2018中考数学一轮复习 各知识点练习题分层设计十七(三角形部分)(无答案) 鲁教版

合集下载

鲁教版中考数学一轮复习各知识点练习题分层设计十七三角形部分

鲁教版中考数学一轮复习各知识点练习题分层设计十七三角形部分

(三角形部分)A级基础题1.已知在△ABC中,∠A=70°-∠B,则∠C=( )A.35° B.70° C.110° D.140°2.已知如图中的两个三角形全等,则角α的度数是()A.72° B.60° C.58° D.50°3.如图,∠A,∠1,∠2的大小关系是( )A.∠A>∠1>∠2 B.∠2>∠1>∠AC.∠A>∠2>∠1 D.∠2>∠A>∠14.王师傅用四根木条钉成一个四边形木架,如图X4-2-3.要使这个木架不变形,他至少还要再钉上几根木条( )A.0根 B.1根 C.2根 D.3根5.下列命题中,真命题的是( )A.周长相等的锐角三角形都全等 B.周长相等的直角三角形都全等C.周长相等的钝角三角形都全等 D.周长相等的等腰直角三角形都全等6.小华在电话中问小明:“已知一个三角形三边长分别是4,9,12,如何求这个三角形的面积?”小明提示说:“可通过作最长边上的高来求解.”小华根据小明的提示作出的图形正确的是( )A B C D7.不一定在三角形内部的线段是( )A.三角形的角平分线 B.三角形的中线C.三角形的高 D.三角形的中位线8.用直尺和圆规作一个角的平分线的示意图如图所示,则能说明∠AOC=∠BOC的依据是( )A.SSS B.ASA C.AAS D.角平分线上的点到角两边的距离相等9.如图,在Rt△ABC中,∠ACB=90°,BC=2 cm,CD⊥AB,在AC上取一点E,使EC=BC,过点E作EF⊥AC交CD的延长线于点F,若EF=5 cm,则AE=________cm.10.如图,△ABC中,AB=AC,BD⊥AC,CE⊥AB.求证:BD=CE.11.如图,点A,B,D,E在同一直线上,AD=EB,BC∥DF,∠C=∠F.求证:AC=EF.12.如图,在△AEC和△DFB中,∠E=∠F,点A,B,C,D在同一直线上,有如下三个关系式:①AE∥DF;②AB=CD;③CE=BF.(1)请用其中两个关系式作为条件,另一个作为结论,写出你认为正确的所有命题(用序号写出命题书写形式:“如果⊗,⊗,那么⊗”);(2)选择(1)中你写出的一个命题,说明它正确的理由.13.如图所示,两根旗杆间相距12 m,某人从点B沿BA走向点A,一定时间后他到达点M,此时他仰望旗杆的顶点C和D,两次视线的夹角为90°,且CM=DM,已知旗杆AC的高为3 m,该人的运动速度为1 m/s,求这个人运动了多长时间?B级中等题14.如图所示,直线a经过正方形ABCD的顶点A,分别过正方形的顶点B,D作BF⊥a 于点F,DE⊥a于点E,若DE=8,BF=5,则EF的长为________(提示:∠EAD+∠FAB=90°).15.如图,在四边形ABCD中,点P是对角线BD的中点,点E,F分别是AB,CD的中点,AD=BC,∠PEF=30°,则∠PFE的度数是( )A.15° B.20° C.25° D.30°16.如图,在△ABC中,∠B=90°,AB=3,AC=5,将△ABC折叠,使点C与点A重合,折痕为DE,则△ABE的周长为________.C级拔尖题17.(1)如图,在△ABC和△ADE中,AB=AC,AD=AE,∠BAC=∠DAE=90°.①当点D在AC上时,如图X4-2-12(1),线段BD、CE有怎样的数量关系和位置关系?直接写出你猜想的结论;②将图X4-2-12(1)中的△ADE绕点A顺时针旋转α角(0°<α<90°),如图X4-2-12(2),线段BD,CE有怎样的数量关系和位置关系?请说明理由.(2)当△ABC和△ADE满足下面甲、乙、丙中的哪个条件时,能使线段BD,CE在(1)中的位置关系仍然成立?不必说明理由.甲:AB∶AC=AD∶AE=1,∠BAC=∠DAE≠90°;乙:AB∶AC=AD∶AE≠1,∠BAC=∠DAE=90°;丙:AB∶AC=AD∶AE≠1,∠BAC=∠DAE≠90°.选做题18.如图(1),l1,l2,l3,l4是一组平行线,相邻两条平行线间的距离都是1个单位长度,正方形ABCD的四个顶点A,B,C,D都在这些平行线上.过点A作AF⊥l3于点F,交l2于点H,过点C作CE⊥l2于点E,交l3于点G.(1)求证:△ADF≌△CBE;(2)求正方形ABCD的面积;(3)如图X4-2-13(2),如果四条平行线不等距,相邻的两条平行线间的距离依次为h1,h2,h3,试用h1,h2,h3表示正方形ABCD的面积S.。

中考一轮复习数学《三角形》压轴题备考专题练习(无答案)

中考一轮复习数学《三角形》压轴题备考专题练习(无答案)

中考一轮复习九年级数学《三角形》压轴题备考专题练习1、如图,在ABC 中,120ACB ∠=︒,BC AC >,点E 在BC 上,点D 在AB 上,CE CA =,连接DE ,180ACB ADE ∠+∠=︒,CH AB ⊥,垂足为H .证明:DE AD +=.2、如图,在△ABC 中,∠B=60°,△ABC 的角平分线AD 、CE 相交于点O,求证:AE+CD=AC.3、如图,在ABC ∆中,AD 是BAC ∠的平分线,G 为AD 上一动点,GH AD ⊥,交BC 的延长线于点H .(1)若30B ∠=︒,40BAC ∠=︒,求H ∠的度数;(2)当点G 在AD 上运动时,探求H ∠与B 、ACB ∠之间的数量关系,并证明.4、如图,在△ABC 中,AD 是BC 边上的高,AE 是∠BAC 的平分线,∠EAD=15°,∠B=40°. (1)求∠C 的度数.(2)若:∠EAD=α,∠B=β,其余条件不变,直接写出用含α,β的式子表示∠C 的度数.5、在△ABC 中,已知△A =α.(1)如图1,△ABC 、△ACB 的平分线相交于点D .求△BDC 的大小(用含α的代数式表示);(2)如图2,若△ABC 的平分线与△ACE 的平分线交于点F ,求△BFC 的大小(用含α的代数式表示);(3)在(2)的条件下,将△FBC 以直线BC 为对称轴翻折得到△GBC ,△GBC 的平分线与△GCB 的平分线交于点M (如图3),求△BMC 的度数(用含α的代数式表示).6、图,ABC 中,AC BC =,DCE 中,DC EC =,且DCE ACB ∠=∠,当把两个三角形如图△放置时,有AD BE =.(不需证明)(1)当把DCE 绕点C 旋转到图△△△的情况,其他条件不变,AD 和BE 还相等吗?请在图△△中选择一种情况进行证明;(2)若图△中AD 和BE 交于点P ,连接PC ,求证:PC 平分BPD ∠.7、已知在Rt ABC ∆中,90ACB ∠=︒,AC BC =,CD AB ⊥于D .(1)如图1,将线段CD 绕点C 顺时针旋转90︒得到CF ,连接AF 交CD 于点G . 求证:AG GF =;(2)如图2,点E 是线段CB 上一点(12CE CB <),连接ED ,将线段ED 绕点E 顺时针旋转90︒得到EF ,连接AF 交CD 于点G . △求证:AG GF =;△若7AC BC ==,2CE =,求DG 的长.8、在ABC 中,AB AC =,D 是直线BC 上一点(不与点B 、C 重合),以AD 为一边在AD 的右侧作ADE ,AD AE =,DAE BAC ∠=∠,连接CE .(1)如图,当 D 在线段BC 上时,求证:BD CE =.(2)如图,若点D 在线段CB 的延长线上,BCE α∠=,BAC β∠=.则α、β之间有怎样的数量关系?写出你的理由.(3)如图,当点D 在线段BC 上,90BAC ∠=︒,4BC =,求DCES 最大值.9、如图,已知 B (-1, 0) , C (1, 0) , A 为 y 轴正半轴上一点, AB = AC ,点 D 为第二象限一动点,E 在 BD 的延长线上, CD 交 AB 于 F ,且∠BDC = ∠BAC . (1)求证: ∠ABD = ∠ACD ; (2)求证: AD 平分∠CDE ;(3)若在 D 点运动的过程中,始终有 DC = DA + DB ,在此过程中,∠BAC 的度数是否变化?如果变化,请说明理由;如果不变,请求出∠BAC的度数?10、如图,ABC 是边长为2的等边三角形,BDC 是顶角为120°的等腰三角形,以点D 为顶点作60MDN ∠=︒,点M 、N 分别在AB 、AC 上. (1)如图①,当//MN BC 时,则AMN 的周长为______; (2)如图②,求证:BM NC MN +=.11、已知Rt△OAB和Rt△OCD的直角顶点O重合,∠AOB=∠COD=90°,且OA=OB,OC=OD.(1)如图1,当C、D分别在OA、OB上时,AC与BD的数量关系是AC BD(填“>”,“<”或“=”)AC与BD的位置关系是AC BD(填“∥”或“⊥”);(2)将Rt△OCD绕点O顺时针旋转,使点D在OA上,如图2,连接AC,BD,求证:AC=BD;(3)现将Rt△OCD绕点O顺时针继续旋转,如图3,连接AC,BD,猜想AC与BD的数量关系和位置关系,并给出证明.12、在Rt△ABC中,AB=AC,D为BC边上一点(不与点B,C重合),将线段AD绕点A逆时针旋转90°得到AE.(1)连接EC,如图△,试探索线段BC,CD,CE之间满足的等量关系,并证明你的结论;(2)连接DE,如图△,求证:BD2+CD2=2AD2(3)如图△,在四边形ABCD中,△ABC=△ACB=△ADC=45°,若则AD的长为 .(直接写出答案)13、(1)问题发现与探究:如图1,,ACB DCE ∆∆都是等腰直角三角形,90ACB DCE ︒∠=∠=,点A,D,E 在同一直线上,CM AE ⊥于点M,连接BD,则:(1)线段AE,BD 之间的大小关系是_________________; ADB =∠ ; (2)求证:AD=2CM+BD ;如图2,3,在等腰直角三角形ABC 中,90ACB ︒∠=,过点A 作直线,在直线上取点D,45ADB ︒∠=,连接BD,BD=1,AC= ,则点C 到直线的距离是多少.14、在△ABC中,若存在一个内角角度是另外一个内角角度的n倍(n为大于1的正整数),则称△ABC为n倍角三角形.例如,在△ABC中,∠A=80°,∠B=75°,∠C=25°,可知∠B=3∠C,所以△ABC为3倍角三角形.(1)在△ABC中,∠A=80°,∠B=60°,则△ABC为倍角三角形;(2)若锐角三角形MNP是3倍角三角形,且最小内角为α,请直接写出α的取值范围为.(3)如图,直线MN与直线PQ垂直相交于点O,点A在射线OP上运动(点A不与点O重合),点B在射线OM上运动(点B不与点O重合).延长BA至G,已知∠BAO、∠OAG的角平分线与∠BOQ的角平分线所在的直线分别相交于E、F,若△AEF为4倍角三角形,求∠ABO的度数.15、(1)操作发现:将等腰Rt ABC与等腰Rt ADE按如图1方式叠放,其中ACB ADE,点D,E分别在AB,AC边上,M为BE的中点,连结CM,DM.小∠=∠=90︒=,你认为正确吗?请说明理由.明发现CM DM(2)思考探究:小明想:若将图1中的等腰Rt ADE绕点A沿逆时针方向旋转一定的角度,上述结论会如何呢?为此进行以下探究:探究一:将图1中的等腰Rt ADE绕点A沿逆时针方向旋转45︒(如图2),其他条件不变, =依然成立.请你给出证明.发现结论CM DM探究二:将图1中的等腰Rt ADE绕点A沿逆时针方向旋转135︒(如图3),其他条件不变, =还成立吗?请说明理由.则结论CM DM=,点P在平面内,连接AP,并将线段AP绕A顺时针方向旋转与16、在ABC中,AB AC∠相等的角度,得到线段AQ,连接BQ.BAC(1)如图,如果点P是BC边上任意一点.则线段BQ和线段PC的数量关系是__________.(2)如图,如果点P为平面内任意一点.前面发现的结论是否仍然成立?若成立,请给予证明;若不成立,请说明理由.请仅以图所示的位置关系加以证明(或说明);(3)如图,在DEF 中,8DE =,60EDF ∠=︒,75DEF ∠=︒,P 是线段EF 上的任意一点,连接DP ,将线段DP 绕点D 顺时针方向旋转60°,得到线段DQ ,连接EQ .请直接写出线段EQ 长度的最小值.。

2018中考数学一轮复习各知识点练习题分层设计三整式部分

2018中考数学一轮复习各知识点练习题分层设计三整式部分

(整式部分)A 级 基础题1.计算(-x )2·x 3的结果是( ) A .x5 B .-x 5 C .x6 D .-x 62.下列运算正确的是( ) A .3a -a =3 B .a 2·a 3=a 5 C .a 15÷a 3=a 5(a ≠0)D.(a 3)3=a 63.下列运算正确的是( )A .a +a =a 2 B .(-a 3)2=a 5C .3a ·a 2=a 3 D .(2a )2=2a 24.在下列代数式中,系数为3的单项式是( )A .xy 2 B .x 3+y 3 C .x 3y D .3xy5.下列计算正确的是( )A .(-p 2q )3=-p 5q3 B .(12a 2b 3c )÷(6ab 2)=2ab C .3m 2÷(3m -1)=m -3m2D .(x 2-4x )x -1=x -4 6.下列等式一定成立的是( )A .a 2+a 3=a 5B .(a +b )2=a 2+b 2C .(2ab 2)3=6a 3b 6D .(x -a )(x -b )=x 2-(a +b )x +ab7.计算(-5a 3)2的结果是( ) A .-10a 5 B .10a 6 C .-25a 5 D .25a 68.将代数式x 2+4x -1化成(x +p )2+q 的形式为( )A .(x -2)2+3B .(x +2)2-4C .(x +2)2-5D .(x +2)2+49.计算: (1)(3+1)(3-1)=____________; (2)(山东德州)化简:6a 6÷3a 3=________.(3)(-2a )·3114a ⎛⎫- ⎪⎝⎭=________.10.化简:(a +b )2+a (a -2b ).B 级 中等题11.已知一个多项式与3x2+9x的和等于3x2+4x-1,则这个多项式是( )A.-5x-1 B.5x+1 C.13x-1 D.13x+112.如图,从边长为(a+4) cm的正方形纸片中剪去一个边长为(a+1) cm的正方形(a>0),剩余部分沿虚线又剪拼成一个矩形(不重叠无缝隙),则矩形的面积为( ).A.(2a2+5a) cm2 B.(3a+15) cm2 C.(6a+9) cm2 D.(6a+15) cm213.先化简,再求值:(2a-b)2-b2,其中a=-2,b=3.14.先化简,再求值:(a+b)(a-b)+2a2,其中a=1,b= 2.15.先化简,再求值:(2x+3)(2x-3)-4x(x-1)+(x-2)2,其中x=- 3.C级拔尖题16将代数式x2+6x+2化成(x+p)2+q的形式为( )A.(x-3)2+11 B.(x+3)2-7 C.(x+3)2-11 D.(x+2)2+417.若2x-y+|y+2|=0,求代数式[(x-y)2+(x+y)(x-y)]÷2x的值.选做题18.观察下列算式:①1×3-22=3-4=-1;②2×4-32=8-9=-1;③3×5-42=15-16=-1;④__________________________.……(1)请你按以上规律写出第4个算式;(2)把这个规律用含字母的式子表示出来;(3)你认为(2)中所写出的式子一定成立吗?并说明理由.19.若3×9m×27m=311,则m的值为____________.。

2018中考数学第一轮复习三角形

2018中考数学第一轮复习三角形

相交线1.(2017甘肃庆阳)将一把直尺与一块三角板如图放置,若∠1=45°,则∠2为( ) A .115° B .120°C .135°D .145°2. (2017贵州遵义第6题)把一块等腰直角三角尺和直尺如图放置,如果∠1=30°,则∠2的度数为( )A .45°B .30°C .20°D .15°3.(2017江苏盐城第12题)在“三角尺拼角”实验中,小明同学把一副三角尺按如图所示的方式放置,则∠1= °.4. (2017郴州第8题)小明把一副的直角三角板如图摆放,其中,则等于 ( )A .B .C .D .三角形的概念1. (2017甘肃庆阳第8题) 已知a ,b ,c 是△ABC 的三条边长,化简|a+b-c|-|c-a-b|的结果为( ) A .2a+2b-2c B .2a+2bC .2cD .013.(2017浙江嘉兴第2题)长度分别为2,7,x 的三条线段能组成一个三角形,x 的值可以是( ) A .4B .5C .6D .92. (2017河池第9题)三角形的下列线段中,能将三角形分成面积相等的两部分是() A .中线 B .角平分线 C.高 D .中位线3.(2017天津第9题)如图,将ABC ∆绕点B 顺时针旋转060得DBE ∆,点C 的对应点E 恰好落在AB 延长线上,连接AD .下列结论一定正确的是( )A .E ABD ∠=∠B .C CBE ∠=∠ C. BC AD // D .BC AD =4.(2017四川泸州第16题)在△ABC 中,已知BD 和CE 分别是边AC 、AB上的中线,且BD ⊥CE ,垂足为O .若OD=2cm ,OE=4cm ,则线段AO 的长度为 cm .45,3000090,45,30C F A D ∠=∠=∠=∠=αβ∠+∠01800210036002705.(2017新疆建设兵团第15题)如图,在四边形ABCD 中,AB=AD ,CB=CD ,对角线AC ,BD 相交于点O ,下列结论中: ①∠ABC=∠ADC ; ②AC 与BD 相互平分;③AC ,BD 分别平分四边形ABCD 的两组对角; ④四边形ABCD 的面积S=12AC•BD. 正确的是 (填写所有正确结论的序号)6. (2017湖北咸宁第16题)如图,在中,,斜边的两个端点分别在相互垂直的射线上滑动,下列结论: ①若两点关于对称,则; ②两点距离的最大值为; ③若平分,则; ④斜边的中点运动路径的长为. 其中正确的是 .7.(2017山东省枣庄市)如图,在Rt △ABC 中,∠C =90°,以顶点A 为圆心,适当长为半径画弧,分别交AC ,AB 于点M ,N ,再分别以点M ,N 为圆心,大于MN 的长为半径画弧,两弧交于点P ,作射线AP 交边BC 于点D ,若CD =4,AB =15,则△ABD 的面积是( ) A .15 B .30 C .45 D .60 全等三角形1.(2017湖北武汉第15题)如图△ABC 中,AB=AC ,∠BAC=120°,∠DAE=60°,BD=5,CE=8,则DE 的长为 .2. (2017湖北咸宁第18题) 如图,点在一条直线上,⑴求证:;ACB Rt ∆30,2=∠=BAC BC AB ON OM ,O C 、AB 32=OA O C 、4AB CO CO AB ⊥AB D 2π12F C E B ,,,FC BE DE AC DF AB ===,,DFE ABC ∆≅∆⑵连接,求证:四边形是平行四边形.3.(2017湖北武汉第18题)如图,点,,,C F E B 在一条直线上,CFD BEA ∠=∠,,CE BF DF AE ==.写出CD 与AB 之间的关系,并证明你的结论.4.(2017重庆A 卷)在△ABC 中,∠ABM=45°,AM ⊥BM ,垂足为M ,点C 是BM 延长线上一点,连接AC . (1)如图1,若BC=5,求AC 的长;(2)如图2,点D 是线段AM 上一点,MD=MC ,点E 是△ABC 外一点,EC=AC ,连接ED 并延长交BC 于点F ,且点F 是线段BC 的中点,求证:∠BDF=∠CEF .5. (2017山东滨州第11题)如图,点P 为定角∠AOB 的平分线上的一个定点,且∠MPN 与∠AOB 互补.若∠MPN 在绕点P 旋转的过程中,其两边分别与OA ,OB 相交于M 、N 两点,则以下结论:(1)PM =PN 恒成立,(2)OM +ON 的值不变,(3)四边形PMON 的面积不变,(4)MN 的长不变,其中正确的个数为( )A .4B .3C .2D .16.(2017四川省绵阳市)如图,矩形ABCD 的对角线AC 与BD 交于点O ,过点O 作BD 的垂线分别交AD ,BC 于E ,F 两点.若AC =AEO =120°,则FC的长度为()A .1B .2 CD 7.(2017四川省南充市)如图,正方形ABCD 和正方形CEFG边长分别为a 和b ,正方形CEFG 绕点C 旋转,给出下列结论:①BE =DG ;②BE ⊥DG ;③,其中正确结论是 (填序号)BD AF ,ABDF 222222DE BG a b +=+PA ONBM直角三角形1. (2017江苏宿迁第12题)如图,在C ∆AB 中,C 90∠A B =,点D 、E 、F 分别是AB 、C B 、C A 的中点.若CD 2=,则线段FE 的长是 .2.(2017广西贵港第11题)如图,在Rt ABC ∆中,90ACB ∠= ,将ABC ∆绕顶点C 逆时针旋转得到'',A B C M ∆是BC 的中点,P 是''A B 的中点,连接PM ,若230BC BAC =∠=,,则线段PM 的最大值是 ( )A .4B .3 C.2 D .1 3.(2017江苏无锡第10题)如图,△ABC 中,∠BAC=90°,AB=3,AC=4,点D 是BC 的中点,将△ABD 沿AD 翻折得到△AED ,连CE ,则线段CE 的长等于( ) A .2B .C .D . 4.(2017甘肃庆阳第16题)如图,一张三角形纸片ABC ,∠C=90°,AC=8cm ,BC=6cm .现将纸片折叠:使点A 与点B 重合,那么折痕长等于 cm .5.(2017贵州安顺第13题)三角形三边长分别为3,4,5,那么最长边上的中线长等于 .6.(2017湖北省襄阳市)如图,在△ABC 中,∠ACB =90°,∠A =30°,BC =4,以点C 为圆心,CB 长为半径作弧,交AB 于点D ;再分别以点B 和点D 为圆心,大于BD 的长为半径作弧,两弧相交于点E ,作射线CE 交AB 于点F ,则AF 的长为( )A .5B .6C .7D .87.(2017浙江省绍兴市)如图,小巷左右两侧是竖直的墙,一架梯子斜靠在左墙时,梯子底端到左墙角的距离为0.7米,顶端距离地面2.4米,如果保持梯子底端位置不动,将梯子斜靠在右墙时,顶端距离地面2米,则小巷的宽度为( )54537512A .0.7米B .1.5米C .2.2米D .2.4米8.(2017湖北省襄阳市)“赵爽弦图”巧妙地利用面积关系证明了勾股定理,是我国古代数学的骄傲,如图所示的“赵爽弦图”是由四个全等的直角三角形和一个小正方形拼成的一个大正方形,设直角三角形较长直角边长为a ,较短直角边长为b ,若,大正方形的面积为13,则小正方形的面积为( )A .3B .4C .5D .69. (2017辽宁大连第8题)如图,在中,,,垂足为,点是的中点,,则的长为( ) A . B . C. D .●10. (2017黑龙江绥化第20题)在等腰中,交直线于点,若,则的顶角的度数为 .11.(2017年贵州省毕节地区第15题)如图,在Rt △ABC 中,∠ACB=90°,AC=6,BC=8,AD 平分∠CAB 交BC 于D 点,E ,F 分别是AD ,AC 上的动点,则CE+EF 的最小值为( ) A .B .C .D .6等腰三角形1.(2017湖北武汉第10题)如图,在Rt ABC ∆中,90C ∠=,以ABC ∆的一边为边画等腰三角形,使得它的第三个顶点在ABC ∆的其他边上,则可以画出的不同的等腰三角形的个数最多为( )A .4B .5C . 6D .72. (2017年湖北省荆州市第6题)如图,在△ABC 中,AB=AC , ∠A =30°,AB的垂直平分()221a b +=ABC ∆090=∠ACB AB CD ⊥D E AB a DE CD ==AB a 2a 22a 3a 334ABC ∆AD BC ⊥BC D 12AD BC =ABC ∆403154245线交AC 于点D ,则∠CBD 的度数为( )A.30°B.45°C.50°D.75°3.(2017山东滨州第8题)如图,在△ABC 中,AB =AC ,D 为BC 上一点,且DA =DC ,BD =BA ,则∠B 的大小为( )A .40°B .36°C .80°D .25°4.(2017北京第19题)如图,在ABC ∆中,0,36AB AC A =∠=,BD 平分ABC ∠交AC 于点D .求证:AD BC =.5. (2017浙江台州第8题)如图,已知等腰三角形,若以点为圆心,长为半径画弧,交腰于点,则下列结论一定正确的是( )A .B . C. D .6.(2017浙江省绍兴市)在探索“尺规三等分角”这个数学名题的过程中,曾利用了下图,该图中,四边形ABCD 是矩形,E 是BA 延长线上一点,F 是CE 上一点,∠ACF =∠AFC ,∠FAE =∠FEA .若∠ACB =21°,则∠ECD 的度数是( )A .7°B .21°C .23°D .24°7. (2017海南第13题)已知△ABC 的三边长分别为4、4、6,在△ABC 所在平面内画一条直线,将△ABC 分割成两个三角形,使其中的一个是等腰三角形,则这样的直线最多可画( )条. A .3 B .4 C .5 D .68. (2017福建第19题)如图,中,,垂足为.求作的平分线,分别交于,两点;并证明.(要求:尺规作图,保留作图痕迹,不写作法)9.(2017山东省枣庄市)在矩形ABCD 中,∠B 的角平分线BE 与AD 交于点E ,l ,ABC AB AC =B BC AC E AE EC =AE BE =EBC BAC ∠=∠EBC ABE ∠=∠ABC ∆90,BAC AD BC ∠=⊥oD ABC ∠,AD AD P Q AP AQ= AB CD∠BED 的角平分线EF 与DC 交于点F ,若AB =9,DF =2FC ,则BC = .(结果保留根号)10. (2017江苏苏州第24题)(本题满分8分)如图,∠A =∠B ,AE =BE ,点D 在C A 边上,12∠=∠,AE 和D B 相交于点O .(1)求证:C ∆AE ≌D ∆BE ; (2)若142∠=,求D ∠B E 的度数.11.(2017四川省达州市)如图,在△ABC 中,点O 是边AC 上一个动点,过点O 作直线EF ∥BC 分别交∠ACB 、外角∠ACD 的平分线于点E 、F .(1)若CE =8,CF =6,求OC 的长;(2)连接AE 、AF .问:当点O 在边AC 上运动到什么位置时,四边形AECF 是矩形?并说明理由.12.(2017浙江省绍兴市)已知△ABC ,AB =AC ,D 为直线BC 上一点,E 为直线AC 上一点,AD =AE ,设∠BAD =α,∠CDE =β.(1)如图,若点D 在线段BC 上,点E 在线段AC 上.①如果∠ABC =60°,∠ADE =70°, 那么α=_______,β=_______. ②求α、β之间的关系式.(2)是否存在不同于以上②中的α、β之间的关系式?若存在,求出这个关系式,若不存在,请说明理由.13. (2017贵州遵义第12题)如图,△ABC 中,E 是BC 中点,AD 是∠BAC 的平分线,EF∥AD 交AC 于F .若AB=11,AC=15,则FC 的长为( ) A .11 B .12 C .13 D .14等边三角形1. (2017河池第12题)已知等边的边长为,是上的动点,过作于点,ABC ∆12D AB D AC DE ⊥E过作于点,过作于点.当与重合时,的长是() A . B . C. D .2.(2017广西贵港第16题)如图,点P 在等边ABC ∆的内部,且6,8,10PC PA PB ===,将线段PC 绕点C 顺时针旋转60得到'P C ,连接'AP ,则sin 'PAP ∠的值为 .3.(2017江苏徐州第25题)如图,已知,垂足为,将线段绕点按逆时针方向旋转,得到线段,连接. (1)线段 ; (2)求线段的长度.4. (2017湖南常德第14题)如图,已知Rt △ABE 中∠A =90°,∠B =60°,BE =10,D 是线段AE 上的一动点,过D 作CD 交BE 于C ,并使得∠CDE =30°,则CD 长度的取值范围是 .5. (2017年山东省威海市第18题)如图,为等边三角形,,若为内一动点,且满足,则线段长度的最小值为 .6.(2017山东烟台第23题)【操作发现】(1)如图1,为等边三角形,先将三角板中的角与重合,再将三角板绕点按顺时针方向旋转(旋转角大于且小于).旋转后三角板的一直角边与交于点.在三角板斜边上取一点,使,线段上取点,使,连接,. ①求的度数;②与相等吗?请说明理由; 【类比探究】(2)如图2,为等腰直角三角形,,先将三角板的角与重合,再将三角板绕点按顺时针E BC EF ⊥F F AB FG ⊥G G D AD 3489AC BC⊥,4,C AC BC ==AC A 60AD ,DC DB DC =DB ABC ∆2=AB P ABC ∆ACP PAB ∠=∠PB ABC ∆060ACB ∠C 00030AB D F CD CF =AB E 030=∠DCE AF EF EAF ∠DE EF ABC ∆090=∠ACB 090ACB ∠C方向旋转(旋转角大于且小于).旋转后三角板的一直角边与交于点.在三角板另一直角边上取一点,使,线段上取点,使,连接,.请直接写出探究结果:①的度数;②线段之间的数量关系.等腰直角三角形1. (2017江苏徐州第18题)如图,已知,以为直角边作等腰直角三角形.再以为直角边作等腰直角三角形,如此下去,则线段的长度为 .2. (2017黑龙江齐齐哈尔第19题)如图,在平面直角坐标系中,等腰直角三角形的直角边在轴的正半轴上,且,以为直角边作第二个等腰直角三角形,以为直角边作第三个等腰直角三角形,则点的坐标为 .3. (2017黑龙江绥化第21题)如图,顺次连接腰长为2 的等腰直角三角形各边中点得到第1个小三角形,再顺次连接所得的小三角形各边中点得到第2个小三角形,如此操作下去,则第个小三角形的面积为 .4. (2017浙江湖州第9题)七巧板是我国祖先的一项卓越创造.下列四幅图中有三幅是小明用如图所示的七巧板拼成的,则不是小明拼成的那副图是( )●5. (2017北京第28题)在等腰直角ABC ∆中,090ACB ∠=,P00045AB D F CD CF =AB E 045=∠DCE AF EF EAF ∠DB ED AE ,,1OB =OB 1A BO 1OA 21A AO n OA 12OA A 1OA y 1121OA A A ==2OA 23OA A 3OA 20172018OA A 2017An是线段BC 上一动点(与点B C 、不重合),连接AP ,延长BC 至点Q ,使得CQ CP =,过点Q 作QH AP ⊥于点H ,交AB 于点M .(1)若PAC α∠=,求AMQ ∠的大小(用含α的式子表示). (2)用等式表示线段MB 与PQ 之间的数量关系,并证明.6. (2017湖南株洲第22题)如图示,正方形ABCD 的顶点A 在等腰直角三角形DEF 的斜边EF 上,EF 与BC 相交于点G ,连接CF . ①求证:△DAE ≌△DCF ; ②求证:△ABG ∽△CFG .7. (2017黑龙江齐齐哈尔第23题)如图,在中,于,,,,分别是,的中点.(1)求证:,; (2)连接,若,求的长. 相似三角形1.(2017四川自贡第14题)在△ABC 中,MN ∥BC 分别交AB ,AC 于点M ,N ;若AM=1,MB=2,BC=3,则MN 的长为 .12.(2017年浙江省杭州市第3题)如图,在△ABC 中,点D ,E 分别在边AB ,AC 上,DE ∥BC ,若BD=2AD ,则( )A .B .C .D .3.(2017山东临沂第16题)已知AB CD ∥,AD 与BC 相交于点O .若23BO OC =,10AD =,则AO = .ABC ∆AD BC ⊥D BD AD =DG DC =E F BG AC DE DF =DE DF ⊥EF 10AC =EF 12AD AB =12AE EC =12AD EC =12DE BC=4. (2017哈尔滨第9题)如图,在中,分别为边上的点,,点为边上一点,连接交于点,则下列结论中一定正确的是( )A.B. C. D.5.(2017江苏无锡第10题)如图,△ABC 中,∠BAC=90°,AB=3,AC=4,点D 是BC 的中点,将△ABD 沿AD 翻折得到△AED ,连CE ,则线段CE 的长等于( )A .2B .C .D . 6.(2017甘肃兰州第17题)如图,四边形ABCD 与四边形EFGH相似,位似中心点是O ,35OE OA =,则FG BC = .7. (2017黑龙江绥化第6题)如图, 是在点为位似中心经过位似变换得到的,若的面积与的面积比是,则为( )A .B .C .D . 8. (2017浙江湖州第6题)如图,已知在中,,,,点是的重心,则点到所在直线的距离等于( )A . BC. D .9.(2017四川省绵阳市)如图,直角△ABC 中,∠B =30°,点O 是△ABC的重心,连接CO 并延长交AB 于点E ,过点E 作EF ⊥AB 交BC 于点F ,连ABC △,D E ,AB AC DE BC ∥F BC AF DE E AD AE AB EC =AC AE GF BD =BD CE AD AE =AG AC AF EC =545375A B C '''∆ABC ∆O A B C '''∆ABC ∆4:9:OB OB '2:33:24:54:9Rt C ∆AB C 90∠=C C A =B 6AB =P Rt C ∆AB P AB 1322接AF 交CE 于点M ,则的值为( ) A . BC .D 10. (2017年山东省泰安市第14题)如图,正方形中,为上一点,,交的延长线于点.若,,则的长为( )A .18B . C. D . 11. (2017年山东省潍坊市第15题)如图,在中,,分别为边、AC 上的点,,,点为边上一点,添加一个条件:,可以使得与相似.(只需写出一个)12.(2017年浙江省杭州市第15题)如图,在Rt △ABC 中,∠BAC=90°,AB=15,AC=20,点D 在边AC 上,AD=5,DE ⊥BC 于点E ,连结AE ,则△ABE 的面积等于 .13.(2017山东省枣庄市)如图,在△ABC 中,∠A =78°,AB =4,AC =6,将△ABC 沿图示中的虚线剪开,剪下的阴影三角形与原三角形不相似的是( )A .B .C .D .14.(2017湖北省襄阳市)如图,在△ABC 中,∠ACB =90°,点D ,E 分别在AC ,BC 上,且∠CDE =∠B ,将△CDE 沿DE 折叠,点C 恰好落在AB 边上的点F 处.若AC =8,AB =10,则CD 的长为 .15. (2017黑龙江齐齐哈尔第17题)经过三边都不相等的三角形的一个顶点的线段把三角形分成两个小三MO MF1223ABCD M BC ME AM ⊥ME AD E 12AB =5BM =DE 1095965253ABC ∆AC AB ≠E D 、AB AD AC 3=AE AB 3=F BC FDB ∆ADE ∆角形,如果其中一个是等腰三角形,另外一个三角形和原三角形相似,那么把这条线段定义为原三角形的“和谐分割线”.如图,线段是的“和谐分割线”,为等腰三角形,和相似,,则的度数为 .16. (2017江苏宿迁第24题)(本题满分8分)如图,在C ∆AB 中,C AB =A ,点E 在边C B 上移动(点E 不与点B 、C 重合),满足D F ∠E =∠B ,且点D 、F 分别在边AB 、C A 上.(1)求证:D C F ∆B E ∆E ∽;(2)当点E 移动到C B 的中点时,求证:F E 平分DFC ∠.●17.(2017重庆市B 卷)如图,△ABC 中,∠ACB =90°,AC =BC ,点E 是AC 上一点,连接BE .(1)如图1,若AB =,BE =5,求AE 的长;(2)如图2,点D 是线段BE 延长线上一点,过点A 作AF ⊥BD 于点F ,连接CD 、CF ,当AF =DF 时,求证:DC =BC .18. (2017湖南株洲第10题)如图示,若△ABC 内一点P 满足∠PAC=∠PBA=∠PCB ,则点P 为△ABC 的布洛卡点.三角形的布洛卡点(Brocard point )是法国数学家和数学教育家克洛尔(A .L .Crelle 1780﹣1855)于1816年首次发现,但他的发现并未被当时的人们所注意,1875年,布洛卡点被一个数学爱好者法国军官布洛卡(Brocard 1845﹣1922)重新发现,并用他的名字命名.问题:已知在等腰直角三角形DEF 中,∠EDF=90°,若点Q为△DEF 的布洛卡点,DQ=1,则EQ+FQ=( )A .5B .4C ..●19.(2017湖南常德第26题)如图,直角△ABC 中,∠BAC =90°,D 在BC 上,连接AD ,作BF ⊥AD 分别交AD 于E ,AC 于F .(1)如图1,若BD =BA ,求证:△ABE ≌△DBE ;CD ABC ∆ACD ∆CBD ∆ABC ∆46A ∠=︒ACB ∠(2)如图2,若BD =4DC ,取AB 的中点G ,连接CG 交AD 于M ,求证:①GM =2MC ;②AG 2=AF •AC .20.(2017年山东省东营市第24题)如图,在等腰三角形ABC 中,∠BAC=120°,AB=AC=2,点D 是BC 边上的一个动点(不与B 、C 重合),在AC 上取一点E ,使∠ADE=30°.(1)求证:△ABD ∽△DCE ;(2)设BD=x ,AE=y ,求y 关于x 的函数关系式并写出自变量x 的取值范围;(3)当△ADE 是等腰三角形时,求AE 的长.21. (2017年山东省泰安市第27题)如图,四边形中, ,平分,点是延长线上一点,且.(1)证明:;(2)若与相交于点,,,求的长.22.(2017年浙江省杭州市第19题)如图,在锐角三角形ABC 中,点D ,E 分别在边AC ,AB 上,AG ⊥BC 于点G ,AF ⊥DE 于点F ,∠EAF=∠GAC .(1)求证:△ADE ∽△ABC ;(2)若AD=3,AB=5,求的值.综合探究1.(2017浙江衢州第23题)问题背景如图1,在正方形A BCD 的内部,作∠DAE=∠ABF=∠BCG=∠CDH ,根据三角形全等的条件,易得△DAE ≌△ABF ≌△BCG ≌△CDH ,从而得到四边形EFGH 是正方形。

【鲁教版】2018中考数学一轮复习:各知识点练习题分层设计(打包24套)

【鲁教版】2018中考数学一轮复习:各知识点练习题分层设计(打包24套)

(实数部分)A 级 基础题1.在-1,0,1,2这四个数中,既不是正数也不是负数的是( ) A .-1 B .0 C .1 D .22.-2的绝对值等于( ) A .2 B .-2 C.12 D .±23.-4的倒数的相反数是( ) A .-4 B .4 C .-14 D.144.-3的倒数是( ) A .3 B .-3 C.13 D .-135.无理数-3的相反数是( ) A .- 3 B. 3 C.13 D .-136.下列各式,运算结果为负数的是( )A .-(-2)-(-3)B .(-2)×(-3)C .(-2)2D .(-3)-37.某天最低气温是-5 ℃,最高气温比最低气温高8 ℃,则这天的最高气温是________℃.8.如果x -y <0,那么x 与y 的大小关系是x ____y (填“<”或“>”).9.已知一粒米的质量是0.000 021千克,这个数字用科学记数法表示为( ) A .21×10-4千克 B .2.1×10-6千克 C .2.1×10-5千克 D .2.1×10-4千克10.计算:|-5|-(2-3)0+6×1132⎛⎫- ⎪⎝⎭+(-1)2.B 级 中等题11.实数a ,b 在数轴上的位置如图所示,下列式子错误的是( ) A .a <b B .|a |>|b | C .-a <-b D .b -a >012.北京时间2011年3月11日,日本近海发生9.0级强烈地震.本次地震导致地球当天自转快了0.000 001 6秒.这里的0.000 001 6秒请你用科学记数法表示________________________秒.13.将1,2,3,6按下列方式排列.若规定(m ,n )表示第m 排从左向右第n 个数,则(5,4)与(14,5)表示的两数之积是________.14.计算:|-3 3|-2cos30°-2-2+(3-π)0. 15.计算:-22+-113⎛⎫⎪⎝⎭-2cos60°+|-3|.C 级 拔尖题16.如图X1-1-2,矩形ABCD 的顶点A ,B 在数轴上,CD =6,点A 对应的数为-1,则点B 所对应的数为__________.图X1-1-217.观察下列等式:第1个等式:a 1=11×3=12×113⎛⎫- ⎪⎝⎭; 第2个等式:a 2=13×5=12×1135⎛⎫- ⎪⎝⎭;第3个等式:a 3=15×7=12×1157⎛⎫- ⎪⎝⎭; 第4个等式:a 4=17×9=12×1179⎛⎫- ⎪⎝⎭;请解答下列问题:(1)按以上规律列出第5个等式:a 5=___________=______________;(2)用含有n 的代数式表示第n 个等式:a n =______________=____________(n 为正整数);(3)求a 1+a 2+a 3+a 4+…+a 100的值. 选做题18.请你规定一种适合任意非零实数a ,b 的新运算“a ⊕b ”,使得下列算式成立: 1⊕2=2⊕1=3,(-3)⊕(-4)=(-4)⊕(-3)=-76,(-3)⊕5=5⊕(-3)=-415,…你规定的新运算a ⊕b =_______(用a ,b 的一个代数式表示).(代数式部分)A 级 基础题1.某省初中毕业学业考试的同学约有15万人,其中男生约有a 万人,则女生约有( )A .(15+a )万人B .(15-a )万人C .15a 万人 D.15a万人2.若x =m -n ,y =m +n ,则xy 的值是( ) A .2 m B 。

2018年中考数学常考知识点整理

2018年中考数学常考知识点整理

2018年中考数学常考知识点整理三角形知识点三角形的定义三角形是多边形中边数最少的一种.它的定义是:由不在同一条直线上的三条线段首尾顺次相接组成的图形叫做三角形.三条线段不在同一条直线上的条件,如果三条线段在同一条直线上,我们认为三角形就不存在.另外三条线段必须首尾顺次相接,这说明三角形这个图形一定是封闭的.三角形中有三条边,三个角,三个顶点.三角形中的主要线段三角形中的主要线段有:三角形的角平分线、中线和高线.这三条线段必须在理解和掌握它的定义的基础上,通过作图加以熟练掌握.并且对这三条线段必须明确三点:(1)三角形的角平分线、中线、高线均是线段,不是直线,也不是射线.(2)三角形的角平分线、中线、高线都有三条,角平分线、中线,都在三角形内部.而三角形的高线在当△ABC是锐角三角形时,三条高都是在三角形内部,钝角三角形的高线中有两个垂足落在边的延长线上,这两条高在三角形的外部,直角三角形中有两条高恰好是它的两条直角边.(3)在画三角形的三条角平分线、中线、高时可发现它们都交于一点.在以后我们可以给出具体证明.今后我们把三角形三条角平分线的交点叫做三角形的内心,三条中线的交点叫做三角形的重心,三条高的交点叫做三角形的垂心.三角形的按边分类三角形的三条边,有的各不相等,有的有两条边相等,有的三条边都相等.所以三角形按边的相等关系分类如下:等边三角形是等腰三角形的一种特例.判定三条边能否构成三角形的依据△ABC的三边长分别是a、b、c,根据公理“连接两点的所有线中,线段最短”.可知:③a+bgt;c,①a+cgt;b,②b+cgt;a定理:三角形任意两边的和大于第三边.由②、③得b―a―c故|a―b|lt;c,同理可得|b―c|lt;a,|a―c|lt;b.lt; p=gt;......lt;lt;点击查阅详情gt;gt;圆的重点知识点一集合:圆:圆可以看作是到定点的距离等于定长的点的集合;圆的外部:可以看作是到定点的距离大于定长的点的集合;圆的内部:可以看作是到定点的距离小于定长的点的集合二轨迹:1、到定点的距离等于定长的点的轨迹是:以定点为圆心,定长为半径的圆;2、到线段两端点距离相等的点的轨迹是:线段的中垂线;3、到角两边距离相等的点的轨迹是:角的平分线;4、到直线的距离相等的点的轨迹是:平行于这条直线且到这条直线的距离等于定长的两条直线;5、到两条平行线距离相等的点的轨迹是:平行于这两条平行线且到两条直线距离都相等的一条直线三位置关系:1、点与圆的位置关系:点在圆内 dlt;r 点c在圆内lt;= p=gt;点在圆上 d=r 点B在圆上点在此圆外 dgt;r 点A在圆外2、直线与圆的位置关系:直线与圆相离 dgt;r 无交点直线与圆相切 d=r 有一个交点直线与圆相交 dlt;r p= 有两个交点lt;=gt;3、圆与圆的位置关系:外离(图1) 无交点 dgt;R+r外切(图2) 有一个交点 d=R+r相交(图3) 有两个交点 R-rlt;dlt;r+rlt; p=gt;内切(图4) 有一个交点 d=R-r内含(图5) 无交点 dlt;r-rlt; p=gt;......lt;lt;点击查阅详情gt;gt;反比例函数的图像属于以原点为对称中心的中心对称的双曲线(hyperbola),反比例函数图象中每一象限的每一支曲线会无限接近X轴Y轴但不会与坐标轴相交(y≠0)。

天津市2018年中考一轮《三角形认识》复习试卷及答案

天津市2018年中考一轮《三角形认识》复习试卷及答案

2017年中考数学一轮复习专题三角形认识综合复习一选择题:1.有5根小木棒,长度分别为2cm、3cm、4cm、5cm、6cm,任意取其中的3根小木棒首尾相接搭三角形,可搭出不同的三角形的个数为()A.5个 B.6个 C.7个 D.8个2.在△ABC中,画出边AC上的高,下面4幅图中画法正确的是()A.B. C. D.3.如图,AD是△ABC的中线,CE是△ACD的中线,DF是△CDE的中线,若S△DEF=2,则S△ABC等于( )A.16 B.14 C.12 D.104.三角形两边长为6与8,那么周长的取值范围()A.2<<14 B.16<<28 C.14<<28 D.20<<245.如图,已知点D是△ABC的重心,连接BD并延长,交AC于点E,若AE=4,则AC的长度为()A.6 B.8 C.10 D.126.如图,Rt△ABC中,∠ACB=90°,∠A=50°,将其折叠,使点A落在边CB上A′处,折痕为CD,则∠A′DB=( )A.40° B.30° C.20° D.10°7.在△ABC中,AB=8,AC=6,则BC边上的中线AD的取值范围是()A.6<AD<8 B.2<AD<14 C.1<AD<7 D.无法确定8.在△ABC中,三边长分别为、、,且>>,若=8,=3,则的取值范围是()A.3<<8B.5<<11C.6<<10D.8<<119.一个多边形的外角和是内角和的,这个多边形的边数为( )10.如图,已知在△ABC中,CD是AB边上的高线,BE平分∠ABC,交CD于点E,BC=5,DE=2,则△BCE的面积等于 ( )A.10 B.7 C.5 D.411.如图,△ABC中,∠ACB=90°,沿CD折叠△CBD,使点B恰好落在AC边上的点E处,若∠A=25°,则∠BDC 等于()A.60° B.60° C.70° D.75°12.已知如图,△ABC为直角三角形,∠C=90°,若沿图中虚线剪去∠C,则∠1+∠2等于()A.315° B.270° C.180° D.135°13.如图,∠1,∠2,∠3,∠4恒满足的关系是( )A.∠1+∠2=∠3+∠4 B.∠1+∠2=∠4-∠3C.∠1+∠4=∠2+∠3 D.∠1+∠4=∠2-∠314.如图,把△ABC纸片沿DE折叠,当点A落在四边形BCDE的外部时,则与和之间有一种数量关系始终保持不变,请试着找一找这个规律,你发现的规律是( )A. B.C. D.15.一个正方形和两个等边三角形的位置如图所示,若∠3=50°,则∠1+∠2=()A.90° B.100° C.130° D.180°16.如图所示,分别以边形的顶点为圆心,以1cm为半径画圆,则图中阴影部分的面积之和为()A. B. C.D.17.如图,已知在正方形网格中,每个小方格都是边长为1的正方形,A,B两点在小方格的顶点上,位置如图所示,点C也在小方格的顶点上,且以A,B,C为顶点的三角形面积为1,则点C的个数为()A.3个 B.4个C.5个D.6个18.一个六边形的六个内角都是120o,连续四条边的长依次为 1,3,3,2,则这个六边形的周长是( )A. 13B. 14C. 15D. 1619.如图,P为边长为2的正三角形内任意一点,过P点分别做三边的垂线,垂足分别为D,E,F,则PD+PE+PF 的值为( )A.B. C.2 D.20.图1为一张三角形ABC纸片,点P在BC上,将A折至P时,出现折痕BD,其中点D在AC上,如图2所示,若△ABC的面积为80,△ABD的面积为30,则AB与PC的长度之比为()A.3:2 B.5:3 C.8:5 D.13:8二填空题:21.已知三角形的边长分别为4、a、8,则a的取值范围是;如果这个三角形中有两条边相等,那么它的周长为.22.一个等腰三角形的底边长为5cm,一腰上的中线把这个三角形的周长分成的两部分之差是3cm,则它的腰长是23.一个多边形的每一个内角为108°,则这个多边形是边形,它的内角和是 .24.如图在△ABC中,∠A=50°,∠ABC的角平分线与∠ACB的外角平分线交于点D,则∠D的度数为.25.如图,在△ABC中,∠ABC、∠ACB的平分线BE、CD相交于点F,∠ABC=42°,∠A=60°,则∠BFC=______.26.如图,在四边形ABCD中,∠DAB的角平分线与∠ABC的外角平分线相交于点P,且∠D+∠C=240°,则∠P=_________°.27.如图,在四边形ABCD中,∠ɑ,∠β分别是∠BAD、∠BCD相邻的补角,∠B+∠CDA=140°,则∠ɑ+∠β等于________________.28.如图所示,求∠A+∠B+∠C+∠D+∠E+∠F= .29.如图,已知∠A=ɑ,∠ACD是△ABC的外角,∠ABC的平分线与∠ACD的平分线相交于点A1,得∠A1;若∠A1BC 的平分线与∠A1CD的平分线相交于点A2,得∠A2……∠A2015BC的平分线与∠A2015CD的平分线相交于点A2016,得∠A2016,则∠A2016= .(用含ɑ的式子表示)30.如图,在四边形ABDC中,∠BAC=90°,AB=2,AC=4,E、F分别是BD、CD的三等分点,连接AE、AF、EF.若四边形ABDC的面积为7,则△AEF的面积为.三简答题:31.若是的三边的长,化简.32.如图,在△ABC中,AD为∠BAC的平分线,DE⊥AB于E,DF⊥AC于F,△ABC面积是28,AB=20cm,AC=8cm,求DE的长.33.如图,在直角三角形ABC中,∠ACB=90°,CD是AB边上的高,AB=10cm,BC=8cm,AC=6cm.(1)求△ABC的面积;(2)求CD的长;(3)作出△ABC的中线BE,并求△ABE的面积.34.如图,若AE是△ABC边上的高,∠EAC的角平分线AD交BC于D,∠ACB=40°,求∠ADE.35.一个凸多边形,除了一个内角外,其余各内角的和为2 750°,求这个多边形的边数.36.如图所示,已知BD为△ABC的角平分线,CD为△ABC外角∠ACE的平分线,且与BD交于点D;(1)若∠ABC=60°,∠DCE=70°,则∠D= °;(2)若∠ABC=70°,∠A=80°,则∠D= °;(3)当∠ABC和∠ACB在变化,而∠A始终保持不变,则∠D是否发生变化?为什么?由此你能得出什么结论?(用含∠A的式子表示∠D)37.我们知道三角形一边上的中线将这个三角形分成两个面积相等的三角形.如图,AD是△ABC边BC上的中线,则S△ABD=S△ACD.(1)如图2,△ABC的中线AD、BE相交于点F,△ABF与四边形CEFD的面积有怎样的数量关系?为什么?(2)如图,在△ABC中,已知点D、E、F分别是线段BC、AD、CE的中点,且S△ABC=8,求△BEF的面积S△BEF。

2018年中考数学真题汇编三角形[1]

2018年中考数学真题汇编三角形[1]

2018年中考数学真题汇编三角形(word版可编辑修改)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2018年中考数学真题汇编三角形(word版可编辑修改))的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2018年中考数学真题汇编三角形(word版可编辑修改)的全部内容。

2018年中考数学真题汇编:三角形(填空+选择=50题)一、选择题1.(2018山东滨州)在直角三角形中,若勾为3,股为4,则弦为()A。

5B. 6C。

7D。

8【答案】A2。

(2018江苏宿迁)如图,点D在△ABC的边AB的延长线上,DE∥BC,若∠A=35°,∠C=24°,则∠D的度数是( ).A. 24°B. 59°C。

60°D。

69°【答案】B3。

一艘在南北航线上的测量船,于A点处测得海岛B在点A的南偏东30°方向,继续向南航行30海里到达C点时,测得海岛B在C点的北偏东15°方向,那么海岛B离此航线的最近距离是(结果保留小数点后两位)(参考数据: )( )A。

4。

64海里B。

5。

49海里C。

6.12海里 D. 6.21海里【答案】B4。

若实数m、n满足,且m、n恰好是等腰△ABC的两条边的边长,则△ABC的周长是().A。

12B。

10C。

8D。

6【答案】B5。

在中,,于,平分交于,则下列结论一定成立的是( )A. B.C.D.【答案】C6。

将一副直角三角板按如图所示的位置放置,使含30°角的三角板的一条直角边和含45°角的三角板的一条直角边放在同一条直线上,则∠α的度数是( )。

2018届中考数学一轮复习讲义 第17讲等腰三角形

2018届中考数学一轮复习讲义  第17讲等腰三角形

2018届中考数学一轮复习讲义第17讲等腰三角形【知识巩固】(一)等腰三角形的性质1、有关定理及其推论定理:等腰三角形有两边相等;定理:等腰三角形的两个底角相等推论1:等腰三角形顶角的平分线平分底边且垂直于底边,也就是说,等腰三角形的顶角平分线、底边上的中线、底边上的高互相重合。

推论2:等边三角形的各角相等,且每一个角都等于60°.等腰三角形是以底边的垂直平分线为对称轴的轴对称图形;2、定理及推论的作用等腰三角形的性质定理揭示了三角形中边相等与角相等的关系,由两边相等推出两角相等,是今后证明两角相等常用的依据之一。

等腰三角形底边上的中线、底边上的高、顶角的平分线“三线合一”的性质是今后证明两条线段相等,两个角相等以及两条直线相互垂直的重要依据。

(二)等腰三角形的判定1、有关的定理及其推论定理:如果一个三角形有两个角相等,那么这两个角所对的边相等推论1、三个角都相等的三角形是等边三角形。

推论2、有一个角等于60°的等腰三角形是等边三角形。

推论3、在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半。

2、定理及其推论的作用。

等腰三角形的判定定理揭示了三角形中角与边的转化关系,它是证明线段相等的重要定理,也是把三角形中角的相等关系转化为边的相等关系的重要依据。

3、等腰三角形中常用的辅助线等腰三角形顶角平分线、底边上的高、底边上的中线常常作为解决有关等腰三角形问题的辅助线,由于这条线可以把顶角和底边折半,所以常通过它来证明线段或角的倍分问题,在等腰三角形中,虽然顶角的平分线、底边上的高、底边上的中线相互重合,添加辅助线时,有时作哪条线都可以,有时需要作顶角的平分线,有时则需要作高或中线,视具体情况而定。

【典例解析】典例一、等腰三角形的性质(2017湖北荆州)如图,在△ABC中,AB=AC,∠A=30°,AB的垂直平分线l交AC于点D,则∠CBD的度数为()A.30°B.45°C.50°D.75°【考点】KH:等腰三角形的性质;KG:线段垂直平分线的性质.【分析】根据三角形的内角和定理,求出∠C,再根据线段垂直平分线的性质,推得∠A=∠ABD=30°,由外角的性质求出∠BDC的度数,从而得出∠CBD=45°.【解答】解:∵AB=AC,∠A=30°,∴∠ABC=∠ACB=75°,∵AB的垂直平分线交AC于D,∴AD=BD,∴∠A=∠ABD=30°,∴∠BDC=60°,∴∠CBD=180°﹣75°﹣60°=45°.故选B.【变式训练】(2017山东聊城)如图是由8个全等的矩形组成的大正方形,线段AB的端点都在小矩形的顶点上,如果点P是某个小矩形的顶点,连接PA、PB,那么使△ABP为等腰直角三角形的点P的个数是()A.2个B.3个C.4个D.5个【考点】KW:等腰直角三角形.【分析】根据等腰直角三角形的判定即可得到结论.【解答】解:如图所示,使△ABP为等腰直角三角形的点P的个数是3,故选B.典例二、等腰三角形的判定(2017内江)如图,AD平分∠BAC,AD⊥BD,垂足为点D,DE∥AC.求证:△BDE是等腰三角形.【考点】KI:等腰三角形的判定;JA:平行线的性质.【分析】直接利用平行线的性质得出∠1=∠3,进而利用角平分线的定义结合互余的性质得出∠B=∠BDE,即可得出答案.【解答】证明:∵DE∥AC,∴∠1=∠3,∵AD平分∠BAC,∴∠1=∠2,∴∠2=∠3,∵AD⊥BD,∴∠2+∠B=90°,∠3+∠BDE=90°,∴∠B=∠BDE,∴△BDE是等腰三角形.【变式训练】如图1,△ABC中,AD是∠BAC的平分线,若AB=AC+CD,那么∠ACB与∠ABC有怎样的数量关系?小明通过观察分析,形成了如下解题思路:如图2,延长AC到E,使CE=CD,连接DE.由AB=AC+CD,可得AE=AB.又因为AD 是∠BAC的平分线,可得△ABD≌△AED,进一步分析就可以得到∠ACB与∠ABC的数量关系.(1)判定△ABD与△AED全等的依据是SAS;(2)∠ACB与∠ABC的数量关系为:∠ACB=2∠ABC.【考点】等腰三角形的性质;全等三角形的判定.【分析】(1)根据已知条件即可得到结论;(2)根据全等三角形的性质和等腰三角形的性质即可得到结论.【解答】解:(1)SAS;(2)∵△ABD≌△AED,∴∠B=∠E,∵CD=CE,∴∠CDE=∠E,∴∠ACB=2∠E,∴∠ACB=2∠ABC.故答案为:SAS,∠ACB=2∠ABC.典例三、等腰三角形的实际应用(2017浙江湖州)如图,已知在Rt△ABC中,∠C=90°,AC=BC,AB=6,点P是Rt△ABC 的重心,则点P到AB所在直线的距离等于()A.1 B.C.D.2【考点】K5:三角形的重心;KW:等腰直角三角形.【分析】连接CP并延长,交AB于D,根据重心的性质得到CD是△ABC的中线,PD=CD,根据直角三角形的性质求出CD,计算即可.【解答】解:连接CP并延长,交AB于D,∵P是Rt△ABC的重心,∴CD是△ABC的中线,PD=CD,∵∠C=90°,∴CD=AB=3,∵AC=BC,CD是△ABC的中线,∴CD⊥AB,∴PD=1,即点P到AB所在直线的距离等于1,故选:A.【变式训练】(2017绥化)在等腰△ABC中,AD⊥BC交直线BC于点D,若AD=BC,则△ABC的顶角的度数为30°或150°或90°.【考点】KO:含30度角的直角三角形;KH:等腰三角形的性质.【分析】分两种情况;①BC为腰,②BC为底,根据直角三角形30°角所对的直角边等于斜边的一半判断出∠ACD=30°,然后分AD在△ABC内部和外部两种情况求解即可.【解答】解:①BC为腰,∵AD⊥BC于点D,AD=BC,∴∠ACD=30°,如图1,AD在△ABC内部时,顶角∠C=30°,如图2,AD在△ABC外部时,顶角∠ACB=180°﹣30°=150°,②BC为底,如图3,∵AD⊥BC于点D,AD=BC,∴AD=BD=CD,∴∠B=∠BAD,∠C=∠CAD,∴∠BAD+∠CAD=×180°=90°,∴顶角∠BAC=90°,综上所述,等腰三角形ABC的顶角度数为30°或150°或90°.故答案为:30°或150°或90°.【能力检测】1.等腰△ABC中,有一个角等于40°,则这个等腰三角形的顶角大小为40°或100°.【考点】等腰三角形的性质.【分析】由等腰三角形中有一个角等于40°,可分别从①若40°为顶角与②若40°为底角去分析求解即可求得答案.【解答】解:∵等腰三角形中有一个角等于40°,∴①若40°为顶角,则这个等腰三角形的顶角的度数为40°;②若40°为底角,则这个等腰三角形的顶角的度数为:180°﹣40°×2=100°.∴这个等腰三角形的顶角大小为40°或100°.故答案为:40°或100°.2.(2017山东滨州)如图,在△ABC中,AB=AC,D为BC上一点,且DA=DC,BD=BA,则∠B的大小为()A.40°B.36°C.30°D.25°【考点】KH:等腰三角形的性质.【分析】根据AB=AC可得∠B=∠C,CD=DA可得∠ADB=2∠C=2∠B,BA=BD,可得∠BDA=∠BAD=2∠B,在△ABD中利用三角形内角和定理可求出∠B.【解答】解:∵AB=AC,∴∠B=∠C,∵CD=DA,∴∠C=∠DAC,∵BA=BD,∴∠BDA=∠BAD=2∠C=2∠B,又∵∠B+∠BAD+∠BDA=180°,∴5∠B=180°,∴∠B=36°,故选B.3.如图,在△ABC中,AB=AC,AB的垂直平分线MN交AC于D点.若BD平分∠ABC,则∠A=36°.【考点】等腰三角形的性质;线段垂直平分线的性质.【分析】根据线段垂直平分线上的点到两端点的距离相等可得AD=BD,根据等边对等角可得∠A=∠ABD,然后表示出∠ABC,再根据等腰三角形两底角相等可得∠C=∠ABC,然后根据三角形的内角和定理列出方程求解即可.【解答】解:∵AB=AC,∴∠C=∠ABC,∵AB的垂直平分线MN交AC于D点.∴∠A=∠ABD,∵BD平分∠ABC,∴∠ABD=∠DBC,∴∠C=2∠A=∠ABC,设∠A为x,可得:x+x+x+2x=180°,解得:x=36°,故答案为:364.如果等腰三角形的两边长分别是4、8,那么它的周长是20.【考点】等腰三角形的性质;三角形三边关系.【分析】解决本题要注意分为两种情况4为底或8为底,还要考虑到各种情况是否满足三角形的三边关系来进行解答.【解答】解:∵等腰三角形有两边分别分别是4和8,∴此题有两种情况:①4为底边,那么8就是腰,则等腰三角形的周长为4+8+8=20,②8底边,那么4是腰,4+4=8,所以不能围成三角形应舍去.∴该等腰三角形的周长为20,故答案为:205.如图,在△ABC中,AB=AC,∠BAC=90°,E是AC边上一点,延长BA至D,使AD=AE,(1)求证:△ABE≌△ACD;(2)若∠CBE=30°,求∠ADC的度数.【考点】全等三角形的判定与性质;等腰直角三角形.【分析】(1)根据SAS即可证明.(2)首先求出∠AEC=75°,再根据全等三角形的对应角相等,即可解决问题.【解答】(1)证明:∵∠BAC=90°,∴∠BAE=∠CAD,在△ABE和△ACD中,,∴△ABE≌△ACD.(2)在△ABC中,∵AB=AC,∠BAC=90°∴∠ABC=45°,∵∠CBE=30°∴∠ABE=45°﹣30°=15°,∵△ABE是直角三角形,∠BAE=90°,∴∠BEA=90°﹣15°=75°,∵∠△ABE≌△ACD.∴∠ADC=∠BEA=75°.6.已知△ABC中,AB=AC,∠ABC的平分线BD交AC于D点,若∠BDA=105°,求∠A 的度数.【考点】等腰三角形的性质.【分析】根据等腰三角形性质和角平分线的定义以及三角形的外角的性质即可得到结论.【解答】解:∵AB=AC,∴∠ABC=∠ACB,∵BD平分∠ABC,∴∠ABD=∠DBC=∠ACB,设∠ACB=x,则∠DBC=∠ACB=,∵∠BDA是△BCD的一个外角,∴x+x=105°,3x=210°∴x=70°,∴∠A=180°﹣2∠ACB=180°﹣140°=40°.7. (2017绥化)如图,顺次连接腰长为2的等腰直角三角形各边中点得到第1个小三角形,再顺次连接所得的小三角形各边中点得到第2个小三角形,如此操作下去,则第n个小三角形的面积为.【考点】:三角形中位线定理;:等腰直角三角形.【分析】记原来三角形的面积为s,第一个小三角形的面积为s1,第二个小三角形的面积为s2,…,求出s1,s2,s3,探究规律后即可解决问题.【解答】解:记原来三角形的面积为s,第一个小三角形的面积为s1,第二个小三角形的面积为s2,…,∵s1=•s=•s,s2=•s=•s,s3=•s,∴s n=•s=••2•2=,故答案为.8.如图,等腰三角形ABC的底边BC长为4,面积是12,腰AB的垂直平分线EF分别交AB,AC于点E、F,若点D为底边BC的中点,点M为线段EF上一动点,则△BDM的周长的最小值为8.【考点】轴对称﹣最短路线问题;线段垂直平分线的性质;等腰三角形的性质;勾股定理.【分析】连接AD交EF与点M′,连结AM,由线段垂直平分线的性质可知AM=MB,则BM+DM=AM+DM,故此当A、M、D在一条直线上时,MB+DM有最小值,然后依据要三角形三线合一的性质可证明AD为△ABC底边上的高线,依据三角形的面积为12可求得AD 的长.【解答】解:连接AD交EF与点M′,连结AM.∵△ABC是等腰三角形,点D是BC边的中点,∴AD⊥BC,∴S△ABC=BC•AD=×4×AD=12,解得AD=6,∵EF是线段AB的垂直平分线,∴AM=BM.∴BM+MD=MD+AM.∴当点M位于点M′处时,MB+MD有最小值,最小值6.∴△BDM的周长的最小值为DB+AD=2+6=8.9..已知:△ACB和△DCE都是等腰直角三角形,∠ACB=∠DCE=90°,连接AE,BD交于点O,AE与DC交于点M,BD与AC交于点N.(1)如图1,求证:AE=BD;(2)如图2,若AC=DC,在不添加任何辅助线的情况下,请直接写出图2中四对全等的直角三角形.【考点】KD:全等三角形的判定与性质;KW:等腰直角三角形.【分析】(1)根据全等三角形的性质即可求证△ACE≌△BCD,从而可知AE=BD;(2)根据条件即可判断图中的全等直角三角形;【解答】解:(1)∵△ACB和△DCE都是等腰直角三角形,∠ACB=∠DCE=90°,∴AC=BC,DC=EC,∴∠ACB+∠ACD=∠DCE+∠ACD,∴∠BCD=∠ACE,在△ACE与△BCD中,∴△ACE≌△BCD(SAS),∴AE=BD,(2)∵AC=DC,∴AC=CD=EC=CB,△ACB≌△DCE(SAS);由(1)可知:∠AEC=∠BDC,∠EAC=∠DBC∴∠DOM=90°,∵∠AEC=∠CAE=∠CBD,∴△EMC≌△BCN(ASA),∴CM=CN,∴DM=AN,△AON≌△DOM(AAS),∵DE=AB,AO=DO,∴△AOB≌△DOE(HL)。

人教版初中数学中考复习一轮复习—— 三角形(知识点+中考真题)

人教版初中数学中考复习一轮复习—— 三角形(知识点+中考真题)
D 确的是( )
A.点P是△ABC三边垂直平分线的交点 B.点P是△ABC三条内角平分线的交点 C.点P是△ABC三条高的交点 D.点P是△ABC三条中线的交点
对应训练:
10.(2021·娄底)如图,△ABC中,AB=AC=2,P是BC上任意一点,
1 PE⊥AB于点E,PF⊥AC于点F,若S△ABC=1,则PE+PF= .
对应训练:
13.(2020•北京15/28)如图所示的网格是正方形网格,A,B,C,D是网格线交点
,则△ABC的面积与△ABD的面积的大小关系为:S△ABC ”或“<”).
S△ABD(填“>”,“=
【分析】分别求出△ABC的面积和△ABD的面积,即可求解.
【解答】解:∵S△ABC=
1 2
×2×4=4,
BD
,则点D到AC的距离是
3.
对应训练:
8.(2021•河北12题)如图,直线l,m相交于点O.P为这两直线外一
点,且OP=2.8.若点P关于直线l,m的对称点分别是点P1,P2,则
B P1,P2之间的距离可能是( )
A.0
B.5 C.6
D.7
对应训练:
9.(2021·无锡) 在Rt△ABC中,∠A=90°,AB=6,AC=8,点P是 △ABC所在平面内一点,则PA2+PB2+PC2取得最小值时,下列结论正
一轮复习
三角形
课标要求:
1.了解三角形的有关概念(内角、外角、中线、高、角平分线),了解三 角形的稳定性; 2.探索并证明三角形的内角和定理,掌握它的推论:三角形的外角等于 与它不相邻的两个内角的和。 3.证明三角形的任意两边之和大于第三边 4.了解三角形重心的概念.
知识梳理——知识点1:三角形的有关概念

全国2018年中考数学真题分类汇编 第14讲 三角形的基础知识(无答案)

全国2018年中考数学真题分类汇编 第14讲 三角形的基础知识(无答案)

第14讲三角形的基础知识知识点1 三角形的高、中线、角平分线知识点2 三角形的中位线的性质知识点3 三角形的三边关系知识点4 三角形的内角和定理及其推论知识点1 三角形的高、中线、角平分线(2018·娄底)(2018·贵阳)知识点2 三角形的中位线的性质(2018·南京)知识点3 三角形的三边关系 (2018·长沙)(2018·福建)答案:C(2018·常德)已知三角形两边的长分别是3和7,则此三角形第三边的长可能是( ) A.1B.2C.8D. 11(2018·毕节)已知一个三角形的两边长分别为8和2,则这个三角形的第三边长可能是( ) A.4 B.6 C.8 D.10(2018·白银)已知a ,b ,c 是ABC ∆的三边长,a ,b 满足27(1)0a b -+-=,c 为奇数,则c = . (2018·泰州)已知三角形两边的长分别为1,5,第三边长为整数,则第三边的长为_____________.(2018·黔东南)16.三角形的两边长分别为3和6,第三边的长是方程2680x x -+=的解,则此三角形的周长是 .知识点4 三角形的内角和定理及其推论 (2018·宁波)(2018·泰安)(2018·眉山)将一副直角三角板按如图所示的位置放置,使含30°角的三角板的一条直角边和含45°角的三角板的一条直角边放在同一条直线上,则∠α的度数是A.45°B.60°C.75°D.85°(2018·聊城)(2018·聊城)(2018·宿迁)(2018·株洲)如图,直线12,l l 被直线3l 所截,且12l l ,过1l 上的点A 作AB ⊥3l 交3l 于点B ,其中∠1<30°,则下列一定正确的是[来A 、∠2>120°B 、∠3<60°C 、∠4-∠3>90°D 、2∠3>∠4 (2018·达州)如图,CD AB //,0803,451=∠=∠,则2∠的度数为( )A. 030 B. 035 C.040 D. 045(2018·德阳)(2018·广东)如图,AB //CD ,且∠DEC =100o,∠C =40o,则∠B 的大小是( )A.30oB.40oC.50oD.60o (2018·广西六市同城)答案:C(2018·遵义)(2018·海南)(2018·苏州)(2018·滨州)(2018·衡阳)(2018·湘西)(2018·永州)(2018·盐城)将一个含有45角的直角三角板摆放在矩形上,如图所示,若140∠=,则2∠= .(2018·岳阳)(2018·黄石)如图,△ABC 中,AD 是BC 边上的高,AE 、BF 分别是∠BAC 、∠ABC 的平分线, ∠BAC=50°,∠ABC=60°,则∠EAD +∠ACD =( A )A.75°B.80°C.85°D.90°(2018·荆门)答案:A(2018·长春)。

全国2018年中考数学真题分类汇编 第14讲 三角形的基础知识(无答案)

全国2018年中考数学真题分类汇编 第14讲 三角形的基础知识(无答案)

第14讲三角形的基础知识知识点1 三角形的高、中线、角平分线知识点2 三角形的中位线的性质知识点3 三角形的三边关系知识点4 三角形的内角和定理及其推论知识点1 三角形的高、中线、角平分线(2018·娄底)(2018·贵阳)知识点2 三角形的中位线的性质(2018·南京)知识点3 三角形的三边关系(2018·长沙)(2018·福建)答案:C(2018·常德)已知三角形两边的长分别是3和7,则此三角形第三边的长可能是()A.1B.2C.8D. 11(2018·毕节)已知一个三角形的两边长分别为8和2,则这个三角形的第三边长可能是( )A.4B.6C.8D.10(2018·白银)已知,,是的三边长,,满足,为奇数,则.(2018·泰州)已知三角形两边的长分别为1,5,第三边长为整数,则第三边的长为_____________. (2018·黔东南)16.三角形的两边长分别为和,第三边的长是方程的解,则此三角形的周长是.知识点4 三角形的内角和定理及其推论(2018·宁波)(2018·泰安)(2018·眉山)将一副直角三角板按如图所示的位置放置,使含30°角的三角板的一条直角边和含45°角的三角板的一条直角边放在同一条直线上,则∠α的度数是A.45°B.60°C.75°D.85°(2018·聊城)(2018·聊城)(2018·宿迁)(2018·株洲)如图,直线被直线所截,且,过上的点A作AB⊥交于点B,其中∠1<30°,则下列一定正确的是[来A、∠2>120°B、∠3<60°C、∠4-∠3>90°D、2∠3>∠4(2018·达州)如图,,,则的度数为()A. B. C. D.(2018·德阳)(2018·广东)如图,AB//CD,且∠DEC=100o,∠C=40o,则∠B的大小是()A.30oB.40oC.50oD.60o(2018·广西六市同城)答案:C(2018·遵义)(2018·海南)(2018·苏州)(2018·滨州)(2018·衡阳)(2018·湘西)(2018·永州)(2018·盐城)将一个含有角的直角三角板摆放在矩形上,如图所示,若,则.(2018·岳阳)(2018·黄石)如图,△ABC中,AD是BC边上的高,AE、BF分别是∠BAC、∠ABC的平分线,∠BAC=50°,∠ABC=60°,则∠EAD+∠ACD=( A )A.75°B.80°C.85°D.90°(2018·荆门)答案:A(2018·长春)。

中考数学一轮新优化复习第一部分教材同步复习第四章三角形第18讲等腰三角形与直角三角形真题精选

中考数学一轮新优化复习第一部分教材同步复习第四章三角形第18讲等腰三角形与直角三角形真题精选

第一部分第四章 第18讲命题点1等腰三角形(2018年2考,2016年2考)1.(2018·百色5题3分)顶角为30°的等腰三角形三条中线的交点是该三角形的(A) A .重心 B .外心 C .内心 D .中心2.(2016·贺州7题3分)一个等腰三角形的两边长分别为4,8,则它的周长为(C) A .12B .16 C .20D .16或203.(2015·玉林、防城港6题3分)如图,在△ABC 中,AB =AC ,DE ∥BC ,则下列结论中不正确的是(D)A .AD =AEB .DB =EC C .∠ADE =∠CD .DE =12BC4.(2015·南宁7题3分)如图,在△ABC 中,AB =AD =DC ,∠B =70°,则∠C 的度数为(A)A .35°B.40° C .45°D.50°5.(2018·桂林16题3分)如图,在△ABC 中,∠A =36°,AB =AC ,BD 平分∠ABC ,则__.3__图中等腰三角形的个数是6.(2016·柳州23题8分)求证:等腰三角形的两个底角相等.(请根据图用符号表示已知和求证,并写出证明过程)已知: 求证: 证明:证明:已知:在△ABC 中,AB =AC ,求证:∠B =∠C ;证明:如答图,过点A 作AD ⊥BC ,垂足为点D ,在Rt △ABD 与Rt △ACD 中,∵⎩⎪⎨⎪⎧AB =AC ,AD =AD ,∴Rt △ABD ≌Rt △ACD (HL),∴∠B =∠C .命题点2等边三角形(2018年玉林考,2017年2考,2016年贺州考)7.(2018·玉林9题3分)如图,∠AOB =60°,OA =OB ,动点C 从点O 出发,沿射线OB 方向移动,以AC 为边在右侧作等边△ACD ,连接BD ,则BD 所在直线与OA 所在直线的位置关系是(A)A .平行B .相交C .垂直D .平行、相交或垂直8.(2015·南宁16题3分)如图,在正方形ABCD 的外侧作等边△ADE ,则∠BED 的度数__.45°__是命题点3直角三角形与勾股定理(2018年4考,2016年3考)9.(2018·百色3题3分)在△OAB 中,∠O =90°,∠A =35°,则∠B =(B)A .35°B.55°C .65°D.145°10.(2018·柳州6题3分)如图,图中直角三角形共有(C)A .1个B .2个C .3个D .4个11.(2018·河池12题3分)如图,等边△ABC 的边长为2,⊙A 的半径为1,D 是BC 上的动点,DE 与⊙A 相切于E ,DE 的最小值是(B)A .1B .2C .3D .2__.4__=BC ,则90°=C ∠中,ABC △如图,在)分3题14柳州(2016·.1213.(2018·玉林17题3分)如图,在四边形ABCD 中,∠B =∠D =90°,∠A =60°,AB__.8<AD <2__的取值范围是AD ,则4=14.(2015·柳州21题6分)如图,在△ABC 中,D 为AC 边的中点,且DB ⊥BC ,BC =4,CD =5.(1)求DB 的长;(2)在△ABC 中,求BC 边上高的长. 解:(1)∵DB ⊥BC ,BC =4,CD =5,∴BD =52-42=3.(2)延长CB ,过点A 作AE ⊥CB 交CB 的延长线CB 于点E ,∵DB ⊥BC ,AE ⊥BC ,∴AE ∥DB .∵D为AC边的中点,∴BD=12 AE,∴AE=6,即BC边上高的长为6.。

2018年中考数学复习第一部分考点研究第四单元三角形第17课时三角形的基础知识含近9年中考真题试题_

2018年中考数学复习第一部分考点研究第四单元三角形第17课时三角形的基础知识含近9年中考真题试题_

第一部分考点研究第四单元三角形第17课时三角形的基础知识浙江近9年中考真题精选命题点1三角形的三边关系(杭州2考,温州2013.4,绍兴2016.22)1. (2013温州4题4分)下列各组数可能是一个三角形的边长的是( )A. 1,2,4B. 4,5,9C. 4,6,8D. 5,5,112. (2017嘉兴2题3分)长度分别为2、7、x的三条线段能组成一个三角形,x的值可以是( )A. 4B. 5C. 6D. 93. (2012杭州20题10分)有一组互不全等的三角形,它们的三边长均为整数,每个三角形有两条边的长分别为5和7.(1)请写出其中一个三角形的第三条边的长;(2)设组中最多有n个三角形,求n的值;(3)当这组三角形个数最多时,从中任取一个,求该三角形周长为偶数的概率.4. (2016绍兴22题12分)如果将四根木条首尾相连,在相连处用螺钉连接,就能构成一个平面图形.(1)若固定三根木条AB,BC,AD不动,AB=AD=2 cm,BC=5 cm,如图,量得第四根木条CD=5 cm,判断此时∠B与∠D是否相等,并说明理由;(2)若固定二根木条AB,BC不动,AB=2 cm,BC=5 cm,量得木条CD=5 cm,∠B=90°,写出木条AD的长度可能取到的一个值(直接写出一个即可);(3)若固定一根木条AB不动,AB=2 cm,量得木条CD=5 cm,如果木条AD,BC的长度不变,当点D移到BA的延长线上时,点C也在BA的延长线上;当点C移到AB的延长线上时,点A,C,D能构成周长为30 cm的三角形.求出木条AD,BC的长度.第4题图命题点2三角形内角和及内外角关系(台州2013.13)5. (2012嘉兴8题4分)已知△ABC中,∠B是∠A的2倍,∠C比∠A大20°,则∠A等于( )A. 40°B. 60°C. 80°D. 90°6.(2013台州13题5分)如图,点B,C,E,F在一直线上,AB∥DC,DE∥GF,∠B=∠F=72°,则∠D=________________________________________________________________________度.第6题图7.(2016丽水12题4分)如图,在△ABC中,∠A=63°,直线MN∥BC,且分别与AB,AC相交于点D,E,若∠AEN =133°,则∠B的度数为________.第7题图命题点3三角形中的重要线段(杭州2015.22,台州3考,温州2013.18涉及)8. (2017台州5题4分)如图,点P是∠AOB平分线OC上一点,PD⊥OB,垂足为D.若PD=2,则点P到边OA 的距离是( )A. 1B. 2C.3D. 4第8题图9. (2012台州6题5分)如图,点D,E,F分别为△ABC三边的中点,若△DEF的周长为10,则△ABC的周长为( )A. 5B. 10C. 20D. 40第9题图10. (2014台州3题4分)如图,跷跷板AB的支柱OD经过它的中点O,且垂直于地面BC,垂足为D,OD=50 cm,当它的一端B 着地时,另一端A 离地面的高度AC 为( )A . 25 cmB . 50 cmC . 75 cmD . 100 cm第10题图11. (2017湖州6题3分)如图,已知在Rt △ABC 中,∠C =90°,AC =BC ,AB =6,点P 是Rt △ABC 的重心,则点P 到AB 所在直线的距离等于( )A . 1B . 2C . 32D . 2第11题图12. (2013义乌15题4分)如图,AD ⊥BC 于点D ,D 为BC 的中点,连接AB ,∠ABC 的平分线交AD 于点O ,连接OC ,若∠AOC =125°,则∠ABC =________.第12题图13. (2015杭州22题12分)如图,在△ABC 中(BC >AC ),∠ACB =90°,点D 在AB 边上,DE ⊥AC 于点E .(1)若AD DB =13,AE =2,求EC 的长; (2)设点F 在线段EC 上,点G 在射线CB 上,以F ,C ,G 为顶点的三角形与△EDC 有一个锐角相等,FG 交CD 于点P.问:线段CP 可能是△CFG 的高线还是中线?或两者都有可能?请说明理由.第13题图。

中考数学一轮复习各知识点练习题分层练习:十八等腰三角形与直角三角形7.doc

中考数学一轮复习各知识点练习题分层练习:十八等腰三角形与直角三角形7.doc

学校班级姓名【若缺失公式、图片现象属于系统读取不成功,文档内容齐全完整,请放心下载。

】(等腰三角形与直角三角形部分)A级基础题1.已知等腰三角形的一个内角为40°,则这个等腰三角形的顶角为( )A.40° B.100°C.40°或100° D.70°或50°2.已知实数x,y满足|x-4|+y-8=0,则以x,y的值为两边长的等腰三角形的周长是( )A.20或16 B.20 C.16 D.以上答案均不对3.如图所示,△ABC中,AC=AD=BD,∠DAC=80°,则∠B的度数是( )A.40° B.35° C.25° D.20°4.如图,在平面直角坐标系中,点P的坐标为(-2,3),以点O为圆心,以OP的长为半径画弧,交x轴的负半轴于点A,则点A的横坐标介于( )A.-4和-3之间 B.3和4之间C.-5和-4之间 D.4和5之间5.如图,在△ABC中,∠C=90°,EF∥AB,∠1=50°,则∠B的度数为( )A.50° B.60° C.30° D.40°6.如图,在△ABC中,∠C=90°,BC=6,D,E分别在AB,AC上,将△ABC沿DE折叠,使点A落在点A′处,若A′为CE的中点,则折痕DE的长为( )A.12B.2 C.3 D.47.如图,在Rt△ABC中,∠ACB=90°,AC=3,BC=4,以点A为圆心,AC长为半径画弧,交AB于点D,则BD=________.8.如图,在Rt△ABC中,∠ACB=90°,D,E,F分别是AB,BC,CA的中点,若CD=5cm,则EF=_________cm.9.(四川凉山州)把命题“如果直角三角形的两条直角边边长分别为a,b,斜边边长为c,那么a2+b2=c2”的逆命题改写成“如果……,那么……”的形式:___________________________________________________10.如图,△ABC中,∠C=90°,点D在AC上,已知∠BDC=45°,BD=10 2,AB =20.求∠A的度数.11.如图,在△ABC中,AB=AC,D为BC边上一点,∠B=30°,∠DAB=45°.(1)求∠DAC的度数;(2)求证:DC=AB.12.如图,△ABC是边长为3的等边三角形,将△ABC沿直线BC向右平移,使点B与点C重合,得到△DCE,连接BD,交AC于点F.(1)猜想AC与BD的位置关系,并证明你的结论;(2)求线段BD的长.B级中等题13.如图,矩形ABCD中,AB=3,AD=1,AB在数轴上,若以点A为圆心,对角线AC 的长为半径作弧交数轴的正半轴于点M,则点M的坐标为()A.(2,0) B.(5-1,0) C.(10-1,0) D.(5,0)14.如图,在△ABC中,∠ACB=90°,D是BC的中点,DE⊥BC,CE∥AD,若AC=2,CE=4,则四边形ACEB的周长为______.15.如图,在边长为1的小正方形组成的网格中,△ABC的三个顶点均在格点上,请按要求完成下列各题:(1)画线段AD∥BC且使AD=BC,连接CD;(2)线段AC的长为________,CD的长为________,AD的长为________;(3)△ACD为________三角形,四边形ABCD的面积为________;(4)若E为BC的中点,则tan∠CAE的值是______.C级拔尖题16.如图,将一副三角尺叠放在一起,若AB=14 cm,则阴影部分的面积是______cm2.选做题17.小明和同桌小聪在课后复习时,对课本“目标与评定”中的一道思考题,进行了认真的探索.【思考题】如图,一架2.5米长的梯子AB斜靠在竖直墙壁AC上,这时B到墙脚C的距离为0.7米,如果梯子的顶端沿墙下滑0.4米,那么梯脚将从点B往外移动多少米?(1)请你将小明对“思考题”的解答补充完整:解:设梯脚将从点B往外移动x米到达点B1,即BB1=x,则B1C=x+0.7,A1C=AC-AA1= 2.52-0.72-0.4=2.而A1B1=2.5,在Rt△A1B1C中,由B1C2+A1C2=A1B21,得方程____________________,解方程,得x1=________,x2=________,∴点B将向外移动________米.(2)解完“思考题”后,小聪提出了如下两个问题:【问题一】在“思考题”中,将“下滑0.4米”改为“下滑0.9米”,那么该题的答案会是0.9米吗?为什么?【问题二】在“思考题”中,梯子的顶端从A处沿墙AC下滑的距离与点B向外移动的距离,有可能相等吗?为什么?请你解答小聪提出的这两个问题.中考数学知识点代数式一、重要概念分类:1.代数式与有理式用运算符号把数或表示数的字母连结而成的式子,叫做代数式。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(三角形部分)
A级基础题
1.已知在△ABC中,∠A=70°-∠B,则∠C=( )
A.35° B.70° C.110° D.140°
2.已知如图中的两个三角形全等,则角α的度数是()
A.72° B.60° C.58° D.50°
3.如图,∠A,∠1,∠2的大小关系是( )
A.∠A>∠1>∠2 B.∠2>∠1>∠A
C.∠A>∠2>∠1 D.∠2>∠A>∠1
4.王师傅用四根木条钉成一个四边形木架,如图X4-2-3.要使这个木架不变形,他至少还要再钉上几根木条( )
A.0根 B.1根 C.2根 D.3根
5.下列命题中,真命题的是( )
A.周长相等的锐角三角形都全等 B.周长相等的直角三角形都全等
C.周长相等的钝角三角形都全等 D.周长相等的等腰直角三角形都全等
6.小华在电话中问小明:“已知一个三角形三边长分别是4,9,12,如何求这个三角形的面积?”小明提示说:“可通过作最长边上的高来求解.”小华根据小明的提示作出的图形正确的是( )
A B C D
7.不一定在三角形内部的线段是( )
A.三角形的角平分线 B.三角形的中线
C.三角形的高 D.三角形的中位线
8.用直尺和圆规作一个角的平分线的示意图如图所示,则能说明∠AOC=∠BOC的依据是( )
A.SSS B.ASA C.AAS D.角平分线上的点到角两边的距离相等
9.如图,在Rt△ABC中,∠ACB=90°,BC=2 cm,CD⊥AB,在AC上取一点E,使EC =BC,过点E作EF⊥AC交CD的延长线于点F,若EF=5 cm,则AE=________cm.
10.如图,△ABC中,AB=AC,BD⊥AC,CE⊥AB.求证:BD=CE.
11.如图,点A,B,D,E在同一直线上,AD=EB,BC∥DF,∠C=∠F.求证:AC=EF.
12.如图,在△AEC和△DFB中,∠E=∠F,点A,B,C,D在同一直线上,有如下三个关系式:①AE∥DF;②AB=CD;③CE=BF.
(1)请用其中两个关系式作为条件,另一个作为结论,写出你认为正确的所有命题(用序号写出命题书写形式:“如果⊗,⊗,那么⊗”);
(2)选择(1)中你写出的一个命题,说明它正确的理由.
13.如图所示,两根旗杆间相距12 m,某人从点B沿BA走向点A,一定时间后他到达点M,此时他仰望旗杆的顶点C和D,两次视线的夹角为90°,且CM=DM,已知旗杆AC的高为3 m,该人的运动速度为1 m/s,求这个人运动了多长时间?
B级中等题
14.如图所示,直线a经过正方形ABCD的顶点A,分别过正方形的顶点B,D作BF⊥a 于点F,DE⊥a于点E,若DE=8,BF=5,则EF的长为________(提示:∠EAD+∠FAB=90°).
15.如图,在四边形ABCD中,点P是对角线BD的中点,点E,F分别是AB,CD的中点,AD=BC,∠PEF=30°,则∠PFE的度数是( )
A.15° B.20° C.25° D.30°
16.如图,在△ABC中,∠B=90°,AB=3,AC=5,将△ABC折叠,使点C与点A重合,折痕为DE,则△ABE的周长为________.
C级拔尖题
17.(1)如图,在△ABC和△ADE中,AB=AC,AD=AE,∠BAC=∠DAE=90°.
①当点D在AC上时,如图X4-2-12(1),线段BD、CE有怎样的数量关系和位置关系?直接写出你猜想的结论;
②将图X4-2-12(1)中的△ADE绕点A顺时针旋转α角(0°<α<90°),如图X4-2-12(2),线段BD,CE有怎样的数量关系和位置关系?请说明理由.
(2)当△ABC和△ADE满足下面甲、乙、丙中的哪个条件时,能使线段BD,CE在(1)中的位置关系仍然成立?不必说明理由.
甲:AB∶AC=AD∶AE=1,∠BAC=∠DAE≠90°;
乙:AB∶AC=AD∶AE≠1,∠BAC=∠DAE=90°;
丙:AB∶AC=AD∶AE≠1,∠BAC=∠DAE≠90°.
选做题
18.如图(1),l1,l2,l3,l4是一组平行线,相邻两条平行线间的距离都是1个单位长度,正方形ABCD的四个顶点A,B,C,D都在这些平行线上.过点A作AF⊥l3于点F,交l2于点H,过点C作CE⊥l2于点E,交l3于点G.
(1)求证:△ADF≌△CBE;
(2)求正方形ABCD的面积;
(3)如图X4-2-13(2),如果四条平行线不等距,相邻的两条平行线间的距离依次为h1,h2,h3,试用h1,h2,h3表示正方形ABCD的面积S.。

相关文档
最新文档