An adaptive coupled-layer visual model for robust visual tracking
视网膜功能启发的边缘检测层级模型
视网膜功能启发的边缘检测层级模型郑程驰 1范影乐1摘 要 基于视网膜对视觉信息的处理方式, 提出一种视网膜功能启发的边缘检测层级模型. 针对视网膜神经元在周期性光刺激下产生适应的特性, 构建具有自适应阈值的Izhikevich 神经元模型; 模拟光感受器中视锥细胞、视杆细胞对亮度的感知能力, 构建亮度感知编码层; 引入双极细胞对给光−撤光刺激的分离能力, 并结合神经节细胞对运动方向敏感的特性, 构建双通路边缘提取层; 另外根据神经节细胞神经元在多特征调控下延迟激活的现象, 构建具有脉冲延时特性的纹理抑制层; 最后将双通路边缘提取的结果与延时抑制量相融合, 得到最终边缘检测结果. 以150张来自实验室采集和AGAR 数据集中的菌落图像为实验对象对所提方法进行验证, 检测结果的重建图像相似度、边缘置信度、边缘连续性和综合指标分别达到0.9629、0.3111、0.9159和0.7870, 表明所提方法能更有效地进行边缘定位、抑制冗余纹理、保持主体边缘完整性. 本文面向边缘检测任务, 构建了模拟视网膜对视觉信息处理方式的边缘检测模型, 也为后续构建由视觉机制启发的图像计算模型提供了新思路.关键词 边缘检测, 视网膜, Izhikevich 模型, 神经编码, 方向选择性神经节细胞引用格式 郑程驰, 范影乐. 视网膜功能启发的边缘检测层级模型. 自动化学报, 2023, 49(8): 1771−1784DOI 10.16383/j.aas.c220574Multi-layer Edge Detection Model Inspired by Retinal FunctionZHENG Cheng-Chi 1 FAN Ying-Le 1Abstract Based on the processing of visual information by the retina, this paper proposes a multi-layer model of edge detection inspired by retinal functions. Aiming at the adaptive characteristics of retinal neurons under periodic light stimulation, an Izhikevich neuron model with adaptive threshold is established; By simulating the perception ability of cones and rods for luminance and color in photoreceptors, the luminance perception coding layer is con-structed; By introducing the ability of bipolar cells for separating light stimulation, and combining with the charac-teristics of ganglion cells sensitive to the direction of movement, a multi-pathway edge extraction layer is constructed;In addition, according to the phenomenon of delayed activation of ganglion cell neurons under multi-feature regula-tion, a texture inhibition layer with pulse delay characteristics is constructed; Finally, by fusing the result of multi-pathway edge extraction with the delay suppression amount, the final edge detection result is obtained. The 150colony images from laboratory collection and AGAR dataset are used as experimental objects to test the proposed method. The reconstruction image similarity, edge confidence, edge continuity and comprehensive indicators of the detection results are 0.9629, 0.3111, 0.9159 and 0.7870, respectively. The results show that the proposed method can better localize edges, suppress redundant textures, and maintain the integrity of subject edges. This research is oriented to the task of edge detection, constructs an edge detection model that simulates the processing of visual information by the retina, and also provides new ideas for the construction of image computing model inspired by visual mechanism.Key words Edge detection, retina, Izhikevich model, neural coding, direction-selective ganglion cells (DSGCs)Citation Zheng Cheng-Chi, Fan Ying-Le. Multi-layer edge detection model inspired by retinal function. Acta Automatica Sinica , 2023, 49(8): 1771−1784边缘检测作为目标分析和识别等高级视觉任务的前级环节, 在图像处理和工程应用领域中有重要地位. 以Sobel 和Canny 为代表的传统方法大多根据相邻像素间的灰度跃变进行边缘定位, 再设定阈值调整边缘强度和冗余细节[1]. 虽然易于计算且快速, 但无法兼顾弱边缘感知与纹理抑制之间的有效性, 难以满足复杂环境下的应用需要. 随着对生物视觉系统研究的进展, 人们对视觉认知的过程和视觉组织的功能有了更深刻的了解. 许多国内外学者在这些视觉组织宏观作用的基础上, 进一步考虑神经编码方式与神经元之间的相互作用, 并应用于边缘检测中. 这些检测方法大多首先会选择合适的神经元模型模拟视觉组织细胞的群体放电特性, 再关联例如视觉感受野和方向选择性等视觉机制, 以不收稿日期 2022-07-14 录用日期 2022-11-29Manuscript received July 14, 2022; accepted November 29,2022国家自然科学基金(61501154)资助Supported by National Natural Science Foundation of China (61501154)本文责任编委 张道强Recommended by Associate Editor ZHANG Dao-Qiang1. 杭州电子科技大学模式识别与图像处理实验室 杭州 3100181. Laboratory of Pattern Recognition and Image Processing,Hangzhou Dianzi University, Hangzhou 310018第 49 卷 第 8 期自 动 化 学 报Vol. 49, No. 82023 年 8 月ACTA AUTOMATICA SINICAAugust, 2023同的编码方式将输入的图像转化为脉冲信号, 经过多级功能区块处理和传递后提取出图像的边缘. 其中, 频率编码和时间编码是视觉系统编码光刺激的重要方式, 在一些计算模型中被广泛使用. 例如,文献[2]以HH (Hodgkin-Huxley)神经元模型为基础, 使用多方向Gabor滤波器模拟神经元感受野的方向选择性, 实现神经元间连接强度关联边缘方向,将每个神经元的脉冲发放频率作为边缘检测的结果输出, 实验结果表明其比传统方法更有效; 文献[3]在 LIF (Leaky integrate-and-fire) 神经元模型的基础上进行改进, 引入根据神经元响应对外界输入进行调整的权值, 在编码的过程中将空间的脉冲发放转化为时序上的激励强度, 实现强弱边缘分类, 对梯度变化幅度小的弱边缘具有良好的检测能力. 除此之外, 也有关注神经元突触间的相互作用, 通过引入使突触的连接权值产生自适应调节的机制来提取边缘信息的计算方法. 例如, 文献 [4] 构建具有STDP (Spike-timing-dependent plasticity) 性质的神经元模型, 根据突触前后神经元首次脉冲发放时间顺序来增强或减弱突触连接, 对真伪边缘具有较强的辨别能力; 文献 [5] 则在构建神经元模型时考虑了具有时间不对称性的STDP机制, 再融合方向特征和侧抑制机制重建图像的主要边缘信息, 其计算过程对神经元突触间的动态特性描述更加准确.更进一步, 神经编码也被应用于实际的工程需要.例如, 文献 [6]针对现有的红外图像边缘检测算法中存在的缺陷, 构建一种新式的脉冲神经网络, 增强了对红外图像中弱边缘的感知; 文献 [7] 则通过模拟视皮层的处理机制, 使用包含左侧、右侧和前向3条并行处理支路的脉冲神经网络模型提取脑核磁共振图像的边缘, 并将提取的结果用于异常检测,同样具有较好的效果. 上述方法都在一定程度上考虑了视觉组织中神经元的编码特性以及视觉机制,与传统方法相比, 在对复杂环境的适应性更强的同时也有较高的计算效率. 但这些方法都未能考虑到神经元自身也会随着外界刺激产生适应, 从而使活动特性发生改变. 此外, 上述方法大多也只选择了频率编码、时间编码等编码方式中的一种, 并不能完整地体现视觉组织中多种编码方式的共同作用.事实上, 在对神经生理实验和理论的持续探索中发现, 视觉组织(以视网膜为例)在对视觉刺激的加工中就存在着丰富的动态特性和编码机制[8−9]. 视网膜作为视觉系统中的初级组织结构, 由多种不同类型的细胞构成, 共同组成一个纵横相连、具有层级结构的复杂网络, 能够针对不同类型的刺激性选择相应的编码方式进行有效处理. 因此, 本文面向图像的边缘检测任务, 以菌落图像处理为例, 模拟视网膜中各成分对视觉信息的处理方式, 构建基于视网膜动态编码机制的多层边缘检测模型, 以适应具有多种形态结构差异的菌落图像边缘检测任务.1 材料和方法本文提出的算法流程如图1所示. 首先, 根据视网膜神经元在周期性光刺激下脉冲发放频率发生改变的特性, 构建具有自适应阈值特性的Izhikevich 神经元模型, 改善神经元的同步发放能力; 其次, 考虑光感受器对强弱光和颜色信息的不同处理方式编码亮度信息, 实现不同亮度水平目标与背景的区分;然后, 引入固视微动机制, 结合神经节细胞的方向选择性和给光−撤光通路的传递特性, 将首发脉冲时间编码的结果作为双通路的初级边缘响应输出;随后, 模拟神经节细胞的延迟发放特性, 融入对比度和突触前后偏好方向差异, 计算各神经元的延时抑制量, 对双通路的计算结果进行纹理抑制; 最后,整合双通路边缘信息, 将二者融合为最终的边缘检测结果.1.1 亮度感知编码层构建神经元模型时, 本文综合考虑对神经元生理特性模拟的合理性和进行仿真计算的高效性, 以Izhikevich模型[10]为基础构建神经元模型. Izhike-vich模型由Izhikevich在HH模型的基础上简化而来, 在保留原模型对神经元放电模式描述的准确性的同时, 也具有较低的时间复杂度, 适合神经元群体计算时应用, 其表达式如下式所示v thv th 其中, v为神经元的膜电位, 其初始值设置为 −70; u为细胞膜恢复变量, 设置为14; I为接收的图像亮度刺激; 为神经元脉冲发放的阈值, 设置为30; a描述恢复变量u的时间尺度, b描述恢复变量u 对膜电位在阈值下波动的敏感性, c和d分别描述产生脉冲发放后膜电位v的重置值和恢复变量u的增加程度, a, b, c, d这4个模型参数的典型值分别为0.02、0.2、−65和6. 若某时刻膜电位v达到,则进行一次脉冲发放, 同时该神经元对应的v被重置为c, u被重置为u + d.适应是神经系统中广泛存在的现象, 具体表现为神经元会根据外界的刺激不断地调节自身的性质. 其中, 视网膜能够适应昼夜环境中万亿倍范围的光照变化, 这种适应能够帮助其在避免饱和的同时保持对光照的敏感性[11]. 研究表明, 视网膜持续1772自 动 化 学 报49 卷接受外界周期性光刺激时, 光感受器会使神经元细胞的活动特性发生改变, 导致单个神经元的发放阈值上升, 放电频率下降; 没有脉冲发放时, 对应阈值又会以指数形式衰减, 同时放电频率逐渐恢复[12].因此, 本文在Izhikevich 模型的基础上作出改进,加入根据脉冲发放频率对阈值进行自适应调节的机制, 如下式所示τ1τ2τ1τ2v th τ1v th τ2其中, 和 分别为脉冲发放和未发放时阈值变化的时间常数, 其值越小, 阈值变化的幅度越大, 神经元敏感性变化的过程越快; 反之, 则表示阈值变化的幅度越小, 神经元敏感性变化的过程也就越慢.生理学实验表明, 在外界持续光刺激下, 神经元对刺激产生适应导致放电频率降低后, 这种适应衰退的过程比产生适应的过程通常要长数倍[13]. 因此,为了在准确模拟生理特性的同时保证计算模型的性能, 本文将 和 分别设置为20和40. 这样, 当某时刻某个神经元产生脉冲发放时, 则对应阈值 根据 的值升高, 神经元产生适应, 活跃度降低; 反之, 对应阈值 根据 的值下降, 神经元的适应衰退, 活跃度提升. 实现限制活跃神经元的脉冲发放频率, 促进不活跃神经元的脉冲发放, 改善神经元群体的同步发放能力, 减少检测目标内部冗余. 图2边缘检测结果图 1 边缘检测算法原理图Fig. 1 Principle of edge detection algorithm8 期郑程驰等: 视网膜功能启发的边缘检测层级模型1773显示了改进前后的Izhikevich 模型对图像进行处理后目标内部冗余情况.0∼255为了规范检测目标图像的亮度范围, 本文将输入的彩色图像Img 各通路的亮度映射到 区间内, 如下式所示Img (;i )I (;i )其中, 和 表示经亮度映射前和映射后的R 、G 、B 三种颜色分量图像; max(·) 和min(·)分别计算对应分量图像中的最大和最小像素值.光感受器分两类, 分别为视锥细胞和视杆细胞[14], 都能将接收到的视觉刺激转化为电信号, 实现信息的编码和传递. 其中, 视锥细胞能够根据外界光刺激的波长来分解为三个不同的颜色通道[15].考虑到人眼对颜色信息的敏感性能有效区分离散目标与背景, 令图像中的每个像素点对应一个神经元,将R 、G 、B 三种颜色分量图像分别输入上文构建的神经元模型中, 在一定时间范围内进行脉冲发放,如下式所示fires (x,y ;i )其中, 为每个神经元的脉冲发放次数,函数Izhikevich(·)表示式(2)给出的神经元模型.视杆细胞对光线敏感, 主要负责弱光环境下的外界刺激感知. 当光刺激足够强时, 视杆细胞的感知能力达到饱和, 视觉系统转为使用视锥细胞负责亮度信息的处理[16]. 因此, 除了对颜色信息敏感外,视锥细胞对强光也有高度辨别能力. 考虑到作为检测对象的图像中, 目标与背景具有不同的亮度水平,本文构建一种综合视锥细胞和视杆细胞亮度感知能力的编码方法, 以适应目标与背景不同亮度对比的多种情况, 如下式所示I base I base (x,y )fires Res (x,y )其中, var(·) 计算图像亮度方差; ave(·) 计算图像亮度均值. 本文取三种颜色分量图像中方差最大的一幅作为基准图像 , 对于其中的像素值 ,将其中亮度低于平均亮度的部分设置为三种颜色分量脉冲发放结果的最小值, 反之设置为最大值, 最终得到模型的亮度编码结果 , 实现在图像局部亮度相对较低的区域由视杆细胞进行弱光感知, 亮度较高区域由视锥细胞处理, 强化计算模型对不同亮度目标和背景的区分能力, 凸显具有弱边缘的对象. 图3显示了亮度感知编码对存在弱边缘的对象的感知能力.1.2 基于固视微动的多方向双通路边缘提取层Img gray 人眼注视目标时, 接收的图像并非是静止的,而是眼球以每秒2至3次的微动使投射在视网膜上的图像发生持续运动, 不断地改变照射在光感受器上的光刺激[17]. 本文考虑人眼的固视微动机制,在原图像的灰度图像 上构建大小为3×3的微动作用窗口temp , 使窗口接收到的亮度信息朝8个方向进行微动, 如下式所示p i q i θi temp θi d x d y 其中, 和 是用于决定微动方向 的参数, 其值被设置为 −1、0或1, 通过计算反正切函数能够得到以45° 为单位、从0° 到315° 的8个角度的微动方向, 对应8个微动结果窗口 ; 和 分别表示水平和竖直方向的微动尺度; Dir 为计算得到(a) 原图(a) Original image (b) Izhikevich 模型(b) Izhikevich model (c) 改进的 Izhikevich 模型(c) Improved Izhikevich model图 2 改进前后的Izhikevich 模型对图像进行脉冲发放的结果对比图Fig. 2 Comparison of the image processing results of the Izhikevich model before and after improvement1774自 动 化 学 报49 卷Dir (x,y )的微动方向矩阵, 其中每个像素点的值为 ;sum(·) 计算窗口中像素值的和. 本文取每个微动窗口前后差异最大的方向作为该点的偏好方向, 分别用数字1 ~ 8表示.视网膜存在一类负责对运动刺激编码、具有方向选择性的神经节细胞 (Direction-selective gangli-on cells, DSGCs)[18]. 经过光感受器处理, 转化为电信号的视觉信息, 通过双极细胞处理后传递给神经节细胞. 双极细胞可分为由光照增强 (ON) 激发的细胞和由光照减弱 (OFF) 激发的细胞[19], 分别将信号输入给光通路 (ON-pathway)和撤光通路 (OFF-pathways) 两条并行通路[20], 传递给光运动和撤光运动产生的刺激. 而神经节细胞同样包括ON 和OFF 两种, 会对给光和撤光所产生的运动方向做出反应[21]. 因此, 本文构造5×5大小的对特定方向微动敏感的神经节细胞感受野窗口, 将其对偏好方向和反方向微动所产生的响应分别作为给光通路和撤光通路的输入. 以偏好方向为45° 的方向选择性神θi fires Res S xy ∗通过上述定义, 可以形成以45° 为单位、从0°到315° 的8个方向的感受野窗口, 与上文 的8个方向对应. 之后本文在亮度编码结果 上构筑与感受野相同大小的局部窗口 , 根据最优方向矩阵Dir 对应窗口中心点的方向, 取与其相同和相反方向的感受野窗口和亮度编码结果进行卷积运算 (本文用符号 表示卷积运算), 分别作为ON 和OFF 通道的输入, 如下式所示T ON T OFF 考虑到眼球微动能够将静止的空间场景转变为视网膜上的时间信息流, 激活视网膜神经元的发放,同时ON 和OFF 两通路也只在光刺激的呈现和撤去的瞬时产生电位发放, 因此本文采用首发脉冲时间作为编码方式, 将 和 定义为两通路首次脉冲发放时间构成的时间矩阵, 并作为初级边缘响应的结果. 将1个单位的发放时间设置为0.25, 当总发放时间大于30时停止计算, 此时还未进行发放的神经元即被判断为非边缘.1.3 多特征脉冲延时纹理抑制层视网膜神经节细胞在对光刺激编码的过程中,外界刺激特征的变化会显著影响神经元的反应时间. 研究发现, 当刺激对比度增大时, 神经元反应延时会减小, 更快速地进行脉冲发放; 反之, 则反应延时增大, 抑制神经元的活性[22]. 除此之外, 方向差异也会影响神经元活动, 突触前后偏好方向相似的神经元更倾向于优先连接, 在受到外界刺激时能够更快被同步激活[23]. 因此, 本文引入视网膜的神经元延时发放机制, 考虑方向和对比度对神经元敏感性的影响, 构造脉冲延时抑制模型. 首先结合局部窗口权重函数计算图像对比度, 如下式所示ω(x i ,y i )其中, 为窗口权重函数, L 为亮度图像, Con(a) 原图(a) Original image (b) Izhikevich 模型(b) Izhikevich model (c) 改进的 Izhikevich 模型(c) Improved Izhikevich model (d) 亮度感知编码(d) Luminance perception coding图 3 不同方式对存在弱边缘的菌落图像的处理结果Fig. 3 Different ways to process the image of colonies with weak edges8 期郑程驰等: 视网膜功能启发的边缘检测层级模型1775S xy x i y i µ=∑x i ,y i ∈S xy ω(x i ,y i )为对比度图像, 为以(x , y )为中心的局部窗口,( , ) 为方窗中除中心外的周边像素, ws 为局部方窗的窗长, . 之后考虑局部方窗中心神经元和周边神经元方向差异, 同时用高斯函数模拟对比度大小与延时作用强度之间的关系, 构建脉冲延时抑制模型, 如下式所示D Dir (x,y )D Con (x,y )D (x,y )∆Dir (x i ,y i )min {|θ(x i ,y i )−θ(x,y )|,2π−|θ(x i ,y i )−θ(x,y )|}δ其中, 和 分别表示方向延时抑制量和对比度延时抑制量; 为计算得到的综合延时抑制量; 为突触前后神经元微动方向的差异, 被定义为 ; 用于调节对比度延时抑制量.T ON T OFFRes ON Res OFF 将上文计算得到的两个时间矩阵 和 中进行过脉冲发放的神经元与综合延时抑制量相加, 同样设置1个单位的发放时间为0.25, 将经延时作用后总发放时间大于30的神经元设置为不发放, 即判定为非边缘, 反之则判定为边缘. 根据式(19)和式(20) 得到两通道边缘检测结果 和. 最后, 将两通道得到的结果融合, 得到最终边缘响应结果Res ,如下式所示2 算法流程基于视网膜对视觉信息的处理顺序和编码特性, 本文构建图4所示的算法流程, 具体步骤如下:1) 根据视网膜在外界持续周期性光刺激下产生的适应现象, 在式(1)所示的Izhikevich 模型上作出改进, 构建如式(2)所示的具有自适应阈值的Izhikevich 模型.2) 根据式(3)将作为检测目标的图像映射到0 ~ 255区间规范亮度范围, 接着分离3种通道的颜色分量, 根据式(4)输入到改进的Izhikevich 模型中进行脉冲发放.3) 根据式(5)的方差计算提取出基准图像, 再结合基准图像根据式(6)对三通道脉冲发放的结果进行亮度感知编码, 得到亮度编码结果.4) 考虑人眼的固视微动机制, 根据式(7)和式(8)通过原图的灰度图像提取每个神经元的偏好方向, 得到微动方向矩阵, 接着根据式(9)和式(10)构筑8个方向的方向选择性神经节细胞感受野窗口.5) 根据式(11)和式(12), 将感受野窗口与亮度编码图像作卷积运算, 并输入Izhikevich 模型中得到ON 和OFF 通路的首发脉冲时间矩阵, 作为两通道的初级边缘响应.6) 根据式(13) ~ 式 (15), 结合局部窗口权重计算图像对比度.7) 考虑对比度和突触前后偏好方向对脉冲发放的延时作用, 根据式(16) ~ 式 (18)构建延时纹理抑制模型, 并根据式(19)和式(20)将纹理抑制模型和两通道的初级边缘响应相融合.8) 根据式(21)将两通路纹理抑制后的结果在神经节细胞处进行整合, 得到最终边缘响应结果.3 结果为了验证本文方法用于菌落边缘检测的有效性, 本文选择Canny 方法和其他3种同样基于神经元编码的边缘检测方法作为横向对比, 并进行定性、定量分析. 首先, 选择文献[4]提出的基于神经元突触可塑性的边缘检测方法(Synaptic plasticity model, SPM), 用于对比本文方法对弱边缘的增强效果; 其次, 选择文献[24]提出的基于抑制性突触的多层神经元群放电编码的边缘检测方法 (Inhibit-ory synapse model, ISM), 验证本文的延时抑制层在抑制冗余纹理方面的有效性; 然后, 选择文献[25]提出的基于突触连接视通路方向敏感的分级边缘检测方法(Orientation sensitivity model, OSM), 对比本文方法在抑制冗余纹理的同时保持边缘提取完整性上的优势; 最后, 还以本文方法为基础, 选择去除亮度感知编码后的方法(No luminance coding,NLC)作为消融实验, 以验证本文方法模拟光感受器功能的亮度感知编码模块的有效性.本文使用实验室在微生物学实验中采集的菌落图像和AGAR 数据集[26]作为实验对象. 前者具有丰富的颜色和形态结构, 用于检验算法对复杂检测环境的适应性; 后者则存在更多层次强度的边缘信息, 菌落本身与背景的颜色和亮度水平也较为相近,用于检测算法对颜色、亮度特征和弱边缘的敏感性.本文通过局部采样生成150张512×512像素大小的测试图像, 其中38张来自实验室采集, 112张来自AGAR 数据集. 然后分别使用上文的6种边缘1776自 动 化 学 报49 卷检测算法提取图像边缘, 使每种算法得到150张边缘检测结果, 其中部分检测结果如图5所示.定性分析图5可知, Canny 、SPM 和ISM 方法在Colony4和Colony5等存在弱边缘的图像中往往会出现大面积的边缘丢失. OSM 方法对弱边缘的敏感性强于以上3种方法, 但仍然会出现不同程度的边缘断裂, 且在调整阈值时难以均衡边缘连续性和目标菌落内部冗余. NLC 方法同样丢失了Colony4和Colony5中几乎所有的边缘, 对于Colony3也只能检出其中亮度较低的菌落内部, 对于梯度变化不明显的边缘辨别力差. 与其他方法相比, 本文方法检出的边缘更加显著且完整性更高, 对于弱边缘也有很强的检测能力, 在Colony3、Colony4和Colony5等存在多层次水平强弱边缘的菌落图像中能够取得较好的检测结果. 为了对检测结果进行定量分析并客观评价各方法的优劣, 计算边缘图像重建相似度MSSIM [27]对检测结果进行重建, 并计算重建图像与原图像的相似度作为边缘定位的准确性RGfires (R)fires (G)亮度编码结果Luminance codingresult方差计算Variance1 2 3ON-result对比度Contrast脉冲延时抑制量Neuron spiking delay感受野窗口感受野窗口DSGC templateOFF-通路输出OFF-result 5)6)7)图 4 边缘检测算法流程图Fig. 4 The procedure of edge detection algorithm8 期郑程驰等: 视网膜功能启发的边缘检测层级模型1777图 5 Colony1 ~ Colony5的边缘检测结果(第1行为原图; 第2行为Canny 检测的结果; 第3行为SPM 检测的结果; 第4行为ISM 检测的结果; 第5行为OSM 检测的结果; 第6行为NLC 检测的结果; 第7行为本文方法检测的结果)Fig. 5 Edge detection results of Colony1 to Colony5 (The first line is original images; The second line is the results of Canny; The third line is the results of SPM; The fourth line is the results of ISM; The fifth line is the results of OSM;The sixth line is the results of NLC; The seventh line is the results of the proposed method)1778自 动 化 学 报49 卷指标. 首先对检测出的边缘图像做膨胀处理, 之后将原图像上的像素值赋给膨胀后边缘的对应位置,得到的图像记为ET , 则边缘重建如下式所示T k ET d k 其中, 为图像 上3×3窗口中8个方向的周边像素, 为窗口中心像素点与周边像素的距离, 计算得到重建图像R . 重建图像的相似度指标如下式所示µA µB σA σB σAB 其中, 和 为原图像和重建图像的灰度均值, 和 为其各自的标准差, 为原图像与重建图像之间的协方差. 将原图像和重建图像各自分为N 个子图, 并分别计算相似度指标SSIM , 得到平均相似度指标MSSIM . 除此之外, 为了验证边缘检测方法检出边缘的真实性和对菌落内部冗余纹理的抑制能力, 本文计算边缘置信度BIdx [28], 根据边缘两侧灰度值的跃变程度判断边缘的真伪. 边缘置信度指标如下式所示σij E (x i k ,y ik )(x i ,y i )d i其中, 为边缘像素在原图像对应位置的邻域标准差, EdgeNum 为边缘像素数量. 另外, 本文进一步计算边缘连续性 CIdx [29]来验证检出目标的边缘完整性. 首先将得到的边缘图像E 分割为m 个区域, 分别计算每个区域中的边缘像素 到其空间中心 的距离 ,则连续性指标如下式所示c i k C i n i 其中, 为边缘连续性的贡献值, D 为阈值, 为第i 个区域的像素点的连续性贡献值之和,为第i 个区域边缘像素点数量. 最后, 将计算得到的3个指标根据下式融合, 得到综合评价指标EIdx [21]其中, row 和col 分别为原图像的行数和列数. 于是, 检测图像的各项性能指标如表1 ~ 表5所示, 图像重建的结果如图6所示.表 1 不同检测方法下的重建相似度MSSIM Table 1 MSSIM of different methodsSerial number MSSIMCanny SPMISMOSMNLC本文方法Colony10.74520.77250.83570.92650.91750.9371Colony20.79510.79710.84900.95280.94470.9725Colony30.85760.86620.83140.91490.83370.9278Colony40.96900.98270.98380.98870.98930.9972Colony50.96340.97580.97800.97710.98830.9933表 2 不同检测方法下的边缘置信度BIdx Table 2 BIdx of different methodsSerial number BIdxCanny SPMISMOSMNLC本文方法Colony10.49880.46180.43070.58010.50580.6026Colony20.18210.15370.15530.33650.46150.4479Colony30.19830.15100.16100.26340.12630.3257Colony40.16310.14880.19060.14370.15210.2016Colony50.16200.18960.19020.18820.17350.1654表 3 不同检测方法下的边缘连续性CIdxTable 3 CIdx of different methodsSerial numberCIdxCanny SPMISMOSMNLC本文方法Colony10.83770.85300.86010.86760.97490.9652Colony20.80690.86550.85330.82930.91770.9518Colony30.80640.74080.72930.82690.77640.9406Colony40.81430.86110.90440.84300.90150.9776Colony50.90470.84480.86320.85920.87090.95718 期郑程驰等: 视网膜功能启发的边缘检测层级模型1779。
(完整版)生态学(双语)专业英语单词(2)
K-对策者 K—strategistisn维超体积资源空间 n—dimensional hyper—volume n维生态位 n-dimensional nicheRaunkiaer定律 Law of Frequencyr-对策者 r-strategistis奥陶纪 Ordovician period白垩土草地 chalk grassland斑块 patch斑块性 patchiness斑块性种群 patchy population半荒漠 semi-desert半矩阵或星系图 constellation diagrams伴生种 companion species饱和密度 saturation density饱和期 asymptotic phase保护哲学 conservation philosophy北方针叶林 northern conifer forest被动取样假说 passive sampling hypothesis本能 instinct本能行为 instinctive behavior避敌 avoiding predator边缘效应 edge effect变异性 variability标志重捕法 mark recapture methods标准频度图解 frequency diagram表现型适应 phenotypic adaptation并行的 simultaneous并行同源 paralogy捕食 predation不重叠的 non—overlapping残存斑块 remnant patch残余廊道 remnant corridor操作性条件作用 operant conditioning草原生态系统 grassland system层次性结构 hierachical structure产卵和取食促进剂 oviposition and feeding stimulant 产业生态学 industry ecology长日照植物 long day plant超体积生态位 hyper—volume niche成本外摊 externalized cost程序化死亡 programmed cell death尺度效应 scaling effect抽彩式竞争 competive lottery臭氧层破坏 ozone layer destruction出生率 natality或birth rate初级生产 primary production初级生产力 primary productivity初级生产者 primary producer传感器 sensor串行的 serial垂直结构 vertical structure春化 vernalization次级生产 secondary production次级生产力 secondary productivity次生演替 secondary successon粗密度 crude density存活曲线 survival curve存活值 survival value存在度 presence搭载效应 hitchhiking effect大陆—岛屿型复合种群 mainland-island metapopulation 带状廊道 strip corridor单联 single linkage单体生物 unitary organism单位努力捕获量 catch per unit effort单元的 monothetic淡水生态系统 fresh water ecosystem氮循环 nitrogen cycling等级(系统)理论 hierarchy theory等级的 hierarchical底内动物 infauna底栖动物 benthos地表火 surface fire地带性生物群落 biome地理信息系统 geographic information system地面芽植物 hemicryptophytes地上芽植物 chamaephytes地植物学 geobotany第三纪 Tetiary period第四纪 Quaternary period点突变 genic mutation或point mutation电荷耦合器 charge coupled device, CCD顶极阶段 climax stage顶极群落 climax community顶极种 climax species动态率模型 dynamic pool model动态平衡理论 dynamic equilibrium theory动态生命表 dynamic life table动物痕迹的计数 counts of animal signs动物计数 counts of animals冻原 tundra短日照植物 short day plant断层 gaps多波段光谱扫描仪 multichannel spectrum scanner, MSS 多度 abundance多样化 variety多元的 poly thetic厄尔尼诺El Nino反馈feedback反射reflex泛化种generalist防卫行为defennce behavior访花昆虫flower visitor非等级的non—hierarchical非空间模型non-spatial model非内稳态生物non-homeostatic organism非平衡态复合种群nonequilibrium metapopulation非平衡态跟踪生境复合种群nonequilibrium habitat-tracking metapopulation非平衡态下降复合种群nonequilibrium declining metapopulation非生态位non-niche非生物环境physical environment非线性关系nonlinear分布dispersion分解者decomposer分支过程branching process分子分类学molecular taxonomy分子进化的中性理论the neutral theory of molecular evolution分子生态学molecular ecology分子系统学molecular systematics浮游动物plankton负反馈negative feedback)负荷量carrying capacity负相互作用negative interaction负选择negative selection附底动物epifauna复合种群metapopulation富营养化现象eutrohication改良relamation盖度coverage盖度比cover ratio干扰disturbance干扰斑块disturbance patch干扰廊道disturbance corridor干扰作用interference高度height高斯假说Coarse's hypothesis高斯理论Coarse's theory高位芽植物phanerophytes格林威尔造山运动Grenville Orogenesis 个体individual个体论概念individualistic concept更新renewal功能生态位functional niche攻击行为aggressive behavior构件modules构件生物modular organism关键种keystone species关联系数association coefficients光饱和点light saturation point光补偿点light compensation point光周期photoperiod过滤器filter哈德-温伯格原理Hardy—Weinberg principle 海洋生态系统Ocean ecosytem寒武纪Cambrian period旱生植物siccocolous河流廊道river corridor恒有度contancy红树林mangrove呼吸量respiration互利mutualism互利素synomone互利作用synomonal化感作用allelopathy化学防御chemical defence化学生态学chemical ecology化学物质allelochemicals化学隐藏chemocryptic划分的divisive环境environment环境伦理学environmental ethics环境容纳量environmental carryin capacity环境资源斑块environmental resource patch环境资源廊道environmental resource corridor 荒漠desert荒漠化desertification荒漠生态系统desert ecosystem黄化现象eitiolation phenomenon恢复生态学restoration ecology混沌学chaos混合型mixed type活动库exchange pool获得性行为acquired behavior机体论学派organismic school基础生态位Fundamental niche基质matrix极点排序法polar ordination集群型clumped寄生parasitism加速期accelerating phase价值value价值流value flow间接排序indirect ordination间接梯度分析indirect gradiant analysis减速期decelerating phase简单聚合法lumping碱性植物alkaline soil plant建群种constructive species接触化学感觉contact chemoreception解磷菌或溶磷菌Phosphate-solubiIizing Microorganisms, PSM 进化适应evolutionary adaptation经典型复合种群classic metapopulation经济密度economic density景观landscape景观格局landscape patten景观过程模型process based landscape model景观结构landscape structure景观空间动态模型spatial dynamic landscape model景观生态学landscape ecology净初级生产量net primary production竞争competition竞争排斥原理competition exclusion principle静态生命表static life table局部种群local population距离效应distance effect聚合的agglomerative均匀型uniform菌根mycorrhiza抗毒素phytoalexins可持续发展sustainable development 空间结构spatial structure空间模型spatial model空间生态位spatial niche空间异质性spatial heterogeneity 库pool矿产资源mineral resources廊道corridor离散性discrete利己素allomone利己作用allomona利他行为altruism利他作用kairomonal连续体continuum联想学习associative learning猎食行为hunting behavior林冠火crown fire磷循环phosphorus cycling零假说null hypothesis领悟学习insight learning领域性territoriality流flow绿色核算green accounting逻辑斯谛方程logistic equation铆钉假说Rivet hypothesis密度density密度比density ratio密度制约死亡density-dependent mortality 面积效应area effect灭绝extinction铭记imprinting模拟hametic模型modeling牧食食物链grazing food chain内禀增长率intrinsic rate of increase内稳态homeostasis内稳态生物homeostatic organisms内源性endogenous内在的intrinsic耐阴植物shade-enduring plants能量分配原则principle of energy allocation 能量流动energy flow能源资源energy resources能值emergy泥盆纪Devonian period拟寄生parasitoidism逆分析inverse analysis年龄分布age distribution年龄结构age structure年龄性别锥体age—sex pyramid年龄锥体age pyramids偶见种rare species排序ordination配额quota配偶选择mate selection偏害amensalism偏利commensalism频度frequency平衡选择balancing selection平台plantform平行进化parallel evolution栖息地habitat期望值外推法extrapolation by expected value 气候驯化acclimatisation器官organs亲本投资parental investment亲族选择kin selection趋光性phototaxis趋化性chemotaxis趋同进化convergent evolution趋性taxis趋异进化divergent evolution趋异适应radiation adaptation取食促进剂oviposition and feeding stimulant 取样调查法sampling methods去除取样法removal sampling全联法complete linkage全球global全球变暖global warnning全球定位系统global Positioning System全球生态学global ecology确限度fidelity群丛association群丛单位理论association unit theory群丛组association group群落community群落的垂直结构vertical structure群落生态学community ecology群落水平格局horizontal pattern群落外貌physiognomy群落演替succession群系formation群系组formation group热带旱生林tropical dry forest热带季雨林tropical seasonal rainforest热带稀树草原tropical savanna热带雨林tropical rainforest热力学第二定律second law of thermodynamics 热力学第一定律first law of thermodynamics 人工斑块introduced patch人工廊道introduced corridor人口调查法cencus technique人口统计学human demography日中性植物day neutral plant冗余redundancy冗余种假说Redundancy species hypothesis三叠纪Triassic period森林生态系统forest ecosystem熵值entropy value上渐线upper asymptotic社会性防卫行为defence behavior社会优势等级dominance hierarchy摄食行为feed behavior生活史life history生活史对策life history strategy生活小区biotope生活型life form生活周期life cycle生境habitat生境多样性假说habitat diversity hypothesis 生理出生率physiological natality生理死亡率physiological mortality生命表life table生态出生率ecological natality生态对策bionomic strategy生态反作用ecological reaction生态幅ecological amplitude生态工程ecological engineering生态工业ecological industry生态规划ecological planning生态恢复ecological restoration生态经济ecological economics生态旅游ecotourism生态密度ecological density生态农业ecological agriculture生态入侵ecological invasion生态设计ecological design生态适应ecological adaptation生态死亡率ecological mortality生态位niche生态位宽度niche breadth生态位相似性比例niche proportional similarity 生态位重叠niche overlap生态文明ecological civilization生态系统ecosystem生态系统产品ecosystem goods生态系统多样性ecosystem diversity生态系统服务ecosystem service生态系统生态学ecosystem ecology生态系统学ecosystemology生态型ecotype生态学ecology生态因子ecological factor生态元ecological unit生态作用ecological effect生物organism生物地球化学循环biogecochemical cycle生物多样性biodiversity生物量biomass生物潜能biotic potential生物群落biotic community,biome生物群落演替succession生殖潜能reproductive potential剩余空间residual space失共生aposymbiosis湿地wetland湿地生态系统wetland ecosystem湿地植物hygrophyte时间结构temporal structure实际出生率realized natality实际死亡率realized mortality食草动物herbivores食肉动物carnivores食物链food chain食物网food wed矢量vector适合度fitness适应辐射adaptive radiation适应值adaptive value适应组合adaptive suites收获理论harvest theory收益外泄externalized profit衰退型种群contracting population 水平格局horizontal pattern水土流失soil and water erosion 水循环water cycling瞬时增长率instantaneous rate死亡率mortality & death rate松散垂直耦连loose vertical coupling松散水平耦连loose horizontal coupling溯祖过程coalescent process溯祖理论coalescent theory酸性土理论acid soil plant酸雨acid rain随机型random碎屑食物链detritus food chainK-对策者K-strategistisn维超体积资源空间n-dimensional hyper—volume n维生态位n-dimensional nicheRaunkiaer定律Law of Frequencyr-对策者r-strategistis奥陶纪Ordovician period白垩土草地chalk grassland斑块patch斑块性patchiness斑块性种群patchy population半荒漠semi-desert半矩阵或星系图constellation diagrams伴生种companion species饱和密度saturation density饱和期asymptotic phase保护哲学conservation philosophy北方针叶林northern conifer forest被动取样假说passive sampling hypothesis本能instinct本能行为instinctive behavior避敌avoiding predator边缘效应edge effect变异性variability标志重捕法mark recapture methods标准频度图解frequency diagram表现型适应phenotypic adaptation并行的simultaneous并行同源paralogy捕食predation不重叠的non—overlapping残存斑块remnant patch残余廊道remnant corridor操作性条件作用operant conditioning草原生态系统grassland system层次性结构hierachical structure产卵和取食促进剂oviposition and feeding stimulant 产业生态学industry ecology长日照植物long day plant超体积生态位hyper—volume niche成本外摊externalized cost程序化死亡programmed cell death尺度效应scaling effect抽彩式竞争competive lottery臭氧层破坏ozone layer destruction出生率natality或birth rate初级生产primary production初级生产力primary productivity初级生产者primary producer传感器sensor串行的serial垂直结构vertical structure春化vernalization次级生产secondary production次级生产力secondary productivity次生演替secondary successon粗密度crude density存活曲线survival curve存活值survival value存在度presence搭载效应hitchhiking effect大陆—岛屿型复合种群mainland-island metapopulation 带状廊道strip corridor单联single linkage单体生物unitary organism单位努力捕获量catch per unit effort单元的monothetic淡水生态系统fresh water ecosystem氮循环nitrogen cycling等级(系统)理论hierarchy theory等级的hierarchical底内动物infauna底栖动物benthos地表火surface fire地带性生物群落biome地理信息系统geographic information system 地面芽植物hemicryptophytes地上芽植物chamaephytes地植物学geobotany第三纪Tetiary period第四纪Quaternary period点突变genic mutation或point mutation电荷耦合器charge coupled device, CCD顶极阶段climax stage顶极群落climax community顶极种climax species动态率模型dynamic pool model动态平衡理论dynamic equilibrium theory动态生命表dynamic life table动物痕迹的计数counts of animal signs动物计数counts of animals冻原tundra短日照植物short day plant断层gaps多波段光谱扫描仪multichannel spectrum scanner, MSS多度abundance多样化variety多元的poly thetic厄尔尼诺El Nino反馈feedback反射reflex泛化种generalist防卫行为defennce behavior访花昆虫flower visitor非等级的non—hierarchical非空间模型non-spatial model非内稳态生物non-homeostatic organism非平衡态复合种群nonequilibrium metapopulation非平衡态跟踪生境复合种群nonequilibrium habitat—tracking metapopulation非平衡态下降复合种群nonequilibrium declining metapopulation非生态位non—niche非生物环境physical environment非线性关系nonlinear分布dispersion分解者decomposer分支过程branching process分子分类学molecular taxonomy分子进化的中性理论the neutral theory of molecular evolution 分子生态学molecular ecology分子系统学molecular systematics浮游动物plankton负反馈negative feedback)负荷量carrying capacity负相互作用negative interaction负选择negative selection附底动物epifauna复合种群metapopulation富营养化现象eutrohication改良relamation盖度coverage盖度比cover ratio干扰disturbance干扰斑块disturbance patch干扰廊道disturbance corridor干扰作用interference高度height高斯假说Coarse's hypothesis高斯理论Coarse's theory高位芽植物phanerophytes格林威尔造山运动Grenville Orogenesis个体individual个体论概念individualistic concept更新renewal功能生态位functional niche攻击行为aggressive behavior构件modules构件生物modular organism关键种keystone species关联系数association coefficients光饱和点light saturation point光补偿点light compensation point光周期photoperiod过滤器filter哈德-温伯格原理Hardy—Weinberg principle 海洋生态系统Ocean ecosytem寒武纪Cambrian period旱生植物siccocolous河流廊道river corridor恒有度contancy红树林mangrove呼吸量respiration互利mutualism互利素synomone互利作用synomonal化感作用allelopathy化学防御chemical defence化学生态学chemical ecology化学物质allelochemicals化学隐藏chemocryptic划分的divisive环境environment环境伦理学environmental ethics环境容纳量environmental carryin capacity环境资源斑块environmental resource patch环境资源廊道environmental resource corridor 荒漠desert荒漠化desertification荒漠生态系统desert ecosystem黄化现象eitiolation phenomenon恢复生态学restoration ecology混沌学chaos混合型mixed type活动库exchange pool获得性行为acquired behavior机体论学派organismic school基础生态位Fundamental niche基质matrix极点排序法polar ordination集群型clumped寄生parasitism加速期accelerating phase价值value价值流value flow间接排序indirect ordination间接梯度分析indirect gradiant analysis减速期decelerating phase简单聚合法lumping碱性植物alkaline soil plant建群种constructive species接触化学感觉contact chemoreception解磷菌或溶磷菌Phosphate-solubiIizing Microorganisms, PSM 进化适应evolutionary adaptation经典型复合种群classic metapopulation经济密度economic density景观landscape景观格局landscape patten景观过程模型process based landscape model景观结构landscape structure景观空间动态模型spatial dynamic landscape model 景观生态学landscape ecology净初级生产量net primary production竞争competition竞争排斥原理competition exclusion principle静态生命表static life table局部种群local population距离效应distance effect聚合的agglomerative均匀型uniform菌根mycorrhiza抗毒素phytoalexins可持续发展sustainable development空间结构spatial structure空间模型spatial model空间生态位spatial niche空间异质性spatial heterogeneity库pool矿产资源mineral resources廊道corridor离散性discrete利己素allomone利己作用allomona利他行为altruism利他作用kairomonal连续体continuum联想学习associative learning猎食行为hunting behavior林冠火crown fire磷循环phosphorus cycling零假说null hypothesis领悟学习insight learning领域性territoriality流flow绿色核算green accounting逻辑斯谛方程logistic equation铆钉假说Rivet hypothesis密度density密度比density ratio密度制约死亡density-dependent mortality 面积效应area effect灭绝extinction铭记imprinting模拟hametic模型modeling牧食食物链grazing food chain内禀增长率intrinsic rate of increase内稳态homeostasis内稳态生物homeostatic organisms内源性endogenous内在的intrinsic耐阴植物shade-enduring plants能量分配原则principle of energy allocation 能量流动energy flow能源资源energy resources能值emergy泥盆纪Devonian period拟寄生parasitoidism逆分析inverse analysis年龄分布age distribution年龄结构age structure年龄性别锥体age-sex pyramid年龄锥体age pyramids偶见种rare species排序ordination配额quota配偶选择mate selection偏害amensalism偏利commensalism频度frequency平衡选择balancing selection平台plantform平行进化parallel evolution栖息地habitat期望值外推法extrapolation by expected value 气候驯化acclimatisation器官organs亲本投资parental investment亲族选择kin selection趋光性phototaxis趋化性chemotaxis趋同进化convergent evolution趋性taxis趋异进化divergent evolution趋异适应radiation adaptation取食促进剂oviposition and feeding stimulant 取样调查法sampling methods去除取样法removal sampling全联法complete linkage全球global全球变暖global warnning全球定位系统global Positioning System全球生态学global ecology确限度fidelity群丛association群丛单位理论association unit theory群丛组association group群落community群落的垂直结构vertical structure群落生态学community ecology群落水平格局horizontal pattern群落外貌physiognomy群落演替succession群系formation群系组formation group热带旱生林tropical dry forest热带季雨林tropical seasonal rainforest热带稀树草原tropical savanna热带雨林tropical rainforest热力学第二定律second law of thermodynamics 热力学第一定律first law of thermodynamics 人工斑块introduced patch人工廊道introduced corridor人口调查法cencus technique人口统计学human demography日中性植物day neutral plant冗余redundancy冗余种假说Redundancy species hypothesis三叠纪Triassic period森林生态系统forest ecosystem熵值entropy value上渐线upper asymptotic社会性防卫行为defence behavior社会优势等级dominance hierarchy摄食行为feed behavior生活史life history生活史对策life history strategy生活小区biotope生活型life form生活周期life cycle生境habitat生境多样性假说habitat diversity hypothesis 生理出生率physiological natality生理死亡率physiological mortality生命表life table生态出生率ecological natality生态对策bionomic strategy生态反作用ecological reaction生态幅ecological amplitude生态工程ecological engineering生态工业ecological industry生态规划ecological planning生态恢复ecological restoration生态经济ecological economics生态旅游ecotourism生态密度ecological density生态农业ecological agriculture生态入侵ecological invasion生态设计ecological design生态适应ecological adaptation生态死亡率ecological mortality生态位niche生态位宽度niche breadth生态位相似性比例niche proportional similarity 生态位重叠niche overlap生态文明ecological civilization生态系统ecosystem生态系统产品ecosystem goods生态系统多样性ecosystem diversity生态系统服务ecosystem service生态系统生态学ecosystem ecology生态系统学ecosystemology生态型ecotype生态学ecology生态因子ecological factor生态元ecological unit生态作用ecological effect生物organism生物地球化学循环biogecochemical cycle 生物多样性biodiversity生物量biomass生物潜能biotic potential生物群落biotic community,biome生物群落演替succession生殖潜能reproductive potential剩余空间residual space失共生aposymbiosis湿地wetland湿地生态系统wetland ecosystem湿地植物hygrophyte时间结构temporal structure实际出生率realized natality实际死亡率realized mortality食草动物herbivores食肉动物carnivores食物链food chain食物网food wed矢量vector适合度fitness适应辐射adaptive radiation适应值adaptive value适应组合adaptive suites收获理论harvest theory收益外泄externalized profit衰退型种群contracting population水平格局horizontal pattern水土流失soil and water erosion水循环water cycling瞬时增长率instantaneous rate死亡率mortality & death rate松散垂直耦连loose vertical coupling松散水平耦连loose horizontal coupling溯祖过程coalescent process溯祖理论coalescent theory酸性土理论acid soil plant酸雨acid rain随机型random碎屑食物链detritus food chainK-对策者K—strategistisn维超体积资源空间n-dimensional hyper—volume n维生态位n—dimensional nicheRaunkiaer定律Law of Frequencyr-对策者r-strategistis奥陶纪Ordovician period白垩土草地chalk grassland斑块patch斑块性patchiness斑块性种群patchy population半荒漠semi-desert半矩阵或星系图constellation diagrams伴生种companion species饱和密度saturation density饱和期asymptotic phase保护哲学conservation philosophy北方针叶林northern conifer forest被动取样假说passive sampling hypothesis 本能instinct本能行为instinctive behavior避敌avoiding predator边缘效应edge effect。
怎么仅加载一部分内容的预训练模型参数
怎么仅加载⼀部分内容的预训练模型参数在pytorch中提供了很多预训练好的模型,以分类为例,基本上都是⽤ImageNet数据集来训练的,分为1000类。
但是很多时候我们要实现的分类项⽬可能并没有这么简单,⽐如我们可能并不仅仅只是实现单分类,可能想实现双分类或者是多分类,这个时候就需要对模型进⾏⼀定的修改修改的同时还希望该修改后的模型中与预训练模型相同的部分仍能够使⽤预训练的参数来初始化,这时候应该怎么做?1.单分类这是最简单的情况,就是将1000类更改为⾃⼰想要分的类别数即可。
⽐如你想要对性别分类,分两类,使⽤pytorch中的预训练模型resnet18#coding:utf-8import torchfrom torchvision import modelsfrom torch import nndevice = torch.device("cuda:0"if torch.cuda.is_available() else"cpu")# 然后选择使⽤的模型model_conv = models.resnet18(pretrained=True)# resnet18仅有⼀个全连接层# 得到该全连接层输⼊神经元数.in_featuresfc_features = model_conv.fc.in_features# 默认的输出神经元数为1000# 这⾥修改为⾃⼰想进⾏的⼆分类,类别为2,即man和womanmodel_conv.fc = nn.Linear(fc_features, 2)model_conv.to(device)这样模型就设置成功了2.双分类或多分类这⾥以双分类为例,在上⾯的单分类中,我们仅是在原有的模型上修改了参数值,并没有改变整个模型的结构但是单我们要实现双分类,如同时进⾏性别和⼈种分类,这个时候就需要在原来代码的基础上添加⼀些新的层,构造⼀个新的模型如下⾯代码:import torchimport torch.nn as nnimport torch.nn.functional as Ffrom torch.autograd import Variabledef conv3x3(in_planes, out_planes, stride=1, groups=1, dilation=1):"""3x3 convolution with padding"""return nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride,padding=dilation, groups=groups, bias=False, dilation=dilation)def conv1x1(in_planes, out_planes, stride=1):"""1x1 convolution"""return nn.Conv2d(in_planes, out_planes, kernel_size=1, stride=stride, bias=False)class BasicBlock(nn.Module):expansion = 1def __init__(self, inplanes, planes, stride=1, downsample=None, groups=1,base_width=64, dilation=1, norm_layer=None):super(BasicBlock, self).__init__()if norm_layer is None:norm_layer = nn.BatchNorm2dif groups != 1 or base_width != 64:raise ValueError('BasicBlock only supports groups=1 and base_width=64')if dilation > 1:raise NotImplementedError("Dilation > 1 not supported in BasicBlock")# Both self.conv1 and self.downsample layers downsample the input when stride != 1self.conv1 = conv3x3(inplanes, planes, stride)self.bn1 = norm_layer(planes)self.relu = nn.ReLU(inplace=True)self.conv2 = conv3x3(planes, planes)self.bn2 = norm_layer(planes)self.downsample = downsampleself.stride = stridedef forward(self, x):identity = xout = self.conv1(x)out = self.bn1(out)out = self.relu(out)out = self.conv2(out)out = self.bn2(out)if self.downsample is not None:identity = self.downsample(x)out += identityout = self.relu(out)return outclass Bottleneck(nn.Module):expansion = 4def __init__(self, inplanes, planes, stride=1, downsample=None, groups=1,base_width=64, dilation=1, norm_layer=None):super(Bottleneck, self).__init__()if norm_layer is None:norm_layer = nn.BatchNorm2dwidth = int(planes * (base_width / 64.)) * groups# Both self.conv2 and self.downsample layers downsample the input when stride != 1 self.conv1 = conv1x1(inplanes, width)self.bn1 = norm_layer(width)self.conv2 = conv3x3(width, width, stride, groups, dilation)self.bn2 = norm_layer(width)self.conv3 = conv1x1(width, planes * self.expansion)self.bn3 = norm_layer(planes * self.expansion)self.relu = nn.ReLU(inplace=True)self.downsample = downsampleself.stride = stridedef forward(self, x):identity = xout = self.conv1(x)out = self.bn1(out)out = self.relu(out)out = self.conv2(out)out = self.bn2(out)out = self.relu(out)out = self.conv3(out)out = self.bn3(out)if self.downsample is not None:identity = self.downsample(x)out += identityout = self.relu(out)return outclass ResNet(nn.Module):def __init__(self, block, layers, zero_init_residual=False,groups=1, width_per_group=64, replace_stride_with_dilation=None,norm_layer=None ,gender_classes=2, race_classes=4):super(ResNet, self).__init__()if norm_layer is None:norm_layer = nn.BatchNorm2dself._norm_layer = norm_layerself.inplanes = 64self.dilation = 1if replace_stride_with_dilation is None:# each element in the tuple indicates if we should replace# the 2x2 stride with a dilated convolution insteadreplace_stride_with_dilation = [False, False, False]if len(replace_stride_with_dilation) != 3:raise ValueError("replace_stride_with_dilation should be None ""or a 3-element tuple, got {}".format(replace_stride_with_dilation))self.groups = groupsself.base_width = width_per_groupself.conv1 = nn.Conv2d(3, self.inplanes, kernel_size=7, stride=2, padding=3,bias=False)self.bn1 = norm_layer(self.inplanes)self.relu = nn.ReLU(inplace=True)self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)yer1 = self._make_layer(block, 64, layers[0])yer2 = self._make_layer(block, 128, layers[1], stride=2,dilate=replace_stride_with_dilation[0])yer3 = self._make_layer(block, 256, layers[2], stride=2,dilate=replace_stride_with_dilation[1])yer4 = self._make_layer(block, 512, layers[3], stride=2,dilate=replace_stride_with_dilation[2])self.avgpool = nn.AdaptiveAvgPool2d((1, 1))# 注释掉之前的全连接层# self.fc = nn.Linear(512 * block.expansion, num_classes)# 变成两个并⾏的全连接层self.gen_fc = nn.Linear(512 * block.expansion, gender_classes)self.race_fc = nn.Linear(512 * block.expansion, race_classes)for m in self.modules():if isinstance(m, nn.Conv2d):nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu')elif isinstance(m, (nn.BatchNorm2d, nn.GroupNorm)):nn.init.constant_(m.weight, 1)nn.init.constant_(m.bias, 0)# Zero-initialize the last BN in each residual branch,# so that the residual branch starts with zeros, and each residual block behaves like an identity. # This improves the model by 0.2~0.3% according to https:///abs/1706.02677 if zero_init_residual:for m in self.modules():if isinstance(m, Bottleneck):nn.init.constant_(m.bn3.weight, 0)elif isinstance(m, BasicBlock):nn.init.constant_(m.bn2.weight, 0)def _make_layer(self, block, planes, blocks, stride=1, dilate=False):norm_layer = self._norm_layerdownsample = Noneprevious_dilation = self.dilationif dilate:self.dilation *= stridestride = 1if stride != 1 or self.inplanes != planes * block.expansion:downsample = nn.Sequential(conv1x1(self.inplanes, planes * block.expansion, stride),norm_layer(planes * block.expansion),)layers = []layers.append(block(self.inplanes, planes, stride, downsample, self.groups,self.base_width, previous_dilation, norm_layer))self.inplanes = planes * block.expansionfor _ in range(1, blocks):layers.append(block(self.inplanes, planes, groups=self.groups,base_width=self.base_width, dilation=self.dilation,norm_layer=norm_layer))return nn.Sequential(*layers)def forward(self, x):x = self.conv1(x)x = self.bn1(x)x = self.relu(x)x = self.maxpool(x)x = yer1(x)x = yer2(x)x = yer3(x)x = yer4(x)x = self.avgpool(x)x = x.view(x.size(0), -1)#变成两个并⾏的全连接层gender = F.softmax(self.gen_fc(x), 1)race = F.softmax(self.race_fc(x), 1)return gender, racedef resnet18Owned(**kwargs):"""Constructs a ResNet-18 model."""model = ResNet(BasicBlock, [2, 2, 2, 2], **kwargs)return modeldef test():net = resnet18Owned(gender_classes=2,race_classes=4)gender, race = net(Variable(torch.randn(2,3,224,224)))print('gender :', gender.size(),gender)print('race :', race.size(), race)if __name__ == '__main__':test()这⾥举的是⼀个⽐较简单的例⼦,仅是将⼀个全连接层的resnet18更改为了两个并⾏全连接层的resnet18,那么这个时候怎么使⽤之前训练的resnet18模型参数呢?#coding:utf-8import torchfrom torchvision import modelsfrom torch import nndevice = torch.device("cuda:0"if torch.cuda.is_available() else"cpu")#导⼊预训练模型,得到结构和参数pretrained_resnet18 = models.resnet18(pretrained=True)pretrained_resnet18_dict = pretrained_resnet18.state_dict()#调⽤⾃⼰设置的模型,也得到结构即相应参数model_conv = resnet18Owned(gender_classes=2, race_classes=3)model_conv_dict = model_conv.state_dict()#当模型中的某层是同时在两个模型中共有时才取出,即得到除了全连接层以外的所有层次对应的参数pretrained_resnet18_dict = {k:v for k,v in pretrained_resnet18_dict.items() if k in model_conv_dict}#然后⽤该新参数的值取更新你⾃⼰的模型的参数#这样,除了你修改的全连接层外,其他层次的参数就都是预训练模型的参数了model_conv_dict.update(pretrained_resnet18_dict)#然后将参数导⼊你的模型即可model_conv.load_state_dict(model_conv_dict)model_conv.to(device)后⾯了解到有⼀种更简单的⽅法:就是当你设置好你⾃⼰的模型后,如果仅想使⽤预训练模型相同结构处的参数,即在加载的时候将参数strict设置为False即可。
基于本福特定律和机器学习的网络入侵检测研究
基于贝叶斯优化算法(BOA)的 XGBoost 检测模型对第一层中的异常窗口进一
步分析以实现精确到单条流的细粒度检测。与单独的检测模型对比,
Filter-XGBoost 充 分 结 合 了 两 种 检 测 模 型 各 自 的 优 点 。 与 其 他 算 法 对 比 ,
1.4 本文组织结构 .............................................................................................. 11
1.5 本章小结 ...................................................................................................... 11
摘 要
互联网的普及在造福人们的同时,也带来了巨大的安全隐患。不断升级的
网络入侵行为可能会导致个人隐私泄露、系统瘫痪等一系列重大安全问题。相
关入侵检测技术已日臻完善,诸如机器学习等新技术的使用解决了传统入侵检
测中存在的方法僵化、自适应性差等问题,同时也在一定程度上提高了检测率。
但机器学习算法自身的局限性使得现有解决方案仍面临两大主要问题:一是如
accurate to a single flow. Compared with the separate detection models,
Filter-XGBoost combines the advantages of both detection models. Compared with
other algorithms, Filter-XGBoost performs well in detection rate and false alarm rate.
考虑要素协同的高铁列车运行图双层优化模型
文章编号:1672-4747(2022)02-0125-11考虑要素协同的高铁列车运行图双层优化模型石敏涵1,吕红霞1,2,3,倪少权1,2,3,吕苗苗1,2,3(1.西南交通大学,交通运输与物流学院,成都611756;2.综合交通大数据应用技术国家工程实验室,成都611756;3.综合交通运输智能化国家地方联合工程实验室,成都611756)摘要:列车停站方案、列车运行图和动车组接续方案间相互影响,将三者进行协同优化能够保证在提高客流需求满足程度的同时,最大程度地降低由动车组运用决定的铁路部门运输组织成本。
因此,本文在分析三者间协同关系的基础上,建立双层模型。
上层模型为以旅客需求满足程度最高、铁路部门运输成本最低为目标的协同优化模型,下层模型为以动车组运用数量和接续时间最小为目标的最优动车组接续模型,且下层模型将最优动车组运用指标决定的铁路部门运输成本传递至上层目标函数中,构成双层模型间的联系。
结合模型的双层特性,设计双层启发式算法求解,外层采用计算效率高、计算效果好的自适应大邻域搜索算法,根据算子的历史表现动态确定算子选择概率,以获得停站方案与运行图综合可行解;内层采用模拟退火算法,在外层输入方案的基础上,确定相应的最优动车组接续方案,并将指标输出至外层。
算例分析结果表明,采用本文提出的协同优化方法进行优化,能在可接受时间范围内得到指标较优的综合方案,验证了本文模型和算法的有效性。
关键词:铁路运输;停站方案;列车运行图;动车组接续方案;协同优化;双层规划中图分类号:U292.4+1文献标志码:ADOI :10.19961/ki.1672-4747.2021.07.004Bilevel Optimization Model for High-speed Railway Train Operation Diagram Considering Multifactor CooperationSHI Min-han 1,LV Hong-xia 1,2,3,NI Shao-quan 1,2,3,LV Miao-miao 1,2,3(1.School of Transportation and Logistics ,Southwest Jiaotong University ,Chengdu 611756,China ;2.NationalEngineering Laboratory of Integrated Transportation Big Data Application Technology ,Chengdu 611756,China ;3.National United Engineering Laboratory of Integrated and Intelligent Transportation ,Chengdu 611756,China)Abstract :The train stop plan ,train operation diagram ,and electrical multiple units (EMUs)circula-tion plan interact.Their collaborative optimization ensures that the satisfaction of passenger flow de-mand can be improved.In addition ,the transportation organization costs of the railway department determined by EMUs operation can be minimized.Therefore ,a bilevel model based on the analysis of the collaborative relationship between these three schemes was established in this study.The up-per-level model was the collaborative optimization model established to achieve the highest satisfac-tion of the passenger demand and the lowest transportation cost of railway departments.The lower-level model was the optimal EMUs operation model for the minimum number of EMUs used and the收稿日期:2021-07-05录用日期:2021-08-09网络首发:2021-08-18审稿日期:2021-07-05~07-14;08-02~08-07;08-09基金项目:国家重点研发计划项目(2017YFB1200702);国家自然科学基金项目(52072314);四川省科技计划项目(2020YJ0268,2020YJ0256);成都市科技项目(2019-YF05-01493-SN ,2020-RK00-00036-ZF );浙江省自然科学基金项目(LQ18G030012);教育部人文社科基金项目(18YJC630190)作者简介:石敏涵(1998—),女,硕士研究生,研究方向为运输组织优化理论与方法,E-mail :通信作者:吕苗苗(1986—),女,博士,讲师,研究方向为轨道交通运输组织优化,E-mail :引文格式:石敏涵,吕红霞,倪少权,等.考虑要素协同的高铁列车运行图双层优化模型[J].交通运输工程与信息学报,2022,20(2):125-135.SHI Min-han ,LV Hong-xia ,NI Shao-quan ,et al.Bilevel Optimization Model for High-speed Railway Train Operation Diagram Considering Multifactor Cooperation[J].Journal of Transportation Engineering and Information ,2022,20(2):125-135.第20卷第2期2022年06月交通运输工程与信息学报Journal of Transportation Engineering and InformationVol.20No.2Jun.2022minimum connection time.The lower-level model transferred the transportation cost of the railway department determined using the optimal EMUs operation index to the objective function of the up-per-level model,which constitutes the connection between these two bined with the dou-ble-layer characteristics of the model,a double-layer heuristic algorithm was designed to solve the problem.In the outer layer,the adaptive large-neighborhood search algorithm with high computation-al efficiency and good computational effect was adopted.The selection probability of the operators was dynamically determined based on the historical performance to obtain a feasible solution of the train stop plan and train operation diagram result.The inner layer had a simulated annealing algo-rithm,determined the corresponding optimal EMUs connection scheme based on the outer layer,and output the index to the outer layer.Finally,the example analysis result shows that a comprehensive scheme with improved indexes can be obtained within an acceptable time range using the proposed collaborative optimization method,verifying the effectiveness of the model and algorithm.Key words:railway transportation;train stop plan;train operation diagram;EMUs circulation plan;collaborative optimization;bilevel programming0引言高速铁路列车停站方案和列车运行图的优劣决定了旅客出行的便捷程度,动车组接续方案的优劣决定了运输成本。
An overview of ocean renewable energy in China 中国海洋资源开发回顾
An overview of ocean renewable energy in ChinaRenewable and Sustainable Energy ReviewsFacing great pressure of economic growth and energy crisis, China pays much attention to the renewable energy. An overview of policy and legislation of renewable energy as well as status of development of renewable energy in China was given in this article. By analysis, the authors believe that ocean energy is a necessary addition to existent renewable energy to meet the energy demand of the areas and islands where traditional forms of energy are not applicable and it is of great importance in adjusting energy structure of China. In the article, resources distribution and technology status of tidal energy, wave energy, marine current energy, ocean thermal energy and salinity gradient energy in China was reviewed, and assessment and advices were given for each category. Some suggestions for future development of ocean energy were also given.Design pressure distributions on the hull of the FLOW wave energy converterThis paper presents a procedure to calculate the design pressure distributions on the hull of a wave energy converter (WEC). Design pressures are the maximum pressure values that the device is expected to experience during its operational life time. The procedure is applied to the prototype under development by Martifer Energy (FLOW—Future Life in Ocean Waves).A boundary integral method is used to solve the hydrodynamic problem. The hydrodynamic pressures are combined with the hydrostatic ones and the internal pressures of the large ballast tanks. The first step consists of validating the numerical results of motions by comparison with measured experimental data obtained with a scaled model of the WEC. The numerical model is tuned by adjusting the damping of the device rotational motions and the equivalent damping and stiffness of the power take-off system. The pressure distributions are calculated for all irregular sea states representative of the Portuguese Pilot Zone where the prototype will be installed and a long term distribution method is used to calculate the expected maximum pressures on the hull corresponding to the 100-year return period.海波流能量转换器压力分散设计Development of an adaptive disturbance rejection system for the rapidly deployable stable platform–part 1: Mathematical modeling and open loop response 海面作业平台系统的稳定性保证:数学建模与开环响应模拟实验A Rapidly Deployable Stable Platform (RDSP) concept was investigated at Florida Atlantic University in response to military and civilian needs for ocean platforms with improved sea-keeping characteristics. The RDSP is designed to have enhanced sea-keeping abilities through the combination of a novel hull and thruster design coupled with active control. The RDSP is comprised of a catamaran that attaches via a hinge to a spar, enabling it to transit like a trimaran and then reconfigure so that the spar lifts the catamaran out of the water, creating a stable spar platform. The focus of this research is the mathematical modeling, simulation, and response characterization of the RDSP to provide a foundation for controller design, testing, and tuning. The mathematical model includes a detailed representation of residual drag, friction drag, added mass, hydrostatic and hydrodynamic pressure, and control actuator dynamics. Validation has been performed by comparing the simulation predicted motions of the RDSP operating in waves to the measured motions of the 1/10th scale prototype measured at sea. Resulting from this paper is an empirical assessment of the response characteristics of the RDSP that quantifies the performance under extreme conditions and provides a solid basis for controller development and testing.Combined use of dimensional analysis and modern experimental design methodologies in hydrodynamics experiments海洋工程设计的多维度分析与现代化的实验化设计与验证的方法In this paper, a combined use of dimensional analysis (DA) and modern statistical design of experiment (DOE) methodologies is proposed for a hydrodynamics experiment where there are a large number of variables. While DA is well-known, DOE is still unfamiliar to most ocean engineers although it has been shown to be useful in many engineering and non-engineering applications. To introduce and illustrate the method, a study concerning the thrust of a propeller is considered. Fourteen variables are involved in the problem and after dimensional analysis this reduces to 11 dimensionless parameters. Then, a two-level fractional factorial design was used to screen out parameters that do not significantly contribute to explaining the dependent dimensionless parameter. With the remaining five statistically significant dimensionless parameters, various response surface methodologies (RSM) were used to obtain a functional relationship between the dependent dimensionless thrust coefficient, and the five dimensionless parameters. The final model was found to be of reasonable accuracy when tested against results not used to develop the model. The methodologies presented in the paper can be similarly applied to systems with a large number of control variables to systematically derive approximate mathematical models to predict the responses of the system economically and accurately.Progress toward autonomous ocean sampling networks海洋实验与勘测的自动取样网络化系统的设计进程The goals of the Autonomous Ocean Sampling Network (AOSN) are reviewed and progress toward those goals is assessed based on results of recent, major field experiments. Major milestones include the automated control of multiple, mobile sensors for weeks using spatial coverage metrics and the transition from engineering a reliable data stream to managing the complexities of decision-making based on the data and the possibilities of timely feedback.Non-uniform adaptive vertical grids for 3D numerical ocean modelsOcean Modelling采用垂直化网格表示的的三维数字化海洋模型海洋建模学报A new strategy for the vertical gridding in terrain-following 3D ocean models is presented here. The vertical grid adaptivity is partially given by a vertical diffusion equation for the vertical layer positions, with diffusivities being proportional to shear, stratification and distance from the boundaries. In the horizontal, the grid can be smoothed with respect to z-levels, grid layer slope and density. Lagrangian tendency of the grid movement is supported. The adaptive terrain-following grid can be set to be an Eulerian–Lagrangian grid, a hybrid σ–ρ or σ–z grid and combinations of these with great flexibility. With this, internal flow structures such as thermoclines can be well resolved and followed by the grid. A set of idealised examples is presented in the paper, which show that the introduced adaptive grid strategy reduces pressure gradient errors and numerical mixing significantly. The grid adaption strategy is easy to implement in various types of terrain-following ocean models. The idealised examples give evidence that the adaptive grids can improve realistic, long-term simulations of stratified seas while keeping the advantages of terrain-following coordinates.Procedures for offline grid nesting in regional ocean models海岸离散测绘网布局点与区域海洋模型图绘制仿真步骤与过程One-way offline nesting of a primitive-equation regional ocean numerical model (ROMS) is investigated, with special attention to the boundary forcing file creation process. The model has a modified open boundary condition which minimises false wave reflections, and is optimised to utilise high-frequency boundary updates. The model configuration features a previously computed solution which supplies boundary forcing data to an interior domain with an increased grid resolution. At the open boundaries of the interior grid (the child) the topography is matched to that of the outer grid (the parent), over a narrow transition region. A correction is applied to the normal baroclinic and barotropic velocities at the open boundaries of the child to ensure volume conservation. It is shown that these steps, together with a carefully constructed interpolation of the parent data, lead to a high-quality child solution, with minimal artifacts such as persistent rim currents and wave reflections at the boundaries.Development of a Coupled Ocean–Atmosphere–Wave–Sediment Transport (COAWST) Modeling SystemUnderstanding the processes responsible for coastal change is important for managing our coastal resources, both natural and economic. The current scientific understanding of coastal sediment transport and geology suggests that examining coastal processes at regional scales can lead to significant insight into how the coastal zone evolves. To better identify the significant processes affecting our coastlines and how those processes create coastal change we developed a Coupled Ocean–Atmosphere–Wave–Sediment Transport (COAWST) Modeling System, which is comprised of the Model Coupling Toolkit to exchange data fields between the ocean model ROMS, the atmosphere model WRF, the wave model SWAN, and the sediment capabilities of the Community Sediment Transport Model. This formulation builds upon previous developments by coupling the atmospheric model to the ocean and wave models, providing one-way grid refinement in the ocean model, one-way grid refinement in the wave model, and coupling on refined levels. Herein we describe the modeling components and the data fields exchanged. The modeling system is used to identify model sensitivity by exchanging prognostic variable fields between different model components during an application to simulate Hurricane Isabel during September 2003. Results identify that hurricane intensity is extremely sensitive to sea surface temperature. Intensity is reduced when coupled to the ocean model although the coupling provides a more realistic simulation of the sea surface temperature. Coupling of the ocean to the atmosphere also results in decreased boundary layer stress and coupling of the waves to the atmosphere results in increased bottom stress. Wave results are sensitive to both ocean and atmospheric coupling due to wave–current interactions with the ocean and wave growth from the atmosphere wind stress. Sediment resuspension at regional scale during the hurricane is controlled by shelf width and wave propagation during hurricane approach.Contact dynamics of two floating cable-connected bodiesWe consider two ship-like bodies connected by six cables and excited by waves. The cables might be under tension, or they might be slack, thus forming a unilateral system generating possible impacts. The impact forces can reach 20,000 kN and are able to cause damage to a ship. In order to avoid such large impact forces, anti-shock buffers might be adopted but good buffer design requires knowledge of the impact forces. We have evaluated these using multi-body theory with unilateral contacts in combination with classical ship dynamics, which allows modeling of the contact dynamics of two floating bodies in an ocean. Based on an optimization algorithm a method using an artificial neural network (NNW) has been developed to determine the combination of possible constraints at each step. The results of a numerical example compare reasonably well with experiments. We have thus established a theoretical basis for further buffer design.Joint modelling of wave spectral parameters for extreme sea statesCharacterising the dependence between extremes of wave spectral parameters such as significant wave height (H S) and spectral peak period (T P) is important in understanding extreme ocean environments andin the design and assessment of marine structures. For example, it is known that mean values of wave periods tend to increase with increasing storm intensity. Here we seek to characterise joint dependence in a straightforward manner, accessible to the ocean engineering community, using a statistically sound approach.Many methods of multivariate extreme value analyses are based on models which assume implicitly that in some joint tail region each parameter is either independent of or asymptotically dependent on other parameters; yet in reality the dependence structure in general is neither of these. The underpinning assumption of multivariate regular variation restricts these methods to estimation of joint regions in which all parameters are extreme; but regions where only a subset of parameters are extreme can be equally important for design. The conditional approach of Heffernan and Tawn (2004), similar in spirit to that of Haver (1985) but with better theoretical foundation, overcomes these difficulties.We use the conditional approach to characterise the dependence structure of H S and T P. The key elements of the procedure are: (1) marginal modelling for all parameters, (2) transformation of data to a common standard Gumbel marginal form, (3) modelling dependence between data for extremes of pairs of parameters using a form of regression, (4) simulation of long return periods to estimate joint extremes. We demonstrate the approach in application to measured and hindcast data from the Northern North Sea, the Gulf of Mexico and the North West Shelf of Australia. We also illustrate the use of data re-sampling techniques such as bootstrapping to estimate the uncertainty in marginal and dependence models and accommodate this uncertainty in extreme quantile estimation.We discuss the current approach in the context of other approaches to multivariate extreme value estimation popular in the ocean engineering community.极端海洋多外力因素环境的综合作用仿真Robust diving control of an AUVMobile systems traveling through a complex environment present major difficulties in determining accurate dynamic models. Autonomous underwater vehicle motion in ocean conditions requires investigation of new control solutions that guarantee robustness against external parameter uncertainty.A diving-control design, based on Lyapunov theory and back-stepping techniques, is proposed and verified. Using adaptive and switching schemes, the control system is able to meet the required robustness. The results of the control system are theoretically proven and simulations are developed to demonstrate the performance of the solutions proposed.移动式潜水器的鲁棒控制Transient behavior of towed cable systems during ship turning maneuversThe dynamic behavior of a towed cable system that results from the tow ship changing course from a straight-tow trajectory to one involving steady circular turning at a constant radius is examined. For large-radius ship turns, the vehicle trajectory and vehicle depth assumed, monotonically and exponentially, the large-radius steady-state turning solution of Chapman [Chapman, D.A., 1984. The towed cable behavior during ship turning manoeuvers. Ocean Engineering 11, 327–361]. For small-radius ship turns, the vehicle trajectory initially followed a corkscrew pattern with the vehicle depth oscillating about and eventually decaying to the steady-state turning solution of Chapman (1984). The change between monotonic and oscillatory behavior in the time history of the vehicle depth was well defined and offered an alternate measure to Chapman's (1984) critical radius for the transition point between large-radius and small-radius behavior. For steady circular turning in the presence of current, there was no longer a steady-state turning solution. Instead, the vehicle depth oscillated with amplitude that was a function of the ship-turning radius and the ship speed. The dynamics of a single 360° turn and a 180° U-turn are discussed in terms of the transients of the steady turning maneuver. For a single 360°large-radius ship turn, the behavior was marked by the vehicle dropping to the steady-state turning depth predicted by Chapman (1984) and then rising back to the initial, straight-tow equilibrium depth once the turn was completed. For small ship-turning radius, the vehicle dropped to a depth corresponding to the first trough of the oscillatory time series of the steady turning maneuver before returning to the straight-tow equilibrium depth once the turn was completed. For some ship-turning radii, this resulted in a maximum vehicle depth that was greater than the steady-state turning depth. For a 180°turn and ship-turning radius less than the length of the tow cable, the vehicle never reached the steady-state turning depth.海洋勘测船的光缆稳定性与海波振动影响传输On the structure of Langmuir turbulenceThe Stokes drift induced by surface waves distorts turbulence in the wind-driven mixed layer of the ocean, leading to the development of streamwise vortices, or Langmuir circulations, on a wide range of scales. We investigate the structure of the resulting Langmuir turbulence, and contrast it with the structure of shear turbulence, using rapid distortion theory (RDT) and kinematic simulation of turbulence. Firstly, these linear models show clearly why elongated streamwise vortices are produced in Langmuir turbulence, when Stokes drift tilts and stretches vertical vorticity into horizontal vorticity, whereas elongated streaky structures in streamwise velocity fluctuations (u) are produced in shear turbulence, because there is a cancellation in the streamwise vorticity equation and instead it is vertical vorticity that is amplified. Secondly, we develop scaling arguments, illustrated by analysing data from LES, thatindicate that Langmuir turbulence is generated when the deformation of the turbulence by mean shear is much weaker than the deformation by the Stokes drift. These scalings motivate a quantitative RDT model of Langmuir turbulence that accounts for deformation of turbulence by Stokes drift and blocking by theair–sea interface that is shown to yield profiles of the velocity variances in good agreement with LES. The physical picture that emerges, at least in the LES, is as follows. Early in the life cycle of a Langmuir eddy initial turbulent disturbances of vertical vorticity are amplified algebraically by the Stokes drift into elongated streamwise vortices, the Langmuir eddies. The turbulence is thus in a neartwo-component state, with suppressed and . Near the surface, over a depth of order the integral length scale of the turbulence, the vertical velocity (w) is brought to zero by blocking of the air–sea interface. Since the turbulence is nearly two-component, this vertical energy is transferred intothe spanwise fluctuations, considerably enhancing at the interface. After a time of order half the eddy decorrelation time the nonlinear processes, such as distortion by the strain field of the surrounding eddies, arrest the deformation and the Langmuir eddy decays. Presumably, Langmuir turbulence then consists of a statistically steady state of such Langmuir eddies. The analysis then provides a dynamical connection between the flow structures in LES of Langmuir turbulence and the dominant balance between Stokes production and dissipation in the turbulent kinetic energy budget, found by previous authors.Effects of vertical variations of thickness diffusivity in an ocean general circulation model洋流循环模型The effects of a prescribed surface intensification of the thickness (and isopycnal) diffusivity on the solutions of an ocean general circulation model are documented. The model is the coarse resolution version of the ocean component of the National Center for Atmospheric Research (NCAR) Community Climate System Model version 3 (CCSM3). Guided by the results of Ferreira et al. (2005) [Ferreira, D., Marshall, J., Heimbach, P., 2005. Estimating eddy stresses by fitting dynamics to observations using a residual-mean ocean circulation model and its adjoint. J. Phys. Oceanogr. 35, 1891–1910.] we employ a vertical dependence of the diffusivity which varies with the stratification, N2, and is thus large in the upper ocean and small in the abyss. We experiment with vertical variations of diffusivity which are as large as 4000 m2 s−1 within the surface diabatic layer, diminishing to 400 m2 s−1 or so by a depth of 2 km. The new solutions compare more favorably with the available observations than those of the control which uses a constant value of 800 m2 s−1 for both thickness and isopycnal diffusivities. These include an improved representation of the vertical structure and transport of the eddy-induced velocity in the upper-ocean North Pacific, a reduced warm bias in the upper ocean, including the equatorial Pacific, and improved southward heat transport in the low- to mid-latitude Southern Hemisphere. There is also a modest enhancement of abyssal stratification in the Southern Ocean.Using satellite altimetry to correct mean temperature and salinity fields derived from Argo floats in the ocean regions around AustraliaWe present results from a suite of methods using in situ temperature and salinity data, and satellitealtimetric observations to obtain an enhanced set of mean fields of temperature, salinity (down to 2000-m depth) and steric height (0/2000 m) for a time-specific period (1992–2007). Firstly, the improved global sampling resulting from the introduction of the Argo program, enables a representative determination of the large-scale mean oceanic structure. However, shortcomings in the coverage remain. High variability western boundary current eddy fields, continental slope and shelf boundaries may all be below their optimal sampling requirements. We describe a simple method to supplement and improve standard spatial interpolation schemes and apply them to the available data within the waters surrounding Australia (100°E–180°W; 50°S–10°N). This region includes a major current system, the East Australian Current (EAC), complex topography, unique boundary currents such as the Leeuwin Current, and large ENSO related interannual variability in the southwest Pacific. We use satellite altimetry sea level anomalies (SLA) to directly correct sampling errors in in situ derived mean surface steric height and subsurface temperature and salinity fields. The surface correction is projected through the water column (using an empirical model) to modify the mean subsurface temperature and salinity fields. The errors inherent in all these calculations are examined. The spatial distribution of the barotropic–baroclinic balance is obtained for the region and a ‘baroclinic factor’ to convert the altimetry SLA into an equivalent in situ height is determined. The mean fields in the EAC region are compared with independent estimates on repeated XBT sections, a mooring array and full-depth CTD transects.海洋开发的航空与遥感大规模探测技术。
计算机术语与中文解释对照
3C(China Compulsory Certification,中国强制性产品认证制度)3D(Three Dimensional,三维)3DCG(3D computer graphics,三维计算机图形)3DNow!(3D no waiting,无须等待的3D处理)3DPA(3D Positional Audio,3D定位音频)3DS(3D SubSystem,三维子系统)3GIO(Third Generation Input/Output,第三代输入输出技术)AA(Accuview Antialiasing,高精度抗锯齿)AAC(Advanced Audio Compression,高级音频压缩)AAM(AMD Analyst Meeting,AMD分析家会议)AAM(Automatic Acoustic Management,自动机械声学管理)AAS(Automatic Area Segments)AAT(Average access time,平均存取时间)ABB(Advanced Boot Block,高级启动块)ABP(Address Bit Permuting,地址位序列改变)ABP(Advanced Branch Prediction,高级分支预测)ABS(Auto Balance System,自动平衡系统)A-Buffer(Accumulation Buffer,积聚缓冲)AC(Acoustic Edge,声学边缘)AC(Audio Codec,音频多媒体数字信号编解码器)AC-3(Audio Coding 3,第三代音响编码)AC97(Audio Codec 97,多媒体数字信号解编码器1997年标准)ACCP(Applied Computing Platform Providers,应用计算平台提供商)ACG(Aggressive Clock Gating,主动时钟选择)ACIRC(Advanced Cross Interleave Reed - Solomon Code,高级交叉插入里德所罗门代码)ACOPS(Automatic CPU OverHeat Prevention System(CPU过热预防系统)ACPI(Advanced Configuration and Power Interface,先进设置和电源管理)ACR(Advanced Communications Riser,高级通讯升级卡)ACS(Access Control Software,存取控制软件)ACT(Action,动作类游戏)AD(Analog to Digitalg,模拟到数字转换)ADC(Analog to Digital Converter,模数传换器)ADC(Apple Display Connector,苹果专用显示器接口)ADI(Adaptive De-Interlacing,自适应交错化技术)ADIMM(advanced Dual In-line Memory Modules,高级双重内嵌式内存模块)ADIP(Address In Pre-Groove,预凹槽寻址)ADSL(Asymmetric Digital Subscriber Line,不对称数字订阅线路)ADT(Advanced DRAM Technology,高级内存技术)AE(Atmospheric Effects,大气雾化效果)AE(Auto Focus,自动测光)AES-OCB(Advanced Encryption Standard-Operation Cipher Block,高级加密标准-操作密码块)AF(Auto Focus,自动对焦)AFC media(antiferromagnetically coupled media,反铁磁性耦合介质)AFC(Advanced Frame Capture、高级画面捕获)AFC(Amplitude-frequency characteristic,振幅频率特征)AFE(Analog Front End,模拟前置)AFM(Atomic Force Microscope,原子力显微镜)AFR(Alternate Frame Rendering,交替渲染技术)AG(Aperture Grills,栅条式金属板)AGBS(Advance GameBoy development System,高级GameBoy发展系统)AGC(Anti Glare Coatings,防眩光涂层)AGP(Accelerated Graphics Port,图形加速接口)AGPS(Assisted Global Positioning System,援助全球定位系统)AGTL+(Assisted Gunning Transceiver Logic,援助发射接收逻辑电路)AGU(Address Generation Units,地址产成单元)AH(Authentication Header,鉴定文件头)AHA(Accelerated Hub Architecture,加速中心架构)AI(Artificial Intelligence,人工智能)AIMM(AGP Inline Memory Module,AGP板上内存升级模块)AIS(Alternate Instruction Set,交替指令集)AL(Additive Latency,附加反应时间)AL(Artificial Life,人工生命)ALAT(advanced load table,高级载入表)ALDC(Adaptive Lossless Data Compression,适应无损数据压缩)ALU(Arithmetic Logic Unit,算术逻辑单元)Aluminum(铝)AM(Acoustic Management,声音管理)AMC(audio/modem codec,音频/调制解调器多媒体数字信号编解码器)AMR(Audio/Modem Riser,音效/调制解调器主机板附加直立插卡)An isotropic Filtering(各向异性过滤)ANSI(American National Standards Institute,美国国立标准协会)AOI(Automatic Optical Inspection,自动光学检验)AOL(Alert On LAN,局域网警告)APC(Advanced Power Control,高级能源控制)API(Application Programming Interfaces,应用程序接口)APIC(Advanced Programmable Interrupt Controller,高级可编程中断控制器)APM(Advanced Power Management,高级能源管理)APPE(Advanced Packet Parsing Engine,增强形帧解析引擎)APS(Alternate Phase Shifting,交替相位跳转)APS(Audio Production Studio,音频生产工作室)APU(Audio Processing Unit,音频处理单元)APX(All Position eXpansion,全方位扩展)AR(Auto-Resume,自动恢复)ARC(Anti Reflect Coating,防反射涂层)ARF(Asynchronous Receive FIFO,异步接收先入先出)ARP(Address Resolution Protocol,地址解析协议)ARPG(Action Role Play Games,动作角色扮演游戏)ARR(Annual Return Rate,年返修率)ASB(Advanced System Buffering,高级系统缓冲)ASC(Advanced Size Check,高级尺寸检查)ASC(Anti Static Coatings,防静电涂层)ASC(Auto-Sizing and Centering,自动调效屏幕尺寸和中心位置)ASCI(The 10-year Accelerated Strategic Computing Initiative,领先10年战略加速计算机)ASCII(American Standard Code for Information Interchange,美国国家标准信息交换代码)ASD(Auto Stereoscopic Display,自动立体显示)ASF(Advanced Streaming Format,高级数据流格式)ASF(Alert Standards Forum,警告标准讨论)ASIC(Application Specific Integrated Circuit,特殊应用积体电路)ASIO(Audio Streaming Input and Output interface,音频流输入输出接口)ASK IR(Amplitude Shift Keyed Infra-Red,长波形可移动输入红外线)ASMO(Advanced Storage Magneto-Optical,增强形光学存储器)ASP(Active Server Pages,活动服务页)ASP(Application Service Provider,应用服务提供商)ASPI(Advanced SCSI Programming Interface,高级SCSI可编程接口)AST(amorphous-silicon TFT,非晶硅薄膜晶体管)AST(Average Seek time,平均寻道时间)AT(Advanced Technology,先进技术)ATA(Advanced Technology Attachment,高级技术附加装置)ATAPI(AT Attachment Packet Interface,AT扩展包接口)ATC(Access Time from Clock,时钟存取时间)ATC(Advanced Transfer Cache,高级转移缓存)ATD(Assembly Technology Development,装配技术发展)ATL(ActiveX Template Library,ActiveX模板库)ATM(Asynchronous Transfer Mode,异步传输模式)ATM(Automatic Teller Machine,自动提款机)ATOMM(Advanced super Thin-layer and high-Output Metal Media,增强形超薄高速金属媒体)ATP(Active to Precharge,激活到预充电)ATRAC(Adaptive TRansform Acoustic Coding,可适应转换声学译码)ATSC(Advanced Television Systems Committee,高级电视系统委员会)ATX(AT Extend,扩展型AT)AUD_EXT(Audio Extension,音频扩展)AUX(Auxiliary Input,辅助输入接口)AV(Analog Video,模拟视频)AV(Audio & Video,音频和视频)AVG(Adventure Genre,冒险类游戏)AVI(Audio Video Interleave,音频视频插入)B Splines(B样条)B.O.D.E(Body Object Design Envioment,人体/物体/设计/环境渲染自动识别)BAC(Bad Angle Case,边角损坏采样)Back Buffer(后置缓冲)Backface culling(隐面消除)BAD(Best Amiga Dominators)BASIC(Beginner s All-purpose Symbolic Instruction Codec,初学者通用指令代码)Battle for Eyeballs(眼球大战)BBS(BIOS Boot Specification,基本输入/输出系统启动规范)BBUL(Bumpless Build-Up Layer,内建非凹凸层)BCF(Boot Catalog File,启动目录文件)BEDO(Burst Enhanced Data-Out RAM,突发型数据增强输出内存)Benchmarks(基准测试程序数值BGA(Ball Grid Array,球状网阵排列)BHT(branch prediction table,分支预测表)BIF(Boot Image File,启动映像文件)Bilinear Filtering(双线性过滤)BIOS(Basic Input/Output System,基本输入/输出系统)BLA(Bearn Landing Area,电子束落区)BLP(Bottom Leaded Package,底部导向封装)BMC(Black Matrix Screen,超黑矩阵屏幕)BMS(Blue Magic Slot,蓝色魔法槽)BOD(Bandwidth On Demand,弹性带宽运用)BOPS(Billion Operations Per Second,十亿次运算/秒)BP(Brach Prediction,分支预测)BPA(Bit Packing Architecture,位封包架构)BPI(Bit Per Inch,位/英寸)bps(bit per second,位/秒)bps(byte per second,字节/秒)BPU(Branch Processing Unit,分支处理单元)BRC(Beta Release Candidate,测试发布候选版0)BSD(Berkeley Software Distribution,伯克利软件分配代号)BSP(Binary Space Partitioning,二进制空间分区)BSP(Boot Strap Processor,启动捆绑处理器)BSRAM(Burst pipelined synchronous static RAM,突发式管道同步静态存储器)BTAC(Branch Target Address Calculator,分支目标寻址计算器)BTO(Build-To-Order,按序构建)BURN-Proof(Buffer UnderRuN-Proof,防止缓冲区溢出)C.O.P(CPU overheating protection,处理器过热保护)C2C(card-to-card interleaving,卡到卡交错存取CAD(computer-aided design,计算机辅助设计)CAM(Common Access Model,公共存取模型)CAM(Computer-aided manufacturing,计算机辅助制造)CAS(Column Address Strobe,列地址控制器)CAV(Constant Angular Velocity,恒定角速度)CBDS(Continuous Background Defect Scanning,连续后台错误扫描)CBF(Cable Broadband Forum,电缆宽带论坛)CBGA(Ceramic Ball Grid Array,陶瓷球状网阵排列)CBMC(Crossbar based memory controller,内存控制交叉装置)CBR(Committed Burst Rate,约定突发速率)CBR(Constant Bit Rate,固定比特率)CBU(color blending unit,色彩混和单位)CCD(Charge Coupled Device,电荷连接设备)CCIRN(Coordinating Committee for Intercontinental Research Networking,洲际研究网络协调委员会)CCM(Call Control Manager,拨号控制管理)cc-NUMA(cache-coherent non uniform memory access,连贯缓冲非统一内存寻址)CCS(Cross Capacitance Sensing,交叉电容感应)CCS(Cut Change System)CCT(Clock Cycle Time,时钟周期)CD(Compact Disc)cd/m^2(candela/平方米,亮度的单位)CDIP(Ceramic Dual-In-Line,陶瓷双重直线)CDPD(Cellular digital Packet data,细胞数字信息包数据)CDR(CD Recordable,可记录光盘)CDRAM(Cache DRAM,附加缓存型DRAM)CD-ROM/XA(CD-ROM eXtended Architecture,唯读光盘增强形架构)CDRS(Curved Directional Reflection Screen,曲线方向反射屏幕)CDRW(CD-Rewritable,可重复刻录光盘)CDSL(Consumer Digital Subscriber Line(消费者数字订阅线路)CE(Consumer Electronics,消费电子)CEA(Consumer Electronics Association,消费者电子协会)CEA(Critical Edge Angles,临界边角)CEM(cube environment mapping,立方环境映射)CEMA(Consumer Electronics Manufacturing Association(消费者电子制造业协会)Center Processing Unit Utilization,中央处理器占用率CEO(Chief Executive Officer,首席执行官)CF(CompactFlash Card,紧凑型闪存卡)CFM(cubic feet per minute,立方英尺/秒)CG(C for Graphics/GPU,用于图形/GPU的可编程语言)CG(Computer Graphics,计算机动画)CGI(Common Gateway Interface,通用网关接口)CG-Silicon(Continuous Grain Silicon,连续微粒硅)CHRP(Common Hardware Reference Platform,共用硬件平台)CHS(Cylinders、Heads、Sectors,柱面、磁头、扇区)CIEA(Commercial Internet Exchange Association,商业因特网交易协会)CIR(Committed Information Rate,约定信息速率)CIS(Contact Image Sensors,接触图像传感器)CISC(Complex Instruction Set Computing,复杂指令集计算机)CL(CAS Latency,CAS反应时间)Clipping(剪贴纹理)CLK(Clock Cycle,时钟周期)Clock Synthesizer,时钟合成器CLV(Constant Linear Velocity,恒定线速度)CMOS(Complementary Metal Oxide Semiconductor,互补金属氧化物半导体)CMOV(conditional move 包含uction,条件移动指令)CMP(on-chip multiprocessor,片内多重处理)CMR(Colossal Magneto Resistive,巨磁阻抗)CMS(Code Morphing Software,代码变形软件)CMSS(Creative Multi Speaker Surround,创新多音箱环绕)CMT(course-grained multithreading,过程消除多线程)CNPS(Computer Noise Prevention System,计算机噪音预防系统)CNR(Communication and Networking Riser,通讯和网络升级卡)CNT(carbon nano-tube,碳微管)COAST(Cache-on-a-stick,条状缓存)COB(Cache on board,板上集成缓存)co-CPU(cooperative CPU,协处理器)COD(Cache on Die,芯片内核集成缓存)COM(Component Object Model,组件对象模式)COMDEX(Computer Distribution Exposition,计算机代理分销业展览会)compressed textures(压缩纹理)Concurrent Command Engine,协作命令引擎COO(Chief Organizer Officer,首席管理官)Copper(铜)CP(command processor,指令处理器)CPA(Close Page Auto recharge,接近页自动预充电)CPE(Customer Premise Equipment,用户预定设备)CPGA(Ceramic Pin Grid Array,陶瓷针型栅格阵列)CPI(count per inch,每英寸计数)CPI(cycles per 包含uction,周期/指令)CPLD(Complex Programmable Logic Device,复杂可程序化逻辑组件)CPRM(Content Protection for record able media,记录媒体内容保护)CPS(Certification Practice Statement,使用证明书)CPU(Center Processing Unit,中央处理器)CRC(Cyclical Redundancy Check,循环冗余检查)CRM(Customer Relationship Management,顾客关系管理)CRT(Cathode Ray Tube,阴极射线管)CRT(Cooperative Redundant Threads,协同多余线程)CS(Channel Separation,声道分离)CSA(Canadian Standards Association,加拿大标准协会)CSA(Communication Streaming Architecture,通讯流架构)CSC(Colorspace Conversion,色彩空间转换)CSD(Circuit Switched Data,电路切换数据通话)CSE(Configuration Space Enable,可分配空间)CSG(constructive solid geometry,建设立体几何)CSP(Chip Scale Package,芯片比例封装)CSP(Chip Size Package,芯片尺寸封装)CSS(Cascading Style Sheets,层叠格式表)CSS(Common Command Set,通用指令集)CSS(Content Scrambling System,内容不规则加密)CTI(Computer Telephone Integration,计算机电话综合技术)CTO(Chief Technology Officer,首席技术官)CTR(CAS to RAS,列地址到行地址延迟时间)CTS(Carpal Tunnel Syndrome,计算机腕管综合症)CTS(Clear to Send,清除发送)CVS(Compute Visual Syndrome,计算机视觉综合症)CXT(Chooper eXTend,增强形K6-2内核)DA(Digital to Analog,数字到模拟转换)DAB(digital audio broadcast,数字音频广播)DAC(Digital to Analog Converter,数模传换器)DAC(Dual Address Cycle,双重地址周期)DAE(digital Audio Extraction,数据音频抓取)DAN(Dance,跳舞类游戏)DAO(Disc At Once,整盘刻录)DAO-RAW(Disc At Once Read after Write,整盘刻录-写后读)DASP(Dynamic Adaptive Speculative Pre-Processor,动态适应预测预处理器)Data Forwarding(数据前送)dB(decibel,分贝)DB(Deep Buffer,深度缓冲)DB(Device Bay,设备插架)DBBS(Dynamic Bass Boost System,动态低音增强系统)DBI(dynamic bus inversion,动态总线倒置)DBS(Direct Broadcast Satellite,直接卫星广播)DBS-PC(Direct Broadcast Satellite PC,人造卫星直接广播式PC)DC(Digital Camera,数码相机)DC(Dreamcast,世嘉64位游戏机)DCA(Defense Communication Agency,国防部通信局)DCC(Digital Compact Cassette,数字盒式磁带)DCC(Digital Content Creation,数字内容创造)DCD(Directional Corelational De-interlacing,方向关联解交错)DCD(Document Content De脚本ion for XML,XML文件内容描述)DCE(Data Circuit Terminal Equipment,数据通信设备)DCLK(Dot Clock,点时钟)DCOM(Distributing Component Object Model,构造物体模块)DCT(Display Compression Technology,显示压缩技术)DCT(DRAM Controller,DRAM控制器)DD(Double Side,双面内存)DDBGA(Die Dimension Ball Grid Array,内核密度球状矩阵排列)DDC(Display Data Channel,显示数据通道)DDC(Dynamic Depth Cueing,动态深度暗示)图像DDE(dynamic data exchange,动态数据交换)DDMA(Distributed DMA,分布式DMA)DDP(Digital Display Port,数字输出端口)DDR SDRAM(Double Date Rate,上下行双数据率SDRAM)DDR(Double Date Rate,上下行双数据率)DDS(Direct Draw Surface,直接绘画表面)DDSS II(Double Dynamic Suspension System II,第二代双层动力悬吊系统)DDSS(Dolby Digital Surround Sound,杜比数字环绕声)DDSS(Double Dynamic Suspension System,双悬浮动态减震系统)DDT(Dynamic Deferred Transaction,动态延期处理)DDWG(Digital Display Working Group,数字化显示工作组)DEC(Direct Etching Coatings,表面蚀刻涂层)Decal(印花法)Decode(指令解码)Deflection Coil(偏转线圈)DES(ata Encryption Standard,数据加密标准)DFL(Dynamic Focus Lens,动态聚焦)DFP(Digital Flat Panel,数字平面显示标准)DFPG(Digital Flat Panel Group,数字平面显示标准工作组)DFS(Digital Flex Scan,数字伸缩扫描)DFS(Dynamic Flat Shading,动态平面描影)DHCP(Dynamic Host Configuration Protocol,动态主机分配协议)DHHF(Dual Head - High Fidelity,高精度第四代双头)DHT(Dolby Headphone Technology,杜比耳机技术)DIB(Dual Independent Bus,双重独立总线)DIC(Digital Image Control,数字图像控制)DID(Device ID,设备ID)Digital Multiscan II(数字式智能多频追踪)DIL(dual-in-line)DIMM(Dual In-line Memory Modules,双重内嵌式内存模块)Directional Light(方向性光源)DiscWizard(磁盘控制软件)DIT(Disk Inspection Test,磁盘检查测试)Dithering(抖动)DIVA(Data IntensiVe Architecture,数据加强架构)DIY(Do it Yourself,自己装机)DLL(Delay-Locked Loop,延时锁定循环电路)dll(dynamic link library,动态链接库)DLP(digital Light Processing,数字光处理)DLS(Downloadable Sounds Level,可下载音色)DLS-2(Downloadable Sounds Level 2,第二代可下载音色)DM(Displacement mapping,位移贴图)DMA(Direct Memory Access,直接内存存取)DMAC(Direct Memory Access Controller,直接内存存取控制器)DME(Direct Memory Execute,直接内存执行)DMF(Distribution Media Format)DMI(Desktop Management Interface,桌面管理接口)DMT(Discreet Monitor Timing,智能型显示器调速)DMT(Discrete Multi - Tone,不连续多基频模式)DMT(Dynamic Multithreading Architecture,动态多线程结构)DNA(Distributed Internet Application,分布式因特网应用程序)DNS(Domain Name System,域名解析系统)DOA2 HC(Deal or Live 2 hardcore,生与死2完整版)DOC(Disk On Chip,芯片磁盘)DOCSIS(Data Over Cable Service Interface Specifications,线缆服务接口数据规格)DOF(Depth of Field,多重境深)DOJ(Department of Justice,反不正当竞争部门)DOM(Document Object Model,文档目标模型)DoS(Denial of Service,拒绝服务)DOS(Disk Operating System,磁盘操作系统)DOSD(Digital On Screen Display,同屏数字化显示)Dot Pitch(点距)dot texture blending(点型纹理混和)DOT(Dynamic Overcooking Technology,动态超频技术)DOT3(Dot product 3 bump mapping,点乘积凹凸映射)Double Buffering(双缓冲区)DP(Dual Processor,双处理器)DPBM(Dot Product Bump Mapping,点乘积凹凸映射)DPC(Desktop PC,桌面PC)dpi(dot per inch,每英寸的打印像素)DPMS(Display Power Management Signaling,显示能源管理信号)DPP(Direct print Protocol,直接打印协议DQL(Dynamic Quadra pole Lens,动态四极镜)DQS(Bidirectional data strobe,双向数据滤波)DQUICK(DVD Qualification and Integration Kit,DVD资格和综合工具包)DRA(deferred rendering architecture,延迟渲染架构)DRAM(Dynamic Random Access Memory,动态随机存储器)DRCG(Direct Rambus Clock Generator,直接Rambus时钟发生器)DRDRAM(Direct RAMBUS DRAM,直接内存总线DRAM)DRF(Digital radio frequency,数字无线电频率)DRI(Direct Rendering Infrastructure,基层直接渲染)DRM(Digital rights management,数字版权保护)DRM(Digital Rights Management,数字适当管理)DRSL(Differential Rambus Signaling Level,微分RAMBUS信号级)DRSL(Direct Rambus Signaling Level,直接RAMBUS信号级)DS3D(DirectSound 3D Streams)DSD(Direct Stream Digital,直接数字信号流)DSL(Data Strobe Link,数据选通连接DSL(Down Loadable Sample,可下载的取样音色)DSM(Dedicated Stack Manager,专门堆栈管理)DSM(Distributed shared memory,分布式共享内存)DSMT(Dynamic Simultaneous Multithreading,动态同步多线程)DSO(Dynamic Sound-stage Organizer,动态声音层组建)DSP(Delivery Service Partner,交付服务合伙人)DSP(Digital Signal Processing,数字信号处理)DSP(Digital Sound Field Processing,数字音场处理)DSP(Dual Streams Processor,双重流处理器)DST(Depleted Substrate Transistor,衰竭型底层晶体管)DST(Drive Self Test,磁盘自检程序)DSTN(Double layers Super Twisted Nematic,双层超扭曲向列,无源矩阵LCD)DSVD(Digital Simultaneous Voice and Data)DTD(Document Type Definition,文件类型定义)DTE(Data Terminal Equipment,数据终端设备)DTL(Developer Tool,发展工具包)DTR(Disk Transfer Rate,磁盘传输率)DTS(Digital Theater System,数字剧院系统)DTT(DeskTop Theater,桌面剧院)DTV(Digital TV,数字电视)DTV(Dual Threshold Voltage,双重极限电压)DTXS(Decryption Transform for XML Signature,XML签名解密转换)DUN(Dial-Up Networking,拨号网络)DUV(Deep Ultra-Violet,纵深紫外光)DV(Digital Vidicon,数码摄录机)DVB(Digital Video Broadcasting,数字视频广播DVC(Digital Vibrance Control,数字振动控制)DVD(Digital Video/Versatile Disk,数字视频/万能光盘)DVD-R(DVD Recordable,可记录DVD盘)DVD-RAM(Digital Video/Versatile Disk - Random Access Memory,随机存储数字视频/万能光盘)DVD-RW(DVD Rewritable,可重复刻录DVD盘)DVFM(Dynamic Voltage and Frequency Management,动态电压和频率管理)DVI(Digital Video Interface,数字视频接口)DVI(Digital Visual Interface,数字化视像接口)DVMT(Dynamic Video Memory Technology,动态视频内存技术)DVMT(Dynamic Video Memory Technology,动态视频内存技术)DWDM(Dense WaveLength Division Multiplex,波长密集型复用技术)DxR(DynamicXTended Resolution,动态可扩展分辨率)DXTC(Direct X Texture Compress,DirectX纹理压缩)Dynamic Z-buffering(动态Z轴缓冲区)E(Economy,经济,或Entry-level,入门级)E3(Electronic Entertainment Expo,电子娱乐展览会)EAP(Extensible Authentication Protocol,扩展证明协议)EAX(Environmental Audio Extensions,环境音效扩展技术)EB(Expansion Bus,扩展总线)EBGA(Enhanced Ball Grid Array,增强形球状网阵排列)EBL(electron beam lithography,电子束平版印刷)EBR(Excess Burst Rate,超额突发速率)EC(Early Childhood,学龄前儿童)EC(Embedded Controller,嵌入式控制器)ECC(Elliptic Curve Crypto,椭圆曲线加密)ECC(Error Checking and Correction,错误检查修正)ECD(Electro Chromic Display,电铬显示器)ECP(Extended Capabilities Port,延长能力端口)ED(Execution driven,执行驱动)EDA(Electronic Design Automatic,电子设计自动化)E-DDC(Enhanced Display Data Channel,增强形视频数据通道协议)EDEC(Early Decode,早期解码)Edge Anti-aliasing(边缘抗锯齿失真)EDO(Enhanced Data-Out RAM,数据增强输出内存)EE(Emotion Engine,情感引擎)E-EDID(Enhanced Extended Identification Data,增强形扩充身份辨识数据)EEPROM(Electrically Erasable Programmable ROM,电擦写可编程只读存储器)eFB(embedded Frame Buffer,嵌入式帧缓冲)EFEAL(Extended Field Elliptical Aperture Lens,可扩展扫描椭圆孔镜头)EFF(Electronic Frontier Foundation(电子前线基金会)EFI(Extensible Firmware Interface,扩展固件接口)EFM(Eight to Fourteen Modulation,8位信号转换为14位信号)EFU(Elemntary Functional Unit,增强功能单元)EHCI(Enhanced Host Controller Interface,加强型主机端控制接口)EHSDRAM(Enhanced High Speed DRAM,增强型超高速内存)EIDE(enhanced Integrated Drive Electronics,增强形电子集成驱动器)EISA(Enhanced Industry Standard Architecture,增强形工业标准架构)EL DDR(Enhanced Latency DDR,增强反应周期DDR内存)Embedded Chips(嵌入式)EMBM(environment mapped bump mapping,环境凹凸映射)Embosing(浮雕)EMC(Electron Magnetic Compatibility,电磁兼容)EMF(Electron Magnetic Field,电磁场)EMI(Electromagnetic Interference,电磁干扰)EMP(Emergency Management Port,紧急事件管理端口)EMS(Enhanced Memory System,增强内存系统)EMS(Enhanced Message Service,扩展型信息服务)EMS(Expanded Memory Specification,扩充内存规格)EOL(End of Life,最终完成产品)EOS(eBookMan Operating System,电子书操作系统)EPA(edge pin array,边缘针脚阵列)EPA(Environmental Protection Agency,美国环境保护局)EPF(Embedded Processor Forum,嵌入式处理器论坛)EPIC(explicitly parallel 包含uction code,并行指令代码)EPL(electron projection lithography,电子发射平版印刷)EPM(Enhanced Power Management,增强形能源管理)EPM(enterprise project manage)EPOC(Electronic Piece of Cheese,小型电子块)EPOC(Elevated Package Over CSP,CSP架空封装)EPP(Enhanced Parallel Port,增强形平行接口)EPROM(erasable,programmable ROM,可擦写可编程ROM)EPV(Extended Voltage Protection,扩展电压保护)ERD(Emergency Repair Disk,应急修理磁盘)ERP(Enterprise Requirement Planning,企业需求计划)ERP(Enterprise Resource Planning,企业资源计划)ERP(estimated retail price,估计零售价)ES(Energy Star,能源之星)ES(Engineering Sample,工程样品)eSATA(External Serial ATA,扩展型串行ATA)ESCD(Extended System Configuration Data,可扩展系统配置数据)ESD(electro-static discharge,静电释放)ESDJ(Easy Setting Dual Jumper,简化CPU双重跳线法)ESDRAM(Enhanced SDRAM,增强型SDRAM)ESER(EAC Secure Extract Ripping,EAC安全抓取复制)ESP(Electronic-Shock Protection,电子抗震系统)ESP(Embedded System Platform,嵌入式系统平台)ESP(Encapsulating Security Payload,压缩安全有效载荷)ESR(Equivalent Series Resistance,等价系列电阻)ESRAM(Enhanced SRAM,增强型SRAM)ETC(etc,其它类游戏,包括模拟飞行)eTM(embedded Texture Buffer,嵌入式纹理缓冲)ETRI(Electronics and Telecommunications Research Institute,电子和电信研究协会)EULA(End-User License Agreement,最终用户释放协议)EUV(Extreme Ultra Violet,紫外光)EUV(extreme ultraviolet lithography,极端紫外平版印刷)EVF(Electronic Viewfinder,电子取景窗)E-WDM(Enhanced Windows Driver Model,增强型视窗驱动程序模块)Execute Buffers(执行缓冲区)Extended Burst Transactions(增强式突发处理)Extended Stereo(扩展式立体声)Factor Alpha Blending(因子阿尔法混合)FADD(Floationg Point Addition,浮点加)FAQ(Frequently Asked Questions,常见问题回答)Fast Z-clear(快速Z缓冲清除)FAT(File Al本地 Tables,文件分配表)FB(fragment buffer,片段缓冲)FBC(Frame Buffer Cache,帧缓冲缓存)FBGA(Fine-Pitch Ball Grid Array,精细倾斜球状网阵排列)FBGA(flipchip BGA,轻型芯片BGA)F-Buffer(Fragment Stream FIFO Buffer,片段流先入先出缓冲区)FC(Famicom,任天堂8位游戏机)FC(Fibre Channel,光纤通道)FC-BGA(Flip-Chip Ball Grid Array,反转芯片球形栅格阵列)FCC(Federal Communications Commission,联邦通信委员会)FC-PGA(Flip-Chip Pin Grid Array,反转芯片针脚栅格阵列)FCRAM(Fast Cycle RAM,快周期随机存储器)FDB(Fluid Dynamic Bearing,非固定动态轴承)FDB(fluid-dynamic bearings,动态轴承)FDBM(Fluid dynamic bearing motors,液态轴承马达)FDC(Floppy Disk Controller,软盘驱动器控制装置)FDD(Floppy Disk Driver,软盘驱动器)FDIV(Floationg Point Divide,浮点除)FDM(Frequency Division Multi,频率分离)FED(Field Emission Displays,电场显示器)FEMMA(Foldable Electronic Memory Module Assembly,折叠电子内存模块装配)FEMMS(Fast Entry/Exit Multimedia State,快速进入/退出多媒体状态FFB(Force Feed Back,力反馈)FFJ(Force Feedback Joystick,力量反馈式操纵杆)FFT(fast Fourier transform,快速热欧姆转换)FGM(Fine-Grained Multithreading,高级多线程)FID(FID(Frequency identify,频率鉴别号码)FIFO(First Input First Output,先入先出队列)FIR(finite impulse response,有限推进响应)FireWire(火线,即IEEE1394标准)FISC(Fast Instruction Set Computer,快速指令集计算机)FL(fragment list,片段列表)FL(Function Lookup,功能查找)Flat(平面描影)FlexATX(Flexibility ATX,可扩展性ATX)flip double buffered(反转双缓存)flip-chip(芯片反转)FLIR(Forward Looking Infra-Red,前视红外)FLOPs(Floating Point Operations Per Second,浮点操作/秒)Flow-control(流控制)FLS(Front Light Screen,前发光屏幕)Flyback Transformer(回转变压器)FM(Flash Memory,快闪存储器)FM(Frequency Modulation,频率调制)FMA(full-motion animated backdrops)FMAC(Floating-Point Multiply-Accumulators,浮点累积乘单元)FMC(Frictionless Memory Control,无阻内存控制)FMD ROM(Fluorescent Material Read Only Memory,荧光质只读存储器)FMT(fine-grained multithreading,纯消除多线程)FMUL(Floationg Point Multiplication,浮点乘)Fog table quality(雾化表画质)Fog(雾化效果)FPD(flat panel display,平面显示器)FPM(Fast Page Mode,快页模式内存)FPRs(floating-point registers,浮点寄存器)FPS(First Person Shooters,第一人称射击游戏)FPS(FourPointSurround,创新的四点环绕扬声器系统)fps(frames per second,帧/秒)FPU(Float Point Unit,浮点运算单元)FR(Frames Rate,游戏运行帧数)FR(Frequence Response,频率响应)Frames rate is King(帧数为王)FRC(Frame Rate Control(帧比率控制)FRC(Frame Rate Control,帧率控制)FRICC(Federal Research Internet Coordinating Committee,联邦调查因特网协调委员会)FRJS(Fully Random Jittered Super-Sampling,完全随机移动式超级采样)Front Buffer(前置缓冲)FSAA(Full Scene/Screen Anti-aliasing,全景/屏幕抗锯齿)FSB(Front Side Bus,前端总线)FSE(Frequency Shifter Effect,频率转换效果)FSR(force sensor resistance,动力感应电阻)FSTN(Film compensated Super Twisted liquid crystal,带补偿膜超扭曲相列)FSUB(Floationg Point Subtraction,浮点减)FTC(Federal Trade Commission,联邦商业委员会)FTG(Fighting Game,格斗类游戏)FTP(File Transfer Protocol,文件传输协议)Fur(软毛效果)FW(Fast Write,快写,AGP总线的特殊功能)FWH(Firmware Hub,固件中心)GART(Graphic Address Remappng Table,图形地址重绘表)GB(Game Boy,任天堂4位手提游戏机)GB(Garibaldi架构,Garibaldi基于ATX架构,但是也能够使用WTX构架的机箱)GBA(Game Boy Advanced,任天堂增强型手提游戏机)GBC(Game Boy Color,任天堂手提16色游戏机)GBL(GameBoy Light,GB夜光型)GBP(GameBoy Pocket,GB口袋型)GDC(Game Developer Conference,游戏发展商会议)GDI(Graphics Device Interface,图形设备接口)GFD(Gold finger Device,金手指超频设备)GG(Game Gear,世嘉彩色手提游戏机)GHC(Global History Counter,通用历史计数器)Ghost((General Hardware Oriented System Transfer,全面硬件导向系统转移)GI(Global Illumination,球形光照)GIC(Gold Immersion Coating,化金涂布技术)GIF(Graphics Interchange Format,图像交换格式)GIF(Graphics Interface unit,图形接口单元)GLV(grating-light-valve,光栅亮度阀)GM(General Midi,普通MIDI)GM(Glass Mould,玻璃铸制)GMCH(Graphics & Memory Controller Hub,图形和内存控制中心)GMR(giant magnetoresistive,巨型磁阻)Gouraud Shading,高洛德描影,也称为内插法均匀涂色GPA(Graphics Performance Accelerator,图形性能加速卡)GPF(General protect fault,一般保护性错误)GPIs(General Purpose Inputs,普通操作输入)GPL(GNU Public License,GNU公众授权)GPRS(General Packet Raice,整合封包无线服务)GPRs(General Purpose Registers,通用寄存器)GPS(Global Positioning System,全球定位系统)GPT(Graphics Performance Toolkit,图形性能工具包)GPU(Graphics Processing Unit,图形处理器)GS(Graphic Synthesizer,图形合成器)GS(Graphics Synthesizer,图形合成器)GSM(Galvanization Superconductive Material,电镀锌超导材料)GTF(General Timing Formula,普通调速方程式)GTL(Gunning Transceiver Logic,发射接收逻辑电路)GTS(Giga Textel Sharder,十亿像素填充率)Guard Band Support(支持保护带)GUI(Graphics User Interface,图形用户界面)GVPP(Generic Visual Perception Processor,常规视觉处理器)GWS(graphics workstations,图形工作站)HAL(Hardware Abstraction Layer,硬件抽像化层)HCF(Host Controller,主体控制处理)HCI(Host Controller Interface,主机控制接口HCL(Hardware Compatibility List,硬件兼容性列表)HCRP(Hardcopy Cable Replacement Profile,硬复制电缆复位协议子集)HCT(Hardware Compatibility Test,硬件兼容性测试HDA(Head Disk Assembly,头盘组件)HDA(high-efficiency Audax High Definition Aerogel,高效高清楚气动)HDIT(High Bandwidth Differential Interconnect Technology,高带宽微分互连技术)HDMI(High Definition Multimedia Interface,高精度多媒体接口)HDR(High Dynamic Range,高级动态范围)HDRL(high dynamic-range lighting,高动态范围光线)HDSL(High bit rate DSL,高比特率数字订阅线路)HDSS(Holographic Data Storage System,全息数据存储系统)HDTV(high definition television,高清晰度电视)HDVP(High-Definition Video Processor,高精度视频处理器)HE(Home Edition,家庭版)HEL(Hardware Emulation Layer(硬件模拟层)HID(Human Interface Device,人机对话接口设备)Hierarchical Z(Z分级)HiFD(high-capacity floppy disk,高容量软盘)Hi-fi(high fidelity,高精度设备)high triangle count(复杂三角形计数)HLL(high level language,高级语言)HLLCA(High-Level Language Computing Architecture,高级语言计算架构)HL-PBGA(表面黏著,高耐热、轻薄型塑胶球状网阵封装HLSL(High Level Shading Language,高级描影语言)HMC(hardware motion compensation,硬件运动补偿)HMC(holographic media card,全息媒体卡)HMD(holographic media disk,全息媒体磁盘)Home PNA(Home Private Network Adapter,家庭私人网络适配器)HOS(Higher-Order Surfaces,高次序表面)HPC(Hand held PC,手持电脑设备)HPDR(High-Precision Dynamic-Range,高精度动态范围)HPF(High-Pass Filter,高通滤波器)HPNA(home phoneline networking,家庭电话线网络)HPS(High Performance Server,高性能服务器)HPTC(high performance technical computing,高性能技术运算)HPW(High Performance Workstation,高性能工作站)HRAA(High Resolution Anti-aliasing,高分辨率抗锯齿)HRTF(Head Related Transfer Function,头部关联传输功能)HSCSD(High-Speed Circuit-Switched Data,高速巡回开关数据)HSDRAM(High Speed DRAM,超高速内存)HSF(Host Signal,主体信号处理)HSI(High Speed Interconnect,高速内连)HSLB(High Speed Link Bus,高速链路总线)HSP(Host Signal Processing,主体信号处理)HSR(Hidden Surface Removal,隐藏表面移除)HT(Hyper Transport,超级传输)HTA(Hypertext Application,超文本应用程序)。
车辆控制系统说明书
IndexAactuation layer, 132average brightness,102-103adaptive control, 43Badaptive cruise control, 129backpropagation algorithm, 159adaptive FLC, 43backward driving mode,163,166,168-169adaptive neural networks,237adaptive predictive model, 283Baddeley-Molchanov average, 124aerial vehicles, 240 Baddeley-Molchanov fuzzy set average, 120-121, 123aerodynamic forces,209aerodynamics analysis, 208, 220Baddeley-Molchanov mean,118,119-121alternating filter, 117altitude control, 240balance position, 98amplitude distribution, 177bang-bang controller,198analytical control surface, 179, 185BCFPI, 61-63angular velocity, 92,208bell-shaped waveform,25ARMAX model, 283beta distributions,122artificial neural networks,115Bezier curve, 56, 59, 63-64association, 251Bezier Curve Fuzzy PI controller,61attitude angle,208, 217Bezier function, 54aumann mean,118-120bilinear interpolation, 90, 300,302automated manual transmission,145,157binary classifier,253Bo105 helicopter, 208automatic formation flight control,240body frame,238boiler following mode,280,283automatic thresholding,117border pixels, 101automatic transmissions,145boundary layer, 192-193,195-198autonomous robots,130boundary of a fuzzy set,26autonomous underwater vehicle, 191braking resistance, 265AUTOPIA, 130bumpy control surface, 55autopilot signal, 228Index 326CCAE package software, 315, 318 calibration accuracy, 83, 299-300, 309, 310, 312CARIMA models, 290case-based reasoning, 253center of gravity method, 29-30, 32-33centroid defuzzification, 7 centroid defuzzification, 56 centroid Method, 106 characteristic polygon, 57 characterization, 43, 251, 293 chattering, 6, 84, 191-192, 195, 196, 198chromosomes, 59circuit breaker, 270classical control, 1classical set, 19-23, 25-26, 36, 254 classification, 106, 108, 111, 179, 185, 251-253classification model, 253close formation flight, 237close path tracking, 223-224 clustering, 104, 106, 108, 251-253, 255, 289clustering algorithm, 252 clustering function, 104clutch stroke, 147coarse fuzzy logic controller, 94 collective pitch angle, 209 collision avoidance, 166, 168 collision avoidance system, 160, 167, 169-170, 172collision avoidance system, 168 complement, 20, 23, 45 compressor contamination, 289 conditional independence graph, 259 confidence thresholds, 251 confidence-rated rules, 251coning angle, 210constant gain, 207constant pressure mode, 280 contrast intensification, 104 contrast intensificator operator, 104 control derivatives, 211control gain, 35, 72, 93, 96, 244 control gain factor, 93control gains, 53, 226control rules, 18, 27, 28, 35, 53, 64, 65, 90-91, 93, 207, 228, 230, 262, 302, 304-305, 315, 317control surfaces, 53-55, 64, 69, 73, 77, 193controller actuator faulty, 289 control-weighting matrix, 207 convex sets, 119-120Coordinate Measurement Machine, 301coordinate measuring machine, 96 core of a fuzzy set, 26corner cube retroreflector, 85 correlation-minimum, 243-244cost function, 74-75, 213, 282-283, 287coverage function, 118crisp input, 18, 51, 182crisp output, 7, 34, 41-42, 51, 184, 300, 305-306crisp sets, 19, 21, 23crisp variable, 18-19, 29critical clearing time, 270 crossover, 59crossover probability, 59-60cruise control, 129-130,132-135, 137-139cubic cell, 299, 301-302, 309cubic spline, 48cubic spline interpolation, 300 current time gap, 136custom membership function, 294 customer behav or, 249iDdamping factor, 211data cleaning, 250data integration, 250data mining, 249, 250, 251-255, 259-260data selection, 250data transformation, 250d-dimensional Euclidean space, 117, 124decision logic, 321 decomposition, 173, 259Index327defuzzification function, 102, 105, 107-108, 111 defuzzifications, 17-18, 29, 34 defuzzifier, 181, 242density function, 122 dependency analysis, 258 dependency structure, 259 dependent loop level, 279depth control, 202-203depth controller, 202detection point, 169deviation, 79, 85, 185-188, 224, 251, 253, 262, 265, 268, 276, 288 dilation, 117discriminated rules, 251 discrimination, 251, 252distance function, 119-121 distance sensor, 167, 171 distribution function, 259domain knowledge, 254-255 domain-specific attributes, 251 Doppler frequency shift, 87 downhill simplex algorithm, 77, 79 downwash, 209drag reduction, 244driver’s intention estimator, 148 dutch roll, 212dynamic braking, 261-262 dynamic fuzzy system, 286, 304 dynamic tracking trajectory, 98Eedge composition, 108edge detection, 108 eigenvalues, 6-7, 212electrical coupling effect, 85, 88 electrical coupling effects, 87 equilibrium point, 207, 216 equivalent control, 194erosion, 117error rates, 96estimation, 34, 53, 119, 251, 283, 295, 302Euler angles, 208evaluation function, 258 evolution, 45, 133, 208, 251 execution layer, 262-266, 277 expert knowledge, 160, 191, 262 expert segmentation, 121-122 extended sup-star composition, 182 Ffault accommodation, 284fault clearing states, 271, 274fault detection, 288-289, 295fault diagnosis, 284fault durations, 271, 274fault isolation, 284, 288fault point, 270-271, 273-274fault tolerant control, 288fault trajectories, 271feature extraction, 256fiber glass hull, 193fin forces, 210final segmentation, 117final threshold, 116fine fuzzy controller, 90finer lookup table, 34finite element method, 318finite impulse responses, 288firing weights, 229fitness function, 59-60, 257flap angles, 209flight aerodynamic model, 247 flight envelope, 207, 214, 217flight path angle, 210flight trajectory, 208, 223footprint of uncertainty, 176, 179 formation geometry, 238, 247 formation trajectory, 246forward driving mode, 163, 167, 169 forward flight control, 217 forward flight speed, 217forward neural network, 288 forward velocity, 208, 214, 217, 219-220forward velocity tracking, 208 fossil power plants, 284-285, 296 four-dimensional synoptic data, 191 four-generator test system, 269 Fourier filter, 133four-quadrant detector, 79, 87, 92, 96foveal avascular zone, 123fundus images, 115, 121, 124 fuselage, 208-210Index 328fuselage axes, 208-209fuselage incidence, 210fuzz-C, 45fuzzifications, 18, 25fuzzifier, 181-182fuzzy ACC controller, 138fuzzy aggregation operator, 293 fuzzy ASICs, 37-38, 50fuzzy binarization algorithm, 110 fuzzy CC controller, 138fuzzy clustering algorithm, 106, 108 fuzzy constraints, 286, 291-292 fuzzy control surface, 54fuzzy damage-mitigating control, 284fuzzy decomposition, 108fuzzy domain, 102, 106fuzzy edge detection, 111fuzzy error interpolation, 300, 302, 305-306, 309, 313fuzzy filter, 104fuzzy gain scheduler, 217-218 fuzzy gain-scheduler, 207-208, 220 fuzzy geometry, 110-111fuzzy I controller, 76fuzzy image processing, 102, 106, 111, 124fuzzy implication rules, 27-28 fuzzy inference system, 17, 25, 27, 35-36, 207-208, 302, 304-306 fuzzy interpolation, 300, 302, 305- 307, 309, 313fuzzy interpolation method, 309 fuzzy interpolation technique, 300, 309, 313fuzzy interval control, 177fuzzy mapping rules, 27fuzzy model following control system, 84fuzzy modeling methods, 255 fuzzy navigation algorithm, 244 fuzzy operators, 104-105, 111 fuzzy P controller, 71, 73fuzzy PD controller, 69fuzzy perimeter, 110-111fuzzy PI controllers, 61fuzzy PID controllers, 53, 64-65, 80 fuzzy production rules, 315fuzzy reference governor, 285 Fuzzy Robust Controller, 7fuzzy set averages, 116, 124-125 fuzzy sets, 7, 19, 22, 24, 27, 36, 45, 115, 120-121, 124-125, 151, 176-182, 184-188, 192, 228, 262, 265-266fuzzy sliding mode controller, 192, 196-197fuzzy sliding surface, 192fuzzy subsets, 152, 200fuzzy variable boundary layer, 192 fuzzyTECH, 45Ggain margins, 207gain scheduling, 193, 207, 208, 211, 217, 220gas turbines, 279Gaussian membership function, 7 Gaussian waveform, 25 Gaussian-Bell waveforms, 304 gear position decision, 145, 147 gear-operating lever, 147general window function, 105 general-purpose microprocessors, 37-38, 44genetic algorithm, 54, 59, 192, 208, 257-258genetic operators, 59-60genetic-inclined search, 257 geometric modeling, 56gimbal motor, 90, 96global gain-scheduling, 220global linear ARX model, 284 global navigation satellite systems, 141global position system, 224goal seeking behaviour, 186-187 governor valves80, 2HHamiltonian function, 261, 277 hard constraints, 283, 293 heading angle, 226, 228, 230, 239, 240-244, 246heading angle control, 240Index329heading controller, 194, 201-202 heading error rate, 194, 201 heading speed, 226heading velocity control, 240 heat recovery steam generator, 279 hedges, 103-104height method, 29helicopter, 207-212, 214, 217, 220 helicopter control matrix, 211 helicopter flight control, 207 Heneghan method, 116-117, 121-124heuristic search, 258 hierarchical approaches, 261 hierarchical architecture, 185 hierarchical fuzzy processors, 261 high dimensional systems, 191 high stepping rates, 84hit-miss topology, 119home position, 96horizontal tail plane, 209 horizontal tracker, 90hostile, 223human domain experts, 255 human visual system, 101hybrid system framework, 295 hyperbolic tangent function, 195 hyperplane, 192-193, 196 hysteresis thres olding, 116-117hIIF-THEN rule, 27-28image binarization, 106image complexity, 104image fuzzification function, 111 image segmentation, 124image-expert, 122-123indicator function, 121inert, 223inertia frame, 238inference decision methods, 317 inferential conclusion, 317 inferential decision, 317 injection molding process, 315 inner loop controller, 87integral time absolute error, 54 inter-class similarity, 252 internal dependencies, 169 interpolation property, 203 interpolative nature, 262 intersection, 20, 23-24, 31, 180 interval sets, 178interval type-2 FLC, 181interval type-2 fuzzy sets, 177, 180-181, 184inter-vehicle gap, 135intra-class similarity, 252inverse dynamics control, 228, 230 inverse dynamics method, 227 inverse kinema c, 299tiJ - Kjoin, 180Kalman gain, 213kinematic model, 299kinematic modeling, 299-300 knowledge based gear position decision, 148, 153knowledge reasoning layer, 132 knowledge representation, 250 knowledge-bas d GPD model, 146eLlabyrinths, 169laser interferometer transducer, 83 laser tracker, 301laser tracking system, 53, 63, 65, 75, 78-79, 83-85, 87, 98, 301lateral control, 131, 138lateral cyclic pitch angle, 209 lateral flapping angle, 210 leader, 238-239linear control surface, 55linear fuzzy PI, 61linear hover model, 213linear interpolation, 300-301, 306-307, 309, 313linear interpolation method, 309 linear optimal controller, 207, 217 linear P controller, 73linear state feedback controller, 7 linear structures, 117linear switching line, 198linear time-series models, 283 linguistic variables, 18, 25, 27, 90, 102, 175, 208, 258Index 330load shedding, 261load-following capabilities, 288, 297 loading dock, 159-161, 170, 172 longitudinal control, 130-132 longitudinal cyclic pitch angle, 209 longitudinal flapping angle, 210 lookup table, 18, 31-35, 40, 44, 46, 47-48, 51, 65, 70, 74, 93, 300, 302, 304-305lower membership functions, 179-180LQ feedback gains, 208LQ linear controller, 208LQ optimal controller, 208LQ regulator, 208L-R fuzzy numbers, 121 Luenburger observer, 6Lyapunov func on, 5, 192, 284tiMMamdani model, 40, 46 Mamdani’s method, 242 Mamdani-type controller, 208 maneuverability, 164, 207, 209, 288 manual transmissions, 145 mapping function, 102, 104 marginal distribution functions, 259 market-basket analysis, 251-252 massive databases, 249matched filtering, 115 mathematical morphology, 117, 127 mating pool, 59-60max member principle, 106max-dot method, 40-41, 46mean distance function, 119mean max membership, 106mean of maximum method, 29 mean set, 118-121measuring beam, 86mechanical coupling effects, 87 mechanical layer, 132median filter, 105meet, 7, 50, 139, 180, 183, 302 membership degree, 39, 257 membership functions, 18, 25, 81 membership mapping processes, 56 miniature acrobatic helicopter, 208 minor steady state errors, 217 mixed-fuzzy controller, 92mobile robot control, 130, 175, 181 mobile robots, 171, 175-176, 183, 187-189model predictive control, 280, 287 model-based control, 224 modeless compensation, 300 modeless robot calibration, 299-301, 312-313modern combined-cycle power plant, 279modular structure, 172mold-design optimization, 323 mold-design process, 323molded part, 318-321, 323 morphological methods, 115motor angular acceleration, 3 motor plant, 3motor speed control, 2moving average filter, 105 multilayer fuzzy logic control, 276 multimachine power system, 262 multivariable control, 280 multivariable fuzzy PID control, 285 multivariable self-tuning controller, 283, 295mutation, 59mutation probability, 59-60mutual interference, 88Nnavigation control, 160neural fuzzy control, 19, 36neural networks, 173, 237, 255, 280, 284, 323neuro-fuzzy control, 237nominal plant, 2-4nonlinear adaptive control, 237non-linear control, 2, 159 nonlinear mapping, 55nonlinear switching curve, 198-199 nonlinear switching function, 200 nonvolatile memory, 44 normalized universe, 266Oobjective function, 59, 74-75, 77, 107, 281-282, 284, 287, 289-291,Index331295obstacle avoidance, 166, 169, 187-188, 223-225, 227, 231 obstacle avoidance behaviour, 187-188obstacle sensor, 224, 228off-line defuzzification, 34off-line fuzzy inference system, 302, 304off-line fuzzy technology, 300off-line lookup tables, 302 offsprings, 59-60on-line dynamic fuzzy inference system, 302online tuning, 203open water trial, 202operating point, 210optical platform, 92optimal control table, 300optimal feedback gain, 208, 215-216 optimal gains, 207original domain, 102outer loop controller, 85, 87outlier analysis, 251, 253output control gains, 92 overshoot, 3-4, 6-7, 60-61, 75-76, 94, 96, 193, 229, 266Ppath tracking, 223, 232-234 pattern evaluation, 250pattern vector, 150-151PD controller, 4, 54-55, 68-69, 71, 74, 76-77, 79, 134, 163, 165, 202 perception domain, 102 performance index, 60, 207 perturbed plants, 3, 7phase margins, 207phase-plan mapping fuzzy control, 19photovoltaic power systems, 261 phugoid mode, 212PID, 1-4, 8, 13, 19, 53, 61, 64-65, 74, 80, 84-85, 87-90, 92-98, 192 PID-fuzzy control, 19piecewise nonlinear surface, 193 pitch angle, 202, 209, 217pitch controller, 193, 201-202 pitch error, 193, 201pitch error rate, 193, 201pitch subsidence, 212planetary gearbox, 145point-in-time transaction, 252 polarizing beam-splitter, 86 poles, 4, 94, 96position sensor detectors, 84 positive definite matrix, 213post fault, 268, 270post-fault trajectory, 273pre-defined membership functions, 302prediction, 251, 258, 281-283, 287, 290predictive control, 280, 282-287, 290-291, 293-297predictive supervisory controller, 284preview distance control, 129 principal regulation level, 279 probabilistic reasoning approach, 259probability space, 118Problem understanding phases, 254 production rules, 316pursuer car, 136, 138-140 pursuer vehicle, 136, 138, 140Qquadrant detector, 79, 92 quadrant photo detector, 85 quadratic optimal technology, 208 quadrilateral ob tacle, 231sRradial basis function, 284 random closed set, 118random compact set, 118-120 rapid environment assessment, 191 reference beam, 86relative frame, 240relay control, 195release distance, 169residual forces, 217retinal vessel detection, 115, 117 RGB band, 115Riccati equation, 207, 213-214Index 332rise time, 3, 54, 60-61, 75-76road-environment estimator, 148 robot kinematics, 299robot workspace, 299-302, 309 robust control, 2, 84, 280robust controller, 2, 8, 90robust fuzzy controller, 2, 7 robustness property, 5, 203roll subsidence, 212rotor blade flap angle, 209rotor blades, 210rudder, 193, 201rule base size, 191, 199-200rule output function, 191, 193, 198-199, 203Runge-Kutta m thod, 61eSsampling period, 96saturation function, 195, 199 saturation functions, 162scaling factor, 54, 72-73scaling gains, 67, 69S-curve waveform, 25secondary membership function, 178 secondary memberships, 179, 181 selection, 59self-learning neural network, 159 self-organizing fuzzy control, 261 self-tuning adaptive control, 280 self-tuning control, 191semi-positive definite matrix, 213 sensitivity indices, 177sequence-based analysis, 251-252 sequential quadratic programming, 283, 292sets type-reduction, 184setting time, 54, 60-61settling time, 75-76, 94, 96SGA, 59shift points, 152shift schedule algorithms, 148shift schedules, 152, 156shifting control, 145, 147shifting schedules, 146, 152shift-schedule tables, 152sideslip angle, 210sigmoidal waveform, 25 sign function, 195, 199simplex optimal algorithm, 80 single gimbal system, 96single point mass obstacle, 223 singleton fuzzification, 181-182 sinusoidal waveform, 94, 300, 309 sliding function, 192sliding mode control, 1-2, 4, 8, 191, 193, 195-196, 203sliding mode fuzzy controller, 193, 198-200sliding mode fuzzy heading controller, 201sliding pressure control, 280 sliding region, 192, 201sliding surface, 5-6, 192-193, 195-198, 200sliding-mode fuzzy control, 19 soft constraints, 281, 287space-gap, 135special-purpose processors, 48 spectral mapping theorem, 216 speed adaptation, 138speed control, 2, 84, 130-131, 133, 160spiral subsidence, 212sporadic alternations, 257state feedback controller, 213 state transition, 167-169state transition matrix, 216state-weighting matrix, 207static fuzzy logic controller, 43 static MIMO system, 243steady state error, 4, 54, 79, 90, 94, 96, 98, 192steam turbine, 279steam valving, 261step response, 4, 7, 53, 76, 91, 193, 219stern plane, 193, 201sup operation, 183supervisory control, 191, 280, 289 supervisory layer, 262-264, 277 support function, 118support of a fuzzy set, 26sup-star composition, 182-183 surviving solutions, 257Index333swing curves, 271, 274-275 switching band, 198switching curve, 198, 200 switching function, 191, 194, 196-198, 200switching variable, 228system trajector192, 195y,Ttail plane, 210tail rotor, 209-210tail rotor derivation, 210Takagi-Sugeno fuzzy methodology, 287target displacement, 87target time gap, 136t-conorm maximum, 132 thermocouple sensor fault, 289 thickness variable, 319-320three-beam laser tracker, 85three-gimbal system, 96throttle pressure, 134throttle-opening degree, 149 thyristor control, 261time delay, 63, 75, 91, 93-94, 281 time optimal robust control, 203 time-gap, 135-137, 139-140time-gap derivative, 136time-gap error, 136time-invariant fuzzy system, 215t-norm minimum, 132torque converter, 145tracking error, 79, 84-85, 92, 244 tracking gimbals, 87tracking mirror, 85, 87tracking performance, 84-85, 88, 90, 192tracking speed, 75, 79, 83-84, 88, 90, 92, 97, 287trajectory mapping unit, 161, 172 transfer function, 2-5, 61-63 transient response, 92, 193 transient stability, 261, 268, 270, 275-276transient stability control, 268 trapezoidal waveform, 25 triangular fuzzy set, 319triangular waveform, 25 trim, 208, 210-211, 213, 217, 220, 237trimmed points, 210TS fuzzy gain scheduler, 217TS fuzzy model, 207, 290TS fuzzy system, 208, 215, 217, 220 TS gain scheduler, 217TS model, 207, 287TSK model, 40-41, 46TS-type controller, 208tuning function, 70, 72turbine following mode, 280, 283 turn rate, 210turning rate regulation, 208, 214, 217two-DOF mirror gimbals, 87two-layered FLC, 231two-level hierarchy controllers, 275-276two-module fuzzy logic control, 238 type-0 systems, 192type-1 FLC, 176-177, 181-182, 185- 188type-1 fuzzy sets, 177-179, 181, 185, 187type-1 membership functions, 176, 179, 183type-2 FLC, 176-177, 180-183, 185-189type-2 fuzzy set, 176-180type-2 interval consequent sets, 184 type-2 membership function, 176-178type-reduced set, 181, 183-185type-reduction,83-1841UUH-1H helicopter, 208uncertain poles, 94, 96uncertain system, 93-94, 96 uncertain zeros, 94, 96underlying domain, 259union, 20, 23-24, 30, 177, 180unit control level, 279universe of discourse, 19-24, 42, 57, 151, 153, 305unmanned aerial vehicles, 223 unmanned helicopter, 208Index 334unstructured dynamic environments, 177unstructured environments, 175-177, 179, 185, 187, 189upper membership function, 179Vvalve outlet pressure, 280vapor pressure, 280variable structure controller, 194, 204velocity feedback, 87vertical fin, 209vertical tracker, 90vertical tracking gimbal, 91vessel detection, 115, 121-122, 124-125vessel networks, 117vessel segmentation, 115, 120 vessel tracking algorithms, 115 vision-driven robotics, 87Vorob’ev fuzzy set average, 121-123 Vorob'ev mean, 118-120vortex, 237 WWang and Mendel’s algorithm, 257 WARP, 49weak link, 270, 273weighing factor, 305weighting coefficients, 75 weighting function, 213weld line, 315, 318-323western states coordinating council, 269Westinghouse turbine-generator, 283 wind–diesel power systems, 261 Wingman, 237-240, 246wingman aircraft, 238-239 wingman veloc y, 239itY-ZYager operator, 292Zana-Klein membership function, 124Zana-Klein method, 116-117, 121, 123-124zeros, 94, 96µ-law function, 54µ-law tuning method, 54。
不对称约束多人非零和博弈的自适应评判控制
第40卷第9期2023年9月控制理论与应用Control Theory&ApplicationsV ol.40No.9Sep.2023不对称约束多人非零和博弈的自适应评判控制李梦花,王鼎,乔俊飞†(北京工业大学信息学部,北京100124;计算智能与智能系统北京市重点实验室,北京100124;智慧环保北京实验室,北京100124;北京人工智能研究院,北京100124)摘要:本文针对连续时间非线性系统的不对称约束多人非零和博弈问题,建立了一种基于神经网络的自适应评判控制方法.首先,本文提出了一种新颖的非二次型函数来处理不对称约束问题,并且推导出最优控制律和耦合Hamilton-Jacobi方程.值得注意的是,当系统状态为零时,最优控制策略是不为零的,这与以往不同.然后,通过构建单一评判网络来近似每个玩家的最优代价函数,从而获得相关的近似最优控制策略.同时,在评判学习期间发展了一种新的权值更新规则.此外,通过利用Lyapunov理论证明了评判网络权值近似误差和闭环系统状态的稳定性.最后,仿真结果验证了本文所提方法的有效性.关键词:神经网络;自适应评判控制;自适应动态规划;非线性系统;不对称约束;多人非零和博弈引用格式:李梦花,王鼎,乔俊飞.不对称约束多人非零和博弈的自适应评判控制.控制理论与应用,2023,40(9): 1562–1568DOI:10.7641/CTA.2022.20063Adaptive critic control for multi-player non-zero-sum games withasymmetric constraintsLI Meng-hua,WANG Ding,QIAO Jun-fei†(Faculty of Information Technology,Beijing University of Technology,Beijing100124,China;Beijing Key Laboratory of Computational Intelligence and Intelligent System,Beijing100124,China;Beijing Laboratory of Smart Environmental Protection,Beijing100124,China;Beijing Institute of Artificial Intelligence,Beijing100124,China)Abstract:In this paper,an adaptive critic control method based on the neural networks is established for multi-player non-zero-sum games with asymmetric constraints of continuous-time nonlinear systems.First,a novel nonquadratic func-tion is proposed to deal with asymmetric constraints,and then the optimal control laws and the coupled Hamilton-Jacobi equations are derived.It is worth noting that the optimal control strategies do not stay at zero when the system state is zero, which is different from the past.After that,only a critic network is constructed to approximate the optimal cost function for each player,so as to obtain the associated approximate optimal control strategies.Meanwhile,a new weight updating rule is developed during critic learning.In addition,the stability of the weight estimation errors of critic networks and the closed-loop system state is proved by utilizing the Lyapunov method.Finally,simulation results verify the effectiveness of the method proposed in this paper.Key words:neural networks;adaptive critic control;adaptive dynamic programming;nonlinear systems;asymmetric constraints;multi-player non-zero-sum gamesCitation:LI Menghua,WANG Ding,QIAO Junfei.Adaptive critic control for multi-player non-zero-sum games with asymmetric constraints.Control Theory&Applications,2023,40(9):1562–15681引言自适应动态规划(adaptive dynamic programming, ADP)方法由Werbos[1]首先提出,该方法结合了动态规划、神经网络和强化学习,其核心思想是利用函数近似结构来估计最优代价函数,从而获得被控系统的近似最优解.在ADP方法体系中,动态规划蕴含最优收稿日期:2022−01−21;录用日期:2022−11−10.†通信作者.E-mail:***************.cn.本文责任编委:王龙.科技创新2030–“新一代人工智能”重大项目(2021ZD0112302,2021ZD0112301),国家重点研发计划项目(2018YFC1900800–5),北京市自然科学基金项目(JQ19013),国家自然科学基金项目(62222301,61890930–5,62021003)资助.Supported by the National Key Research and Development Program of China(2021ZD0112302,2021ZD0112301,2018YFC1900800–5),the Beijing Natural Science Foundation(JQ19013)and the National Natural Science Foundation of China(62222301,61890930–5,62021003).第9期李梦花等:不对称约束多人非零和博弈的自适应评判控制1563性原理提供理论基础,神经网络作为函数近似结构提供实现手段,强化学习提供学习机制.值得注意的是, ADP方法具有强大的自学习能力,在处理非线性复杂系统的最优控制问题上具有很大的潜力[2–7].此外, ADP作为一种近似求解最优控制问题的新方法,已经成为智能控制与计算智能领域的研究热点.关于ADP的详细理论研究以及相关应用,读者可以参考文献[8–9].本文将基于ADP的动态系统优化控制统称为自适应评判控制.近年来,微分博弈问题在控制领域受到了越来越多的关注.微分博弈为研究多玩家系统的协作、竞争与控制提供了一个标准的数学框架,包括二人零和博弈、多人零和博弈以及多人非零和博弈等.在零和博弈问题中,控制输入试图最小化代价函数而干扰输入试图最大化代价函数.在非零和博弈问题中,每个玩家都独立地选择一个最优控制策略来最小化自己的代价函数.值得注意的是,零和博弈问题已经被广泛研究.在文献[10]中,作者提出了一种改进的ADP方法来求解多输入非线性连续系统的二人零和博弈问题.An等人[11]提出了两种基于积分强化学习的算法来求解连续时间系统的多人零和博弈问题.Ren等人[12]提出了一种新颖的同步脱策方法来处理多人零和博弈问题.然而,关于非零和博弈[13–14]的研究还很少.此外,控制约束在实际应用中也广泛存在.这些约束通常是由执行器的固有物理特性引起的,如气压、电压和温度.因此,为了确保被控系统的性能,受约束的系统需要被考虑.Zhang等人[15]发展了一种新颖的事件采样ADP方法来求解非线性连续约束系统的鲁棒最优控制问题.Huo等人[16]研究了一类非线性约束互联系统的分散事件触发控制问题.Yang和He[17]研究了一类具有不匹配扰动和输入约束的非线性系统事件触发鲁棒镇定问题.这些文献考虑的都是对称约束,而实际应用中,被控系统受到的约束也可能是不对称的[18–20],例如在污水处理过程中,需要通过氧传递系数和内回流量对溶解氧浓度和硝态氮浓度进行控制,而根据实际的运行条件,这两个控制变量就需要被限制在一个不对称约束范围内[20].因此,在控制器设计过程中,不对称约束问题将是笔者研究的一个方向.到目前为止,关于具有控制约束的微分博弈问题,有一些学者取得了相应的研究成果[12,21–23].但可以发现,具有不对称约束的多人非零和博弈问题还没有学者研究.同时,在多人非零和博弈问题中,相关的耦合Hamilton-Jacobi(HJ)方程是很难求解的.因此,本文针对一类连续时间非线性系统的不对称约束多人非零和博弈问题,提出了一种自适应评判控制方法来近似求解耦合HJ方程,从而获得被控系统的近似最优解.本文的主要贡献如下:1)首次将不对称约束应用到连续时间非线性系统的多人非零和博弈问题中;2)提出了一种新颖的非二次型函数来处理不对称约束问题,并且当系统状态为零时,最优控制策略是不为零的,这与以往不同;3)在学习期间,用单一评判网络结构代替了传统的执行–评判网络结构,并且提出了一种新的权值更新规则;4)利用Lyapunov方法证明了评判网络权值近似误差和系统状态的一致最终有界(uniformly ultimately bounded,UUB)稳定性.2问题描述考虑以下具有不对称约束的N–玩家连续时间非线性系统:˙x(t)=f(x(t))+N∑j=1g j(x(t))u j(t),(1)其中:x(t)∈Ω⊂R n是状态向量且x(0)=x0为初始状态,R n代表由所有n-维实向量组成的欧氏空间,Ω是R n的一个紧集;u j(t)∈T j⊂R m为玩家j在时刻t所选择的策略,且T j为T j={[u j1u j2···u jm]T∈R m:u j min u jl u j max, |u j min|=|u j max|,l=1,2,···,m},(2)其中:u jmin∈R和u j max∈R分别代表控制输入分量的最小界和最大界,R表示所有实数集.假设1非线性系统(1)是可控的,并且x=0是被控系统(1)的一个平衡点.此外,∀j∈N,f(x)和g j(x)是未知的Lipschitz函数且f(0)=0,其中集合N={1,2,···,N},N 2是一个正整数.假设2∀j∈N,g j(0)=0,且存在一个正常数b gj使∥g j(x)∥ b gj,其中∥·∥表示在R n上的向量范数或者在R n×m上的矩阵范数,R n×m代表由所有n×m维实矩阵组成的空间.注1假设1–3是自适应评判领域的常用假设,例如文献[6,13,19],是为了保证系统的稳定性以及方便后文中的稳定性证明,其中假设3出现在后文中的第3.2节.定义与每个玩家相关的效用函数为U i(x,U)=x T Q i x+N∑j=1S j(u j),i∈N,(3)其中U={u1,u2,···,u N}并且Q i是一个对称正定矩阵.此外,为了处理不对称约束问题,令S j(u j)为S j(u j)=2αj m∑l=1ujlβjtanh−1(z−βjαj)d z,(4)其中αj和βj分别为αj=u jmax−u j min2,βj=u jmax+u jmin2.(5)因此,与每个玩家相关的代价函数可以表示为J i(x0,U)=∞U i(x,U)dτ,i∈N,(6)1564控制理论与应用第40卷本文希望构建一个Nash均衡U∗={u∗1,u∗2,···,u∗N},来使以下不等式被满足:J i(u∗1,···,u∗i,···,u∗N)J i(u∗1,···,u i,···,u∗N),(7)其中i∈N.为了方便,将J i(x0,U)简写为J i(x0).于是,每个玩家的最优代价函数为J∗i (x0)=minu iJ i(x0,U),i∈N.(8)在本文中,如果一个控制策略集的所有元素都是可容许的,那么这个集合是可容许的.定义1(容许控制[24])如果控制策略u i(x)是连续的,u i(x)可以镇定系统(1),并且J i(x0)是有限的,那么它是集合Ω上关于代价函数(6)的可容许控制律,即u i(x)∈Ψ(Ω),i∈N,其中,Ψ(Ω)是Ω上所有容许控制律的集合.对于任意一个可容许控制律u i(x)∈Ψ(Ω),如果相关代价函数(6)是连续可微的,那么非线性Lyapu-nov方程为0=U i(x,U)+(∇J i(x))T(f(x)+N∑j=1g j(x)u j),(9)其中:i∈N,J i(0)=0,并且∇(·) ∂(·)∂x.根据最优控制理论,耦合HJ方程为0=minU H i(x,U,∇J∗i(x)),i∈N,(10)其中,Hamiltonian函数H i(x,U,∇J∗i(x))为H i(x,U,∇J∗i(x))=U i(x,U)+(∇J∗i (x))T(f(x)+N∑j=1g j(x)u j),(11)进而,由∂H i(x,U,∇J∗i(x))∂u i=0可得出最优控制律为u∗i (x)=−αi tanh(12αig Ti(x)∇J∗i(x))+¯βi,i∈N,(12)其中¯βi=[βiβi···βi]T∈R m.注2根据式(2)和式(5),能推导出βi=0,即¯βi=0,又根据式(12)可知u∗i(0)=0,i∈N.因此,为了保证x=0是系统(1)的平衡点,在假设2中提出了条件∀j∈N,g j(0)=0.将式(12)代入式(10),耦合HJ方程又能表示为(∇J∗i (x))T f(x)+N∑j=1((∇J∗i(x))T g j(x)¯βj)+x T Q i x−N∑j=1((∇J∗i(x))Tαj g j(x)tanh(A j(x)))+N∑j=1S j(−αj tanh(A j(x))+¯βj)=0,i∈N,(13)其中J∗i(0)=0并且A j(x)=12αjg Tj(x)∇J∗j(x).如果已知每个玩家的最优代价函数值,那么相关的最优状态反馈控制律就可以直接获得,也就是说式(13)是可解的.可是,式(13)这种非线性偏微分方程的求解是十分困难的.同时,随着系统维数的增加,存储量和计算量也随之以指数形式增加,也就是平常所说的“维数灾”问题.因此,为了克服这些弱点,在第3部分提出了一种基于神经网络的自适应评判机制,来近似每个玩家的最优代价函数,从而获得相关的近似最优状态反馈控制策略.3自适应评判控制设计3.1神经网络实现本节的核心是构建并训练评判神经网络,以得到训练后的权值,从而获得每个玩家的近似最优代价函数值.首先,根据神经网络的逼近性质[25],可将每个玩家的最优代价函数J∗i(x)在紧集Ω上表示为J∗i(x)=W Tiσi(x)+ξi(x),i∈N,(14)其中:W i∈Rδ是理想权值向量,σi(x)∈Rδ是激活函数,δ是隐含层神经元个数,ξi(x)∈R是重构误差.同时,可得出每个玩家的最优代价函数梯度为∇J∗i(x)=(∇σi(x))T W i+∇ξi(x),i∈N,(15)将式(15)代入式(12),有u∗i(x)=−αi tanh(B i(x)+C i(x))+¯βi,i∈N,(16)其中:B i(x)=12αig Ti(x)(∇σi(x))T W i∈R m,C i(x)=12αig Ti(x)∇ξi(x)∈R m.然后,将式(15)代入式(13),耦合HJ方程变为W Ti∇σi(x)f(x)+(∇ξi(x))T f(x)+x T Q i x+N∑j=1((W Ti∇σi(x)+(∇ξi(x))T)g j(x)¯βj)−N∑j=1(αj W Ti∇σi(x)g j(x)tanh(B j(x)+C j(x)))−N∑j=1(αj(∇ξi(x))T g j(x)tanh(B j(x)+C j(x)))+N∑j=1S j(−αj tanh(B j(x)+C j(x))+¯βj)=0,i∈N.(17)值得注意的是,式(14)中的理想权值向量W i是未知的,也就是说式(16)中的u∗i(x)是不可解的.因此,第9期李梦花等:不对称约束多人非零和博弈的自适应评判控制1565构建如下的评判神经网络:ˆJ∗i (x)=ˆW Tiσi(x),i∈N,(18)来近似每个玩家的最优代价函数,其中ˆW i∈Rδ是估计的权值向量.同时,其梯度为∇ˆJ∗i(x)=(∇σi(x))TˆW i,i∈N.(19)考虑式(19),近似的最优控制律为ˆu∗i(x)=−αi tanh(D i(x))+¯βi,i∈N,(20)其中D i(x)=12αig Ti(x)(∇σi(x))TˆW i.同理,近似的Hamiltonian可以写为ˆHi(x,ˆW i)=ˆW T i ϕi+x T Q i x+N∑j=1(ˆW Ti∇σi(x)g j(x)¯βj)−N ∑j=1(αjˆW Ti∇σi(x)g j(x)tanh(D j(x)))+N∑j=1S j(−αj tanh(D j(x))+¯βj),i∈N,(21)其中ϕi=∇σi(x)f(x).此外,定义误差量e i=ˆH i(x,ˆW i )−H i(x,U∗,∇J∗i(x))=ˆH i(x,ˆW i).为了使e i足够小,需要训练评判网络来使目标函数E i=12e Tie i最小化.在这里,本文采用的训练准则为˙ˆW i =−γi1(1+ϕTiϕi)2(∂E i∂ˆW i)=−γiϕi(1+ϕTiϕi)2e i,i∈N,(22)其中:γi>0是评判网络的学习率,(1+ϕT iϕi)2用于归一化操作.此外,定义评判网络的权值近似误差为˜Wi=W i−ˆW i.因此,有˙˜W i =γiφi1+ϕTiϕie Hi−γiφiφT i˜W i,i∈N,(23)其中:φi=ϕi(1+ϕTiϕi),e Hi=−(∇ξi(x))T f(x)是残差项.3.2稳定性分析本节的核心是通过利用Lyapunov方法讨论评判网络权值近似误差和闭环系统状态的UUB稳定性.这里,给出以下假设:假设3∥∇ξi(x)∥ b∇ξi ,∥∇σi(x)∥ b∇σi,∥e Hi∥ b e Hi,∥W i∥ b W i,其中:b∇ξi,b∇σi,b e Hi,b W i 都是正常数,i∈N.定理1考虑系统(1),如果假设1–3成立,状态反馈控制律由式(20)给出,且评判网络权值通过式(22)进行训练,则评判网络权值近似误差˜W i是UUB 稳定的.证选取如下的Lyapunov函数:L1(t)=N∑i=1(12˜W Ti˜Wi)=N∑i=1L1i(t),(24)计算L1i(t)沿着式(23)的时间导数,即˙L1i(t)=γi˜W Tiφi1+ϕTiϕie Hi−γi˜W TiφiφTi˜Wi,i∈N,(25)利用不等式¯X T¯Y12∥¯X∥2+12∥¯Y∥2(注:¯X和¯Y都是具有合适维数的向量),并且考虑1+ϕTiϕi 1,能得到˙L1i(t)γi2(∥φTi˜Wi∥2+∥e Hi∥2)−γi˜W TiφiφTi˜Wi=−γi2˜W TiφiφTi˜Wi+γi2∥e Hi∥2,i∈N.(26)根据假设3,有˙L1i(t) −γi2λmin(φiφTi)∥˜W i∥2+γi2b2e Hi,i∈N,(27)其中λmin(·)表示矩阵的最小特征值.因此,当不等式∥˜W i∥>√b2e Hiλmin(φiφTi),i∈N(28)成立时,有˙L1i(t)<0.根据标准的Lyapunov定理[26],可知评判网络权值近似误差˜W i是UUB稳定的.证毕.定理2考虑系统(1),如果假设1–3成立,状态反馈控制律由式(20)给出,且评判网络权值通过式(22)进行训练,则系统状态x(t)是UUB稳定的.证选取如下的Lyapunov函数:L2i(t)=J∗i(x),i∈N.(29)计算L2i(t)沿着系统˙x=f(x)+N∑j=1g j(x)ˆu∗j的时间导数,即˙L2i(t)=(∇J∗i(x))T(f(x)+N∑j=1g j(x)ˆu∗j)=(∇J∗i(x))T(f(x)+N∑j=1g j(x)u∗j)+N∑j=1((∇J∗i(x))T g j(x)(ˆu∗j−u∗j)),i∈N.(30)考虑式(13),有˙L2i(t)=−x T Q i x−N∑j=1S j(u∗j)+N∑j=1((∇J∗i(x))T g j(x)(ˆu∗j−u∗j))Σi,i∈N,(31)1566控制理论与应用第40卷利用不等式¯XT ¯Y 12∥¯X ∥2+12∥¯Y ∥2,并且考虑式(15)–(16)(20),可得Σi 12N ∑j =1∥−αj tanh (D j (x ))+αj tanh (F j (x ))∥2+12N ∑j =1∥g Tj (x )((∇σi (x ))T W i +∇ξi (x ))∥2,i ∈N ,(32)其中F j (x )=B j (x )+C j (x ).然后,利用不等式∥¯X+¯Y∥2 2∥¯X ∥2+2∥¯Y ∥2,有Σi N ∑j =1(∥αj tanh (D j (x ))∥2+∥αj tanh (F j (x ))∥2)+N ∑j =1∥g Tj (x )(∇σi (x ))T W i ∥2+N ∑j =1∥g T j (x )∇ξi (x )∥2,i ∈N ,(33)其中D j (x )∈R m ,F j (x )∈R m 分别被表示为[D j 1(x )D j 2(x )···D jm (x )]T 和[F j 1(x )F j 2(x )···F jm (x )]T .易知,∀θ∈R ,tanh 2θ 1.因此,有∥tanh (D j (x ))∥2=m ∑l =1tanh 2(D jl (x )) m,(34)∥tanh (F j (x ))∥2=m ∑l =1tanh 2(F jl (x )) m.(35)同时,根据假设2–3,有Σi N ∑j =1(2α2j m +b 2g j b 2∇σi b 2W i +b 2g j b 2∇ξi ),i ∈N ,(36)根据式(2)(4)–(5),可知S j (u ∗j ) 0.于是,有˙L2i (t ) −λmin (Q i )∥x ∥2+ϖi ,i ∈N ,(37)其中ϖi =N ∑j =1(2α2j m +b 2g j b 2∇σi b 2W i +b 2g j b 2∇ξi ).因此,根据式(37)可知,当不等式∥x ∥>√ϖiλmin (Q i )成立时,有˙L2i (t )<0.即,如果x (t )满足下列不等式:∥x ∥>max {√ϖ1λmin (Q 1),···,√ϖNλmin (Q N )},(38)则,∀i ∈N ,都有˙L 2i (t )<0.同理,可得闭环系统状态x (t )也是UUB 稳定的.证毕.4仿真结果考虑如下的3–玩家连续时间非线性系统:˙x =[−1.2x 1+1.5x 2sin x 20.5x 1−x 2]+[01.5sin x 1cos x 1]u 1(x )+[1.2sin x 1cos x 2]u 2(x )+[01.1sin x 2]u 3(x ),(39)其中:x (t )=[x 1x 2]T ∈R 2是状态向量,u 1(x )∈T 1={u 1∈R :−1 u 1 2},u 2(x )∈T 2={u 2∈R :−0.2 u 2 1}和u 3(x )∈T 3={u 3∈R :−0.4 u 3 0.8}是控制输入.令Q 1=2I 2,Q 2=1.8I 2,Q 3=0.3I 2,其中I 2代表2×2维单位矩阵.同时,根据式(5)可知,α1=1.5,β1=0.5,α2=0.6,β2=0.4,α3=0.6,β3=0.2.因此,与每个玩家相关的代价函数可以表示为J i (x 0)= ∞0(x TQ i x +3∑j =1S j (u j ))d τ,i =1,2,3,(40)其中S j (u j )=2αju jβj tanh −1(z −βjαj)d z =2αj (u j −βj )tanh −1(u j −βjαj)+α2j ln (1−(u j −βj )2α2j).(41)然后,本文针对系统(39)构建3个评判神经网络,每个玩家的评判神经网络权值分别为ˆW1=[ˆW 11ˆW 12ˆW13]T ,ˆW 2=[ˆW 21ˆW 22ˆW 23]T ,ˆW 3=[ˆW 31ˆW 32ˆW33]T ,激活函数被定义为σ1(x )=σ2(x )=σ3(x )=[x 21x 1x 2x 22]T,且隐含层神经元个数为δ=3.此外,系统初始状态取x 0=[0.5−0.5]T ,每个评判神经网络的学习率分别为γ1=1.5,γ2=0.8,γ3=0.2,且每个评判神经网络的初始权值都在0和2之间选取.最后,引入探测噪声η(t )=sin 2(−1.2t )cos(0.5t )+cos(2.4t )sin 3(2.4t )+sin 5t +sin 2(1.12t )+sin 2t ×cos t +sin 2(2t )cos(0.1t ),使得系统满足持续激励条件.执行学习过程,本文发现每个玩家的评判神经网络权值分别收敛于[6.90912.99046.6961]T ,[4.89012.23475.2062]T ,[1.79450.33212.4583]T .在60个时间步之后去掉探测噪声,每个玩家的评判网络权值收敛过程如图1–3所示.然后,将训练好的权值代入式(20),能得到每个玩家的近似最优控制律,将其应用到系统(39),经过10个时间步之后,得到的状态轨迹和控制轨迹分别如图4–5所示.由图4可知,系统状态最终收敛到了平衡点.由图5可知,每个玩家的控制轨迹都没有超出预定的边界,并且可以观察到u 1,u 2和u 3分别收敛于0.5,0.4和0.2.综上所述,仿真结果验证了所提方法的有效性.第9期李梦花等:不对称约束多人非零和博弈的自适应评判控制1567䇴 㖁㔌U / s图1玩家1的评判网络权值收敛过程Fig.1Convergence process of the critic network weights forplayer1䇴 㖁㔌U / s图2玩家2的评判网络权值收敛过程Fig.2Convergence process of the critic network weights forplayer2﹣䇴 㖁㔌U / s图3玩家3的评判网络权值收敛过程Fig.3Convergence process of the critic network weights forplayer 35结论本文首次将不对称约束应用到连续时间非线性系统的多人非零和博弈问题中.首先,获得了最优状态反馈控制律和耦合HJ 方程,并且为了解决不对称约束问题,建立了一种新的非二次型函数.值得注意的是,当系统状态为零时,最优控制策略是不为零的.其次,由于耦合HJ 方程不易求解,提出了一种基于神经网络的自适应评判算法来近似每个玩家的最优代价函数,从而获得相关的近似最优控制律.在实现过程中,用单一评判网络结构代替了经典的执行–评判结构,并且建立了一种新的权值更新规则.然后,利用Lyap-unov 理论讨论了评判网络权值近似误差和系统状态的UUB 稳定性.最后,仿真结果验证了所提算法的可行性.在未来的工作中,会考虑将事件驱动机制引入到连续时间非线性系统的不对称约束多人非零和博弈问题中,并且将该研究内容应用到污水处理系统中也是笔者的一个重点研究方向.﹣0.5﹣0.4﹣0.3﹣0.2﹣0.10.00.10.20.00.10.20.30.40.5(U )Y 1(U )Y 2图4系统(39)的状态轨迹Fig.4State trajectory of the system (39)0.00.51.01.52.00.00.20.40.60.81.01.200.012345678910﹣0.40.4﹣0.20.2(U )V 3(U )V 2(U )V 1U / s 012345678910U / s 012345678910U / s (c)(b)(a)(U )V 1(U )V 2(U )V 3图5系统(39)的控制轨迹Fig.5Control trajectories of the system (39)1568控制理论与应用第40卷参考文献:[1]WERBOS P J.Beyond regression:New tools for prediction andanalysis in the behavioral sciences.Cambridge:Harvard Universi-ty,1974.[2]HONG Chengwen,FU Yue.Nonlinear robust approximate optimaltracking control based on adaptive dynamic programming.Control Theory&Applications,2018,35(9):1285–1292.(洪成文,富月.基于自适应动态规划的非线性鲁棒近似最优跟踪控制.控制理论与应用,2018,35(9):1285–1292.)[3]CUI Lili,ZHANG Yong,ZHANG Xin.Event-triggered adaptive dy-namic programming algorithm for the nonlinear zero-sum differential games.Control Theory&Applications,2018,35(5):610–618.(崔黎黎,张勇,张欣.非线性零和微分对策的事件触发自适应动态规划算法.控制理论与应用,2018,35(5):610–618.)[4]WANG D,HA M,ZHAO M.The intelligent critic framework foradvanced optimal control.Artificial Intelligence Review,2022,55(1): 1–22.[5]WANG D,QIAO J,CHENG L.An approximate neuro-optimal solu-tion of discounted guaranteed cost control design.IEEE Transactions on Cybernetics,2022,52(1):77–86.[6]YANG X,HE H.Adaptive dynamic programming for decentralizedstabilization of uncertain nonlinear large-scale systems with mis-matched interconnections.IEEE Transactions on Systems,Man,and Cybernetics:Systems,2020,50(8):2870–2882.[7]ZHAO B,LIU D.Event-triggered decentralized tracking control ofmodular reconfigurable robots through adaptive dynamic program-ming.IEEE Transactions on Industrial Electronics,2020,67(4): 3054–3064.[8]WANG Ding.Research progress on learning-based robust adaptivecritic control.Acta Automatica Sinica,2019,45(6):1037–1049.(王鼎.基于学习的鲁棒自适应评判控制研究进展.自动化学报, 2019,45(6):1037–1049.)[9]ZHANG Huaguang,ZHANG Xin,LUO Yanhong,et al.An overviewof research on adaptive dynamic programming.Acta Automatica Sini-ca,2013,39(4):303–311.(张化光,张欣,罗艳红,等.自适应动态规划综述.自动化学报, 2013,39(4):303–311.)[10]L¨U Yongfeng,TIAN Jianyan,JIAN Long,et al.Approximate-dynamic-programming H∞controls for multi-input nonlinear sys-tem.Control Theory&Applications,2021,38(10):1662–1670.(吕永峰,田建艳,菅垄,等.非线性多输入系统的近似动态规划H∞控制.控制理论与应用,2021,38(10):1662–1670.)[11]AN P,LIU M,WAN Y,et al.Multi-player H∞differential gameusing on-policy and off-policy reinforcement learning.The16th In-ternational Conference on Control and Automation.Electr Network: IEEE,2020,10:1137–1142.[12]REN H,ZHANG H,MU Y,et al.Off-policy synchronous iterationIRL method for multi-player zero-sum games with input constraints.Neurocomputing,2020,378:413–421.[13]LIU D,LI H,WANG D.Online synchronous approximate optimallearning algorithm for multiplayer nonzero-sum games with unknown dynamics.IEEE Transactions on Systems,Man,and Cybernetics: Systems,2014,44(8):1015–1027.[14]V AMVOUDAKIS K G,LEWIS F L.Non-zero sum games:Onlinelearning solution of coupled Hamilton-Jacobi and coupled Riccati equations.IEEE International Symposium on Intelligent Control.Denver,CO,USA:IEEE,2011,9:171–178.[15]ZHANG H,ZHANG K,XIAO G,et al.Robust optimal controlscheme for unknown constrained-input nonlinear systems via a plug-n-play event-sampled critic-only algorithm.IEEE Transactions on Systems,Man,and Cybernetics:Systems,2020,50(9):3169–3180.[16]HUO X,KARIMI H R,ZHAO X,et al.Adaptive-critic design fordecentralized event-triggered control of constrained nonlinear inter-connected systems within an identifier-critic framework.IEEE Trans-actions on Cybernetics,2022,52(8):7478–7491.[17]YANG X,HE H.Event-triggered robust stabilization of nonlin-ear input-constrained systems using single network adaptive critic designs.IEEE Transactions on Systems,Man,and Cybernetics:Sys-tems,2020,50(9):3145–3157.[18]WANG L,CHEN C L P.Reduced-order observer-based dynamicevent-triggered adaptive NN control for stochastic nonlinear systems subject to unknown input saturation.IEEE Transactions on Neural Networks and Learning Systems,2021,32(4):1678–1690.[19]YANG X,ZHU Y,DONG N,et al.Decentralized event-driven con-strained control using adaptive critic designs.IEEE Transactions on Neural Networks and Learning Systems,2022,33(10):5830–5844.[20]WANG D,ZHAO M,QIAO J.Intelligent optimal tracking withasymmetric constraints of a nonlinear wastewater treatment system.International Journal of Robust and Nonlinear Control,2021,31(14): 6773–6787.[21]LI M,WANG D,QIAO J,et al.Neural-network-based self-learningdisturbance rejection design for continuous-time nonlinear con-strained systems.Proceedings of the40th Chinese Control Confer-ence.Shanghai,China:IEEE,2021,7:2179–2184.[22]SU H,ZHANG H,JIANG H,et al.Decentralized event-triggeredadaptive control of discrete-time nonzero-sum games over wireless sensor-actuator networks with input constraints.IEEE Transactions on Neural Networks and Learning Systems,2020,31(10):4254–4266.[23]YANG X,HE H.Event-driven H∞-constrained control using adap-tive critic learning.IEEE Transactions on Cybernetics,2021,51(10): 4860–4872.[24]ABU-KHALAF M,LEWIS F L.Nearly optimal control laws for non-linear systems with saturating actuators using a neural network HJB approach.Automatica,2005,41(5):779–791.[25]HORNIK K,STINCHCOMBE M,WHITE H.Universal approxima-tion of an unknown mapping and its derivatives using multilayer feed-forward networks.Neural Networks,1990,3(5):551–560.[26]LEWIS F L,JAGANNATHAN S,YESILDIREK A.Neural NetworkControl of Robot Manipulators and Nonlinear Systems.London:Tay-lor&Francis,1999.作者简介:李梦花博士研究生,目前研究方向为自适应动态规划、智能控制,E-mail:*********************;王鼎教授,博士生导师,目前研究方向为智能控制、强化学习,E-mail:*****************.cn;乔俊飞教授,博士生导师,目前研究方向为智能计算、智能优化控制,E-mail:***************.cn.。
电子类常用缩写中英文对照表
电子类常用缩写中英文对照表:AC(alternating current) 交流(电)A/D(analog to digital) 模拟/数字转换ADC(analog to digital convertor) 模拟/数字转换器ADM(adaptive delta modulation) 自适应增量调制ADPCM(adaptive differential pulse code modulation) 自适应差分脉冲编码调制ALU(arithmetic logic unit) 算术逻辑单元ASCII(American standard code for information interchange) 美国信息交换标准码AV(audio visual) 声视,视听BCD(binary coded decimal) 二进制编码的十进制数BCR(bi-directional controlled rectifier)双向晶闸管BCR(buffer courtier reset) 缓冲计数器BZ(buzzer) 蜂鸣器,蜂音器C(capacitance,capacitor) 电容量,电容器CATV(cable television) 电缆电视CCD(charge-coupled device) 电荷耦合器件CCTV(closed-circuit television) 闭路电视CMOS(plementary) 互补MOSCPU(central processing unit)中央处理单元CS(control signal) 控制信号D(diode) 二极管DAST(direct analog store technology) 直接模拟存储技术DC(direct current) 直流DIP(dual in-line package) 双列直插封装DP(dial pulse) 拨号脉冲DRAM(dynamic random access memory) 动态随机存储器DTL(diode-transistor logic) 二极管晶体管逻辑DUT(device under test) 被测器件DVM(digital voltmeter) 数字电压表ECG(electrocardiograph) 心电图ECL(emitter coupled logic) 射极耦合逻辑EDI(electronic data interchange) 电子数据交换EIA(Electronic Industries Association) 电子工业联合会EOC(end of conversion) 转换完毕EPROM(erasable programmable read only memory) 可擦可编程只读存储器EEPROM(electrically EPROM) 电可擦可编程只读存储器ESD(electro-static discharge) 静电放电FET(field-effect transistor) 场效应晶体管FS(full scale) 满量程F/V(frequency to voltage convertor) 频率/电压转换FM(frequency modulation) 调频FSK(frequency shift keying) 频移键控FSM(field strength meter) 场强计FST(fast switching shyster) 快速晶闸管FT(fixed time) 固定时间FU(fuse unit) 保险丝装置FWD(forward) 正向的GAL(generic array logic) 通用阵列逻辑GND(ground) 接地,地线GTO(Sate turn off thruster) 门极可关断晶体管HART(highway addressable remote transducer) 可寻址远程传感器数据公路HCMOS(high density S) 高密度互补金属氧化物半导体(器件)HF(high frequency) 高频HTL(high threshold logic) 高阈值逻辑电路HTS(heat temperature sensor) 热温度传感器IC(integrated circuit) 集成电路ID(international data) 国际数据IGBT(insulated gate bipolar transistor) 绝缘栅双极型晶体管IGFET(insulated gate field effect transistor) 绝缘栅场效应晶体管I/O(input/output) 输入/输出I/V(current to voltage convertor) 电流-电压变换器IPM(incidental phase modulation) 附带的相位调制IPM(intelligent power module) 智能功率模块IR(infrared radiation) 红外辐射IRQ(interrupt request) 中断请求JFET(junction field effect transistor) 结型场效应晶体管LAS(light activated switch)光敏开关LASCS(light activated silicon controlled switch) 光控可控硅开关LCD(liquid crystal display) 液晶显示器LDR(light dependent resistor) 光敏电阻LED(light emitting diode) 发光二极管LRC(longitudinal redundancy check) 纵向冗余(码)校验LSB(least significant bit) 最低有效位LSI(1arge scale integration) 大规模集成电路M(motor) 电动机MCT(MOS controlled gyrator) 场控晶闸管MIC(microphone) 话筒,微音器,麦克风min(minute) 分MOS(metal oxide semiconductor)金属氧化物半导体MOSFET(metal oxide semiconductor FET) 金属氧化物半导体场效应晶体管N(negative) 负NMOS(N-channel metal oxide semiconductor FET) N沟道MOSFETNTC(negative temperature coefficient) 负温度系数OC(over current) 过电流OCB(overload circuit breaker) 过载断路器OCS(optical munication system) 光通讯系统OR(type of logic circuit) 或逻辑电路OV(over voltage) 过电压P(pressure) 压力FAM(pulse amplitude modulation) 脉冲幅度调制PC(pulse code) 脉冲码PCM(pulse code modulation) 脉冲编码调制PDM(pulse duration modulation) 脉冲宽度调制PF(power factor) 功率因数PFM(pulse frequency modulation) 脉冲频率调制PG(pulse generator) 脉冲发生器PGM(programmable) 编程信号PI(proportional-integral(controller)) 比例积分(控制器)PID(proportional-integral-differential(controller))比例积分微分(控制器) PIN(positive intrinsic-negative) 光电二极管PIO(parallel input output) 并行输入输出PLD(phase-locked detector) 同相检波PLD(phase-locked discriminator) 锁相解调器PLL(phase-locked loop) 锁相环路PMOS(P-channel metal oxide semiconductor FET) P沟道MOSFETP-P(peak-to-peak) 峰--峰PPM(pulse phase modulation) 脉冲相位洲制PRD(piezoelectric radiation detector) 热电辐射控测器PROM(programmable read only memory) 可编只读程存储器PRT(platinum resistance thermometer) 铂电阻温度计PRT(pulse recurrent time) 脉冲周期时间PUT(programmable unijunction transistor) 可编程单结晶体管PWM(pulse width modulation) 脉宽调制R(resistance,resistor) 电阻,电阻器RAM(random access memory) 随机存储器RCT(reverse conducting thyristor) 逆导晶闸管REF(reference) 参考,基准REV(reverse) 反转R/F(radio frequency) 射频RGB(red/green/blue) 红绿蓝ROM(read only memory) 只读存储器RP(resistance potentiometer) 电位器RST(reset) 复位信号RT(resistor with inherent variability dependent) 热敏电阻RTD(resistance temperature detector) 电阻温度传感器RTL(resistor transistor logic) 电阻晶体管逻辑(电路)RV(resistor with inherent variability dependent on the voltage) 压敏电阻器SA(switching assembly) 开关组件SBS(silicon bi-directional switch) 硅双向开关,双向硅开关SCR(silicon controlled rectifier) 可控硅整流器SCS(safety control switch) 安全控制开关SCS(silicon controlled switch) 可控硅开关SCS(speed control system) 速度控制系统SCS(supply control system) 电源控制系统SG(spark gap) 放电器SIT(static induction transformer) 静电感应晶体管SITH(static induction thyristor) 静电感应晶闸管SP(shift pulse) 移位脉冲SPI(serial peripheral interface) 串行外围接口SR(sample realy,saturable reactor) 取样继电器,饱和电抗器SR(silicon rectifier) 硅整流器SRAM(static random access memory) 静态随机存储器SSR(solid-state relay) 固体继电器SSR(switching select repeater) 中断器开关选择器SSS(silicon symmetrical switch) 硅对称开关,双向可控硅SSW(synchro-switch) 同步开关ST(start) 启动ST(starter) 启动器STB(strobe) 闸门,选通脉冲T(transistor) 晶体管,晶闸管TACH(tachometer) 转速计,转速表TP(temperature probe) 温度传感器TRIAC(triodes AC switch) 三极管交流开关TTL(transistor-transistor logic) 晶体管一晶体管逻辑TV(television) 电视UART(universal asynchronous receiver transmitter) 通用异步收发器VCO(voltage controlled oscillator) 压控振荡器VD(video decoders) 视频译码器VDR(voltage dependent resistor) 压敏电阻VF(video frequency) 视频V/F(voltage-to-frequency) 电压/频率转换V/I(voltage to current convertor) 电压-电流变换器VM(voltmeter) 电压表VS(vacuum switch) 电子开关VT(visual telephone) 电视VT(video terminal) 视频终端电子工程中常见的英文缩写--中英文对照表ADC: Analog-Digital Converter 模-数转换器;A/D转换器AGP: Accelerated Graphics Port 高速图形端口AI: Artificial Intelligence 人工智能AM: Application Module 应用模件APM: Advanced Process Manager 增强型过程管理器ARM: Advanced RISC Machines 既可以认为是一个公司的名字,也可以认为是对一类微处理器的通称,还可以认为是一种技术的名字BCD: Binary-Coded-Decimal 二-十进制代码;8421码CAD: puter Aided Desgin 计算机辅助设计CAM: puter Aided Manufacturing 计算机辅助制造CAN: Control Area Network 控制局域网络;LCAN: Controller Area Network Bus 设备间网络系统总线CAT: Coputer Aided Test 计算机辅助测试CD: pel Data 强制数据CDN: Clock Distribution Network 时钟脉冲分配网络CISC: plex Instruction Set puter复杂指令系统计算机CM: Caculate Module 计算模件CMMR: mon-Mode Rejection Ratio共模抑制比COB: Chip On Board 内插器CPLD: plex Programmable Logic Divice复杂可编程逻辑装置CRC: Cyclic Redundancy Check 循环冗余校验CSIC: Customers Specified Integrated CircuitsDCS: Distributed Control System 分布式控制;集散控制/TDC;分布式控制〔系统〕DDC: Direcr Digital Control 直接数字控制〔系统〕DDL: Device Description Language 设备描述语言DHW: Data High Way 高速数据通道;数据高速公路;总线DLSAP: Data Link Service Access Point 数据链路服务访问点DAC: Digital-Analog Converter 数-模转换器;D/A转换器DD: Device Description 设备描述DDL: Device Description Language 设备描述语言DRC: Desgin Rule Check 设计规那么检查DSP: Digital Signal Processor 数字信号处理EDA: Electronic Desgin Automation 电子设计自动化EDSP: Embedded Digital Signal Processor嵌入式数字信号处理器EM: Embedded Mirocontroller 嵌入式微控制器EMPU: Embedded Micro Processor Unit 嵌入式微处理器EMU: Embedded Microcontroller Unit 嵌入式微控制器EOC: End Of Convert 转换完毕EOS: Enhanced Operator Station 增强型操作站ES: Expert System 专家系统EWB: Electronic WorkBench 电子工作平台EWB: Engineer Wok Station 工程师工作站FAS: Field Access Sublayer 现场总线访问子层FB: FieldBus 现场总线FBAP: Function Block Application Process功能块应用进程FCS: Fieldbus Control System 现场总线控制〔系统〕FMS: Fieldbus Message Specifiction 现场总线报文规XFIFO: First In First Out 先进先出FET: Field-Efect Tansistor 场効晶体管FF: Fieldbus Foundation 现场总线基金会FPGA: Field Programmable Gate Array现场可编程门阵列FSC: Fail Safe Control safety manager故障安全控制管理器FSK: Frequency Shift Keying 频移键控〔通信技术〕GAL: Generic Array Logic 通用阵列逻辑(可重复编程)GLB: Generic Logic Block 通用逻辑块GRP: Global Routing Pool 全局布线区GTO: Gate Turn-off thyristor 可关断晶闸管GTR: Giant Transistor 功率晶体管GUI: Graphical User Interface图形化用户界面GUS: Global User Station 全局用户操作站GW: Gateway 网关HART: Highway Addressable Remote Transducer可寻址远程传感器数据通路通信协议HC: Host puter 主计算机HDL: Hardware Description Language硬件描述语言HM: History Module 历史模件HP: 惠普HPM: High-performace Process Manager高性能过程管理器HTD: High Way Traffic Director 高速通道控制器IC: integrated circuit 集成电路IDE: Intigrated Development Environment集成开发环境IDS: Integrated Distributed System 集成式分散系统IEC: International Electrotechnical mission国际电工委员会IEEE: The Institute of Electrical and Electronics Engineers电工和电子工程研究所(美国)IGBT: Insulated Gate Bipolar Tansistor绝缘栅双极型晶体管IGFET: Isolated-Gate Field-Efect Transistor绝缘栅场効晶体管IOC: I/O Cell输入/输出单元IP: Internet Protocol 互联网协议IPC: Industrial Control puter 工控机ISA: Industrial Standard Architecture〔总线〕ISP: In-System Programmable 在系统可编程LAS: Link Active Scheduler 链路活动调度器L: Local Control Network 局部控制网络;CANMAP: Manufactuin Automation Protocol 制造自动化协议MFP: Mlti-Function Processor 多功能处理器MIPS: Microprocessor without Interlocked Pipeline Stages内部无互锁流水线微处理器MIS: Managerment Information System管理信息系统MOS: Matel Oxide Semiconductor 金属氧化物半导体LCD: Liquid Crystal Display 液晶显示器LED: Light Emitting Diode 发光二极管LLI: Lower Layer Interface 低层接口LM: Logic Manager 逻辑管理器MAC: Media Access Control 介质访问控制MCU: MicroController Unit 微控制器;单片机;SOC;SCMMDI: Medium Dependent Interface 媒体接口MFCS: Multifunction Field Control Station多功能现场控制站MPU: MiroProcessor Unit 微处理器NM: Network Management 网络管理ORP: Output Routing Pool 输出布线区OCL: Output CapacitorLess 无输出电容OD: Object Dictionary 对象字典OIS: Operater Interface Station 操作员接口站PAL: Programmable Array Logic 可编程阵列逻辑PCI: Peripheral ponent Interconnect外围部件互连(总线)PIN: Plant Infermation Network 工厂信息网络PIU: Process Interface Unit 过程接口单元PLA: Progammable Logic Array 可编程逻辑阵列PLD: Programmable Logic Device 可编程逻辑器件PLS: Physical Si GnallinG 物理信令PMA: Physical Medium Attachment 物理媒体附件PROM: Progammable ROM 可编程只读存储器PT: Pass Token 传递令牌OE: Output Enable 输出允许OLMC: Output Logic Macro Cell 输出逻辑宏单元OTL: Output TransformerLess 无输出变压器PDA: Personal Digital Assistant 个人数字助理PLC: programmable Logic contraller 可编程逻辑控制器RAM: Random AccessMemory 随机存取存储器;读/写存储器RISC: Reduced Instruction Set puter精简指令系统计算机ROM: Read Only Memory 只读存储器SCC: Supervisory puter Contol 计算机监视控制〔系统〕SCM: Single Chip Miroputer 单片微机〔国外〕;单片机〔国内〕;MCU;SOCSM: System Mana Gement 系统管理SMM: System Management Module 系统管理站;系统管理模件SOC: System On a Chip 单片机;MCU;〔单片机地开展经历了SCM、MCU和SOC三个阶段〕SOPC: System On a Programmable Chip 可编程单片机;MCUSPC: Set Point puter Control 给定值控制;SCCTD: Time Distribution 时间发布信息TDC: Total Distributed Control 集散控制;分布式控制;分散式控制/DCS(系统)TG: Tansmission Gate 传输门TTL: Transistor-Transistor Logic 晶体管-晶体管逻辑VCR: Virual munication Relationships 虚拟通信关系VHDL: VHSIC(Very High Speed Integrated Circuit) HDLU: Universal Control Network 通用控制网络US: Universal Station 通用操作站USB: Universal Serial Bus 通用串行总线VGA: Video Graphics ArrayDOC.。
abaqus结构分析单元类型
a b a q u s结构分析单元类型(总5页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--;this wordfile adds the code folding function which is useful to ignore rows of numbers,enjoy~;updated in , based on the wordfile "abaqus_67ef()";Syntax file for abaqus keywords ,code folding enabled;add *ANISOTROPIC *ENRICHMENT *LOW -DISPLACEMENT HYPERELASTIC;newly add /C"ElementType";delete DISPLACEMENT;delete MASS in /C2"Keywords2"/L29"abaqus_612" Nocase File Extensions = inp des dat msg/Delimiters = ~!@$%^&()_-+=|\/{}[]:;"'<> ,.//Function String = "%[ ^t]++[ps][a-z]+ [a-z0-9]+ ^(*(*)^)*{$"/Function String 1 = "%[ ^t]++[ps][a-z]+ [a-z0-9]+ ^(*(*)^)[ ^t]++$" /Member String = "^([A-Za-z0-9_:.]+^)[ ^t*&]+$S[ ^t]++[(=);,]"/Variable String = "^([A-Za-z0-9_:.]+^)[ ^t*&]+$S[ ^t]++[(=);,]"/Open Fold Strings = "*" "**""***"/Close Fold Strings = "*" "**""***"/C1"Keywords1" STYLE_KEYWORD*ACOUSTIC *ADAPTIVE *AMPLITUDE *ANISOTROPIC *ANNEAL *AQUA *ASSEMBLY *ASYMMETRIC *AXIAL *BASE *BASELINE *BEAM*BIAXIAL *BLOCKAGE *BOND *BOUNDARY *BRITTLE *BUCKLE *BUCKLING *BULK *C *CAP *CAPACITY *CAST *CAVITY *CECHARGE*CECURRENT *CENTROID *CFILM *CFLOW *CFLUX *CHANGE *CLAY *CLEARANCE*CLOAD *CO *COHESIVE *COMBINED *COMPLEX*CONCRETE *CONDUCTIVITY *CONNECTOR *CONSTRAINT *CONTACT *CONTOUR*CONTROLS *CORRELATION *COUPLED *COUPLING*CRADIATE *CREEP *CRUSHABLE *CYCLED *CYCLIC *D *DAMAGE *DAMPING*DASHPOT *DEBOND *DECHARGE *DECURRENT*DEFORMATION *DENSITY *DEPVAR *DESIGN *DETONATION *DFLOW *DFLUX*DIAGNOSTICS *DIELECTRIC *DIFFUSIVITY*DIRECT *DISPLAY *DISTRIBUTING *DISTRIBUTION *DLOAD *DRAG *DRUCKER*DSA *DSECHARGE *DSECURRENT *DSFLOW*DSFLUX *DSLOAD *DYNAMIC *EL *ELASTIC *ELCOPY *ELECTRICAL *ELEMENT*ELGEN *ELSET *EMBEDDED *EMISSIVITY*END *ENERGY *ENRICHMENT *EOS *EPJOINT *EQUATION *EULERIAN *EXPANSION *EXTREME *FABRIC *FAIL *FAILURE*FASTENER *FIELD *FILE *FILM *FILTER *FIXED *FLOW *FLUID *FOUNDATION *FRACTURE *FRAME *FREQUENCY *FRICTION*GAP *GASKET *GEL *GEOSTATIC *GLOBAL *HEADING *HEAT *HEATCAP*HOURGLASS *HYPERELASTIC *HYPERFOAM *HYPOELASTIC*HYSTERESIS *IMPEDANCE *IMPERFECTION *IMPORT *INCIDENT *INCLUDE*INCREMENTATION *INELASTIC *INERTIA*INITIAL *INSTANCE *INTEGRATED *INTERACTION *INTERFACE *ITS *JOINT*JOINTED *JOULE *KAPPA *KINEMATIC*LATENT *LOAD *LOADING *LOW *M1 *M2 *MAP *MASS *MATERIAL *MATRIX*MEMBRANE *MODAL *MODEL *MOHR *MOISTURE*MOLECULAR *MONITOR *MOTION *MPC *MULLINS *NCOPY *NFILL *NGEN *NMAP *NO *NODAL *NODE *NONSTRUCTURAL*NORMAL *NSET *ORIENTATION *ORNL *OUTPUT *PARAMETER *PART *PERIODIC *PERMEABILITY *PHYSICAL *PIEZOELECTRIC*PIPE *PLANAR *PLASTIC *POROUS *POST *POTENTIAL *PRE *PREPRINT*PRESSURE *PRESTRESS *PRINT *PSD *RADIATE*RADIATION *RANDOM *RATE *RATIOS *REBAR *REFLECTION *RELEASE*RESPONSE *RESTART *RETAINED *RIGID *ROTARY*SECTION *SELECT *SFILM *SFLOW *SHEAR *SHELL *SIMPEDANCE *SIMPLE*SLIDE *SLOAD *SOILS *SOLID *SOLUBILITY*SOLUTION *SOLVER *SORPTION *SPECIFIC *SPECTRUM *SPRING *SRADIATE*STATIC *STEADY *STEP *SUBMODEL*SUBSTRUCTURE *SURFACE *SWELLING *SYMMETRIC *SYSTEM *TEMPERATURE*TENSILE *TENSION *THERMAL *TIE *TIME*TORQUE *TRACER *TRANSFORM *TRANSPORT *TRANSVERSE *TRIAXIAL *TRS *UEL *UNDEX *UNIAXIAL *UNLOADING *USER*VARIABLE *VIEWFACTOR *VISCO *VISCOELASTIC *VISCOUS *VOID *VOLUMETRIC *WAVE *WIND-AXISYMMETRIC -DEFINITION -DISPLACEMENT -SIMULATION -SOIL -TENSION/C2"Keywords2"ACTIVATION ADDED AREA ASSEMBLE ASSEMBLY ASSIGNMENT AXIALBEHAVIOR BODY BULKCASE CAVITY CENTER CHAIN CHANGE CHARGE CLEARANCE COMPACTION COMPONENT COMPRESSION CONDITIONS CONDUCTANCECONDUCTIVITY CONSTANTS CONSTITUTIVE CONSTRAINT CONTACT CONTROL CONTROLS COPY CORRECTION COULOMB COUPLINGCRACKING CREEP CRITERIA CRITERION CYCLICDAMAGE DAMAGED DAMPING DATA DEFINED DEFINITION DELETE DENSITY DEPENDENCE DEPENDENT DERIVED DETECTIONDIFFUSION DIRECTORY DOFS DYNAMIC DYNAMICSEFFECT EIGENMODES ELASTIC ELASTICITY ELECTRICAL ELEMENT ELSET ENVELOPE EVOLUTION EXCHANGE EXCLUSIONSEXPANSIONFACTORS FAILURE FIELD FILE FLAW FLOW FLUID FLUX FOAM FORMAT FORMULATION FRACTION FREQUENCY FRICTIONGENERAL GENERATE GENERATION GRADIENTHARDENING HEAT HOLD HYPERELASTICINCLUSIONS INERTIA INFLATOR INITIATION INPUT INSTANCE INTEGRAL INTERACTION INTERFERENCE IRONLAYER LEAKOFF LENGTH LINE LINK LOAD LOCKM1 M2 MATERIAL MATRIX MEDIUM MESH METAL MIXTURE MODEL MODES MODULI MODULUS MOTIONNODAL NODE NSET NUCLEATIONORIGIN OUTPUTPAIR PARAMETER PART PARTICLE PATH PENETRATION PLASTIC PLASTICITY POINT POINTS POTENTIAL PRAGER PRINTPROPERTYRADIATION RATE RATIOS REDUCTION REFERENCE REFLECTION REGION RELIEF RESPONSE RESULTS RETENTIONSECTION SCALING SHAPE SHEAR SOLID SOLUTION SPECTRUM STABILIZATION STATE STEP STIFFENING STIFFNESS STOPSTRAIN STRESS SURFACE SWELLING SYMMETRYTABLE TECHNIQUE TEMPERATURE TENSION TEST THERMAL THICKNESS TO TORQUE TRANSFER TRANSPORTVALUE VARIABLES VARIATION VELOCITY VIEWFACTOR VISCOSITYWAVE WEIGHT/C3"ElementType" STYLE_ELEMENTAC1D2 AC1D3 AC2D3 AC2D4 AC2D4R AC2D6 AC2D8 AC3D4 AC3D6 AC3D8 AC3D8R AC3D10 AC3D15 AC3D20 ACAX3 ACAX4ACAX4R ACAX6 ACAX8 ACIN2D2 ACIN2D3 ACIN3D3 ACIN3D4 ACIN3D6 ACIN3D8 ACINAX2 ACINAX3 ASI1 ASI2 ASI2AASI2D2 ASI2D3 ASI3 ASI3A ASI3D3 ASI3D4 ASI3D6 ASI3D8 ASI4 ASI8 ASIAX2 ASIAX3B21 B21H B22 B22H B23 B23H B31 B31H B31OS B31OSH B32 B32H B32OSB32OSH B33 B33HC3D4 C3D4E C3D4H C3D4P C3D4T C3D6 C3D6E C3D6H C3D6P C3D6T C3D8 C3D8E C3D8H C3D8HT C3D8I C3D8IH C3D8PC3D8PH C3D8PHT C3D8PT C3D8R C3D8RH C3D8RHT C3D8RP C3D8RPH C3D8RPHTC3D8RPT C3D8RT C3D8T C3D10 C3D10EC3D10H C3D10I C3D10M C3D10MH C3D10MHT C3D10MP C3D10MPH C3D10MPTC3D10MT C3D15 C3D15E C3D15H C3D15VC3D15VH C3D20 C3D20E C3D20H C3D20HT C3D20P C3D20PH C3D20R C3D20REC3D20RH C3D20RHT C3D20RP C3D20RPHC3D20RT C3D20T C3D27 C3D27H C3D27R C3D27RH CAX3 CAX3E CAX3H CAX3T CAX4 CAX4E CAX4H CAX4HT CAX4ICAX4IH CAX4P CAX4PH CAX4PT CAX4R CAX4RH CAX4RHT CAX4RP CAX4RPHCAX4RPHT CAX4RPT CAX4RT CAX4T CAX6CAX6E CAX6H CAX6M CAX6MH CAX6MHT CAX6MP CAX6MPH CAX6MT CAX8 CAX8E CAX8H CAX8HT CAX8P CAX8PH CAX8RCAX8RE CAX8RH CAX8RHT CAX8RP CAX8RPH CAX8RT CAX8T CAXA4HN CAXA4N CAXA4RHN CAXA4RN CAXA8HN CAXA8NCAXA8PN CAXA8RHN CAXA8RN CAXA8RPN CCL12 CCL12H CCL18 CCL18H CCL24 CCL24H CCL24R CCL24RH CCL9 CCL9HCGAX3 CGAX3H CGAX3HT CGAX3T CGAX4 CGAX4H CGAX4HT CGAX4R CGAX4RH CGAX4RHT CGAX4RT CGAX4T CGAX6 CGAX6HCGAX6M CGAX6MH CGAX6MHT CGAX6MT CGAX8 CGAX8H CGAX8HT CGAX8R CGAX8RH CGAX8RHT CGAX8RT CGAX8T CIN3D12RCIN3D18R CIN3D8 CINAX4 CINAX5R CINPE4 CINPE5R CINPS4 CINPS5R COH2D4 COH2D4P COH3D6 COH3D6P COH3D8COH3D8P COHAX4 COHAX4P CONN2D2 CONN3D2 CPE3 CPE3E CPE3H CPE3T CPE4 CPE4E CPE4H CPE4HT CPE4I CPE4IHCPE4P CPE4PH CPE4R CPE4RH CPE4RHT CPE4RP CPE4RPH CPE4RT CPE4T CPE6 CPE6E CPE6H CPE6M CPE6MH CPE6MHTCPE6MP CPE6MPH CPE6MT CPE8 CPE8E CPE8H CPE8HT CPE8P CPE8PH CPE8RCPE8RE CPE8RH CPE8RHT CPE8RPCPE8RPH CPE8RT CPE8T CPEG3 CPEG3H CPEG3HT CPEG3T CPEG4 CPEG4H CPEG4HT CPEG4I CPEG4IH CPEG4R CPEG4RHCPEG4RHT CPEG4RT CPEG4T CPEG6 CPEG6H CPEG6M CPEG6MH CPEG6MHT CPEG6MT CPEG8 CPEG8H CPEG8HT CPEG8RCPEG8RH CPEG8RHT CPEG8T CPS3 CPS3E CPS3T CPS4 CPS4E CPS4I CPS4RCPS4RT CPS4T CPS6 CPS6E CPS6M CPS6MTCPS8 CPS8E CPS8R CPS8RE CPS8RT CPS8TDASHPOT1 DASHPOT2 DASHPOTA DC1D2 DC1D2E DC1D3 DC1D3E DC2D3 DC2D3EDC2D4 DC2D4E DC2D6 DC2D6E DC2D8DC2D8E DC3D10 DC3D10E DC3D15 DC3D15E DC3D20 DC3D20E DC3D4 DC3D4EDC3D6 DC3D6E DC3D8 DC3D8E DCAX3DCAX3E DCAX4 DCAX4E DCAX6 DCAX6E DCAX8 DCAX8E DCC1D2 DCC1D2D DCC2D4 DCC2D4D DCC3D8 DCC3D8D DCCAX2DCCAX2D DCCAX4 DCCAX4D DCOUP2D DCOUP3D DGAP DRAG2D DRAG3D DS3 DS4 DS6 DS8 DSAX1 DSAX2EC3D8R EC3D8RT ELBOW31 ELBOW31B ELBOW31C ELBOW32 EMC2D3 EMC2D4 EMC3D4 EMC3D8F2D2 F3D3 F3D4 FAX2 FLINK FRAME2D FRAME3D FC3D4 FC3D6 FC3D8GAPCYL GAPSPHER GAPUNI GAPUNIT GK2D2 GK2D2N GK3D12M GK3D12MN GK3D18 GK3D18N GK3D2 GK3D2N GK3D4LGK3D4LN GK3D6 GK3D6L GK3D6LN GK3D6N GK3D8 GK3D8N GKAX2 GKAX2N GKAX4 GKAX4N GKAX6 GKAX6N GKPE4 GKPE6GKPS4 GKPS4N GKPS6 GKPS6NHEATCAPIRS21A IRS22A ISL21A ISL22A ITSCYL ITSUNI ITT21 ITT31JOINT2D JOINT3D JOINTCLS3S LS6MASS M3D3 M3D4 M3D4R M3D6 M3D8 M3D8R M3D9 M3D9R MAX1 MAX2 MCL6 MCL9 MGAX1 MGAX2PC3D PIPE21 PIPE21H PIPE22 PIPE22H PIPE31 PIPE31H PIPE32 PIPE32HPSI24 PSI26 PSI34 PSI36Q3D4 Q3D6 Q3D8 Q3D8H Q3D8R Q3D8RH Q3D10M Q3D10MH Q3D20 Q3D20H Q3D20R Q3D20RHR2D2 R3D3 R3D4 RAX2 RB2D2 RB3D2 ROTARYIS3 S3T S3R S3RS S3RT S4 S4T S4R S4RT S4R5 S4RS S4RSW S8R S8R5 S8RT S9R5 SAX1 SAX2 SAX2T SAXA1NSAXA2N SC6R SC6RT SC8R SC8RT SFM3D3 SFM3D4 SFM3D4R SFM3D6 SFM3D8 SFM3D8R SFMAX1 SFMAX2 SFMCL6 SFMCL9SFMGAX1 SFMGAX2 SPRING1 SPRING2 SPRINGA STRI3 STRI65T2D2 T2D2E T2D2H T2D2T T2D3 T2D3E T2D3H T2D3T T3D2 T3D2E T3D2H T3D2T T3D3 T3D3E T3D3H T3D3TWARP2D3 WARP2D4。
软件工程_东北大学中国大学mooc课后章节答案期末考试题库2023年
软件工程_东北大学中国大学mooc课后章节答案期末考试题库2023年1._______ is a discipline whose aim is the production of fault-free software,delivered on time and within budget, that satisfies the client's needs._______是一个学科,其目标是生产出满足客户的需求的、未超出预算的、按时交付的、没有错误的软件。
答案:2.The relationship between whole-class and part-classes is called ______.整体和部分类之间的关系被称为______。
答案:aggregation3.The relationship between super-class and subclasses is called ______.超类和子类之间的关系称为______。
答案:inheritance4.The strategy of inheritance is to use inheritance wherever _______.继承的策略是在_______的情况下使用继承。
答案:appropriate5._____is to encapsulate the attributes and operations in an object, and hides theinternal details of an object as possible. _____是为了在一个对象中封装属性和操作,并尽可能隐藏对象的内部细节。
Data encapsulation6.Two modules are ________ coupled if they have write access to global data.如果两个模块对全局数据具有写访问权限,则是________耦合。
音响设备术语中英对照
AGC:Automati Gain Control自动增益控制AHU:Air Handling Unit 空气处理机组A-I:Auto-iris自动光圈AIS:Alarm Indication Signal 告警指示信号AITS:Acknowledged Information Transfer Service确认操作ALC:Automati Level Control 自动平衡控制ALS:Alarm Seconds 告警秒ALU:Analogue Lines Unit 模拟用户线单元AM:Administration Module管理模块AN:Access Network 接入网A:Actuator 执行器A:Amplifier 放大器A:Attendance员工考勤A:Attenuation衰减AA:Antenna amplifier 开线放大器AA:Architectural Acoustics建筑声学AC:Analogue Controller 模拟控制器ACD:Automatic Call Distribution 自动分配话务ACS:Access Control System出入控制系统AD:Addressable Detector地址探测器ADM:Add/Drop Multiplexer分插复用器ADPCM:Adaptive Differential ulse Code Modulation 自适应差分脉冲编码调制AF:Acoustic Feedback 声反馈AFR:Amplitude /Frequency Response 幅频响应ANSI:American National Standards Institute美国国家标准学会APS:Automatic Protectiontching 自动保护倒换ASC:Automati Slope Control 自动斜率控制ATH:Analogue Trunk Unit 模拟中继单元ATM:Asynchrous Transfer Mode 异步传送方式AU- PPJE:AU Pointer Positive Justification 管理单元正指针调整AU:Administration Unit 管理单元AU-AIS:Administrative Unit Alarm Indication SignalAU告警指示信号AUG:Administration Unit Group 管理单元组AU-LOP:Loss of Administrative Unit Pointer AU指针丢失AU-NPJE:AU Pointer Negative Justification管理单元负指针调整AUP:Administration Unit Pointer管理单元指针A VCD:Auchio &Video Control Device 音像控制装置AWG:American Wire Gauge美国线缆规格BA:Bridge Amplifier桥接放大器TOPBAC:Building Automation & Control net建筑物自动化和控制网络BAM:Background Administration Module后管理模块BBER:Background Block Error Ratio背景块误码比BCC:B-channel Connect ControlB通路连接控制BD:Building DistributorBEF:Buiding Entrance Facilities 建筑物入口设施BFOC:Bayonet Fibre Optic Connector大口式光纤连接器BGN:Background Noise背景噪声BGS: Background Sound 背景音响BIP-N:Bit Interleaved Parity N code 比特间插奇偶校验N位码B-ISDN:Brand band ISDN 宽带综合业务数字网B-ISDN:Broad band -Integrated Services Digital Network 宽带综合业务数字网BMC:Burst Mode Controller 突发模式控制器BMS:Building Management System 智能建筑管理系统BRI:Basic Rate ISDN 基本速率的综合业务数字网BS:Base Station基站BSC:Base Station Controller基站控制器BUL:Back up lighting备用照明C/S: Client/Server客户机/服务器TOPC:Combines 混合器C:Container 容器CA:Call Accounting电话自动计费系统CA TV:Cable Television 有线电视CC:Call Control 呼叫控制CC:Coax cable 同轴电缆CCD:Charge coupled devices 电荷耦合器件CCF:Cluster Contril Function 簇控制功能CD:Campus Distributor 建筑群配线架CD:Combination detector 感温,感烟复合探测器CDCA:Continuous Dynamic Channel Assign 连续的动态信道分配CDDI:Copper Distributed Data 合同缆分布式数据接口CDES:Carbon dioxide extinguisbing system 二氧化碳系统CDMA:Code Division Multiplex Access 码分多址CF:Core Function 核心功能CFM:Compounded Frequency Modulation 压扩调频繁CIS:Call Information System 呼叫信息系统CISPR:Internation Special Conmittee On Radio Interference 国际无线电干扰专门委员会CLNP:Connectionless Network Protocol 无连接模式网络层协议CLP:Cell Loss Priority信元丢失优先权CM:Communication Module 通信模块CM:Configuration Management 配置管理CM:Cross-connect Matrix交叉连接矩阵CMI:Coded Mark Inversion传号反转码CMISE:Common Management Information Service公用管理信息协议服务单元CPE:Convergence protocol entity 会聚协议实体CR/E:card reader /Encoder (Ticket reader )卡读写器/编码器CRC:Cyclic Redundancy Check 循环冗佘校验CRT:Cathode Ray Tabe 显示器,监视器,阴极射线管CS: Convergence service 会聚服务CS:Cableron Spectrum 旧纳档块化技术CS:Ceiling Screen 挡烟垂壁CS:Convergence Sublayer合聚子层CSC:Combined Speaker Cabinet 组合音响CSCW:Computer supported collaborative work 计算机支持的协同工作CSES:Continuius Severely Errored Second 连续严重误码秒CSF:Cell Site Function 单基站功能控制CTB:Composite Triple Beat 复合三价差拍CTD:Cable Thermal Detector 缆式线型感温探测器CTNR:carrier to noise ratio 载波比CW:Control Word 控制字D:Directional 指向性TOPD:Distortion 失真度D:Distributive 分布式DA:Distribution Amplifier 分配的大器DBA:Database Administrator数据库管理者DBCSN:Database Control System Nucleus数据库控制系统核心DBOS:Database Organizing System 数据库组织系统DBSS:Database Security System 数据库安全系统DC:Door Contacts大门传感器DCC:Digital Communication Channel数字通信通路DCN:Data Communication Network 数据通信网DCP-I:Distributed Control Panel -Intelligent智能型分散控制器DCS:Distributed Control System集散型控制系统DDN:Digital Data Network 数字数据网DDS:Direct Dignital Controller直接数字控制器DDW:Data Describing Word 数据描述字DECT:Digital Enhanced Cordless Telecommunication增强数字无绳通讯DFB:Distributed Feedback 分布反馈DID:Direct Inward Dialing 直接中继方式,呼入直拨到分机用户DLC:Data Link Control Layer 数据链路层DLI:DECT Line InterfaceDODI:Direct Outward Dialing One 一次拨号音DPH:DECT PhoneDRC:Directional Response Cahracteristics 指向性响应DS:Direct Sound 直正声DSP:Digital signal Processing 数字信号处理DSS:Deiision Support System 决策支持系统DTMF:Dual Tone Multi-Frequency 双音多频DTS:Dual -Technology Sensor 双鉴传感器DWDM:Dense Wave-length Division Multiplexing 密集波分复用DXC:Digital Cross-Connect 数字交叉连接E:Emergency lighting照明设备TOPE:Equalizer 均衡器E:Expander 扩展器EA-DFB:Electricity Absorb-Distributed Feedback 电吸收分布反馈ECC:Embedded Control Channel 嵌入或控制通道EDFA:Erbium-Doped Fiber Amplifier掺饵光纤放大器EDI:Electronic Data Interexchange 电子数据交换EIC:Electrical Impedance Characteristics 电阻抗特性EMC:Electro Magnetic Compatibiloty 电磁兼容性EMI:Electro Magnetic Interference 电磁干扰EMS:Electromagnetic Sensitibility 电磁敏感性EN:Equivalent Noise 等效噪声EP:Emergency Power 应急电源ES:Emergency Sooket 应急插座ES:Evacuation Sigvial疏散照明ESA:Error SecondA 误码秒类型AESB:ErrorSecondB 误码秒类型BESD:Electrostatic Discharge静电放电ESR:Errored Second Ratio 误码秒比率ETDM:Electrical Time Division Multiplexing电时分复用ETSI:European Telecommunication Standards Institute欧洲电信标准协会F:Filter 滤波器TOPFAB:Fire Alarm Bell 火警警铃FACU:Fire Alarm Contrlol Unit 火灾自动报警控制装置FC:Failure Count 失效次数FC:Frequency Converter 频率变换器FCC:Fire Alarm System 火灾报警系统FCS:Field Control System 现场总线FCU:Favn Coil Unit风机盘管FD:Fire Door 防火门FD:Flame Detector 火焰探测器FD:Floor DistributorFD:Frequency Dirsder 分频器FDD:Frequency Division Dual 频分双工FDDI:Fiberdistributed Data Interface光纤缆分布式数据接口。
术语VS中文解释对照
术语VS中文解释对照3C(China Compulsory Certification,中国强制性产品认证制度) 3D(Three Dimensional,三维)3DCG(3D computer graphics,三维计算机图形)3DNow!(3D no waiting,无须等待的3D处理)3DPA(3D Positional Audio,3D定位音频)3DS(3D SubSystem,三维子系统)3GIO(Third Generation Input/Output,第三代输入输出技术) AA(Accuview Antialiasing,高精度抗锯齿)AAC(Advanced Audio Compression,高级音频压缩)AAM(AMD Analyst Meeting,AMD分析家会议)AAM(Automatic Acoustic Management,自动机械声学管理)AAS(Automatic Area Segments)AAT(Average access time,平均存取时间)ABB(Advanced Boot Block,高级启动块)ABP(Address Bit Permuting,地址位序列改变)ABP(Advanced Branch Prediction,高级分支预测)ABS(Auto Balance System,自动平衡系统)A-Buffer(Accumulation Buffer,积聚缓冲)AC(Acoustic Edge,声学边缘)AC(Audio Codec,音频多媒体数字信号编解码器)AC-3(Audio Coding 3,第三代音响编码)AC97(Audio Codec 97,多媒体数字信号解编码器1997年标准) ACCP(Applied Computing Platform Providers,应用计算平台提供商)ACG(Aggressive Clock Gating,主动时钟选择)ACIRC(Advanced Cross Interleave Reed - Solomon Code,高级交叉插入里德所罗门代码)ACOPS(Automatic CPU OverHeat Prevention System(CPU过热预防系统)ACPI(Advanced Configuration and Power Interface,先进设置和电源管理)ACR(Advanced Communications Riser,高级通讯升级卡)ACS(Access Control Software,存取控制软件)ACT(Action,动作类游戏)AD(Analog to Digitalg,模拟到数字转换)ADC(Analog to Digital Converter,模数传换器)ADC(Apple Display Connector,苹果专用显示器接口)ADI(Adaptive De-Interlacing,自适应交错化技术)ADIMM(advanced Dual In-line Memory Modules,高级双重内嵌式内存模块)ADIP(Address In Pre-Groove,预凹槽寻址)ADSL(Asymmetric Digital Subscriber Line,不对称数字订阅线路)ADT(Advanced DRAM Technology,高级内存技术)AE(Atmospheric Effects,大气雾化效果)AE(Auto Focus,自动测光)AES-OCB(Advanced Encryption Standard-Operation Cipher Block,高级加密标准-操作密码块)AF(Auto Focus,自动对焦)AFC media(antiferromagnetically coupled media,反铁磁性耦合介质)AFC(Advanced Frame Capture、高级画面捕获)AFC(Amplitude-frequency characteristic,振幅频率特征)AFE(Analog Front End,模拟前置)AFM(Atomic Force Microscope,原子力显微镜)AFR(Alternate Frame Rendering,交替渲染技术)AG(Aperture Grills,栅条式金属板)AGBS(Advance GameBoy development System,高级GameBoy发展系统)AGC(Anti Glare Coatings,防眩光涂层)AGP(Accelerated Graphics Port,图形加速接口)AGPS(Assisted Global Positioning System,援助全球定位系统) AGTL+(Assisted Gunning Transceiver Logic,援助发射接收逻辑电路)AGU(Address Generation Units,地址产成单元)AH(Authentication Header,鉴定文件头)AHA(Accelerated Hub Architecture,加速中心架构)AI(Artificial Intelligence,人工智能)AIMM(AGP Inline Memory Module,AGP板上内存升级模块)AIS(Alternate Instruction Set,交替指令集)AL(Additive Latency,附加反应时间)AL(Artificial Life,人工生命)ALAT(advanced load table,高级载入表)ALDC(Adaptive Lossless Data Compression,适应无损数据压缩) ALU(Arithmetic Logic Unit,算术逻辑单元)Aluminum(铝)AM(Acoustic Management,声音管理)AMC(audio/modem codec,音频/调制解调器多媒体数字信号编解码器)AMR(Audio/Modem Riser,音效/调制解调器主机板附加直立插卡) An isotropic Filtering(各向异性过滤)ANSI(American National Standards Institute,美国国立标准协会)AOI(Automatic Optical Inspection,自动光学检验)AOL(Alert On LAN,局域网警告)APC(Advanced Power Control,高级能源控制)API(Application Programming Interfaces,应用程序接口)APIC(Advanced Programmable Interrupt Controller,高级可编程中断控制器)APM(Advanced Power Management,高级能源管理)APPE(Advanced Packet Parsing Engine,增强形帧解析引擎)APS(Alternate Phase Shifting,交替相位跳转)APS(Audio Production Studio,音频生产工作室)APU(Audio Processing Unit,音频处理单元)APX(All Position eXpansion,全方位扩展)AR(Auto-Resume,自动恢复)ARC(Anti Reflect Coating,防反射涂层)ARF(Asynchronous Receive FIFO,异步接收先入先出)ARP(Address Resolution Protocol,地址解析协议)ARPG(Action Role Play Games,动作角色扮演游戏)ARR(Annual Return Rate,年返修率)ASB(Advanced System Buffering,高级系统缓冲)ASC(Advanced Size Check,高级尺寸检查)ASC(Anti Static Coatings,防静电涂层)ASC(Auto-Sizing and Centering,自动调效屏幕尺寸和中心位置) ASCI(The 10-year Accelerated Strategic Computing Initiative,领先10年战略加速计算机)ASCII(American Standard Code for Information Interchange,美国国家标准信息交换代码)ASD(Auto Stereoscopic Display,自动立体显示)ASF(Advanced Streaming Format,高级数据流格式)ASF(Alert Standards Forum,警告标准讨论)ASIC(Application Specific Integrated Circuit,特殊应用积体电路)ASIO(Audio Streaming Input and Output interface,音频流输入输出接口)ASK IR(Amplitude Shift Keyed Infra-Red,长波形可移动输入红外线)ASMO(Advanced Storage Magneto-Optical,增强形光学存储器) ASP(Active Server Pages,活动服务页)ASP(Application Service Provider,应用服务提供商)ASPI(Advanced SCSI Programming Interface,高级SCSI可编程接口)AST(amorphous-silicon TFT,非晶硅薄膜晶体管)AST(Average Seek time,平均寻道时间)AT(Advanced Technology,先进技术)ATA(Advanced Technology Attachment,高级技术附加装置)ATAPI(AT Attachment Packet Interface,AT扩展包接口)ATC(Access Time from Clock,时钟存取时间)ATC(Advanced Transfer Cache,高级转移缓存)ATD(Assembly Technology Development,装配技术发展)ATL(ActiveX Template Library,ActiveX模板库)ATM(Asynchronous Transfer Mode,异步传输模式)ATM(Automatic Teller Machine,自动提款机)ATOMM(Advanced super Thin-layer and high-Output Metal Media,增强形超薄高速金属媒体)ATP(Active to Precharge,激活到预充电)ATRAC(Adaptive TRansform Acoustic Coding,可适应转换声学译码)ATSC(Advanced Television Systems Committee,高级电视系统委员会)ATX(AT Extend,扩展型AT)AUD_EXT(Audio Extension,音频扩展)AUX(Auxiliary Input,辅助输入接口)AV(Analog Video,模拟视频)AV(Audio & Video,音频和视频)AVG(Adventure Genre,冒险类游戏)AVI(Audio Video Interleave,音频视频插入)B Splines(B样条)B.O.D.E(Body Object Design Envioment,人体/物体/设计/环境渲染自动识别)BAC(Bad Angle Case,边角损坏采样)Back Buffer(后置缓冲)Backface culling(隐面消除)BAD(Best Amiga Dominators)BASIC(Beginners All-purpose Symbolic Instruction Codec,初学者通用指令代码)Battle for Eyeballs(眼球大战)BBS(BIOS Boot Specification,基本输入/输出系统启动规范) BBUL(Bumpless Build-Up Layer,内建非凹凸层)BCF(Boot Catalog File,启动目录文件)BEDO(Burst Enhanced Data-Out RAM,突发型数据增强输出内存) Benchmarks(基准测试程序数值BGA(Ball Grid Array,球状网阵排列)BHT(branch prediction table,分支预测表)BIF(Boot Image File,启动映像文件)Bilinear Filtering(双线性过滤)BIOS(Basic Input/Output System,基本输入/输出系统)BLA(Bearn Landing Area,电子束落区)BLP(Bottom Leaded Package,底部导向封装)BMC(Black Matrix Screen,超黑矩阵屏幕)BMS(Blue Magic Slot,蓝色魔法槽)BOD(Bandwidth On Demand,弹性带宽运用)BOPS(Billion Operations Per Second,十亿次运算/秒)BP(Brach Prediction,分支预测)BPA(Bit Packing Architecture,位封包架构)BPI(Bit Per Inch,位/英寸)bps(bit per second,位/秒)bps(byte per second,字节/秒)BPU(Branch Processing Unit,分支处理单元)BRC(Beta Release Candidate,测试发布候选版)BSD(Berkeley Software Distribution,伯克利软件分配代号)BSP(Binary Space Partitioning,二进制空间分区)BSP(Boot Strap Processor,启动捆绑处理器)BSRAM(Burst pipelined synchronous static RAM,突发式管道同步静态存储器)BTAC(Branch Target Address Calculator,分支目标寻址计算器) BTO(Build-To-Order,按序构建)BURN-Proof(Buffer UnderRuN-Proof,防止缓冲区溢出)C.O.P(CPU overheating protection,处理器过热保护)C2C(card-to-card interleaving,卡到卡交错存取CAD(computer-aided design,计算机辅助设计)CAM(Common Access Model,公共存取模型)CAM(Computer-aided manufacturing,计算机辅助制造)CAS(Column Address Strobe,列地址控制器)CAV(Constant Angular Velocity,恒定角速度)CBDS(Continuous Background Defect Scanning,连续后台错误扫描)CBF(Cable Broadband Forum,电缆宽带论坛)CBGA(Ceramic Ball Grid Array,陶瓷球状网阵排列)CBMC(Crossbar based memory controller,内存控制交叉装置) CBR(Committed Burst Rate,约定突发速率)CBR(Constant Bit Rate,固定比特率)CBU(color blending unit,色彩混和单位)CCD(Charge Coupled Device,电荷连接设备)CCIRN(Coordinating Committee for Intercontinental Research Networking,洲际研究网络协调委员会)CCM(Call Control Manager,拨号控制管理)cc-NUMA(cache-coherent non uniform memory access,连贯缓冲非统一内存寻址)CCS(Cross Capacitance Sensing,交叉电容感应)CCS(Cut Change System)CCT(Clock Cycle Time,时钟周期)CD(Compact Disc)cd/m^2(candela/平方米,亮度的单位)CDIP(Ceramic Dual-In-Line,陶瓷双重直线)CDPD(Cellular digital Packet data,细胞数字信息包数据)CDR(CD Recordable,可记录光盘)CDRAM(Cache DRAM,附加缓存型DRAM)CD-ROM/XA(CD-ROM eXtended Architecture,唯读光盘增强形架构)CDRS(Curved Directional Reflection Screen,曲线方向反射屏幕)CDRW(CD-Rewritable,可重复刻录光盘)CDSL(Consumer Digital Subscriber Line(消费者数字订阅线路) CE(Consumer Electronics,消费电子)CEA(Consumer Electronics Association,消费者电子协会)CEA(Critical Edge Angles,临界边角)CEM(cube environment mapping,立方环境映射)CEMA(Consumer Electronics Manufacturing Association,消费者电子制造业协会)Center Processing Unit Utilization,中央处理器占用率CEO(Chief Executive Officer,首席执行官)CF(CompactFlash Card,紧凑型闪存卡)CFM(cubic feet per minute,立方英尺/秒)CG(C for Graphics/GPU,用于图形/GPU的可编程语言)CG(Computer Graphics,计算机动画)CGI(Common Gateway Interface,通用网关接口)CG-Silicon(Continuous Grain Silicon,连续微粒硅)CHRP(Common Hardware Reference Platform,共用硬件平台)CHS(Cylinders、Heads、Sectors,柱面、磁头、扇区)CIEA(Commercial Internet Exchange Association,商业因特网交易协会)CIR(Committed Information Rate,约定信息速率)CIS(Contact Image Sensors,接触图像传感器)CISC(Complex Instruction Set Computing,复杂指令集计算机) CL(CAS Latency,CAS反应时间)Clipping(剪贴纹理)CLK(Clock Cycle,时钟周期)Clock Synthesizer,时钟合成器CLV(Constant Linear Velocity,恒定线速度)CMOS(Complementary Metal Oxide Semiconductor,互补金属氧化物半导体)CMOV(conditional move instruction,条件移动指令)CMP(on-chip multiprocessor,片内多重处理)CMR(Colossal Magneto Resistive,巨磁阻抗)CMS(Code Morphing Software,代码变形软件)CMSS(Creative Multi Speaker Surround,创新多音箱环绕)CMT(course-grained multithreading,过程消除多线程)CNPS(Computer Noise Prevention System,计算机噪音预防系统) CNR(Communication and Networking Riser,通讯和网络升级卡) CNT(carbon nano-tube,碳微管)COAST(Cache-on-a-stick,条状缓存)COB(Cache on board,板上集成缓存)co-CPU(cooperative CPU,协处理器)COD(Cache on Die,芯片内核集成缓存)COM(Component Object Model,组件对象模式)COMDEX(Computer Distribution Exposition,计算机代理分销业展览会)compressed textures(压缩纹理)Concurrent Command Engine,协作命令引擎COO(Chief Organizer Officer,首席管理官)Copper(铜)CP(command processor,指令处理器)CPA(Close Page Auto recharge,接近页自动预充电)CPE(Customer Premise Equipment,用户预定设备)CPGA(Ceramic Pin Grid Array,陶瓷针型栅格阵列)CPI(count per inch,每英寸计数)CPI(cycles per instruction,周期/指令)CPLD(Complex Programmable Logic Device,复杂可程序化逻辑组件)CPRM(Content Protection for record able media,记录媒体内容保护)CPS(Certification Practice Statement,使用证明书)CPU(Center Processing Unit,中央处理器)CRC(Cyclical Redundancy Check,循环冗余检查)CRM(Customer Relationship Management,顾客关系管理) CRT(Cathode Ray Tube,阴极射线管)CRT(Cooperative Redundant Threads,协同多余线程)CS(Channel Separation,声道分离)CSA(Canadian Standards Association,加拿大标准协会) CSA(Communication Streaming Architecture,通讯流架构) CSC(Colorspace Conversion,色彩空间转换)CSD(Circuit Switched Data,电路切换数据通话)CSE(Configuration Space Enable,可分配空间)CSG(constructive solid geometry,建设立体几何)CSP(Chip Scale Package,芯片比例封装)CSP(Chip Size Package,芯片尺寸封装)CSS(Cascading Style Sheets,层叠格式表)CSS(Common Command Set,通用指令集)CSS(Content Scrambling System,内容不规则加密)CTI(Computer Telephone Integration,计算机电话综合技术) CTO(Chief Technology Officer,首席技术官)CTR(CAS to RAS,列地址到行地址延迟时间)CTS(Carpal Tunnel Syndrome,计算机腕管综合症)CTS(Clear to Send,清除发送)CVS(Compute Visual Syndrome,计算机视觉综合症)CXT(Chooper eXTend,增强形K6-2内核)DA(Digital to Analog,数字到模拟转换)DAB(digital audio broadcast,数字音频广播)DAC(Digital to Analog Converter,数模转换器)DAC(Dual Address Cycle,双重地址周期)DAE(digital Audio Extraction,数据音频抓取)DAN(Dance,跳舞类游戏)DAO(Disc At Once,整盘刻录)DAO-RAW(Disc At Once Read after Write,整盘刻录-写后读) DASP(Dynamic Adaptive Speculative Pre-Processor,动态适应预测预处理器)Data Forwarding(数据前送)dB(decibel,分贝)DB(Deep Buffer,深度缓冲)DB(Device Bay,设备插架)DBBS(Dynamic Bass Boost System,动态低音增强系统)DBI(dynamic bus inversion,动态总线倒置)DBS(Direct Broadcast Satellite,直接卫星广播)DBS-PC(Direct Broadcast Satellite PC,人造卫星直接广播式PC)DC(Digital Camera,数码相机)DC(Dreamcast,世嘉64位游戏机)DCA(Defense Communication Agency,国防部通信局)DCC(Digital Compact Cassette,数字盒式磁带)DCC(Digital Content Creation,数字内容创造)DCD(Directional Corelational De-interlacing,方向关联解交错)DCD(Document Content Description for XML,XML文件内容描述)DCE(Data Circuit Terminal Equipment,数据通信设备)DCLK(Dot Clock,点时钟)DCOM(Distributing Component Object Model,构造物体模块) DCT(Display Compression Technology,显示压缩技术)DCT(DRAM Controller,DRAM控制器)DD(Double Side,双面内存)DDBGA(Die Dimension Ball Grid Array,内核密度球状矩阵排列) DDC(Display Data Channel,显示数据通道)DDC(Dynamic Depth Cueing,动态深度暗示)图像DDE(dynamic data exchange,动态数据交换)DDMA(Distributed DMA,分布式DMA)DDP(Digital Display Port,数字输出端口)DDR SDRAM(Double Date Rate,上下行双数据率SDRAM)DDR(Double Date Rate,上下行双数据率)DDS(Direct Draw Surface,直接绘画表面)DDSS II(Double Dynamic Suspension System II,第二代双层动力悬吊系统)DDSS(Dolby Digital Surround Sound,杜比数字环绕声)DDSS(Double Dynamic Suspension System,双悬浮动态减震系统) DDT(Dynamic Deferred Transaction,动态延期处理)DDWG(Digital Display Working Group,数字化显示工作组)DEC(Direct Etching Coatings,表面蚀刻涂层)Decal(印花法)Decode(指令解码)Deflection Coil(偏转线圈)DES(ata Encryption Standard,数据加密标准)DFL(Dynamic Focus Lens,动态聚焦)DFP(Digital Flat Panel,数字平面显示标准)DFPG(Digital Flat Panel Group,数字平面显示标准工作组)DFS(Digital Flex Scan,数字伸缩扫描)DFS(Dynamic Flat Shading,动态平面描影)DHCP(Dynamic Host Configuration Protocol,动态主机分配协议)DHHF(Dual Head - High Fidelity,高精度第四代双头)DHT(Dolby Headphone Technology,杜比耳机技术)DIB(Dual Independent Bus,双重独立总线)DIC(Digital Image Control,数字图像控制)DID(Device ID,设备ID)Digital Multiscan II(数字式智能多频追踪)DIL(dual-in-line)DIMM(Dual In-line Memory Modules,双重内嵌式内存模块) Directional Light(方向性光源)DiscWizard(磁盘控制软件)DIT(Disk Inspection Test,磁盘检查测试)Dithering(抖动)DIVA(Data IntensiVe Architecture,数据加强架构)DIY(Do it Yourself,自己装机)DLL(Delay-Locked Loop,延时锁定循环电路)dll(dynamic link library,动态链接库)DLP(digital Light Processing,数字光处理)DLS(Downloadable Sounds Level,可下载音色)DLS-2(Downloadable Sounds Level 2,第二代可下载音色)DM(Displacement mapping,位移贴图)DMA(Direct Memory Access,直接内存存取)DMAC(Direct Memory Access Controller,直接内存存取控制器) DME(Direct Memory Execute,直接内存执行)DMF(Distribution Media Format)DMI(Desktop Management Interface,桌面管理接口)DMT(Discreet Monitor Timing,智能型显示器调速)DMT(Discrete Multi - Tone,不连续多基频模式)DMT(Dynamic Multithreading Architecture,动态多线程结构) DNA(Distributed Internet Application,分布式因特网应用程序)DNS(Domain Name System,域名解析系统)DOA2 HC(Deal or Live 2 hardcore,生与死2完整版)DOC(Disk On Chip,芯片磁盘)DOCSIS(Data Over Cable Service Interface Specifications,线缆服务接口数据规格)DOF(Depth of Field,多重境深)DOJ(Department of Justice,反不正当竞争部门)DOM(Document Object Model,文档目标模型)DoS(Denial of Service,拒绝服务)DOS(Disk Operating System,磁盘操作系统)DOSD(Digital On Screen Display,同屏数字化显示)Dot Pitch(点距)dot texture blending(点型纹理混和)DOT(Dynamic Overcooking Technology,动态超频技术)DOT3(Dot product 3 bump mapping,点乘积凹凸映射)Double Buffering(双缓冲区)DP(Dual Processor,双处理器)DPBM(Dot Product Bump Mapping,点乘积凹凸映射)DPC(Desktop PC,桌面PC)dpi(dot per inch,每英寸的打印像素)DPMS(Display Power Management Signaling,显示能源管理信号) DPP(Direct print Protocol,直接打印协议DQL(Dynamic Quadra pole Lens,动态四极镜)DQS(Bidirectional data strobe,双向数据滤波)DQUICK(DVD Qualification and Integration Kit,DVD资格和综合工具包)DRA(deferred rendering architecture,延迟渲染架构)DRAM(Dynamic Random Access Memory,动态随机存储器)DRCG(Direct Rambus Clock Generator,直接Rambus时钟发生器) DRDRAM(Direct RAMBUS DRAM,直接内存总线DRAM)DRF(Digital radio frequency,数字无线电频率)DRI(Direct Rendering Infrastructure,基层直接渲染)DRM(Digital rights management,数字版权保护)DRSL(Differential Rambus Signaling Level,微分RAMBUS信号级)DRSL(Direct Rambus Signaling Level,直接RAMBUS信号级)DS3D(DirectSound 3D Streams)DSD(Direct Stream Digital,直接数字信号流)DSL(Data Strobe Link,数据选通连接DSL(Down Loadable Sample,可下载的取样音色)DSM(Dedicated Stack Manager,专门堆栈管理)DSM(Distributed shared memory,分布式共享内存)DSMT(Dynamic Simultaneous Multithreading,动态同步多线程) DSO(Dynamic Sound-stage Organizer,动态声音层组建)DSP(Delivery Service Partner,交付服务合伙人)DSP(Digital Signal Processing,数字信号处理)DSP(Digital Sound Field Processing,数字音场处理)DSP(Dual Streams Processor,双重流处理器)DST(Depleted Substrate Transistor,衰竭型底层晶体管)DST(Drive Self Test,磁盘自检程序)DSTN(Double layers Super Twisted Nematic,双层超扭曲向列,无源矩阵LCD)DSVD(Digital Simultaneous Voice and Data)DTD(Document Type Definition,文件类型定义)DTE(Data Terminal Equipment,数据终端设备)DTL(Developer Tool,发展工具包)DTR(Disk Transfer Rate,磁盘传输率)DTS(Digital Theater System,数字剧院系统)DTT(DeskTop Theater,桌面剧院)DTV(Digital TV,数字电视)DTV(Dual Threshold Voltage,双重极限电压)DTXS(Decryption Transform for XML Signature,XML签名解密转换)DUN(Dial-Up Networking,拨号网络)DUV(Deep Ultra-Violet,纵深紫外光)DV(Digital Vidicon,数码摄录机)DVB(Digital Video Broadcasting,数字视频广播DVC(Digital Vibrance Control,数字振动控制)DVD(Digital Video/Versatile Disk,数字视频/万能光盘)DVD-R(DVD Recordable,可记录DVD盘)DVD-RAM(Digital Video/Versatile Disk - Random Access Memory,随机存储数字视频/万能光盘)DVD-RW(DVD Rewritable,可重复刻录DVD盘)DVFM(Dynamic Voltage and Frequency Management,动态电压和频率管理)DVI(Digital Video Interface,数字视频接口)DVI(Digital Visual Interface,数字化视像接口)DVMT(Dynamic Video Memory Technology,动态视频内存技术) DWDM(Dense WaveLength Division Multiplex,波长密集型复用技术)DxR(DynamicXTended Resolution,动态可扩展分辨率)DXTC(Direct X Texture Compress,DirectX纹理压缩)Dynamic Z-buffering(动态Z轴缓冲区)E(Economy,经济,或Entry-level,入门级)E3(Electronic Entertainment Expo,电子娱乐展览会)EAP(Extensible Authentication Protocol,扩展证明协议)EAX(Environmental Audio Extensions,环境音效扩展技术)EB(Expansion Bus,扩展总线)EBGA(Enhanced Ball Grid Array,增强形球状网阵排列)EBL(electron beam lithography,电子束平版印刷)EBR(Excess Burst Rate,超额突发速率)EC(Early Childhood,学龄前儿童)EC(Embedded Controller,嵌入式控制器)ECC(Elliptic Curve Crypto,椭圆曲线加密)ECC(Error Checking and Correction,错误检查修正)ECD(Electro Chromic Display,电铬显示器)ECP(Extended Capabilities Port,延长能力端口)ED(Execution driven,执行驱动)EDA(Electronic Design Automatic,电子设计自动化)E-DDC(Enhanced Display Data Channel,增强形视频数据通道协议)EDEC(Early Decode,早期解码)Edge Anti-aliasing(边缘抗锯齿失真)EDO(Enhanced Data-Out RAM,数据增强输出内存)EE(Emotion Engine,情感引擎)E-EDID(Enhanced Extended Identification Data,增强形扩充身份辨识数据)EEPROM(Electrically Erasable Programmable ROM,电擦写可编程只读存储器)eFB(embedded Frame Buffer,嵌入式帧缓冲)EFEAL(Extended Field Elliptical Aperture Lens,可扩展扫描椭圆孔镜头)EFF(Electronic Frontier Foundation(电子前线基金会)EFI(Extensible Firmware Interface,扩展固件接口)EFM(Eight to Fourteen Modulation,8位信号转换为14位信号) EFU(Elemntary Functional Unit,增强功能单元)EHCI(Enhanced Host Controller Interface,加强型主机端控制接口)EHSDRAM(Enhanced High Speed DRAM,增强型超高速内存)EIDE(enhanced Integrated Drive Electronics,增强形电子集成驱动器)EISA(Enhanced Industry Standard Architecture,增强形工业标准架构)EL DDR(Enhanced Latency DDR,增强反应周期DDR内存)Embedded Chips(嵌入式)EMBM(environment mapped bump mapping,环境凹凸映射)Embosing(浮雕)EMC(Electron Magnetic Compatibility,电磁兼容)EMF(Electron Magnetic Field,电磁场)EMI(Electromagnetic Interference,电磁干扰)EMP(Emergency Management Port,紧急事件管理端口)EMS(Enhanced Memory System,增强内存系统)EMS(Enhanced Message Service,扩展型信息服务)EMS(Expanded Memory Specification,扩充内存规格)EOL(End of Life,最终完成产品)EOS(eBookMan Operating System,电子书操作系统)EPA(edge pin array,边缘针脚阵列)EPA(Environmental Protection Agency,美国环境保护局) EPF(Embedded Processor Forum,嵌入式处理器论坛)EPIC(explicitly parallel instruction code,并行指令代码) EPL(electron projection lithography,电子发射平版印刷) EPM(Enhanced Power Management,增强形能源管理)EPM(enterprise project manage)EPOC(Electronic Piece of Cheese,小型电子块)EPOC(Elevated Package Over CSP,CSP架空封装)EPP(Enhanced Parallel Port,增强形平行接口)EPROM(erasable,programmable ROM,可擦写可编程ROM)EPV(Extended Voltage Protection,扩展电压保护)ERD(Emergency Repair Disk,应急修理磁盘)ERP(Enterprise Requirement Planning,企业需求计划)ERP(Enterprise Resource Planning,企业资源计划)ERP(estimated retail price,估计零售价)ES(Energy Star,能源之星)ES(Engineering Sample,工程样品)eSATA(External Serial ATA,扩展型串行ATA)ESCD(Extended System Configuration Data,可扩展系统配置数据)ESD(electro-static discharge,静电释放)ESDJ(Easy Setting Dual Jumper,简化CPU双重跳线法)ESDRAM(Enhanced SDRAM,增强型SDRAM)ESER(EAC Secure Extract Ripping,EAC安全抓取复制)ESP(Electronic-Shock Protection,电子抗震系统)ESP(Embedded System Platform,嵌入式系统平台)ESP(Encapsulating Security Payload,压缩安全有效载荷)ESR(Equivalent Series Resistance,等价系列电阻)ESRAM(Enhanced SRAM,增强型SRAM)eTM(embedded Texture Buffer,嵌入式纹理缓冲)ETRI(Electronics and Telecommunications Research Institute,电子和电信研究协会)EULA(End-User License Agreement,最终用户释放协议)EUV(Extreme Ultra Violet,紫外光)EUV(extreme ultraviolet lithography,极端紫外平版印刷)EVF(Electronic Viewfinder,电子取景窗)E-WDM(Enhanced Windows Driver Model,增强型视窗驱动程序模块)Execute Buffers(执行缓冲区)Extended Burst Transactions(增强式突发处理)Extended Stereo(扩展式立体声)Factor Alpha Blending(因子阿尔法混合)FADD(Floationg Point Addition,浮点加)FAQ(Frequently Asked Questions,常见问题回答)Fast Z-clear(快速Z缓冲清除)FAT(File Allocation Tables,文件分配表)FB(fragment buffer,片段缓冲)FBC(Frame Buffer Cache,帧缓冲缓存)FBGA(Fine-Pitch Ball Grid Array,精细倾斜球状网阵排列) FBGA(flipchip BGA,轻型芯片BGA)F-Buffer(Fragment Stream FIFO Buffer,片段流先入先出缓冲区)FC(Famicom,任天堂8位游戏机)FC(Fibre Channel,光纤通道)FC-BGA(Flip-Chip Ball Grid Array,反转芯片球形栅格阵列) FCC(Federal Communications Commission,联邦通信委员会) FC-PGA(Flip-Chip Pin Grid Array,反转芯片针脚栅格阵列)FCRAM(Fast Cycle RAM,快周期随机存储器)FDB(Fluid Dynamic Bearing,非固定动态轴承)FDB(fluid-dynamic bearings,动态轴承)FDBM(Fluid dynamic bearing motors,液态轴承马达)FDC(Floppy Disk Controller,软盘驱动器控制装置)FDD(Floppy Disk Driver,软盘驱动器)FDIV(Floationg Point Divide,浮点除)FDM(Frequency Division Multi,频率分离)FED(Field Emission Displays,电场显示器)FEMMA(Foldable Electronic Memory Module Assembly,折叠电子内存模块装配)FEMMS(Fast Entry/Exit Multimedia State,快速进入/退出多媒体状态FFB(Force Feed Back,力反馈)FFJ(Force Feedback Joystick,力量反馈式操纵杆)FFT(fast Fourier transform,快速热欧姆转换)FGM(Fine-Grained Multithreading,高级多线程)FID(FID(Frequency identify,频率鉴别号码)FIFO(First Input First Output,先入先出队列)FIR(finite impulse response,有限推进响应)FireWire(火线,即IEEE1394标准)FISC(Fast Instruction Set Computer,快速指令集计算机)FL(fragment list,片段列表)FL(Function Lookup,功能查找)Flat(平面描影)FlexATX(Flexibility ATX,可扩展性ATX)flip double buffered(反转双缓存)flip-chip(芯片反转)FLIR(Forward Looking Infra-Red,前视红外)FLOPs(Floating Point Operations Per Second,浮点操作/秒) Flow-control(流控制)FLS(Front Light Screen,前发光屏幕)Flyback Transformer(回转变压器)FM(Flash Memory,快闪存储器)FM(Frequency Modulation,频率调制)FMA(full-motion animated backdrops)FMAC(Floating-Point Multiply-Accumulators,浮点累积乘单元)FMC(Frictionless Memory Control,无阻内存控制)FMD ROM(Fluorescent Material Read Only Memory,荧光质只读存储器)FMT(fine-grained multithreading,纯消除多线程)FMUL(Floationg Point Multiplication,浮点乘)Fog table quality(雾化表画质)Fog(雾化效果)FPD(flat panel display,平面显示器)FPM(Fast Page Mode,快页模式内存)FPRs(floating-point registers,浮点寄存器)FPS(First Person Shooters,第一人称射击游戏)FPS(FourPointSurround,创新的四点环绕扬声器系统)fps(frames per second,帧/秒)FPU(Float Point Unit,浮点运算单元)FR(Frames Rate,游戏运行帧数)FR(Frequence Response,频率响应)Frames rate is King(帧数为王)FRC(Frame Rate Control,帧比率控制)FRICC(Federal Research Internet Coordinating Committee,联邦调查因特网协调委员会)FRJS(Fully Random Jittered Super-Sampling,完全随机移动式超级采样)Front Buffer(前置缓冲)FSAA(Full Scene/Screen Anti-aliasing,全景/屏幕抗锯齿) FSB(Front Side Bus,前端总线)FSE(Frequency Shifter Effect,频率转换效果)FSR(force sensor resistance,动力感应电阻)FSTN(Film compensated Super Twisted liquid crystal,带补偿膜超扭曲相列)FSUB(Floationg Point Subtraction,浮点减)FTC(Federal Trade Commission,联邦商业委员会)FTG(Fighting Game,格斗类游戏)FTP(File Transfer Protocol,文件传输协议)Fur(软毛效果)FW(Fast Write,快写,AGP总线的特殊功能)FWH(Firmware Hub,固件中心)GART(Graphic Address Remappng Table,图形地址重绘表)GB(Game Boy,任天堂4位手提游戏机)GB(Garibaldi架构,Garibaldi基于ATX架构,但是也能够使用WTX构架的机箱)GBA(Game Boy Advanced,任天堂增强型手提游戏机)GBC(Game Boy Color,任天堂手提16色游戏机)GBL(GameBoy Light,GB夜光型)GBP(GameBoy Pocket,GB口袋型)GDC(Game Developer Conference,游戏发展商会议)GDI(Graphics Device Interface,图形设备接口)GFD(Gold finger Device,金手指超频设备)GG(Game Gear,世嘉彩色手提游戏机)GHC(Global History Counter,通用历史计数器)Ghost((General Hardware Oriented System Transfer,全面硬件导向系统转移)GI(Global Illumination,球形光照)GIC(Gold Immersion Coating,化金涂布技术)GIF(Graphics Interchange Format,图像交换格式)GIF(Graphics Interface unit,图形接口单元)GLV(grating-light-valve,光栅亮度阀)GM(General Midi,普通MIDI)GM(Glass Mould,玻璃铸制)GMCH(Graphics & Memory Controller Hub,图形和内存控制中心) GMR(giant magnetoresistive,巨型磁阻)Gouraud Shading,高洛德描影,也称为内插法均匀涂色GPA(Graphics Performance Accelerator,图形性能加速卡)GPF(General protect fault,一般保护性错误)GPIs(General Purpose Inputs,普通操作输入)GPL(GNU Public License,GNU公众授权)GPRS(General Packet Raice,整合封包无线服务)GPRs(General Purpose Registers,通用寄存器)GPS(Global Positioning System,全球定位系统)GPT(Graphics Performance Toolkit,图形性能工具包)GPU(Graphics Processing Unit,图形处理器)GS(Graphic Synthesizer,图形合成器)GSM(Galvanization Superconductive Material,电镀锌超导材料)GTF(General Timing Formula,普通调速方程式)GTL(Gunning Transceiver Logic,发射接收逻辑电路)GTS(Giga Textel Sharder,十亿像素填充率)Guard Band Support(支持保护带)GUI(Graphics User Interface,图形用户界面)GVPP(Generic Visual Perception Processor,常规视觉处理器) GWS(graphics workstations,图形工作站)HAL(Hardware Abstraction Layer,硬件抽像化层)HCF(Host Controller,主体控制处理)HCI(Host Controller Interface,主机控制接口HCL(Hardware Compatibility List,硬件兼容性列表)HCRP(Hardcopy Cable Replacement Profile,硬复制电缆复位协议子集)HCT(Hardware Compatibility Test,硬件兼容性测试HDA(Head Disk Assembly,头盘组件)HDA(high-efficiency Audax High Definition Aerogel,高效高清楚气动)HDIT(High Bandwidth Differential Interconnect Technology,高带宽微分互连技术)HDMI(High Definition Multimedia Interface,高精度多媒体接口)HDR(High Dynamic Range,高级动态范围)HDRL(high dynamic-range lighting,高动态范围光线)HDSL(High bit rate DSL,高比特率数字订阅线路)HDSS(Holographic Data Storage System,全息数据存储系统) HDTV(high definition television,高清晰度电视)HDVP(High-Definition Video Processor,高精度视频处理器) HE(Home Edition,家庭版)HEL(Hardware Emulation Layer(硬件模拟层)HID(Human Interface Device,人机对话接口设备)Hierarchical Z(Z分级)HiFD(high-capacity floppy disk,高容量软盘)Hi-fi(high fidelity,高精度设备)high triangle count(复杂三角形计数)HLL(high level language,高级语言)HLLCA(High-Level Language Computing Architecture,高级语言计算架构)HL-PBGA(表面黏著,高耐热、轻薄型塑胶球状网阵封装HLSL(High Level Shading Language,高级描影语言)HMC(hardware motion compensation,硬件运动补偿)HMC(holographic media card,全息媒体卡)HMD(holographic media disk,全息媒体磁盘)Home PNA(Home Private Network Adapter,家庭私人网络适配器)HOS(Higher-Order Surfaces,高次序表面)HPC(Hand held PC,手持电脑设备)HPDR(High-Precision Dynamic-Range,高精度动态范围)HPF(High-Pass Filter,高通滤波器)HPNA(home phoneline networking,家庭电话线网络)HPS(High Performance Server,高性能服务器)HPTC(high performance technical computing,高性能技术运算) HPW(High Performance Workstation,高性能工作站)HRAA(High Resolution Anti-aliasing,高分辨率抗锯齿)HRTF(Head Related Transfer Function,头部关联传输功能) HSCSD(High-Speed Circuit-Switched Data,高速巡回开关数据) HSDRAM(High Speed DRAM,超高速内存)HSF(Host Signal,主体信号处理)HSI(High Speed Interconnect,高速内连)HSLB(High Speed Link Bus,高速链路总线)HSP(Host Signal Processing,主体信号处理)HSR(Hidden Surface Removal,隐藏表面移除)HT(Hyper Transport,超级传输)HTA(Hypertext Application,超文本应用程序)HTML(Hypertext Markup Language,超文本标记语言)HTP(Hyper Texel Pipeline,超级像素管道)HTT(Hyper Threading Technology,超级线程技术)。
嵌入式系统专业术语中英文对照
嵌入式系统专业术语中英文比照A:Actuator 执行器A:Amplifier 放大器A:Attendance 员工考勤A:Attenuation 衰减AA:Antenna amplifier 开线放大器AA:Architectural Acoustics 建筑声学AC:AnalogueController 模拟掌握器ACD:Automatic CallDistribution 自动安排话务ACS:Access ControlSystem 出入掌握系统AD:Addressable Detector地址探测器ADM:Add/Drop Multiplexer 分插复用器ADPCM:Adaptive Differential ulse Code Modulation 自适应差分脉冲编码调制AF:Acoustic Feedback 声反响AFR:Amplitude /Frequency Response 幅频响应AGC:Automati Gain Control 自动增益掌握AHU:Air Handling Unit 空气处理机组A—I:Auto—iris 自动光圈AIS:Alarm Indication Signal 告警指示信号AITS:Acknowledged Information Transfer Service 确认操作ALC:Automati Level Control 自动平衡掌握ALS:Alarm Seconds 告警秒ALU:AnalogueLines Unit 模拟用户线单元AM:Administration Module 治理模块AN:AccessNetwork 接入网ANSI:American National Standards Institute 美国国家标准学会APS:Automatic Protection Switching 自动保护倒换ASC:Automati Slope Control 自动斜率掌握ATH:Analogue Trunk Unit 模拟中继单元ATM:Asynchrous Transfer Mode 异步传送方式AU- PPJE:AU Pointer Positive Justification 治理单元正指针调整AU:Administration Unit 治理单元AU-AIS:Administrative Unit Alarm Indication SignalAU 告警指示信号AUG:Administration Unit Group 治理单元组AU—LOP:Loss of Administrative Unit Pointer AU 指针丧失AU—NPJE:AU Pointer Negative Justification 治理单元负指针调整AUP:Administration Unit Pointer 治理单元指针AVCD:Auchio &Video Control Device 音像掌握装置AWG:American Wire Gauge 美国线缆规格BA:Bridge Amplifier 桥接放大器BAC:Building Automation & Control net 建筑物自动化和掌握网络BAM:Background Administration Module 后治理模块BBER:Background Block Error Ratio 背景块误码比BCC:B—channelConnect ControlB 通路连接掌握BD:Building DistributorBEF:Buiding Entrance Facilities 建筑物入口设施BFOC:Bayonet Fibre Optic Connector 大口式光纤连接器BGN:Background Noise 背景噪声BGS: Background Sound 背景音响BIP—N:Bit Interleaved Parity N code 比特间插奇偶校验N 位码B—ISDN:Brand band ISDN 宽带综合业务数字网B—ISDN:Broad band —Integrated Services Digital Network 宽带综合业务数字网BMC:Burst Mode Controller 突发模式掌握器BMS:Building Management System 智能建筑治理系统BRI:Basic Rate ISDN 根本速率的综合业务数字网BS:Base Station 基站BSC:Base Station Controller 基站掌握器BUL:Back up lighting 备用照明C/S: Client/Server 客户机/效劳器C:Combines 混合器C:Container 容器CA:Call Accounting 自动计费系统CATV:Cable Television 有线电视CC:Call Control 呼叫掌握CC:Coax cable 同轴电缆CCD:Charge coupled devices 电荷耦合器件CCF:Cluster Contril Function 簇掌握功能CD:CampusDistributor 建筑群配线架CD:Combinationdetector 感温,感烟复合探测器CDCA:Continuous Dynamic Channel Assign 连续的动态信道安排CDDI:Copper Distributed Data 合同缆分布式数据接口CDES:Carbon dioxide extinguisbing system 二氧化碳系统CDMA:Code Division Multiplex Access 码分多址CF:Core Function 核心功能CFM:Compounded Frequency Modulation 压扩调频繁CIS:Call Information System 呼叫信息系统CISPR:Internation Special Conmittee On Radio Interference 国际无线电干扰特地委员会CLNP:Connectionless Network Protocol 无连接模式网络层协议CLP:Cell Loss Priority 信元丧失优先权CM:Communication Module 通信模块CM:Configuration Management 配置治理CM:Cross-connect Matrix 穿插连接矩阵CMI:Coded Mark Inversion 传号反转码CMISE:Common Management Information Service 公用治理信息协议效劳单元CPE:Convergence protocol entity 会聚协议实体CR/E:card reader /Encoder 〔Ticket reader 〕卡读写器/编码器CRC:Cyclic Redundancy Check 循环冗佘校验CRT:Cathode Ray Tabe 显示器,监视器,阴极射线管CS: Convergence service 会聚效劳CS:Cableron Spectrum 旧纳档块化技术CS:Ceiling Screen 挡烟垂壁CS:Convergence Sublayer 合聚子层CSC:Combined Speaker Cabinet 组合音响CSCW:Computer supported collaborative work 计算机支持的协同工作CSES:Continuius Severely Errored Second 连续严峻误码秒CSF:Cell Site Function 单基站功能掌握CTB:Composite Triple Beat 复合三价差拍CTD:Cable Thermal Detector 缆式线型感温探测器CTNR:carrier to noise ratio 载波比CW:Control Word 掌握字D:Directional 指向性D:Distortion 失真度D:Distributive 分布式DA:Distribution Amplifier 安排的大器DBA:Database Administrator 数据库治理者DBCSN:Database Control System Nucleus 数据库掌握系统核心DBOS:Database Organizing System 数据库组织系统DBSS:Database Security System 数据库安全系统DC:Door Contacts 大门传感器DCC:Digital Communication Channel 数字通信通路DCN:Data Communication Network 数据通信网DCP-I:Distributed Control Panel -Intelligent 智能型分散掌握器DCS:Distributed Control System 集散型掌握系统DDN:Digital Data Network 数字数据网DDS:Direct Dignital Controller 直接数字掌握器DDW:Data Describing Word 数据描述字DECT:Digital Enhanced Cordless Telecommunication 增加数字无绳通讯DFB:Distributed Feedback 分布反响DID:Direct Inward Dialing 直接中继方式,呼入直拨到分机用户DLC:Data Link Control Layer 数据链路层DLI:DECT Line InterfaceDODI:Direct Outward Dialing One 一次拨号音DPH:DECT PhoneDRC:Directional Response Cahracteristics 指向性响应DS:Direct Sound 直正声DSP:Digital signal Processing 数字信号处理DSS:Deiision Support System 决策支持系统DTMF:Dual Tone Multi—Frequency 双音多频DTS:Dual —Technology Sensor 双鉴传感器DWDM:Dense Wave—length Division Multiplexing 密集波分复用DXC:Digital Cross—Connect 数字穿插连接E:Emergency lighting 照明设备E:Equalizer 均衡器E:Expander 扩展器EA—DFB:Electricity Absorb—Distributed Feedback 电吸取分布反响ECC:Embedded Control Channel 嵌入或掌握通道EDFA:Erbium—DopedFiber Amplifier 掺饵光纤放大器EDI:Electronic DataInterexchange 电子数据交换EIC:Electrical ImpedanceCharacteristics 电阻抗特性EMC:Electro Magnetic Compatibiloty 电磁兼容性EMI:Electro Magnetic Interference 电磁干扰EMS:Electromagnetic Sensitibility 电磁敏感性EN:Equivalent Noise 等效噪声EP:Emergency Power 应急电源ES:Emergency Sooket 应急插座ES:Evacuation Sigvial 疏散照明ESA:Error SecondA 误码秒类型A ESB:ErrorSecondB 误码秒类型BESD:Electrostatic Discharge 静电放电ESR:Errored Second Ratio 误码秒比率ETDM:Electrical Time Division Multiplexing 电时分复用ETSI:European Telecommunication Standards Institute 欧洲电信标准协会F:Filter 滤波器TOPFAB:Fire Alarm Bell 火警警铃FACU:Fire Alarm Contrlol Unit 火灾自动报警掌握装置FC:Failure Count 失效次数FC:Frequency Converter 频率变换器FCC:Fire Alarm System 火灾报警系统FCS:Field Control System 现场总线FCU:Favn Coil Unit 风机盘管FD:Fire Door 防火门FD:FlameDetector 火焰探测器FD:FloorDistributor FD:FrequencyDirsder 分频器FDD:Frequency Division Dual 频分双工FDDI:Fiberdistributed Data Interface 光纤缆分布式数据接口. FDDIF:Fiber Distributed Data Inferface 光缆分布数据接口FDMA:Frequency Division Multiple Access 频分多址FE:Fire Extirguisher 消防电梯FEBE:Far End Block Error 远端块误码FEXT:Far End Crosstalk 远端串扰FFES:Foam Fire Extionuishing System 泡沫灭火系统FH:Fire hydrant 消火栓FI:Fee Indicator 费用显示器FL:Focal Length 焦距FL:FuzzyLogic 模糊规律FM:FaiiltManagement 失效治理FPA:Fire Public Address 火灾事故播送FPD:Fire Public Derice 消防设施PACR:Attonuation to Crosstalk Ratio 衰减与串扰比GAP:Gaussian (filtered〕Frequency Shift Keying 高斯滤波频移键控TOP GBS:Glass Break Sensors 玻璃裂开传感器GC:Generic Cabling 综合布线GIB:Generic Information Block 通用信息模块GNE:Gateway Network Element 网关GSM:Global System for Mobile communications 全球移动通信系统H:Hybrid 混合式TOPHCBS:High C Bus Servers Unit 高速C 总线效劳单元HCS:Higher order Connection Supervision 高阶连接监视HD:Heat Detecter 感温探测器HDB3:High Density Bipolar of order 3code 高密度双极性码HDLC:High Data Link Control 高级数据链路掌握HDLC:HighDigital Link Control 高级数据链路掌握HDSL:High—bit -rate Digital Subscriber Link 高比特数字用户链路HDTV:High Definition Television 高清淅度电视HEC:Header Ervor Control:信头过失掌握域HEMS:High -level Entity Management system 高级实体治理系统HFC:Hybrid fiber coax 光纤-同轴电缆混合系统HGRP:Home Optical Network 华为公司专用协议HIFI:High Fidelity 高保真度HIPPI:High Performance Parrallel Interface 高性能并行接口HMP:Host monitoring protocol 宿主机监视协议HOA:High Order Assembler 高阶组装器HOAPID:High Order Path Access Point Identifier 高阶通道接入不敷出点标识符HOI:High Order Interface 高阶接口HONET:Home Optical Network 华为综合业务接入网商标HO—TCM:High Order Tandem Connection Monitor 高阶通道串联连接监控HOVC:High Order Virtual Container 虚容器HPA:High order path Adaptation 高阶适配HPC:High order path Connection 高阶通道连接HPOM:High -order Path Overhead Monitor 高阶通道开销监视器HPP:High —order path Protection 高阶通道保护HP-RDI:Higher order path —Remote Defect Indication 高阶通道接收缺陷指示HP—REI:Higher order Path—Remote ErrorIndication 高阶通道远端错误指示HPT:High order path Termination 高阶通道终端HRDS:Hypothetical Reference Digital Section 假设参考数字段HSUT:High —order path Supervision Unequipped Termination 高阶通道监控未装装载终HVAC:Heating Ventilation Air Conditioning 暖通空调HWS:Hot Water Supply 热水供给系统I:Interference 串扰TOP IA:Intruder Alarm 防盗报警ICMP:Internet Control Message Protocol 掌握信息协议IDC:Insucation Displacement Connection 绝缘层信移连接件IDS:Industrial Distribution System 工业布线系统IFC:Intelligent Fire Controller 照明智能掌握器ILD:InjectLight Diode 注入式激光二极管IM:Impedance Matching 阻抗匹配IMA:Interactive Multimedia Association 交互式多媒体协议IM—DM:Intensity Modulation—Direction Modulation 直接强度调制IN:Information Network 信息网IO:Information Outlet 信息插座IOS:IntelligentOut Station 智能外围站IPEI:InternationalPortable 国际移动设备标识号IPTU:Indoor Pan&Tilt Unit 室内水平俯仰云台IPUI:International Portable User Identity 国际移动用户标识号ISD:Ionization Smoke Detector 离子感烟探测器IT:Information Technology 信息技术ITU:International Telecommunications Union 国际电信联盟ITU—T:原名CCITT,是国际电信联盟的一个委员会ITV:Interactive Tevevision 交互式电视JIT—Discussion conference system 即席发言系统L:Lens 摄像机镜头LAN:Local Area Network 局域网LAPB:Link Access Procedure—Balanced 链路接入规程--—-平衡LAPD:Link Access Procedure D—channel D 信道链路访问协议LCD:Liquid Crystal Display 液晶显示屏LCL:Longituchinal Conrorsion Loss 纵模变换损耗LCN:Local Communication Network 本地通信网LCS:Lowerorder Connection Supervision 低阶连接监视LD:LaserDiode 激发二极管LE:Local Exchange 本地交换网LED:Light Emittirng Diode 发光二极管LIU:Lightguide Interconnection Unit 光纤互连装置LLC:Logic Link Control Layer 规律链路掌握层LLME:Low Layer Management Entity 低层治理实体LM:Lerel Modulation 电平调整LNA:Low Noise Amplifier 低噪音放大器LOF:Loss Of Frame 帧丧失LOI:Low Order Interface 低阶接口LOP:Loss Of Pointer 指针丧失LOS:Loss Of Signal 信号丧失LO—TCM:Low Order Tandem Connection Monitor 低阶通道串联连接监视器LOVC:Low Order Virtual Container 低阶虚容器LPA:Lower order qath Adaptation 低阶通道适配LPC:Lower order Path Connection 低阶通道连接LPOM:Low-order Path Overhead Monitor 低阶通道开销监视器LPP:Low—order Path Protection 低阶通道保护LPT:Lowerorder Path Termination 低阶通道终端TOPMAC:Medium Access Control Layer 介质访问掌握层TOP MBMC:Multiple Burst Mode Controller 多突发模式掌握器MCF:Message Communication Function 消息通信功能MD:Mediation Device 中介设备MFPB:Multi—Frequency Press Button 多频按键MIB:ManagementInformation Base 治理信息库MIC:Mediu InterfaceConnector 介质接口连接器MIO:MultiuserInformation Outlet 多用户信息插座MLM:Multi-Longitudinal Mode 多纵模MM:Mobile Management 移动治理MMDS:Maltichanned Microware Distribution System 多路微波安排系统MMO:Multionedia Outlet 多媒体插座MN-NES:MN—Network Element System 网元治理系统MN-RMS:MN—Region Management System 网络治理系统MO:Managed Object 治理目标MSA:Multiplex Section Adaptation 复用段适配MS-AIS:Mutiplex Section—Alarm Indication Signal 复用段告警指示信号MSOH:Multiplex Section Overhead 复用段开销MSP:Multiplex Section Protection 复用段保护MS-RDI:Multiplex Section-Remote Defect Indication 复用段远端缺陷指示MST:Multiplex Section Termination 复用段终端MSU:Multi-Subscriber Unit 多用户单元 MTIE:Maximum Time Interval Error 最大时间间隔误差MUX:Multiplexer 敏捷复接器NDF:New DataFlag 数据标识NDFA:Niobium-Doped Fiber Amplifier 掺铌光纤放大器NE:Network Element 网元NEXT:Near End Crosstalk 近端串扰NMS:Network Management System 网络治理系统NNE:Non-SDH Network Element 非 SDH 网元NNI:Network Node Interface 网络节点接口NPI:Null Pointer Indication 无效指针指示NWK:Network Layer 网络层NZ—DSF:Non Zero-Dispersion Shift Fiber 非零散位移光纤OAM&P:Operation Administration, Maintenance and Provisioning 运行、治理、维护和预置OAM:Operation, Administration and Maintenance 操作、治理和维护OBFD:Optical Beam Flame Detector 线型光速火焰探测器OC-N:Optical carrier level-N 光载波级 NOCR:Optical Character Recogmition 光学字符识别OEIC:Optoelectronic Integrated Circuit 光电集成电路OFA:Optical Fiber Amplifier 光纤放大器OHP:OverheadProcessing 开销处理OLT:Optical Line Terminal 光纤线路终端ON:Orerall Noise 总噪声ONU:Optical Network Unit 光纤网络单元OOF:Out Of Frame 帧失步OOP:Object Oriental Programming 面对对象程序设计OS:Operating System 操作系统OSC:Oscillator 振荡器OSI:Open Systems Interconnection 开放系统互连OTDK:Optical Time Doman Reflectometer 光时域反射线OTDM:Optical Time Division Multiplexing 光时分复用PA:Power Amphfier 功率放大器PA:Power Amplifier 功率放大器PABX:Private Auntomatic Branch Exchange 程控数字自动交换机Paging :无线呼叫系统PAL:Pinhole Alc Lons 针孔型自动亮度掌握镜头PARK:Portable Access Rights Key 移动用户接入权限识别码PAS:Public Address System 公共播送音响系统PBX:PrivateBrancn exchange 程控用户交换机PC:Pan unit&control 云台及云台掌握器PC:Proximinty Card 接近卡PCM:Pulse Code Modulation 脉冲编码调制PCS:Personal Communication Service 个人通讯效劳PDFA:Praseodymium—Doped Fiber Amplifier 掺镨光纤放大器PDH:Plesiochronous digital Hierarchy 准同步数字系列PDN:Public data network 公用数据网PDS:Premises Distribution Systemn 建筑物构造化综合布线系统PF:Pressurization Fan 加压风机PG:Pressure Gradient 压差式PID:Passire Infrared Detector 被动式红外传感器PJE:Pointer Justification Event 指针调整大事PLC:Programmerable Logic Controller 可编程掌握器PM:Power Matching 功率匹配PMS:Prooerty Management system 资源治理系统PO:Pressure Operated 压强式POH:Path Overhead 通道开销PPI:PDH Physical InterfacePDH 物理接口Preamplification :前置放大PRI:Primany Rate Interface 基群速率接口PRM:Patter Recogniton Method 模式识别法PSC:Protection Switching Count 保护倒换计数PSD:Photoelectric Smoke Detector 光电感烟探测器TOPITU-T:International Telecommunication Union-Telecommunication Sector 国际电信联盟-电信标准部R:Receiver 终端解码器TOP R:Reverberator 混响器RC:Radio Communication 移动通信RC:Room”s Coefficient 房间系数RCU:RemoteControl Units 终端掌握器RDI:Remote DefectIndication 远端失效指示REG:Regenerator再生器Resolution:清楚度RF:Radio Frequency 射频RHE:Romote Head End 远地前端RMC:Repeater Management Controller 天线信道掌握器RMS:Root Mean Square 均方根值RMU:Redundancy Memory Unit 冗佘存贮器RORTD:Rate Of Rise Thermal Detector 差温探测器RR:Reverberation Radius 混响半径RS:Reflected sound 反射场RSOH:Regenerator Section Ouerhead 再生段开销RSSI:Radio Signal Strength Indicator RST:Regenerator Section Termination 再生段终端RSU:Remote Subscriber Unit 远端用户单元RT:RealTime 实时RT:Reverberation Time 混响时间RWS:Remote Workstation 远端工作站TOP S:Sprinkler 安排器S:Stereo 双声道S:Strike 电子门锁SAA:Sound Absorption Ability 吸声力量SAR:Segmetation and reassembly sublayer 拆装子层SATV:Sate Llite 卫星电视SBS:Synchronous Backbone System 同步信息骨干系统SBSMN:SBS SBS Management Network 系列传输设备网管系统SC:Smart Card 智能卡SC:Subscriber Connector 〔Optial Fiber Connector〕用户连接器(光纤连接器〕SC:Supervisong Center 中心站监控中心治理中心SCADA:监控和数据采集软件SCB:System Control Board 系统掌握板SCC:System Control&Communication 系统通信掌握SC-D:Saplex sc commector 双 ISC 连接器SCD:Sound Console Desk 调度台SCPC:Single Chnanel Per Carrier 卫星回程线路SCS:Stractured Cabling System 构造化布线系统SD:Signal Degraded 信号劣化SD:Smoke damper 排烟阀SD:Smoke Detector 感烟探测器SD:System Distortion 系统失真SDCA:Synchronization DCA 同步数据通讯适配器SDMA:Spaee Division Multiplex Access 容分SDXC:Synchronous Digital Cross Connect 同少数字穿插连接T:Teletext 可视图文TOP T:Terminal 终端机TA:Trunk Amplifier 干线放大器TC:Telecommunication Closet 通信插座TC:Transient Characteristic 瞬间特性TCI:Trunk cabling interface 星形连接TCP/P:Transmission Control Protocol Inter-network Protocol 传输掌握协议/网间协议TCS:Tele Communication System 通信系统TCS:Telecommunication System 通讯系统TD:Ticket Dispemser 发卡机TDD:Time Division Dual 时分双工TDEV:Time Deviation 时间偏差TDM:Time Division Multiplexing 时分复用TDMA:Time Division Multiple Address 时分多址TDS:Time division switching 时分交换构造TELEX:用户电报电传TEP:时间/大事软件TF:Transfer Function 传送功能TFCC:Transmission frequenay Characteristic 传输频率特性TGNP:The Greatest Noise Power 最大噪声功率TIM:Trace Identifier Mismatch 追踪识别符失配TM:Termination Multiplexer 终端复用器TMN:Telecommunication Management Network 电信治理网TMN:Telecommunication Management Network 电信治理网TNL:Total Noise Level 总噪声级TO:Telecommunications Outlet 通信插座TP:Tunst Pair 对绞线TR:Token Ring 令牌网TSI:Timeslot Interxhange 时隙交换TSU:Time Switching Unit 时隙交换单元TTF:Transport Terminal function 传送终端功能TTS:Tri Technology Sensor 三鉴传感器TU:Tributary Unit 支路单元TUG:Tributary Unit Group 支路单元组TU-LOM:TU-Loss Of Multi-frame 支路单元复帧丧失TUP:Tributary Unit Pointer 支路单元指针TUPP:Tributary Unit Payload Process 支路净荷处理UAT:Ultra Aperture Terminal 超小口径卫星地面接收站UL:Underwriters Laboratory 担保试验室UM:Unidirectional Microphines 单指向性传声器VA:Vacant auditoria 空场VCI:Virtual chammel identifier 虚信道标识VCS:vIdeo conferphone system 会议电视系统VI:Video interphone 可视对讲门铃Video switchers 图象切换掌握器Videotext :可视图文VOD:Video on demand 视频点播VSAT:Very Small Aperture Terminal 甚小口径天线地球站。
英语作文乒乓球马龙作文
英语作文乒乓球马龙作文Okay, let's dive into a lengthy essay about Ma Long and table tennis!---。
Table Tennis Ma Long: A Champion's Journey。
Ma Long, often referred to as the "Dragon" in the world of table tennis, is a prominent figure whose journey has inspired countless athletes and enthusiasts globally. Born on October 20, 1988, in Anshan, Liaoning, China, Ma Long's remarkable skills, dedication, and achievements have solidified his place as one of the greatest table tennis players of all time.Early Years and Beginnings in Table Tennis。
Ma Long's passion for table tennis ignited at a young age. His early years were marked by intense training and adeep-seated determination to excel in the sport. Under the guidance of skilled coaches and mentors, he honed his techniques, developed his style, and gradually rose through the ranks.Rise to Prominence。
(仅供参考)CFD湍流模型使用技巧培训
Integration Platform w-equation
2-equation models • k-w, BSL, SST
Transition Model • g-ReQ model
Unsteady models • SST-SAS • SST-DES
w-equation
Wall Treatment • Automatic wall treatment
cfx中如何正确使用transitionmodel转捩位置判断cfdpost后处理如何查看转捩流动细节后处理模块新增涡核区域显示能力cfdpost中涡核空间流线的绘制cfdpost中湍流度云图的绘制tusqrt2turbulencekineticenergy3areaavevelocityinletcfdpost中二次分离涡的绘制交叉流中的喷射流全局非定常流动的实例在分离srs区域中对网格分辨率作出的最低估测是建立在假设基础上的这个假设就是
eN method (only natural transition) Very accurate predictions for 2D airfoils (low FSTI) N-S codes are not accurate enough to evaluate stability equations Extension to generic 3D flows very difficult (impossible?) Cannot account of non-linear effects (e.g. high FSTI, roughness)
嵌入式大涡模拟
– 可以和DES/SAS模型联用
E-LES: Spatially decaying turbulence
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
An adaptive coupled-layer visual model for robust visual tracking LukaˇCehovin,Matej Kristan,and Aleˇs LeonardisFaculty of Computer and Information Science,University of Ljubljana,SloveniaTrˇz aˇs ka25,Ljubljana,Slovenia{luka.cehovin,matej.kristan,ales.leonardis}@fri.uni-lj.siAbstractThis paper addresses the problem of tracking objects which undergo rapid and significant appearance changes. We propose a novel coupled-layer visual model that com-bines the target’s global and local appearance.The local layer in this model is a set of local patches that geometri-cally constrain the changes in the target’s appearance.This layer probabilistically adapts to the target’s geometric de-formation,while its structure is updated by removing and adding the local patches.The addition of the patches is constrained by the global layer that probabilistically mod-els target’s global visual properties such as color,shape and apparent local motion.The global visual properties are updated during tracking using the stable patches from the local layer.By this coupled constraint paradigm be-tween the adaptation of the global and the local layer,we achieve a more robust tracking through significant appear-ance changes.Indeed,the experimental results on challeng-ing sequences confirm that our tracker outperforms the re-lated state-of-the-art trackers by having smaller failure rate as well as better accuracy.1.IntroductionVisual tracking is an important research area in computer vision.In practice,the holistic approaches[6,11,5,16], that globally model the target’s appearance,have proven to be very successful.However,scenarios that contain rapid structural appearance changes present such models with se-rious difficulties.The reason is that such visual changes lead to reduced matches and drifting which eventually re-sult in the trackers’failure.To address these problems,approaches to tracking using sets of simple local parts have been proposed[15,1,3,12, 9,18].Flock-of-features,proposed by K¨o lsch and Turk[9] and later extended by Hoey[7],was one of the early at-tempts.Inflock-of-features a set of simple features(e.g. opticalflow features)are used to independently track indi-vidual parts of the object.If a feature violates simpleflock-Figure1.Illustration of the proposed coupled-layer visual model. The local layer is a geometrical constellation of visual parts that describe the target’s local visual properties.The global layer en-codes the target’s global visual features in a probabilistic model. ing rules based on a distance to other features,it is replaced by a new feature using a predefinedfixed color distribution. Since the set of features is geometrically unconstrained,the tracker is likely to get stuck on the background and tracking fails.Yin and Collins[18]use the Harris corner detector to determine only the stable regions for tracking and enforce a single global affine transformation constraint to avoid drift-ing.However,the number of stable regions is highly depen-dent on the object texture.If the object’s color is homoge-neous,no stable regions will be found and the tracking will fail.To avoid such problems,Fan et al.[4]proposed to track a target with a set of kernels which are connected by a global affine transformation constraint.To enable handling slightly more involved changes in the appearance,Mar-tinez and Binefa[15]connected multiple kernels together in triplets and constrained them with a local affine trans-formation.However,each kernel and the connections have to be carefully manually initialized based on the target’s structural properties.This is undesirable in many tracking scenarios.Furthermore,the set of kernels isfixed and the tracker therefore cannot adapt to the target’s larger appear-ance changes.A four-part fully-connected structure has been proposed by Badrinarayanan et al.[1]for face tracking.The visual model is composed of four patches,constrained by aflexi-ble fully-connected graph.Because the number of parts is low,the problem can still be solved efficiently using a parti-clefilter,however,this approach is not suitable for a larger sets of parts.Another drawback is that it requires manual initialization of positions for each patch.Chang et al.[3] used Markov randomfields to encode the spatial constraints between parts.Only subsets of parts are connected in this case,making larger sets of parts easier to process.However, this approach still assumes that individual parts are manu-ally initialized and cannot update the part set.Moreflexible geometrical constraints that allow remov-ing and adding parts during tracking have been presented by Kwon and Lee[12].A star model connects all the parts to the center of the object.This model is simple enough that individual parts can be removed or added.The authors propose a likelihood function landscape analysis and part proximity to detect bad parts and remove them.New parts are added to the visual model using corner-like stable re-gions in the estimated object area.We consider this recent work to be the closest to our own research.While this ap-proach provides a good mechanism for gradually adapting the visual model in a controlled manner,the mechanism of introducing new patches is rather nonrobust.The patch ini-tialization fails for objects that lack textured surface and is not directly constrained to the object.On the other hand a rapid part removal can lead to false structural changes in the geometrical model and possible tracking failure.In this paper we propose a coupled-layer visual model that combines the target’s global and local appearance(Fig-ure1).The local layer L t is a geometrical constellation of visual parts(patches)that describe the target’s local visual/geometrical properties.As the target’s appearance changes or a part of it gets occluded,some of the patches in the visual model cease to correspond to the target’s visi-ble parts.Those are identified and gradually removed from the model.The allocation of the new patches in the local layer is constrained by the global layer G t that encodes the target’s global visual features.The global layer maintains a probabilistic model of target’s global visual features such as color,shape and apparent motion and is adapted during tracking.This adaptation is in turn constrained by focusing on the stable patches in the local layer.The main contribution of the paper is the coupled con-straint paradigm implemented within our Bayesian formula-tion of the two-layer model.We also integrate the proposed adaptive visual model within a Bayesian tracker that allows tracking through significant appearance changes.We argue that this robustness is achieved by the coupled-constrained updating of the visual model through the feedback loops between the global and the local layer.The experiments on the challenging sequences with significant appearance changes confirm that our tracker outperforms the state-of-the-art trackers by smaller failure rate and at greater(statis-tically significant)accuracy.The rest of the paper is organized as follows:Sec-tion2describes the proposed visual model and the resulting tracker.In Section3we perform extensive experimental comparison with the state-of-the-art,and in Section4we discuss the method and draw the conclusions.2.A coupled-layer visual modelDuring tracking,the proposed coupled-layer visual model is used as follows.Starting from an initial posi-tion(predicted by the Kalmanfilter in our case),the local model’s geometrical structure is adapted to maximally ex-plain the visual data–thus locating the target(Section2.1).A mechanism is used to identify and remove the patches from the local visual model that no more correspond to the target(Section2.2).The remaining patches are used to up-date the visual information of the global layer and then the global layer is used to allocate new patches in the local layer if necessary(Section2.3).2.1.The local layerThe local layer L t of the the target’s visual model at time-step t is described by a geometrical constellation of weighted patches:L t={x(i)t,w(i)t}i=1:Nt,(1) where x(i)t represents the image coordinates of the i-th patch and the weight w(i)t represents the belief that the tar-get is well-represented by the i-th patch.The target’s center is defined as the weighted average over the patches,i.e.,c t=1W tN ti=1w(i)t x(i)t,where W t is a normalization fac-tor W t=N ti=1w(i)t.In the following we will denote theset of all patches at time-step t by X t={x(i)t}i=1:Nt.During tracking,we start from an initial estimateˆX t and the set of current image measurements Y t,and seek the value of X t that maximizes the joint probability p(Y t,X t|ˆX t).By treating the local-layer visual model L t as a mixture model,in which each patch competes to ex-plain the target’s appearance,we can decompose the joint distribution intop(Y t,X t|ˆX t)=N ti=1p(z(i))p(Y t,X t|ˆX t,z(i)),(2)where p(z(i))is the i-th patch’s prior and is approxi-mated using the corresponding weight,i.e.,p(z(i))= w(i)t/N tj=1w(j)t.In our model,we assume that the positionof the i-th patch is dependent only on its direct neighbors, and we can writep(Y t,X t|ˆX t,z(i))∝p(Y t,x(i)t|ε(i)t,ˆε(i)t,z(i)),(3) whereε(i)t andˆε(i)t denote the set of the i-th patch’s local neighbors’positions in the new and initial constellation,re-spectively.In our implementation,the local neighbors are the set of patches that are directly connected with the i-th patch in a Delaunay triangulated mesh of an entire set of patches.The conditional joint distribution can now be fur-ther decomposed in terms of visual and geometrical models asp(Y t,x(i)t|ε(i)t,ˆε(i)t,z(i))=p(Y t|x(i)t)p(x(i)t|ε(i)t,ˆε(i)t),(4)where we have assumed that the measurement at the i-th patch is independent from the other patches.The visual model of the i-th patch is encoded by a gray-level histogramh(i) ref which is extracted when the patch is initialized in theconstellation and remains unchanged during tracking.Let h(i)t be a histogram extracted at the current location of the patch x(i)t.We define the visual likelihood of the i-th patch asp(Y t|x(i)t)∝e−λvρ(h(i)ref,h(i)t),(5) whereρ(·,·)is the Bhattacharryya distance between the his-tograms[16].We constrain the local geometry using an elastic deformation modelp(x(i)t|ε(i)t,ˆε(i)t)∝e−λg||x(i)t−A(ε(i)t,ˆε(i)t)ˆx(i)t||,(6) where A(ε(i)t,ˆε(i)t)is an affine transformation matrix com-puted from correspondences between the i-th patch’s initial and current neighborhoods.Note that this geometric model assumes that the deformations of the constellation are lo-cally approximately affine.Therefore,during adaptation of the local layer to the target’s current appearance,we seek an approximately affine deformation of an initial set of patches ˆXtthat maximizes the joint probability in(2).We determine the unknown deformation by optimiz-ing(2)for X t using the standard cross-entropy method[17]. However,due to the high dimensionality of the problem at hand,(2)may contain many local maxima that may cause the method to take a long time to converge.We therefore write our deformation model as a composition of a glob-ally affine deformation A G t,that is equal for all patches, and of local perturbations∆(i)t which may vary between the patches:x(i)t=A G tˆx(i)t+∆(i)t.(7) In our implementation we thereforefirst optimize(2)w.r.t. the global affine deformation A G t.After convergence,we fix the value of A G t and sequentially optimize the positions of each patch x(i)t.2.2.Updating the local layerRecall from(1)that there is a weight w(i)t associated witheach patch that reflects the relevance of the corresponding patch in the mixture of patches.After adapting the set of patches to the target’s appearance,as described in the pre-vious section,each patch is analyzed and its weight is in-creased or decreased by∆w by applying the following two consistency rules:•Visual consistency:If the Bhattacharryya distance be-tween the patch’s reference and the current histogram exceeds a threshold T histHi then its weight is de-creased;if the distance falls below a threshold T histLo the weight is increased.•Drift from majority:If the median of the distances from the patch to all other patches in the set is greater than a predefined threshold T major,then the patch’s weight is decreased.The weight of a patch can be interpreted as a frequency at which each patch has been selected as belonging to the object(increasing weight)minus the frequency at which the patch was selected as a possible outlier(decreasing weight). When normalized,these weights can be regarded as a prob-ability that a patch belongs to the object.Patches with low probability(lower than T R)are considered as either outdated or mispositioned and are removed from the set. To allow a good coverage of the target in the image,new patches have to be added in the local layer.The patches are allocated by sampling their position from a probability density function(pdf)that determines locations in the im-age which are likely to contain the target.This pdf is con-structed from the global layer and is described in the next section.The weight w(i)t of the allocated patch is initialized with a value of twice the threshold for patch removal,i.e., w0=2T R.The remaining question is how many patches should be allocated.Let˜N t denote the number of patches in the local layer after removing the irrelevant patches.We define N captto be the local layer’s capacity,i.e.,the maxi-mum number of patches allowed in the local layer at time-step t.To allow the number of allocated patches to grow with the target’s size,we always try to allocate at mostN all t≤N capt−˜N t+1new patches.To prevent sudden significant changes in the estimated capacity,we adapt it using the autoregressive scheme:N capt+1=αcap N capt+(1−αcap)N t,(8) where N t=N all t+˜N t andαcap is an exponentially forget-ting factor.2.3.The global layerThe global layer G t captures the target’s global visual properties,in particular color C t,apparent motion M t,andshape S t,G t={C t,M t,S t}.(9) When required,this information is used to allocate new patches in the local layer.The allocation is implemented by drawing positions from the following distributionp(x|C t,M t,S t)∝p(C t,M t,S t|x).(10)Assuming that the visual cues are independent given a po-sition x,then(10)factors asp(x|C t,M t,S t)∝p(C t|x)p(M t|x)p(S t|x).(11)In the following we describe the models for each of the cues.The global color model is encoded by two HSV his-tograms h F t and h B t,thefirst corresponding to the target and the second to the background.Let I(x)be a pixel value at the position x in image ing the histograms,the prob-ability that a pixel corresponds to the background or fore-ground is p(x|F)=h F t(I(x))and p(x|B)=h B t(I(x)), respectively.The likelihood that a pixel at the location x belongs to the target is thereforep(C t|x)=p(x|F)p(F)p(F)p(x|F)+(1−p(F))p(x|B).(12)Both histograms are updated during tracking as follows. After the local layer isfitted to the target(Section2.1),a histogramˆh F t is extracted in the current image from the re-gions that correspond to the patches of the local layer.The background histogramˆh B t is extracted from a ring-shaped region defined by the convex hull of the patches in the local layer.These histograms are used to update the global color model by a simple autoregressive schemeh F t+1=αF h F t+(1−αF)ˆh F th B t+1=αB h B t+(1−αB)ˆh B t,(13)whereαF andαB arefixed constants that determine the rate of adaptation.The apparent motion model is defined by the local mo-tion model from[11].Briefly,the local motion model[11]first determines salient points{x i}N s i=1with sufficient tex-ture in the image.It then computes the motion likelihood p(x i|M t)at each salient point x i by comparing the local velocity of a pixel v(x i)(estimated by Lucas-Kanade opti-calflow[14])with the global velocity v t estimated by the tracker.As in[11],the motion likelihood at salient point x i is defined asp(x i|M t)∝(1−w noise)e−λM(d(v(x i),v t))+w noise,(14) where d(v(x i),v t))is the distance between two velocities and w noise is uniform noise.Finally,to obtain a dense esti-mate,the set of salient points is convolved with a smoothing kernel.We therefore define the motion likelihood asp(M t|x)∝1KN si=1p(x i|M t)ΦΣ(x−x i),(15)where K is a normalization factor,ΦΣ(x)is a Gaussian kernel with covarianceΣand N s is the number of salient patches.The covariance is estimated automatically from the weighted set of salient points using the multivariate Kernel Density Estimation[10].The shape model is a weighted superposition of the past∆t approximate object shapes.An approximate ob-ject shape at time-step t is defined as an object-centered region P t,which is calculated by a convex envelope over the patches from the local layer.To maintain the growing capability we dilate each hull by the size of a local patch. We define a function s(x,P t)≡1if x∈P t and0other-wise and the shape likelihood model for a pixel at x is thus defined asp(S t|x)∝∆ti=0αS i s(x,P t−i),(16)whereαS is a weighting factor which reduces the influence of the older shapes.As mentioned above,(11)is used for allocating new patches in the local layer.We do not sample(11)directly, but rather discretize itfirst,by calculating its value for each pixel in the image.This discretized distribution is then used to draw positions for new patches from the potential target region.To make sure that the patches are allocated only in regions whose likelihood of containing the target is high enough,we set to zero those regions of the discretized dis-tribution,whose value is smaller than30%of the maximal value from p(x|C t,M t,S t).To avoid duplicating patches in the local layer,the regions of the discretized distribution that correspond to existing patches are set to zero.2.4.Tracking with the coupled-layer visual modelRecall that the proposed coupled-layer visual model starts from an initial estimate of the target’s position and then refines its estimate by adapting to the current image as described in Section2.1.The center of the target can then be identified as a weighted average c t of the patches’positions.During tracking we require prediction of the lo-cal layer’s patches to initialize the adaptation of the visual model.We also require an estimate of the target’s velocity in the global layer’s apparent motion model.We therefore apply a Kalmanfilter[8]with a nearly-constant velocity (NCV)dynamic model[13]tofilter the estimates of the tar-get’s center c t.Thus,at time-step t,the target’s velocityˆv t estimated by the Kalmanfilter is used to initialize the local layer patchesˆX t={ˆx(i)t}i:1:Ntby predicting the locationframe:(i)t−1+ˆv(i)t.(17)is manually initialized byover the target.We give noand the set of patchesinitialized in a grid patternThe weights of the patchesw0.We summarize the relevant1.Algorithm1The coupled-layer visual tracker. Initialization:i Input:Place a rectangular region over a target.ii Distribute patches in a regular grid in the region and assign uniform weights.Tracking:For time-step t=1,2,3...1.Predict the target’s velocityˆv t using the Kalmanfil-ter and initialize the local-layer patches with the NCV model(17).2.Adapt the local layer patches by maximizingp(Y t,X t|ˆX t)(Section2.1),recalculate the target’s center c t and update the Kalmanfilter estimate.3.Identify/remove irrelevant patches from the local layer(Section2.2).4.To maintain numerical stability(e.g.Delaunay trian-gulation works better if the input points are not too close to each other)and decrease redundant compar-isons,merge patches in the local layer that are too close to each other.ing the remaining patches,update the visual cues ofthe global layer(Section2.3).6.If required,construct a discretized distributionp(x|C t,M t,S t)and sample positions of new patches for the local layer.3.Experimental resultsWe have analyzed the performance of the proposed local-global tracker(LGT)from Algorithm1on several examples of tracking either a nonrigid object or an object that un-dergoes a significant appearance change.Our tracker has been implemented in Matlab/C and runs at approximately4 frames per second on an Intel Core2Duo6600.The pa-rameters in our tracker were set as follows.The maximumFigure2.Samples from the experimental video sequences. number of iterations in the cross-entropy was10,with50 samples per iteration.We setλv=0.1andλg=0.015. For the adaptation of the local layer(Section2.2)the fol-lowing parameters were used:∆w=0.1,T histLo=0.4, T histHi=0.8,T major=40,T R=0.1andαcap=0.8. To update the global layer,parameter valuesαF=0.95,αB=0.5,λM=1,w noise=0.01,∆t=7,andαS=0.7 were used.We would like to emphasize that all the param-eters were kept constant for all the experiments.We have compared our tracker,i.e.LGT,withfive re-lated state-of-the-art reference trackers,which address the problem of object appearance changes:a color-based parti-clefilter[16](PF),an online boosting tracker[5](OBT),a flock-of-features tracker[9](FOF),a piecewise-affine ker-nel tracker[15](PAKT)and the basin-hopping Monte Carlo tracker[12](BHMC).The experiments involved tracking a hand,a human body,and objects with challenging view changes(Figure2).The basic properties of the experimen-tal sequences are collected in Table11.Table1.An overview of the video sequences. Sequence Type Comments Len. hand arti.body part rapid motion242 hand2arti.body part rapid motion267 gymnast.articulated rapid motion206 diver articulated rotation214 dinosaur rigid elab.struct.324 torus rigid empty center262 The target was tracked in each sequence R=30times by each tracker.For comparison,we recorded the number1The annotated sequences,as well as a reference implementation of the tracker are available at http://vicos.fri.uni-lj.si/lukacu/ research/tracking/.Figure 3.Results for the hand sequence.Results are shown for trackers FOF (first row),PF (second row)and LGT (last row).of times each tracker failed and had to be reinitialized.We also recorded the tracked trajectories.The tracking fail-ure was automatically determined by measuring the over-lap between the ground-truth region Ωt gt and the regionestimated by the tracker Ωt.The overlap was measuredas F (Ωt gt ,Ωt )=Ωt gt ∩Ωt /Ωt gt ∪Ωt.A failure was pro-claimed at time-step t if F (Ωt ,Ωt a )<0.09.This threshold is based on our observation of the behavior of the estimated region,produced by a tracker vs.the ground truth region.To evaluate the tracker accuracy with respect to the other trackers,we have performed a one-sided standard hypothe-sis test [2]on the estimated trajectories.3.1.ResultsTable 2shows the average failure rates for each tracker.We see that the LGT is indeed superior to the reference trackers as the average failure rate is the lowest for all the sequences.Looking at the number of failures per sequence,we also see that the sequence hand2was the most difficult to track for all trackers.Visual properties of the hand,such as color,are similar for the entire arm,making trackers that rely heavily on color more vulnerable to drifting.Further-more,due to homogeneous color,skin contains only few distinct local regions,which makes it difficult to reliably estimate local motions on the object.The problem of color ambiguity and background clutter was also apparent in the sequence hand in Figure 3,where the PF tracker (second row),which relies only on color information,confused the head for the hand on the third image from the sequence.Be-cause of the difficulty of estimating the local motion from small regions,the FOF tracker (first row),which uses a set of optical flow features for tracking,failed.On the other hand,the LGT tracker succeeds in tracking (third row)since it integrates multiple cues at a global level to handle back-ground clutter and enforces geometrical constraints at a lo-cal level to handle local ambiguity.The sequences gymnastics and diver are the only twoTable 2.Average number of failures per sequence.PAKT FOF PF BHMC OBT LGT [15][9][16][12][5]hand 22.610.0 4.329.910.00.2hand240.013.110.145.431.0 1.9gymnast. 3.0 3.7 4.79.7 4.00.2diver 2.4 2.2 4.3 3.97.0 1.2dinosaur 8.2 2.7 2.215.67.00torus 10.6 6.0 2.523.413.0sequences that include camera motion (following the tar-get).It is worth noting that the objects do not move much spatially in these sequences,but rather significantly change their appearance.PAKT and BHMC do not explicitly as-sume the object’s translational motion (do not estimate the object’s velocity),but rather assume Brownian-like motion.For this reason their failure rate is somewhat lower for these two sequences in comparison to other sequences.Never-theless,the LGT outperformed both trackers in these se-quences.Figure 4compares the BHMC tracker (first row)and LGT tracker (second row)on several frames of the gym-nastics sequence,in which the target significantly changes its appearance as well as scale.We can see from the es-timated bounding boxes that the size of the object is often poorly estimated by the BHMC tracker which leads to fail-ures (Table 2).On the other hand,the LGT successfully tracks the target through the scale change.The advantages of the LGT tracker are also evident in the sequences dinosaur and torus for the case of rigid objects with more complex structure that undergo rapid orientation and translation changes with respect to the camera.Even though these kinds of objects are not as deformable as a hu-man body or a hand,the changes in the appearance are still hard to describe without a predefined geometrical model for a specific object.As seen in Figure 5,when tracking a torus,the PAKT and OBT reference trackers drift from the object several times during the sequence,while the LGT trackerFigure 4.Results for the gymnastics sequence.Results are shown for trackers BHMC (first row)and LGT (second row).successfully accomplishes the task.In the case of the PAKT tracker (first row)the problem lies in its inability to follow fast movements because of the locality of the optimization and the limited adaptation capabilities due to a fixed parts set.The OBT tracker (second row)on the other hand fails many times because it focuses on the more visually inter-esting central region,which,however,belongs to the back-ground.The LGT tracker (third row)does not have these problems and can successfully track the object throughout the sequence.Table 3.RMS errors with respect to the ground truth.In all cases the LGT produced smaller RMSE and (·)∗denotes that the differ-ence was statistically significant.PAKTFOFPFBHMCOBTLGT[15][9][16][12][5]hand 18.5∗19.7∗14.4∗27.4∗17.5∗9.1hand218.7∗17.4∗16.6∗26.1∗22.5∗10.3gymnast.17.1∗23.1∗22.8∗27.6∗21.3∗11.3diver 18.1∗14.616.5∗21.1∗17.1∗13.7dinosaur 23.6∗19.2∗23.3∗35.1∗30.3∗11.5torus15.2∗14.8∗16.4∗21.5∗14.8∗5.1Table 3shows the tracking accuracy in terms of the aver-age RMSE.From the comparison of the RMSEs of the ref-erence trackers and the proposed tracker we can conclude that the proposed tracker,LGT,outperforms all the refer-ence trackers in accuracy at a standard significance level α=0.05(L α=1.564)except in one case (tracker FOF on the sequence diver )where the difference is not statistically significant .The better accuracy can be largely attributed to the two-stage optimization of the local layer,that first finds a good globally affine match for the entire set of the patches and then fine-tunes positions of individual patches to better match the target’s new appearance.The difference is less significant in the cases of the gymnastics and diver sequences because the targets do not move very much spa-tially,which makes the drawbacks of some of the related trackers less apparent.4.Discussion and conclusionWe have proposed a coupled two-layer visual model for efficient tracking of targets that undergo significant appear-ance changes.The proposed model is a coupled combina-tion of a local and global layer.The local layer is a set of local patches that geometrically constrain the changes in the target’s appearance.The set probabilistically adapts to the target’s appearance by maximizing the joint distribution over the model’s geometrical constraints and visual obser-vations.As the target’s appearance significantly changes,some of the patches in the visual model cease to correspond to the target’s visible parts.Those patches are identified by the local layer and gradually removed from the model.The allocation of the new patches in the local layer is con-strained by the global layer that encodes the target’s global visual features.The global layer maintains a probabilistic model of the target’s global visual features such as color,shape,and the apparent motion and is adapted during track-ing.This adaptation is in turn constrained by focusing on the stable patches in the local layer.We believe that it is ex-actly this constrained coupled updating between the layers that results in the robust tracking.We have incorporated the proposed visual model in a tracker and compared the tracker to the state-of-the-art on several challenging sequences.The results show that our tracker outperforms the related trackers by smaller failure rate and at a greater accuracy.The experiments have shown that even in the cases when the background’s color is similar to the target’s,tracking will not fail.The reason is that the global layer uses many more features,such as foreground-background similarity,shape,local motion,and temporal proximity from the Kalman filter to determine which re-gions in the image potentially contain the target.Therefore new patches are more likely initialized on the target.Only after these patches have been validated by the local layer over several frames,they start to play a stronger role in the model.Similarly,the global layer is updated only by using the stable patches from the local layer.These constrained feedbacks between the two layers,allow the tracker to track the target through scale and appearance changes as shown in the experiments.In the same respect,the tracker is ex-。