2SK2148-01中文资料
2SK2850-01中文资料
Symbol VDS ID ID(puls] VGS IAR *2 EAS *1 PD Tch Tstg
Ratings 900 ±6 ±24 ±30 6 277 125
+150 -55 to +150
*1 L=14.1mH, Vcc=90V
Unit
V A A V A mJ W °C °C *2 Tch<=150°C
1.0 900
10
Max. Units
V
3.5 V
500
µA
1.0 mA
100
nA
2.50 Ω
S
1450
pF
210
120
30
ns
80
170
90
A
1.5 V
ns
µC
Thermalcharacteristics Item Thermal resistance
Symbol Rth(ch-c)
Rth(ch-a)
Zthch-c [K/W]
Transient thermal impedande Zthch=f(t) parameter:D=t/T
101
100 D=0.5
0.2
0.1 10-1 0.05
0
0.02 0.01
t t
D= T
T
10-2
10-5
10-4
10-3
10-2
10-1
100
101
t [s]
4
100
150
Eas [mJ]
10-1
10-2 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
VSD [V]
100 50 0 0
2SK1937-01中文资料
2SK1937-01
FAP-IIA Series
> Features
- High Speed Switching - Low On-Resistance - No Secondary Breakdown - Low Driving Power - High Voltage - VGS = ± 30V Guarantee - Avalanche Proof
↑
7
↑
8
↑↑
9
VGS [V] IF [A]
VDS [V]
C [nF]
→ VDS [V]
Allowable Power Dissipation vs. TC
↑
பைடு நூலகம்10
↑
→ Qg [nC]
Safe operation area
↑
12
Zth(ch-c) [K/W]
→ VSD [V]
Transient Thermal impedance
tf
RGS=10 Ω
Avalanche Capability
I AV
L = 100µH Tch=25°C
Continous Reverse Drain Current
I DR
Pulsed Reverse Drain Current
I DRM
Diode Forward On-Voltage
V SD
IF=2xIDR VGS=0V Tch=25°C
> Applications
- Switching Regulators - UPS - DC-DC converters - General Purpose Power Amplifier
2SK2648中文资料
V (BR)DSS ID=1mA
VGS=0V
Gate Threshhold Voltage
V GS(th)
ID=1mA
VDS= VGS
Zero Gate Voltage Drain Current
I DSS
VDS=800V Tch=25°C
VGS=0V
Tch=125°C
Gate Source Leakage Current
Collmer Semiconductor - P.O. Box 702708 - Dallas TX - 75370 - 972.233.1589 - 972.233.0481 Fax - - 11/98
元器件交易网
N-channel MOS-FET
I GSS
VGS=±30V VDS=0V
Drain Source On-State Resistance
R DS(on)
ID=4,5A
VGS=10V
Forward Transconductance
g fs
ID=4,5A
VDS=25V
Input Capacitance
C iss
VDS=25V
Output Capacitance
→ VSD [V]
Transient Thermal impedance
Zthch=f(t) parameter:D=t/T
ID [A]
PD [W]
→ Tc [°C]
→ VDS [V]
This specification is subject to change without notice!
t [s] →
Avalanche Capability
2SK2381中文资料
62.5
°C / W
Note 1: Ensure that the channel temperature does not exceed 150°C. Note 2: VDD = 50 V, Tch = 25°C (initial), L = 4.2 mH, RG = 25 Ω, IAR = 5 A Note 3: Repetitive rating: pulse width limited by maximum channel temperature This transistor is an electrostatic-sensitive device. Please handle with caution.
z Low drain−source ON resistance : RDS (ON) = 0.56 Ω (typ.)
z High forward transfer admittance : |Yfs| = 4.5 S (typ.)
z Low leakage current
: IDSS = 100 μA (max) (VDS = 200 V)
1
2006-11-21
Electrical Characteristics (Ta = 25°C)
Characteristics
Symbol
Test Condition
Gate leakage current Drain cut−off current Drain−source breakdown voltage Gate threshold voltage Drain−source ON resistance Forward transfer admittance Input capacitance Reverse transfer capacitance Output capacitance
2SK1941中文资料
- Electrical Characteristics (TC=25°C), unless otherwise specified
Item
Symbol
Test conditions
Drain-Source Breakdown-Voltage
V (BR)DSS ID=1mA
Symbol R th(ch-a) R th(ch-c)
Test conditions channel to air channel to case
Min. Typ. Max. Unit 30 °C/W 1,25 °C/W
FUJI ELECTRIC GmbH; Lyoner Straße 26; D-60528 Frankfurt; Tel: 069-66 90 29-0; Fax: 069-66 90 29-56
VGS=±30V VDS=0V
Drain Source On-State Resistance
R DS(on)
ID=8A
VGS=10V
Forward Transconductance
g fs
ID=8A
VDS=25V
Input Capacitance
C iss
VDS=25V
Output Capacitance
C oss
VGS=0V
Reverse Transfer Capacitance
C rss
f=1MHz
Turn-On-Time ton (ton=td(on)+tr)
t d(on)
VCC=300V
tr
ID=8A
Turn-Off-Time toff (ton=td(off)+tf)
2SK3481资料
The information in this document is subject to change without notice. Before using this document, please confirm that this is the latest version.Not all devices/types available in every country. Please check with local NEC representative for availability and additional information.©2002DATA SHEETDocument No.D15063EJ1V0DS00 (1st edition)Date Published January 2002 NS CP(K)Printed in JapanDESCRIPTIONThe 2SK3481 is N-channel MOS Field Effect Transistor designed for high current switching applications.FEATURES•Super low on-state resistance:R DS(on)1 = 50 m Ω MAX. (V GS = 10 V, I D = 15 A)R DS(on)2 = 58 m Ω MAX. (V GS = 4.5 V, I D = 15 A)•Low C iss : C iss = 2300 pF TYP.•Built-in gate protection diodeABSOLUTE MAXIMUM RATINGS (T A = 25°C)Drain to Source Voltage (V GS = 0 V)V DSS 100V Gate to Source Voltage (V DS = 0 V)V GSS ±20V Drain Current (DC) (T C = 25°C)I D(DC)±30A Drain Current (pulse)Note1I D(pulse)±60A Total Power Dissipation (T C = 25°C)P T156W Total Power Dissipation (T A = 25°C)P T2 1.5W Channel Temperature T ch 150°C Storage Temperature T stg–55 to +150°C Single Avalanche Current Note2I AS 26A Single Avalanche EnergyNote2E AS68mJNotes 1.PW ≤ 10 µs, Duty cycle ≤ 1%2. Starting T ch = 25°C, V DD = 50 V, R G = 25 Ω, V GS = 20 → 0 VTHERMAL RESISTANCEChannel to Case Thermal Resistance R th(ch-C) 2.23°C/W Channel to Ambient Thermal ResistanceR th(ch-A)83.3°C/WORDERING INFORMATIONPART NUMBERPACKAGE 2SK3481TO-220AB 2SK3481-S TO-2622SK3481-ZJ TO-2632SK3481-ZTO-220SMD NoteNote TO-220SMD package is produced only in Japan.(TO-220AB)(TO-262)(TO-263, TO-220SMD)Data Sheet D15063EJ1V0DS2ELECTRICAL CHARACTERISTICS (T A = 25°C)CHARACTERISTICSSYMBOL TEST CONDITIONSMIN.TYP.MAX.UNITZero Gate Voltage Drain Current I DSS V DS = 100 V, V GS = 0 V 10µA Gate Leakage Current I GSS V GS = ±20 V, V DS = 0 V±10µA Gate Cut-off Voltage V GS(off)V DS= 10 V, I D = 1 mA 1.5 2.0 2.5V Forward Transfer Admittance | y fs|V DS = 10 V, I D = 15 A 918SDrain to Source On-state ResistanceR DS(on)1V GS = 10V, I D = 15 A 4050m ΩR DS(on)2V GS = 4.5 V, I D = 15 A 4458m ΩInput Capacitance C iss V DS = 10 V 2300pF Output CapacitanceC oss VGS = 0 V 230pF Reverse Transfer Capacitance C rss f = 1 MHz120pF Turn-on Delay Time t d(on)V DD = 50 V, I D = 15 A 13ns Rise Timet r V GS = 10 V 10ns Turn-off Delay Time t d(off)R G = 0 Ω53ns Fall Timet f 5.0ns Total Gate Charge Q G V DD = 80 V 48nC Gate to Source Charge Q GS V GS = 10 V 7.0nC Gate to Drain Charge Q GD I D = 30 A12nC Body Diode Forward Voltage V F(S-D)I F = 30 A, V GS = 0 V 1.0V Reverse Recovery Time t rr I F = 30 A, V GS = 0 V 70ns Reverse Recovery ChargeQ rr di/dt = 100 A/ µs160nCTEST CIRCUIT 1 AVALANCHE CAPABILITYV GS = 20 →DDTEST CIRCUIT 3 GATE CHARGETEST CIRCUIT 2 SWITCHING TIMEV LDDτ = 1 sµDuty Cycle ≤ 1%L DDData Sheet D15063EJ1V0DS3TYPICAL CHARACTERISTICS (T A = 25°C)DERATING FACTOR OF FORWARD BIAS SAFE OPERATING AREAT C - Case Temperature - ˚Cd T - Pe r c e n t a g e of R a t e d P o w e r - %T C - Case Temperature - ˚CP T - T o t a l P o w e r D i s s i p a t i o n - W080204060100140120160TOTAL POWER DISSIPATION vs. CASE TEMPERATURE5040302010FORWARD BIAS SAFE OPERATING AREA V DS - Drain to Source Voltage - VI D - D r a i n C u r r e n t - A1011000.1PW - Pulse Width - sTRANSIENT THERMAL RESISTANCE vs. PULSE WIDTHr t h (t ) - T r a n s i e n t T h e r m a l R e s i s t a n c e - ˚C /W100.010.1110010001 m10 m100 m110100100010100 µµData Sheet D15063EJ1V0DS4FORWARD TRANSFER CHARACTERISTICS V GS - Gate to Source Voltage - VI D - D r a i n C u r r e n t - A10.10.0110100DRAIN CURRENT vs.DRAIN TO SOURCE VOLTAGEV DS - Drain to Source Voltage - VI D - D r a i n C u r r e n t - A23412060408056FORWARD TRANSFER ADMITTANCE vs.DRAIN CURRENTI D - Drain Current - A | y f s | - F o r w a r d T r a n s f e rA d m i t t a n c e - S110100101001DRAIN TO SOURCE ON-STATE RESISTANCE vs. GATE TO SOURCE VOLTAGE V GS - Gate to Source Voltage - VR D S (o n )- D r a i n t o S o u r c e O n -s t a t e R e s i s t a n c e - m Ω806040200DRAIN TO SOURCE ON-STATE RESISTANCE vs. DRAIN CURRENTI D - Drain Current - AR D S (o n) - D r a i n t o S o u r c e O n -s t a t e R e s i s t a n c e - m Ω10.180604020010100GATE CUT-OFF VOLTAGE vs.CHANNEL TEMPERATURET ch - Channel Temperature - ˚CV G S (o f f ) - G a t e C u t -o f f V o l t a g e - VV DS = 10 V I D = 1 mA1234−50050100150Data Sheet D15063EJ1V0DS5DRAIN TO SOURCE ON-STATE RESISTANCE vs.CHANNEL TEMPERATURE T ch - Channel Temperature - ˚C R D S (o n ) - D r a i n t o S o u r c e O n -s t a t e R e s i s t a n c e - m Ω−5002040608010012050SOURCE TO DRAIN DIODE FORWARD VOLTAGE1.0I S D - D i o d e F o r w a r d C u r r e n t - A0 1.5V SD - Source to Drain Voltage - V0.50.010.1110100V DS - Drain to Source Voltage - VC i s s , C o s s , C r s s - C a p a c i t a n c e - p F10100100010000CAPACITANCE vs.DRAIN TO SOURCE VOLTAGESWITCHING CHARACTERISTICSI D - Drain Current - At d (o n ), t r , t d (o f f ), t f - S w i t c h i n g T i m e - n s1011001000REVERSE RECOVERY TIME vs.DRAIN CURRENTI F - Drain Current - At r r - R e v e r s e R e c o v e r y T i m e - n sdi/dt = 100 A/ sV GS = 0 V10.1101101001000100µDYNAMIC INPUT/OUTPUT CHARACTERISTICS V G S - G a t e t o S o u r c e V o l t a g e - VQ G - Gate Charge - nCV D S - D r a i n t o S o u r c e V o l t a g e - V202040608002468104060103050Data Sheet D15063EJ1V0DS6SINGLE AVALANCHE CURRENT vs.INDUCTIVE LOADL - Inductive Load - mHI A S - S i n g l e A v a l a n c h e E n e r g y - m J1010010001100.11SINGLE AVALANCHE ENERGY DERATING FACTORStarting T ch - Starting Channel Temperature - ˚CE n e r g y D e r a t i n gF a c t o r - %255075100160140120100806040200125150V DD = 50 V R G = 25 ΩV GS = 20 → 0 V I AS ≤ 26 APACKAGE DRAWINGS (Unit: mm)NoteNote This package is produced only in Japan. EQUIVALENT CIRCUITBodyDiodeDiodeDrainRemark The diode connected between the gate and source of the transistorserves as a protector against ESD. When this device actually used,an additional protection circuit is externally required if a voltageexceeding the rated voltage may be applied to this device.Data Sheet D15063EJ1V0DS7M8E 00. 4The information in this document is current as of January, 2002. The information is subject to change without notice. For actual design-in, refer to the latest publications of NEC's data sheets or data books, etc., for the most up-to-date specifications of NEC semiconductor products. Not all products and/or types are available in every country. Please check with an NEC sales representative for availability and additional information.No part of this document may be copied or reproduced in any form or by any means without prior written consent of NEC. NEC assumes no responsibility for any errors that may appear in this document.NEC does not assume any liability for infringement of patents, copyrights or other intellectual property rights of third parties by or arising from the use of NEC semiconductor products listed in this document or any other liability arising from the use of such products. No license, express, implied or otherwise, is granted under any patents, copyrights or other intellectual property rights of NEC or others.Descriptions of circuits, software and other related information in this document are provided for illustrative purposes in semiconductor product operation and application examples. The incorporation of these circuits, software and information in the design of customer's equipment shall be done under the full responsibility of customer. NEC assumes no responsibility for any losses incurred by customers or third parties arising from the use of these circuits, software and information.While NEC endeavours to enhance the quality, reliability and safety of NEC semiconductor products, customers agree and acknowledge that the possibility of defects thereof cannot be eliminated entirely. To minimize risks of damage to property or injury (including death) to persons arising from defects in NEC semiconductor products, customers must incorporate sufficient safety measures in their design, such as redundancy, fire-containment, and anti-failure features.NEC semiconductor products are classified into the following three quality grades:"Standard", "Special" and "Specific". The "Specific" quality grade applies only to semiconductor products developed based on a customer-designated "quality assurance program" for a specific application. The recommended applications of a semiconductor product depend on its quality grade, as indicated below. Customers must check the quality grade of each semiconductor product before using it in a particular application."Standard":Computers, office equipment, communications equipment, test and measurement equipment, audioand visual equipment, home electronic appliances, machine tools, personal electronic equipment and industrial robots"Special":Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disastersystems, anti-crime systems, safety equipment and medical equipment (not specifically designed for life support)"Specific":Aircraft, aerospace equipment, submersible repeaters, nuclear reactor control systems, lifesupport systems and medical equipment for life support, etc.The quality grade of NEC semiconductor products is "Standard" unless otherwise expressly specified in NEC's data sheets or data books, etc. If customers wish to use NEC semiconductor products in applications not intended by NEC, they must contact an NEC sales representative in advance to determine NEC's willingness to support a given application.(Note)(1)"NEC" as used in this statement means NEC Corporation and also includes its majority-owned subsidiaries.(2)"NEC semiconductor products" means any semiconductor product developed or manufactured by or for NEC (as defined above).••••••。
2SC2131-2SC2148产品数据表说明书
/2SC2188-datasheet.html
Silicon NPN epitaxial planer type
/2SC2188-datasheet.html
The Japanese Transistor Manual 1981
/2SC2194-datasheet.html
Shortform Data and Cross References (Misc Datasheets)
/2SC2194-datasheet.html
2SC2148
N/A
2SC2148
NEC Electronics
2SC2148
NEC Electronics
2SC2148
NEC Electronics
2SC2148 2SC2149
NEC Electronics N/A
2SC2149
N/A
2SC2149
N/A
2SC2149
N/A
2SC2149
N/A
Semiconductor Selection Guide 1995
/2SC2148-datasheet.html
Semiconductor Selection Guide
/2SC2148-datasheet.html
/2SC2148-datasheet.html
MICROWAVE LOW NOISE AMPLIFIER NPN SILICON EPITAXIAL TRANSISTOR
/2SC2148-datasheet.html
2SC2166 2SC2167
Various Russian Datasheets
N/A
2SC2167
N/A
二极管封装大全
军用电子器件目录JUN YONG DIAN ZI QI JIAN MU LU(2005年版)济南半一电子有限公司目录半导体器件选用注意事项 (1)第一部分:二极管 (8)一. 开关二极管 (8)1. 锗金键开关二极管2AK1~20系列 (8)2. 锗金键检波二极管2AP1~31B系列 (9)3. 肖特基检波二极管SP1~31B系列(替代2AP1~31B) (10)4. 肖特基开关二极管SK1~20系列(替代2AK1~20) (11)5. 肖特基开关检波二极管2DKOlO、020、O3O型(替代2AK1~20、2AP1~31B)··126. 硅开关二极管2CK70~86、2CK49~56系列 (13)7. 硅开关二极管1N、1S、1SS、BAV系列 (16)8. 玻璃钝化封装大电流开关二极管RG0.5~5系列 (17)二. 整流二极管 (18)1. 玻封快速硅整流二极管2CZ50~57系列 (18)2. 玻璃钝化整流管1N、RL、6A系列 (19)3. 玻璃钝化高速整流管SF11G~66G系列 (20)4. 贴片玻璃钝化整流管S1~5系列 (21)5. 贴片高速整流管ES1~5系列 (22)6. 肖特基二极管SR0620~510、1N5817~5822系列 (23)7. 肖特基二极管SR735~4060系列 (24)8. 贴片肖特基二极管SS1~36、SS110系列 (25)三. 电压调整(稳压)二极管 (26)1. 硅稳压二极管2CW50~78系列 (26)2. 硅稳压二极管2CW100~121系列 (27)3. 硅稳压二极管ZW50~78系列 (28)4. 硅稳压二极管ZW100~121系列 (29)5. 硅稳压二极管2CW5221~5255(1N5221~5255)系列 (30)6. 硅稳压二极管2CW4728A~4754A(1N4728A~4754A)系列 (31)7. 硅稳压二极管1N746A~759A、1N957A~974A系列 (32)8. 硅稳压二极管1N4352B~4358B系列 (33)9. 硅稳压二极管HZ2~36系列 (34)10. 硅稳压二极管BZX55/C系列 (35)11. 硅稳压二极管BZX85/C系列 (36)四. 电压基准二极管 (37)1. 硅基准稳压二极管2DW14~18系列 (37)2. 硅平面温度补偿二极管2DW230~236系列 (38)五. 电流调整(稳流)二极管 (39)1. 稳流管2DH1~36系列 (39)六. 瞬变电压抑制二极管 (40)1. 单双向瞬变电压抑制二极管TVS500~534系列 (40)2. 单双向瞬变电压抑制二极管TVS1000~1034系列 (41)3. 单双向瞬变电压抑制二极管TVS1500~1534系列 (42)4. 单双向瞬变电压抑制二极管TVS5000~5034系列 (43)第二部分:晶体管 (44)一. 双极型晶体管 (44)1. 硅NPN型平面高频小功率三极管3DG110、3DG111、3DG130系列 (44)2. 硅NPN型外延平面高反压三极管3DG182系列 (45)3. 硅NPN型平面三极管3DK101、3DK106、3DK21系列 (46)4. 硅PNP型外延平面高频小功率三极管3CG111、3CG120、3CG130系列 (47)5. 硅PNP型外延平面高频小功率三极管3CK2、3CK120、3CK130系列 (48)6. 硅PNP型外延平面高频高反压小功率三极管3CG182、3CG184、2N2907系列 (49)7. 硅NPN低频大功率晶体管3DD1~8系列 (50)8. 硅NPN达林顿功率晶体管FH6~8系列 (53)二. 场效应晶体管 (54)1. N沟道MOS型场效应晶体管IRF120~823系列 (54)2. P沟道MOS型场效应晶体管IRF9130~9643系列 (56)3. N沟道结型场效应晶体管3DJ2、3DJ6/66、3DJ7/67/304、3DJ8/68系列 (57)三. 部分替代俄型号晶体管 (59)第三部分:半导体分立器件组件 (60)一. 说明 (60)二. 产品型号 (61)1. 200mA~2A玻璃钝化芯片整流桥DF、1W、RB、W系列 (61)2. 1~4A玻璃钝化芯片整流桥2W、GBP、GBL系列 (62)3. 4~15A玻璃钝化芯片整流桥GBU、GBP系列 (63)4. 15~35A玻璃钝化芯片整流桥GBPC系列 (64)5. 定制式三相整流桥 (65)6. 2Д906A型硅二极管矩阵 (65)7. 双向限幅器SXF0.25~5.8系列 (65)第四部分:电路及模块 (66)一. 集成稳压器 (66)1. 固定输出三端正稳压器CW7800系列 (66)2. 固定输出三端负稳压器CW7900系列 (66)3. 可调输出三端正稳压器CW117系列 (67)4. 可调输出三端负稳压器CW137系列 (67)5. 定制式5V以下电压基准DCW系列 (68)第五部分:外形图 (69)半导体器件选用注意事项半导体器件(以下简称器件)的质量问题,不仅有器件本身所固有的质量和可靠性问题,也有由于用户选择或使用不当造成的器件失效问题。
常用场效应管参数大全(1)
型号材料管脚用途参数3DJ6NJ低频放大20V0.35MA0.1W4405/R95242E3C NMOS GDS 开关600V11A150W0.362SJ117 PMOS GDS 音频功放开关400V2A40W2SJ118 PMOS GDS 高速功放开关140V8A100W50/70nS0・52SJ122 PMOS GDS 咼速功放开关60V10A50W60/100nS0.15 2SJ136 PMOS GDS 咼速功放开关60V12A40W 70/165nS0.3 2SJ143 PMOS GDS 功放开关60V16A35W90/180nS0.0352SJ172 PMOS GDS 激励60V10A40W73/275nS0.182SJ175 PMOS GDS 激励60V10A25W73/275nS0.182SJ177 PMOS GDS 激励60V20A35W140/580nS0.0852SJ201 PMOS n2SJ306 PMOS GDS 激励60V14A40W30/120nS0.122SJ312 PMOS GDS 激励60V14A40W30/120nS0.122SK30 NJ SDG 低放音频50V0.5mA0.1W0.5dB2SK30A NJ SDG 低放低噪音频50V0.3-6.5mA0.1W0.5dB2SK108 NJ SGD 音频激励开关50V1-12mA0.3W70 1DB2SK118 NJ SGD 音频话筒放大50V0.01A0.1W0.5dB2SK168 NJ GSD 高频放大30V0.01A0.2W100MHz1.7dB2SK192 NJ DSG 高频低噪放大18V12-24mA0.2W100MHz1.8dB 2SK193 NJ GSD 高频低噪放大20V0.5-8mA0.25W100MHz3dB2SK794 NMOS GDS 电源开关900V5A150W2.5可驱电机高速开关 60V10A50W45/65NS0.15 高速低噪开关 250V15A150W0.24可驱电2SK539 NMOS GDS 开关 900V5A150W2.52SK214 NMOS GSD 高频高速开关 160V0.5A30W 2SK241 NMOS DSG 高频放大 20V0.03A0.2W100MHz1.7dB 2SK304 NJ GSD 音频 功放 30V0.6-12mA0.15W 2SK385 NMOS GDS 高速开关 400V10A120W100/140nS0.6 2SK386 NMOS GDS 高速开关 450V10A120W100/140nS0・72SK413 NMOS GDS高速功放开关 140V8A100W0.5 (2SJ118) 2SK423 NMOS SDG 高速开关 100V0.5A0.9W4.5 2SK511 NMOS SDG高速功放开关250V0.3A8W5.0 2SK534 NMOS GDS 高速开关 800V5A100W4.0 2SK560 NMOS GDS 咼速开关 500V15A100W0.4 2SK623 NMOS GDS 高速开关 250V20A120W0.15 2SK727 NMOS GDS 电源开关 900V5A125W110/420nS2.5 2SK734 NMOS GDS 电源开关 450V15A150W160/250nS0.52 2SK785 NMOS GDS 电源开关 500V20A150W105/240nS0.4 2SK787 NMOS GDS 咼速开关 900V8A150W95/240nS1・6 2SK790 NMOS GDS 高速功放开关500V15A150W0.4可驱电机 2SK791 NMOS GDS 电源功放开关850V3A100W4.5可驱电机 2SK428 NMOS GDS 2SK447 NMOS SDG2SK817 NMOS GDS 电源开关60V26A35W40/230nS0.055 2SK1118 NMOS GDS 电源开关600V6A45W65/105nSD1.252SK832 NMOS GDS 咼速开关 900V4A85W55/100nS4.0 2SK899 NMOS GDS功放开关 500V 佃A125W130/440nS0.33 2SK962 NMOS GDS 电源开关 900V8A150W280/460nS2.0 2SK940 NMOS SDG 激励.驱动60V0.8A0.9W0.55螺线管驱动 2SK1007 NMOS GDS功放开关 450V5A60W60/130nS1.6 2SK1010 NMOS GDS 咼速开关 500V6A80W70/130nS1.6 2SK1011 NMOS GDS咼速开关 450V10A100W110/240nS0.65 2SK1012 NMOS GDS 咼速开关 500V10A100W110/240nS0.9 2SK1015 NMOS GDS功放开关 450V 佃A125W170/230nS0.45 2SK1016 NMOS GDS电源开关 500V15A125W170/230nS0.55 2SK1017 NMOS GDS电源开关 500V20A150W250/490nS0.35 2SK1019 NMOS GDS 电源开关 450V35A300W360/900nS0.2 2SK1020 NMOS GDS 电源开关 500V30A300W360/900nS0.25 2SK1060 NMOS GDS功放开关 100V5A20W50/140nS0.27 2SK1081 NMOS GDS激励,驱动 800V7A125W 145/250nS2.2 2SK1082 NMOS GDS激励,驱动 900V8A125W 145/250nS2.8 2SK1094 NMOS GDS 激励,驱动 60V15A25W80/300nS0.065 2SK1101 NMOS GDS 功放开关 450V10A50W165/360nS0.65 2SK1117 NMOS GDS电源开关 600V6A100W1.25 2SK1119 NMOS GDS 电源开关 1000V4A100W3.82SK1120 NMOS GDS 电源开关1000V8A150W1.8 2SK1445 NMOS GDS 高速开关 450V5A30W45/175nS1.42SK1161 NMOS GDS 电源开关 450V10A100W75/135nS0・8 2SK1170 NMOS GDS 电源开关 500V20A120W147/290nS0.27 2SK1180 NMOS GDS 投影机用 500V10A85W60/40nS0・6 2SK1195 NMOS GDS 电梯用 230V1.5A10W37/100nS 2SK1198 NMOS GDS高速开关 700V2A35W20/80nS3.2 2SK1217 NMOS GDS电源开关 90V8A100W280/460nS2.0 2SK1221 NMOS GDS电源开关 250V10A80W60/150nS0.4 2SK1247 NMOS GDS 电源开关 500V5A30W50/90nS1.4 2SK1250 NMOS GDS 开关-感性 500V20A150W130/260nS0.35 2SK1254 NMOS GDS低噪放大 120V3A20W25/195nS0.4 2SK1271 NMOS GDS功放开关 1400V5A240W55/260nS4.0 2SK1272 NMOS GDS咼速开关 60V1A0.75W50/500nS0.65 2SK1329 NMOS GDS 电源开关 500V12A60W90/佃0nS0.6 2SK1358 NMOS GDS 电源开关 900V9A150W65/120nS1.4 2SK1374 NMOS贴片 50V50mA0.15W0.2US/0.2US50 2SK1379 NMOS GDS激励,开关 60V50A150W78/640nS0.017 2SK1387 NMOS GDS 激励,开关 60V35A40W66/500nS0.035 2SK1388 NMOS GDS 激励,开关 30V35A60W125/480nS0.022 2SK1419 NMOS GDS高速开关 60V15A25W55/150nS0.08。
2SK241中文资料(toshiba)中文数据手册「EasyDatasheet - 矽搜」
2SK241
4
2003-03-27
芯片中文手册,看全文,戳
2SK241
5
2003-03-27
特点 漏源电压 栅源电压 漏极电流 漏极功耗 通道温度 存储温度范围
电气特性
特点 栅极漏电流 漏源电压 漏极电流 门源截止电压 远期转移导纳 输入电容 反向传输电容 功率增益 噪声系数
注:I DSS 分类
(Ta = 25°C)
符号
VDS VGS ID PD Tch Tstg
等级
单元
20
V
±5
V
30
mA
Crss
¾
3.0
¾
pF
¾ 0.035 0.050 pF
Gps
VDS = 1赫(图1)
¾
28
¾
dB
¾ 1.7 3.0 dB
O: 1.5~3.5, Y: 3.0~7.0, GR: 6.0~14.0
1
2003-03-27
芯片中文手册,看全文,戳
¾
V
IDSS
VDS = 10 V, V GS = 0
(注意) 1.5
¾
14 mA
VGS (OFF) VDS = 10 V, I D = 100 mA
¾
¾ -2.5
V
ïY fsï
VDS = 10 V, V GS = 0, f = 1千赫
¾
10
¾
mS
Ciss
VDS = 10 V, V GS = 0, f = 1兆赫
200
mW
125
°C
-55~125
°C
(Ta = 25°C)
JEDEC
―
JEITA
2SK2082-01中文资料
- Electrical Characteristics (TC=25°C), unless otherwise specified
Item
Symbol
Test conditions
Drain-Source Breakdown-Voltage
V (BR)DSS ID=1mA
VGS=0V
Gate Threshhold Voltage
V GS(th)
ID=1mA
VDS=VGS
Zero Gate Voltage Drain Current
I DSS
VDS=900V Tch=25°C
VGS=0V
Tch=125°C
Gate Source Leakage Current
I GSS
11
ID [A]
PD [W]
→ Tc [°C]
→ VDS [V]
This specification is subject to change without notice!
t [s] →
1,1 1,4 Ω
5
10
S
2200 3300 pF
210 320 pF
65 100 pF
25
40 ns
60
90 ns
140 210 ns
70 110 ns
9
A
9A
36 A
1,2 1,8 V
450
ns
4
µC
- Thermal Characteristics Item Thermal Resistance
tf
RGS=10 Ω
Avalanche Capability
2SC4081中文资料
Transistors 2SC5658 / 2SC1740SGeneral purpose transistor (50V, 0.15A)2SC2412K / 2SC4081 / 2SC4617 / 2SC5658 /2SC1740S!Features 1) Low Cob.Cob=2.0pF (Typ.)2) Complements the 2SA1037AK /2SA1576A / 2SA1774H /2SA2029 / 2SA933AS.!StructureEpitaxial planar type NPN silicon transistor!External dimensions (Units : mm)* Denotes h FE!Absolute maximum (T a=25°C)Collector-base voltage Collector-emitter voltage Emitter-base voltage Collector currentCollector powerdissipationJunction temperature Storage temperatureParameterV CBO V CEO V EBO P CTj Tstg60V V V AW °C °C 5070.15I C0.20.150.32SC2412K, 2SC40812SC1740S 2SC4617, 2SC5658150−55~+150Symbol Limits UnitTransistors 2SC5658 / 2SC1740S!Electrical characteristics (T a=25°C)Collector-base breakdown voltage Collector-emitter breakdown voltage Emitter-base breakdown voltage Collector cutoff current Emitter cutoff current DC current transfer ratioCollector-emitter saturation voltage Output capacitanceParameterSymbol BV CBO BV CEO BV EBO I CBO I EBO h FE V CE(sat)f T CobMin.60507−−120−−−−−−−−−−1802−−−0.10.15600.4−3.5V I C =50µA I C =1mA IE =50µA V CB =60V V EB =7VV CE =6V, I C =1mA I C /I B =50mA/5mAV CE =12V, I E =−2mA, f=100MHz V CE =12V, I E =0A, f=1MHzV V µA µA −V MHz pFTyp.Max.Unit ConditionsTransition frequency !Packaging specifications and h FEh FE values are classified as follows :Item Q R S h FE120~270180~390270~560!Electrical characterristic curvesFig.1 Grounded emitter propagationcharacteristics C O L L E C T O R C U R R E N T: I C (m A )BASE TO EMITTER VOLTAGE : V BE (V)Fig.2 Grounded emitter outputcharacteristics ( Ι )C O L L E C T O R C U R R E N T : I C (m A )COLLECTOR TO EMITTER VOLTAGE : V CE (V)C O L L E C T O R C U R R E N T : I C (m A )COLLECTOR TO EMITTER VOLTAGE : V CE (V)Fig.3 Grounded emitter outputcharacteristics ( ΙΙ )Transistors2SC5658 / 2SC1740SFig.4 DC current gain vs.collector current ( Ι )D C C U R RE N T G A I N: h F ECOLLECTOR CURRENT : I C (mA)Fig.5 DC current gain vs.collector current ( ΙΙ )D C C U R R E N T G A I N : h F ECOLLECTOR CURRENT : I C (mA)Fig. 6 Collector-emitter saturationvoltage vs. collector currentC O L L E C T O R S A T U R A T I O N V O L T A G E : V C E (s a t ) (V )COLLECTOR CURRENT : I C (mA)Fig.7 Collector-emitter saturation voltage vs. collector current ( Ι )C O L L E C T O R S A T U R A T I O N V O L T A G E : V C E (s a t ) (V )COLLECTOR CURRENT : I C (mA) Fig.8 Collector-emitter saturationvoltage vs. collector current (ΙΙ)C O L L E C T O R S A T U R A T I O N V O L T A G E : V C E (s a t ) (V )COLLECTOR CURRENT : I C (mA)Fig.9 Gain bandwidth product vs.emitter current−EMITTER CURRENT : I E (mA)T R A N S I T I O N F R E Q U E N C Y : f T (M H z )Fig.10 Collector output capacitance vs.collector-base voltageEmitter input capacitance vs.emitter-base voltageCOLLECTOR TO BASE VOLTAGE : V CB (V)EMITTER TO BASE VOLTAGE : V EB (V)C O L L E C T O R O U T P U T C A P A CI T A N C E : C o b (p F )E M I T T E R I N P U T C A P A C I T A N C E : C i b (p F )Fig.11 Base-collector time constantvs. emitter current− B A S E C O L L E C T O R T I M E C O N S T A N T : C c ·r b b (p s )EMITTER CURRENT : I E (mA)。
2S系列晶体管资料速查
2SC2166三菱μA)001002SC2640东芝0022SC2941日电μA)000.52SC3147东芝10002SC3629三菱μA)002002SC4013罗姆μA)000.52SC4253东芝μA)000.12SC4526三菱0032SC4856三洋μA)0012SC5006日电μA)0012SC941TM东芝μA)000.1Vebo(V)00Vce=10V, Ic=ft(MHz)Vebo(V)00Vce=10V, Ic=ft(MHz) Veb=4V, Ic=0Vcb=25V, Ie=Vebo(V)00.5Veb=3V, Ic=0hfeVeb=10V, Ie=Vebo(V)0300Vce=5V, Ic=1hfe比*Vebo(V)80200Vce=10V, Ic=hfe比* Veb=2V, Ic=0ft(MHz) Vcb=-10V, Ie Vebo(V)0500Vce=-10V, Ic=Vcb=20V Vebo(V)0180Vce=6V, Ic=1ft(MHz) Vcb=20V Vebo(V)0180Vce=6V, Ic=1ft(MHz) Vce=10V, Ic=Vebo(V)5500Vce=10V, Ic=Cre(pF) Vce=10V, Ic=Vebo(V)5500Vce=10V, Ic=Cre(pF) Vcb=-12V Vebo(V)250560Vce=-2V, Ic=ft(MHz) Vce=10V, Ic=Vebo(V)10Vce=10V, Ic=Cob(pF) Vce=10V, Ic=Vebo(V) 1.10Vce=10V, Ic=Cob(pF) Vce=6V, Ic=1Vebo(V)5500Vce=6V, Ic=1Cre(pF) Veb=2V, Ic=0Vebo(V)0300Vce=5V, Ic=1hfe比*Vebo(V)0300Vce=5V, Ic=1hfe比* Veb=2V, Ic=0Veb=2V, Ic=0Vebo(V)80200Vce=10V, Ic=hfe比*Vebo(V)80200Vce=10V, Ic=hfe比* Veb=2V, Ic=0Vcb=30V, Ie=Vebo(V)0100Veb=4V, Ic=0hfeVcb=25V, Ie=Vebo(V)01Veb=3V, Ic=0hfeVcb=25V, Ie=Vebo(V)01Veb=3V, Ic=0hfehfeVcb=25V, Ie=Vebo(V)0500Veb=3V, Ic=0Vcb=25V, Ie=Vebo(V)0500Veb=3V, Ic=0hfeVcb=25V, Ie=Vebo(V)0500Veb=3V, Ic=0hfehfeVcb=15V, Ie=Vebo(V)0100Veb=2.5V, Ic=Vcb=15V, Ie=Vebo(V)0200Veb=2V, Ic=0hfeVcb=15V, Ie=Vebo(V)0400Veb=2V, Ic=0hfeVcb=15V, Ie=Vebo(V)0400Veb=2V, Ic=0hfehfeVcb=30V, Ie=Vebo(V)0100Veb=4V, Ic=0Vcb=25V, Ie=Vebo(V)0100Veb=3V, Ic=0hfeVcb=25V, Ie=Vebo(V)0500Veb=3V, Ic=0hfeVcb=25V, Ie=Vebo(V)0500Veb=3V, Ic=0hfeVce=10V, Ic=Vebo(V) 2.20Vce=10V, Ic=Cob(pF) Vcb=15V, Ie=Vebo(V)020Veb=3V, Ic=0hfehfeVcb=10V, Ie=Vebo(V)030Veb=3V, Ic=0Vcb=10V, Ie=Vebo(V)0100Veb=3V, Ic=0hfeVcb=24V Vebo(V)0270Vce=6V, Ic=1ft(MHz) Vcb=24V Vebo(V)0270Vce=6V, Ic=1ft(MHz) Vcb=20V Vebo(V)0180Vce=6V, Ic=1ft(MHz) Vcb=24V Vebo(V)0270Vce=6V, Ic=1ft(MHz) Vcb=24V Vebo(V)0270Vce=6V, Ic=1ft(MHz) Vcb=40V, Ie=Vebo(V)0200Vce=5V, Ic=0ft(MHz) Vcb=35V, Ie=Vebo(V)0100Veb=3V, Ic=0hfeVcb=25V, Ie=Vebo(V)50180Vce=10V, Ic=IMD(dB)hfeVcb=25V, Ie=Vebo(V)04Veb=2V, Ic=0Vce=5V, Ic=5Vebo(V)1000Vce=5V, Ic=0Cob(pF)hfeVcb=25V, Ie=Vebo(V)0100Veb=3V, Ic=0hfeVcb=35V, Ie=Vebo(V)01Veb=3V, Ic=0Vcb=35V, Ie=Vebo(V)02Veb=3V, Ic=0hfeVce=10V, Ic=Vebo(V)30Vce=10V, Ic=Cob(pF) Vce=10V, Ic=Vebo(V)50Vce=10V, Ic=Cob(pF) Vce=8V, Ic=1Vebo(V)60Vce=8V, Ic=1Cob(pF) Vcb=30V, Ie=Vebo(V)0100Veb=3V, Ic=0hfeft(MHz) Vcb=20V, Ie=Ic(A)60200Vce=7V, Ic=0Cob(pF)hfeVcb=25V, Ie=Vebo(V)0500Veb=3V, Ic=0Vcb=5V, Ic=1Vebo(V)0500Vcb=12V, Ie=PG(dB) Vcb=10V, Ie=Vebo(V)0220Vcb=10V, Ie=ft(MHz) Vcb=40V, Ie=Vebo(V)0320Vce=5V, Ic=5ft(MHz) Vcb=20V, Ie=Ic(A)60200Vce=10V, Ic=Cob(pF) Vcb=10V, Ie=Vebo(V)100200Vce=10V, Ic=ft(GHz) Vcb=15V, Ie=Vebo(V)00Vce=3V, Ic=8ft(MHz) Vcb=10V, Ic=Vebo(V)6500Vce=10V, Ic=Cre(pF) Vcb=15V, Ie=Vebo(V)00Vce=3V, Ic=2ft(MHz) Vce=10V, Ic=Vebo(V) 4.50Vce=10V, Ic=Cob(pF) Vce=10V, Ic=Vebo(V)8500Vce=10V, Ie=Cre(pF) Vcb=10V, Ie=Vebo(V) 1.1 1.4Ie=-3mA, f=2Cob(pF) Vce=8V, Ic=2Vebo(V)80Vce=8V, Ic=2Cob(pF) Vce=20V, Ib=Vebo(V)0260Vcb=6V, Ie=-ft(MHz) Vce=5V, Ic=1Vebo(V)2000Vce=5V, Ic=1Cob(pF) Vcb=6V, Ie=-Vebo(V)6500Ie=-1mA, f=1Cre(pF) Vcb=20V, Ie=Vebo(V)00.5Veb=2V, Ic=0hfeVcb=24V Vebo(V)0180Vce=6V, Ic=2ft(MHz) Vcb=24V Vebo(V)0180Vce=6V, Ic=2ft(MHz) Vcb=24V Vebo(V)0270Vce=6V, Ic=1ft(MHz) Vce=10V, Ic=Vebo(V)9000Vce=10V, Ic=Cob(pF) Vce=10V, Ic=Vebo(V)5500Vce=10V, Ic=Cre(pF) Vce=10V, Ic=Vebo(V) 2.20Vce=10V, Ic=Cob(pF) Vce=10V, Ic=Vebo(V)9000Vce=10V, Ic=Cre(pF) Vce=10V, Ic=Vebo(V)00Vce=10V, Ic=Cob(pF) Vce=10V, Ic=Vebo(V)00Vce=10V, Ic=Cob(pF) Vce=10V, Ic=Vebo(V)20Vce=10V, Ic=Cob(pF) Vcb=10V, Ie=Vebo(V) 1.2 1.6Ie=-15mA, f=Cre(pF) Vce=10V, Ic=Vebo(V) 3.50Vce=10V, Ic=Cob(pF) Vce=10V, Ic=Vebo(V)40Vce=10V, Ic=Cob(pF) Vce=5V, Ic=1Vebo(V)450600Vcb=28V, Ie=PG(dB) Vce=10V, Ic=Vebo(V)9000Vce=10V, Ic=Cc.rbb' Vcb=15V, Ie=Vebo(V)0200Veb=3V, Ic=0hfehfeVcb=25V, Ie=Vebo(V)01000Veb=3V, Ic=0hfeVcb=15V, Ie=Vebo(V)02Veb=3V, Ic=0Vcb=20V, Ie=Ic(A)60200Vce=10V, Ic=Cob(pF) Vcb=20V, Ie=Ic(A)60200Vce=10V, Ic=Cob(pF) Vcb=10V, Ie=Vebo(V)0200Vce=10V, Ic=ft(GHz) Veb=1V, Ic=0Vebo(V)150300Vce=8V, Ic=7ft(GHz)Vebo(V)60200Vce=10V, Ic=Cob(pF) Veb=2V, Ie=0Vcb=35V, Ie=Vebo(V)04Veb=3V, Ic=0hfeVce=12V, Ic=Vebo(V)2300Vce=12V, Ic=Cob(pF) Vce=6V, Ic=1Vebo(V)9400Vce=6V, Ic=5Cob(pF)hfeVcb=25V, Ie=Vebo(V)01Veb=3V, Ic=0hfeVcb=25V, Ie=Vebo(V)02Veb=3V, Ic=0hfeVcb=25V, Ie=Vebo(V)03Veb=3V, Ic=0Vcb=15V, Ie=Vebo(V)05Veb=3V, Ic=0hfeVcb=10V, Ie=Vebo(V) 1.2 1.6Ie=-15mA, f=Cre(pF) Vcb=15V, Ie=Vebo(V)00Vcb=5V, Ic=1Cob(pF) Vcb=15V, Ie=Vebo(V)00Vcb=5V, Ic=1Cob(pF)Vcb=15V, Ie=Vebo(V)00Vcb=5V, Ic=5Cob(pF)Vcb=15V, Ie=Vebo(V)00Vce=5V, Ic=1Cob(pF)Vcb=15V, Ie=Vebo(V)00Vce=5V, Ic=3Cob(pF)Vce=5V, Ic=5Vebo(V)40Vce=10V, Ic=Cob(pF)Vcb=10V, Ie=Vebo(V)2300Ie=-1mA, f=2Cre(pF)Vce=5V, Ic=1Vebo(V)3000Vcb=50V, Ie=PG(dB)Vce=6V, Ic=1Vebo(V)5500Vce=6V, Ic=1Cre(pF)Vcb=35V, Ie=Vebo(V)0240Vce=12V, Ic=ft(MHz)Vcb=35V, Ie=Vebo(V)0240Vce=12V, Ic=ft(MHz)Vce=8V, Ic=4Vebo(V) 5.50Ic=40mA, f=8Cob(pF)Vce=10V, Ic=Vebo(V) 4.50Ie=-20mA, f=Cob(pF)Vcb=15V, Ie=Vebo(V)05Veb=3V, Ic=0hfeVcb=15V, Ie=Vebo(V)03Veb=3V, Ic=0hfeVce=6V, Ic=1Vebo(V)5500Vce=6V, Ic=1Cre(pF)Vcb=35V, Ie=Vebo(V)0240Vce=12V, Ic=ft(MHz)Vcb=35V, Ie=Vebo(V)0240Vce=12V, Ic=ft(MHz)Vcb=30V, Ie=Vebo(V)0240Vce=12.5V, Icft(MHz)Vcb=30V, Ie=Vebo(V)0300Vce=6V, Ic=1ft(MHz)Vce=4V, Ic=2Vebo(V)00Vce=4V, Ic=2Cre(pF)Vce=10V, Ic=Vebo(V) 3.50Vce=10V, Ic=Cob(pF)Vce=10V, Ic=Vebo(V)10Vce=10V, Ic=Cob(pF)Vce=10V, Ic=Vebo(V)10Vce=10V, Ic=Cre(pF)Vce=10V, Ic=Vebo(V) 3.50Vce=10V, Ic=Cob(pF)Vce=10V, Ic=Vebo(V) 1.20Vce=10V, Ic=Cob(pF)Vce=10V, Ic=Vebo(V) 2.20Vce=10V, Ic=Cob(pF)Vce=10V, Ic=Vebo(V)50Vce=10V, Ic=Cob(pF)Vce=10V, Ic=Vebo(V)8500Ic=10V, Ie=-5Cre(pF)Vce=10V, Ic=Vebo(V) 1.10Vce=10V, Ie=Cob(pF)Vce=10V, Ic=Vebo(V)10Vce=10V,Ie=Cob(pF)Vce=10V, Ic=Vebo(V)20Vce=10V, Ie=Cob(pF)Vcb=20V, Ie=Ic(A)00.1Veb=2V, Ic=0hfeVce=6V, Ic=1Vebo(V)3200Vce=6V, Ic=1Cob(pF)Vcb=10V, Ie=Vebo(V)2300Ie=-1mA, f=2Cre(pF)Vce=5V, Ic=1Vebo(V)0320Vcb=12V, Ie=Vce=5V, Ic=5Vebo(V)110150Vcb=12V, Ie=Vce=6V, Ic=1Vebo(V)6000Vce=6V, Ie=-Cob(pF)Vce=6V, Ic=1Vebo(V)2500Vce=6V, Ie=-Cob(pF)Vcb=25V, Ie=Vebo(V)0200Veb=3V, Ic=0hfehfeVcb=25V, Ie=Vebo(V)0400Veb=3V, Ic=0Vcb=25V, Ie=Vebo(V)0500Veb=3V, Ic=0hfehfeVcb=25V, Ie=Vebo(V)01Veb=3V, Ic=0Vebo(V)150300Vce=8V, Ic=2ft(GHz) Veb=2V, Ic=0Ic(A)60250Vce=10V, Ic=ft(GHz) Veb=2V, Ic=0Vce=6V, Ic=1Vebo(V)3200Vce=6V, Ic=1Cre(pF)Vce=6V, Ic=1Vebo(V)3200Vce=6V, Ic=1Cre(pF)Vcb=20V, Ie=Ic(A)60200Vce=10V, Ic=Cob(pF)Vcb=20V, Ie=Vebo(V)50Vce=13.5V, Icft(GHz)Vcb=5V, Ic=1Vebo(V)7000Vcb=12V, Ie=PG(dB)Vcb=15V, Ie=Vebo(V)05Veb=3V, Ic=0hfehfeVcb=15V, Ie=Vebo(V)03Veb=3V, Ic=0Vcb=20V Vebo(V)0270Vce=10V, Ic=ft(GHz)Vcb=20V Vebo(V)0270Vce=10V, Ic=ft(GHz)hfeVcb=15V, Ie=Vebo(V)02Veb=2V, Ic=0hfeVcb=15V, Ie=Vebo(V)03Veb=2V, Ic=0Vcb=15V, Ie=Ic(mA)0200Vce=8V, Ic=1ft(GHz)ft(GHz) Vcb=20V, Ie=Vebo(V)500Vce=13.5V, IcVcb=30V,Ie=Ic(A)60200Vce=10V, Ic=Cob(pF) Vce=6V, Ic=1Vebo(V)3500Vce=6V, Ic=1Cre(pF) Vce=6V, Ic=1Vebo(V)3500Vce=6V, Ic=1Cre(pF) Vce=6V, Ic=1Vebo(V)7500Vce=6V, Ic=1Cre(pF) Vce=6V, Ic=1Vebo(V)3200Vce=6V, Ic=1Cre(pF)hfeVcb=10V, Ie=Vebo(V)0500Veb=2V, Ic=0Vcb=15V, Ie=Vebo(V)00Vce=5V, Ic=0Cob(pF) Vce=5V, Ic=1Vebo(V) 6.50Vce=5V, Ic=1Cob(pF) Vce=4V, Ic=5Vebo(V) 1.450Vce=4V, Ic=5Cob(pF)hfeVcb=10V, Ie=Vebo(V)0200Veb=2V, Ic=0Vcb=10V, Ie=Vebo(V)0300Veb=2V, Ic=0hfeVcb=15V, Ie=Vebo(V)0500Veb=3V, Ic=0hfeVcb=15V, Ie=Vebo(V)0300Veb=3V, Ic=0hfehfeVcb=15V, Ie=Vebo(V)0500Veb=3V, Ic=0Vcb=15V, Ie=Vebo(V)03Veb=3V, Ic=0hfeVcb=25V, Ie=Vebo(V)0180Vce=6V, Ic=1ft(MHz) Vcb=10V, Ie=Vebo(V) 1.1 1.4Ie=-3mA,f=20Cob(pF) Vcb=24V Vebo(V)0180Vce=6V, Ic=2ft(MHz) Vcb=20V Vebo(V)0180Vce=6V, Ic=1ft(MHz) Vcb=20V Vebo(V)0270Vce=10V, Ic=ft(GHz) Vcb=20V Vebo(V)0270Vce=10V, Ic=ft(GHz) Vcb=20V Vebo(V)0270Vce=10V, Ic=ft(GHz) Vcb=15V, Ie=Ic(mA)0200Vce=8V, Ic=5ft(GHz) Vcb=15V, Ie=Ic(mA)0200Vce=8V, Ic=1ft(GHz) Vce=10V, Ic=Vebo(V) 3.50Vce=10V, Ic=Cob(pF) Vce=10V, Ic=Vebo(V)40Vce=10V, Ic=Cob(pF) Vcb=15V, Ie=Vebo(V)0300Veb=2V, Ic=0hfehfeVcb=15V, Ie=Vebo(V)05Veb=3V, Ic=0hfeVcb=10V, Ie=Vebo(V)0300Veb=2V, Ic=0hfeVcb=10V, Ie=Vebo(V)0500Veb=2V, Ic=0Vcb=15V, Ie=Vebo(V)05Veb=2V, Ic=0hfeVce=10V, Ic=Vebo(V) 4.50Ic=10mA, f=8Cob(pF) Vebo(V) 2.40Vce=10V, Ic=Cre(pF) Vce=10V,Ic=5Vcb=15V, Ie=Vebo(V)150320Vce=3V, Ic=8ft(GHz) Vce=10V, Ic=Vebo(V)6500Vce=10V, Ic=Cre(pF)ft(GHz) Vcb=25V, Ie=Vebo(V)150300Vce=10V,Ic=5Vcb=15V, Ie=Vebo(V)100200Vce=3V,Ic=8mft(GHz) Vcb=30V, Ie=Vebo(V)70200Vce=10V, Ic=ft(MHz) Vce=5V, Ic=2Vebo(V) 4.50Vce=5V, Ic=2Cob(pF) Vce=5V, Ic=2Vebo(V) 4.50Vce=5V, Ic=2Cob(pF) Vce=5V, Ic=2Vebo(V) 4.50Vce=2V, Ic=2Cob(pF) Vce=4V, Ic=5Vebo(V) 1.9 2.5Ie=-5mA, f=2Cob(pF) Vcb=30V, Ie=Vebo(V)50150Vce=12V, Ic=PG(dB) Vcb=25V, Ie=Vebo(V)150300Vce=10V, Ic=ft(GHz) Vcb=30V, Ie=Ic(A)60200Vce=10V, Ic=Cob(pF) Vcb=30V, Ie=Ic(A)60200Vce=10V, Ic=Cob(pF) Vcb=30V, Ie=Ic(A)60200Vce=10V, Ic=Cob(pF) Vce=6V, Ic=1Vebo(V)7500Vce=6V, Ic=4Cre(pF)Vce=5V, Ic=5Vebo(V)0330Vcb=12V, Ie=hfeVcb=15V, Ie=Vebo(V)05Veb=2V, Ic=0hfeVcb=25V, Ie=Vebo(V)04Veb=2V, Ic=0Vce=10V, Ic=Ic(mA)50Vce=10V, Ic=Cob(pF) Vcb=20V, Ie=Ic(A)50200Vce=10V, Ic=Cob(pF) Vcb=20V, Ie=Ic(A)50200Vce=10V, Ic=Cob(pF) Vcb=30V, Ie=Ic(A)60150Vce=10V, Ic=Cre(pF) Vce=10V, Ie=Vebo(V)2500Ie=-1mA, f=2Cre(pF) Vce=10V, Ic=Vebo(V)3000Ie=-1mA, f=2Cre(pF) Vcb=6V, Ie=-Vebo(V)6500Ie=-1mA, f=2Cre(pF) Vce=5V,Ic=50Vebo(V) 4.40Vce=5V, Ic=5Cob(pF)Vebo(V) 4.50Vce=5V, Ic=2Cob(pF) Vce=5V,Ic=20Vcb=10V, Ie=Vebo(V) 1.2 1.6Ie=-15mA, f=Cre(pF) Vce=10V, Ic=Vebo(V) 6.50Vce=10V, Ic=Cob(pF) Vce=10V, Ic=Vebo(V)70Vce=10V, Ic=Cob(pF) Vce=10V, Ic=Vebo(V) 6.50Vce=10V, Ic=Cob(pF) Vce=10V, Ic=Vebo(V)5500Vce=10V, Ic=Cre(pF)hfeVcb=10V, Ie=Vebo(V)0300Veb=2V, Ic=0Vcb=18V, Ie=Vebo(V)0320Vce=12V,Ic=2ft(MHz) Vce=6V, Ic=1Vebo(V)9400Vce=6V, Ic=5Cob(pF) Vcb=10V, Ie=Vebo(V)0200Veb=2V, Ic=0hfeVcb=20V, Ie=Ic(A)0200Vce=10V, Ic=Cob(pF) Vcb=18V, Ie=Vebo(V)0500Vce=12V, Ic=ft(MHz) Vce=10V, Ic=Vebo(V)50Vce=10V, Ic=Cob(pF) Vce=4V, Ic=2Vebo(V)00Vce=4V, Ic=2Cre(pF) Vce=12V, Ic=Vebo(V)2300Vce=12V, Ic=Cob(pF) Veb=2V, Ic=0Vebo(V)60200Vce=10V, Ic=Cob(pF) Vce=10V, Ic=Vebo(V) 3.50Vce=10V, Ic=Cob(pF) Vce=5V, Ic=2Vebo(V) 4.50Vce=5V, Ic=2Cob(pF) Vce=5V, Ic=2Vebo(V)60Vce=5V, Ic=2Cob(pF) Vce=5V, Ic=2Vebo(V)60Vce=5V, Ic=2Cob(pF) Vce=5V, Ic=2Vebo(V)60Vce=5V, Ic=2Cob(pF) Vcb=30V, Ie=Ic(A)60200Vce=10V, Ic=Cob(pF) Vcb=30V, Ie=Ic(A)60200Vce=10V, Ic=Cob(pF) Vcb=30V, Ie=Ic(A)60200Vce=10V, Ic=Cob(pF) Vcb=20V, Ie=Ic(A)60200Vce=10V, Ic=Cob(pF) Vcb=20V, Ie=Ic(A)60200Vce=10V, Ic=Cob(pF) Vce=10V, Ic=Vebo(V)20Vce=10V, Ie=Cre(pF) Vce=10V, Ic=Vebo(V)20Ic=10V, Ie=-5Cre(pF) Vcb=10V, Ie=Vebo(V)0130Vce=10V, Ic=ft(GHz) Vcb=10V, Ie=Vebo(V)0300Vce=10V, Ic=ft(GHz) Vcb=10V, Ie=Vebo(V)100250Vce=8V, Ic=2ft(GHz) Vcb=10V, Ie=Vebo(V)0250Vce=8V, Ic=2ft(GHz) Vcb=10V, Ie=Vebo(V)100250Vce=6V, Ic=1ft(GHz) Vce=6V, Ic=1Vebo(V)100Vce=6V, Ic=1Cre(pF) Vce=10V, Ic=Vebo(V)70Vce=10V, Ic=Cre(pF) Vce=8V, Ic=2Vebo(V)80Vce=8V, Ic=2Cre(pF) Vce=10V, Ic=Vebo(V) 6.50Vce=10V, Ic=Cob(pF) Vce=10V, Ic=Vebo(V)70Vce=10V, Ic=Cob(pF) Vce=10V, Ic=Ic(mA) 6.50Vce=10V, Ic=Cob(pF) Vce=10V, Ic=Vebo(V)70Vce=10V, Ic=Cob(pF) Vce=10V, Ic=Vebo(V)70Vce=10V, Ic=Cob(pF)hfeVcb=25V, Ie=Vebo(V)0500Veb=3V, Ic=0hfeVcb=10V, Ie=Vebo(V)0200Veb=2V, Ic=0hfeVce=5V, Ic=5Vebo(V) 1.20Vce=5V, Ic=1Cob(pF) Vcb=30V, Ie=Ic(A)60100Vce=10V, Ic=Cob(pF) Vcb=30V, Ie=Ic(A)60100Vce=10V, Ic=Cob(pF) Vebo(V)40Vce=1V, Ic=1|S21e| * Vce=1V, Ic=2μAVce=8V, Ic=2Vebo(V)60Ic=20mA, f=8Cob(pF) Vce=1V, Ic=1Vebo(V)40Ic=1mA, f=80Cob(pF) Vce=5V, Ic=1Vebo(V) 6.50Vce=5V, Ic=1Cob(pF) Vce=10V, Ic=Vebo(V) 1.20Vce=10V, Ic=Cob(pF) Vce=10V, Ic=Vebo(V) 2.20Vce=10V,Ic=5Cre(pF) Vce=10V, Ic=Vebo(V)30Vce=10V, Ic=Cre(pF) Vce=10V, Ic=Vebo(V) 3.50Vce=10V, Ic=Cre(pF) Vce=10V, Ic=Vebo(V)50Vce=10V, Ic=Cre(pF) Vce=10V, Ic=Vebo(V)50Vce=10V, Ic=Cre(pF) Vce=10V, Ic=Vebo(V)30Vce=10V, Ic=Cre(pF) Vce=10V, Ic=Vebo(V) 3.50Vce=10V, Ic=Cre(pF) Vce=10V, Ic=Vebo(V)0.8 1.1Vce=10V, Ic=Cre(pF) Vce=10V, Ic=Vebo(V)50Vce=10V, Ic=Cre(pF) Vce=10V, Ic=Vebo(V) 2.90Vce=10V, Ic=Cob(pF) Vcb=25V Vebo(V)0270Vce=10V,Ic=4ft(GHz) Vcb=25V Vebo(V)0270Vce=10V, Ic=ft(GHz)hfeVcb=15V, Ie=Vebo(V)05Veb=2V, Ic=0Veb=1V, Ic=0Vebo(V)0250Vce=10V, Ic=hfe比* Vcb=35V,Ie=Vebo(V)0240Vce=12V, Ic=ft(MHz) Veb=1V, Ic=0Vebo(V)100250Vce=8V, Ic=2hfe比* Vcb=30V, Ie=Ic(A)60100Vce=10V, Ic=Cob(pF) Vcb=15V, Ie=Ic(A)60200Vce=7V, Ic=0Cob(pF) Vcb=15V, Ie=Ic(A)60200Vce=7V, Ic=0Cob(pF) Vcb=20V, Ie=Ic(A)60200Vce=10V, Ic=Cob(pF) Vcb=20V, Ie=Ic(A)60200Vce=10V, Ic=Cob(pF) Vcb=20V, Ie=Ic(A)60200Vce=10V, Ic=Cob(pF) Vce=10V, Ic=Vebo(V) 1.10Vce=10V, Ic=Crb(pF) Vce=8V, Ic=2Vebo(V)60Ic=20mA, f=8Cob(pF) Vcb=10V Vebo(V)0270Vce=10V, Ic=ft(GHz) Vcb=10V Vebo(V)0270Vce=10V, Ic=ft(GHz) Vcb=15V Vebo(V)0270Vce=10V, Ic=ft(GHz) Vce=12.5V,Ic Vebo(V)00Vce=12.5V, IcCob(pF) Vce=10V, Ic=Vebo(V)40Vce=10V, Ie=Cob(pF) Vcb=30V, Ie=Vebo(V)100200Vce=10V, Ic=Cre(pF) Vce=10V, Ic=Vebo(V) 3.80Vce=10V, Ic=Cob(pF) Vce=12.5V, IcVebo(V)00Vce=12.5V,Ic Cob(pF) Vce=8V, Ic=2Vebo(V)8.50Ic=20mA, f=1Cob(pF)hfeVcb=15V, Ie=Vebo(V)05Veb=3V, Ic=0Vce=10V, Ic=Vebo(V)01Vce=10V,Ic=2ft(GHz) Vcb=10V, Ie=Vebo(V)0220Vcb=10V, Ie=ft(MHz) Vcb=6V, Ie=-Vebo(V)6500Ie=-1mA, f=2Cre(pF) Vcb=10V, Ie=Vebo(V)0 1.6Ie=-15mA, f=Cre(pF) Vcb=10V, Idd Vebo(V) 1.1 1.4Ie=-3mA, f=2Cob(pF)Cob(pF) Vce=10V, Ic=Vebo(V) 4.50Ie=-10mA,f=8Vce=4V, Ic=5Vebo(V) 1.9 2.5Ie=-5mA, f=2Cob(pF) Vce=10V, Ic=Vebo(V)2300Ie=1mA, f=20Cre(pF) Vce=8V, Ic=2Vebo(V)60Ic=20mA, f=8Cob(pF) Vcb=24V Vebo(V)0270Vce=6V, Ic=1ft(MHz) Vcb=24V Vebo(V)0180Vce=6V, Ic=2ft(MHz)Vcb=20V Vebo(V)0180Vce=6V, Ic=1ft(MHz)ft(MHz) Vcb=24V Vebo(V)0180Vce=6V,Ic=2mVcb=24V Vebo(V)0270Vce=6V, Ic=1ft(MHz) Vcb=20V Vebo(V)0270Vce=10V, Ic=ft(GHz) Vcb=10V Vebo(V)0180Vce=10V, Ic=ft(GHz) Vcb=10V Vebo(V)0270Vce=10V, Ic=ft(GHz) Vcb=15V Vebo(V)0270Vce=10V, Ic=ft(GHz) Vcb=10V Vebo(V)0270Vce=10V,Ic=5ft(GHz) Vce=3.4V, Ic=Vebo(V) 1.50Ic=1.8mA, f=8Cob(pF) Vce=10V, Ic=Vebo(V)01Vce=10V, Ic=ft(GHz) Vce=10V, Ic=Vebo(V)01Vce=10V, Ic=ft(GHz) Vcb=10V Vebo(V)0270Vce=10V, Ic=ft(GHz) Vcb=10V Vebo(V)0270Vce=10V, Ic=ft(GHz) Vcb=15V Vebo(V)0270Vce=10V, Ic=ft(GHz) Vce=10V, Ic=Vebo(V)60Vce=10V, Ic=Cre(pF) Vce=10V, Ic=Vebo(V) 6.50Vce=10V, Ic=Cre(pF) Vce=8V, Ic=2Vebo(V)90Vce=8V, Ic=2Cre(pF) Vce=6V, Ic=1Vebo(V)100Vce=6V, Ic=1Cre(pF) Vcb=24V Vebo(V)0270Vce=6V, Ic=1ft(MHz) Vcb=20V Vebo(V)0180Vce=6V, Ic=1ft(MHz) Vcb=20V Vebo(V)0270Vce=10V, Ic=ft(GHz) Vcb=25V Vebo(V)0270Vce=10V, Ic=ft(GHz) Vce=5V, Ic=2Vebo(V)60Vce=5V, Ic=2Cob(pF) Vcb=24V Vebo(V)0180Vce=6V, Ic=2ft(MHz) Vcb=15V, Ie=Vebo(V)0500Veb=3V, Ic=0hfeVcb=30V, Ie=Vebo(V)90180Vce=6V, Ic=1ft(MHz) Vcb=50V, Ie=Vebo(V)90180Vce=6V, Ic=1ft(MHz) Vcb=20V, Ie=Vebo(V)0220Vce=3V, Ic=5ft(GHz) Vcb=25V, Ie=Vebo(V)100240Vce=5V, Ic=2ft(GHz) Vcb=25V,Ie=Vebo(V)100200Vce=3V, Ic=5ft(GHz) Vcb=15V, Ie=Vebo(V)100180Vce=10V, Ic=ft(GHz) Vcb=15V, Ie=Vebo(V)0200Vce=10V, Ic=ft(GHz)ft(GHz) Veb=1V, Ic=0Vebo(V)100250Vce=1V, Ic=2μA Vce=5V, Ic=5Vebo(V) 2.40Vce=5V, Ic=2Cob(pF) Vce=5V, Ic=5Vebo(V) 3.80Vce=5V, Ic=2Cob(pF) Vce=3V, Ic=1Vebo(V)8500Vce=3V, Ic=1Crb(pF) Vce=6V, Ic=1Vebo(V)5500Vce=6V, Ic=1Cre(pF) Veb=2V, Ic=0ft(GHz) Vebo(V)0200Vce=3V,Ic=20Vebo(V)110250Vce=3V, Ic=7ft(GHz) Veb=1V, Ic=0Vebo(V)0240Vce=3V, Ic=7ft(GHz) Veb=1V, Ic=0Vebo(V)100250Vce=3V, Ic=5ft(GHz) Veb=1V, Ic=0Vce=5V, Ic=2Vebo(V)10Vce=5V, Ic=2Cob(pF) Vce=10V, Ic=Vebo(V) 1.3 1.9Ie=-15mA, f=Cob(pF) Vce=4V, Ic=5Vebo(V)20Ie=-5mA, f=2Cob(pF) Vcb=10V, Ie=Vebo(V)0500Veb=2V, Ic=0hfeVce=3V, Ic=1Vebo(V)8500Vce=3V, Ic=1Crb(pF) Vce=10V, Ic=Vebo(V) 2.40Vce=10V, Ic=Cre(pF) Vcb=10V, Ie=Vebo(V)150320Vce=3V, Ic=8ft(GHz) Vcb=10V, Ie=Vebo(V)0130Vce=10V, Ic=ft(GHz) Vcb=10V, Ie=Vebo(V)0300Vce=10V, Ic=ft(GHz) Vce=10V, Ic=Vebo(V)6500Vce=10V, Ic=Cre(pF) Vcb=25V, Ie=Vebo(V)150300Vce=10V, Ic=ft(GHz) Vcb=15V, Ie=Vebo(V)100200Vce=3V, Ic=8ft(GHz) Vcb=20V, Ie=Vebo(V)100250Vce=10V, Ic=ft(GHz)Vcb=30V, Ie=Vebo(V)70200Vce=10V, Ic=ft(MHz)Vcb=25V, Ie=Vebo(V)50180Vce=5V, Ic=6PG(dB)Cob(pF) Vce=5V, Ic=1Vebo(V)3000Ie=-10mA, f=ft2(MHz) Vcb=15V, Ie=Vebo(V)100200Vce=5V, Ic=5ft(GHz) Vcb=15V, Ie=Vebo(V)100200Vce=5V, Ic=5ft(GHz) Vcb=15V, Ie=Vebo(V)100200Vce=5V, Ic=5ft(GHz) Vcb=15V, Ie=Vebo(V)100200Vce=5V, Ic=5ft(GHz) Vcb=12V, Ie=Vebo(V)120250Vce=5V, Ic=2ft(GHz) Vcb=12V, Ie=Vebo(V)120250Vce=5V, Ic=2ft(GHz) Vcb=12V, Ie=Vebo(V)120250Vce=5V, Ic=2ft(GHz)Cob(pF) Vce=12V, Ic=Vebo(V)2300Vce=12V,Ic=2Vce=12V, Ic=Vebo(V)2300Vce=12V, Ic=Cob(pF) Vcb=24V Vebo(V)0270Vce=6V, Ic=1ft(MHz) Vcb=20V Vebo(V)0270Vce=10V, Ic=ft(GHz) Vcb=15V, Ie=Vebo(V)05000Veb=2V, Ic=0hfeVcb=10V, Ie=Vebo(V)0220Vce=10V, Ie=ft(MHz)Ie=10μA, Ic=0Vebo(V)0260Vcb=6V, Ie=-ft(MHz) Vcb=15V, Ie=Vebo(V)0320Vce=10V, Ic=ft(MHz) Vcb=20V Vebo(V)0180Vce=6V, Ic=1ft(MHz) Vce=10V, Ic=Vebo(V)2300Vcb=10V, Ie=Cre(pF) Vcb=10V, Ie=Vebo(V)120250Vce=8V, Ic=1ft(GHz) Vebo(V)0350Vce=10V, Ic=ft(GHz) Vbe=2V, Ic=0Vbe=2V, Ic=0Vebo(V)0200Vce=10V, Ic=ft(GHz) Vcb=12V, Ie=Vebo(V)2500Vce=5V, Ic=5Vce(sat) Vcb=25V, Ie=Vebo(V)0200Vce=5V, Ic=5ft(GHz) Vcb=20V, Ie=Vebo(V)0250Vce=5V, Ic=5ft(GHz) Vcb=10V Vebo(V)0180Vce=10V, Ic=ft(GHz) Vcb=10V Vebo(V)0270Vce=10V, Ic=ft(GHz) Vebo(V)0320Vce=5V, Ic=5Cob(pF) Veb=4V, Ic=0ft(MHz) Vcb=60V, Ie=Vebo(V)0700Vce=6V, Ib=2Vcb=30V Vebo(V)80180Vce=10V, Ic=ft(MHz) Vcb=30V Vebo(V)82180Vce=10V, Ic=ft(MHz) Vcb=10V Vebo(V)0560Vce=5V, Ic=5ft(MHz) Vebo(V)0200Vce=10V, Ic=ft(GHz) Veb=2V, Ic=0Vcb=15V, Ie=Vebo(V)120250Vce=5V, Ic=1ft(GHz) Vcb=15V, Ie=Vebo(V)120250Vce=5V, Ic=1ft(GHz) Veb=1V, Ic=0Vebo(V)120300Vce=8V, Ic=2ft(GHz) Vcb=15V, Ie=Vebo(V)120250Vce=5V, Ic=1ft(GHz) Vcb=10V, Ie=Vebo(V)150300Vce=8V, Ic=2ft(GHz) Vcb=10V, Ie=Vebo(V)0400Vce=4V, Ic=5ft(GHz) Vcb=80V, Ie=Vebo(V)0200Vce=10V, Ic=ft(GHz) Vebo(V)150300Vce=8V, Ic=2ft(GHz) Veb=2V, Ic=0Vcb=25V, Ie=Vebo(V)50180Vce=5V, Ic=1Vbe=1V, Ic=0Vebo(V)0250Vce=10V, Ic=ft(GHz) Vbe=1V, Ic=0Vebo(V)0250Vce=8V, Ic=2ft(GHz) Vbe=1V, Ic=0Vebo(V)0250Vce=6V, Ic=7ft(GHz)Vebo(V)0250Vce=10V, Ic=ft(GHz) Vbe=1V, Ic=0Vebo(V)0250Vce=8V, Ic=2ft(GHz) Vbe=1V, Ic=0Vbe=1V, Ic=0Vebo(V)0250Vce=6V, Ic=7ft(GHz) Vce=1V, Ic=1Vebo(V)50Vce=1V, Ic=1Cob(pF) Vce=1V, Ic=1Vebo(V)50Vce=1V, Ic=1Cob(pF) Vce=1V, Ic=1Vebo(V)50Vce=1V, Ic=1Cob(pF)ft(GHz)Vcb=10V, Ie=Vebo(V)0270Vce=5V,Ic=20ft(GHz) Vcb=10V, Ie=Vebo(V)0270Vce=5V,Ic=5m Vcb=10V, Ie=Vebo(V)0270Vce=5V, Ic=5ft(GHz) Vcb=10V, Ie=Vebo(V)0270Vce=5V, Ic=2ft(GHz) Vcb=10V, Ie=Vebo(V)0270Vce=5V, Ic=2ft(GHz) Vcb=10V, Ie=Vebo(V)0270Vce=5V, Ic=2ft(GHz) Vcb=10V, Ie=Vebo(V)0270Vce=5V, Ic=2ft(GHz) Vcb=10V, Ie=Vebo(V)0270Vce=5V, Ic=1ft(GHz) Vcb=10V, Ie=Vebo(V)0270Vce=5V, Ic=1ft(GHz) Vcb=10V, Ie=Vebo(V)0270Vce=5V, Ic=1ft(GHz) Vcb=10V, Ie=Vebo(V)0270Vce=5V, Ic=1ft(GHz) Vcb=10V, Ie=Vebo(V)0270Vce=5V, Ic=4ft(GHz) Vcb=10V, Ie=Vebo(V)0270Vce=5V, Ic=4ft(GHz) Vcb=10V, Ie=Vebo(V)0270Vce=5V, Ic=4ft(GHz) Vcb=15V, Ie=Vebo(V)120250Vce=5V, Ic=2ft(GHz) Vcb=12V, Ie=Vebo(V)120250Vce=5V,Ic=20ft(GHz)ft(GHz) Vebo(V)0150Vce=5V,Ic=5m Veb=2V, Ic=0Vcb=15V, Ie=Vebo(V)120250Vce=5V, Ic=1ft(GHz) Vcb=12V, Ie=Vebo(V)120250Vce=5V, Ic=2ft(GHz) Vcb=12V, Ie=Vebo(V)120250Vce=5V, Ic=2ft(GHz) Vcb=20V, Ie=Vebo(V)120250Vce=5V, Ic=1ft(GHz) Vcb=20V, Ie=Vebo(V)120250Vce=5V, Ic=1ft(GHz) Vcb=15V, Ie=Vebo(V)120250Vce=5V, Ic=2ft(GHz) Vcb=15V, Ie=Vebo(V)120250Vce=5V, Ic=2ft(GHz) Vcb=15V, Ie=Vebo(V)120250Vce=5V, Ic=2ft(GHz) Veb=2V, Ic=0Vebo(V)0200Vce=10V, Ic=Cob(pF) Vcb=40V, Ie=Vebo(V)0200Vce=6V, Ic=1ft(MHz) Vcb=12V, Ie=Vebo(V)120250Vce=5V, Ic=2ft(GHz) Vcb=10V, Ie=Vebo(V)0270Vce=5V, Ic=2ft(GHz) Vcb=10V, Ie=Vebo(V)0270Vce=5V, Ic=1ft(GHz) Vebo(V)0175Vce=3V, Ic=5ft(GHz) Vcb=5V, Ie=0Vebo(V)0175Vce=3V, Ic=1ft(GHz) Vcb=5V, Ie=0Vebo(V)0175Vce=3V, Ic=5ft(GHz) Vcb=5V, Ie=0Vebo(V)0175Vce=3V, Ic=1ft(GHz) Vcb=5V, Ie=0Vebo(V)0175Vce=3V, Ic=5ft(GHz) Vcb=5V, Ie=0Vebo(V)0175Vce=3V, Ic=1ft(GHz) Vcb=5V, Ie=0Vebo(V)250600Vce=5V, Ic=5Cob(pF) Vcb=8V, Rbe∞Vcb=10V, Ie=Vebo(V)250600Vce=5V, Ic=5Cob(pF) Vcb=10V, Ie=Vebo(V)250600Vce=5V, Ic=5Cob(pF) Vcb=10V, Ie=Vebo(V)250600Vce=5V, Ic=5Cob(pF) Vcb=12V, Ie=Vebo(V)120250Vce=5V, Ic=2ft(GHz) Vcb=15V, Ie=Vebo(V)120250Vce=5V, Ic=2ft(GHz) Vcb=12V, Ie=Vebo(V)120250Vce=5V, Ic=2ft(GHz) Vcb=12V, Ie=Vebo(V)120250Vce=5V, Ic=2ft(GHz) Vcb=15V, Ie=Vebo(V)120250Vce=5V, Ic=1ft(GHz) Vcb=15V, Ie=Vebo(V)120250Vce=5V, Ic=1ft(GHz) Vcb=12V, Ie=Vebo(V)120250Vce=5V, Ic=2ft(GHz) Vcb=12V Vebo(V)160270Vce=2V, Ic=5ft(MHz) Vcb=12V Vebo(V)160270Vce=2V, Ic=5ft(MHz) Vcb=15V, Ie=Vebo(V)0120Vce=5V, Ic=5ft(GHz) Vcb=15V, Ie=Vebo(V)0120Vce=5V, Ic=5ft(GHz)Vcb=10V, Ie=Vebo(V)0160Vce=3V, Ic=7ft(GHz)Vebo(V)0175Vce=3V, Ic=5ft(GHz)Vebo(V)0175Vce=3V, Ic=1Cob(pF) Vcb=5V, Ie=0Vcb=10V, Ie=Vebo(V)120250Vce=3V, Ic=7ft(GHz) Vcb=10V, Ie=Vebo(V)100250Vce=8V, Ic=2ft(GHz) Vcb=10V, Ie=Vebo(V)100250Vce=6V, Ic=1ft(GHz) Vebo(V)0175Vce=3V, Ic=5ft(GHz) Vcb=5V, Ie=0Vebo(V)0175Vce=3V, Ic=1Cob(pF) Vcb=5V, Ie=0Vcb=15V, Ie=Vebo(V)120250Vce=5V, Ic=1ft(GHz) Vcb=12V, Ie=Vebo(V)120250Vce=5V, Ic=2ft(GHz) Vcb=12V, Ie=Vebo(V)120250Vce=5V, Ic=2ft(GHz) Vcb=10V, Ie=Vebo(V)0240Vce=5V, Ic=1ft(GHz) Vcb=10V, Ie=Vebo(V)0240Vce=5V, Ic=1ft(GHz) Vcb=10V, Ie=Vebo(V)0240Vce=5V, Ic=1ft(GHz) Vcb=12V, Ie=Vebo(V)90160Vce=5V, Ic=2ft(GHz) Vcb=12V, Ie=Vebo(V)90160Vce=5V, Ic=2ft(GHz) Vce=6V, Ic=1Vebo(V)9400Vce=6V, Ic=5Cob(pF) Vebo(V)4000Vce=10V, Ic=Cob(pF) Vce=0.5V, Ic=Vcb=25V, Ie=Vebo(V)0300Vce=6V, Ic=1ft(MHz) Vcb=15V, Ie=Vebo(V)0100Veb=2.5V, Ic=hfeft(MHz) Vcb=12V, Ie=Vebo(V)0180Vce=6V,Ic=1m Vcb=15V, Ie=Vebo(V)01Veb=3V, Ic=0hfeVce=6V, Ic=1Vebo(V)4700Ie=-1mA, f=1Cob(pF) Vce=10V, Ic=Vebo(V)2300Ic=1mA, f=20Cre(pF)hfeVcb=15V, Ie=Vebo(V)0100Veb=3V, Ic=0Vcb=15V, Ie=Vebo(V)50180Vce=10V, Ic=Vcb=20V, Ie=Vebo(V)0240Vce=12V, Ic=ft(MHz)Pc(mW)200Cre(pF)0 1.2 1503000Ie=1mA, f=2001 1.5Ie=0, f=1MHz Pt(mW)300|S21e| *81000.950Vcb=-5V, Ie=Pc(mW)200Cre(pF)00.750 1.1 1.7Vcb=-6V, f=1Pc(mW)150Cc.rbb'01101 1.5Ie=0, f=1MHz Pt(mW)250|s21e| *8100 2.14Ie=0, f=1MHz Pt(mW)800td(ns)0 3.5 2504000Vce=-10V, Ie Pt(mW)200Cob(pF)0 1.101 1.5Ie=0, f=1MHz Pt(mW)3000000.750Vcb=-5V, Ie=Pc(mW)150Cre(pF)00.6Pc(mW)400Vce(sat)0-0.1 1503000Ie=1mA, f=200 1.1 1.7Vcb=-6V, f=1Pc(mW)150Cc.rbb'011Pc(mW)300Cre(pF)0 1.2 1503000Ie=2mA, f=20Pc(mW)300Cob(pF)00 02000Vce=-12V, Ic=02000Vce=-12V, Ic=Pc(mW)300Cob(pF)00Pt(mW)250Cob(pF)0 1.5 340Vce=-10V, Ic=Pc(W)1Cob(pF)0 2.7 05000Ie=10mA, f=2Pc(mW)150NF(dB)0 2.8 1503000Ie=1mA, f=20Pc(mW)250|S21e| *500 1.53Vce=-10V, Ic=1502300Vce=-6V, Ic=Pc(mW)150Cre(pF)0 1.1 500Vce=-5V, Ic=Pc(W)*1ft(GHz)0 1.5 2004000Vce=-10V, Ie Pc(mW)200Cob(pF)00.85Pc(mW)250Cre(pF)00.75 0.6 1.20Vce=-10V, Ic=Pc(mW)125NF(dB)0 2.8 1503000Vcb=-10V,Ie=2004000Vce=-10V, Ie Pc(mW)150Cob(pF)00.85Pc(W)1Cob(pF)05 2003000Vce=-20V, Ic=0 1.2 1.6Vcb=-10V, f=Pc(mW)250Cre(pF)00.9 2004000Vce=-10V, Ie Pc(mW)*150Cob(pF)00.850 1.2 1.6Vcb=-10V, f=Pc(mW)150Cre(pF)00.9 3006500Vce=-5V, Ie=Pc(mW)150Cob(pF)0 1.2 05500Vce=-1V, Ic=Pc(mW)2000000.9 1.1Ie=0, f=1MHz Pc(mW)250|S21e| *50Pc(mW)400Cre(pF)0 1.2 1503000Ie=1mA, f=201502500Vce=6V, Ie=-Pt(mW)200Cob(pF)0 1.9 0.810Vce=6V, Ie=-Pc(mW)250Cob(pF)00.6 4506500Ie=-1mA, f=2Pc(mW)400PG(dB)200 0.6 1.2 1.6Ie=-15mA, f=Pc(mW)400PG(dB)0200.810Vce=6V, Ie=-Pt(mW)250Cob(pF)00.61.520Vce=6V, Ie=-Pc(mW)250Cob(pF)00.50 1.1 1.5Vcb=10V, Ie=Pc(mW)250|S21e| *56 2070180Vce=15V, Ic=Pc(W)0PG(dB)9100 1.1 1.5Vcb=10V, Ie=Pc(mW)100Cre(pF)00.9 1502500Ie=-1mA, f=2Pc(mW)400NF(dB)0 2.8 30000Ie=-10mA, f=Pc(W)1PG(dB)220 30000Ie=-10mA, f=Pc(W)1PG(dB)220 1.200Vce=15V, Ie=Pt(W)*5ft2(GHz) 1.4 1.7048Ie=-1mA, f=1Pc(mW)800Re(hie)*040 91216Ie=-30mA, f=Pt(W)*3Cob(pF)04 2504000Vce=10V,Ie=Pt(mW)800Cob(pF)040 1.1 1.5Vcb=10V, Ie=Pc(mW)250PG(dB)13152 2.70Vce=10V, Ic=Pt(W)3Cob(pF)01 150200Vce=10V, Ic=Pt(W)*4ft(GHz) 1.62 0.601Vce=3V, Ic=1Pt(mW)300△Vbe(V)00 0.601Vce=5V, Ic=3Pt(mW)400△Vbe(V)0001 1.3Ie=0, f=1MHz Pt(mW)250Cc.rbb'*0120 1.9 2.2Ie=0, f=1MHz Pt(mW)250Cc.rbb' *010 360550820Ie=-5mA, f=1Pc(W)400PG(dB)2125 360550820Ie=-5mA, f=1Pc(W)400PG(dB)2125 1050180Vce=10V, Ic=Pc(W)2PG(dB)100 0.801Vce=5V, Ic=1Pt(mW)300△Vbe(V)00 0.801Vce=10V, Ic=Pt(mW)300△Vbe(V)0002500Vcb=-10V, Ie Pc(mW)125Cob(pF)0 1.5 3005000Vce=6V, Ie=-Pc(mW)150Cob(pF)0 1.4 3005000Vce=6V, Ie=-Pc(mW)150Cob(pF)0 1.400.350.45Vcb=12V, Ie=Pc(mW)250PG(dB)252800.350.45Vcb=12V, Ie=Pc(mW)250PG(dB)1822 3006500Vce=-5V, Ie=Pc(mW)200Cob(pF)0 1.2 012Vcb=10V, Ie=Pc(mW)300Cc.rbb'010 012Vcb=10V, Ie=Pc(mW)300Cc.rbb'010Pc(mW)100Cc.rbb'0000.70Vce=6V, f=1M0.801Vce=5V, Ic=1Pt(mW)300△Vbe(V)00 0.801Vce=5V, Ic=1Pt(mW)300△Vbe(V)00 0.801Vce=10V, Ic=Pt(mW)300△Vbe(V)00 0.801Vce=10V, Ic=Pt(mW)300△Vbe(V)00 1050180Vce=10V, Ic=Pc(W)1PG(dB)14.50 1050180Vce=10V, Ic=Pc(W)3PG(dB) 6.70 1050180Vce=10V, Ic=Pc(W)3PG(dB)100 1050180Vce=10V, Ic=Pc(W)1PG(dB)10.70 1050180Vce=10V, Ic=Pc(W)1PG(dB)100 1050180Vce=10V, Ic=Pc(W)*15PG(dB)100 1050180Vce=10V, Ic=Pc(W)*10PG(dB)7.80 1050180Vce=10V, Ic=Pc(W)*20PG(dB) 6.70 1050180Vce=10V, Ic=Pc(W)3PG(dB) 3.70 1050180Vce=10V, Ic=Pc(W)3PG(dB) 5.40Pc(W)1PG(dB)120 1050180Vce=12V,Ic=11050180Vce=10V, Ic=Pc(W)1PG(dB)9.20 1050180Vce=10V, Ic=Pc(W)1PG(dB)100 1050180Vce=10V, Ic=Pc(W)1PG(dB)7.5000.75 1.1Ie=0, f=1MHz Pt(mW)250PG(dB)1315 1050180Vce=10V, Ic=Pc(W)0PG(dB)15.70 1050180Vce=7V, Ic=5Pc(W)0PG(dB)130 1050180Vce=7V, Ic=0Pc(W)0PG(dB)90 1503000Vce=6V, Ie=-Pc(mW)250Cob(pF)0 1.6 1503000Vce=6V, Ie=-Pc(mW)250Cob(pF)0 1.6 3005000Vce=6V, Ie=-Pc(mW)150Cob(pF)0 1.2 1503000Vce=6V, Ie=-Pc(mW)250Cob(pF)0 1.6Pc(mW)250Cob(pF)0 1.6 1503000Vce=6V, Ie=11001500Vce=10V, Ic=Pc(W)1Cob(pF)045 3570300Vce=10V, Ic=Pc(W)0PG(dB)130Pc(W)2PG(dB)8.80 0-300Po=15W(PEP1050180Vce=10V, Ic=Pc(W)7PG(dB)12.30 00250Vcb=12V, Ie=Pc(W)*60PG(dB)120 1050180Vce=10V, Ic=Pc(W)0PG(dB) 6.70 2050110Vce=25V, Ic=Pc(W)3PG(dB)8.20 2050110Vce=25V, Ic=Pc(W)4PG(dB)7000.550Vcb=10V, Ie=Pt(mW)*250|S21e| *7.59.300.60Vcb=10V, Ie=Pt(mW)290|S21e| *5 6.700.350Vcb=8V, Ie=0Pt(mW)*250|S21e| * 1.5 2.7 3570180Vce=10V, Ic=Pc(W)1PG(dB)13.80000.5(V), Ic=20mA Pc(mW)600ft(MHz)30050000.10(V), Ic=10mA Pc(mW)400NF(dB)0 2.8Pc(mW)300Cob(pF)0.80 30000Vce=12.5V, IcRth(j-c)**20ηc(%)6070 0710Vcb=10V, f=11050180Vce=10V, Ic=Pc(W)2PG(dB)13.80 12.200Pc(W)*175IMD(dB)00 1503000Ie=-1mA, f=2Pc(mW)200NF(dB)0 2.8 1802500Vce=10V, Ic=Pc(mW)750Cob(pF)015Rth(j-c)**20ηc(%)5565 0710Vcb=10V, f=10 6.50Vce=14V, Ic=Pt(W)*6Cob(pF)00.9 65000Vce=10V, Ic=Pc(mW)250Cob(pF)0 1.200.30.4Vcb=10V, Ie=Pc(mW)250PG(dB)2024 60000Vce=10V, Ic=Pc(mW)250Cob(pF)0 1.200.751Ie=0, f=1MHz Pt(mW)250|S21e| *91000.370.7Ie=0, f=1MHz Pt(mW)250CG(dB)152300.70.9Vcb=10V, Ie=Pc(mW)200PG(dB)1417Pt(mW)580|S21e| *8900.40Vcb=8V, f=1M4506500Ie=-1mA, f=1Pc(mW)400PG(dB)2024 00150Vcb=12V, Ie=Pc(W)*40PG(dB)17000.81Ic=1mA, f=10Pc(mW)150PG(dB)024 *******Vce=10V, Ic=Pt(mW)*600Cob(pF)01 02300Vce=12V, Ie=Pc(mW)250Cob(pF)0 1.8 02300Vce=12V, Ie=Pc(mW)250Cob(pF)0 1.8 1503000Vce=6V, Ie=-Pc(mW)200Cob(pF)0 1.300.550.8Vcb=10V, Ie=Pc(mW)200PG(dB)141600.230.45Vcb=12V, Ie=Pc(mW)200PG(dB)182300.71Vcb=10V, Ie=Pc(mW)200PG(dB)141800.270.45Vcb=10V, Ie=Pc(mW)200CG(dB)162300 1.5Vcb=10V, Ie=Pc(mW)2000000 1.5Vcb=10V, Ie=Pc(mW)2000000.9 1.5Vcb=10V, Ie=Pc(mW)310Cc.rbb'012010Ic=1mA, f=10Pc(mW)150PG(dB)0200 1.150Vcb=10V, Ie=Pc(mW)300Cre(pF)00.7500.90Vcb=10V, Ie=Pc(mW)300Cre(pF)00.6 12.200Pc(W)*250IMD(dB)000020(ps), Ic=5mA,Pc(mW)300CG(dB)1620 1080300Vce=10V, Ic=Pc(W)0PG(dB)100 1050180Vce=10V, Ic=Pc(W)2PG(dB)14.50 1060180Vce=10V, Ic=Pc(W)4PG(dB)8.200 2.3 3.5Vcb=10V, Ie=Rth(j-c)**21ηc(%)50550710Vcb=10V, Ie=Rth(j-c)**10ηc(%)5560 050Vce=10V, Ic=Pt(mW)600Cob(pF)00.788.50Vce=8V, Ic=7Pt(mW)400Cob(pF)00.20 2.54Vcb=10V, Ie=Pt(W)*700 2050110Vce=25V, Ic=Pc(W)*170PG(dB)6000 3.5Vcb=10V, Ie=Pc(mW)150NF(dB)0500.90Vcb=10V, Ie=Pc(mW)10000 1080180Vce=10V, Ic=Pc(W)2PG(dB)130 1030180Vce=10V, Ic=Pc(W)4PG(dB)11.80 1040180Vce=10V, Ic=Pc(W)3PG(dB)9.30 1040180Vce=10V, Ic=Pc(W)5PG(dB)7000 1.5Ic=1mA, f=10Pc(mW)400Crb(pF)00.80025Vcb=10V, Ie=Pc(W)*15PG(dB)10.80 0080Vcb=10V, Ie=Pc(W)*3500 0110160Vcb=10V, Ie=Pc(W)*7000。
2sk214
50 M
4
Unit: mm
11.5 MAX 2.79 ± 0.2 10.16 ± 0.2 9.5 8.0 φ 3.6 -0.08
+0.1
4.44 ± 0.2 1.26 ± 0.15
6.4
+–0.1
18.5 ± 0.5
15.0 ± 0.3
1.27
2.7 MAX 14.0 ± 0.5 1.5 MAX
TC
=–
40
400
25° C 25 75
5
3
2SK213, 2SK214, 2SK215, 2SK216
Typical Transfer Characteristics 100 80
TC = –25 °C 25 75
Forward Transfer Admittance yfs (mS)
Forward Transfer Admittance vs. Drain Current 200 100 50
VDS = 20 V
Drain Current ID (mA)
60
20 10 5 TC = 25°C VDS = 20 V
40
20
0
1.2 0.4 0.8 1.6 Gate Source Voltage VGS (V)
2.0
2
5
20 10 50 100 200 Drain Current ID (mA)
7.8 ± 0.5
0.76 ± 0.1
2.54 ± 0.5
2.54 ± 0.5
0.5 ± 0.1
Hitachi Code JEDEC EIAJ Weight (reference value)
TO-220AB Conforms Conforms 1.8 g
2SK3418中文资料
)
)
1.
2
元器件交易网
2SK3418
160
1000 300
10
PW
µs
120
100 30
80
10 3
00 = 1 µs m DC 10 m Op s (1 s e (T rati sho c = on t) 25 )
1
40
1 0.3
0
50
100
150
200
元器件交易网
2SK3418
N MOS FET
ADJ-208-1030 (Z) 1 2000. 07
• RDS(on) = 4.3mΩ typ. • • (4V )
TO-220AB
D
G
1 2 S 3
元器件交易网
2SK3418
(Ta=25
· · VDSS VGSS ID ID (pulse) IDR IAP EAR Pch Tch Tstg –55
100-0004 (011) 261-3131 ( (022) 223-0121 ( (03) 3212-1111 ( (025) 241-8161 ( (029) 271-9411 ( (027) 325-2161 (03) 3270-2111 ( (0263) 36-6632 (045) 451-5000 (
Vin 10 V
50Ω
V DD = 30 V
Vout
7
元器件交易网
2SK3418
mm
10.16±0.2 2.79 ±0.2 1.27 9.5 8.0
+ 0.2
φ 3.6 - 0.08
+ 0.1
4.44±0.2 1.26±0.15
科尔赫斯电池选择器和主断开开关开关说明书
Consult factory for switches having specifications other than those shown in this catalog.135No. PL-118-GC001Insulated Terminations : two 16 gauge leads,8" (203.20mm) long.Lens : green.Mounting : through 11⁄16"(17.46mm) diameter hole.Furnished with 12 volt bulb.Display Packaging136M-750 Series • Dual Battery Selector and Master Disconnect SwitchesNo. 563Pressure sensitive switch position label for M-750Series switches for use when mounting switch through a panel.All M-750 Seriesswitches are available in multi-coloredpackaging for rack or free standing display.Switch Position LabelMAR IN EL I ST E 07BO ®UFour Positions: Off • On - Battery No. 1 • On - Both Batteries • On - Battery No. 2Pilot Lights Included with M-754-01 and M-755-01.No. M-751Ignition protected: conform to U.S. Coast Guard Safety Standard, Section 183.410 for ignition protection.Electrical ratings on UL labels are conservative.Cole Hersee battery selector and master disconnect switches are capable of handling higher amperages.UL Electrical Ratings310 Amps Continuous • 500 Amps Intermittent • 6-36 VDC U.L. listed and labeled.ISO 8846MARINEMade in U.S.A.W ER S W I TC No. M-750Operation : current can be carried by either of the two batteries, by two batteries simultaneously or cut off at the source. Can be operated through ON positions with engine(s) running. Engine(s) must be shut down before moving to OFF position. Use with alternators or generators.Installation : surface mount or install through a panel with a 3 5⁄16" diameter hole.Construction : high impact and high temperature engineered plastic case, knob and insulator.Vaporproof, weatherproof, dustproof and corrosion resistant.Three 3⁄8" diameter heavy duty copper stud terminals with brass hex nuts.Size : flange diameter 6", overall height 2 5⁄8".Wiring instructions included.No. M-750Battery selector and disconnect switch.No. M-751Battery selector and disconnect switch with key lock.No. M-752Battery selector and disconnect switch with alternator field disconnect circuit.No. M-753Battery selector and disconnect switch with alternator field disconnect circuit and key lock.No. M-754Battery selector and disconnect switch with pilot indicator light circuit.No. M-754-01Battery selector and disconnect switch with pilot light circuit and two pilot lights.No. M-755Battery selector and disconnect switch with pilot light circuit and key lock.No. M-755-01Battery selector and disconnect switch with pilot light circuit, two pilot lights and key lock.Section THeavy Duty Battery Feeder Stud137Dual Battery Selector Switches • On - battery No. 1 • On - battery No. 2Battery Jumper Terminals • Extra Heavy Duty, 6-36 VDC • Remote MountingNo. 97846-A No. 97846-BRed cap.Black cap.No. 46211-01Brings 6-36 VDC power through firewalls and bulkheads.Impact resistant plastic insulator/mounting bushing, 1 17⁄64" (32.13mm) diameter, 5⁄8" (15.87mm) long.Two 3⁄8"-16 thread brass stud terminals, 5⁄8" (15.87mm) long.No. 46210-03 Black cap (negative.)No. 46210-02 Red cap (positive).2,000 amp Master Disconnect SwitchesSingle Pole • Off-OnDisconnects battery circuit only.Double Pole • Off-OnDisconnects battery and field circuits.Electrical Ratings 2,000 amps intermittent 30 seconds On, 3 minutes Off300 amps continuousElectrical RatingsLarge studs 2,000 amps intermittent30 seconds On, 3 minutes Off 300 amps continuousSmall studs 20 amps continuousNo. 75908Mounting stem : 3⁄4" -16 thread, fits panels up through 1⁄4"(6.35mm) thick.Terminals : two 1⁄2"-20 copper stud.Case : plated steel.Sealing : sealed between shaft and mounting stem,and case and terminal insulator.Indexing pin aligns switch and prevents rotation.No. 82451-ABlack enameled aluminum,2 3⁄8" (60.32mm) diameter.Battery Selector and Master Disconnect Switches O No. 75500Rating: 70 amps continuous, 6-36 VDC Mounting stem : brass, 1⁄2" (12.70mm) dia., 1⁄2" (12.70mm)long, fits panels up through 1⁄4" (6.35mm) thick.Terminals : three 1⁄4" -28 screw.Case : plated steel.O No. 75502Rating: 125 amps continuous, 6-36 VDC Mounting stem : brass, 3⁄4" (19.05mm) dia., 17⁄32" (13.49mm)long, fits panels up through 1⁄4" (6.35mm) thick.Terminals : three 1⁄4" (6.35mm) copper stud.Case : plated steel, indexing pin on case aligns switch and prevents rotation.Sealing : O-ring in operating shaft.No. 75907Mounting stem : 3⁄4" -16 thread, fits panels up through 1⁄4"(6.35mm) thick.Terminals : two 1⁄2"-20 copper stud and two 10-32 stud.Case : plated steel.Sealing : sealed between shaft and mounting stem,and case and terminal insulator.Indexing pin aligns switch and prevents rotation.Can be used individually (positive terminal) or in pairs (positive and negative terminals). Easy to install.Solid brass, grooved contact post 13⁄16" (20.63mm) dia.,1 1⁄8" (28.77mm) long.Accept standard jumper cables.Brass hex nut and lockwasher included.For battery connections at easily accessible locations, inside or outside the vehicle.Replacement CapsO Minimum order quantity may apply. Please consult factory or current price list.138Extra Heavy DutySingle Pole • Two Positions: Off-OnElectrical Rating: 50 amps at 14 VDCMaster Disconnect Switches • Single Pole • Two Positions: Off-On No. 2484-03 Weather ResistantSame as No. 2484-02 except also has O-ring in operating shaft.No. 2484-19 Weather ResistantSame as No. 2484-03 except also has gasket sealed terminal insulator.Designed to prevent electrical fires, tampering, theft and battery drain when equipment is unattended.No. 2484-16Same as No. 2484 except with silverlaminated contacts, UL listed and labeled.For 6-36 VDC electrical systems • Disconnect battery circuit only.No. M-284-01Same as No. M-284 except is UL listed and labeled and with silver contacts.No. M-284-ASame as No. M-284-01 except without UL label.No. M-284-02Weather ResistantSame as No. M-284-A except with O-ring seal in operating shaft, gasket sealed terminal insulator and die cast lever with dichromate protective finish.WER S WI T C Electrical ratings on UL labels are conservative.Cole Hersee master disconnect switches are capable of handling higher amperages.Electrical RatingsSingle PoleMaster Disconnect SwitchesUL 707B175 amps continuous 800 amps intermittent 15 seconds On, 5 minutes OffElectrical Ratings Single PoleMaster Disconnect Switches175 amps continuous 1,000 amps intermittent 15 seconds On, 5 minutes OffNo. 2484-09Same as No. 2484 except without UL label.No. 2484-ASame as No. 2484-09 except has silver laminated contacts.No. 2484-06Same as No. 2484-A except has sealed mounting stem and case.No. M-288Mounting stem : 5⁄8" (15.87mm) dia., 3⁄4" (19.05mm) long,fits panels up through 17⁄32" (13.50mm) thick.Terminals : two brass screw.Actuator : die cast lever Case : plated steel.Contacts : silver.No. 2484Mounting stem : brass, 3⁄4" -16 thread, 23/32" (18.25mm)long, fits panels up through 3⁄16" (4.76mm) thick.Terminals : two 3⁄8"-20 copper stud.Actuator : die cast lever Case : plated steel.No. M-284Mounting stem : brass, 3⁄4" -24 thread, 1 13⁄32" (46.05mm)long, fits panels up through 15⁄16" (23.81mm) thick.Terminals : two 3⁄8" (9.52mm) diameter stud.Actuator : chrome plated lever Case : brass.No. 2484-02Mounting stem : brass, 3⁄4" (19.05mm) diameter, 17⁄32"(13.49mm) long, fits panels up through 1⁄4" (6.35mm) thick.Terminals : two 3⁄8" -24 stud.Actuator : "Hencol" lock with two keys.Case : steel, indexing pin on case aligns unit and prevents rotation.W ER S W I TCW ER S W I TCSection TMaster Disconnect Switches 139Master Disconnect Switches • Double Pole • Two Positions: Off-OnFor 6-36 VDC electrical systems • Disconnect battery circuit and field circuit.Electrical Ratings Double Pole SwitchesLarge studs 125 amps continuous - 1,000 amps intermittent • Small studs 20 amps continuous • 15 seconds On, 5 minutes Off No. 80101-BChrome plated die cast lever, fits all Cole Hersee lever actuated master disconnect switches.Replacement LeverLockout Lever KitNo. 82065For use with Cole Hersee masterdisconnect switches without indexing pin.Polished aluminum with blue enamel finish.2 1⁄2" (63.50mm) diameter.No. 82065-02Same as No. 82065 except for use with switches with indexing pin.Face PlateKeyNo. 83353For "Hencol" non tumbler trouble free lock.Heavy gauge steel, plated to resist corrosion.No. 3188150 amp copper lug.For #0 or #00 (.46", 11.90mm) diameter gauge cable.13⁄32" (10.31mm) diameter hole for 3⁄8" (9.52mm) stud.Extra Heavy Duty Cable TerminalNo. 24505For locking switch in OFF position with padlock to prevent accidental actuation.Accepts padlocks with shackles up to 5⁄16" dia.For use with Cole Hersee lever actuated master disconnect switches with 3⁄4" diameter mounting stem.Part Nos. 2484, 2484-A, 2484-06, 2484-09,2484-16, 75903, 75904, 75904-01, M-284, M-284-A,M-284-01, M-284-02, M-289, M-290, M-290-01, M-290-05.W ER S W I TC Actuator : chrome plated die cast lever.Case : brass.Contacts : silver laminated.Electrical Rating Double Pole Switch UL 707BLarge studs 125 amps continuous - 800 amps intermittent Small studs 20 amps continuous 15 seconds On, 5 minutes Off Electrical ratings on UL labels are conservative.Cole Hersee master disconnect switches are capable of handling higher amperages.No. 75904-02Mounting stem : brass, 3⁄4" -16 thread,17⁄32" (13.49mm) long, fits panels through 1⁄4" (6.35mm) thick.Terminals : two 3⁄8" -24 and two #10-32 stud.Actuator : "Hencol" lock with two keys.Case : plated steel, indexing pin aligns unit and prevents rotation.Contacts : silver.No. 75904-03 Weather ResistantSame as No. 75904-02 except with O-ring seal in operating shaft.No. 75904-01 Weather ResistantMounting stem : brass, 3⁄4" -16 thread,17⁄32" (13.49mm) long, fits panels through 1⁄4" (6.35mm) thick.Terminals : two 3⁄8" -24 and two #10-32 stud.Actuator : die cast lever.Case : plated steel with indexing pin to align unit and prevent rotation.Sealing : O-ring seal in operating shaft,gasket sealed terminal insulator.No. M-289Mounting stem : brass, 3⁄4" -16 thread, 1 13⁄32" (46.05mm)long, fits panels up through 15⁄16" (23.81mm) thick.Terminals : two 3⁄8" -24 and two #10-32 stud.Case : brass.Actuator : chrome plated die cast lever.No. M-290Same as No. M-289 except with silver laminated contacts.No. M-290-01 Weather ResistantSame as No. M-290 except with O-ring seal in operating shaft.No. M-290-05Mounting stem : brass mounting stem 3⁄4" -16thread, (19.05mm) dia., 1 13⁄32" (46.05mm) long,fits panels up through 15⁄16" (23.81mm) thick.Terminals : two 3⁄8" -24 and two #10-32 stud.Master Disconnect Switch • Double Pole • UL Rated • Two Positions: Off-OnNo. 75903Mounting stem : brass, 3⁄4" -16 thread,23⁄32" (18.25mm) long, fits panels through 3⁄16" (4.76mm) thick.Terminals : two 3⁄8" -24 and two #10-32 stud.Actuator : chrome plated die cast lever.Case : plated steel.No. 75904Same as No. 75903 except with silver laminated contacts.Medical Compartment Isolator for AmbulancesNo. 48161250 amp max. alternator rating Furnished with Schottky diodes in compliance with Federal Specifications KKK-A-1822b for ambulances.Otherwise same as No. 48160.Wiring instructions and diagram supplied with each unit.NOTE: Determine the type of alternator with which the isolator will be used so the proper model is selected.No. 48122Terminals : three 5/16" stud and one #10 stud.Mounting : four 9/32" (7.14mm) dia.holes.Size : 6"L x 4 13/16"W x 3 11/32"H (152.40mm x 122.22mm x 84.91mm).No. 48162Terminals : three 1/4" stud and one #10stud.Mounting : four 9/32" (7.14mm) dia.holesSize : 8 1/2"L x 4 13/16"W x 3 13/32"H (215.00mm x 122.22mm x 86.51mm).Include an extra ignition connection terminal.Connects to a terminal or wire that is switched by the ignition switch.Battery Isolators • For 12-36 VDC negative ground electrical systems.Battery Isolators for use with Delcotron Series CS Alternators140Isolate batteries to prevent the battery with the higher charge from draining into the battery with the lower charge.Allow two batteries to be charged simultaneously from a single power source.Contain solid state circuitry embedded in the insulation for efficient heat dissipation.Installation and wiring instructions included.No. 48092Terminals : three 1/4" stud and one #10 stud .Mounting : two 9/32"(7.14mm) dia. holes.Size : 6 1/2"L x 3 1/4"W x 2 13/16"H (165.10mm x 82.55mm x 70.99mm).No. 48120140 max. alternator rating Terminals : three 5/16" stud.Mounting : four 9/32" (7.14mm)dia. holes.Size : 6"L x 4 3/16"W x 3 11/32"H(152.40mm x 122.22mm x 84.91mm).No. 4807070 amp max. alternator rating Terminals : three 1/4" stud.Mounting : two 9/32" (7.14mm)dia holes.Size :5"L x 3 1/4"W x 2 3/16"H(127.00mm x 82.55mm x 70.99mm).No. 4808042 amp max. alternator rating Terminations : one #10 gauge 6" wire lead, two #16 gauge wire leads.Mounting : two 13/64" (5.15mm)dia. holes.Size : 5"L x 3 1/4"W x 2 3/16"H(127.00mm x 82.55mm x 70.99mm).Furnished with Schottky diode in compliance with Fed. Spec. KKK-A-1822B.Isolates medical equipment batteries from any loads the remainder of the ambulance electrical system may impose.No. 4805175 amps at 12 VDC Terminals : two 1/4" stud.Mounting : two 9/32" (7.14mm) dia. holes.Size : 3 1/2"L x 4 15/16"W x 3 11/32"H (88.90mm x 125.41mm x 84.93mm).140 amp max. alternator rating 90 amp max. alternator rating 200 amp max. alternator rating No. 48160200 amp max. alternator rating Terminals : three 5/16" stud.Mounting : four 9/32" (7.14mm)dia. holes.Size : 8 1/2"L x 4 3/16"W x 3 13/32"H (215.00mm x 122.22mm x 86.51mm).No. 4809090 amp max. alternator rating Terminals : three 1/4" stud.Mounting : two 9/32" (7.14mm)dia. holes.Size : 6 1/2"L x 3 1/4"W x 2 13/16"H (165.00mm x 82.55mm x 70.99mm).。
2SK3474-01资料
ns
nC
33A V µs µC源自Thermalcharacteristics
Item Thermal resistance Symbol Rth(ch-c) Rth(ch-a) Rth(ch-a) Test Conditions channel to case channel to ambient channel to ambient
元器件交易网
2SK3474-01
FUJI POWER MOSFET
Drain-Source On-state Resistance RDS(on)=f(Tch):ID=11.5A,VGS=10V
200 180 160 7.0 6.5 6.0 5.5
Gate Threshold Voltage vs. Tch VGS(th)=f(Tch):VDS=VGS,ID=1mA
-3
10
-6
10
-5
10
-4
10
-3
10
-2
10
-1
10
0
t [sec]
10
2
Maximum Avalanche Current Pulsewidth IAV=f(tAV):starting Tch=25°C,Vcc=48V
Avalanche Current I AV [A]
Single Pulse
0.30 VGS= 5.5V 6.5V 7.0V 6.0V 7.5V
0.25
10
1
RDS(on) [ Ω ]
0.20
gfs [S]
0.15
0.10
8V 10V
0.05
20V
0.1 0.1 1 10 100
2SK2381_06资料
IGSS IDSS V (BR) DSS Vth RDS (ON) |Yfs| Ciss Crss Coss
VGS = ±16 V, VDS = 0 V VDS = 200 V, VGS = 0 V ID = 10 mA, VGS = 0 V VDS = 10 V, ID = 1 mA VGS = 10 V, ID = 2.5 A VDS = 10 V, ID = 2.5 A
Unit: mm
z Low drain−source ON resistance : RDS (ON) = 0.56 Ω (typ.)
z High forward transfer admittance : |Yfs| = 4.5 S (typ.)
z Low leakage current
: IDSS = 100 μA (max) (VDS = 200 V)
• TOSHIBA is continually working to improve the quality and reliability of its products. Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to comply with the standards of safety in making a safe design for the entire system, and to avoid situations in which a malfunction or failure of such TOSHIBA products could cause loss of human life, bodily injury or damage to property. In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as set forth in the most recent TOSHIBA products specifications. Also, please keep in mind the precautions and conditions set forth in the “Handling Guide for Semiconductor Devices,” or “TOSHIBA Semiconductor Reliability Handbook” etc.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2SK2148-01
N-channel MOS-FET
FAP-IIA Series
600V
0,75Ω
12A 80W
>Features
-High Speed Switching -Low On-Resistance
-No Secondary Breakdown -Low Driving Power -High Voltage
-V GS = ± 30V Guarantee -Avalanche Proof
>Applications
-Switching Regulators -UPS
-DC-DC converters
-General Purpose Power Amplifier
>Maximum Ratings and Characteristics
> Equivalent Circuit
-Absolute Maximum Ratings (T C =25°C), unless otherwise specified
Item
Symbol Rating
Unit Drain-Source-Voltage
V DS 600V Drain-Gate-Voltage (R GS =20K Ω)V DGR 600V Continous Drain Current I D
12A Pulsed Drain Current I D(puls)48A Gate-Source-Voltage V GS ±30V Max. Power Dissipation
P D 80W Operating and Storage Temperature Range
T ch 150
°C T stg
-55 ~ +150
°C
-Electrical Characteristics (T C =25°C), unless otherwise specified
Item
Symbol Test conditions
Min.
Typ.Max.Unit Drain-Source Breakdown-Voltage V (BR)DSS I D =1mA V GS =0V 600V Gate Threshhold Voltage
V GS(th)I D =1mA V DS=V GS 2,5
3,03,5V Zero Gate Voltage Drain Current I DSS V DS =600V T ch =25°C 10500µA V GS =0V T ch =125°C 0,21,0mA Gate Source Leakage Current
I GSS V GS =±30V V DS =0V 10100nA Drain Source On-State Resistance R DS(on)I D =6A V GS =10V 0,550,75ΩForward Transconductance g fs I D =6A V DS =25V
6
12S Input Capacitance C iss V DS =25V 25003800pF Output Capacitance
C oss V GS =0V 220330pF Reverse Transfer Capacitance C rss f=1MHz 5075pF Turn-On-Time t on (t on =t d(on)+t r )t d(on)V CC =300V 3045ns t r I
D =12A 6090ns Turn-Off-Time t off (t on =t d(off)+t f )t d(off)V GS =10V 140210ns t f R GS =10 Ω
80
120ns Avalanche Capability
I AV L = 100µH
T ch =25°C 12
A Continous Reverse Drain Current I DR 12A Pulsed Reverse Drain Current I DRM 48A Diode Forward On-Voltage V SD I F =2xI DR V GS =0V T ch =25°C
1,051,58
V Reverse Recovery Time t rr I F =I DR V GS =0V
450ns Reverse Recovery Charge
Q
rr
-dI F /dt=100A/µs T ch =25°C 3
µC
-Thermal Characteristics Item
Symbol Test conditions
Min.Typ.
Max.Unit Thermal Resistance
R th(ch-a)channel to air 30°C/W R th(ch-c)channel to case
1,56°C/W
元器件交易网
N-channel MOS-FET
2SK2148-01
600V
0,75Ω
12A 80W
FAP-IIA Series
> Characteristics
Typical Output Characteristics
Drain-Source-On-State Resistance vs. T ch
Typical Transfer Characteristics
↑
1
↑
2↑
3
I D [A ]
R D S (O N ) [Ω]
I D [A ]
V DS [V]
→
T ch [°C]
→
V GS [V]
→
Typical Drain-Source-On-State-Resistance vs. I D Typical Forward Transconductance vs. I D Gate Threshold Voltage vs. T ch
↑
4↑
5↑
6
R D S (O N ) [Ω]
g f s [S ]
V G S (t h ) [V ]
I D [A]
→
I D [A]
→
T ch [°C]
→
Typical Capacitance vs. V DS Typical Input Charge Forward Characteristics of Reverse Diode
↑
7↑
8↑
↑
9
C [n F ]
V D S [V ]
V G S [V ]
I F [A ]
V DS [V]
→
Q g [nC]
→
V SD [V]
→
Allowable Power Dissipation vs. T C Safe operation area
↑
Z t h (c h -c ) [K /W ]
Transient Thermal impedance
↑
10↑
1211
P D [W ]
I D [A ]
T c [°C]
→
V DS [V]
→
t [s]
→
This specification is subject to change without notice!
元器件交易网。