure design.Keywords:Thermocouple, cold junction temperature compensation, 89C51 microcontroller, ADC0809, linear scale transformation目录1 前言 (1)2 整体方案设计 (2)2.1方案论证 (2)2.2方案比较 (3)3 单元模块设计 (4)3.1冷端采集和补偿电路模块 (4)3.1.1 AD590介绍 (4)3.1.2冷端采集和补偿电路分析 (6)3.2热端放大电路模块 (6)3.3A/D转换器ADC0809 (7)3.4单片机模块 (8)3.5LED显示模块 (11)4 软件设计 (13)4.1主程序 (13)4.2A/D转换子程序 (13)4.3线性化标度变换子程序 (15)5 系统调试 (18)5.1调试软件介绍 (18)5.1.1 ISIS简介 (18)5.1.2 Keil C51简介 (18)5.2硬件调试 (18)5.3软件调试 (19)5.4硬件软件联调 (20)6系统技术指标及精度和误差分析 (21)7设计小结 (22)8总结与体会 (23)9参考文献 (24)附录1:电路总图 (25)附录2:软件代码 (26)1 前言温度是表征物体冷热程度的物理量,温度传感器是通过物体随温度变化而改变某种特性来间接测量的。

基于热电偶的温度测量电路设计

基于热电偶的温度测量电路设计

燕山大学课程设计说明书题目:基于热电偶的温度测量电路设计学院(系):电气工程学院年级专业:学号:学生:指导教师:教师职称:燕山大学课程设计(论文)任务书院(系):电气工程学院基层教学单位:说明:此表一式四份,学生、指导教师、基层教学单位、系部各一份。

2011年6 月26 日燕山大学课程设计评审意见表目录第1章摘要 (2)第2章引言 (2)第3章电路结构设计 (2)3.1 热电偶的工作原理 (2)3.2 冷端补偿电路设计 (5)3.3 运算放大器的设计 (6)第4章参数设计及运算 (8)4.1 补偿电路的计算 (8)4.2 运算放大器的计算 (9)4.3 仿真器仿真图示 (10)心得体会 (12)参考文献 (13)第一章摘要本文所要设计的是基于运算放大器的具有冷端补偿的热电偶测温。

所要设计包括三部分,热电偶,冷端补偿,运算放大器。

热电偶选用的为K型热电偶,补偿采用是桥式补偿电路,运算放大器则用的是运放比例较大而输出阻抗比较小的仪器仪表放大器。

第二章引言在工业生产过程中,温度是需要测量和控制的重要参数之一,在温度测量中,热点偶的应用极为广泛,它具有结构简单,制作方便,测量围广,精度高,惯性小和输出信号便于远传等许多优点。

另外,由于热电偶是一种有源传感器,测量时不需外加电源,使用十分方便,所以常被用作测量炉子,管道的气体或液体的温度及固体的表面温度。

热电偶作为一种温度传感器,热电偶通常和显示仪表,记录仪表和电子调节器配套使用。

热电偶可以直接测量各种生产中从0℃到1300℃围的液体蒸汽和气体介质以及固体的表面温度。

第三章电路结构设计3.1热电偶的工作原理热电偶是一种感温元件,是一次仪表,它直接测量温度,并把温度信号转换成热电动势信号,通过电气仪表(二次仪表)转换成被测介质的温度。

热电偶测温的基本原理是两种不同成份的材质导体(称为热电偶丝材或热电极)组成闭合回路,当接合点两端的温度不同,存在温度梯度时,回路中就会有电流通过,此时两端之间就存在电动势——热电动势,这就是所谓的塞贝克效应。

热电偶测温电路

热电偶测温电路

热电偶测温电路
热电偶测温电路是一种常用于测量温度的电路,它基于热电效应原理。

热电偶测温电路由热电偶、放大器和数字转换器组成。

热电偶是由两种不同金属导线组成的温度传感器,它们的接触点被称为热电接头。

当接头处温度发生变化时,两种金属之间的温差将产生电动势。

这个电动势信号非常微弱,通常在几微伏(μV)到几毫伏(mV)的范围内。

为了能够测量和放大这个微弱的信号,需要通过放大器进行信号放大。

放大器可以将微弱的电压信号放大到适合于数字转换的范围,以便进行后续处理。

数字转换器将放大后的电压信号转换为数字信号,通常使用模数转换器(ADC)来实现。

ADC将连续变化的模拟电压信号转换为离散的数字表示,以便于数字电路进行处理和存储。

通过将数字信号输入到计算机或显示设备上,可以得到实时的温度测量值,并进行数据处理和记录。

热电偶测温电路具有简单、可靠、精度高等特点,广泛应用于工业控制、实验室仪器、医疗设备等领域。

基于K型热电偶数据拟合的温度测量系统设计

基于K型热电偶数据拟合的温度测量系统设计
B材 料 的汤 姆逊 系数 ’ 。可 见 当保 持冷 端温 度
为恒 定时 ,热 电动 势 单值 函数 关 系。
(, 与 测量端 温 度 T为
由于 热 电偶 的标 准 分 度 表 是 在其 冷端 温 度 为0 ℃的 条件 下 测 的 热 电 势 。所 以在 使 用 热 电 偶 时 ,只有 满 足 T = 0C的 条 件 下 ,才 能 使 用 分 度 o o
0 引言
K 型 热 电偶 由于 结 构 简单 ,测 温 范 围广 ,性 能 稳 定 ,测 量 精 度 较 高 等 特 点被 广 泛 用 于 测 量 气
体 、 液 体 、 固 体 在 一0 ℃ ~ 1 0 ℃范 围 内温 度 。 20 30
1 系统构成
为 了 提 高 测 量 精 度 , 系 统 采 用 AD5 2温 度 9 传 感器 实 现 冷 端 补 偿 。根 据 中 间温 度 定 理 ,信 号 处理模 块 完成将 A 9 D5 2补 偿 的 电压 与 热 电 偶 输 出的热 电势 相 加 完 成 冷 端 补偿 ,并 且 将 补偿 后 的 电 压 放大 满足 数 据 采 集 卡 对 输 入信 号 的要 求 ,数
石明江 ,张
禾 ,何 道清
S n -a g Z AN H 。 E D oqn HI gj n . H G e H a -ig Mi i
( 西南石 油大学 电气信息 学院 ,成都 6 5 0 1 0) 0 摘 要 : 针对K 型热 电偶测温 的特性结合虚拟仪器技术 ,本文设计了一种具有高精度的温度测量系统。
务I 匐 化 ቤተ መጻሕፍቲ ባይዱ
基于K型热 电偶数据拟合的温度测量系统设计
Desi t er ocoupl t gn of K- h m e em per ur ea at e m sur em ents t ys em ased on da a ft i g b t it n

基于单片机的热电偶温度测试仪程设计说明

基于单片机的热电偶温度测试仪程设计说明

基于单片机的热电偶温度测试仪程设计说明设计说明:基于单片机的热电偶温度测试仪一、设计目的和背景现代工业生产中,温度是一个非常重要的参数,对于各种设备和工艺的控制都有着重要的影响。

而温度测试仪作为一个常用的传感器设备,用于测量环境中的温度,具有广泛的应用范围。

本设计旨在基于单片机实现一个热电偶温度测试仪,以满足工业生产对于温度测量的需求。

二、系统设计方案本设计采用基于单片机的方式来实现热电偶温度测试仪。

系统主要包含以下几个部分:1.热电偶传感器:用于测量环境中的温度。

热电偶是一种常用的温度传感器,其工作原理是利用热电效应,通过测量两个不同材料的接触处产生的电压来确定温度。

2.单片机:负责采集和处理热电偶传感器测得的温度数据,并将数据显示在LCD屏幕上。

在本设计中,采用AT89C51单片机作为主控制器。

3.信号放大模块:由于热电偶传感器的输出信号较小,需要经过一定的放大处理才能被单片机采集和处理。

信号放大模块采用运放电路实现。

4.电源模块:为整个系统提供稳定的电源,使用直流电源供电。

5.显示模块:将温度数据显示在LCD屏幕上,提供直观的温度信息。

6.按键模块和控制模块:通过按键来设置测试仪的参数和工作模式,并实现对测试仪的控制。

三、系统原理和工作流程1.系统原理:系统的工作原理是通过热电偶传感器测得温度信号,经过信号放大模块放大后,通过AD转换器将模拟信号转换为数字信号,并通过单片机处理和显示。

2.工作流程:首先,热电偶传感器将环境中的温度转换为电压信号,并经过信号放大模块放大后输出。

电压信号经过AD转换器转换为数字信号,单片机通过读取AD转换器的数值来获取温度数据。

通过按键模块设置参数,例如温度单位(摄氏度或华氏度)、温度报警阈值等。

单片机根据这些参数进行温度数据的处理,并将结果显示在LCD屏幕上。

四、硬件设计系统的硬件设计主要包括以下几个方面:1.热电偶传感器的选取和电路连接:选择合适的热电偶传感器,并通过电路连接到信号放大模块。

热电偶用于温度测量电路

热电偶用于温度测量电路

热电偶用于温度测量电路1.1热电偶工作原理:热电偶是一种感温元件,热电偶由两种不同成份的均质金属导体组成,形成两个热电极端。

温度较高的一端为工作端或热端,温度较低的一端为自由端或冷端,自由端通常处于某个恒定的温度下。

当两端存在温度梯度时,回路中就会有电流通过,此时两端之间就存在塞贝克电动势—热电动势,这就是所谓的塞贝克效应。

测得热电动势后, 即可知道被测介质的温度。

热电偶温度测量由如图所示三部分组成:⑴ 热电偶⑵ 毫伏测量电路或毫伏测量仪表⑶ 连接热电偶和毫伏测量电路的补偿导线与铜线图1-1热电偶温度测量电路:图1-2原理如图1-2所示,热电偶产生的毫伏信号经放大电路后由VT 端输出。

它可作为A/D 转换接口芯片的模拟量输入。

第1级反相放大电路,根据运算放大器增益公式:1111012L L O U R U R U ⨯-=⨯-=增益为10。

第2级反相放大电路,根据运算放大器增益公式:11101200561O O O VT U RW R U R RW U V ⨯+-=⨯+-===)( 增益为20。

总增益为200,由于选用的热电偶测温范围为0~200℃变化,热电动势0~10mV 对应放大电路的输出电压为0~2V 。

A/D 转换接口芯片最好用5G14433,它是三位半双积分A/D ,其最大输入电压为1999mV 和1999V 两档(由输入的基准电压VR 决定)。

我们应选择1999V 档,这样5G14433转换结果(BCD 码)和温度值成一一对应关系。

如读到的BCD 码为01、00、01、05,则温度值为101℃。

因此,用5G14433 A/D 芯片的话,你可以将转换好的A/D 结果(BCD 码)右移一位(除以10)后直接作为温度值显示在显示器上。

如果A/D 转换芯片用ADC0809,则在实验前期,应先做两张表格:一、放大电路的输出电压和温度的对应关系,一一测量并记录下来制成表格;二、ADC0809的转换结果(数字量)和输入的模拟电压一一对应关系记录下来并制成表格,然后将这两张表格综合成温度值和数字值的一一对应关系表存入系统内存中,最后,编制并调试实验程序,程序中将读到的A/D 转换结果(数字量)通过查表转换成温度值在显示器上显示。

热电偶电路设计方案

热电偶电路设计方案

热电偶电路设计方案全文共四篇示例,供读者参考第一篇示例:热电偶是一种常用的温度测量元件,其原理是利用不同金属之间的热电势差来实现温度测量。

热电偶电路设计方案是进行热电偶温度测量时必不可少的一部分,其设计的好坏直接影响到测量的准确性。

本文将详细介绍热电偶电路的设计方案,包括电路的基本原理、关键参数的选择,以及常见的设计方案及其优缺点。

一、热电偶电路的基本原理热电偶是利用两种不同金属之间的热电效应来实现温度测量的元件。

当热电偶的接线端温度发生变化时,两种金属之间会产生一个热电势差,通过测量这个热电势差来确定温度值。

热电偶的工作原理主要包括两点:温度差引起的热电势差和热电势差与温度值的关系。

二、热电偶电路设计的关键参数选择1、热电偶的材料选择:常见的热电偶材料有K型、J型、T型等,不同材料有不同的工作温度范围和精度要求,根据具体的应用场景选择合适的热电偶材料。

2、放大器的增益选择:热电偶产生的热电势差信号较小,需要通过放大器进行放大,选择合适的放大倍数来确保测量信号的准确性。

3、滤波器的设计:热电偶电路会受到环境噪声的干扰,需要设计滤波器来抑制噪声,提高信号质量。

4、参考电压的选择:热电偶电路通常需要一个稳定的参考电压作为基准,选择合适的参考电压来确保测量的准确性。

5、ADC分辨率的选择:ADC的分辨率决定了测量结果的精度,选择合适的ADC分辨率来满足实际需求。

三、常见的热电偶电路设计方案及其优缺点1、单端测量方案:将热电偶的一个端口接地,将另一个端口连接到测量电路。

优点是设计简单,缺点是信号容易受到干扰,准确性较低。

2、差动测量方案:将两个热电偶串联,通过测量两个热电偶之间的差值来实现温度测量。

优点是抗干扰能力强,准确性高,缺点是设计复杂。

3、冷端补偿方案:将热电偶的冷端接地,并通过一个补偿电路来抵消冷端温度对测量结果的影响。

优点是可以提高准确性,缺点是增加了设计的复杂性。

热电偶电路的设计方案是进行温度测量时的关键部分,设计方案的选择直接影响到测量结果的准确性和稳定性。

k型热电偶单片机电路

k型热电偶单片机电路

k型热电偶单片机电路引言:热电偶是一种常用的温度测量传感器,可将温度转化为电压信号。

在很多工业领域中,温度测量是十分重要的,而热电偶具有灵敏度高、响应速度快、测量范围广等优点,因此在温度测量中得到广泛应用。

本文将介绍一种基于k型热电偶的单片机电路,用于实时测量和显示温度。

一、热电偶原理热电偶是由两种不同金属(或合金)线组成的电偶,其工作原理基于“塞贝克效应”和“泰尔比效应”。

当热电偶两端的温度不同时,由于两种金属的热电势差,会在两端产生微弱的电压信号。

这个信号与热电偶的温差成正比,因此可以通过测量电压信号来得到温度值。

二、k型热电偶特点k型热电偶是一种常用的热电偶类型之一,由铬镍合金和镍铝合金组成。

它具有以下特点:1. 宽温度测量范围:k型热电偶的测量范围可达-200℃至+1350℃,非常适用于高温环境下的温度测量。

2. 高灵敏度:k型热电偶的灵敏度较高,能够测量微小的温度变化。

3. 可靠性好:k型热电偶具有较高的耐腐蚀性和耐氧化性,能够在恶劣的工作环境中长时间稳定运行。

4. 价格适中:与其他类型的热电偶相比,k型热电偶的价格较为适中,性价比较高。

三、单片机电路设计1. 硬件设计:单片机电路主要由k型热电偶、运算放大器、模数转换器和显示屏等组成。

其中,k型热电偶作为温度传感器,将温度转化为电压信号;运算放大器用于放大电压信号,增强信号的稳定性和准确性;模数转换器将模拟信号转化为数字信号,方便单片机处理;显示屏用于实时显示温度数值。

2. 软件设计:单片机电路的软件设计主要包括数据采集和处理两个部分。

数据采集部分负责读取模数转换器的数值,并将其转化为温度值;数据处理部分负责对温度值进行处理,如单位转换、上下限判断等,并将处理后的数值发送给显示屏进行显示。

四、电路工作原理1. 温度测量:k型热电偶接触到被测物体后,会产生微弱的电压信号。

通过运算放大器对信号进行放大,增强信号的稳定性和准确性。

然后,模数转换器将模拟信号转化为数字信号,供单片机进行处理。

利用热电偶原理设计温度测量实验方案

利用热电偶原理设计温度测量实验方案

热电偶选择与安装
热电偶选择
根据实验需求和测量范围选择合 适的热电偶类型。考虑热电偶的 灵敏度、稳定性、耐腐蚀性等因
素。
热电偶安装
将热电偶安装在待测物体上,确 保热电偶与物体表面紧密接触, 以减小测量误差。同时,注意保 护热电偶免受机械损伤和环境影
响。
接线与调试
按照热电偶的接线图正确连接线 路,检查接线无误后进行调试。 调试过程中应注意观察热电偶的 输出信号是否正常,确保实验数

环境因素
环境温度、湿度、气流等因素 会对热电偶的测量结果产生影 响。
测量系统误差
测量仪表的精度、稳定性以及 信号传输过程中的干扰等因素 也可能导致误差。
操作误差
实验人员的操作熟练度、读数 准确性等因素也会对实验结果
产生影响。
结果对比与验证
与标准温度计对比
将热电偶的测量结果与标准温度计的测量结果进行对比,以验证 热电偶的测量准确性。
据的准确性。
03
温度测量实验步骤
搭建实验系统
01
02
03
选择合适的热电偶
根据实验需求,选择适合 测量范围、精度要求的热 电偶,如K型、J型等。
连接测量电路
将热电偶的冷端与测量仪 表的输入端连接,形成测 量回路。
安装热电偶
将热电偶的热端安装在待 测物体上,确保紧密接触 ,减少误差。
初始化设置与参数调整
对未来研究提出建议
深入研究热电偶材料的性能
01
为了进一步提高温度测量的精度和稳定性,建议深入研究热电
偶材料的性能,探索具有更优异性能的新型热电偶材料。
加强温度测量技术的智能化和自动化研究
02
建议加强温度测量技术的智能化和自动化研究,利用人工智能

热电偶温度表测量电路的设计

热电偶温度表测量电路的设计

热电偶温度表测量电路的设计热电偶温度表由配套热电偶、外壳和核心测量电路等组成,其核心电路由三大部分组成:(1)测量放大电路;(2)A/D转换电路;(3)显示电路。

一般用单片机作为信号处理和控制的核心,图10.6.1所示为市场上常见的热电偶测温表。

若对电路稍作改进也可变成温度控制器或兼具温度控制与报警双重功能。

图10.6.1 热电偶温度表1 温度表硬件电路设计1.1 热电偶温度传感器及其冷端补偿方法的选择可根据测量温度高低来选择,尽量选用贱金属型热电偶,以降低成本。

如铁—康铜型热电偶,被测温度范围可达-100~1 100℃,冷端补偿采用补偿电桥法,采用不平衡电桥产生的电势来补偿热电偶因冷端温度变化而引起的热电势变化值。

不平衡电桥由电阻R1、R2、R3(锰铜丝绕制)、R cu(铜丝绕制)四桥臂和桥路稳压源组成,串联在热电偶回路中。

R cu 与热电偶冷端同处于±0℃,而R1=R2=R3=1Ω,桥路电源电压为4V,由稳压电源供电,R s为限流电阻,其阻值因热电偶不同而不同,电桥通常取在20℃时平衡,这时电桥的四个桥臂电阻R1=R2=R3=R cu,a、b端无输出。

当冷端温度偏离20℃时,例如升高时,R cu增大,而热电偶的热电势却随着冷端温度的升高而减小。

U ab与热电势减小量相等,U ab与热电势迭加后输出电势则保持不变,从而达到了冷端补偿的自动完成。

1.2 测量放大电路及其芯片实际电路中,从热电偶输出的信号最多不过几十毫伏(<30mV),且其中包含工频、静电和磁偶合等共模干扰,对这种电路放大就需要放大电路具有很高的共模抑制比以及高增益、低噪声和高输入阻抗,因此宜采用测量放大电路。

测量放大器又称数据放大器、仪表放大器和桥路放大器,它的输入阻抗高,易于与各种信号源匹配,而它的输入失调电压和输入失调电流及输入偏置电流小,并且温漂较小。

由于时间温漂小,因而测量放大器的稳定性好。

由三运放组成测量放大器,差动输入端R1和R2分别接到A1和A2的同相端。

基于FPGA的多通道热电偶温度测量系统的设计与实现

基于FPGA的多通道热电偶温度测量系统的设计与实现

基于FPGA的多通道热电偶温度测量系统的设计与实现基于FPGA的多通道热电偶温度测量系统的设计与实现摘要:本文介绍了一种基于FPGA(现场可编程门阵列)的多通道热电偶温度测量系统的设计与实现。

该系统具有高精度、多通道、实时测量等特点,可以广泛应用于工业自动化控制系统中的温度测量和监控方面。

关键词:FPGA;热电偶;温度测量系统1. 引言热电偶是一种常用于温度测量的传感器,广泛应用于工业自动化控制系统中。

传统的热电偶温度测量系统一般采用模拟电路和微处理器等组成,但存在精度不高、测量通道少、响应时间长等问题。

为了解决这些问题,本文设计了一种基于FPGA的多通道热电偶温度测量系统。

2. 系统设计与实现2.1 硬件设计系统的硬件由热电偶、放大器电路、FPGA和数字显示器等部分组成。

热电偶通过接头与放大器电路相连接,放大器电路负责对热电偶输出信号进行放大和滤波。

FPGA作为系统的核心部件,负责对放大器电路输出的模拟信号进行数字化处理,并将处理结果通过数字显示器实时显示出来。

2.2 系统架构系统采用了分时多路复用的方式实现多通道温度测量。

通过FPGA的多输入多输出功能,可以同时对多个热电偶进行温度测量。

在每个时钟周期内,FPGA依次对每个通道的热电偶进行采样和计算,然后将计算结果储存到内部存储器中,并通过数字显示器显示出来。

2.3 系统实现在FPGA的开发环境中,使用硬件描述语言进行系统的设计和实现。

首先,根据系统的功能需求,设计了热电偶接口模块、放大器电路模块和数字显示模块等。

然后,将这些模块相连接,并通过FPGA引脚进行连接。

最后,对FPGA进行配置,将设计好的逻辑电路加载到FPGA中,即可完成系统的实现。

3. 系统测试与结果分析为了验证系统的性能,设计了一组实验,对系统进行了测试。

通过与标准温度计进行比较,对系统的测量精度进行了评估。

实验结果表明,该系统具有较高的测量精度和稳定性,可以满足工业自动化控制系统对温度测量的要求。

K型热电偶传感器测量电路设计报告

K型热电偶传感器测量电路设计报告

K型热电偶传感器测量电路设计报告1000字本文基于K型热电偶传感器,设计了温度测量电路。

首先,介绍了K型热电偶的基本原理和特性,其次,详细阐述了温度测量电路的设计流程和关键要素,并对电路进行了仿真和实际应用的验证。

最后,总结了设计的成果和存在的问题,并展望了今后的改进方向。

一、K型热电偶的基本原理和特性K型热电偶是一种利用两种不同金属在一定温度差下产生热电势的现象来测量温度的传感器。

K型热电偶由铬电极和镍铬合金电极组成,具有较宽的测量范围(-200℃~+1300℃)、较高的灵敏度、快速响应等优点,被广泛应用于工业生产过程中的温度测量领域。

二、测量电路设计流程和关键要素1. 选型根据需要测量的温度范围、精度等要求,确定热电偶的型号,并选用对应的放大器和ADC芯片。

2. 放大器设计为了保证信号的可靠性和准确性,需要对热电偶产生的微小电压进行放大。

设计放大器时需要考虑到放大倍数、参考电压、输入阻抗、噪声等因素。

3. 高精度ADC芯片设计为了保证数字信号的精度和分辨率,需要选用高精度ADC芯片,同时设计合适的滤波电路,消除信号中的噪声干扰。

4. 电源电路设计为了稳定放大器和ADC芯片的工作,选择合适的电源电路和功率管理芯片。

三、仿真和实际应用验证通过Multisim仿真软件,对温度测量电路进行了验证。

仿真过程中,分别输入了不同的温度值,观察输出数字信号的变化情况,并与实际测量值进行比对。

仿真结果表明,电路具有较高的稳定性和准确性。

为了进一步验证测量电路的性能,将其应用于实际环境中进行测试。

实际测试中选用一个恒温箱作为测试对象,通过将恒温箱温度设定在不同的值,观察测量结果与恒温箱显示结果的误差。

测试结果表明,电路具有较高的准确性和可靠性,误差在可接受范围内。

四、设计成果和存在的问题本文成功设计了一套基于K型热电偶传感器的温度测量电路,能够满足精度高、响应速度快的要求。

但在实际应用中,还存在一些问题,如在恶劣环境下可能会受到干扰,需要采取一些降噪措施;同时电路具有一定的复杂度,需要注意在实际制作中加强线路布局和维护。

基于stm32单片机和k型热电偶的工作温度检测仪电路设计

基于stm32单片机和k型热电偶的工作温度检测仪电路设计

基于stm32单片机和k型热电偶的工作温度检测仪电路设计随着现代工业生产的不断发展,各类工艺过程中的温度控制越来越关键。

因此,设计一款基于STM32单片机和K型热电偶的工作温度检测仪变得越来越重要。

本文将从几个方面介绍该电路的设计流程。

1. STM32单片机的选型和初始化首先需要选取适合本项目的单片机。

鉴于STM32拥有成熟且丰富的资料和开发支持,因此我们选择了STM32F103C8T6。

接着进行初始化工作,包括时钟、IO口等配置工作。

2. K型热电偶的使用K型热电偶具有较高的灵敏度和精度,特别适用于温度测量。

我们需要将其连接到STM32单片机上,实时读取温度值。

为避免外部因素干扰,可以使用缓冲电路、滤波电路等方式进行优化。

3. LCD模块的接入和显示为方便使用者,需要将检测到的温度值显示到LCD模块上。

可以选择带有驱动芯片的LCD模块,进行SPI通信和显示控制。

在具体操作时,需要了解LCD模块的引脚定义、信号极性等参数,并选择合适的显示字库和刷新频率。

4. 电源电路的设计电源电路是任何电子设备的基础。

在本项目中,我们需要为STM32单片机、K型热电偶和LCD模块提供3.3V或5V电源。

可以使用AC/DC变换器、稳压器等电路来实现。

5. 温度采样和控制算法除了硬件部分的设计外,还需要编写控制算法。

通过采样K型热电偶的电压值,并进行放大、滤波等操作,可以得到相应的温度值。

根据实际需求,可以根据温度值控制风扇、加热器等外设,以实现温度控制的自动化。

本文简要介绍了基于STM32单片机和K型热电偶的工作温度检测仪的电路设计流程。

在实际操作中,还要依据具体需求进行电路的优化和改进。

温度控制是工业生产中的重要环节,而基于单片机的检测仪具有较高的灵活性和通用性,对于相关行业的发展具有积极的推动作用。

测控K型热电偶传感器测量电路设计

测控K型热电偶传感器测量电路设计

测控K型热电偶传感器测量电路设计K型热电偶传感器是一种常用的温度测量传感器。

它由两种不同金属(通常是镍铬合金和铜镍合金)的导线连接而成,当被测物体的温度发生变化时,金属之间会产生温差,从而产生微弱的电压信号。

本文将介绍K型热电偶传感器测量电路的设计原理和步骤。

1.测量电路的基本原理K型热电偶传感器的电压信号范围一般在-50mV~50mV之间,因此在测量电路中需要用到放大器对信号进行放大。

同时,由于信号范围较小,对信号的放大倍数要求较高,所以选择合适的放大器非常重要。

2.选择放大器在选择放大器时,需要考虑其增益范围和输入电压范围。

对于K型热电偶传感器的信号放大,一般选择差分放大器。

差分放大器有两个输入端和一个输出端,能够将输入信号的差值放大至输出端。

3.放大电路设计在放大电路的设计中,需要确定放大倍数。

一般情况下,放大倍数为1000左右,这样可以保证足够的信噪比,并使得测量结果更精确。

同时,为了保证放大器的线性范围,需要选择合适的电源电压以及放大器的工作点。

4.滤波电路设计由于测量环境中可能存在一些噪声信号,为了提高测量精度,通常需要加入滤波电路。

滤波电路可以滤除高频噪声信号,使得传感器的输出信号更加稳定。

选择合适的滤波器类型和参数对滤波效果至关重要。

5.校准电路设计由于传感器存在一定的误差,需要进行校准来提高测量精度。

校准可以通过与标准温度源对比,测量不同温度下的热电势,调整测量电路的放大倍数以及消除偏差。

以上是K型热电偶传感器测量电路设计的基本原理和步骤。

根据实际要求,可以根据芯片手册和相关数据手册选择适合的放大器和滤波器,进行具体的电路设计。

同时,在电路设计的过程中需要考虑信号的放大倍数、灵敏度、工作频率范围以及其他相关参数,以保证测量结果的准确性和稳定性。

热电偶电路设计方案

热电偶电路设计方案

热电偶电路设计方案
热电偶是一种常用的温度测量传感器,它利用两种不同金属的
导线焊接在一起,根据两种金属在不同温度下产生的热电动势来测
量温度。

设计热电偶电路时,需要考虑以下几个方面:
1. 选择合适的热电偶类型,常见的热电偶类型包括K型、J型、T型等,每种类型的热电偶在不同温度范围内有不同的测量精度和
适用场合,需要根据具体的测量要求选择合适的类型。

2. 冷端补偿,热电偶测量温度差是相对于冷端参考温度的,因
此需要在电路中设计冷端补偿电路,以确保测量的准确性和稳定性。

3. 信号放大和处理,热电偶产生的热电动势较小,需要通过信
号放大电路放大信号,并进行滤波和线性化处理,以提高测量精度
和抗干扰能力。

4. 防护和屏蔽,热电偶电路需要考虑环境中的电磁干扰和噪声,可以采用屏蔽和防护措施,如金属屏蔽罩和滤波器,以提高抗干扰
能力。

5. 输出方式,根据实际需求,可以选择合适的输出方式,如模
拟电压输出、数字信号输出或者接口输出,以便与其他设备或系统
进行数据交换和处理。

总的来说,设计热电偶电路需要考虑选型、冷端补偿、信号处理、防护和输出方式等多个方面,以确保测量的准确性和稳定性。

在实际设计中,还需要根据具体的应用场景和要求进行定制化设计,以满足实际的测量需求。

热电偶adc测量电路

热电偶adc测量电路

热电偶ADC测量电路主要由热电偶、ADC转换器和其他必要的电子元件组成。

热电偶是一种将温度转换为电势差的传感器,其测量原理基于塞贝克效应或皮尔兹效应。

热电偶的主要部分是由两种不同材料组成的回路,其中一种材料是热导体,另一种是冷导体。

当热端受到温度变化时,热电偶会产生电压,该电压与热端的温度成正比。

ADC转换器是模数转换器,它将模拟信号转换为数字信号。

在热电偶ADC测量电路中,ADC转换器用于将热电偶产生的模拟电信号转换为数字信号,以便进一步处理和记录。

其他必要的电子元件包括电阻、电容、电感等,用于调节信号、滤波和提供电源等。

该电路的基本工作原理是将热电偶产生的电信号传输到ADC转换器,通过ADC转换器将模拟信号转换为数字信号,然后将数字信号传输到微控制器或其他数据处理设备进行进一步处理。

微控制器可以通过控制热电偶的工作状态、采集和处理数据等操作来实现温度的测量和控制。

热电偶ADC测量电路广泛应用于温度测量和控制系统,特别是
在需要高精度和快速响应的场合,如工业自动化、医疗设备、能源监测等领域。

基于热电偶的测温系统设计_毕业设计完整版

基于热电偶的测温系统设计_毕业设计完整版
温度是一个十分重要的物理量大于它的测量与控制又十分重要的意义。随着现 代工弄也技术的发展及人们对生活环境要求的提高,人们也迫切需要检测与控制温 度:如大气及空调房中的温度高低直接影响着人们的身体健康;在大规模集成电路 生产线上环境温度不适当会严重影响产品的质量。
测温技术在生产过程中,在产品质量控制和检测设备在线故障诊断和安全保护 以及节约能源等方面发挥了重要作用。
xxxxxxxxxxxxxxxx设设设设基于热电偶的测温系统设计基于热电偶的测温系统设计基于热电偶的测温系统设计111111日日xxxxxxxxxxxxxxx测控技术与仪器测控技术与仪器测控技术与仪器11机电工程系机电工程系机电工程系xxxxxxxxxxxxxxxxxxxxxxxx基于热电偶的测温系统设计基于热电偶的测温系统设计基于热电偶的测温系统设计摘要摘要摘要在工业生产过程控制中温度是一个重要的测量参数而热电偶是工程上应用在工业生产过程控制中温度是一个重要的测量参数而热电偶是工程上应用在工业生产过程控制中温度是一个重要的测量参数而热电偶是工程上应用最广泛的温度传感器之一他的主要特点就是测温范围宽性能比较稳定同时同最广泛的温度传感器之一他的主要特点就是测温范围宽性能比较稳定同时同最广泛的温度传感器之一他的主要特点就是测温范围宽性能比较稳定同时同时结构简单动态响应好更能够远传时结构简单动态响应好更能够远传时结构简单动态响应好更能够远传420ma420ma420ma电信号便于自动控制和集中控制电信号便于自动控制和集中控制电信号便于自动控制和集中控制在温度测量中占有重要地位
XXXXXX 毕 业 设 计
基于热电偶的测温系统设计
摘要
在工业生产过程控制中,温度是一个重要的测量参数,而热电偶是工程上应用 最广泛的温度传感器之一,他的主要特点就是测温范围宽,性能比较稳定,同时同 时结构简单,动态响应好,更能够远传 4-20mA 电信号,便于自动控制和集中控制, 在温度测量中占有重要地位。但由于热电偶的热电势与温度成非线性关系增加了显 示与处理的复杂性;且随着工业发展、自动化的不断加强,对温度精度要求越来越 高。在现代化的工业现场,常用热电偶测试高温,测试结果送至主控机。由于热电 偶的热电势与温度呈非线性关系,所以必须对热电偶进行线性化处理以保持测试精 度。该系统以单片机为控制核心,通过高精度模/数转换器对热电偶电动势进行采 样、放大,并在单片机内采用一定算法实现对热电偶的线性化处理并通过液晶屏显 示相应测量数据。 关键词:传感器 热电偶 模/数转换器 液晶屏
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

燕山大学课程设计说明书题目:基于热电偶的温度测量电路设计学院(系):电气工程学院年级专业:学号:学生姓名:指导教师:教师职称:燕山大学课程设计(论文)任务书院(系):电气工程学院基层教学单位:学号学生姓名专业(班级)设计题目基于热电偶的温度测量电路设计设计技术参数设计基于运算放大器的热电偶传感器输出信号调理电路以及冷端补偿电路。

自选一款热电偶,对其在500到1200度测温范围内的输出信号进行放大。

输出信号为直流0到2.5V设计要求1:完成题目的理论设计模型;2完成电路的multisim仿真;工作量1:完成一份设计说明书(其中包括理论设计的相关参数以及仿真结果);2:提交一份电路原理图;工作计划周一,查阅资料;周二到周四,理论设计及计算机仿真;周五,撰写设计说明书;参考资料1:基于运算放大器和模拟集成电路的设计;2:模拟电子技术;3:电路理论;4:数字电子技术;指导教师签字基层教学单位主任签字说明:此表一式四份,学生、指导教师、基层教学单位、系部各一份。

2011年6 月26 日燕山大学课程设计评审意见表指导教师评语:成绩:指导教师:年月日答辩小组评语:成绩:组长:年月日课程设计总成绩:答辩小组成员签字:年月日目录第1章摘要 (2)第2章引言 (2)第3章电路结构设计 (2)3.1 热电偶的工作原理 (2)3.2 冷端补偿电路设计 (5)3.3 运算放大器的设计 (6)第4章参数设计及运算 (8)4.1 补偿电路的计算 (8)4.2 运算放大器的计算 (9)4.3 仿真器仿真图示 (10)心得体会 (12)参考文献 (13)第一章摘要本文所要设计的是基于运算放大器的具有冷端补偿的热电偶测温。

所要设计包括三部分,热电偶,冷端补偿,运算放大器。

热电偶选用的为K型热电偶,补偿采用是桥式补偿电路,运算放大器则用的是运放比例较大而输出阻抗比较小的仪器仪表放大器。

第二章引言在工业生产过程中,温度是需要测量和控制的重要参数之一,在温度测量中,热点偶的应用极为广泛,它具有结构简单,制作方便,测量范围广,精度高,惯性小和输出信号便于远传等许多优点。

另外,由于热电偶是一种有源传感器,测量时不需外加电源,使用十分方便,所以常被用作测量炉子,管道内的气体或液体的温度及固体的表面温度。

热电偶作为一种温度传感器,热电偶通常和显示仪表,记录仪表和电子调节器配套使用。

热电偶可以直接测量各种生产中从0℃到1300℃范围的液体蒸汽和气体介质以及固体的表面温度。

第三章电路结构设计3.1热电偶的工作原理热电偶是一种感温元件,是一次仪表,它直接测量温度,并把温度信号转换成热电动势信号,通过电气仪表(二次仪表)转换成被测介质的温度。

热电偶测温的基本原理是两种不同成份的材质导体(称为热电偶丝材或热电极)组成闭合回路,当接合点两端的温度不同,存在温度梯度时,回路中就会有电流通过,此时两端之间就存在电动势——热电动势,这就是所谓的塞贝克效应。

两种不同成份的均质导体为热电极,温度较高的一端为工作端(也称为测量端),温度较低的一端为自由端(也称为补偿端),自由端通常处于某个恒定的温度下。

根据热电动势与温度的函数关系,制成热电偶分度表;分度表是自由端温度在0℃时的条件下得到的,不同的热电偶具有不同的分度表。

在热电偶回路中接入第三种金属材料时,只要该材料两个接点的温度相同,热电偶所产生的热电势将保持不变,即不受第三种金属接入回路中的影响。

因此,在热电偶测温时,可接入测量仪表,测得热电动势后,即可知道被测介质的温度。

如图1所示图1其中1为热电偶2为导线3为测温测压放大电路我们要求在500到1200度范围内的输出信号进行放大,而K型热电偶比较合适,因此我们选择K型热电偶来进行。

K型热电偶具有线性度好,热电动势较大,灵敏度高,稳定性和均匀性较好,抗氧化性能强,价格便宜等优点,能用于氧化性惰性气氛中广泛为用户所采用。

K型热电偶的冷端热端在不同温度下产生的电势差如表1所示:表13.2冷端补偿电路由热电偶的基本作用原理知道,一热电偶的测量温度主要决定于热端和冷端温度差所产生的热电势,如此虽然热端所处的温度保持恒定不变,但由于冷端产生不规则的温度改变,则所测得的温度值也就成为一原理知道,一热电偶的测量温度主要决定于热端和冷端温度所产生的热电势,如此虽然热端变数,或不能代表被测处的实际温度。

热电偶温度补偿公式①如下:E(t,0)=E(t,t0)+E(t0,0) ①其中,E(t0,0)是实际测量的电动势,t代表热端温度,t0代表冷端温度,0代表O℃。

在现场温度测量中,由于热电偶冷端温度一般不为O℃,而是在一定范围内变化着,因此测得的热电势为E(t,t0)。

如果要测得真实的被测温度所对应的热电势E(t,0),就必须补偿冷端不是0℃所需的补偿电势E(t0,0),而且,该补偿电势随冷端温度变化的特性必须与热电偶的热电特性相一致,这样才能获得最佳补偿效果。

我们常用补偿方式为桥式自动补偿电路,这种补偿方法是在靠近热电偶冷端地方置放构成桥式电路的一臂,此臂是由电阻温度系数较大的金属组成,一般采用镍铜,其余三臂都由电阻温度系数较小的锰铜合金线构成。

当冷端温度为零度时,电桥构成平衡状态,若冷端温度产生改变,镍铜的一臂的电阻也随同改变,则使电桥失去平衡或输出电势,因为这输出电势的大小与冷端由于温度的变化所产生的热电势大小相等但方向相反,这样两者抵消,或冷端产生变化但对准确度的影响无关。

这种补偿电路如图2所示:图2其中R2 R3 R4为不随温度变化的电阻,R1为随温度变化的电阻,R5为调节电源电压的可调电阻。

3.3 运算放大器的设计热电偶输出的是毫伏级的电压,要求为伏安级,所以采用差分放大器的仪器仪表放大器,它具有很低的输出阻抗,,精确和稳定的增益,一般在1V/V到1000V/V放大倍数,极高的工模抑制比。

他的原理图如下图3示:图3在图中OA1和OA2构成常称之为输入级或第一级,而OA3构造输出级,依据输入电压约束条件RG 上的电压是V1--V2,依据输入电流约束条件,流过电阻R3与流过RG 为同一个电流。

由欧姆定律得放大倍数)(*)21(213R R R R A G += ② 因为增益取决于外部电阻的比值,所以利用合适的电阻增益可以做得精确。

由于OA1与OA2工作在同相结构,它们的闭环输入电阻极高,同样,OA3的闭环输出电阻也很低。

最后,通过适当调节第二级电阻中的一个都能使CMRR 达到最大。

从而这个电路满足条件。

第四章 参数的计算4.1冷端补偿电路如图4所示:图4设()02R 和()t R 2分别代表2R 0时和t 时的电阻,又设i 为流经2R 电流,电桥所提供的电压为E 。

当冷端温度为0度时,电桥呈平衡,则:4321R R R R = ③ 当冷端变化t 时,由于电桥失去平衡,输出电压电动势,()()[]()i t k R R t R ***00*i 22=- ④所以 i t R **k *e 2=由于()E R R =+0*i *i 21则得()0i41R E R -=⑤ 令31R R = 所以()024R R =在设计中,我们采用镍铬 镍铝合金线,补偿电阻采用镍铜,设其在0度时的电阻温度系数为0.00443,冷端温度补偿范围为0-100度,又设通过R2的电流为2毫安,电压供电为1.5伏。

我们从K 型热电偶的温度表中得知,冷端在0到100度时,所产生的温度差大约为4毫伏左右所以()Ω==627.4100*00443.0*202R则R 1=745.373ΩR 1=R 3=745.373Ω R 2=R 4=4.627Ω4.2 运算放大器的计算电路图如图5所示:图5由前面的计算公式:)(*)21(213R R R R A G += ⑥ 在图中 71R R = 23R R = 65R R =)(*)21(1345R R R R A += ⑦ 热电偶500度输出电压为20.6443mv ,在1200度得输出电压为28.1939mv1939.286443.20-8382.48v ==∆mv放大电压为0-2.5v .5v 2=∆V所以89/=∆∆=v V A令Ω==K R R 20245 Ω==.5K1713R R 可得放大倍数为89 4.3 Multisim 仿真图图6函数发生器图7示:图7 示波器如图8所示:图8在图示中,B通道的幅值为20mv,A通道的幅值约为1.8v则放大倍数约为90倍通过最右端时,通道A的值为-1.040v 通道B的值为11.993mv-.0A40v=mv1=867./93.911因此在放大的时候有一定的误差心得体会经过为期一周的测控电路课设,我学到了很多的东西。

课程设计是培养学生综合运用所学知识,发现,提出,分析和解决实际问题,锻炼实践能力的的重要环节是对学生实际共组能力的具体训练和考察过程,它不仅仅是让我们把所学的理论知识与实践相结合起来,提高自己的实际动手能力和独立思考的能力,更重要的是同学间的团结,虽然我们这次花去的时间比别人多,但我相信我们得到的也会更多!更为难得的是这次的课程设计过程中我锻炼了自己的思考能力,通过题目的选择和设计电路的过程中,加强了我思考问题的完整性和实际生活联系起来。

在做本次课程设计的过程中,我感触最深的当属查阅大量的设计资料了。

为了让自己的设计更加完善,和同学一起去图书馆借阅了大量的相关资料。

其次就是又学会了multisim仿真软件,并且加深了对测控电路知识的学习。

虽然过去从未独立应用过它们,但在学习的过程中带着问题去学我发现效率很高,这是我做这次课程设计的又一收获。

我认为课程设计是理论联系生活的重要体现。

我们上课所学的知识都是纸上谈兵,也只有通过课设来对以后工作做好准备。

并且在课设中也学会了与同学互帮互助,这对以后的人际关系也有很好的帮助。

参考文献1:基于运算放大器和模拟集成电路的设计;赛尔吉欧.弗朗哥,20012:模拟电子技术;康华光,19983:电路理论;邱关源,1999 4:数字电子技术;闫石,2006。

相关文档
最新文档