2019届高考高三理数一轮复习同步规范答题强化练(3)数列含解析

合集下载

2019年高考理数——数列(解答)

2019年高考理数——数列(解答)

2019年高考理数——数列1.(19全国二理19.(12分))已知数列{a n }和{b n }满足a 1=1,b 1=0,1434n n n a a b +-=+,1434n n n b b a +-=-. (1)证明:{a n +b n }是等比数列,{a n –b n }是等差数列; (2)求{a n }和{b n }的通项公式.2.(19北京理(20)(本小题13分))已知数列{a n },从中选取第i 1项、第i 2项、…、第i m 项(i 1<i 2<…<i m ),若12m i i i a a a <<⋅⋅⋅<,则称新数列12m i i i a a a ⋅⋅⋅,,,为{a n }的长度为m 的递增子列.规定:数列{a n }的任意一项都是{a n }的长度为1的递增子列.(Ⅰ)写出数列1,8,3,7,5,6,9的一个长度为4的递增子列;(Ⅱ)已知数列{a n }的长度为p 的递增子列的末项的最小值为0m a ,长度为q 的递增子列的末项的最小值为0n a .若p <q ,求证:0m a <0n a ;(Ⅲ)设无穷数列{a n }的各项均为正整数,且任意两项均不相等.若{a n }的长度为s 的递增子列末项的最小值为2s –1,且长度为s 末项为2s –1的递增子列恰有2s -1个(s =1,2,…),求数列{a n }的通项公式.3.(19天津理19.(本小题满分14分))设{}n a 是等差数列,{}n b 是等比数列.已知1122334,622,24a b b a b a ===-=+,.(Ⅰ)求{}n a 和{}n b 的通项公式;(Ⅱ)设数列{}n c 满足111,22,2,1,,k k n kk c n c b n +=⎧<<=⎨=⎩其中*k ∈N . (i )求数列(){}221n n a c -的通项公式; (ii )求()2*1ni ii a c n =∈∑N .4. (19浙江20.(本小题满分15分))设等差数列{}n a 的前n 项和为n S ,34a =,43a S =,数列{}n b 满足:对每个12,,,n n n n n n n S b S b S b *++∈+++N 成等比数列.(1)求数列{},{}n n a b 的通项公式; (2)记,n c n *=∈N证明:12+.n c c c n *++<∈N L5.(19江苏20.(本小满分16分))定义首项为1且公比为正数的等比数列为“M -数列”.(1)已知等比数列{a n }*()n ∈N 满足:245324,440a a a a a a =-+=,求证:数列{a n }为“M -数列”;(2)已知数列{b n }*()n ∈N 满足:111221,n n n b S b b +==-,其中S n 为数列{b n }的前n 项和.①求数列{b n }的通项公式;②设m 为正整数,若存在“M -数列”{c n }*()n ∈N ,对任意正整数k ,当k ≤m 时,都有1k k k c b c +剟成立,求m 的最大值.参考答案:1.解:(1)由题设得114()2()n n n n a b a b +++=+,即111()2n n n n a b a b +++=+. 又因为a 1+b 1=l ,所以{}n n a b +是首项为1,公比为12的等比数列. 由题设得114()4()8n n n n a b a b ++-=-+,即112n n n n a b a b ++-=-+. 又因为a 1–b 1=l ,所以{}n n a b -是首项为1,公差为2的等差数列. (2)由(1)知,112n n n a b -+=,21n n a b n -=-. 所以111[()()]222n n n n n n a a b a b n =++-=+-, 111[()()]222n n n n n n b a b a b n =+--=-+.2.解:(Ⅰ)1,3,5,6.(答案不唯一)(Ⅱ)设长度为q 末项为0n a 的一个递增子列为1210,,,,q r r r n a a a a -L . 由p <q ,得10p q r r n a a a -≤<.因为{}n a 的长度为p 的递增子列末项的最小值为0m a , 又12,,,p r r r a a a L 是{}n a 的长度为p 的递增子列, 所以0p m r a a ≤. 所以00m n a a <·(Ⅲ)由题设知,所有正奇数都是{}n a 中的项.先证明:若2m 是{}n a 中的项,则2m 必排在2m −1之前(m 为正整数). 假设2m 排在2m −1之后.设121,,,,21m p p p a a a m --L 是数列{}n a 的长度为m 末项为2m −1的递增子列,则121,,,,21,2m p p p a a a m m --L 是数列{}n a 的长度为m +1末项为2m 的递增子列.与已知矛盾.再证明:所有正偶数都是{}n a 中的项.假设存在正偶数不是{}n a 中的项,设不在{}n a 中的最小的正偶数为2m .因为2k 排在2k −1之前(k =1,2,…,m −1),所以2k 和21k -不可能在{}n a 的同一个递增子列中.又{}n a 中不超过2m +1的数为1,2,…,2m −2,2m −1,2m +1,所以{}n a 的长度为m +1且末项为2m +1的递增子列个数至多为1(1)22221122m mm --⨯⨯⨯⨯⨯⨯=<L 1442443个. 与已知矛盾.最后证明:2m 排在2m −3之后(m ≥2为整数).假设存在2m (m ≥2),使得2m 排在2m −3之前,则{}n a 的长度为m +1且末项为2m +l 的递增子列的个数小于2m .与已知矛盾.综上,数列{}n a 只可能为2,1,4,3,…,2m −3,2m ,2m −1,…. 经验证,数列2,1,4,3,…,2m −3,2m ,2m −1,…符合条件. 所以1,1,n n n a n n +⎧=⎨-⎩为奇数,为偶数.3.(Ⅰ)解:设等差数列{}n a 的公差为d ,等比数列{}n b 的公比为q .依题意得2662,6124,q d q d =+⎧⎨=+⎩解得3,2,d q =⎧⎨=⎩故14(1)331,6232n nn n a n n b -=+-⨯=+=⨯=⨯. 所以,{}n a 的通项公式为{}31,n n a n b =+的通项公式为32n n b =⨯.(Ⅱ)(i )解:()()()()22211321321941n n n n n n n a c a b -=-=⨯+⨯-=⨯-. 所以,数列(){}221n n a c -的通项公式为()221941n n n a c -=⨯-. (ii )解:()()22221111211n n niini iiiiii i i i a c a a c a a c====⎡⎤=+-=+⎣⎦-∑∑∑∑()()12212439412n n n ni i =⎛⎫- ⎪=⨯+⨯+⨯- ⎪⎝⎭∑()()2114143252914n n n n ---=⨯+⨯+⨯--()211*2725212n n n n --=⨯+⨯--∈N .4.(1)设数列{}n a 的公差为d ,由题意得11124,333a d a d a d +=+=+,解得10,2a d ==.从而*22,n a n n =-∈N .所以2*n S n n n =-∈N ,,由12,,n n n n n n S b S b S b +++++成等比数列得()()()212n n n n n n S b S b S b +++=++.解得()2121n n n n b S S S d++=-.所以2*,n b n n n =+∈N . (2)*n c n ===∈N . 我们用数学归纳法证明.(i )当n =1时,c 1=0<2,不等式成立;(ii )假设()*n k k =∈N时不等式成立,即12k c c c +++<L 那么,当1n k =+时,121k k c c c c +++++<<L <==.即当1n k =+时不等式也成立.根据(i )和(ii),不等式12n c c c +++<L 对任意*n ∈N 成立.5.解:(1)设等比数列{a n }的公比为q ,所以a 1≠0,q ≠0.由245321440a a a a a a =⎧⎨-+=⎩,得244112111440a q a q a q a q a ⎧=⎨-+=⎩,解得112a q =⎧⎨=⎩.因此数列{}n a 为“M —数列”.(2)①因为1122n n n S b b +=-,所以0n b ≠. 由1111,b S b ==,得212211b =-,则22b =. 由1122n n n S b b +=-,得112()n n n n n b b S b b ++=-, 当2n ≥时,由1n n n b S S -=-,得()()111122n n n nn n n n n b b b b b b b b b +-+-=---,整理得112n n n b b b +-+=.所以数列{b n }是首项和公差均为1的等差数列. 因此,数列{b n }的通项公式为b n =n ()*n ∈N .②由①知,b k =k ,*k ∈N .因为数列{c n }为“M –数列”,设公比为q ,所以c 1=1,q >0.因为c k ≤b k ≤c k +1,所以1k kq k q -≤≤,其中k =1,2,3,…,m .当k =1时,有q ≥1; 当k =2,3,…,m 时,有ln ln ln 1k kq k k ≤≤-. 设f (x )=ln (1)x x x >,则21ln ()xf 'x x -=. 令()0f 'x =,得x =e.列表如下:x (1,e)e (e ,+∞) ()f 'x+0 –f (x )极大值因为ln 2ln8ln 9ln 32663=<=,所以max ln 3()(3)3f k f ==. 取33q =k =1,2,3,4,5时,ln ln kq k…,即k k q ≤,经检验知1k qk -≤也成立.因此所求m 的最大值不小于5.若m ≥6,分别取k =3,6,得3≤q 3,且q 5≤6,从而q 15≥243,且q 15≤216, 所以q 不存在.因此所求m 的最大值小于6. 综上,所求m 的最大值为5.。

2019年高考数学(理)一轮复习第六章 数列习题及答案

2019年高考数学(理)一轮复习第六章 数列习题及答案

第六章⎪⎪⎪列第一节列的概念与简单表示突破点(一) 列的通项公式1.列的定义按照一定顺序排列的一列称为列.列中的每一个叫做这个列的项,列中的每一项都和它的序号有关,排在第一位的称为这个列的第一项(通常也叫做首项).2.列的通项公式如果列{a n }的第n 项与序号n 之间的关系可以用一个式子表示,那么这个公式叫做这个列的通项公式.3.列的递推公式如果已知列{a n }的第一项(或前几项),且任何一项a n 与它的前一项a n -1(或前几项)间的关系可以用一个式子表示,即a n =f (a n -1)(或a n =f (a n -1,a n -2)等),那么这个式子叫做列{a n }的递推公式.4.S n 与a n 的关系已知列{a n }的前n 项和为S n ,则a n =⎩⎪⎨⎪⎧S 1,n =1,S n -S n -1,n ≥2,这个关系式对任意列均成立.本节主要包括2个知识点: 1.列的通项公式;2.列的单调性.[例1] 写出下面各列的一个通项公式: (1)3,5,7,9,…;(2)12,34,78,1516,3132,…;(3)-1,32,-13,34,-15,36,…;(4)3,33,333,3 333,….[解] (1)各项减去1后为正偶,所以a n =2n +1.(2)每一项的分子比分母少1,而分母组成列21,22,23,24,…,所以a n =2n -12n .(3)奇项为负,偶项为正,故通项公式中含因式(-1)n ;各项绝对值的分母组成列1,2,3,4,…;而各项绝对值的分子组成的列中,奇项为1,偶项为3,即奇项为2-1,偶项为2+1,所以a n =(-1)n ·2+-nn.也可写为a n=⎩⎪⎨⎪⎧-1n,n 为正奇,3n ,n 为正偶.(4)将列各项改写为93,993,9993,9 9993,…,分母都是3,而分子分别是10-1,102-1,103-1,104-1,…,所以a n=13(10n-1).[方法技巧]由列的前几项求通项公式的思路方法给出列的前几项求通项时,需要注意观察列中各项与其序号之间的关系,在所给列的前几项中,先看看哪些部分是变的,哪些是不变的,再探索各项中变部分与序号间的关系,主要从以下几个方面考虑:(1)分式形式的列,分子、分母分别求通项,较复杂的还要考虑分子、分母的关系.(2)若第n项和第n+1项正负交错,那么符号用(-1)n或(-1)n +1或(-1)n-1调控.(3)熟悉一些常见列的通项公式.(4)对于较复杂列的通项公式,其项与序号之间的关系不容易发现,这就需要将列各项的结构形式加以变形,可使用添项、通分、分割等方法,将列的各项分解成若干个常见列对应项的“和”“差”“积”“商”后再进行归纳.利用a n与S n的关系求通项[例2] n n n(1)S n=2n2-3n;(2)S n=3n+b.[解] (1)a1=S1=2-3=-1,当n≥2时,a n=S n-S n-1=(2n2-3n)-[2(n-1)2-3(n-1)]=4n-5,由于a 1也适合此等式,所以{a n }的通项公式为a n =4n -5. (2)a 1=S 1=3+b ,当n ≥2时,a n =S n -S n -1=(3n +b )-(3n -1+b )=2×3n -1. 当b =-1时,a 1适合此等式. 当b ≠-1时,a 1不适合此等式. 所以当b =-1时,a n =2×3n -1;当b ≠-1时,a n =⎩⎪⎨⎪⎧3+b ,n =1,2×3n -1,n ≥2.[方法技巧]已知S n 求a n 的三个步骤(1)先利用a 1=S 1求出a 1.(2)用n -1替换S n 中的n 得到一个新的关系,利用a n =S n -S n -1(n ≥2)便可求出当n ≥2时a n 的表达式.(3)对n =1时的结果进行检验,看是否符合n ≥2时a n 的表达式,如果符合,则可以把列的通项公式合写;如果不符合,则应该分n =1与n ≥2两段写.利用递推关系求通项[例3] (1)已知列{a n }满足a 1=2,a n +1=a n +1n 2+n ,则a n =________;(2)若列{a n }满足a 1=23,a n +1=nn +1a n ,则通项a n =________;(3)若列{a n }满足a 1=1,a n +1=2a n +3,则a n =________; (4)若列{a n }满足a 1=1,a n +1=2a na n +2,则a n =________.[解析] (1)由条件知a n +1-a n =1n 2+n =1nn +=1n -1n +1, 则(a 2-a 1)+(a 3-a 2)+(a 4-a 3)+…+(a n -a n -1)=⎝⎛⎭⎪⎫1-12+⎝ ⎛⎭⎪⎫12-13+⎝ ⎛⎭⎪⎫13-14+…+1n -1-1n ,即a n -a 1=1-1n ,又∵a 1=12,∴a n =1-1n +12=32-1n.(2)由a n +1=nn +1a n (a n ≠0),得a n +1a n =nn +1,故a n =a n a n -1·a n -1a n -2·…·a 2a 1·a 1 =n -1n ·n -2n -1·…·12·23=23n. (3)设递推公式a n +1=2a n +3可以转为a n +1-t =2(a n -t ),即a n+1=2a n -t ,则t =-3. 故a n +1+3=2(a n +3).令b n =a n +3,则b 1=a 1+3=4,b n ≠0,且b n +1b n =a n +1+3a n +3=2. 所以{b n }是以4为首项,2为公比的等比列. 所以b n =4×2n -1=2n +1, 即a n =2n +1-3.(4)∵a n +1=2a na n +2,a 1=1,∴a n ≠0, ∴1a n +1=1a n +12, 即1a n +1-1a n =12, 又a 1=1,则1a 1=1, ∴⎩⎨⎧⎭⎬⎫1a n 是以1为首项,12为公差的等差列. ∴1a n =1a 1+(n -1)×12=n 2+12, ∴a n =2n +1. [答案] (1)32-1n (2)23n (3)2n +1-3 (4)2n +1[方法技巧]由递推关系式求通项公式的常用方法(1)已知a 1且a n -a n -1=f (n ),可用“累加法”求a n .(2)已知a 1且a na n -1=f (n ),可用“累乘法”求a n .(3)已知a 1且a n +1=qa n +b ,则a n +1+k =q (a n +k )(其中k 可由待定系法确定),可转为等比列{a n +k }.(4)形如a n +1=Aa nBa n +C(A ,B ,C 为常)的列,可通过两边同时取倒的方法构造新列求解.(5)形如a n +1+a n =f (n )的列,可将原递推关系改写成a n +2+a n +1=f (n +1),两式相减即得a n +2-a n =f (n +1)-f (n ),然后按奇偶分类讨论即可.能力练通 抓应用体验的“得”与“失”1.[考点一]已知n ∈N *,给出4个表达式:①a n =⎩⎪⎨⎪⎧0,n 为奇,1,n 为偶,②a n =1+-n2,③a n =1+cos n π2,④a n =⎪⎪⎪⎪⎪⎪sin n π2.其中能作为列:0,1,0,1,0,1,0,1,…的通项公式的是( )A .①②③B .①②④C .②③④D .①③④解析:选A 检验知①②③都是所给列的通项公式.2.[考点一]列1,-58,715,-924,…的一个通项公式是( )A .a n =(-1)n +12n -1n 2+n(n ∈N *)B .a n =(-1)n -12n +1n 3+3n(n ∈N *)C .a n =(-1)n +12n -1n 2+2n(n ∈N *)D .a n =(-1)n -12n +1n 2+2n(n ∈N *)解析:选D 所给列各项可写成:31×3,-52×4,73×5,-94×6,…,通过对比各选项,可知选D.3.[考点二]已知列{a n }的前n 项和为S n =n 2-2n +2,则列{a n }的通项公式为( )A .a n =2n -3B .a n =2n +3C .a n =⎩⎪⎨⎪⎧1,n =1,2n -3,n ≥2D .a n =⎩⎪⎨⎪⎧1,n =1,2n +3,n ≥2解析:选C 当n =1时,a 1=S 1=1,当n ≥2时,a n =S n -S n -1=2n -3,由于n =1时a 1的值不适合n ≥2的解析式,故{a n }的通项公式为a n =⎩⎪⎨⎪⎧1,n =1,2n -3,n ≥2.4.[考点三]设列{a n }满足a 1=1,且a n +1-a n =n +1,求列{a n }的通项公式.解:由题意有a 2-a 1=2,a 3-a 2=3,…,a n -a n -1=n (n ≥2). 以上各式相加,得a n -a 1=2+3+…+n =n -+n2=n 2+n -22.又∵a 1=1,∴a n =n 2+n2(n ≥2).∵当n =1时也满足此式, ∴a n =n 2+n2(n ∈N *).5.[考点三]若列{a n }满足:a 1=1,a n +1=a n +2n ,求列{a n }的通项公式.解:由题意知a n +1-a n =2n ,a n =(a n -a n -1)+(a n -1-a n -2)+…+(a 2-a 1)+a 1=2n -1+2n -2+…+2+1=1-2n1-2=2n -1.又因为当n =1时满足此式,所以a n =2n -1.突破点(二) 列的单调性列的分类[例1] 已知列{a n }的前n 项和为S n ,常λ>0,且λa 1a n =S 1+S n 对一切正整n 都成立.(1)求列{a n }的通项公式;(2)设a 1>0,λ=100.当n 为何值时,列⎩⎨⎧⎭⎬⎫lg 1a n 的前n 项和最大?[解] (1)取n =1,得λa 21=2S 1=2a 1, 即a 1(λa 1-2)=0.若a 1=0,则S n =0,当n ≥2时,a n =S n -S n -1=0-0=0, 所以a n =0.若a 1≠0,则a 1=2λ,当n ≥2时,2a n =2λ+S n,2a n -1=2λ+S n -1,两式相减得2a n -2a n -1=a n ,所以a n =2a n -1(n ≥2),从而列{a n }是等比列, 所以a n =a 1·2n -1=2λ·2n -1=2nλ.综上,当a 1=0时,a n =0; 当a 1≠0时,a n =2nλ.(2)当a 1>0且λ=100时,令b n =lg 1a n,由(1)知b n =lg 1002n =2-n lg 2.所以列{b n }是单调递减的等差列(公差为-lg 2). 则b 1>b 2>…>b 6=lg 10026=lg 10064>lg 1=0,当n ≥7时,b n ≤b 7=lg 10027=lg 100128<lg 1=0,故当n =6时,列⎩⎨⎧⎭⎬⎫lg 1a n 的前n 项的和最大.[方法技巧]1.判断列单调性的两种方法 (1)作差比较法a n +1-a n >0⇔列{a n }是单调递增列;a n +1-a n <0⇔列{a n }是单调递减列;a n +1-a n =0⇔列{a n }是常列.(2)作商比较法①当a n >0时,a n +1a n >1⇔列{a n }是单调递增列;a n +1a n<1⇔列{a n }是单调递减列;a n +1a n=1⇔列{a n }是常列.②当a n <0时,a n +1a n >1⇔列{a n }是单调递减列;a n +1a n<1⇔列{a n }是单调递增列;a n +1a n=1⇔列{a n }是常列.2.求列最大项或最小项的方法(1)可以利用不等式组⎩⎪⎨⎪⎧a n -1≤a n ,a n ≥a n +1(n ≥2)找到列的最大项;(2)利用不等式组⎩⎪⎨⎪⎧a n -1≥a n ,a n ≤a n +1(n ≥2)找到列的最小项.利用列的单调性求参的取值范围[例2] 已知函f (x )=⎩⎪⎨⎪⎧-a x +2,x ≤2,a 2x 2-9x +11,x >2(a >0,且a ≠1),若列{a n }满足a n =f (n )(n ∈N *),且{a n }是递增列,则实a 的取值范围是( )A .(0,1) B.⎣⎢⎡⎭⎪⎫83,3 C .(2,3)D .(1,3)[解析]因为{a n }是递增列,所以⎩⎪⎨⎪⎧3-a >0,a >1,-a+2≤a ,解得83≤a <3,所以实a 的取值范围是⎣⎢⎡⎭⎪⎫83,3.[答案] B[方法技巧]已知列的单调性求参取值范围的两种方法(1)利用列的单调性构建不等式,然后将其转为不等式的恒成立问题进行解决,也可通过分离参将其转为最值问题处.(2)利用列与函之间的特殊关系,将列的单调性转为相应函的单调性,利用函的性质求解参的取值范围,但要注意列通项中n 的取值范围.能力练通 抓应用体验的“得”与“失” 1.[考点一]设a n =-3n 2+15n -18,则列{a n }中的最大项的值是( )A.163 B.133 C .4D .0解析:选D a n =-3⎝⎛⎭⎪⎫n -522+34,由二次函性质,得当n =2或n=3时,a n 取最大值,最大值为a 2=a 3=0.故选D.2.[考点一]若列{a n }满足:a 1=19,a n +1=a n -3,则列{a n }的前n 项和值最大时,n 的值为( )A .6B .7C .8D .9解析:选B ∵a 1=19,a n +1-a n =-3,∴列{a n }是以19为首项,-3为公差的等差列,∴a n =19+(n -1)×(-3)=22-3n ,则a n 是递减列.设{a n }的前k项和值最大,则有⎩⎪⎨⎪⎧a k ≥0,a k +1≤0,即⎩⎪⎨⎪⎧22-3k ≥0,22-k +,∴193≤k ≤223,∵k ∈N *,∴k =7.∴满足条件的n 的值为7.3.[考点二]已知{a n }是递增列,且对于任意的n ∈N *,a n =n 2+λn 恒成立,则实λ的取值范围是________.解析:∵对于任意的n ∈N *,a n =n 2+λn 恒成立, ∴a n +1-a n =(n +1)2+λ(n +1)-n 2-λn =2n +1+λ. 又∵{a n }是递增列,∴a n +1-a n >0,且当n =1时,a n +1-a n 最小, ∴a n +1-a n ≥a 2-a 1=3+λ>0,∴λ>-3. 答案:(-3,+∞)4.[考点一、二]已知列{a n }中,a n =1+1a +n -(n ∈N *,a∈R ,且a ≠0).(1)若a =-7,求列{a n }中的最大项和最小项的值; (2)若对任意的n ∈N *,都有a n ≤a 6成立,求a 的取值范围. 解:(1)∵a n =1+1a +n -(n ∈N *,a ∈R ,且a ≠0),又∵a =-7,∴a n =1+12n -9.结合函f (x )=1+12x -9的单调性,可知1>a 1>a 2>a 3>a 4,a 5>a 6>a 7>…>a n >1(n ∈N *). ∴列{a n }中的最大项为a 5=2,最小项为a 4=0.(2)a n =1+1a +n -=1+12n -2-a 2.∵对任意的n ∈N *,都有a n ≤a 6成立,结合函f (x )=1+12x -2-a 2的单调性,知5<2-a2<6,∴-10<a <-8.故a 的取值范围为(-10,-8).[全国卷5年真题集中演练——明规律] 1.(2015·新课标全国卷Ⅱ)设S n 是列{a n }的前n 项和,且a 1=-1,a n +1=S n S n +1,则S n =________.解析:∵a n +1=S n +1-S n ,a n +1=S n S n +1, ∴S n +1-S n =S n S n +1. ∵S n ≠0,∴1S n -1S n +1=1,即1S n +1-1S n=-1.又1S 1=-1,∴⎩⎨⎧⎭⎬⎫1S n 是首项为-1,公差为-1的等差列. ∴1S n =-1+(n -1)×(-1)=-n ,∴S n =-1n.答案:-1n2.(2014·新课标全国卷Ⅱ)列 {a n }满足 a n +1=11-a n, a 8=2,则a 1 =________.解析:将a 8=2代入a n +1=11-a n ,可求得a 7=12;再将a 7=12代入a n +1=11-a n ,可求得a 6=-1;再将a 6=-1代入a n +1=11-a n,可求得a 5=2;由此可以推出列{a n }是一个周期列,且周期为3,所以a 1=a 7=12. 答案:123.(2013·新课标全国卷Ⅰ)若列{a n }的前n 项和S n =23a n +13,则{a n }的通项公式是a n =________.解析:当n =1时,由已知S n =23a n +13,得a 1=23a 1+13,即a 1=1;当n ≥2时,由已知得到S n -1=23a n -1+13,所以a n =S n -S n -1=⎝ ⎛⎭⎪⎫23a n +13-⎝ ⎛⎭⎪⎫23a n -1+13=23a n -23a n -1,所以a n =-2a n -1,所以列{a n }为以1为首项,以-2为公比的等比列,所以a n =(-2)n -1.答案:(-2)n -14.(2016·全国丙卷)已知各项都为正的列{a n }满足a 1=1,a 2n -(2a n +1-1)a n -2a n +1=0.(1)求a 2,a 3;(2)求{a n }的通项公式.解:(1)由题意可得a 2=12,a 3=14.(2)由a 2n -(2a n +1-1)a n -2a n +1=0得 2a n +1(a n +1)=a n (a n +1).因此{a n}的各项都为正,所以a n+1a n=12.故{a n}是首项为1,公比为12的等比列,因此a n=12n-1.[课时达标检测] 重点保分课时——一练小题夯双基,二练题点过高考[练基础小题——强运算能力]1.列1,23,35,47,59,…的一个通项公式a n=( )A.n2n+1B.n2n-1C.n2n-3D.n2n+3解析:选 B 由已知得,列可写成11,23,35,…,故该列的一个通项公式为n2n-1.2.设列{a n}的前n项和S n=n2+n,则a4的值为( )A.4 B.6 C.8 D.10解析:选C a4=S4-S3=20-12=8.3.已知列{a n}满足a1=1,a n+1a n=2n(n∈N*),则a10=( ) A.64 B.32 C.16 D.8解析:选B ∵a n+1a n=2n,∴a n+2a n+1=2n+1,两式相除得a n+2a n=2.又a1a2=2,a1=1,∴a2=2.则a10a8·a8a6·a6a4·a4a2=24,即a10=25=32.4.在列{a n}中,a1=1,a n a n-1=a n-1+(-1)n(n≥2,n∈N*),则a3 a5的值是( )A.1516B.158C.34D.38解析:选C 由已知得a 2=1+(-1)2=2,∴2a 3=2+(-1)3,a 3=12,∴12a 4=12+(-1)4,a 4=3,∴3a 5=3+(-1)5,∴a 5=23,∴a 3a 5=12×32=34. 5.现定义a n =5n+⎝ ⎛⎭⎪⎫15n ,其中n ∈⎩⎨⎧⎭⎬⎫110,15,12,1,则a n 取最小值时,n 的值为________.解析:令5n=t >0,考虑函y =t +1t,易知其在(0,1]上单调递减,在(1,+∞)上单调递增,且当t =1时,y 的值最小,再考虑函t =5x,当0<x ≤1时,t ∈(1,5],则可知a n =5n+⎝ ⎛⎭⎪⎫15n在(0,1]上单调递增,所以当n =110时,a n 取得最小值.答案:110[练常考题点——检验高考能力]一、选择题1.已知列{a n }的前n 项和S n =n 2-2n ,则a 2+a 18=( ) A .36 B .35 C .34 D .33解析:选C 当n ≥2时,a n =S n -S n -1=2n -3;当n =1时,a 1=S 1=-1,所以a n =2n -3(n ∈N *),所以a 2+a 18=34.2.列{a n }中,a 1=1,对于所有的n ≥2,n ∈N *都有a 1·a 2·a 3·…·a n =n 2,则a 3+a 5=( )A.6116B.259C.2516D.3115解析:选A 令n =2,3,4,5,分别求出a 3=94,a 5=2516,∴a 3+a 5=6116. 3.在各项均为正的列{a n }中,对任意m ,n ∈N *,都有a m +n =a m ·a n .若a 6=64,则a 9等于( )A .256B .510C .512D .1 024解析:选C 在各项均为正的列{a n }中,对任意m ,n ∈N *,都有a m +n =a m ·a n .∴a 6=a 3·a 3=64,a 3=8.∴a 9=a 6·a 3=64×8=512.4.已知列{a n }满足a 1=15,且3a n +1=3a n -2.若a k ·a k +1<0,则正整k =( )A .21B .22C .23D .24解析:选C 由3a n +1=3a n -2得a n +1=a n -23,则{a n }是等差列,又a 1=15,∴a n =473-23n .∵a k ·a k +1<0,∴⎝ ⎛⎭⎪⎫473-23k ·⎝ ⎛⎭⎪⎫453-23k <0,∴452<k <472,∴k =23,故选C. 5.在列{a n }中,已知a 1=2,a 2=7,a n +2等于a n a n +1(n ∈N *)的个位,则a 2 015=( )A .8B .6C .4D .2解析:选D 由题意得:a 3=4,a 4=8,a 5=2,a 6=6,a 7=2,a 8=2,a 9=4,a 10=8;所以列中的项从第3项开始呈周期性出现,周期为6,故a 2 015=a 335×6+5=a 5=2.6.如果列{a n }满足a 1=2,a 2=1,且a n -1-a n a n -1=a n -a n +1a n +1(n ≥2),则这个列的第10项等于( )A.1210 B.129 C.15D.110解析:选C ∵a n -1-a n a n -1=a n -a n +1a n +1,∴1-a n a n -1=a n a n +1-1,即a na n -1+a n a n +1=2,∴1a n -1+1a n +1=2a n ,故⎩⎨⎧⎭⎬⎫1a n 是等差列.又∵d =1a 2-1a 1=12,∴1a 10=12+9×12=5,故a 10=15. 二、填空题7.已知列{a n }中,a 1=1,若a n =2a n -1+1(n ≥2),则a 5的值是________.解析:∵a n =2a n -1+1,∴a n +1=2(a n -1+1),∴a n +1a n -1+1=2,又a 1=1,∴{a n +1}是以2为首项,2为公比的等比列,即a n +1=2×2n-1=2n ,∴a 5+1=25,即a 5=31. 答案:318.在列-1,0,19,18,…,n -2n2,…中,0.08是它的第________项.解析:令n -2n2=0.08,得2n 2-25n +50=0,即(2n -5)(n -10)=0.解得n =10或n =52(舍去).即0.08是该列的第10项.答案:109.已知列{a n }满足:a 1=1,a n +1(a n +2)=a n (n ∈N *),若b n +1=(n-p )⎝ ⎛⎭⎪⎫1a n +1,b 1=-p ,且列{b n }是单调递增列,则实p 的取值范围为________.解析:由题中条件,可得1a n +1=2a n+1,则1a n +1+1=21a n +1,易知1a 1+1=2≠0,则⎩⎨⎧⎭⎬⎫1a n +1是等比列,所以1a n +1=2n ,可得b n +1=2n (n -p ),则b n =2n -1(n -1-p )(n ∈N *),由列{b n }是单调递增列,得2n (n-p )>2n -1(n -1-p ),则p <n +1恒成立,又n +1的最小值为2,则p 的取值范围是(-∞,2).答案:(-∞,2)10.设{a n }是首项为1的正项列,且(n +1)a 2n +1-na 2n +a n +1·a n=0(n =1,2,3,…),则它的通项公式a n =________.解析:∵(n +1)a 2n +1+a n +1·a n -na 2n =0,∴(a n +1+a n )[(n +1)a n +1-na n ]=0,又a n +1+a n >0,∴(n +1)a n +1-na n =0,即a n +1a n =n n +1,∴a 2a 1·a 3a 2·a 4a 3·a 5a 4·…·a n a n -1=12×23×34×45×…×n -1n,∵a 1=1,∴a n =1n.答案:1n三、解答题11.已知S n 为正项列{a n }的前n 项和,且满足S n =12a 2n +12a n (n ∈N *).(1)求a 1,a 2,a 3,a 4的值; (2)求列{a n }的通项公式.解:(1)由S n =12a 2n +12a n (n ∈N *),可得a 1=12a 21+12a 1,解得a 1=1;S 2=a 1+a 2=12a 22+12a 2,解得a 2=2;同,a 3=3,a 4=4. (2)S n =12a 2n +12a n ,①当n ≥2时,S n -1=12a 2n -1+12a n -1,②①-②,整得(a n -a n -1-1)(a n +a n -1)=0. 由于a n +a n -1≠0,所以a n -a n -1=1, 又由(1)知a 1=1,故列{a n }是首项为1,公差为1的等差列,故a n =n . 12.已知列{a n }的通项公式是a n =n 2+kn +4.(1)若k =-5,则列中有多少项是负?n 为何值时,a n 有最小值?并求出最小值;(2)对于n ∈N *,都有a n +1>a n ,求实k 的取值范围. 解:(1)由n 2-5n +4<0,解得1<n <4. 因为n ∈N *,所以n =2,3, 所以列中有两项是负,即为a 2,a 3.因为a n =n 2-5n +4=⎝⎛⎭⎪⎫n -522-94,由二次函性质,得当n =2或n =3时,a n 有最小值,其最小值为a 2=a 3=-2.(2)由对于n ∈N *,都有a n +1>a n 知该列是一个递增列,又因为通项公式a n =n 2+kn +4,可以看作是关于n 的二次函,考虑到n ∈N *,所以-k 2<32,即得k >-3.所以实k 的取值范围为(-3,+∞). 第二节等差列及其前n 项和突破点(一) 等差列的性质及基本量的计算1.等差列的有关概念(1)定义:如果一个列从第2项起,每一项与它的前一项的差都等于同一个常,那么这个列就叫做等差列.符号表示为a n +1-a n =d (n ∈N *,d 为常).(2)等差中项:列a ,A ,b 成等差列的充要条件是A =a +b2,其中A 叫做a ,b 的等差中项.2.等差列的有关公式(1)通项公式:a n =a 1+(n -1)d .本节主要包括3个知识点:1.等差列的性质及基本量的计算;2.等差列前n 项和及性质的应用;3.等差列的判定与证明.(2)前n项和公式:S n=na1+n n-2d=n a1+a n2.3.等差列的常用性质(1)通项公式的推广:a n=a m+(n-m)d(n,m∈N*).(2)若{a n}为等差列,且k+l=m+n(k,l,m,n∈N*),则a k+a l=a m+a n.(3)若{a n}是等差列,公差为d,则{a2n}也是等差列,公差为2d.(4)若{a n}是等差列,公差为d,则a k,a k+m,a k+2m,…(k,m∈N*)是公差为md的等差列.(5)若列{a n},{b n}是公差分别为d1,d2的等差列,则列{pa n},{a n+p},{pa n+qb n}都是等差列(p,q都是常),且公差分别为pd1,d1,pd1+qd2.[例1] (1)(2016·东北师大附中摸底考试)在等差列{a n}中,a1+a5=10,a4=7,则列{a n}的公差为( )A.1 B.2C.3 D.4(2)(2016·惠州调研)已知等差列{a n}的前n项和为S n,若S3=6,a1=4,则公差d等于( )A.1 B.5 3C.-2 D.3[解析] (1)∵a1+a5=2a3=10,∴a3=5,则公差d=a4-a3=2,故选B.(2)由S 3=a1+a32=6,且a1=4,得a3=0,则d=a3-a13-1=-2,故选C.[答案] (1)B (2)C[方法技巧]1.等差列运算问题的通性通法(1)等差列运算问题的一般求法是设出首项a1和公差d,然后由通项公式或前n项和公式转为方程(组)求解.(2)等差列的通项公式及前n项和公式,共涉及五个量a1,a n,d,n,S n,知其中三个就能求另外两个,体现了方程的思想.2.等差列设项技巧若奇个成等差列且和为定值时,可设中间三项为a-d,a,a+d;若偶个成等差列且和为定值时,可设中间两项为a-d,a+d,其余各项再依据等差列的定义进行对称设元.等差列的性质[例2] (1)n396n表示列{a n}的前n项和,则S11=( )A.18 B.99C.198 D.297(2)已知{a n},{b n}都是等差列,若a1+b10=9,a3+b8=15,则a5+b6=________.[解析] (1)因为a3+a9=27-a6,2a6=a3+a9,所以3a6=27,所以a6=9,所以S11=112(a1+a11)=11a6=99.(2)因为{a n},{b n}都是等差列,所以2a3=a1+a5,2b8=b10+b6,所以2(a3+b8)=(a1+b10)+(a5+b6),即2×15=9+(a5+b6),解得a5+b6=21.[答案] (1)B (2)211.[考点一]《九章算术》是我国古代的学名著,书中有如下问题:“今有五人分五钱,令上二人所得与下三人等.问各得几何?”其意思为:“已知甲、乙、丙、丁、戊五人分5钱,甲、乙两人所得与丙、丁、戊三人所得相同,且甲、乙、丙、丁、戊所得依次成等差列.问五人各得多少钱?”(“钱”是古代的一种重量单位)这个问题中,甲所得为( )A.54钱 B.53钱C.32钱 D.43钱解析:选 D 设等差列{a n}的首项为a1,公差为d,依题意有⎩⎪⎨⎪⎧2a 1+d =3a 1+9d ,2a 1+d =52,解得⎩⎪⎨⎪⎧a 1=43,d =-16,即甲得43钱,故选D.2.[考点一]设S n 为等差列{a n }的前n 项和,若a 1=1,公差d =2,S n +2-S n =36,则n =( )A .5B .6C .7D .8解析:选 D 由题意知S n +2-S n =a n +1+a n +2=2a 1+(2n +1)d =2+2(2n +1)=36,解得n =8.3.[考点二]已知列{a n }为等差列,且a 1+a 7+a 13=π,则cos(a 2+a 12)的值为( )A.32 B .-32 C.12 D .-12解析:选D 在等差列{a n }中,因为a 1+a 7+a 13=π,所以a 7=π3,所以a 2+a 12=2π3,所以cos(a 2+a 12)=-12.故选D.4.[考点一]设S n 为等差列{a n }的前n 项和,a 12=-8,S 9=-9,则S 16=________.解析:设等差列{a n }的首项为a 1,公差为d ,由已知,得⎩⎪⎨⎪⎧a 12=a 1+11d =-8,S 9=9a 1+9×82d =-9,解得⎩⎪⎨⎪⎧a 1=3,d =-1.所以S 16=16×3+16×152×(-1)=-72.答案:-725.[考点二]设等差列{a n }的前n 项和为S n ,已知前6项和为36,最后6项的和为180,S n =324(n >6),求列{a n }的项及a 9+a 10.解:由题意知a 1+a 2+…+a 6=36,①a n +a n -1+a n -2+…+a n -5=180,②①+②得(a 1+a n )+(a 2+a n -1)+…+(a 6+a n -5)=6(a 1+a n )=216,∴a 1+a n =36, 又S n =n a 1+a n2=324,∴18n =324,∴n =18. ∵a 1+a n =36,n =18, ∴a 1+a 18=36,从而a 9+a 10=a 1+a 18=36.突破点(二) 等差列前n 项和及性质的应用等差列前n 项和的性质(1)列S m ,S 2m -S m ,S 3m -S 2m ,…(m ∈N *)也是等差列,公差为m 2d . (2)S 2n -1=(2n -1)a n ,S 2n =n (a 1+a 2n )=n (a n +a n +1). (3)当项为偶2n 时,S 偶-S 奇=nd ;项为奇2n -1时,S 奇-S 偶=a 中,S 奇∶S 偶=n ∶(n -1).(4){a n },{b n }均为等差列且其前n 项和为S n ,T n ,则a n b n =S 2n -1T 2n -1.(5)若{a n }是等差列,则⎩⎨⎧⎭⎬⎫S n n 也是等差列,其首项与{a n }的首项相同,公差是{a n }的公差的12.[例1] 已知{a n }为等差列,若a 1+a 2+a 3=5,a 7+a 8+a 9=10,则a 19+a 20+a 21=________.[解析] 法一:设列{}a n 的公差为d ,则a 7+a 8+a 9=a 1+6d +a 2+6d +a 3+6d =5+18d =10,所以18d =5,故a 19+a 20+a 21=a 7+12d+a 8+12d +a 9+12d =10+36d =20.法二:由等差列的性质,可知S 3,S 6-S 3,S 9-S 6,…,S 21-S 18成等差列,设此列公差为D .所以5+2D =10,所以D =52.所以a 19+a 20+a 21=S 21-S 18=5+6D =5+15=20. [答案] 20[例2] n 1S n ,且S 5=S 12,则当n 为何值时,S n 有最大值?[解] 设等差列{a n }的公差为d ,由S 5=S 12得5a 1+10d =12a 1+66d ,d =-18a 1<0.法一:S n =na 1+n n -2d=na 1+n n -2·⎝ ⎛⎭⎪⎫-18a 1 =-116a 1(n 2-17n )=-116a 1⎝⎛⎭⎪⎫n -1722+28964a 1,因为a 1>0,n ∈N *,所以当n =8或n =9时,S n 有最大值. 法二:设此列的前n项和最大,则⎩⎪⎨⎪⎧a n ≥0,a n +1≤0,即⎩⎪⎨⎪⎧a 1+n -⎝ ⎛⎭⎪⎫-18a 1≥0,a 1+n ·⎝ ⎛⎭⎪⎫-18a 1≤0,解得⎩⎪⎨⎪⎧n ≤9,n ≥8,即8≤n ≤9,又n ∈N *,所以当n =8或n =9时,S n 有最大值. 法三:由于S n =na 1+n n -2d =d2n 2+⎝⎛⎭⎪⎫a 1-d 2n ,设f (x )=d2x 2+⎝⎛⎭⎪⎫a 1-d 2x ,则函y =f (x )的图象为开口向下的抛物线,由S 5=S 12知,抛物线的对称轴为x =5+122=172(如图所示),由图可知,当1≤n ≤8时,S n 单调递增;当n ≥9时,S n 单调递减.又n ∈N *,所以当n =8或n =9时,S n 最大.[方法技巧]求等差列前n 项和S n 最值的三种方法(1)函法:利用等差列前n 项和的函表达式S n =an 2+bn ,通过配方结合图象借助求二次函最值的方法求解.(2)邻项变号法:①a 1>0,d <0时,满足⎩⎪⎨⎪⎧a m ≥0,a m +1≤0的项m 使得S n 取得最大值为S m ;②当a 1<0,d >0时,满足⎩⎪⎨⎪⎧a m ≤0,a m +1≥0的项m 使得S n 取得最小值为S m .(3)通项公式法:求使a n ≥0(a n ≤0)成立时最大的n 值即可.一般地,等差列{a n }中,若a 1>0,且S p =S q (p ≠q ),则:①若p +q 为偶,则当n =p +q2时,S n 最大;②若p +q 为奇,则当n =p +q -12或n =p +q +12时,S n 最大.能力练通 抓应用体验的“得”与“失”1.[考点二]在等差列{a n }中,a 1=29,S 10=S 20,则列{a n }的前n 项和S n 的最大值为( )A .S 15B .S 16C .S 15或S 16D .S 17解析:选A ∵a 1=29,S 10=S 20,∴10a 1+10×92d =20a 1+20×192d ,解得d =-2,∴S n =29n +n n -12×(-2)=-n 2+30n =-(n -15)2+225.∴当n =15时,S n 取得最大值.2.[考点二]设S n 为等差列{a n }的前n 项和,(n +1)S n <nS n +1(n ∈N *).若a 8a 7<-1,则( )A .S n 的最大值是S 8B .S n 的最小值是S 8C .S n 的最大值是S 7D .S n 的最小值是S 7 解析:选D 由(n +1)S n <nS n +1得(n +1)n a 1+a n2<nn +a 1+a n +12,整得a n <a n +1,所以等差列{a n }是递增列,又a 8a 7<-1,所以a 8>0,a 7<0,所以列{a n }的前7项为负值,即S n 的最小值是S 7.3.[考点一]已知等差列{a n }的前n 项和为S n ,且S 10=10,S 20=30,则S 30=________.解析:∵S 10,S 20-S 10,S 30-S 20成等差列,且S 10=10,S 20=30,S 20-S 10=20,∴S 30-30=20×2-10=30,∴S 30=60.答案:604.[考点一]已知两个等差列{a n }和{b n }的前n 项和分别为A n 和B n ,且A n B n =7n +45n +3,则使得a nb n为整的正整n 的个是________.解析:由等差列前n 项和的性质知,a n b n =A 2n -1B 2n -1=14n +382n +2=7n +19n +1=7+12n +1,故当n =1,2,3,5,11时,a nb n为整,故使得a nb n为整的正整n 的个是5.答案:55.[考点一]一个等差列的前12项的和为354,前12项中偶项的和与奇项的和的比为32∶27,则该列的公差d =________.解析:设等差列的前12项中奇项的和为S 奇,偶项的和为S 偶,等差列的公差为d .由已知条件,得⎩⎪⎨⎪⎧S 奇+S 偶=354,S 偶∶S 奇=32∶27,解得⎩⎪⎨⎪⎧S 偶=192,S 奇=162.又S 偶-S 奇=6d ,所以d =192-1626=5.答案:5突破点(三) 等差列的判定与证明等差列的判定与证明方法[典例] 已知列{a n }的前n 项和为S n ,且满足:a n +2S n S n -1=0(n ≥2,n ∈N *),a 1=12,判断{a n }是否为等差列,并说明你的由.[解] 因为a n =S n -S n -1(n ≥2),a n +2S n S n -1=0, 所以S n -S n -1+2S n S n -1=0(n ≥2). 所以1S n -1S n -1=2(n ≥2).又S 1=a 1=12,所以⎩⎨⎧⎭⎬⎫1S n 是以2为首项,2为公差的等差列.所以1S n =2+(n -1)×2=2n ,故S n =12n .所以当n ≥2时,a n =S n -S n -1=12n -1n -=-12n n -, 所以a n +1=-12n n +,而a n +1-a n =-12n n +--12n n -=-12n ⎝ ⎛⎭⎪⎫1n +1-1n -1=1nn -n +.所以当n ≥2时,a n +1-a n 的值不是一个与n 无关的常,故列{a n }不是等差列.1.若{a n }是公差为1的等差列,则{a 2n -1+2a 2n }是( ) A .公差为3的等差列 B .公差为4的等差列 C .公差为6的等差列 D .公差为9的等差列解析:选C 令b n =a 2n -1+2a 2n ,则b n +1=a 2n +1+2a 2n +2,故b n +1-b n =a 2n +1+2a 2n +2-(a 2n -1+2a 2n )=(a 2n +1-a 2n -1)+2(a 2n +2-a 2n )=2d +4d =6d =6×1=6.即{a 2n -1+2a 2n }是公差为6的等差列.2.已知列{a n }中,a 1=2,a n =2-1a n -1(n ≥2,n ∈N *),设b n =1a n -1(n ∈N *).求证:列{b n }是等差列.证明:∵a n =2-1a n -1,∴a n +1=2-1a n.∴b n +1-b n =1a n +1-1-1a n -1=12-1a n-1-1a n -1=a n -1a n -1=1, ∴{b n }是首项为b 1=12-1=1,公差为1的等差列.3.已知公差大于零的等差列{}a n 的前n 项和为S n ,且满足a 3·a 4=117,a 2+a 5=22.(1)求列{a n }的通项公式; (2)若列{}b n 满足b n =S nn +c,是否存在非零实c 使得{b n }为等差列?若存在,求出c 的值;若不存在,请说明由.解:(1)∵列{}a n 为等差列,∴a 3+a 4=a 2+a 5=22.又a 3·a 4=117,∴a 3,a 4是方程x 2-22x +117=0的两实根, 又公差d >0,∴a 3<a 4,∴a 3=9,a 4=13,∴⎩⎪⎨⎪⎧a 1+2d =9,a 1+3d =13,解得⎩⎪⎨⎪⎧a 1=1,d =4.∴列{a n }的通项公式为a n =4n -3. (2)由(1)知a 1=1,d =4, ∴S n =na 1+n n -2×d =2n 2-n ,∴b n =S nn +c =2n 2-nn +c,∴b 1=11+c ,b 2=62+c ,b 3=153+c ,其中c ≠0.∵列{}b n 是等差列,∴2b 2=b 1+b 3, 即62+c ×2=11+c +153+c,∴2c 2+c =0, ∴c =-12或c =0(舍去),故c =-12.即存在一个非零实c =-12,使列{b n }为等差列.[全国卷5年真题集中演练——明规律] 1.(2016·全国乙卷)已知等差列{a n }前9项的和为27,a 10=8,则a 100=( )A .100B .99C .98D .97解析:选 C ∵{a n }是等差列,设其公差为d ,∴S 9=92(a 1+a 9)=9a 5=27,∴a 5=3.又∵a 10=8,∴⎩⎪⎨⎪⎧a 1+4d =3,a 1+9d =8,∴⎩⎪⎨⎪⎧a 1=-1,d =1.∴a 100=a 1+99d =-1+99×1=98.故选C.2.(2015·新课标全国卷Ⅰ)已知{a n }是公差为1的等差列,S n为{a n }的前n 项和,若S 8=4S 4,则a 10=( )A.172B.192 C .10 D .12 解析:选B ∵列{a n }的公差为1,∴S 8=8a 1+-2×1=8a 1+28,S 4=4a 1+6.∵S 8=4S 4,∴8a 1+28=4(4a 1+6),解得a 1=12,∴a 10=a 1+9d =12+9=192. 3.(2013·新课标全国卷Ⅰ)设等差列{a n }的前n 项和为S n ,S m -1=-2,S m =0,S m +1=3,则m =( )A .3B .4C .5D .6解析:选C 由S m -1=-2,S m =0,S m +1=3,得a m =S m -S m -1=2,a m +1=S m +1-S m =3,所以等差列的公差为d =a m +1-a m =3-2=1,由⎩⎪⎨⎪⎧a m =a 1+m -d =2,S m=a 1m +12m m -d =0,得⎩⎪⎨⎪⎧a 1+m -1=2,a 1m +12m m -=0,解得⎩⎪⎨⎪⎧a 1=-2,m =5,选C.4.(2013·新课标全国卷Ⅱ)等差列{a n }的前n 项和为S n ,已知S 10=0,S 15=25,则nS n 的最小值为________.解析:由已知⎩⎪⎨⎪⎧S 10=10a 1+10×92d =0,S 15=15a 1+15×142d =25,解得a 1=-3,d=23,则nS n =n 2a 1+n 2n -2d =n 33-10n 23.由于函f (x )=x 33-10x 23在x =203处取得极小值,因而检验n =6时,6S 6=-48,而n =7时,7S 7=-49<6S 6,所以当n =7时,nS n 取最小值,最小值为-49.答案:-495.(2016·全国甲卷)S n 为等差列{a n }的前n 项和,且a 1=1,S 7=28.记b n =[lg a n ],其中[x ]表示不超过x 的最大整,如[0.9]=0,[lg 99]=1.(1)求b 1,b 11,b 101;(2)求列{b n }的前1 000项和.解:(1)设列{a n }的公差为d ,由已知得7+21d =28,解得d =1. 所以列{a n }的通项公式为a n =n .b 1=[lg 1]=0,b 11=[lg 11]=1,b 101=[lg 101]=2.(2)因为b n=⎩⎪⎨⎪⎧0,1≤n <10,1,10≤n <100,2,100≤n <1 000,3,n =1 000,所以列{b n }的前1 000项和为1×90+2×900+3×1=1 893. 6.(2014·新课标全国卷Ⅰ)已知列{a n }的前n 项和为S n ,a 1=1,a n ≠0,a n a n +1=λS n -1,其中λ为常.(1)证明:a n +2-a n =λ;(2)是否存在λ,使得{a n }为等差列?并说明由.解:(1)证明:由题设,a n a n+1=λS n-1,a n+1a n+2=λS n+1-1.两式相减得a n+1(a n+2-a n)=λa n+1.由于a n+1≠0,所以a n+2-a n=λ.(2)由题设,a1=1,a1a2=λS1-1,可得a2=λ-1.由(1)知,a3=λ+1.令2a2=a1+a3,解得λ=4.故a n+2-a n=4,由此可得{a2n-1}是首项为1,公差为4的等差列,a2n-1=4n-3;{a2n}是首项为3,公差为4的等差列,a2n=4n-1.所以a n=2n-1,则a n+1-a n=2.因此存在λ=4,使得列{a n}为等差列.[课时达标检测] 重点保分课时——一练小题夯双基,二练题点过高考[练基础小题——强运算能力]1.若等差列{a n}的前5项之和S5=25,且a2=3,则a7=( ) A.12 B.13C.14 D.15解析:选B 由S 5=a2+a42,得25=+a42,解得a4=7,所以7=3+2d,即d=2,所以a7=a4+3d=7+3×2=13.2.在等差列{a n}中,a1=0,公差d≠0,若a m=a1+a2+…+a9,则m的值为( )A.37 B.36C.20 D.19解析:选A a m=a1+a2+…+a9=9a1+9×82d=36d=a37,即m=37.3.在单调递增的等差列{a n}中,若a3=1,a2a4=34,则a1=( )A.-1 B.0C.14D.12解析:选B 由题知,a2+a4=2a3=2,又∵a2a4=34,列{a n}单调递增,∴a2=12,a4=32.∴公差d=a4-a22=12.∴a1=a2-d=0.4.设等差列{a n}的前n项和为S n,若a1=-11,a3+a7=-6,则当S n取最小值时,n等于( )A.9 B.8C.7 D.6解析:选D 设等差列{a n}的公差为d.因为a3+a7=-6,所以a5=-3,d=2,则S n=n2-12n,故当n等于6时S n取得最小值.5.已知等差列{a n}中,a n≠0,若n≥2且a n-1+a n+1-a2n=0,S2n -1=38,则n等于________.解析:∵{a n}是等差列,∴2a n=a n-1+a n+1,又∵a n-1+a n+1-a2n=0,∴2a n-a2n=0,即a n(2-a n)=0.∵a n≠0,∴a n=2.∴S2n-1=(2n-1)a n=2(2n-1)=38,解得n=10.答案:10[练常考题点——检验高考能力]一、选择题1.(2017·黄冈质检)在等差列{a n}中,如果a1+a2=40,a3+a4=60,那么a7+a8=( )A.95 B.100C.135 D.80解析:选 B 由等差列的性质可知,a1+a2,a3+a4,a5+a6,a7+a8构成新的等差列,于是a7+a8=(a1+a2)+(4-1)[(a3+a4)-(a1+a2)]=40+3×20=100.2.(2017·东北三校联考)已知列{a n}的首项为3,{b n}为等差列,且b n=a n+1-a n(n∈N*),若b3=-2,b2=12,则a8=( ) A.0 B.-109C.-181 D.121解析:选B 设等差列{b n}的公差为d,则d=b3-b2=-14,因为a n+1-a n=b n,所以a8-a1=b1+b2+…+b7=b1+b72=72[(b2-d)+(b2+5d)]=-112,又a1=3,则a8=-109.3.在等差列{a n}中,a3+a5+a11+a17=4,且其前n项和为S n,则S17为( )A.20 B.17C.42 D.84解析:选B 由a3+a5+a11+a17=4,得2(a4+a14)=4,即a4+a14=2,则a 1+a17=2,故S17=a1+a172=17.4.设等差列{a n}的前n项和为S n,且a1>0,a3+a10>0,a6a7<0,则满足S n>0的最大自然n的值为( )A.6 B.7C.12 D.13解析:选C ∵a1>0,a6a7<0,∴a6>0,a7<0,等差列的公差小于零.又∵a3+a10=a1+a12>0,a1+a13=2a7<0,∴S12>0,S13<0,∴满足S n>0的最大自然n的值为12.5.设列{a n}的前n项和为S n,若S nS2n为常,则称列{a n}为“吉祥列”.已知等差列{b n}的首项为1,公差不为0,若列{b n}为“吉祥列”,则列{b n}的通项公式为( )A.b n=n-1 B.b n=2n-1C.b n=n+1 D.b n=2n+1解析:选 B 设等差列{b n}的公差为d(d≠0),S nS2n=k,因为b1=1,则n+12n(n-1)d=k⎣⎢⎡⎦⎥⎤2n+12×2n n-d,即2+(n-1)d=4k+2k(2n-1)d,整得(4k-1)dn+(2k-1)(2-d)=0.因为对任意的正整n上式均成立,所以(4k-1)d=0,(2k-1)(2-d)=0,解得d=2,k=14.所以列{b n}的通项公式为b n=2n-1.6.设等差列{a n}满足a1=1,a n>0(n∈N*),其前n项和为S n,若列{S n}也为等差列,则S n+10a2n的最大值是( )A.310 B.212C.180 D.121解析:选D 设列{a n}的公差为d,依题意得2S2=S1+S3,因为a1=1,所以22a1+d=a1+3a1+3d,简可得d=2a1=2,所以a n=1+(n-1)×2=2n-1,S n=n+n n-2×2=n2,所以S n+10a2n=n +2 n-2=⎝⎛⎭⎪⎫n+102n-12=⎣⎢⎡⎦⎥⎤12n-+2122n-12=14⎝⎛⎭⎪⎫1+212n-12≤121.即S n+10a2n的最大值为121.二、填空题7.已知等差列{a n}的前n项和为S n,且满足S33-S22=1,则列{a n}的公差d是________.解析:由S33-S22=1得a1+a2+a33-a1+a22=a1+d-2a1+d2=d2=1,所以d=2.答案:28.若等差列{a n}的前17项和S17=51,则a5-a7+a9-a11+a13等于________.解析:因为S17=a1+a172×17=17a9=51,所以a9=3.根据等差列的性质知a5+a13=a7+a11,所以a5-a7+a9-a11+a13=a9=3.答案:39.在等差列{a n}中,a9=12a12+6,则列{a n}的前11项和S11等于________.解析:S 11=a1+a112=11a6,设公差为d,由a9=12a12+6得a6+3d=12(a6+6d)+6,解得a6=12,所以S11=11×12=132.答案:13210.在等差列{a n}中,a1=7,公差为d,前n项和为S n,当且仅当n=8 时S n取得最大值,则d的取值范围为________.解析:由题意,当且仅当n=8时S n有最大值,可得。

高考理科数学一轮复习专题训练:数列(含详细答案解析)

高考理科数学一轮复习专题训练:数列(含详细答案解析)

B . 3 2.在正项等比数列{a }中,已知 a 4 = 2 , a = ,则 a 5 的值为( 8= 2 , a = ,可得 8 q 4 = 8 = ,又因为 q > 0 ,所以 q = 1 2 2127B .35063C .28051D . 3502第 7 单元 数列(基础篇)第Ⅰ卷一、选择题:本大题共12 小题,每小题 5 分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知等差数列{a n }的前 n 项和为 S n ,若 a 1=12,S 5=90,则等差数列{a n }公差 d =()A .2【答案】C2 C .3D .4【解析】∵a =12,S =90,∴ 5 ⨯12 + 1 5 5 ⨯ 4 2d = 90 ,解得 d=3,故选 C .n 8 1 )1 1 A . B . - C . -1 D .14 4【答案】D【解析】由题意,正项等比数列{a }中,且 a n 48 1 a 1 a 16 41,则 a = a ⋅ q = 2 ⨯ = 1 ,故选 D .5 43.在等差数列{a n}中, a 5+ a = 40 ,则 a + a + a = ( ) 13 8 9 10A .72B .60C .48D .36【答案】B【解析】根据等差数列的性质可知: a 5 + a 13 = 40 ⇒ 2a 9 = 40 ⇒ a 9 = 20 ,a + a + a = 2a + a = 3a = 60 ,故本题选 B .8 9109994.中国古代数学名著《张丘建算经》中记载:“今有马行转迟,次日减半,疾七日,行七百里”.其大意:现有一匹马行走的速度逐渐变慢,每天走的里程数是前一天的一半,连续走了7 天,共走了 700 里,则这匹马第 7 天所走的路程等于()A .700里里 里【答案】A127里【解析】设马每天所走的路程是 a 1, a 2 ,.....a 7 ,是公比为1的等比数列,a 1 - ( )7 ⎪a = a q 6= 7005.已知等差数列{a n } 的前 n 项和 S n 有最大值,且 a=10(a +a )2= 5(a + a ) = 5(a + a ) > 0 , S =2 = 11a < 0 , (a + 2d - 1)2 = (a + d - 1)(a + 4d - 1) ⎩ d = 2这些项的和为 700, S = 7 ⎛ 1 ⎫ 1 ⎝ 2 ⎭1 - 12 = 700 ⇒ a =1 64 ⨯ 700 127 ,7 1 127 ,故答案为 A .a 5< -1 ,则满足 S 6n> 0 的最大正整数 n 的值为()A .6B .7C .10D .12【答案】C【解析】设等差数列{a n } 的公差为 d ,因为等差数列{a n } 的前 n 项和 S n 有最大值,所以 d < 0 ,a又 a 5 < -1 ,所以 a 5 > 0 , a 6 < 0 ,且 a 5 + a 6 > 0 ,6 所以 S1 101 10 5 6 11 所以满足 S n > 0 的最大正整数 n 的值为 10.11(a + a )1 1166.已知等差数列{a n}的公差不为零, Sn为其前 n 项和, S 3 = 9 ,且 a 2 - 1 , a 3 - 1, a 5 - 1构成等比数列,则 S 5 = ( )A .15B . -15C .30D .25【答案】D【解析】设等差数列{a n}的公差为 d (d ≠ 0),⎧⎪3a + 3d = 9⎧a = 1 由题意 ⎨ 1 ,解得 ⎨ 1 ⎪⎩ 1 1 1.∴ S = 5 ⨯1 +5 5 ⨯ 4 ⨯ 22 = 25 .故选 D .7.在等差数列{a n } 中, a 3 , a 9 是方程 x 2 + 24 x + 12 = 0 的两根,则数列{a n } 的前 11 项和等于(A .66B .132C . -66D . -132【答案】D)S = 11⨯ (a + a ) 2 2 2 = 15 ,解得 n = 5 ,( )nC . a = 3n -1D . a =3n【解析】因为 a 3 , a 9 是方程 x 2 + 24 x + 12 = 0 的两根,所以 a 3 + a 9 = -24 ,又 a 3 + a 9 = -24 = 2a 6 ,所以 a 6 = -12 ,11⨯ 2a1 11 = 6 = -132 ,故选 D . 118.我国南宋数学家杨辉 1261 年所著的《详解九章算法》一书里出现了如图所示的表,即杨辉三角,这是数学史上的一个伟大成就,在“杨辉三角”中,第n 行的所有数字之和为 2n -1 ,若去除所有为 1 的项,依次构成数列 2,3,3,4,6,4,5,10,10,5,…,则此数列的前 15 项和为()A .110B .114C .124D .125【答案】B【解析】由题意, n 次二项式系数对应的杨辉三角形的第 n +1行, 令 x = 1 ,可得二项展开式的二项式系数的和 2n ,其中第 1 行为 2 0 ,第 2 行为 21 ,第 3 行为 22 ,L L 以此类推,即每一行的数字之和构成首项为 1,公比为 2 的对边数列,则杨辉三角形中前 n 行的数字之和为 S = n 1- 2n1- 2 = 2n - 1,若除去所有为 1 的项,则剩下的每一行的数字的个数为1,2,3, 4,L ,可以看成构成一个首项为 1,公差为 2 的等差数列,则T =n n (n + 1)2 ,令 n (n + 1)所以前 15 项的和表示前 7 行的数列之和,减去所有的 1,即 27 - 1 - 13 = 114 ,即前 15 项的数字之和为 114,故选 B .9.已知数列{a }的前 n 项和为 S nn,满足 2S n =3a n -1 ,则通项公式 a n 等于()A . a = 2n- 1n【答案】CB . a= 2nn n: , + , + + , + + + , ,那么数列 {b }= ⎧⎨ 1 ⎩ a an n +1 ⎭n + 1 ⎭C . 4 ⨯ ⎝ 2 n + 1 ⎭D .⎝ 1 + 2 + ⋅⋅⋅ + n n2 a an (n + 1) ⎝ n n + 1 ⎭ = = = 4 ⨯ - ⎪ , ∴ S = 4 ⨯ 1 - + - + - + ⋅⋅⋅ + - = 4 ⨯ 1 - ⎪ 2 2 3 3 4 n n + 1 ⎭ ⎝ ⎝⎪ , 1 1 ⎫【解析】当 n = 1 时, 2S 1 = 3a 1 -1 ,∴ a 1 = 1 ,当 n ≥ 2 且 n ∈ N * 时, 2S n -1 = 3a n -1 - 1 ,则 2S n - 2Sn -1 = 2a n = 3a n - 1 - 3a n -1 + 1 = 3a n - 3a n -1 ,即 a n = 3an -1,∴ 数列 {a }是以1 为首项, 3 为公比的等比数列∴ a nn= 3n -1 ,本题正确选项 C . 10.已知数列 满足,且 ,则( )A .B .C .D .【答案】B【解析】利用排除法,因为,当当当当时,时,时,时, ,排除 A ;,B 符合题意;,排除 C ;,排除 D ,故选 B .11.已知数列为()1 12 1 23 1 2 34 2 3 3 4 4 45 5 5 5⋯ n ⎫ ⎬ 前 项和A .1 - 1 ⎛ n + 1B . 4 ⨯ 1 - 1 ⎫ ⎛ 1 ⎪ - 1 ⎫⎪1 1-2 n + 1【答案】B【解析】由题意可知: a =nn (n + 1)= = , n + 1 n + 1 2∴ b = 1n n n +11 4 ⎛ 1 1 ⎫ n n + 1 ⋅2 2⎛ 1 1 1 1 1 ⎛ n本题正确选项 B .1 ⎫n + 1 ⎭12.已知数列{a }满足递推关系: a , a = ,则 a 2017= (12016B . 12018D . 1=a 2 -= 1 . ⎩ a∴ 1=1}满足 a 2 q ,可设三数为 , a , aq ,可得 ⎪⎨ a⎪ q 求出 ⎨ ,公比 q 的值为 1.=3an n +1 = a 1 n a + 12 n)A .12017C .12019【答案】C【解析】∵ ana + 1 n1, a = ,∴ 1 1 1 a a n +1 n⎧ 1 ⎫∴数列 ⎨ ⎬ 是等差数列,首项为 2,公差为 1.n ⎭a2017= 2 + 2016 = 2018 ,则 a2018 .故选 C .第Ⅱ卷二、填空题:本大题共4 小题,每小题5 分.13.已知等比数列{a n 1 = 12 ,且 a 2a 4 = 4(a3 - 1) ,则 a 5 = _______.【答案】8【解析】∵ a 2a 4 = 4(a 3 - 1) ,∴ a 3 = 4(a 3 -1) ,则 a 3 = 2 ,∴ a = 5 a 2 3 = a122 1 2= 8 ,故答案为 8.14.若三数成等比数列,其积为 8,首末两数之和为 4,则公比 q 的值为_______.【答案】1【解析】三数成等比数列,设公比为⎧a = 2⎩ q = 1⎧ a3 = 8 a q + aq =4 ⎩,15.在数列 {an}中,a 1= 1 , an 3 + a n(n ∈ N *)猜想数列的通项公式为________.=3a4 3 + a 53 + a 6 3a 3a 32 数列的通项公式为 a = 3n + 2 n + 2+ = (m + n) + ⎪ = 10 + + ⎪ ≥ 10 + 2 ⋅ ⎪⎪ = 2 , n m ⎭ 8 ⎝ n m ⎭【答案】3n + 2【解析】由 an 3 + a n, a = 1 ,可得 a = 1 2 3a 1 3 + a 13 3 3= , a = = , a == ,……,∴ 猜想 3 4 2 33,本题正确结果 .n16.已知正项等比数列{a n } 满足 2a 5 + a 4 = a 3 ,若存在两项 a m , a n ,使得 8 a m a n = a 1 ,则9 1+ 的最小值 mn为__________.【答案】2【解析】Q 正项等比数列{a n } 满足 2a 5 + a 4 = a 3 ,∴ 2a 1q 4 +a 1q 3 =a 1q 2 ,整理得 2q 2 +q - 1 = 0 ,又 q > 0 ,解得 q = 12,Q 存在两项 a , a 使得 8 a ⋅ a = a ,∴ 64a 2 q m +n -2 = a 2 ,整理得 m + n = 8 ,m nmn111∴则 9 1 1 ⎛ 9 1 ⎫ 1 ⎛ m 9n ⎫ 1 ⎛ m 9n ⎫ m n 8 ⎝ m n ⎭ 8 ⎝9 1 m 9n+ 的最小值为 2,当且仅当 = 取等号,但此时 m , n ∉ N * .m n n m又 m + n = 8 ,所以只有当 m = 6 , n = 2 时,取得最小值是 2.故答案为 2.三、解答题:本大题共6 个大题,共 70 分,解答应写出文字说明、证明过程或演算步骤.17.(10 分)已知等差数列{a n(1)求 {a}的通项公式;n}的公差不为 0, a 1= 3 ,且 a , a , a 成等比数列.2 4 7(2)求 a 2 + a 4 + a 6 + L + a 2n .【答案】(1) a n = n + 2 ;(2) n 2 + 3n .【解析】(1)Q a 2 , a 4 , a 7成等比数列,∴a42= a a ,2 7即 (a 1 + 3d )2 = (a 1 + d )(a 1 + 6d ) ,化简得 (a 1 - 3d )d = 0 ,∵公差 d ≠ 0 ,∴ a 1 = 3d ,6=n (a +a ) (2)若b= 4 { ⎪ 12 由题意得 ⎨,则 ⎨ , ⎩ 7 ⎪(a + 6d )2 = (a + d )(a + 21d )⎩ 1化简得 ⎨⎧a + 2d = 7(2)证明: b = 42n (2n + 4) n (n + 2) 2 ⎝ n n + 2 ⎭ - + - + - + L +⎪1 + - - = - ⎪ < . ⎪Q a = 3 ,∴ d = 1,∴ a = a + (n - 1)d = n + 2 .1 n1(2)由(1)知 a 2n = 2n + 2 ,故{a 2n } 是首项为 4、公差为 2 的等差数列,所以 a + a + a + L + a2 4 6 n (4 + 2n + 2)2 2n = = n 2 + 3n . 2 218.(12 分)已知公差不为零的等差数列{a n } 满足 S 5 = 35 ,且 a 2 , a 7 , a 22 成等比数列.(1)求数列{a n } 的通项公式;n nn(a - 1)(a + 3) ,且数列 b n }的前 n 项和为 T n ,求证: T < 3n 4.【答案】(1) a n = 2n + 1;(2)见详解.【解析】(1)设等差数列{a n } 的公差为 d ( d ≠ 0 ),⎧ 5 ⨯ 4⎧S = 355a + d = 35 5a 2 = a a2 221 11 ⎩2a 1 = 3d ⎧a = 3 ,解得 ⎨ 1⎩d = 2,所以 a = 3 + 2 (n -1) = 2n +1. nn nn(a -1)(a + 3) =4 11⎛1 1 ⎫ = = - ⎪ ,所以 T = n 1 ⎛ 1 1 1 1 1 1 1 1 1 1 ⎫- + - 2 ⎝ 1 3 2 4 3 5 n - 1 n + 1 n n + 2 ⎭= 1 ⎛ 1 1 1 ⎫ 3 1 ⎛ 1 1 ⎫ 3 + 2 ⎝ 2 n + 1 n + 2 ⎭ 4 2 ⎝ n + 1 n + 2 ⎭ 419.(12 分)已知数列{a n}的前 n 项和为 Sn且 S = 2a - 1 (n ∈ N * ) .n n(1)求数列{a n}的通项公式;(2)求数列{na n}的前 n 项和 T n.【答案】(1) a = 2n- 1 ;(2) T = n ⋅ 2n - 2n + 1 .nn【解析】(1)因为 S = 2a - 1 ,当 n ≥ 2 时, S = 2a - 1 ,7= 2a + 1 , n ∈ N * .+1),数列 ⎨ 15 ≤ T n < ; 即 a ∴ 数列 {a }的通项公式为 a = 2n - 1 n ∈ N * .(2n + 1)(2n + 3) 2⎝ 2n + 1 2n + 3⎪⎭ , - ⎪ + - ⎪ +⋅⋅⋅+⎪⎥ 2 ⎢⎣⎝ 3 5 ⎭ ⎝ 5 7 ⎭ ⎝ 2n + 2n + 3 ⎭⎦ 6 4n + 6整理可得 a n = 2a n -1 ,Q a = S = 2a - 1 ,解得 a = 1 ,1 111所以数列 {a n}为首项为1 ,公比为 2 的等比数列,∴a = 2n -1 .n(2)由题意可得:T = 1⨯ 20 + 2 ⨯ 21 + ⋅⋅⋅ + n ⋅ 2n ,n所以 2T = 1⨯ 21 + 2 ⨯ 22 + ⋅⋅⋅ + (n - 1)2n -1 + n ⋅ 2n ,n两式相减可得 -T = 1 + 21 + 22 + ⋅⋅⋅+ 2n -1 - n ⋅ 2n = n∴ T = n ⋅ 2n - 2n + 1 .n1 - 2n 1 - 2- n ⋅ 2n = 2n - 1 - n ⋅ 2n ,20.(12 分)已知数列{a n}满足 a 1= 1 , an +1n(1)求证数列{a n +1}是等比数列,并求数列{a n } 的通项公式;(2)设 b = log (a n 2 2n +1 ⎧ 1 ⎫ 1 1b b ⎬ 的前 n 项和 T n ,求证:6 ⎩ n n +1 ⎭.【答案】(1)证明见解析, a = 2n - 1(n ∈ N * )(2)见解析. n【解析】(1)由 an +1 = 2a n + 1 ,得 a n +1 + 1 = 2 (a + 1),n+ 1n +1 a + 1n= 2 ,且 a + 1 = 2 ,1∴ 数列 {a +1}是以 2 为首项, 2 为公比的等比数列,n∴ a + 1 = 2 ⨯ 2n -1 = 2n ,n( )nn(2)由(1)得: b = logn2(a2n +1+ 1) = log (22n +1- 1 + 1)= 2n + 1 ,2∴1b bn n +11 1 ⎛ 1 1 ⎫ = = -∴T = n1 ⎡⎛ 1 1 ⎫ ⎛ 1 1 ⎫ ⎛ 1 1 ⎫⎤ 1 1 - = - (n ∈ N * ),8又 0 < 1即 1n (2)设数列满足 b = a sin a π2的前 项和 .⎪⎩n,2 3 L 2 3 L 2 (a + 4) = S + S 2a = d + 4 d = 2 ⎪ ⎩= asin n π + ⎪ = a cos (n π ) , 2 ⎭ ⎝n +1,2n -1,⎪⎩n, 2 3 L 2 3 L a ⋅ a1 1 1 1 1 1 1≤ ,∴- ≤- < 0 ,∴ ≤ - < ,4n + 6 10 10 4n + 6 15 6 4n + 6 61≤ T < .15 621.(12 分)已知等差数列的前 项和为 ,且 是 与 的等差中项.(1)求的通项公式;n ,求n n【答案】(1)⎧⎪- (n + 2), ;(2) T = ⎨n n = 2k - 1(k = 1,,, ) n = 2k (k = 1,,, ) .⎧a = 7⎧a + 2d = 7 ⎧a = 3 【解析】(1)由条件,得 ⎨ 3 ,即 ⎨ 1 , ⎨ 1⎪715⎩1⎩,所以{a n }的通项公式是(2)由(1)知, b = a sinnn.(2n + 1)π 2n n⎛ π ⎫(1)当 n = 2k -1 (k =1,2,3,…)即 n 为奇数时, b = -a , b nnn +1= aT = -a + a - a + L + a n 1 2 3 n -1 - a = -a + (-2) n - 1= -n - 2 ;n 1(2)当 n = 2k (k =1,2,3,…):即 n 为偶数时, b = a , bnnn -1= -aT = -a + a - a +⋯- a n 1 2 3 n -1+ a = 2 ⋅ n n 2= n ,⎧⎪- (n + 2), 综上所述, T = ⎨n22.(12 分)设正项数列n = 2k - 1(k = 1,,, ) n = 2k (k = 1,,, ) .的前 n 项和为 ,已知 .(1)求证:数列 是等差数列,并求其通项公式;(2)设数列的前 n 项和为 ,且 b = 4n nn +1,若对任意 都成立,求实数 的取值范围.9(2)由(1)可得 b = 1 n (n + 1) n n + 1∴ T = 1 - ⎪ + - ⎪ + L + - ⎛ 1 ⎫ ⎛ 1 1 ⎫ ⎛ 1 1 ⎫1 n = 1 -= , ⎪ 2 ⎭ ⎝ 2 3 ⎭⎝ n n + 1 ⎭n + 1 n + 1⎝,即 nλ < n + (-1)n ⋅ 2 对任意⎢⎣ ⎥⎦n 恒成立,令 f (n ) = (n + 2)(n + 1)Q f (n + 1)- f (n ) = n (n + 1)- 2②当 为奇数时, λ < (n - 2)(n + 1)又 (n - 2)(n + 1)= n - - 1 ,易知:f (n ) = n - 在【答案】(1)见证明,【解析】(1)证明:∵;(2),且.,当当即时,时,有,解得 .,即.,于是,即.∵ ,∴为常数,∴数列是 为首项, 为公差的等差数列,∴.1 1= - ,nnn + 1都成立⎡ n (n + 1)+ (-1)n ⋅ 2 (n + 1)⎤⇔ λ <⎢⎥ nmin(n ∈ N *),①当 为偶数时, λ < (n + 2)(n + 1) = n + 2+ 3 ,n nn (n + 1) > 0 ,在 上为增函数,;n 恒成立,2 2 n n n为增函数,,102⨯ 4 ⨯ 3 = 0 ⎧a = -3 ⎪S 4 = 4a 1 + ⎪⎩a = a + 4d = 516 4⎩q3 (a + a + a ) = 120 ∴由①②可知:,综上所述 的取值范围为.第 7 单元 数列(提高篇)第Ⅰ卷一、选择题:本大题共12 小题,每小题 5 分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.记 S 为等差数列{a } 的前 n 项和.已知 S = 0 , a = 5 ,则()n n45A . a n = 2n - 5B . a n = 3n - 10C . S = 2n 2 - 8nD . S = 1n nn 2 - 2n【答案】A2.已知等比数列{a }中, a n 3 ⋅ a = 20 , a = 4 ,则 a 的值是( )13 6 10A .16B .14C .6D .5【答案】D【解析】由等比数列性质可知 a ⋅ a = a 2 = 20 ,3138由 a 6 = 4 ,得 q 4= a 2 8 = a 2620 5= ,∴ a = a q 4 = 5 ,本题正确选项 D .10 63.等比数列{a } 中, a + a + a = 30 , a + a + a = 120 ,则 a + a + a = ( )n123456789A .240B .±240C .480D .±480【答案】C【解析】设等比数列{a } 中的公比为 q ,由 a + a + a = 30 , a + a + a = 120 ,n 1 2 3 4 5 6⎧ 得 ⎨a + a + a = 301 2 31 2 3,解得 q 3 = 4 ,∴ a + a + a = q 3 (a + a + a ) = 480.7 8 9 4 5 6112 , N = 4.我国古代的《洛书》中记载着世界上最古老的一个幻方:如图,将1,2,…,9 填入3 ⨯ 3 的方格内,使三行,三列和两条对角线上的三个数字之和都等于 15.一般地,将连续的正整数1,2,3,L , n 2 填入 n ⨯ n 个方格中,使得每行,每列和两条对角线上的数字之和都相等,这个正方形叫做n 阶幻方.记 n 阶幻方的对角线上的数字之和为 N n ,如图三阶幻方的 N 3 = 15 ,那么 N 9 的值为()A .369B .321C .45D .41【答案】A【解析】根据题意可知,幻方对角线上的数成等差数列,根据等差数列的性质可知对角线的两个数相加正好等于1 + n 2,根据等差数列的求和公式 S = n (1+ n 2 ) 9 9 ⨯ (1+ 92 ) 2 = 369 ,故选 A .5.已知 1, a 1 , a 2 ,9 四个实数成等差数列,1, b 1 , b 2 , b 3 ,9 五个数成等比数列,则b 2 (a 2 - a 1 ) = ( A .8 B .-8 C .±8 D .98【答案】A)【解析】由 1, a 1 , a 2 ,9 成等差数列,得公差 d = a 2 - a 1 = 9 - 1 84 - 1 = 3 ,由 1, b , b , b ,9 成等比数列,得 b 2 = 1⨯ 9 ,∴ b = ±3 ,12322当 b = -3 时,1, b , -3 成等比数列,此时 b 2 = 1⨯ (-3) 无解,2 11所以 b = 3 ,∴ b (a - a 2 2 2 1 ) = 3 ⨯ 8= 8 .故选 A .36.已知数列{a n }是公比不为 1 的等比数列, S n为其前 n 项和,满足 a = 2 ,且16a , 9a , 2a2 1 4 7成等差数列,则 S = ()3A . 5B .6C .7D .9【答案】C【解析】数列{a n } 是公比 q 不为 l 的等比数列,满足 a 2 = 2 ,即 a 1q = 2 ,122 ⨯ 2 + 3)⨯ 2 ; 2 ⨯ 2 + 4 )⨯3 ;22- 5 =,且 A n =7n + 45a7= (10B .172C . 143A . 93【解析】因为 7 = 7 = a + a a 2a A = 13 = 7 ⨯13 + 45 = 17 1 13 2 且16a , 9a , 2a 成等差数列,得18a = 16a + 2a ,即 9a q 3 = 8a + a q 6 ,1 47417111解得 q = 2,a = 1 ,则 S = 1 3 1 - 23 1 - 2= 7 .故选 C .7.将石子摆成如图的梯形形状,称数列 5,9,14,20,L ,为“梯形数”.根据图形的构成,此数列的第 2016 项与 5 的差,即 a 2016- 5 = ()A . 2018⨯ 2014B . 2018⨯ 201C .1011⨯ 2015D .1010⨯ 2012【答案】C【解析】由已知的图形我们可以得出图形的编号与图中石子的个数之间的关系为:n =1 时, a = 2 + 3 = 11(n =2 时, a = 2 + 3 + 4 = 2…,由此我们可以推断:1 (a = 2 + 3 + L + (n + 2 ) = 1n⎡⎣2 + (n + 2)⎤⎦ ⨯ (n + 1),∴ a 1⨯ ⎡⎣2 + (2016 + 2)⎤⎦ ⨯ (2016 + 1)- 5 = 1011⨯ 2015 .故选 C .20168.已知两个等差数列{a }和 {b }的前 n 项和分别为 A 和 BnnnnB n + 3 b n 7)17D .15【答案】B771131313(a + a )1 131 13= 2 b 2b b + b 13(b + b ) B 13 + 3 2,故答案选 B .9.已知数列{ }的前 n 项和为 , , ( ),则 ( )A.32B.64C.128D.25613,∴ S B .C . 1a - 1 a - 1,n⎧B . 2019 ) =+ = + = + =2 ,1 1 + 1 + a 2a 2【答案】B【解析】由,得,又,∴- 1 n +1 S - 1n= 2 ,即数列{则∴10.数列1}是以 1 为首项,以 2 为公比的等比数列,,则 ..故选 B .满足: ,若数列 是等比数列,则 的值是()A .1 【答案】B2 D .【解析】数列为等比数列 ⇒ a- 1λa - 2上式恒成立,可知 ⎨λ =q⎩-2 = -q⇒ λ = 2 ,本题正确选项 B .11.已知函数 f (x ) =2( 1 + x 2x ∈ R ),若等比数列满足 a a1 2019= 1 ,则A .2019【答案】A ( )2 C .2D . 1 2【解析】∴ f (a )+ f (a12019,1 + a2 1 + a 2 1 + a 2 1 + a 21 2019 1 1 1为等比数列,则,14b b3B . 16 C . 115D . 2b b= = - ⎭ 数列 的前 项和 T = - + - ⎪ ⎪ , 2 ⎝ 3 5 5 72n + 1 2n + 3 ⎭ 2 ⎝ 3 2n + 3 ⎭可得 λ ≤ 12,即12.已知是公比不为 1 的等比数列,数列.满足: , , 成等比数列,c =1n2n 2n +2,若数列的前 项和对任意的恒成立,则 的最大值为( )A .115【答案】C【解析】由 , ,成等比数列得 a 2 =a a ,2 2nb n又是公比不为 1 的等比数列,设公比为 q ,则 a 2 q2b n-2 = a 2 q 2n ,整理得 b = n + 1,c =111n n2n 2n +21 1 ⎛ 1 1 ⎫ (2n + 1)(2n + 3)2 ⎝ 2n + 1 2n +3 ⎪ ,1 ⎛ 1 1 1 11 1 ⎫ 1 ⎛ 1 1 ⎫+ ⋅⋅⋅ +- = - n数列 是单调递增数列,则当 n =1 时取到最小值为1151 ,即 的最大值为,故选 C .1515,第Ⅱ卷二、填空题:本大题共4 小题,每小题5 分.13.已知{a n } 是等差数列, a 2 + a 4 + a 6 + a 8 = 16 ,则 S 9 = _________.【答案】36【解析】{a n } 是等差数列, a 2 + a 4 + a 6 + a 8 = 16 , a 2 + a 8 = a 4 + a 6 = 2a 5 ,得出 a 5 = 4 ,又由 S = 9 ⋅ (a 1 + a 9 )9 = 9a = 36 .514.在数列 {a }中, a n 1= 1,an +1- a = 2n + 1 ,则数列的通项 a = ________.n n15x【答案】 n 2【解析】当 n ≥ 2 时,a = (a - a ) + (ann n -1n -1- a n -2) + (an -2- a n -3) + L + (a - a ) + (a - a ) + a ,3 2 2 1 1⇒ a = (2n - 1) + (2n - 3) + (2 n - 5) + L + 5 + 3 + 1 = n当 n = 1 , a 也适用,所以 a = n 2 .1nn (2n - 1 + 1) 2= n 2 ,15.设数列{a n } 的前 n 项和为 S n ,且 ∀n ∈ N *, a n +1a = ________.n【答案】 n - 6(n ∈ N * ) (答案不唯一)> a , S ≥ S .请写出一个满足条件的数列{a } 的通项公式n n 6 n【解析】 ∀n ∈ N * , a n +1> a ,则数列{a } 是递增的, ∀n ∈ N * , S ≥ S ,即 S 最小,n n n 6 6只要前 6 项均为负数,或前 5 项为负数,第 6 项为 0,即可,所以,满足条件的数列{a n } 的一个通项公式 a n = n - 6(n ∈ N * ) (答案不唯一).16.已知函数 f ( x ) = x 2 cosπx2,数列 {a }中, a = f (n )+ f (n + 1)(n ∈ N * ) ,则数列{a }的n n n前 40 项之和 S 40 = __________.【答案】1680【解析】函数 f (x ) = x 2 cos π 2且数列 {a }中, a = f (n )+ f (n +1),n n可得 a = f (1)+ f (2) = 0 - 4 = -4 ; a = f (2)+ f (3) = -4 + 0 = -4 ;12a = f (3)+ f (4) = 0 +16 = 16 ; a = f (4)+ f (5) = 16 ;3 4a = f (5)+ f (6) = 0 - 36 = -36 ; a = f (6)+ f (7) = -36 ;…,5 6可得数列 {a n 即有数列 {a n}为 -4 , -4 , 16 ,16 , -36 , -36 , 64 , 64 , -100 , -100 ,…, }的前 40 项之和:S = (-4 - 4 +16 +16)+ (-36 - 36 + 64 + 64)+ (-100 -100 +144 +144)+ 40⋅⋅⋅+ (-1444 -1444 +1600 +1600) = 24 + 56 + 88 +⋅⋅⋅+ 31216= ⨯10 ⨯ (24 + 312 ) = 1680 , ( a b a 1 - 22n 2 + n (n ∈ N * ).2 2 222212本题正确结果1680 .三、解答题:本大题共6 个大题,共 70 分,解答应写出文字说明、证明过程或演算步骤.17.10 分)已知数列{a n}是等比数列,数列 {b }是等差数列,且满足: n 1= b = 1 , + b = 4a , - 3b = -5 .1 2 3 2 3 2(1)求数列{a n }和 {b }的通项公式;n(2)设 c n = a n + b n ,求数列 {c n}的前 n 项和 S n .【答案】(1) a = 2n -1 , n ∈ N * , b = 2n - 1,n ∈ N * ;(2) S = 2n + n 2 - 1 .nn n【解析】(1)设 {an}的公比为 q , {b }的公差为 d ,由题意 q > 0 ,n⎧(1+ d ) + (1+ 2d ) = 4q ⎧-4q + 3d = -2由已知,有 ⎨ ,即 ⎨⎩q 2 - 3(1+ d ) = -5 ⎩ q 2 - 3d = -2⇒ q 2 - 4q + 4 = 0 ⇒ d = q = 2 ,所以 {a n }的通项公式为 an= 2n -1 , n ∈ N * , {b }的通项公式为 b = 2n - 1,n ∈ N * .n n(2) c = a + b = 2n -1 + 2n - 1 ,分组求和,分别根据等比数列求和公式与等差数列求和公式得到nnn1 - 2nn (1+ 2n - 1)S =+= 2n + n 2 - 1 .n18.(12 分)己知数列{a }的前 n 项和为 S n(1)求 {a}的通项公式;nn且 S = n 1 12 2(2)设 b n =1a an n +1,求数列 {b n}的前 100 项和.【答案】(1) a n = n ;(2) T100 =100 101.【解析】(1)当 n ≥ 2 时, S =n两式相减得 a n = S n - S n -1 = n , n 2 + n , S = (n - 1)2 + (n - 1)= n 2 + n- n ,17当 n =1时, a = S = + = 1,满足 a = n ,\ a = n . 2 2骣 1 骣 1 骣1 1 1 1 1001 - + - +L + - +2 = - , n +1 =2 n∈ N * ). ⎧⎬(2)若数列{b }满足: ba + 1 3n4 4 == 3 +n⎩ a n +1⎭a + 1 = 3n ,所以 a =1 - 1 . 3n ( )⇒ S = 2n - 144(2)令 b = 2n + 1,求数列 {b }的前 n 项和 T 及 T 的最小值.a + 2 nn1 11 1 n n(2)由(1)可知 b n =1 1 1= - ,n (n + 1) n n + 1所以数列 {b n}的前 100 项和 T100= b +b +?1 2b100= 琪 琪 琪 琪 - = 1 - = .桫 2桫 3 ? 99 100100 101 101 10119.(12 分)已知数列{a }满足: a n 1 3a -2a n - 3 ( 3a + 4 n(1)证明数列 ⎨ 1 ⎫ 为等差数列,并求数列{a n }的通项公式;⎩ a n + 1⎭nn =3n (n ∈ N * ),求 {b }的前 n 项和 S . nn n【答案】(1)证明见解析, a = n1 2n - 1 9- 1;(2) S = ⨯ 3n +2 + .n【解析】(1)因为 an +1+ 1 = -2a - 3 a + 1 1 3a + 4 1 n + 1 = n ,所以 , 3a + 4 3a + 4 a + 1 a a + 1 n n n +1 n +1 n⎧ 1 ⎫所以 ⎨ ⎬ 是首项为 3,公差为 3 的等差数列,所以n1 n(2)由(1)可知: a =n 1 3n- 1,所以由 b = n 3n a + 1 nn ∈ N * ⇒ b = n ⋅ 3n +1 , nS = 1 ⨯ 32 + 2 ⨯ 33 + L + (n - 1) ⨯ 3n + n ⨯ 3n +1 ①;n3S = 1 ⨯ 33 + 2 ⨯ 34 + L + (n - 1) ⨯ 3n +1 + n ⨯ 3n +2 ②,n①-②得 -2S = 32 + 33 + L + 3n +1 - n ⨯ 3n +2 = n 32 (3n - 1)3 - 1 - n ⨯ 3n +2n9⨯ 3n +2+ .20.(12 分)已知数列{a n}的前 n 项和为 Sn,且 S n = 2a n - 2n -1 .(1)求数列{a n}的通项公式;n nn185 ⨯ 2n -1 (2)Q b = 2n + 1 1 1 1 ⎛ 3 5 7 2n + 1 ⎫ ,则 T n = ⎪ , a + 2 52n -1 5 ⎝ 20 21 22 2n -1 ⎭ T = ⎪ 两式作差得 1 - T = ⨯ ⎢3 + ⎛ 1 ⎫ 1 ⎡ ⎛ 2 2 2 ⎫ 2n + 1⎤ 2n + 5 + +⋅⋅⋅+ - = 1 -2n ⎥⎦ ⎝ 2 ⎭ n 5 ⎣21 22 2n -1 ⎭ 5 ⨯ 2n 5 ⨯ 2n -1 5 ⨯ 2n 5 ⨯ 2n -1 5 ⨯ 2n 5 ⎧( ⎧ n - 1)2n + , n 是奇数 3 - 3n ⎪b n = 2 2 , n 是奇数2 , b = ⎨ ;(2) T = ⎨ .3n ⎪(n - 1)2n + 1 + , n 是偶数 n -2 ⎪b = 2 2 , n 是偶数n n【答案】(1)a = 5 ⨯ 2n -1- 2 (n ∈ N *);(2) T = 2 - 2n +5 3,最小值 . 5【解析】(1)当 n =1 时, a 1 = S 1 = 2a 1 - 2 - 1 ,解得 a 1 = 3 ,当 n ≥ 2 时, a n = S n - S n -1 = 2a n - 2a n -1 - 2 ,解得 a n = 2 a n -1 + 2 .则 a + 2 = 2 (an n -1+ 2),故 {a n + 2}是首项为 a 1 + 2 = 5 ,公比为 2 的等比数列,∴ a = 5 ⨯ 2n -1 - 2 (n ∈ N * ). n = ⨯ (2n + 1)⨯ + + + ⋅⋅⋅ +nn1 1 ⎛2 n 5 ⎝3 5 7 2n - 1 2n + 1 ⎫+ + + ⋅⋅⋅ + +21 22 23 2n -1 2n ⎭⎪ ⎪⎝,所以 T = 2 - n 2n + 5 5 ⨯ 2n -1,2n + 5 2n + 7 2n + 5 -2n - 3令 c = ,有 c - c =- = < 0 ,对 n ∈ N * 恒成立, n n +1 n则数列{c n }是递减数列,故{T n } 为递增数列,则 (T n )min 3= T = . 121.(12 分)已知正项数列且.的前 项和为 ,且 , ,数列 满足 ,(1)求数列(2)令【答案】(1), 的通项公式;,求数列 的前 项和 .n +1 ⎪⎪ n n⎩ n ⎪⎩ 2【解析】(1)当时, ,即 ,,19⎧⎪S + S = a 2 由 ⎨ ,可得= a 2 (n ≥ 2) ,⎪⎩ n由 ⎨ 两式相除,得 n +1 = 2 (n ≥ 2 ),⎧b b = 2n b⎪⎩b n -1b n = 2n -1 (n ≥ 2)综上:b = ⎨ n ⎪b = 2 n -22 , n 是偶数 ⎩ ⎧ 3n ⎪⎪ 2 , 的前 项和为 B ,∴ B = ⎨ , -3n + 1 ⎪ , n 是奇数 ⎧(n - 1)2n + , n 是奇数 ⎪⎪ 2综上: T = ⎨ .3n ⎪(n - 1)2n + 1 + , n 是偶数n +1 n n +1 S + S n -1 n即,又是公差为 ,首项为 的等差数列,,由题意得:,n n +1 b n -1是奇数时,是公比是 ,首项 的等比数列,∴ b = 2nn +1 2 ,同理 是偶数时是公比是 ,首项的等比数列,∴ b = 2nn -2 2 ,n ⎧ n +1⎪b = 2 2 , n 是奇数n.(2)令,即 ,⎧⎪ A = 1⋅ 20 + 2 ⋅ 21 + 3 ⋅ 22 + ⋅⋅⋅ + n ⋅ 2n -1的前 项和为 ,则 ⎨ n⎪⎩2 A n = 1⋅ 21 + 2 ⋅ 22 + 3 ⋅ 23 + ⋅⋅⋅ + n ⋅ 2n,两式相减得 - A = 20 + 21 + 22 + 2n -1 - n ⋅ 2n = n,1 - 2n 1 - 2- n ⋅ 2n ,令n n⎪⎩ 2n 是偶数3 - 3nn⎪⎩ 220ln 22 ln 32 ln n 2 (n - 1)(2n + 1) (当 x ≥ a 时, f '( x ) = 1 - = ,此时要考虑 a 与 1 的大小.(2)由(1)可知当 a = 1 , x > 1 时, x -1 - ln x > 0 ,即 ln x > 1 - x ,所以 ln x = n - 1 - = n - 1 - - ⎪ < n - 1 - + + L + ⎝ 2 n 2 ⎭ ⎝ 2 ⨯ 3 3 ⨯ 4 n(n + 1) ⎭ 1 ⎫ n - 1 = (n - 1) - n + 1 ⎭ 2(n + 1) ⎛ 122.(12 分)已知函数 f ( x ) =| x - a | - ln x(a > 0) .(1)讨论 f ( x ) 的单调性;(2)比较 + +⋯+ 与 的大小 n ∈ N * 且 n > 2) ,并证明你的结论.22 32 n 2 2(n + 1)【答案】(1)见解析;(2)见解析.⎧ x - ln x - a, 【解析】(1)函数 f ( x ) 可化为 f ( x ) = ⎨⎩a - x - ln x,x ≥ a0 < x < a ,当 0 < x < a 时, f '( x ) = -1 - 1 x< 0 ,从而 f ( x ) 在 (0, a) 上总是递减的,1 x - 1x x①若 a ≥ 1 ,则 f '( x ) ≥ 0 ,故 f ( x ) 在 [a, +∞ ) 上递增;②若 0 < a < 1 ,则当 a ≤ x < 1 时, f '( x ) < 0 ;当 x > 1 时, f '( x ) > 0 ,故 f ( x ) 在 [a,1) 上递减,在 (1, +∞) 上递增,而 f ( x ) 在 x = a 处连续,所以当 a ≥ 1 时, f ( x ) 在 (0, a) 上递减,在[a, +∞ ) 上递增;当 0 < a < 1 时, f ( x ) 在 (0,1) 上递减,在[1, +∞ ) 上递增.1< 1 - .x x所以 ln 22 ln 32 ln n 2 1 1 1+ + L + < 1 - + 1 - + L 1 -22 32 n 2 22 32 n 2⎛ 1 1 + ⎝ 22 32 + L + 1 ⎫ 1 1 ⎫ ⎛ 1 ⎪ ⎪2n 2 - 2 - n + 1 (n - 1)(2n + 1) = = .2(n + 1) 2(n + 1)21。

2019版高考数学理一轮总复习:第六章数列 作业35 含解

2019版高考数学理一轮总复习:第六章数列 作业35 含解

题组层级快练(三十五)1.若等差数列{a n }的公差为d ,则数列{a 2n -1}是( ) A .公差为d 的等差数列 B .公差为2d 的等差数列 C .公差为nd 的等差数列 D .非等差数列答案 B解析 数列{a 2n -1}其实就是a 1,a 3,a 5,a 7,…,奇数项组成的数列,它们之间相差2d. 2.已知数列{a n }为等差数列,其前n 项和为S n ,若a 3=6,S 3=12,则公差d 等于( ) A .1 B.53 C .2 D .3答案 C解析 由已知得S 3=3a 2=12,即a 2=4,∴d =a 3-a 2=6-4=2.3.(2016·课标全国Ⅰ)已知等差数列{a n }前9项的和为27,a 10=8,则a 100=( ) A .100 B .99 C .98 D .97 答案 C解析 设等差数列{a n }的公差为d ,因为{a n }为等差数列,且S 9=9a 5=27,所以a 5=3.又a 10=8,解得5d =a 10-a 5=5,所以d =1,所以a 100=a 5+95d =98,选C. 4.设S n 为等差数列{a n }的前n 项和,若S 8=4a 3,a 7=-2,则a 9等于( ) A .-6 B .-4 C .-2 D .2 答案 A解析 S 8=8(a 1+a 8)2=4(a 3+a 6).因为S 8=4a 3,所以a 6=0.又a 7=-2,所以d =a 7-a 6=-2,所以a 8=-4,a 9=-6.故选A.5.(2018·西安四校联考)在等差数列{a n }中,a 2=5,a 7=3,在该数列中的任何两项之间插入一个数,使之仍为等差数列,则这个新等差数列的公差为( ) A .-25B .-45C .-15D .-35答案 C解析 {a n }的公差d =3-57-2=-25,∴新等差数列的公差d′=(-25)×12=-15,故选C.6.(2018·绍兴一中交流卷)等差数列{a n }的公差d<0,且a 12=a 212,则数列{a n }的前n 项和S n 取得最大值时的项数n 是( ) A .9 B .10 C .10和11 D .11和12答案 C解析 由d<0,得a 1≠a 21,又a 12=a 212,∴a 1+a 21=0,∴a 11=0,故选C.7.(2018·河北冀州中学模拟)等差数列{a n }中的a 4,a 2 018是3x 2-12x +4=0的两根,则log 14a 1011=()A.12 B .2 C .-2 D .-12答案 D解析 因为a 4和a 2 018是3x 2-12x +4=0的两根,所以a 4+a 2 018=4.又a 4,a 1 011,a 2 018成等差数列,所以2a 1 011=a 4+a 2 008,即a 1 011=2,所以log 14a 1 011=-12,故选D.8.(2018·安徽合肥二模)已知{1a n }是等差数列,且a 1=1,a 4=4,则a 10=( )A .-45B .-54C.413D.134答案 A解析 由题意,得1a 1=1,1a 4=14,所以等差数列{1a n }的公差为d =1a 4-1a 13=-14,由此可得1a n =1+(n -1)×(-14)=-n 4+54,因此1a 10=-54,所以a 10=-45.故选A.9.(2018·河北省唐山市高三统一考试)等差数列{a n }的前n 项和为S n ,若S 11=22,则a 3+a 7+a 8=( ) A .18 B .12 C .9 D .6 答案 D解析 由题意得S 11=11(a 1+a 11)2=11(2a 1+10d )2=22,即a 1+5d =2,所以a 3+a 7+a 8=a 1+2d +a 1+6d +a 1+7d =3(a 1+5d)=6,故选D.10.(2017·杭州学军中学)设S n 是等差数列{a n }的前n 项和,若S 3S 6=13,则S 6S 12=( )A.310B.13C.18D.19答案 A解析 令S 3=1,则S 6=3,∴S 9=1+2+3=6. S 12=S 9+4=10,∴S 6S 12=310,故选A. 11.已知在等差数列{a n }中,|a 3|=|a 9|,公差d<0,S n 是数列{a n }的前n 项和,则( ) A .S 5>S 6 B .S 5<S 6 C .S 6=0 D .S 5=S 6答案 D解析 ∵d<0,|a 3|=|a 9|,∴a 3>0,a 9<0,且a 3+a 9=2a 6=0.∴a 6=0,a 5>0,a 7<0.∴S 5=S 6.故选D.12.若一个等差数列前3项的和为34,最后3项的和为146,且所有项的和为390,则这个数列的项数为( ) A .13 B .12 C .11 D .10 答案 A解析 因为a 1+a 2+a 3=34,a n -2+a n -1+a n =146, 所以a 1+a 2+a 3+a n -2+a n -1+a n =34+146=180. 又因为a 1+a n =a 2+a n -1=a 3+a n -2, 所以3(a 1+a n )=180,从而a 1+a n =60. 所以S n =n (a 1+a n )2=n·602=390,即n =13.13.已知{a n }为等差数列,S n 为其前n 项和,若a 1=12,S 2=a 3,则a 2=________;S n =________.答案 1n (n +1)4解析 设公差为d ,则由S 2=a 3,得2a 1+d =a 1+2d ,所以d =a 1=12,故a 2=a 1+d =1,S n=na 1+n (n -1)2d =n (n +1)4.14.(2016·北京)已知{a n }为等差数列,S n 为其前n 项和.若a 1=6,a 3+a 5=0,则S 6=________. 答案 6解析 设等差数列{a n }的公差为d ,由已知得⎩⎪⎨⎪⎧a 1=6,2a 1+6d =0,解得⎩⎪⎨⎪⎧a 1=6,d =-2.所以S 6=6a 1+12×6×5d =36+15×(-2)=6. 15.已知A n ={x|2n <x<2n +1且x =7m +1,m ,n ∈N },则A 6中各元素的和为________.答案 891解析 ∵A 6={x|26<x<27且x =7m +1,m ∈N },∴A 6的元素有9个:71,78,85,92,99,106,…,127, 各数成一首项为71,公差为7的等差数列. ∴71+78+…+127=71×9+9×82×7=891.16.中国古代数学有着很多令人惊叹的成就.北宋沈括在《梦溪笔谈》卷十八《技艺》篇中首创隙积术.隙积术意即:将木桶一层层堆放成坛状,每一层长有a 个,宽有b 个,共计ab 个木桶,每一层长宽各比一上层多一个,共推放n 层.假设最上层有长2宽1共2个木桶,每一层的长宽各比上一层多一个,共推放15层,则最底层木桶的个数为________. 答案 240解析 最上层2个,第2层:(1+1)×(2+1)=2×3(个) 第3层:(2+1)×(3+1)=3×4(个) ……第15层:15×16=240(个)17.(2017·课标全国Ⅱ,理)等差数列{a n }的前n 项和为S n ,a 3=3,S 4=10,则∑nk =11S k=________. 答案2n n +1解析 设等差数列{a n }的首项为a 1,公差为d ,依题意,⎩⎪⎨⎪⎧a 1+2d =3,4a 1+6d =10,即⎩⎪⎨⎪⎧a 1+2d =3,2a 1+3d =5,解得⎩⎪⎨⎪⎧a 1=1,d =1,所以S n =n (n +1)2,因此∑n k =1 1S k =2(1-12+12-13+…+1n -1n +1)=2nn +1.18.已知数列{a n }中,a 1=35,a n =2-1a n -1(n ≥2,n ∈N *),数列{b n }满足b n =1a n -1(n ∈N *).(1)求证:数列{b n }是等差数列;(2)求数列{a n }中的最大项和最小项,并说明理由. 答案 (1)略 (2)最大项a 4=3,最小项a 3=-1 解析 (1)证明:因为a n =2-1a n -1(n ≥2,n ∈N *),b n =1a n -1. 所以当n ≥2时,b n -b n -1=1a n -1-1a n -1-1=1⎝⎛⎭⎫2-1an -1-1-1a n -1-1=a n -1a n -1-1-1a n -1-1=1.又b 1=1a 1-1=-52,所以,数列{b n }是以-52为首项,以1为公差的等差数列.(2)由(1)知,b n =n -72,则a n =1+1b n =1+22n -7.设函数f(x)=1+22x -7,易知f(x)在区间⎝⎛⎭⎫-∞,72和⎝⎛⎭⎫72,+∞上为减函数. 所以,当n =3时,a n 取得最小值-1; 当n =4时,a n 取得最大值3.1.《张丘建算经》卷上第22题为:“今有女善鴽,日益功疾.初日织五尺,今一月日织九匹三丈.”其意思为今有女子善织布,且从第2天起,每天比前一天多织相同量的布,若第一天织5尺布,现在一个月(按30天计)共织390尺布.则该女最后一天织多少尺布?( ) A .18 B .20 C .21 D .25答案 C解析 依题意得,织女每天所织的布的尺数依次排列形成一个等差数列,设为{a n },其中a 1=5,前30项和为390,于是有30(5+a 30)2=390,解得a 30=21,即该织女最后一天织21尺布,选C.2.(2018·安徽省安师大附中、马鞍山二中高三阶段性测试)若等差数列{a n }的前n 项和为S n ,且满足a 2+S 3=4,a 3+S 5=12,则a 4+S 7的值是( ) A .20 B .36 C .24 D .72答案 C解析 由a 2+S 3=4及a 3+S 5=12得⎩⎪⎨⎪⎧4a 1+4d =4,6a 1+12d =12,解得⎩⎪⎨⎪⎧a 1=0,d =1,∴a 4+S 7=8a 1+24d =24.故选C.3.(2018·陕西汉中一检)已知数列{a n }的前n 项和S n =an 2+bn(a ,b ∈R )且a 2=3,a 6=11,则S 7等于( ) A .13 B .49 C .35D .63答案 B解析 由题意知数列{a n }是等差数列,公差d =a 6-a 26-2=11-34=2,则a n =a 2+(n -2)d =2n-1,故a 1=1,a 7=13,所以S 7=a 1+a 72×7=1+132×7=49,选B.4.(2018·贵阳一模)若数列{a n }满足a 1=0,11-a n -11-a n -1=1(n ≥2,n ∈N *),则a 2 017=( )A.12 017B.12 016 C.2 0162 017 D.2 0152 016答案 C解析 ∵数列{a n }满足a 1=0,∴11-a 1=1,又11-a n -11-a n -1=1(n ≥2,n ∈N *),∴{11-a n }是首项为1,公差为1的等差数列,∴11-a n =1+(n -1)=n ,∴11-a 2 017=2 017,解得a 2 017=2 0162 017.故选C. 5.(2017·湖北八校)根据科学测算,运载神舟飞船的长征系列火箭,在点火后一分钟上升的高度为1 km ,以后每分钟上升的高度增加2 km ,在达到离地面240 km 高度时船箭分离,则从点火到船箭分离大概需要的时间是( ) A .20分钟 B .16分钟 C .14分钟 D .10分钟答案 B解析 本题主要考查等差数列的通项公式.设火箭每分钟上升的距离组成一个数列,显然a 1=1,而a n -a n -1=2.所以可得a n =1+2(n -1)=2n -1.所以S n =n (a 1+a n )2=n 2=240.所以从点火到船箭分离大概需要的时间是16分钟.故选B. 6.在等差数列{a n }中,若a 1=2,a 3+a 5=10,则a 7=( ) A .5 B .8 C .10 D .14 答案 B解析 由等差数列的性质,得a 1+a 7=a 3+a 5.因为a 1=2,a 3+a 5=10,所以a 7=8,选B. 7.设数列{a n },{b n }都是等差数列,且a 1=25,b 1=75,a 2+b 2=100,则a 37+b 37等于( ) A .0 B .37 C .100 D .-37 答案 C解析 ∵{a n },{b n }都是等差数列, ∴{a n +b n }也是等差数列.∵a 1+b 1=25+75=100,a 2+b 2=100, ∴{a n +b n }的公差为0. ∴a 37+b 37=100.8.已知数列{a n }是等差数列,若a 2+a 5=19,S 5=40,求a 10=________. 答案 29解析 方法一:由已知可得⎩⎪⎨⎪⎧a 1+d +a 1+4d =19,5a 1+5×42d =40. 解得a 1=2,d =3.所以a 10=a 1+9d =29. 方法二:由S 5=5a 3=40,得a 3=8.所以a 2+a 5=a 3-d +a 3+2d =2a 3+d =16+d =19,得d =3. 所以a 10=a 3+7d =8+3×7=29.9.已知在数列{a n }中,a 3=2,a 5=1,若⎩⎨⎧⎭⎬⎫11+a n 是等差数列,则a 11等于________.答案 0解析 记b n =11+a n ,则b 3=13,b 5=12,数列{b n }的公差为12×(12-13)=112,b 1=16,∴b n =n +112,即11+a n =n +112.∴a n =11-n n +1,故a 11=0. 10.(2015·陕西)中位数为1 010的一组数构成等差数列,其末项为2 015,则该数列的首项为________. 答案 5解析 由题意知,1 010为数列首项a 1与2 015的等差中项,故a 1+2 0152=1 010,解得a 1=5.11.(2016·课标全国Ⅱ)等差数列{a n }中,a 3+a 4=4,a 5+a 7=6. (1)求{a n }的通项公式;(2)设b n =[a n ],求数列{b n }的前10项和,其中[x]表示不超过x 的最大整数,如[0.9]=0,[2.6]=2.答案 (1)2n +35(2)24解析 (1)设数列{a n }的公差为d , 由题意有2a 1+5d =4,a 1+5d =3. 解得a 1=1,d =25.所以{a n }的通项公式为a n =2n +35. (2)由(1)知,b n =[2n +35].当n =1,2,3时,1≤2n +35<2,b n =1;当n =4,5时,2<2n +35<3,b n =2;当n =6,7,8时,3≤2n +35<4,b n =3;当n =9,10时,4<2n +35<5,b n =4.所以数列{b n }的前10项和为1×3+2×2+3×3+4×2=24.12.(2018·长沙雅礼中学月考)已知数列{a n }各项均为正数,且a 1=1,a n +1a n +a n +1-a n =0(n ∈N *).(1)设b n =1a n ,求证:数列{b n }是等差数列;(2)求数列{a nn +1}的前n 项和S n .答案 (1)略 (2)n n +1解析 (1)因为a n +1a n +a n +1-a n =0(n ∈N *), 所以a n +1=a na n +1.因为b n =1a n ,所以b n +1-b n =1a n +1-1a n =a n +1a n -1a n =1,又b 1=1a 1=1,所以数列{b n }是以1为首项、1为公差的等差数列. (2)由(1)知,b n =n ,所以1a n =n ,即a n =1n ,所以a n n +1=1n (n +1)=1n -1n +1,所以S n =(1-12)+(12-13)+…+(1n -1n +1)=1-1n +1=nn +1.13.(2018·江苏南京调研)已知数列{a n }是公差为正数的等差数列,其前n 项和为S n ,且a 2·a 3=15,S 4=16.(1)求数列{a n }的通项公式; (2)求数{b n }满足b 1=a 1,b n +1-b n =1a n ·a n +1.①求数列{b n }的通项公式;②是否存在正整数m ,n(m ≠n),使得b 2,b m ,b n 成等差数列?若存在,求出m ,n 的值;若不存在,请说明理由. 答案 (1)a n =2n -1 (2)①b n =3n -22n -1,n ∈N * ②存在 解析 (1)设等差数列{a n }的公差为d ,根据题意得d>0. 因为a 2·a 3=15,S 4=16,所以⎩⎪⎨⎪⎧(a 1+d )(a 1+2d )=15,4a 1+6d =16,解得⎩⎪⎨⎪⎧a 1=1,d =2,或⎩⎪⎨⎪⎧a 1=7,d =-2(舍去),所以a n =2n -1. (2)①因为b 1=a 1,b n +1-b n =1a n a n +1, 所以b 1=a 1=1,b n +1-b n =1a n a n +1=1(2n -1)(2n +1)=12(12n -1-12n +1),即b 2-b 1=12(1-13),b 3-b 2=12(13-15). ……b n -b n -1=12(12n -3-12n -1)(n ≥2).累加得b n -b 1=12(1-12n -1)=n -12n -1,所以b n =b 1+n -12n -1=1+n -12n -1=3n -22n -1.显然b 1=1也符合上式,所以b n =3n -22n -1,n ∈N *.②假设存在正整数m ,n(m ≠n),使得b 2,b m ,b n 成等差数列, 则b 2+b n =2b m .又b 2=43,b n =3n -22n -1=32-14n -2,b m =32-14m -2,所以43+(32-14n -2)=2(32-14m -2),即12m -1=16+14n -2,化简得2m =7n -2n +1=7-9n +1. 当n +1=3,即n =2时,m =2(舍去); 当n +1=9,即n =8时,m =3,符合题意.所以存在正整数m =3,n =8,使得b 2,b m ,b n 成等差数列.。

2019届高三数学理一轮复习教师用书:第五章 数 列 含答案 精品

2019届高三数学理一轮复习教师用书:第五章 数 列 含答案 精品

第五章 数 列第一节数列的概念与简单表示法1.数列的有关概念n n 若数列{a n }的前n 项和为S n ,则a n =⎩⎪⎨⎪⎧S 1,n =1,S n -S n -1,n ≥2.5.数列的分类1.判断下列结论是否正确(请在括号中打“√”或“×”) (1)根据数列的前几项归纳出数列的通项公式可能不止一个.( ) (2)1,1,1,1,…,不能构成一个数列.( )(3)任何一个数列不是递增数列,就是递减数列.( )(4)如果数列{a n }的前n 项和为S n ,则对∀n ∈N *,都有a n +1=S n +1-S n .( ) 答案:(1)√ (2)× (3)× (4)√2.已知数列{a n }的通项公式为a n =9+12n ,则在下列各数中,不是{a n }的项的是( ) A .21 B .33 C .152D .153解析:选C 由9+12n =152,得n =14312∉N *.3.在数列{a n }中,a 1=1,a n =1+1a n -1(n ≥2),则a 4=( ) A.32 B.53 C.74D.85 解析:选B 由题意知,a 1=1,a 2=1+1a 1=2,a 3=1+1a 2=32,a 4=1+1a 3=53.4.已知数列{a n }满足a 1=1,a n =a n -1+2n (n ≥2),则a 7=( )A .53B .54C .55D .109解析:选C 由题意知,a 2=a 1+2×2,a 3=a 2+2×3,……,a 7=a 6+2×7,各式相加得a 7=a 1+2(2+3+4+…+7)=55.5.数列1,23,35,47,59,…的一个通项公式a n =________.解析:由已知得,数列可写成11,23,35,…,故通项公式可以为a n =n 2n -1.答案:n2n -16.已知数列{a n }的前n 项和S n =2n -3,则数列{a n }的通项公式是________________. 解析:当n =1时,a 1=S 1=2-3=-1,当n ≥2时,a n =S n -S n -1=(2n -3)-(2n -1-3)=2n -2n -1=2n -1.又a 1=-1不适合上式,故a n =⎩⎪⎨⎪⎧-1,n =1,2n -1,n ≥2.答案:a n =⎩⎪⎨⎪⎧-1,n =1,2n -1,n ≥2考点一 由a n 与S n 的关系求通项a n (基础送分型考点——自主练透)[考什么·怎么考]n n 1.已知S n =3n +2n +1,则a n =____________. 解析:因为当n =1时,a 1=S 1=6; 当n ≥2时,a n =S n -S n -1=(3n +2n +1)-[3n -1+2(n -1)+1]=2·3n -1+2,由于a 1不适合此式,所以a n =⎩⎪⎨⎪⎧6,n =1,2·3n -1+2,n ≥2.答案:⎩⎪⎨⎪⎧6,n =1,2·3n -1+2,n ≥22.(2017·全国卷Ⅲ改编)设数列{a n}满足a1+3a2+…+(2n-1)a n=2n,则a n=____________.解析:因为a1+3a2+…+(2n-1)a n=2n,故当n≥2时,a1+3a2+…+(2n-3)a n-1=2(n-1).两式相减得(2n-1)a n=2,所以a n=22n-1(n≥2).又由题设可得a1=2,满足上式,从而{a n}的通项公式为a n=22n-1(n∈N*).答案:22n-1(n∈N*)[题型技法]已知Sn求a n的3步骤(1)先利用a1=S1求出a1;(2)用n-1替换S n中的n得到一个新的关系,利用a n=S n-S n-1(n≥2)便可求出当n≥2时a n的表达式;(3)注意检验n=1时的表达式是否可以与n≥2的表达式合并.考法(二)由S n与a n的关系,求a n,S n3.设数列{a n}的前n项和为S n,且S n=2(a n-1)(n∈N*),则a n=()A.2n B.2n-1C.2n D.2n-1解析:选C当n=1时,a1=S1=2(a1-1),可得a1=2,当n≥2时,a n=S n-S n-1=2a n-2a n-1,∴a n=2a n-1,∴数列{a n}为首项为2,公比为2的等比数列,所以a n=2n.4.(2015·全国卷Ⅱ)设S n是数列{a n}的前n项和,且a1=-1,a n+1=S n S n+1,则S n=________.解析:∵a n+1=S n+1-S n,a n+1=S n S n+1,∴S n+1-S n=S n S n+1.∵S n≠0,∴1S n-1S n+1=1,即1S n+1-1S n=-1.又1S1=-1,∴⎩⎨⎧⎭⎬⎫1S n是首项为-1,公差为-1的等差数列.∴1S n=-1+(n-1)×(-1)=-n,∴S n=-1n.答案:-1n[题型技法]Sn与a n关系问题的求解思路根据所求结果的不同要求,将问题向不同的两个方向转化. (1)利用a n =S n -S n -1(n ≥2)转化为只含S n ,S n -1的关系式,再求解. (2)利用S n -S n -1=a n (n ≥2)转化为只含a n ,a n -1的关系式,再求解.考点二 由递推关系式求数列的通项公式 (基础送分型考点——自主练透)[考什么·怎么考]1.在数列{a n }中,a 1=1,a n =n -1n a n -1(n ≥2),则数列{a n }的通项公式为__________. 解析:∵a n =n -1n a n -1(n ≥2),∴a n -1=n -2n -1a n -2,a n -2=n -3n -2a n -3,…,a 2=12a 1.以上(n -1)个式子相乘得 a n =a 1·12·23·…·n -1n =a 1n =1n .当n =1时,a 1=1,上式也成立.∴a n =1n (n ∈N *). 答案:a n =1n(n ∈N *)[方法点拨] 叠乘法求通项公式的4步骤方法(二) 叠加法求通项公式2.设数列{a n }满足a 1=1,且a n +1-a n =n +1(n ∈N *),则数列{a n }的通项公式为________________.解析:由题意有a 2-a 1=2,a 3-a 2=3,…,a n -a n -1=n (n ≥2). 以上各式相加,得a n -a 1=2+3+…+n =(n -1)(2+n )2=n 2+n -22.又∵a 1=1,∴a n =n 2+n2(n ≥2).∵当n =1时也满足上式,∴a n =n 2+n2(n ∈N *).答案:a n =n 2+n2(n ∈N *)[方法点拨] 叠加法求通项公式的4步骤方法(三) 构造法求通项公式3.已知数列{a n }满足a 1=1,a n +1=3a n +2,则数列{a n }的通项公式为________________. 解析:∵a n +1=3a n +2,∴a n +1+1=3(a n +1), ∴a n +1+1a n +1=3, ∴数列{a n +1}为等比数列,公比q =3, 又a 1+1=2,∴a n +1=2·3n -1,∴a n =2·3n -1-1(n ∈N *).答案:a n =2·3n -1-1(n ∈N *)[方法点拨] 构造法求通项公式的3步骤[怎样快解·准解]1.正确选用方法求数列的通项公式(1)对于递推关系式可转化为a n +1a n=f (n )的数列,并且容易求数列{f (n )}前n 项的积时,采用叠乘法求数列{a n }的通项公式.(2)对于递推关系式可转化为a n +1=a n +f (n )的数列,通常采用叠加法(逐差相加法)求其通项公式.(3)对于递推关系式形如a n +1=pa n +q (p ≠0,1,q ≠0)的数列,采用构造法求数列的通项. 2.避免2种失误(1)利用叠乘法,易出现两个方面的问题:一是在连乘的式子中只写到a 2a 1,漏掉a 1而导致错误;二是根据连乘求出a n 之后,不注意检验a 1是否成立.(2)利用构造法求解时应注意数列的首项的正确求解以及准确确定叠加、叠乘后最后一个式子的形式.考点三 数列的性质及应用 (重点保分型考点——师生共研)1.已知数列{a n }满足a n +1=11-a n,若a 1=12,则a 2 018=( )A .-1 B.12 C .1D .2解析:选D 由a 1=12,a n +1=11-a n ,得a 2=11-a 1=2,a 3=11-a 2=-1,a 4=11-a 3=12,a 5=11-a 4=2,…, 于是可知数列{a n }是以3为周期的周期数列,因此a 2 018=a 3×672+2=a 2=2. 2.已知数列{a n }满足a n =n +13n -16(n ∈N *),则数列{a n }的最小项是第________项.解析:因为a n =n +13n -16,所以数列{a n }的最小项必为a n <0,即n +13n -16<0,3n -16<0,从而n <163.又n ∈N *,所以当n =5时,a n 的值最小.答案:5[解题师说]1.解决数列周期性问题的方法先根据已知条件求出数列的前几项,确定数列的周期,再根据周期性求值. 2.判断数列单调性的2种方法(1)作差比较法:比较a n +1-a n 与0的大小.(2)作商比较法:比较a n +1a n 与1的大小,注意a n 的符号.3.求数列最大项或最小项的方法(1)利用不等式组⎩⎪⎨⎪⎧a n -1≤a n ,a n ≥a n +1(n ≥2)找到数列的最大项;(2)利用不等式组⎩⎪⎨⎪⎧a n -1≥a n ,a n ≤a n +1(n ≥2)找到数列的最小项.[冲关演练]1.已知数列{a n }满足a 1=1,a n +1=a 2n -2a n +1(n ∈N *),则a 2 018=( )A .1B .0C .2 018D .-2 018解析:选B ∵a 1=1,a n +1=a 2n -2a n +1=(a n -1)2,∴a 2=(a 1-1)2=0,a 3=(a 2-1)2=1,a 4=(a 3-1)2=0,…,可知数列{a n }是以2为周期的数列,∴a 2 018=a 2=0,选B.2.等差数列{a n }的公差d <0,且a 21=a 211,则数列{a n }的前n 项和S n 取得最大值时的项数n 的值为( )A .5B .6C .5或6D .6或7解析:选C 由a 21=a 211,可得(a 1+a 11)(a 1-a 11)=0,因为d <0,所以a 1-a 11≠0,所以a 1+a 11=0, 又2a 6=a 1+a 11,所以a 6=0. 因为d <0,所以{a n }是递减数列,所以a 1>a 2>…>a 5>a 6=0>a 7>a 8>…,显然前5项和或前6项和最大,故选C.(一)普通高中适用作业A 级——基础小题练熟练快1.已知数列1,2,7,10,13,…,则219在这个数列中的项数是( ) A .16 B .24 C .26D .28解析:选C 因为a 1=1=1,a 2=2=4,a 3=7,a 4=10,a 5=13,…,所以a n=3n -2.令a n =3n -2=219=76,解得n =26.2.数列{a n }的前n 项和S n =2n 2-3n (n ∈N *),若p -q =5,则a p -a q =( ) A .10 B .15 C .-5D .20解析:选D 当n ≥2时,a n =S n -S n -1=2n 2-3n -[2(n -1)2-3(n -1)]=4n -5,当n =1时,a 1=S 1=-1,符合上式,所以a n =4n -5,所以a p -a q =4(p -q )=20.3.(2017·河南许昌二模)已知数列{a n }满足a 1=1,a n +2-a n =6,则a 11的值为( )A .31B .32C .61D .62解析:选A ∵数列{a n }满足a 1=1,a n +2-a n =6,∴a 3=6+1=7,a 5=6+7=13,a 7=6+13=19,a 9=6+19=25,a 11=6+25=31. 4.(2018·云南检测)设数列{a n }的通项公式为a n =n 2-bn ,若数列{a n }是单调递增数列,则实数b 的取值范围为( )A .(-∞,-1]B .(-∞,2]C .(-∞,3)D.⎝⎛⎦⎤-∞,92 解析:选C 因为数列{a n }是单调递增数列,所以a n +1-a n =2n +1-b >0(n ∈N *),所以b <2n +1(n ∈N *),所以b <(2n +1)min =3,即b <3.5.(2018·湖南湘潭一中、长沙一中等六校联考)已知数列{a n }满足:∀m ,n ∈N *,都有a n ·a m =a n +m ,且a 1=12,那么a 5=( )A.132B.116C.14D.12解析:选A ∵数列{a n }满足:∀m ,n ∈N *,都有a n ·a m =a n +m ,且a 1=12,∴a 2=a 1a 1=14,a 3=a 1·a 2=18,∴a 5=a 3·a 2=132. 6.数列{a n }满足a n +a n +1=12(n ∈N *),a 2=2,S n 是数列{a n }的前n 项和,则S 21为( )A .5 B.72 C.92D.132解析:选B ∵a n +a n +1=12,a 2=2,∴a n =⎩⎪⎨⎪⎧-32,n 为奇数,2, n 为偶数.∴S 21=11×⎝⎛⎭⎫-32+10×2=72. 7.已知数列{a n }的前n 项和S n =n 2+2n +1(n ∈N *),则a n =________. 解析:当n ≥2时,a n =S n -S n -1=2n +1, 当n =1时,a 1=S 1=4≠2×1+1,因此a n =⎩⎪⎨⎪⎧4,n =1,2n +1,n ≥2.答案:⎩⎪⎨⎪⎧4,n =1,2n +1,n ≥28.已知数列{a n }为12,14,-58,1316,-2932,6164,…,则数列{a n }的一个通项公式是________.解析:各项的分母分别为21,22,23,24,…,易看出从第2项起,每一项的分子都比分母少3,且第1项可变为-2-32,故原数列可变为-21-321,22-322,-23-323,24-324,…故其通项公式为a n =(-1)n·2n -32n ,n ∈N *.答案:a n =(-1)n·2n -32n ,n ∈N *9.数列{a n }的前n 项和为S n ,若S n +S n -1=2n -1(n ≥2,n ∈N *),且S 2=3,则a 1+a 3的值为________.解析:∵S n +S n -1=2n -1(n ≥2),令n =2, 得S 2+S 1=3,由S 2=3得a 1=S 1=0, 令n =3,得S 3+S 2=5,所以S 3=2,则a 3=S 3-S 2=-1,所以a 1+a 3=0+(-1)=-1. 答案:-110.在一个数列中,如果∀n ∈N *,都有a n a n +1a n +2=k (k 为常数),那么这个数列叫做等积数列,k 叫做这个数列的公积.已知数列{a n }是等积数列,且a 1=1,a 2=2,公积为8,则a 1+a 2+a 3+…+a 12=________.解析:依题意得数列{a n }是周期为3的数列,且a 1=1,a 2=2,a 3=4,因此a 1+a 2+a 3+…+a 12=4(a 1+a 2+a 3)=4×(1+2+4)=28.答案:28B 级——中档题目练通抓牢1.若a 1=12,a n =4a n -1+1(n ≥2),则a n >100时,n 的最小值为( )A .3B .4C .5D .6解析:选C 由a 1=12,a n =4a n -1+1(n ≥2)得,a 2=4a 1+1=4×12+1=3,a 3=4a 2+1=4×3+1=13,a 4=4a 3+1=4×13+1=53,a 5=4a 4+1=4×53+1=213>100.2.(2018·咸阳模拟)已知正项数列{a n }中,a 1+a 2+…+a n =n (n +1)2(n ∈N *),则数列{a n }的通项公式为( )A .a n =nB .a n =n 2C .a n =n2D .a n =n 22解析:选B ∵a 1+a 2+…+a n =n (n +1)2, ∴a 1+a 2+…+a n -1=n (n -1)2(n ≥2), 两式相减得a n =n (n +1)2-n (n -1)2=n (n ≥2), ∴a n =n 2(n ≥2).又当n =1时,a 1=1×22=1,a 1=1,适合上式,∴a n =n 2,n ∈N *.故选B.3.若数列{a n }满足:a 1=19,a n +1=a n -3(n ∈N *),则数列{a n }的前n 项和数值最大时,n 的值为( )A .6B .7C .8D .9解析:选B ∵a 1=19,a n +1-a n =-3,∴数列{a n }是以19为首项,-3为公差的等差数列, ∴a n =19+(n -1)×(-3)=22-3n . 设{a n }的前k 项和数值最大,则有⎩⎪⎨⎪⎧ a k ≥0,a k +1≤0k ∈N *,∴⎩⎪⎨⎪⎧22-3k ≥0,22-3(k +1)≤0,∴193≤k ≤223, ∵k ∈N *,∴k =7.∴满足条件的n 的值为7.4.在数列{a n }中,a n >0,且前n 项和S n 满足4S n =(a n +1)2(n ∈N *),则数列{a n }的通项公式为________.解析:当n =1时,4S 1=(a 1+1)2,解得a 1=1; 当n ≥2时,由4S n =(a n +1)2=a 2n +2a n +1, 得4S n -1=a 2n -1+2a n -1+1,两式相减得4S n -4S n -1=a 2n -a 2n -1+2a n -2a n -1=4a n ,整理得(a n +a n -1)(a n -a n -1-2)=0,因为a n >0,所以a n -a n -1-2=0,即a n -a n -1=2, 又a 1=1,故数列{a n }是首项为1,公差为2的等差数列, 所以a n =1+2(n -1)=2n -1. 答案:a n =2n -15.已知数列{a n }的通项公式为a n =(-1)n ·2n +1,该数列的项排成一个数阵(如图),则该数阵中的第10行第3个数为________.a 1 a 2 a 3 a 4 a 5 a 6 ……解析:由题意可得该数阵中的第10行第3个数为数列{a n }的第1+2+3+…+9+3=9×102+3=48项,而a 48=(-1)48×96+1=97,故该数阵中的第10行第3个数为97. 答案:976.已知数列{a n }的通项公式是a n =n 2+kn +4.(1)若k =-5,则数列中有多少项是负数?n 为何值时,a n 有最小值?并求出最小值; (2)对于n ∈N *,都有a n +1>a n ,求实数k 的取值范围. 解:(1)由n 2-5n +4<0,解得1<n <4. 因为n ∈N *,所以n =2,3,所以数列中有两项是负数,即为a 2,a 3. 因为a n =n 2-5n +4=⎝⎛⎭⎫n -522-94, 由二次函数性质,得当n =2或n =3时,a n 有最小值,其最小值为a 2=a 3=-2. (2)由a n +1>a n ,知该数列是一个递增数列,又因为通项公式a n =n 2+kn +4,可以看作是关于n 的二次函数,考虑到n ∈N *,所以-k 2<32,解得k >-3.所以实数k 的取值范围为(-3,+∞).7.已知二次函数f (x )=x 2-ax +a (a >0,x ∈R),有且只有一个零点,数列{a n }的前n 项和S n =f (n )(n ∈N *).(1)求数列{a n }的通项公式;(2)设c n =1-4a n(n ∈N *),定义所有满足c m ·c m +1<0的正整数m 的个数,称为这个数列{c n }的变号数,求数列{c n }的变号数.解:(1)依题意,Δ=a 2-4a =0, 所以a =0或a =4. 又由a >0得a =4,所以f (x )=x 2-4x +4. 所以S n =n 2-4n +4.当n =1时,a 1=S 1=1-4+4=1; 当n ≥2时,a n =S n -S n -1=2n -5.所以a n =⎩⎪⎨⎪⎧1,n =1,2n -5,n ≥2.(2)由题意得c n =⎩⎪⎨⎪⎧-3,n =1,1-42n -5,n ≥2. 由c n =1-42n -5可知,当n ≥5时,恒有c n >0. 又c 1=-3,c 2=5,c 3=-3,c 4=-13,c 5=15,c 6=37,即c 1·c 2<0,c 2·c 3<0,c 4·c 5<0, 所以数列{c n }的变号数为3. C 级——重难题目自主选做1.已知数列{a n }的通项公式为a n =(n +2)⎝⎛⎭⎫910n (n ∈N *),则数列{a n }的最大项是( ) A .a 6或a 7 B .a 7或a 8 C .a 8或a 9D .a 7解析:选B 因为a n +1-a n =(n +3)⎝⎛⎭⎫910n +1-(n +2)⎝⎛⎭⎫910n =⎝⎛⎭⎫910n ·7-n 10,当n <7时,a n+1-a n >0,即a n +1>a n ;当n =7时,a n +1-a n =0,即a n +1=a n ;当n >7时,a n +1-a n <0,即a n +1<a n ,则a 1<a 2<…<a 7=a 8>a 9>a 10>…,所以此数列的最大项是第7项或第8项,即a 7或a 8.故选B.2.(2018·成都诊断)在数列{a n }中,a 1=1,a n =n 2n 2-1a n -1(n ≥2,n ∈N *),则a n =________.解析:由题意知a n a n -1=n 2n 2-1=n 2(n -1)(n +1),所以a n =a 1×a 2a 1×a 3a 2×…×a na n -1=1×2222-1×3232-1×…×n 2n 2-1=22×32×42×…×n 2(2-1)×(2+1)×(3-1)×(3+1)×(4-1)×(4+1)×…×(n -1)×(n +1) =22×32×42×…×n 21×3×2×4×3×5×…×(n -1)×(n +1)=2nn +1.答案:2nn +1(二)重点高中适用作业A 级——保分题目巧做快做1.已知数列1,2,7,10,13,…,则219在这个数列中的项数是( ) A .16 B .24 C .26D .28解析:选C 因为a 1=1=1,a 2=2=4,a 3=7,a 4=10,a 5=13,…,所以a n=3n -2.令a n =3n -2=219=76,解得n =26.2.(2018·郑州模拟)已知数列{a n }满足a 1=1,a n +2-a n =6,则a 11的值为( ) A .31 B .32 C .61D .62解析:选A ∵数列{a n }满足a 1=1,a n +2-a n =6, ∴a 3=6+1=7,a 5=6+7=13,a 7=6+13=19, a 9=6+19=25,a 11=6+25=31.3.数列{a n }的前n 项和S n =2n 2-3n (n ∈N *),若p -q =5,则a p -a q =( ) A .10 B .15 C .-5D .20解析:选D 当n ≥2时,a n =S n -S n -1=2n 2-3n -[2(n -1)2-3(n -1)]=4n -5,当n =1时,a 1=S 1=-1,符合上式,所以a n =4n -5,所以a p -a q =4(p -q )=20.4.(2018·湖南湘潭一中、长沙一中等六校联考)已知数列{a n }满足:∀m ,n ∈N *,都有a n ·a m =a n +m ,且a 1=12,那么a 5=( )A.132B.116C.14D.12解析:选A ∵数列{a n }满足:∀m ,n ∈N *,都有a n ·a m =a n +m ,且a 1=12,∴a 2=a 1a 1=14,a 3=a 1·a 2=18,∴a 5=a 3·a 2=132. 5.若数列{a n }满足:a 1=19,a n +1=a n -3(n ∈N *),则数列{a n }的前n 项和最大时,n 的值为( )A .6B .7C .8D .9解析:选B ∵a 1=19,a n +1-a n =-3,∴数列{a n }是以19为首项,-3为公差的等差数列, ∴a n =19+(n -1)×(-3)=22-3n . 设{a n }的前k 项和最大,则有⎩⎪⎨⎪⎧ a k ≥0,a k +1≤0k ∈N *,∴⎩⎪⎨⎪⎧22-3k ≥0,22-3(k +1)≤0, ∴193≤k ≤223, ∵k ∈N *,∴k =7. ∴满足条件的n 的值为7.6.(2018·河北唐山一模)设数列{a n }的前n 项和为S n ,且S n =a 1(4n -1)3,若a 4=32,则a 1=________.解析:∵S n =a 1(4n -1)3,a 4=32,∴S 4-S 3=255a 13-63a 13=32,∴a 1=12. 答案:127.已知数列{a n }为12,14,-58,1316,-2932,6164,…,则数列{a n }的一个通项公式是________.解析:各项的分母分别为21,22,23,24,…,易看出从第2项起,每一项的分子都比分母少3,且第1项可变为-2-32,故原数列可变为-21-321,22-322,-23-323,24-324,…故其通项公式为a n =(-1)n·2n -32n ,n ∈N *.答案:a n =(-1)n·2n -32n ,n ∈N *8.在一个数列中,如果∀n ∈N *,都有a n a n +1a n +2=k (k 为常数),那么这个数列叫做等积数列,k 叫做这个数列的公积.已知数列{a n }是等积数列,且a 1=1,a 2=2,公积为8,则a 1+a 2+a 3+…+a 12=________.解析:依题意得数列{a n }是周期为3的数列,且a 1=1,a 2=2,a 3=4,因此a 1+a 2+a 3+…+a 12=4(a 1+a 2+a 3)=4×(1+2+4)=28.答案:289.已知数列{a n }的前n 项和S n =-12n 2+kn ,k ∈N *,且S n 的最大值为8.试确定常数k ,并求数列{a n }的通项公式.解:因为S n =-12n 2+kn =-12(n -k )2+12k 2,其中k 是常数,且k ∈N *,所以当n =k时,S n 取最大值12k 2,故12k 2=8,k 2=16,因此k =4,从而S n =-12n 2+4n .当n =1时,a 1=S 1=-12+4=72;当n ≥2时,a n =S n -S n -1=⎝⎛⎭⎫-12n 2+4n --12(n -1)2+4(n -1)=92-n . 当n =1时,92-1=72=a 1,所以a n =92-n .10.已知数列{a n }的通项公式是a n =n 2+kn +4.(1)若k =-5,则数列中有多少项是负数?n 为何值时,a n 有最小值?并求出最小值; (2)对于n ∈N *,都有a n +1>a n ,求实数k 的取值范围. 解:(1)由n 2-5n +4<0,解得1<n <4. 因为n ∈N *,所以n =2,3,所以数列中有两项是负数,即为a 2,a 3. 因为a n =n 2-5n +4=⎝⎛⎭⎫n -522-94, 由二次函数性质,得当n =2或n =3时,a n 有最小值,其最小值为a 2=a 3=-2. (2)由a n +1>a n ,知该数列是一个递增数列,又因为通项公式a n =n 2+kn +4,可以看作是关于n 的二次函数,考虑到n ∈N *,所以-k 2<32,解得k >-3.所以实数k 的取值范围为(-3,+∞). B 级——拔高题目稳做准做1.(2018·云南检测)设数列{a n }的通项公式为a n =n 2-bn ,若数列{a n }是单调递增数列,则实数b 的取值范围为( )A .(-∞,-1]B .(-∞,2]C .(-∞,3)D.⎝⎛⎦⎤-∞,92 解析:选C 因为数列{a n }是单调递增数列,所以a n +1-a n =2n +1-b >0(n ∈N *),所以b <2n +1(n ∈N *),所以b <(2n +1)min =3,即b <3.2.已知数列{a n }满足a n +1=a n +2n ,且a 1=33,则a nn 的最小值为( ) A .21 B .10 C.212D.172解析:选C 由已知条件可知,当n ≥2时, a n =a 1+(a 2-a 1)+(a 3-a 2)+…+(a n -a n -1)=33+2+4+…+2(n -1)=n 2-n +33,又n =1时,a 1=33满足此式. 所以a n n =n +33n -1.令f (n )=a n n =n +33n -1,则f (n )在[1,5]上为减函数,在[6,+∞)上为增函数. 又f (5)=535,f (6)=212,则f (5)>f (6), 故f (n )=a n n 的最小值为212.3.(2018·成都质检)在数列{a n }中,a 1=1,a n =n 2n 2-1a n -1(n ≥2,n ∈N *),则a n =________.解析:由题意知a n a n -1=n 2n 2-1=n 2(n -1)(n +1),所以a n =a 1×a 2a 1×a 3a 2×…×a na n -1=1×2222-1×3232-1×…×n 2n 2-1=22×32×42×…×n 2(2-1)×(2+1)×(3-1)×(3+1)×(4-1)×(4+1)×…×(n -1)×(n +1) =22×32×42×…×n 21×3×2×4×3×5×…×(n -1)×(n +1)=2nn +1. 答案:2nn +14.已知数列{a n }的通项公式为a n =(-1)n ·2n +1,该数列的项排成一个数阵(如图),则该数阵中的第10行第3个数为________.a 1 a 2 a 3 a 4 a 5 a 6 ……解析:由题意可得该数阵中的第10行第3个数为数列{a n }的第1+2+3+…+9+3=9×102+3=48项,而a 48=(-1)48×96+1=97,故该数阵中的第10行第3个数为97. 答案:975.已知二次函数f (x )=x 2-ax +a (a >0,x ∈R),有且只有一个零点,数列{a n }的前n 项和S n =f (n )(n ∈N *).(1)求数列{a n }的通项公式;(2)设c n =1-4a n(n ∈N *),定义所有满足c m ·c m +1<0的正整数m 的个数,称为这个数列{c n }的变号数,求数列{c n }的变号数.解:(1)依题意,Δ=a 2-4a =0,所以a =0或a =4. 又由a >0得a =4, 所以f (x )=x 2-4x +4. 所以S n =n 2-4n +4.当n =1时,a 1=S 1=1-4+4=1; 当n ≥2时,a n =S n -S n -1=2n -5.所以a n =⎩⎪⎨⎪⎧1,n =1,2n -5,n ≥2.(2)由题意得c n =⎩⎪⎨⎪⎧-3,n =1,1-42n -5,n ≥2. 由c n =1-42n -5可知,当n ≥5时,恒有c n >0. 又c 1=-3,c 2=5,c 3=-3,c 4=-13,c 5=15,c 6=37,即c 1·c 2<0,c 2·c 3<0,c 4·c 5<0, 所以数列{c n }的变号数为3.6.已知{a n }是公差为d 的等差数列,它的前n 项和为S n ,S 4=2S 2+4,在数列{b n }中,b n =1+a na n.(1)求公差d 的值;(2)若a 1=-52,求数列{b n }中的最大项和最小项的值;(3)若对任意的n ∈N *,都有b n ≤b 8成立,求a 1的取值范围. 解:(1)∵S 4=2S 2+4,∴4a 1+3×42d =2(2a 1+d )+4,解得d =1. (2)∵a 1=-52,∴数列{a n }的通项公式为a n =-52+(n -1)×1=n -72,∴b n =1+a n a n =1+1a n=1+1n -72.∵函数f (x )=1+1x -72在⎝⎛⎭⎫-∞,72和⎝⎛⎭⎫72,+∞上分别是单调减函数,∴b 3<b 2<b 1<1,当n ≥4时,1<b n ≤b 4,∴数列{b n }中的最大项是b 4=3,最小项是b 3=-1. (3)由b n =1+1a n,得b n =1+1n +a 1-1.又函数f (x )=1+1x +a 1-1在(-∞,1-a 1)和(1-a 1,+∞)上分别是单调减函数,且x <1-a 1时,y <1;当x >1-a 1时,y >1.∵对任意的n ∈N *,都有b n ≤b 8, ∴7<1-a 1<8,∴-7<a 1<-6, ∴a 1的取值范围是(-7,-6).第二节等差数列及其前n 项和1.等差数列的有关概念(1)定义:如果一个数列从第2项起,每一项与它的前一项的差都等于同一个常数,那么这个数列就叫做等差数列.这个常数叫做等差数列的公差,符号表示为a n +1-a n =d (n ∈N *,d 为常数).(2)等差中项:数列a ,A ,b 成等差数列的充要条件是A =a +b2,其中A 叫做a ,b 的等差中项.2.等差数列的有关公式 (1)通项公式:a n =a 1+(n -1)d . (2)前n 项和公式:S n =na 1+n (n -1)2d =n (a 1+a n )2. 3.等差数列的常用性质(1)通项公式的推广:a n =a m +(n -m )d (n ,m ∈N *).(2)若{a n }为等差数列,且k +l =m +n (k ,l ,m ,n ∈N *),则a k +a l =a m +a n . (3)若{a n }是等差数列,公差为d ,则{a 2n }也是等差数列,公差为2d . (4)若{a n },{b n }是等差数列,则{pa n +qb n }也是等差数列.(5)若{a n }是等差数列,公差为d ,则a k ,a k +m ,a k +2m ,…(k ,m ∈N *)是公差为md 的等差数列.4.与等差数列各项的和有关的性质(1)若{a n }是等差数列,则⎩⎨⎧⎭⎬⎫S n n 也成等差数列,其首项与{a n }首项相同,公差是{a n }公差的12. (2)若{a n }是等差数列,S m ,S 2m ,S 3m 分别为{a n }的前m 项,前2m 项,前3m 项的和,则S m ,S 2m -S m ,S 3m -S 2m 成等差数列.(3)关于等差数列奇数项和与偶数项和的性质. ①若项数为2n ,则S 偶-S 奇=nd ,S 奇S 偶=a na n +1. ②若项数为2n -1,则S 偶=(n -1)a n ,S 奇=na n ,S 奇-S 偶=a n ,S 奇S 偶=n n -1. (4)两个等差数列{a n },{b n }的前n 项和S n ,T n 之间的关系为a n b n=S 2n -1T 2n -1.1.判断下列结论是否正确(请在括号中打“√”或“×”)(1)若一个数列从第二项起每一项与它的前一项的差都是常数,则这个数列是等差数列.( )(2)等差数列{a n }的单调性是由公差d 决定的.( )(3)等差数列的前n 项和公式是常数项为0的二次函数.( ) (4)已知等差数列{a n }的通项公式a n =3-2n ,则它的公差为-2.( ) 答案:(1)× (2)√ (3)× (4)√2.在等差数列{}a n 中,若a 2=4,a 4=2,则a 6=( ) A .-1 B .0 C .1D .6解析:选B ∵{}a n 为等差数列,∴2a 4=a 2+a 6,∴a 6=2a 4-a 2=2×2-4=0.3.(2017·全国卷Ⅲ)等差数列{a n }的首项为1,公差不为0.若a 2,a 3,a 6成等比数列,则{a n }前6项的和为( )A .-24B .-3C .3D .8 解析:选A 设等差数列{a n }的公差为d , 因为a 2,a 3,a 6成等比数列,所以a 2a 6=a 23, 即(a 1+d )(a 1+5d )=(a 1+2d )2. 又a 1=1,所以d 2+2d =0. 又d ≠0,则d =-2,所以{a n }前6项的和S 6=6×1+6×52×(-2)=-24.4.已知数列⎩⎨⎧⎭⎬⎫1a n 是等差数列,且a 1=1,a 4=4,则a 10=( )A .-45B .-54C.413D.134解析:选A 设等差数列⎩⎨⎧⎭⎬⎫1a n 的公差为d ,由题意可知,1a 4=1a 1+3d =14,解得d =-14,所以1a 10=1a 1+9d =-54,所以a 10=-45. 5.已知等差数列{a n }的公差d ≠0,且a 3+a 9=a 10-a 8,若a n =0,则n =________. 解析:因为a 3+a 9=a 10-a 8,所以a 1+2d +a 1+8d =a 1+9d -(a 1+7d ), 解得a 1=-4d ,所以a n =-4d +(n -1)d =(n -5)d , 令(n -5)d =0(d ≠0),可解得n =5. 答案:56.在等差数列{a n }中,a n >0,a 7=12a 4+4,S n 为数列{a n }的前n 项和,则S 19=________.解析:设等差数列{a n }的公差为d ,由a 7=12a 4+4,得a 1+6d =12(a 1+3d )+4,即a 1+9d =8,所以a 10=8,因此S 19=19(a 1+a 19)2=19×a 10=19×8=152. 答案:152考点一 等差数列的基本运算 (基础送分型考点——自主练透)[考什么·怎么考]n 527A .12 B .13 C .14D .15解析:选B 设等差数列{a n }的公差为d , 由S 5=5(a 2+a 4)2,得5(3+a 4)2=25,解得a 4=7,所以7=3+2d ,解得d =2,所以a 7=a 4+3d =7+3×2=13.2.(2017·全国卷Ⅰ)记S n 为等差数列{a n }的前n 项和.若a 4+a 5=24,S 6=48,则{a n }的公差为( )A .1B .2C .4D .8解析:选C 设等差数列{a n }的公差为d ,则由⎩⎪⎨⎪⎧a 4+a 5=24,S 6=48,得⎩⎪⎨⎪⎧a 1+3d +a 1+4d =24,6a 1+6×52d =48,即⎩⎪⎨⎪⎧2a 1+7d =24,2a 1+5d =16,解得d =4. 3.(2018·福州质检)设等差数列{a n }的公差d ≠0,且a 2=-d ,若a k 是a 6与a k +6的等比中项,则k =( )A .5B .6C .9D .11解析:选C 因为a k 是a 6与a k +6的等比中项, 所以a 2k =a 6a k +6.又等差数列{a n }的公差d ≠0,且a 2=-d , 所以[a 2+(k -2)d ]2=(a 2+4d )[a 2+(k +4)d ], 所以(k -3)2=3(k +3),解得k =9,或k =0(舍去),故选C.4.设S n 为等差数列{a n }的前n 项和,若a 12=-8,S 9=-9,则S 16=________. 解析:设等差数列{a n }的首项为a 1,公差为d , 由已知,得⎩⎪⎨⎪⎧a 12=a 1+11d =-8,S 9=9a 1+9×82d =-9,解得⎩⎪⎨⎪⎧a 1=3,d =-1. ∴S 16=16×3+16×152×(-1)=-72.答案:-72[怎样快解·准解]1.等差数列运算中方程思想的应用(1)等差数列运算问题的一般求法是设出首项a 1和公差d ,然后由通项公式或前n 项和公式转化为方程(组)求解.(2)等差数列的通项公式及前n 项和公式,共涉及五个量a 1,a n ,d ,n ,S n ,知其中三个就能求另外两个,体现了用方程的思想解决问题.[易错提醒] 在求解数列基本量运算中,要注意公式使用时的准确性与合理性,更要注意运算的准确性.在遇到一些较复杂的方程组时,要注意整体代换思想的运用,使运算更加便捷.2.等差数列前n 项和公式的应用方法根据不同的已知条件选用两个求和公式,若已知首项和公差,则使用公式S n =na 1+n (n -1)2d ;若已知通项公式,则使用公式S n =n (a 1+a n )2,同时注意与性质“a 1+a n =a 2+a n -1=a 3+a n -2=…”的结合使用.考点二 等差数列的判定与证明 (重点保分型考点——师生共研)(2018·贵州适应性考试)已知数列{a n }满足a 1=1,且na n +1-(n +1)a n =2n 2+2n . (1)求a 2,a 3;(2)证明数列⎩⎨⎧⎭⎬⎫a n n 是等差数列,并求{a n }的通项公式.[思维路径](1)要求数列的项,可根据已知首项和递推关系式,令n =1,2可解得.(2)证明⎩⎨⎧⎭⎬⎫a n n 是等差数列,其关键应推出a n +1n +1-a n n 为常数,对所给条件进行必要的变形即可.解:(1)由已知,得a 2-2a 1=4, 则a 2=2a 1+4,又a 1=1,所以a 2=6. 由2a 3-3a 2=12,得2a 3=12+3a 2,所以a 3=15.(2)证明:由已知na n +1-(n +1)a n =2n 2+2n , 得na n +1-(n +1)a n n (n +1)=2,即a n +1n +1-a nn=2,所以数列⎩⎨⎧⎭⎬⎫a n n 是首项a 11=1,公差d =2的等差数列.则a nn =1+2(n -1)=2n -1,所以a n =2n 2-n .[解题师说]等差数列的判定与证明方法用定义证明等差数列时,容易漏掉对起始项的检验,从而产生错解.比如,对于满足a n-a n-1=1(n≥3)的数列{a n}而言并不能判定其为等差数列,因为不能确定起始项a2-a1是否等于1.[冲关演练]1.(2018·陕西质检)已知数列{a n}的前n项和S n=an2+bn(a,b∈R)且a2=3,a6=11,则S7等于()A.13B.49C.35 D.63解析:选B由S n=an2+bn(a,b∈R)可知数列{a n}是等差数列,所以S7=7(a1+a7)2=7(a2+a6)2=49.2.已知数列{a n}中,a1=2,a n=2-1a n-1(n≥2,n∈N*),设b n=1a n-1(n∈N*).求证:数列{b n}是等差数列.证明:∵a n=2-1a n-1(n≥2),∴a n+1=2-1a n.∴b n+1-b n=1a n+1-1-1a n-1=12-1a n-1-1a n-1=a n-1a n-1=1,∴{b n}是首项为b1=12-1=1,公差为1的等差数列.考点三等差数列的性质及前n项和的最值(重点保分型考点——师生共研)1.在等差数列{a n}中,a1=29,S10=S20,则数列{a n}的前n项和S n的最大值为() A.S15B.S16C.S15或S16D.S17解析:选A∵a1=29,S10=S20,∴10a1+10×92d=20a1+20×192d,解得d=-2,∴S n=29n+n(n-1)2×(-2)=-n2+30n=-(n-15)2+225.∴当n=15时,S n取得最大值.2.(2018·石家庄一模)已知函数f(x)的图象关于直线x=-1对称,且f(x)在(-1,+∞)上单调,若数列{a n}是公差不为0的等差数列,且f(a50)=f(a51),则数列{a n}的前100项的和为❶❷() A.-200 B.-100C.-50 D.0[学审题]①由函数的对称性及单调性知f(x)在(-∞,-1)上也单调;②结合函数的性质知a50+a51=-2.解析:选B因为函数f(x)的图象关于直线x=-1对称,又函数f(x)在(-1,+∞)上单调,所以f(x)在(-∞,-1)上也单调,且数列{a n}是公差不为0的等差数列.又f(a50)=f(a51),所以a50+a51=-2,所以S100=100(a1+a100)2=50(a50+a51)=-100.[解题师说]1.应用等差数列的性质解题的2个注意点(1)如果{a n}为等差数列,m+n=p+q,则a m+a n=a p+a q(m,n,p,q∈N*).因此,若出现a m-n,a m,a m+n等项时,可以利用此性质将已知条件转化为与a m(或其他项)有关的条件;若求a m项,可由a m=12(a m-n+a m+n)转化为求a m-n,a m+n或a m+n+a m-n的值.(2)要注意等差数列通项公式及前n项和公式的灵活应用,如a n=a m+(n-m)d,d=a n -a m n -m,S 2n -1=(2n -1)a n ,S n =n (a 1+a n )2=n (a 2+a n -1)2(n ,m ∈N *)等.2.求等差数列前n 项和S n 最值的2种方法(1)函数法:利用等差数列前n 项和的函数表达式S n =an 2+bn ,通过配方或借助图象求二次函数最值的方法求解.(2)邻项变号法:①当a 1>0,d <0时,满足⎩⎪⎨⎪⎧ a m ≥0,a m +1≤0的项数m 使得S n 取得最大值为S m ;②当a 1<0,d >0时,满足⎩⎪⎨⎪⎧a m ≤0,a m +1≥0的项数m 使得S n 取得最小值为S m .3.理清等差数列的前n 项和与函数的关系 等差数列的前n 项和公式为S n =na 1+n (n -1)2d 可变形为S n =d 2n 2+⎝⎛⎭⎫a 1-d 2n ,令A =d2,B =a 1-d2,则S n =An 2+Bn .当A ≠0,即d ≠0时,S n 是关于n 的二次函数,(n ,S n )在二次函数y =Ax 2+Bx 的图象上,即为抛物线y =Ax 2+Bx 上一群孤立的点.利用此性质可解决前n 项和S n 的最值问题.[冲关演练]1.(2018·岳阳模拟)在等差数列{a n }中,如果a 1+a 2=40,a 3+a 4=60,那么a 7+a 8=( ) A .95 B .100 C .135D .80解析:选B 由等差数列的性质可知,a 1+a 2,a 3+a 4,a 5+a 6,a 7+a 8构成新的等差数列,于是a 7+a 8=(a 1+a 2)+(4-1)[(a 3+a 4)-(a 1+a 2)]=40+3×20=100.2.设等差数列{a n }的前n 项和为S n ,且a 1>0,a 3+a 10>0,a 6a 7<0,则满足S n >0的最大自然数n 的值为( )A .6B .7C .12D .13解析:选C 因为a 1>0,a 6a 7<0,所以a 6>0,a 7<0,等差数列的公差小于零,又a 3+a 10=a 1+a 12>0,a 1+a 13=2a 7<0,所以S 12>0,S 13<0,所以满足S n >0的最大自然数n 的值为12.3.设等差数列{a n }的前n 项和为S n ,已知前6项和为36,最后6项的和为180,S n =324(n >6),则数列{a n }的项数为________.解析:由题意知a 1+a 2+…+a 6=36,① a n +a n -1+a n -2+…+a n -5=180,②①+②得(a 1+a n )+(a 2+a n -1)+…+(a 6+a n -5)=6(a 1+a n )=216,∴a 1+a n =36, 又S n =n (a 1+a n )2=324, ∴18n =324,∴n =18. 答案:18(一)普通高中适用作业A 级——基础小题练熟练快1.(2018·兰州诊断考试)已知等差数列{a n }的前n 项和为S n ,若a 1=2,a 8+a 10=28,则S 9=( )A .36B .72C .144D .288解析:选B 法一:∵a 8+a 10=2a 1+16d =28,a 1=2, ∴d =32,∴S 9=9×2+9×82×32=72.法二:∵a 8+a 10=2a 9=28,∴a 9=14, ∴S 9=9(a 1+a 9)2=72. 2.(2018·安徽两校阶段性测试)若等差数列{a n }的前n 项和为S n ,且满足a 2+S 3=4,a 3+S 5=12,则a 4+S 7的值是( )A .20B .36C .24D .72解析:选C 由a 2+S 3=4及a 3+S 5=12,得⎩⎪⎨⎪⎧ 4a 1+4d =4,6a 1+12d =12,解得⎩⎪⎨⎪⎧a 1=0,d =1,∴a 4+S 7=8a 1+24d =24.3.(2018·西安质检)已知数列{a n }满足a 1=15,且3a n +1=3a n -2.若a k ·a k +1<0,则正整数k =( )A .21B .22C .23D .24解析:选C 由3a n +1=3a n -2⇒a n +1-a n =-23⇒{a n }是等差数列,则a n =473-23n .∵a k ·a k+1<0,∴⎝⎛⎭⎫473-23k ⎝⎛⎭⎫453-23k <0,∴452<k <472,又∵k ∈N *,∴k =23.4.(2018·东北三校联考)已知数列{a n }的首项为3,{b n }为等差数列,且b n =a n +1-a n (n ∈N *),若b 3=-2,b 2=12,则a 8=( )A .0B .-109C .-181D .121解析:选B 设等差数列{b n }的公差为d ,则d =b 3-b 2=-14,因为a n +1-a n =b n ,所以a 8-a 1=b 1+b 2+…+b 7=7(b 1+b 7)2=7b 4=7×(-2-14)=-112,又a 1=3,所以a 8=-109.5.(2018·云南11校跨区调研)在数列{a n }中,a 1=3,a n +1=3a n a n +3,则a 4=( )A.34 B .1 C.43D.32解析:选A 依题意得1a n +1=a n +33a n =1a n +13,1a n +1-1a n =13,故数列⎩⎨⎧⎭⎬⎫1a n 是以1a 1=13为首项、13为公差的等差数列,则1a n =13+n -13=n 3,a n =3n ,a 4=34.6.(2018·东北四市高考模拟)已知数列{a n }满足a n +1-a n =2,a 1=-5,则|a 1|+|a 2|+…+|a 6|=( )A .9B .15C .18D .30解析:选C 由a n +1-a n =2可得数列{a n }是等差数列,公差d =2,又a 1=-5,所以a n =2n -7,所以|a 1|+|a 2|+|a 3|+|a 4|+|a 5|+|a 6|=5+3+1+1+3+5=18.7.(2016·北京高考)已知{a n }为等差数列,S n 为其前n 项和.若a 1=6,a 3+a 5=0,则S 6=________.解析:∵a 3+a 5=2a 4,∴a 4=0. ∵a 1=6,a 4=a 1+3d ,∴d =-2. ∴S 6=6a 1+6×(6-1)2d =6×6-30=6.答案:68.等差数列{a n }中,已知a 5>0,a 4+a 7<0,则{a n }的前n 项和S n 的最大值为________.解析:∵⎩⎪⎨⎪⎧ a 4+a 7=a 5+a 6<0,a 5>0,∴⎩⎪⎨⎪⎧a 5>0,a 6<0,∴S n 的最大值为S 5. 答案:S 59.若等差数列{a n }的前17项和S 17=51,则a 5-a 7+a 9-a 11+a 13=________. 解析:因为S 17=a 1+a 172×17=17a 9=51,所以a 9=3. 根据等差数列的性质知a 5+a 13=a 7+a 11, 所以a 5-a 7+a 9-a 11+a 13=a 9=3. 答案:310.在等差数列{a n }中,公差d =12,前100项的和S 100=45,则a 1+a 3+a 5+…+a 99=________.解析:因为S 100=1002(a 1+a 100)=45,所以a 1+a 100=910, a 1+a 99=a 1+a 100-d =25,则a 1+a 3+a 5+…+a 99=502(a 1+a 99)=502×25=10. 答案:10B 级——中档题目练通抓牢1.(2018·湖南五市十校联考)已知S n 是数列{a n }的前n 项和,且S n +1=S n +a n +3,a 4+a 5=23,则S 8=( )A .72B .88C .92D .98解析:选C 法一:由S n +1=S n +a n +3,得a n +1-a n =3,故数列{a n }是公差为3的等差数列,又a 4+a 5=23=2a 1+7d =2a 1+21,∴a 1=1,S 8=8a 1+8×72d =92.法二:由S n +1=S n +a n +3,得a n +1-a n =3,故数列{a n }是公差为3的等差数列,S 8=8(a 1+a 8)2=8(a 4+a 5)2=92. 2.(2018·广东潮州二模)在我国古代著名的数学专著《九章算术》里有一段叙述:今有良马与驽马发长安至齐,齐去长安一千一百二十五里,良马初日行一百零三里,日增一十三里;驽马初日行九十七里,日减半里,良马先至齐,复还迎驽马,二马相逢,问:几日相逢( )A .8日B .9日C .12日D .16日解析:选B 设n 日相逢,则依题意得103n +n (n -1)2×13+97n +n (n -1)2×⎝⎛⎭⎫-12=1125×2,整理得n 2+31n -360=0,解得n =9(负值舍去),故选B.3.等差数列{a n }的前n 项和为S n ,其中n ∈N *,则下列命题错误的是( ) A .若a n >0,则S n >0 B .若S n >0,则a n >0C .若a n >0,则{S n }是单调递增数列D .若{S n }是单调递增数列,则a n >0解析:选D 由等差数列的性质可得:∀n ∈N *,a n >0,则S n >0,反之也成立.a n >0,d >0,则{S n }是单调递增数列.因此A 、B 、C 正确.对于D ,{S n }是单调递增数列,则d >0,而a n >0不一定成立.4.在等差数列{a n }中,a 1=7,公差为d ,前 n 项和为S n ,当且仅当n =8 时S n 取得最大值,则d 的取值范围为________.解析:由题意,当且仅当n =8时S n 有最大值, 可得⎩⎪⎨⎪⎧d <0,a 8>0,a 9<0,即⎩⎪⎨⎪⎧d <0,7+7d >0,7+8d <0,解得-1<d <-78.答案:⎝⎛⎭⎫-1,-78 5.设等差数列{a n }的前n 项和为S n ,S m -1=-2,S m =0,S m +1=3,则m =________. 解析:因为等差数列{a n }的前n 项和为S n ,S m -1=-2,S m =0,S m +1=3,所以a m =S m -S m -1=2,a m +1=S m +1-S m =3,数列的公差d =1,a m +a m +1=S m +1-S m-1=5,即2a 1+2m -1=5, 所以a 1=3-m . 由S m =(3-m )m +m (m -1)2×1=0, 解得m =5. 答案:56.(2018·广西三市第一次联考)已知数列{a n }的前n 项和为S n ,且S n =2n -1(n ∈N *). (1)求数列{a n }的通项公式;(2)设b n =log 4a n +1,求{b n }的前n 项和T n . 解:(1)当n ≥2时,a n =S n -S n -1=2n -1,当n =1时,a 1=2-1=1,满足a n =2n -1,∴数列{a n }的通项公式为a n =2n -1(n ∈N *).(2)由(1)得,b n =log 4a n +1=n +12,。

2019届高三理科数学一轮复习滚动检测卷(全套打包答案)

2019届高三理科数学一轮复习滚动检测卷(全套打包答案)

2019届高三理科数学一轮复习滚动检测一考生注意:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共4页.2.答卷前,考生务必用蓝、黑色字迹的钢笔或圆珠笔将自己的姓名、班级、学号填写在相应位置上.3.本次考试时间120分钟,满分150分. 4.请在密封线内作答,保持试卷清洁完整.第Ⅰ卷(选择题 共60分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知集合A ={x |7<2x <33,x ∈N },B ={x |log 3(x -1)<1},则A ∩(∁R B )等于( ) A .{4,5} B .{3,4,5} C .{x |3≤x <4}D .{x |3≤x ≤5}2.“|x -1|<2成立”是“x (x -3)<0成立”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分又不必要条件3.(2017·肇庆期末)设命题p :直线x -y +1=0的倾斜角为135°;命题q :平面直角坐标系内的三点A (-1,-3),B (1,1),C (2,2)共线.则下列判断正确的是( ) A .綈p 为假 B .(綈p )且(綈q )为真 C .p 或q 为真D .q 为真4.当x ∈(0,+∞)时,幂函数y =(m 2-m -1)x -m -1为减函数,则实数m 的取值集合为( )A .{2}B .{-1}C .{2,-1}D.⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫m ⎪⎪⎪m ≠1+52 5.定义在R 上的函数f (x )满足f (x )=⎩⎪⎨⎪⎧log 2(4-x ),x ≤0f (x -1)-f (x -2),x >0, 则f (3)的值为( )A .-1B .-2C .1D .26.函数f (x )=ln x -2x 的零点所在的大致区间为( )A .(1,2)B .(2,3)C .(e,3)D .(e ,+∞)7.已知函数f (x )的定义域为R ,对任意x 都有f (x +2)=-f (x ),且当x ∈[0,2)时,f (x )=log 2(x +1),则f (2 015)+f (2 018)的值为( ) A .-2 B .-1 C .1D .28.函数f (x )=e x -1x的图像大致为( )9.若a >0,b >0,ab >1,12log a =ln 2,则log a b 与12log a 的关系是( )A .log a b <12log aB .log a b =12log aC .log a b >12log aD .log a b ≤12log a10.已知f (x )是偶函数,x ∈R ,若将f (x )的图像向右平移一个单位得到一个奇函数,若f (2)=-1,则f (1)+f (2)+f (3)+…+f (2 018)等于( ) A .-1 003 B .1 003 C .1D .-111.(2017·天津市河西区模拟)已知命题p :任意x ∈[1,2],e x -a ≥0.若綈p 是假命题,则实数a 的取值范围为( ) A .(-∞,e 2] B .(-∞,e] C .[e ,+∞)D .[e 2,+∞)12.(2017·汕头模拟)设函数f (x )是定义在R 上的周期为2的函数,且对任意的实数x ,恒有f (x )-f (-x )=0,当x ∈[-1,0]时,f (x )=x 2,若g (x )=f (x )-log a x 在(0,+∞)上有三个零点,则a 的取值范围为( ) A .[3,5] B .[4,6] C .(3,5)D .(4,6)第Ⅱ卷(非选择题 共90分)二、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中横线上)13.定义在R 上的奇函数f (x ),f (-1)=2,且当x ≥0时,f (x )=2x +(a +2)x +b (a ,b 为常数),则f (-10)的值为______.14.(2018·保定模拟)已知命题p :函数y =log a (ax +2a )(a >0且a ≠1)的图像必过定点(-1,1);命题q :如果函数y =f (x -3)的图像关于原点对称,那么函数y =f (x )的图像关于点(3,0)对称,则命题p 或q 为______(填“真”或“假”)命题.15.设函数f (x )=(x +1)2+sin x x 2+1的最大值为M ,最小值为m ,则M +m =________.16.设f (x )是定义在R 上的奇函数,且f (x )=2x +m2x ,设g (x )=⎩⎪⎨⎪⎧f (x ),x >1,f (-x ),x ≤1,若函数y =g (x )-t有且只有一个零点,则实数t 的取值范围是________.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤) 17.(10分)(2018届衡水市武邑中学月考)已知集合P ={x |a +1≤x ≤2a +1},Q ={x |x 2-3x ≤10}.(1)若a =3,求(∁R P )∩Q ;(2)若P ⊆Q ,求实数a 的取值范围.18.(12分)(2018·唐山调研)命题p :f (x )=1-x3,且|f (a )|<2;命题q :集合A ={x |x 2+(a +2)x +1=0},B ={x |x >0}且A ∩B =∅,求实数a 的取值范围,使命题p ,q 中至少有一个为真命题.19.(12分)已知函数f (x )=ax 2+bx -a -ab (a ≠0),当x ∈(-1,3)时,f (x )>0;当x ∈(-∞,-1)∪(3,+∞)时,f (x )<0.(1)求f (x )在(-1,2)内的值域;(2)若方程f (x )=c 在[0,3]上有两个不相等实根,求c 的取值范围.20.(12分)旅行社为某旅行团包飞机去旅游,其中旅行社的包机费为16 000元.旅行团中的每个人的飞机票按以下方式与旅行社结算:若旅行团的人数不超过35,则飞机票每张收费800元;若旅行团的人数多于35,则予以优惠,每多1人,每个人的机票费减少10元,但旅行团的人数最多不超过60.设旅行团的人数为x ,每个人的机票费为y 元,旅行社的利润为Q 元.成本只算飞机费用.(1)写出y 与x 之间的函数关系式;(2)当旅行团的人数为多少时,旅行社可获得最大利润?并求出最大利润.21.(12分)已知函数f (x )=22x -52·2x +1-6.(1)当x ∈[0,4]时,求f (x )的最大值和最小值;(2)若存在x ∈[0,4],使f (x )+12-a ·2x ≥0成立,求实数a 的取值范围.22.(12分)已知函数f (x )的定义域是⎩⎨⎧⎭⎬⎫x ⎪⎪x ≠k2,k ∈Z ,x ∈R ,且f (x )+f (2-x )=0,f (x +1)=-1f (x ),当12<x <1时,f (x )=3x .(1)证明:f (x )为奇函数;(2)求f (x )在⎝⎛⎭⎫-1,-12上的表达式; (3)是否存在正整数k ,使得当x ∈⎝⎛⎭⎫2k +12,2k +1时,log 3f (x )>x 2-kx -2k 有解?若存在,求出k 的值;若不存在,请说明理由.答案精析1.A 2.B 3.B 4.A 5.B 6.B 7.B 8.A 9.A 10.D 11.B12.C [∵f (x )-f (-x )=0,∴f (x )=f (-x ),∴f (x )是偶函数,根据函数的周期性和奇偶性作出函数f (x )的图像如图所示:∵g (x )=f (x )-log a x 在(0,+∞)上有三个零点,∴y 1=f (x )和y 2=log a x 的图像在(0,+∞)上有三个交点,作出函数y 2=log a x 的图像,∴⎩⎪⎨⎪⎧log a 3<1,log a 5>1,a >1,解得3<a <5,故选C.]13.-993 14.真 15.2解析 函数可化为f (x )=(x +1)2+sin x x 2+1=1+2x +sin xx 2+1,令g (x )=2x +sin x x 2+1,则g (x )=2x +sin xx 2+1为奇函数,∴g (x )=2x +sin xx 2+1的最大值与最小值的和为0.∴M +m =2. 16.⎣⎡⎦⎤-32,32 解析 因为f (x )为奇函数,所以f (-x )=-f (x ), 即2-x +m ·2x =-(2x +m ·2-x ),解得m =-1,故g (x )=⎩⎪⎨⎪⎧2x -2-x ,x >1,2-x -2x ,x ≤1, 作出函数g (x )的图像(如图所示).当x >1时,g (x )是增加的,此时g (x )>32;当x ≤1时,g (x )是减少的,此时g (x )≥-32,所以当t ∈⎣⎡⎦⎤-32,32时,y =g (x )-t 有且只有一个零点. 17.解 (1)因为a =3,所以P ={x |4≤x ≤7}, ∁R P ={x |x <4或x >7}.又Q ={x |x 2-3x ≤10}={x |-2≤x ≤5}, 所以(∁R P )∩Q ={x |-2≤x <4}.(2)当P ≠∅时,由P ⊆Q ,得⎩⎪⎨⎪⎧a +1≥-2,2a +1≤5,2a +1≥a +1.解得0≤a ≤2;当P =∅时,2a +1<a +1,解得a <0,此时有P =∅⊆Q , 综上,实数a 的取值范围是(-∞,2]. 18.解 先考虑p :解得-5<a <7.再考虑q :①当Δ<0时,A =∅,A ∩B =∅,此时由(a +2)2-4<0,得-4<a <0; ②当Δ≥0时,由A ∩B =∅,可得⎩⎪⎨⎪⎧Δ=(a +2)2-4≥0,x 1+x 2=-(a +2)<0,x 1x 2=1>0,解得a ≥0.由①②可知,a >-4.当p ,q 都为假命题时,⎩⎪⎨⎪⎧a ≤-5或a ≥7,a ≤-4,解得a ≤-5,所以当a 的取值范围是(-5,+∞)时, p ,q 中至少有一个为真命题.19.解 (1)由题意知,-1,3是方程ax 2+bx -a -ab =0的两根, 可得a =-1,b =2,则f (x )=-x 2+2x +3在(-1,2)内的值域为(0,4].(2)方程-x 2+2x +3=c ,即x 2-2x +c -3=0在[0,3]上有两个不相等实根, 设g (x )=x 2-2x +c -3,则⎩⎪⎨⎪⎧g (1)<0,g (0)≥0,g (3)≥0,解得3≤c <4.20.解 (1)依题意知,1≤x ≤60,x ∈N +,又当1≤x <20时,800x <16 000,不符合实际情况, 故20≤x ≤60,x ∈N +. 当20≤x ≤35时,y =800;当35<x ≤60时,y =800-10(x -35)=-10x +1 150.所以y =⎩⎪⎨⎪⎧800,20≤x ≤35,且x ∈N +,-10x +1 150,35<x ≤60,且x ∈N +.(2)当20≤x ≤35,且x ∈N +时, Q =yx -16 000=800x -16 000, 此时Q max =800×35-16 000=12 000; 当35<x ≤60,且x ∈N +时,Q =yx -16 000 =-10x 2+1 150x -16 000 =-10⎝⎛⎭⎫x -11522+34 1252, 所以当x =57或x =58时,Q 取得最大值,即Q max =17 060.因为17 060>12 000,所以当旅行团的人数为57或58时,旅行社可获得最大利润,为17 060元.21.解 (1)f (x )=(2x )2-5·2x -6, 设2x =t ,∵x ∈[0,4],则t ∈[1,16], ∴h (t )=t 2-5t -6,t ∈[1,16].∵当t ∈⎝⎛⎦⎤1,52时,函数h (t )是减少的; 当t ∈⎝⎛⎦⎤52,16时,函数h (t )是增加的, ∴f (x )min =h ⎝⎛⎭⎫52=-494,f (x )max =h (16)=170. (2)∵存在x ∈[0,4],使f (x )+12-a ·2x ≥0成立,而t =2x >0,∴存在t ∈[1,16],使得a ≤t +6t -5成立.令g (t )=t +6t -5,则g (t )在[1,6]上是减少的,在[6,16]上是增加的,而g (1)=2<g (16)=918, ∴g (t )max =g (16)=918,∴a ≤g (t )max =g (16)=918,∴实数a 的取值范围是⎝⎛⎦⎤-∞,918. 22.(1)证明 ∵f (x +2)=f (x +1+1)=-1f (x +1)=f (x ),∴f (x )的周期为2,∵f (x )+f (2-x )=0,即f (x )+f (-x )=0,又∵f (x )的定义域是⎩⎨⎧⎭⎬⎫x ⎪⎪x ≠k2,k ∈Z ,x ∈R ,关于原点对称, ∴f (x )为奇函数.(2)解 当-1<x <-12时,12<-x <1,则f (-x )=3-x .∵f (x )=-f (-x ),∴当-1<x <-12时,f (x )=-3-x .(3)解 任取x ∈⎝⎛⎭⎫2k +12,2k +1,则x -2k ∈⎝⎛⎭⎫12,1, ∵f (x )=f (x -2k )=3x -2k,log 3(3x-2k)>x 2-kx -2k 在x ∈⎝⎛⎭⎫2k +12,2k +1时有解, 即x 2-(k +1)x <0在x ∈⎝⎛⎭⎫2k +12,2k +1时有解,∵k ∈N +,∴(0,k +1)∩⎝⎛⎭⎫2k +12,2k +1≠∅, ∴k +1>2k +12(k ∈N +)无解.∴不存在这样的k ∈N +,使得当x ∈⎝⎛⎭⎫2k +12,2k +1时, log 3f (x )>x 2-kx -2k 有解.滚动检测二考生注意:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共4页.2.答卷前,考生务必用蓝、黑色字迹的钢笔或圆珠笔将自己的姓名、班级、学号填写在相应位置上.3.本次考试时间120分钟,满分150分. 4.请在密封线内作答,保持试卷清洁完整.第Ⅰ卷(选择题 共60分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(2017·辽宁重点高中协作校期中)已知全集U ={1,2,3,4,5,6,7},M ={3,4,5},N ={1,3,6},则集合{4,5}等于( ) A .M ∩(∁U N ) B .(∁U M )∩(∁U N ) C .(∁U M )∪(∁U N )D .M ∪(∁U N )2.(2017·黄山质检)下列命题中正确的是( ) A .若p 或q 为真命题,则p 且q 为真命题B .若直线ax +y -1=0与直线x +ay +2=0平行,则a =1C .若命题“存在x ∈R ,x 2+(a -1)x +1<0”是真命题,则实数a 的取值范围是a <-1或a >3D .命题“若x 2-3x +2=0,则x =1或x =2”的逆否命题为“若x ≠1或x ≠2,则x 2-3x +2≠0”3.(2018·大同调研)给定函数:①y =x 12,②y =1x ,③y =|x |-1,④y =cos ⎝⎛⎭⎫π2-x ,其中既是奇函数又在区间(0,1)上是增函数的是( ) A .① B .②C .③D .④4.函数f (x )在定义域R 内可导,若f (x )=f (2-x ),且(x -1)f ′(x )>0,a =f (0),b =f ⎝⎛⎭⎫12,c =f (3),则a ,b ,c 的大小关系是( ) A .a >b >c B .c >a >b C .b >a >cD .c >b >a5.已知f (x )是偶函数,且f (x )在[0,+∞)上是增函数,如果f (ax +1)≤f (x -2)在x ∈⎣⎡⎦⎤12,1时恒成立,则实数a 的取值范围是( ) A .[-2,1] B .[-5,0] C .[-5,1]D .[-2,0]6.曲线y =e x 在点A (2,e 2)处的切线与坐标轴所围成的三角形的面积为( ) A .e 2 B .2e 2 C .eD.e 227.函数y =e |ln x |-|x -1|的图像大致是( )8.在△ABC 中,角A ,B ,C 所对的边分别是a ,b ,c 且a cos C ,b cos B ,c cos A 成等差数列.若b =3,则a +c 的最大值为( ) A.32B .3C .2 3D .99.将函数y =sin(2x +φ)的图像沿x 轴向左平移π8个单位长度后,得到一个偶函数的图像,则φ的一个可能取值为( ) A.3π4 B.π4C .0D .-π410.(2018届佳木斯市鸡东县二中月考)已知函数f (x )=sin(2x +φ)(0<φ<π)的图像的一个对称中心为⎝⎛⎭⎫π8,0,则函数f (x )的递增区间是( ) A.⎣⎡⎦⎤2k π-5π8,2k π-π8(k ∈Z ) B.⎣⎡⎦⎤2k π-π8,2k π+3π8(k ∈Z ) C.⎣⎡⎦⎤k π-5π8,k π-π8(k ∈Z ) D.⎣⎡⎦⎤k π-π8,k π+3π8(k ∈Z ) 11.己知函数f (x )是定义在R 上的偶函数,且函数y =f (x )的图像关于直线x =1对称,已知当x ∈[-1,0]时,f (x )=-(x +1)2+1,函数y 1=f (x )的图像和函数y 2=lg|x |的图像的交点个数为( )A .8B .9C .16D .1812.已知函数f (x )=ln x -ax 2+ax 恰有两个零点,则实数a 的取值范围为( ) A .(-∞,0) B .(0,+∞) C .(0,1)∪(1,+∞)D .(-∞,0)∪{1} 第Ⅱ卷(非选择题 共90分)二、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中横线上)13.(2017·洛阳一模)已知p :任意x ∈⎣⎡⎦⎤14,12,2x <m (x 2+1),q :函数f (x )=4x +2x +1+m -1存在零点,若“p 且q ”为真命题,则实数m 的取值范围是________. 14.若sin(π+α)=35,则cos (-α)+sin ⎝⎛⎭⎫-α-π2+1sin (3π-α)-cos ⎝⎛⎭⎫-α-π2的值是________.15.(2017·唐山一模)将函数f (x )=cos ωx 的图像向右平移π2个单位长度后得到函数g (x )=sin ⎝⎛⎭⎫ωx -π4的图像,则正数ω的最小值为________.16.定义:如果函数f (x )在[m ,n ]上存在x 1,x 2(m <x 1<x 2<n )满足f ′(x 1)=f (n )-f (m )n -m ,f ′(x 2)=f (n )-f (m )n -m .则称函数f (x )是[m ,n ]上的“双中值函数”,已知函数f (x )=x 3-x 2+a 是[0,a ]上的“双中值函数”,则实数a 的取值范围是______________.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤)17.(10分)已知集合A =⎩⎨⎧⎭⎬⎫x ⎪⎪18≤2x -2≤16,B ={x |2m +1≤x ≤3m -1}. (1)求集合A ;(2)若B ⊆A ,求实数m 的取值范围.18.(12分)(2018届重庆一中月考)已知函数f (x )=sin ⎝⎛⎭⎫2x +φ+π3(0<φ<2π),若f (x )-f ⎝⎛⎭⎫π4-x =0对x ∈R 恒成立,且f ⎝⎛⎭⎫π2>f (0). (1)求y =f (x )的解析式和递增区间; (2)当x ∈⎣⎡⎦⎤-π12,π2时,求y =f (x )的值域.19.(12分)(2018·葫芦岛调研)某公司生产一种产品,每年需投入固定成本25万元,此外每生产1件这样的产品,还需增加投入0.5万元,经市场调查知这种产品年需求量为500件,产品销售数量为t 件时,销售所得的收入为⎝⎛⎭⎫5t -1200t 2 万元. (1)设该公司这种产品的年生产量为x 件,生产并销售这种产品所得到的利润关于当年产量x 的函数为f (x ),求f (x );(2)当该公司的年产量为多少件时,当年所获得的利润最大.20.(12分)已知函数f (x )=ln x -12ax 2+(1-a )x +1.(1)当a =1时,求函数f (x )在x =2处的切线方程; (2)求函数f (x )在x ∈[1,2]时的最大值.21.(12分)在△ABC中,设边a,b,c所对的角分别为A,B,C.A,B,C都不是直角,且ac cos B+bc cos A=a2-b2+8cos A.(1)若sin B=2sin C,求b,c的值;(2)若a=6,求△ABC面积的最大值.22.(12分)已知f(x)=ln(1+x)-axx+1,x∈R.(1)若曲线y=f(x)在点(0,f(0))处的切线的斜率为5,求a的值;(2)若函数f(x)的最小值为-a,求a的值;(3)当x>-1时,(1+x)ln(1+x)+(ln k-1)x+ln k>0恒成立,求实数k的取值范围.答案精析1.A 2.C 3.D 4.B5.D [因为f (x )是偶函数,且在[0,+∞)上是增函数, 如果f (ax +1)≤f (x -2)在x ∈⎣⎡⎦⎤12,1时恒成立,则|ax +1|≤|x -2|,即x -2≤ax +1≤2-x .由ax +1≤2-x ,得ax ≤1-x ,a ≤1x -1,而1x -1在x =1时取得最小值0,故a ≤0.同理,当x -2≤ax +1时,a ≥1-3x ,而1-3x 在x =1处取最大值-2,所以a ≥-2,所以a 的取值范围是[-2,0].]6.D [y ′=e x ,曲线y =e x 在点A (2,e 2)处的切线的斜率为e 2,相应的切线方程是y -e 2=e 2(x -2),当x =0时,y =-e 2,当y =0时,x =1,∴切线与坐标轴所围成的三角形的面积S =12×e 2×1=e 22.]7.D [由y =e |ln x |-|x -1|可知,函数过点(1,1), 当0<x <1时,y =e-ln x-1+x =1x +x -1,y ′=-1x2+1<0.∴y =e -ln x -1+x 在(0,1)上为减函数;当x >1时,y =e ln x -x +1=1,故选D.] 8.C [∵a cos C ,b cos B ,c cos A 成等差数列, ∴2b cos B =a cos C +c cos A ,∴2sin B cos B =sin A cos C +sin C cos A , ∴2sin B cos B =sin(A +C ),∵A +B +C =π,∴2sin B cos B =sin B , 又∵sin B ≠0,∴cos B =12.∵0<B <π,∴B =π3.∵b 2=a 2+c 2-2ac cos B ,即a 2+c 2-ac =3, ac ≤⎝⎛⎭⎫a +c 22,当且仅当a =c 时取等号,∴(a +c )2-33≤⎝⎛⎭⎫a +c 22, 即(a +c )2≤12,∴a +c ≤2 3.]9.B [把函数y =sin(2x +φ)的图像向左平移π8个单位长度后,得到的图像的解析式是y =sin ⎝⎛⎭⎫2x +π4+φ,该函数是偶函数的充要条件是π4+φ=k π+π2,k ∈Z ,根据选项检验可知φ的一个可能取值为π4.]10.C [由题意得2×π8+φ=k π(k ∈Z ).∵0<φ<π,∴φ=3π4,因此2k π-π2≤2x +3π4≤2k π+π2(k ∈Z ).∴k π-5π8≤x ≤k π-π8(k ∈Z ).]11.D [函数y 1=f (x )的图像关于直线x =1对称,故f (1+x )=f (1-x ). 函数f (x )是定义在R 上的偶函数,故f (1-x )=f (x -1), 因此f (x +1)=f (x -1),从而函数f (x )是周期为2的函数.可根据函数性质作出函数y 1=f (x )的图像和函数y 2=lg|x |的图像,因为函数f (x )的值域为[0,1],所以只需要考虑区间[-10,10],数形结合可得交点个数为18.故选D.]12.C [函数f (x )的定义域为(0,+∞),f (x )恰有两个零点,转化为ln x -ax 2+ax =0,即方程ln x x =a (x -1)恰有两解,设g (x )=ln xx ,则g ′(x )=1-ln x x 2,当0<x <e 时,g ′(x )>0,当x >e 时,g ′(x )<0,所以g (x )在(0,e)上是增函数, 在(e ,+∞)上是减函数,且g (1)=0,当x >e 时,g (x )>0,g ′(1)=1,作出函数y 1=g (x )和函数y 2=a (x -1)的图像如图所示,由图可知,两个函数有两个交点的充要条件是0<a <1或a >1,故选C.] 13.⎝⎛⎭⎫45,1解析 已知p :任意x ∈⎣⎡⎦⎤14,12,2x <m (x 2+1),故m >2x x 2+1,令g (x )=2xx 2+1,则g (x )在⎣⎡⎦⎤14,12上是增加的,故g (x )≤g ⎝⎛⎭⎫12=45,故p 为真时,m >45; q :函数f (x )=4x +2x +1+m -1=(2x +1)2+m -2, 令f (x )=0,得2x =2-m -1,若f (x )存在零点,则2-m -1>0,解得,m <1, 故q 为真时,m <1;若“p 且q ”为真命题, 则实数m 的取值范围是⎝⎛⎭⎫45,1. 14.-5615.32解析 f (x )向右平移π2个单位长度后得g (x )=cos ⎣⎡⎦⎤ω⎝⎛⎭⎫x -π2=cos ⎝⎛⎭⎫ωx -π2ω. ∵sin ⎝⎛⎭⎫ωx -π4=cos ⎣⎡⎦⎤π2-⎝⎛⎭⎫ωx -π4=cos ⎝⎛⎭⎫ωx -3π4, ∴ωx -π2ω=ωx -3π4+2k π(k ∈Z ),∴ω=32-4k (k ∈Z ),∴正数ω的最小值为32.16.⎝⎛⎭⎫12,1解析 因为f (x )=x 3-x 2+a ,所以由题意可知,f ′(x )=3x 2-2x 在区间[0,a ]上存在x 1,x 2(0<x 1<x 2<a ),满足f ′(x 1)=f ′(x 2)=f (a )-f (0)a -0=a 2-a ,所以方程3x 2-2x =a 2-a 在区间(0,a )上有两个不相等的实根. 令g (x )=3x 2-2x -a 2+a (0<x <a ), 则⎩⎪⎨⎪⎧Δ=4-12(-a 2+a )>0,g (0)=-a 2+a >0,g (a )=2a 2-a >0,解得12<a <1.17.解 (1)18≤2x -2≤16,2-3≤2x -2≤24,∴-3≤x -2≤4,∴-1≤x ≤6,∴A ={x |-1≤x ≤6}. (2)若B =∅,则2m +1>3m -1,解得m <2,此时满足题意; 若B ≠∅且B ⊆A ,∴必有⎩⎪⎨⎪⎧2m +1≤3m -1,-1≤2m +1,3m -1≤6,解得2≤m ≤73.综上所述,m 的取值范围为⎩⎨⎧⎭⎬⎫m ⎪⎪m ≤73. 18.解 (1)f (x )=sin ⎝⎛⎭⎫2x +φ+π3, 由f (x )-f ⎝⎛⎭⎫π4-x =0可知,x =π8为函数的对称轴, 则2×π8+φ+π3=k π+π2,φ=-π12+k π,k ∈Z ,由0<φ<2π可知,φ=11π12或φ=23π12.又由f ⎝⎛⎭⎫π2>f (0)可知,-sin ⎝⎛⎭⎫φ+π3>sin ⎝⎛⎭⎫φ+π3, 则sin ⎝⎛⎭⎫φ+π3<0, 验证φ=11π12和φ=23π12,则φ=11π12符合,所以y =f (x )=sin ⎝⎛⎭⎫2x +5π4=-sin ⎝⎛⎭⎫2x +π4. 由π2+2k π≤2x +π4≤3π2+2k π,得π8+k π≤x ≤5π8+k π,k ∈Z , 所以f (x )的递增区间为⎣⎡⎦⎤π8+k π,5π8+k π,k ∈Z . (2)因为x ∈⎣⎡⎦⎤-π12,π2,所以2x +π4∈⎣⎡⎦⎤π12,5π4, 则f (x )=-sin ⎝⎛⎭⎫2x +π4∈⎣⎡⎦⎤-1,22. 所以f (x )的值域为⎣⎡⎦⎤-1,22. 19.解 (1)当0<x ≤500时,f (x )=5x -1200x 2-x2-25;当x >500时,f (x )=5×500-1200×5002-x2-25,故f (x )=⎩⎨⎧-1200x 2+92x -25,0<x ≤500,-12x +1 225,x >500.(2)当0<x ≤500时,f (x )=-1200(x -450)2+19752. 故当x =450时,f (x )max =1 9752=987.5; 当x >500时,f (x )<-12×500+1 225=975,故当该公司的年产量为450件时,当年获得的利润最大. 20.解 (1)当a =1时,f (x )=ln x -12x 2+1,∴f ′(x )=1x-x ,∴f ′(2)=-32,即x =2处的切线斜率k =-32.已知切点为(2,-1+ln 2),∴切线的方程为3x +2y -4-2ln 2=0.(2)∵f ′(x )=-ax 2+(1-a )x +1x =(x +1)(1-ax )x (1≤x ≤2),当a ≤0时,f ′(x )>0在[1,2]上恒成立, ∴f (x )在[1,2]上是增加的, ∴f (x )max =f (2)=-4a +3+ln 2;当1a ≥2,即0<a ≤12时,f ′(x )≥0在[1,2]上恒成立, ∴f (x )在[1,2]上是增加的,∴f (x )max =f (2)=-4a +3+ln 2;当1<1a <2,即12<a <1时,f (x )在⎣⎡⎦⎤1,1a 上是增加的, 在⎣⎡⎦⎤1a ,2上是减少的,∴f (x )max =f ⎝⎛⎭⎫1a =12a -ln a ; 当0<1a ≤1,即a ≥1时,f (x )在[1,2]上是减少的,∴f (x )max =f (1)=-32a +2.综上所述,f (x )max=⎩⎪⎨⎪⎧-4a +3+ln 2,a ≤12,-ln a +12a ,12<a <1,-32a +2,a ≥1.21.解 (1)∵ac ·a 2+c 2-b 22ac +bc ·b 2+c 2-a 22bc=a 2-b 2+8cos A ,∴b 2+c 2-a 2=8cos A ,∴2bc cos A =8cos A , ∵cos A ≠0,∴bc =4. 又∵sin B =2sin C ,由正弦定理,得b =2c ,∴b =22,c = 2. (2)a 2=b 2+c 2-2bc cos A ≥2bc -2bc cos A , 即6≥8-8cos A ,∴cos A ≥14,当且仅当b =c 时取等号.∴sin A ≤154,∴S =12bc sin A ≤152, ∴△ABC 面积的最大值为152. 22.解 (1)∵f ′(x )=x +1-a(x +1)2,∴f ′(0)=1-a =5,∴a =-4.(2)函数f (x )的定义域为(-1,+∞), f ′(x )=11+x -a(x +1)2=x +1-a (x +1)2,令f ′(x )=0,则x =a -1,①当a -1≤-1,即a ≤0时,在(-1,+∞)上,f ′(x )>0, 函数f (x )是增加的,无最小值.②当a -1>-1,即a >0时,在(-1,a -1)上,f ′(x )<0,函数f (x )是减少的;在(a -1,+∞)上,f ′(x )>0,函数f (x )是增加的,∴函数f (x )的最小值为f (a -1)=ln a -a +1=-a ,解得a =1e. 综上,若函数f (x )的最小值为-a ,则a =1e. (3)由(1+x )ln(1+x )+(ln k -1)x +ln k >0,得ln(1+x )-x x +1+ln k >0,即-ln k <ln(1+x )-x x +1, 令a =1,则f (x )=ln(1+x )-x x +1, 由(2)可知,当a =1时,f (x )在(-1,0)上是减少的,在(0,+∞)上,f (x )是增加的,∴在(-1,+∞)上,f (x )min =f (0)=0,∴-ln k <0,即k >1.滚动检测三考生注意:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共4页.2.答卷前,考生务必用蓝、黑色字迹的钢笔或圆珠笔将自己的姓名、班级、学号填写在相应位置上.3.本次考试时间120分钟,满分150分.4.请在密封线内作答,保持试卷清洁完整.第Ⅰ卷(选择题 共60分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(2017·绵阳一诊)设命题p :⎝⎛⎭⎫12x <1,命题q :ln x <1,则p 是q 成立的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分又不必要条件2.cos(-2 640°)+sin 1 665°等于( )A.1+22B .-1+22 C.1+32 D .-1+323.在△ABC 中,内角A ,B ,C 所对的边分别是a ,b ,c ,已知b -c =14a,2sin B =3sin C ,则cos A 等于( )A .-14B.14C.78D.11164.(2018·新余模拟)在△ABC 中,若B =30°,AB =23,AC =2.则满足条件的三角形的个数为( )A .3B .2C .1D .05.已知定义在R 上的函数f (x )=⎝⎛⎭⎫12|x -m |-1(m 为实数)为偶函数,记a =f ⎝⎛⎭⎫log 123,b =f (log 25),c =f (2m ),则a ,b ,c 的大小关系为( )A .b <a <cB .b <c <aC .a <b <cD .a <c <b6.已知f (x )=x 3-ax 在(-∞,-1]上是单调函数,则a 的取值范围是( )A .(3,+∞)B .[3,+∞)C .(-∞,3)D .(-∞,3]7.下列函数中,既是偶函数又在区间(0,+∞)上是增加的是( )A .y =1xB .y =lg|x |C .y =cos xD .y =x 2+2x8.(2017·重庆三诊)已知a =(2,1),b =(m ,-1),且a ⊥(a -b ),则实数m 等于( )A .1B .2C .3D .49.(2018届洛阳联考)已知点O 是锐角△ABC 的外心,若OC →=mOA →+nOB →(m ,n ∈R ),则( )A .m +n ≤-2B .-2≤m +n <-1C .m +n <-1D .-1<m +n <010.若M 为△ABC 所在平面内一点,且满足(MB →-MC →)·(MB →+MC →-2MA →)=0,则△ABC 的形状为( )A .等腰三角形B .直角三角形C .正三角形D .等腰直角三角形11.已知函数f (x )=sin(ωx +φ)⎝⎛⎭⎫ω>0,|φ|<π2,若f (x )满足f (x +π)=-f (x ),且f (0)=12,则函数h (x )=2cos(ωx +φ)在区间⎣⎡⎦⎤0,π2上的值域为( ) A .[-1,3]B .[-2,3]C .[-3,2]D .[1,3]12.对任意的正数x ,都存在两个不同的正数y ,使x 2(ln y -ln x )-ay 2=0成立,则实数a 的取值范围为( )A.⎝⎛⎭⎫0,12e B.⎝⎛⎭⎫-∞,12e C.⎝⎛⎭⎫12e ,+∞ D.⎝⎛⎭⎫12e ,1第Ⅱ卷(非选择题 共90分)二、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中横线上)13. 10(2x ⎰+1-x 2)d x =________.14.(2018届乐山调研)在△ABC 中,AB =3,AC =2,∠BAC =120°,BM →=λBC →.若AM →·BC →=-173,则实数λ的值为______.15.(2017·石嘴山三模)给出下列命题:①已知a ,b 都是正数,且a +1b +1>a b,则a <b ; ②已知f ′(x )是f (x )的导函数,若任意x ∈R ,f ′(x )≥0,则f (1)<f (2)一定成立;③命题“存在x ∈R ,使得x 2-2x +1<0”的否定是真命题;④“x ≤1且y ≤1”是“x +y ≤2”的充要条件.其中正确的命题的序号是________.16.(2018·九江模拟)已知f (x )=x 3-3x +m ,若在区间[0,2]上任取三个数a ,b ,c ,均存在以f (a ),f (b ),f (c )为边长的三角形,则实数m 的取值范围为________.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤)17.(10分)(2018·泉州模拟)已知向量m =⎝⎛⎭⎫3sin x 4,1,n =⎝⎛⎭⎫cos x 4,cos 2x 4,f (x )=m ·n . (1)若f (x )=1,求cos ⎝⎛⎭⎫2π3-x 的值;(2)在△ABC 中,角A ,B ,C 的对边分别是a ,b ,c ,且满足a cos C +12c =b ,求函数f (B )的取值范围.18.(12分)(2017·长春调研)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,已知2(sin C -sin A )=sin B .(1)求b c -a的值; (2)若b =2,BA →·BC →=32,求△ABC 的面积.19.(12分)已知函数f (x )=x 21+x 2. (1)分别求f (2)+f ⎝⎛⎭⎫12,f (3)+f ⎝⎛⎭⎫13, f (4)+f ⎝⎛⎭⎫14的值; (2)归纳猜想一般性结论,并给出证明;(3)求值:f (1)+f (2)+…+f (2 011)+f ⎝⎛⎭⎫12 011+f ⎝⎛⎭⎫12 010+…+f ⎝⎛⎭⎫12+f (1).20.(12分)(2018届西安模拟)已知x ∈⎣⎡⎦⎤0,π3,设向量m =(sin x ,cos x ),n =⎝⎛⎭⎫32,12. (1)若m ∥n ,求x 的值;(2)若m·n =35,求sin ⎝⎛⎭⎫x -π12的值.21.(12分)某河道中过度滋长一种藻类,环保部门决定投入生物净化剂净化水体. 因技术原因,第t 分钟内投放净化剂的路径长度p (t )=140-|t -40|(单位:m),净化剂净化水体的宽度q (单位:m)是时间t (单位:分钟)的函数:q (t )=1+a 2t(a 由单位时间投放的净化剂数量确定,设a 为常数,且a ∈N +).(1)试写出投放净化剂的第t 分钟内净化水体面积S (t )(1≤t ≤60,t ∈N +)的表达式;(2)求S (t )的最小值.22.(12分)已知函数f(x)=e x-ax-1(a∈R).(1)若f(x)有极值0,求实数a,并确定该极值为极大值还是极小值;(2)在(1)的条件下,当x∈[0,+∞)时,f(x)≥mx ln(x+1)恒成立,求实数m的取值范围.答案精析1.B [命题p :⎝⎛⎭⎫12x <1,即x >0;命题q :ln x <1,即0<x <e ,所以p 是q 成立的必要不充分条件,故选B.]2.B [cos(-2 640°)=cos 2 640°=cos(7×360°+120°)=cos 120°=-12, sin 1 665°=sin(4×360°+225°)=sin 225°=sin(180°+45°)=-sin 45°=-22, 故cos(-2 640°)+sin 1 665°=-12-22=-1+22.] 3.A [在△ABC 中,∵b -c =14a,2sin B =3sin C ,由正弦定理, 得2b =3c ,可得a =2c ,b =32c ,再由余弦定理可得 cos A =b 2+c 2-a 22bc =⎝⎛⎭⎫32c 2+c 2-4c 22×32c ×c =-14,故选A.] 4.B [由正弦定理,得c sin C =b sin B ,sin C =32,由于c >b , 所以有两种可能,故选B.]5.A [∵f (x )为偶函数,∴f (-x )=f (x ), ∴⎝⎛⎭⎫12|-x -m |-1=⎝⎛⎭⎫12|x -m |-1,∴|-x -m |=|x -m |,(-x -m )2=(x -m )2,∴mx =0,m =0.∴f (x )=⎝⎛⎭⎫12|x |-1,∴f (x )在[0,+∞)是减少的,并且a =f (|log 123|)=f (|log 23|),b =f (|log 25|),c =f (0).∵0<log 23<log 25,∴c >a >b ,故选A.]6.D [因为f (x )=x 3-ax 在(-∞,-1]上是单调函数,所以f ′(x )=3x 2-a ≥0在(-∞,-1]上恒成立,即a ≤(3x 2)min =3,故选D.]7.B [对于答案A ,C ,当取x 1=1,x 2=2时,显然x 1<x 2,但y 1>y 2,故不是递增函数,则两个答案都不正确;对于答案D ,由于f (-1)=1+12=32,f (1)=1+2=3,即f (-1)≠f (1),故不是偶函数,也不正确;对于答案B 结合所学基本初等函数的图像和性质可知函数f (x )=lg|x |=⎩⎪⎨⎪⎧lg x ,x >0,lg (-x ),x <0是偶函数,且在(0,+∞)上是增加的,故选B.]8.C [由a ⊥(a -b ),所以a ·(a -b )=0,6-2m =0,解得m =3,故选C.]9.C [∵O 是锐角△ABC 的外心,∴O 在三角形内部,不妨设锐角△ABC 的外接圆的半径为1,又OC →=mOA →+nOB →,∴|OC →|=|mOA →+nOB →|,可得OC →2=m 2OA →2+n 2OB →2+2mnOA →·OB →,而OA →·OB →=|OA →|·|OB →|cos ∠AOB <|OA →|·|OB →|=1.∴1=m 2+n 2+2mnOA →·OB →<m 2+n 2+2mn ,∴m +n <-1或m +n >1,如果m +n >1则O 在三角形外部,三角形不是锐角三角形,∴m +n <-1,故选C.]10.A [(MB →-MC →)·(MB →+MC →-2MA →)=CB →·(MB →-MA →+MC →-MA →)=CB →·(AB →+AC →)=(AB →-AC →)·(AB →+AC →)=|AB →|2-|AC →|2=0,即|AB →|=|AC →|,所以△ABC 的形状为等腰三角形.]11.A [因为f (x +π)=-f (x ),所以函数f (x )的周期为2π,ω=1,由f (0)=sin φ=12且|φ|<π2,得φ=π6, 所以h (x )=2cos ⎝⎛⎭⎫x +π6, 由x ∈⎣⎡⎦⎤0,π2知π6≤x +π6≤2π3, 所以-12≤cos ⎝⎛⎭⎫x +π6≤32,h (x )∈[-1,3], 故选A.]12.A [由x 2(ln y -ln x )-ay 2=0(x >0,y >0),得a =x 2(ln y -ln x )y 2=ln y x ⎝⎛⎭⎫y x 2,令t =y x (t >0),所以a =ln t t 2.设g (t )=ln t t 2(t >0),g ′(t )=1t ·t 2-(ln t )2t t 4=1-2ln t t 3, 令g ′(t )>0,得0<t <e ,g (t )是增加的;令g ′(t )<0,得t >e ,g (t )是减少的.所以g (t )最大值为g (e)=12e.又当t >1时,g (t )>0;当0<t <1时,g (t )<0,故当a ∈⎝⎛⎭⎫0,12e 时,存在两个正数t ,使a =ln t t 2成立,即对任意的正数x ,都存在两个不同的正数y ,使x 2(ln y -ln x )-ay 2=0成立,故选A.]13.1+π4解析 由微积分基本定理,得10⎰2x d x =x 2|10=1, 曲线y =1-x 2(0<x <1)表示单位圆的四分之一,则10⎰1-x 2d x =14×π×12=π4, 由此可得,10⎰ (2x +1-x 2)d x =1+π4. 14.13 解析 ∵AB =3,AC =2,∠BAC =120°,∴由余弦定理可得BC =19,又根据余弦定理可得cos ∠ABC =419,AM →·BC →=(BM →-BA →)·BC →=λBC →2-BA →·BC →=19λ-3×19×419=-173, 解得λ=13. 15.①③解析 ①已知a ,b 都是正数,a +1b +1>a b,ab +b >ab +a ,则a <b 正确; ②若f (x )是常函数,则f (1)<f (2)不成立,③命题“存在x ∈R ,使得x 2-2x +1<0”是假命题,则它的否定是真命题;④“x ≤1且y ≤1”⇒“x +y ≤2”,反之不成立,则“x ≤1且y ≤1”是“x +y ≤2”的充分不必要条件.正确的命题序号为①③.16.(6,+∞)解析 三角形的边长为正数,而且任意两边之和大于第三边才能构成三角形,故只需求出函数在区间[0,2]上的最小值与最大值,从而可得不等式,即可求解.令f ′(x )=3x 2-3=3(x +1)(x -1)=0,则x 1=1,x 2=-1(舍去),∵函数的定义域为[0,2],∴当x ∈[0,1)时,f ′(x )<0,当x ∈(1,2]时,f ′(x )>0,∴函数f (x )在区间[0,1)上是减少的,在区间(1,2]上是增加的,则f (x )min =f (1)=m -2,f (x )max =f (2)=m +2,f (0)=m ,由题意知,f (1)=m -2>0;①由f (1)+f (1)>f (2),得-4+2m >2+m ,②由①②得m >6.17.解 (1)∵f (x )=m ·n =3sin x 4cos x 4+cos 2x 4=32sin x 2+12cos x 2+12=sin ⎝⎛⎭⎫x 2+π6+12, 而f (x )=1,∴sin ⎝⎛⎭⎫x 2+π6=12.又∵2π3-x =π-2⎝⎛⎭⎫x 2+π6, ∴cos ⎝⎛⎭⎫2π3-x =-cos ⎣⎡⎦⎤2⎝⎛⎭⎫x 2+π6 =-1+2sin 2⎝⎛⎭⎫x 2+π6=-12. (2)∵a cos C +12c =b ,∴a ·a 2+b 2-c 22ab +12c =b . 即b 2+c 2-a 2=bc ,∴cos A =12. 又∵A ∈(0,π),∴A =π3. 又∵0<B <2π3, ∴π6<B 2+π6<π2,∴f (B )∈⎝⎛⎭⎫1,32. 18.解 (1)由正弦定理,得2(c -a )=b ,即b c -a=2; (2)由题意,得⎩⎪⎨⎪⎧ 2(c -a )=b ,b =2,BA →·BC →=ca cos B =32, 即⎩⎪⎨⎪⎧ c -a =1,ca ·a 2+c 2-b 22ac =32,解得⎩⎪⎨⎪⎧a =1,c =2,所以cos B =34, 所以sin B =74,所以S =12ac sin B =74.19.解 (1)∵f (x )=x 21+x 2,∴f (2)+f ⎝⎛⎭⎫12=221+22+⎝⎛⎭⎫1221+⎝⎛⎭⎫122=221+22+122+1=1, 同理可得f (3)+f ⎝⎛⎭⎫13=1,f (4)+f ⎝⎛⎭⎫14=1. (2)由(1)猜想f (x )+f ⎝⎛⎭⎫1x =1.证明:f (x )+f ⎝⎛⎭⎫1x =x 21+x 2+⎝⎛⎭⎫1x 21+⎝⎛⎭⎫1x 2 =x 21+x 2+1x 2+1=1. (3)令S =f (1)+f (2)+…+f (2 011)+f ⎝⎛⎭⎫12 011+f ⎝⎛⎭⎫12 010+…+f ⎝⎛⎭⎫12+f (1), 则S =f (1)+f ⎝⎛⎭⎫12+…+f ⎝⎛⎭⎫12 011+f (2 011)+f (2 010)+…+f (2)+f (1), 则2S =4 022,故S =2 011.20.解 (1)因为m =(sin x ,cos x ),n =⎝⎛⎭⎫32,12,且m ∥n ,所以sin x ·12=cos x ·32,即tan x =3,又x ∈⎣⎡⎦⎤0,π3,所以x =π3. (2)因为m =(sin x ,cos x ),n =⎝⎛⎭⎫32,12,且m·n =35, 所以32sin x +12cos x =35, 即sin ⎝⎛⎭⎫x +π6=35,令θ=x +π6, 则x =θ-π6,且sin θ=35,因为x ∈⎣⎡⎦⎤0,π3,故θ∈⎣⎡⎦⎤π6,π2, 所以cos θ=1-sin 2θ=1-⎝⎛⎭⎫352=45,所以sin ⎝⎛⎭⎫x -π12=sin ⎝⎛⎭⎫θ-π6-π12 =sin ⎝⎛⎭⎫θ-π4=sin θcos π4-cos θsin π4=35×22-45×22=-210.21.解 (1)由题意, 得S (t )=p (t )·q (t )=(140-|t -40|)⎝⎛⎭⎫1+a 2t =⎩⎨⎧100+a 2+t +100a 2t,1≤t <40,t ∈N +,180-a 2-t +180a2t,40≤t ≤60,t ∈N +.(2)当40≤t ≤60且t ∈N +时,S (t )=180-a 2-t +180a 2t, 当t 增加时180a 2t 减小,所以S (t )在40≤t ≤60上是减少的,所以当t =60时,S (t )有最小值2a 2+120. 当1≤t <40且t ∈N +时,S (t )=100+a 2+t +100a 2t≥100+a 2+20a (当且仅当t =10a 时,等号成立),①若a =1或2或3;当t =10a 时,上述不等式中的等号成立, S (t )在1≤t <40范围中有最小值a 2+20a +100. 又在40≤t ≤60时S (t )有最小值2a 2+120.当a =1时,100+a 2+20a =121<122=2a 2+120, 故S (t )有最小值121;当a =2或a =3时,100+a 2+20a >2a 2+120, 故S (t )有最小值2a 2+120. ②若a ≥4且1≤t <40时,因为S (t +1)-S (t )=1+100a 2t +1-100a 2t =1-100a 2t (t +1)<0,所以S (t +1)<S (t ),故S (t )在1≤t <40时是减少的;又S (t )在40≤t ≤60时是减少的,且100+a 2+40+100a 240=180-a 2-40+180a 240, 所以S (t )在1≤t ≤60时是减少的. 所以,当t =60时,S (t )有最小值2a 2+120. 综上,若a =1,当t =10时,S (t )有最小值121; 若a ≥2且a ∈N *,当t =60时,S (t )有最小值2a 2+120. 22.解 (1)f ′(x )=e x -a .①若a ≤0,f ′(x )>0,f (x )在(-∞,+∞)上是增加的,无极值,不符合题意; ②若a >0,令f ′(x )=0,得x =ln a ,当x ∈(-∞,ln a )时,f ′(x )<0,f (x )在(-∞,ln a )上是减少的;当x ∈(ln a ,+∞)时, f ′(x )>0,f (x )在(ln a ,+∞)上是增加的. 所以,当x =ln a 时,f (x )取到极小值, f (ln a )=e ln a -a ln a -1=0,即a ln a -a +1=0. 令φ(a )=a ln a -a +1(a >0), 则φ′(a )=ln a +a ·1a-1=ln a ,当0<a <1时,φ′(a )<0,φ(a )是减少的; 当a >1时,φ′(a )>0,φ(a )是增加的. 又φ(1)=0,所以a ln a -a +1=0有唯一解a =1. (2)由(1)知,f (x )=e x -x -1, 当x ≥0时,f (x )≥mx ln(x +1)恒成立,即e x -x -mx ln(x +1)-1≥0(x ∈[0,+∞))恒成立. 令g (x )=e x -x -mx ln(x +1)-1(x ∈[0,+∞)), 则g ′(x )=e x -1-m ln(x +1)-mxx +1(x ∈[0,+∞)),令h (x )=e x -1-m ln(x +1)-mxx +1(x ∈[0,+∞)), 则h ′(x )=e x -m ⎣⎡⎦⎤1(x +1)2+1x +1,h ′(0)=1-2m,0<1(x +1)2+1x +1≤2(当且仅当x =0时取“=”).①当m ≤0时,h ′(x )>0,h (x )在[0,+∞)上是增加的, 所以h (x )min =h (0)=0,即h (x )≥0,即g ′(x )≥0,所以g (x )在[0,+∞)上是增加的, 所以g (x )min =g (0)=0,所以g (x )≥0, 所以e x -x -mx ln(x +1)-1≥0, 即f (x )≥mx ln(x +1)恒成立. ②当0<m ≤12时,h ′(x )是增函数,h ′(x )min =h ′(0)=1-2m ≥0,所以h ′(x )>0,故h (x )在[0,+∞)上是增加的, 所以h (x )min =h (0)=0,即g ′(x )≥0,所以g (x )在[0,+∞)上是增加的,所以g (x )min =g (0)=0, 所以g (x )≥0,即f (x )≥mx ln(x +1)恒成立.③当m >12时,h ′(x )是增函数,h ′(x )min =h ′(0)=1-2m <0,当x →+∞时,e x →+∞,-m ⎣⎡⎦⎤1(x +1)2+1x +1→0,所以h ′(x )→+∞,则存在x 0>0,使得h ′(x 0)=0, 当x ∈(0,x 0)时,h ′(x )<0,h (x )在(0,x 0)上是减少的, 此时h (x 0)<h (0)=0,即g ′(x )<0,x ∈(0,x 0),所以g (x )在(0,x 0)上是减少的,g (x 0)<g (0)=0,不符合题意. 综上所述,m 的取值范围是⎝⎛⎦⎤-∞,12.滚动检测四考生注意:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共4页.2.答卷前,考生务必用蓝、黑色字迹的钢笔或圆珠笔将自己的姓名、班级、学号填写在相应位置上.3.本次考试时间120分钟,满分150分. 4.请在密封线内作答,保持试卷清洁完整.第Ⅰ卷(选择题 共60分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知集合M ={x |lg x <1},N ={x |-3x 2+5x +12<0},则( ) A .N ⊆M B .∁R N ⊆MC .M ∩N =⎝⎛⎭⎫-∞,-43∪(3,10) D .M ∩(∁R N )=(0,3]2.已知角θ的顶点与原点重合,始边与x 轴的非负半轴重合,终边在直线y =2x 上,则cos 2θ-sin 2θ等于( ) A .-45B .-35C. 35D. 453.(2018届衡水联考)已知命题p :任意x ∈R ,(2-x )12<0,则命题綈p 为( )A .存在x ∈R ,(2-x )12>0B .任意x ∈R ,(1-x )12>0C .任意x ∈R ,(1-x )12≥0D .存在x ∈R ,(2-x )12≥04.(2018·济宁模拟)曲线y =3ln x +x +2在点P 处的切线方程为4x -y -1=0,则点P 的坐标是( ) A .(0,1) B .(1,0) C .(1,-1)D .(1,3)5.设向量a =(1,2),b =(2,1),若向量a -λb 与向量c =(5,-2)共线,则λ的值为( ) A.43 B.413 C .-49D .46.(2017·贵阳适应性考试)设命题p :若y =f (x )的定义域为R ,且函数y =f (x -2)图像关于点(2,0)对称,则函数y =f (x )是奇函数,命题q :任意x ≥0, 12x ≥13x ,则下列命题中为真命题的是( ) A .p 且q B .(綈p )或q C .p 且(綈q )D .(綈p )且(綈q )7.已知a =1213⎛⎫ ⎪⎝⎭,b =121log 3,c =31log 2,则( ) A .c >b >a B .b >c >a C .a >b >cD .b >a >c8.在△ABC 中,a ,b ,c 分别为A ,B ,C 的对边,如果a ,b ,c 成等差数列,B =30°,△ABC 的面积为32,则b 等于( )A.1+32B .1+ 3 C.2+32D .2+ 39.(2018届吉林松原模拟)已知△ABC 外接圆的圆心为O ,AB =23,AC =22,A 为钝角,M 是BC 边的中点,则AM →·AO →等于( )。

高三一轮复习-数列(带答案)

高三一轮复习-数列(带答案)

个性化辅导授课教案学员姓名 : 辅导类型(1对1、小班): 年 级: 辅 导 科 目 : 学 科 教 师 : 课 题课 型 □ 预习课 □ 同步课 □ 复习课 □ 习题课 授课日期及时段年 月 日 时间段教 学 内 容数列一、数列的概念及其表示【重点知识梳理】 1.数列的定义按照一定顺序排列的一列数称为数列,数列中的每一个数叫做这个数列的项. 2.数列的分类分类原则类型 满足条件 按项数分类有穷数列项数有限无穷数列项数无限 按项与项间 的大小关系分类 递增数列 a n +1>a n其中n ∈N *递减数列 a n +1<a n 常数列 a n +1=a n按其他标准分类有界数列存在正数M ,使|a n |≤M摆动数列从第二项起,有些项大于它的前一项,有些项小于它的前一项的数列3.数列的表示法数列有三种表示法,它们分别是列表法、图象法和解析法. 4.数列的通项公式如果数列{a n }的第n 项与序号n 之间的关系可以用一个式子来表示,那么这个公式叫做这个数列的通项公式.5.已知数列{a n }的前n 项和S n ,则a n =⎩⎪⎨⎪⎧S 1 (n =1),S n -S n -1 (n ≥2).法四 同法二得d =-18a 1<0,又S 5=S 12,得a 6+a 7+a 8+a 9+a 10+a 11+a 12=0, ∴7a 9=0,∴a 9=0,∴当n =8或9时,S n 有最大值.(2)设数列{}n a 的前n 项和2n S n =,则______10=a规律方法 求等差数列前n 项和的最值,常用的方法: (1)利用等差数列的单调性,求出其正负转折项; (2)利用性质求出其正负转折项,便可求得和的最值;(3)将等差数列的前n 项和S n =An 2+Bn (A ,B 为常数)看作二次函数,根据二次函数的性质求最值. 【变式探究】 (1)等差数列{a n }的前n 项和为S n ,已知a 5+a 7=4,a 6+a 8=-2,则当S n 取最大值时,n 的值是( )A .5B .6C .7D .8(2)设数列{a n }是公差d <0的等差数列,S n 为前n 项和,若S 6=5a 1+10d ,则S n 取最大值时,n 的值为( ) A .5 B .6 C .5或6 D .11 3.等差数列的判定方法(1)定义法:若d a a d a a n n n n =-=-+-11或(常数+∈N n )⇔{}n a 是等差数列 (2)等差中项法:数列{}n a 是等差数列⇔)2(211>+=+-n a a a n n n ⇔212+++=n n n a a a (3)数列{}n a 是等差数列⇔b kn a n +=(其中k,b 是常数) (4)数列{}n a 是等差数列⇔Bn An S n +=2(其中A,B 是常数) 4.等差数列的证明方法(1)定义法:若d a a n n =--1或d a a n n =-+1(常数*∈N n )⇔ {}n a 是等差数列.(2)等差中项法:),2(211++-∈≥+=N n n a a a n n n例题:【例2】若数列{a n }的前n 项和为S n ,且满足a n +2S n S n -1=0(n ≥2),a 1=12.(1)求证:⎩⎨⎧⎭⎬⎫1S n 成等差数列;(2)求数列{a n }的通项公式.(1)证明 当n ≥2时,由a n +2S n S n -1=0, 得S n -S n -1=-2S n S n -1,所以1S n -1S n -1=2,又1S 1=1a 1=2,故⎩⎨⎧⎭⎬⎫1S n 是首项为2,公差为2的等差数列. (2)解 由(1)可得1S n =2n ,∴S n =12n .当n ≥2时,a n =S n -S n -1=12n -12(n -1)=n -1-n 2n (n -1)=-12n (n -1).当n =1时,a 1=12不适合上式.规律方法 证明数列{a n }是等比数列常用的方法:一是定义法,证明a na n -1=q (n ≥2,q 为常数);二是等比中项法,证明a 2n =a n -1·a n +1.若判断一个数列不是等比数列,则只需举出反例即可,也可以用反证法.5.等比数列及其前n 项和性质(1)当1≠q 时,①等比数列通项公式n nn n B A q qa q a a ⋅===-111(0≠⋅B A )是关于n 的带有系数的类指数函数,底数为公比q .②前n 项和()''1111111A B A B A A q qaq a q q a S n n n n n -=⋅-=---=--=,系数和常数项是互为相反数的类指数函数,公比为q .(2)对任何+∈N n m ,,在等比数列中有m n m n q a a -=.注:当q=1时就得到了等比数列的通项公式,因此这个公式更具有一般性.(3)若q p n m +=+()+∈N q p n m ,,,,则q p n m a a a a ⋅=⋅.特别地,当p n m 2=+时,得2q n m a a a =⋅.注:1121a a a a a a n n n ⋅==⋅=⋅- (4)数列{}{}n n b a ,为等比数列,则数列{}{}{}⎭⎬⎫⎩⎨⎧⋅⋅⋅⎭⎬⎫⎩⎨⎧n n n n n n n b a b a k a a k a k ,,,,2(k 为非零常数)均为等比数列. (5)数列{}n a 为等比数列,每个k (+∈N k )项取出一项( k m k m k m m a a a a 32,,,+++)仍为等比数列. (6)如果{}n a 是各项均为正的等比数列,则数列{}n a a log 是等差数列.【例题】 (1)公比为2的等比数列{a n }的各项都是正数,且a 3a 11=16,则log 2a 10=( ) A .4 B .5 C .6 D .7(2)等比数列{a n }的首项a 1=-1,前n 项和为S n ,若S 10S 5=3132,则公比q =________.【解析】(1)法一 由等比中项的性质得a 3a 11=a 27=16,又数列{a n }各项为正,所以a 7=4.所以a 10=a 7×q 3=32.所以log 2a 10=5.规律方法 (1)在解决等比数列的有关问题时,要注意挖掘隐含条件,利用性质,特别是性质“若m +n =p +q ,则a m ·a n =a p ·a q ”,可以减少运算量,提高解题速度.(2)在应用相应性质解题时,要注意性质成立的前提条件,有时需要进行适当变形.此外,解题时注意设而不求思想的运用.【变式探究】 (1)已知x ,y ,z ∈R ,若-1,x ,y ,z ,-3成等比数列,则xyz 的值为( ) A .-3 B .±3 C .-3 3 D .±3 3(2)已知各项均为正数的等比数列{a n }中,a 1a 2a 3=5,a 7a 8a 9=10,则a 4a 5a 6等于( ) A .5 2 B .7 C .6 D .4 2(7)若{}n a 为等比数列,则数列 ,,,232m m m m m S S S S S --成等比数列.(8)若{}n a 为等比数列,则数列n a a a ⋅⋅⋅ 21,n n n a a a 221⋅⋅⋅++ ,n n n a a a 32212⋅⋅⋅++ 成等比数列. (9)①当q>1时,{}{}为递减数列则为递增数列则n n a a a a ,0;,011<>. ② 当0<q<1时,{}{}为递增数列则为递减数列则n n a a a a ,0;,011<>. ③当q=1时,该数列为常数列(此时数列也为等差数列) ④当q<0时,该数列为摆动数列.(10)在等比数列{}n a 中,当项数为2n (+∈N n )时,qS S 1=偶奇,其中pqt -=1,再利用换元法转化为等比数列求解。

2019届高考数学人教A版理科第一轮复习题:高考大题专项练三+Word版含解析

2019届高考数学人教A版理科第一轮复习题:高考大题专项练三+Word版含解析

高考大题专项练三高考中的数列1.已知等差数列{a n}的前n项和为S n,公差d≠0,且S3+S5=50,a1,a4,a13成等比数列. (1)求数列{a n}的通项公式;是首项为1,公比为3的等比数列,求数列{b n}的前n项和T n.(2)设b na n2.(2017江西宜春中学3月模拟)已知等差数列{a n}的前n项和为S n,a3=5,S5=3S3-2.(1)求{a n}的通项公式;(2)设b n=2a n,求数列{b n}的前n项和T n.3.已知等差数列{a n}的前n项和为S n,等比数列{b n}的公比为1,满足S3=15,a1+2b1=3,a2+4b2=6.2(1)求数列{a n},{b n}的通项公式a n,b n;(2)求数列{a n·b n}的前n项和T n.4.已知数列{a n }的首项a 1=23,a n+1=2a na n +1(n ∈N *). (1)求证:数列 1a n-1 是等比数列;(2)求数列 nn的前n 项和S n .5.(2017江苏,19)对于给定的正整数k,若数列{a n}满足:a n-k+a n-k+1+…+a n-1+a n+1+…+a n+k-1+a n+k=2ka n 对任意正整数n(n>k)总成立,则称数列{a n}是“P(k)数列”.(1)证明:等差数列{a n}是“P(3)数列”;(2)若数列{a n}既是“P(2)数列”,又是“P(3)数列”,证明{a n}是等差数列.6.设S n为等差数列{a n}的前n项和,已知S3=a7,a8-2a3=3.(1)求a n;(2)设b n=1S n ,数列{b n}的前n项和为T n,求证:T n>34−1n+1(n∈N*).7.已知正项数列{a n}的首项a1=1,前n项和S n满足a n=n+S n-1(n≥2).(1)求证:{S n}为等差数列,并求数列{a n}的通项公式;的前n项和为T n,若对任意的n∈N*,不等式4T n<a2-a恒成立,求实数a的取值范围.(2)记数列1n n+1的等比数列,其前n项和为S n,且1-a2是a1与1+a3的等比中项,数列{b n}是8.已知数列{a n}是公比为12等差数列,其前n项和T n满足T n=nλ·b n+1(λ为常数,且λ≠1),其中b1=8.1(1)求数列{a n }的通项公式及λ的值; (2)比较11+12+13+…+1n 与1S n 的大小.答案:1.解 (1)依题意得,3a 1+3×22d +5a 1+4×52d =50,(a 1+3d )2=a 1(a 1+12d ),解得 a 1=3,d =2.故a n =a 1+(n-1)d=3+2(n-1)=2n+1,即a n =2n+1. (2)由题意可知,bn a n=3n-1, 则b n =a n ·3n-1=(2n+1)·3n-1.故T n =3+5×3+7×32+…+(2n+1)·3n-1,① 3T n =3×3+5×32+7×33+…+(2n-1)·3n-1+(2n+1)·3n ,②①-②得-2T n =3+2×3+2×32+…+2·3n-1-(2n+1)3n=3+2·3(1-3n -1)1-3-(2n+1)3n=-2n·3n , 因此,T n =n·3n .2.解 (1)设等差数列{a n }的公差为d ,∵a 3=5,S 5=3S 3-2. ∴a 3=a 1+2d =5,5a 1+10d =3(3a 1+3d )-2,1∴a 1=1,d =2,∴a n =2n-1.(2)∵b n =2a n =22n-1,∴b n +1n=22(n +1)-122n -1=22n +122n -1=22=4,b 1=2.∴数列{b n }是等比数列,公比为4,首项为2.∴T n =2(1-4n )1-4=23(4n -1).3.解 (1)设等差数列{a n }的公差为d ,所以 3a 1+3d =15,a 1+2b 1=3,a 1+d +2b 1=6,解得a 1=2,d=3,b 1=12,所以a n =3n-1,b n = 12 n.(2)由(1)知T n =2×1+5× 1 2+8× 1 3+…+(3n-4) 1 n -1+(3n-1) 1 n,①①×12,得12T n =2× 12 2+5× 12 3+…+(3n-4) 12 n +(3n-1)· 12n +1,②①-②,得1T n =2×1+3× 1 2+ 1 3+…+ 1 n -(3n-1)· 1n +1=1+3×14 1- 12n -1 1-12-(3n-1)· 1n +1, 整理,得T n =-(3n+5) 12n+5.4.(1)证明 ∵a n+1=2a nan +1, ∴1an +1=a n +12a n=12+12·1a n.1∴1n +1-1=1 1n-1 .又a 1=2,∴11-1=1.∴数列 1a n-1 是以12为首项,以12为公比的等比数列.(2)解 由(1)知1a n-1=12·12n -1=12n ,则1a n=12n+1. 故n n=nn +n.设T n =12+222+323+…+n2n ,①则12T n =122+223+…+n -12n +n 2n +1, ②由①-②,得1T n =1+122+…+1n −n 2n +1=12 1-12n 1-12−n 2n +1=1-1n −n 2n +1, ∴T n =2-12n -1−n2n . 又1+2+3+…+n=n (n +1)2, ∴数列 na n的前n 项和S n =2-2+n 2n +n (n +1)2=n 2+n +42−n +22n. 5.证明 (1)因为{a n }是等差数列,设其公差为d ,则a n =a 1+(n-1)d ,从而,当n ≥4时,a n-k +a n+k =a 1+(n-k-1)d+a 1+(n+k-1)d=2a 1+2(n-1)d=2a n ,k=1,2,3, 所以a n-3+a n-2+a n-1+a n+1+a n+2+a n+3=6a n ,1 因此等差数列{a n}是“P(3)数列”.(2)数列{a n}既是“P(2)数列”,又是“P(3)数列”,因此,当n≥3时,a n-2+a n-1+a n+1+a n+2=4a n,①当n≥4时,a n-3+a n-2+a n-1+a n+1+a n+2+a n+3=6a n.②由①知,a n-3+a n-2=4a n-1-(a n+a n+1),③a n+2+a n+3=4a n+1-(a n-1+a n).④将③④代入②,得a n-1+a n+1=2a n,其中n≥4,所以a3,a4,a5,…是等差数列,设其公差为d'.在①中,取n=4,则a2+a3+a5+a6=4a4,所以a2=a3-d',在①中,取n=3,则a1+a2+a4+a5=4a3,所以a1=a3-2d',所以数列{a n}是等差数列.6.(1)解设等差数列{a n}的公差为d,由题意,得3a1+3d=a1+6d,(a1+7d)-2(a1+2d)=3,解得a1=3, d=2.故a n=a1+(n-1)d=2n+1.(2)证明∵a1=3,d=2,∴S n=na1+n(n-1)2d=n(n+2).∴b n=1=11-1.∴T n=b1+b2+…+b n-1+b n=1 21-13+12-14+…+11 n-1-1n+1+1n-1n+2=1 21+12-1n+1-1n+2>1 21+12-1n+1-1n+1=3 4−1n+1,故T n>34−1n+1.7.解(1)因为a n=S n+S n-1,所以S n-S n-1=S n+S n-1,即S n−S n-1=1,所以数列{S n}是首项为S1=a1=1,公差为1的等差数列,得S n=n,所以a n=S n+S n-1=n+(n-1)=2n-1(n≥2),当n=1时,a1=1也适合,所以a n=2n-1.(2)因为1n n+1=1(2n-1)(2n+1)=112n-1-1,所以T n=121-13+13−15+…+12n-1−12n+1=121-12n+1.所以T n<12.要使不等式4T n<a2-a恒成立,只需2≤a2-a恒成立,解得a≤-1或a≥2,故实数a的取值范围是(-∞,-1]∪[2,+∞).8.解(1)由题意,得(1-a2)2=a1(a3+1),即1-12a12=a114a1+1,1 解得a 1=12.故a n = 12 n.设等差数列{b n }的公差为d , 又 T 1=λb2,T 2=2λb 3,即 8=λ(8+d ),16+d =2λ(8+2d ),解得 λ=12,d =8或 λ=1,d =0(舍去), 故λ=12.(2)由(1)知S n =1- 12 n,则12S n =12− 12 n +1≥14.①由(1)知T n =12nb n+1,当n=1时,T 1=b 1=12b 2,即b 2=2b 1=16, 故公差d=b 2-b 1=8, 则b n =8n ,又T n =n λ·b n+1, 故T n =4n 2+4n , 即1T n =14n (n +1)=14 1n -1n +1 . 因此,1T 1+1T 2+…+1T n1=1 41-12+12-13+…+1 n -1n+1=141-1n+1<14.②由①②可知1T1+1T2+…+1T n<12S n.。

2019年高三一轮测试(理)3数列(2)(通用版)

2019年高三一轮测试(理)3数列(2)(通用版)

2019年高三一轮测试(理)数 列—————————————————————————————————————【说明】 本试卷分为第Ⅰ、Ⅱ卷两部分,请将第Ⅰ卷选择题的答案填入答题格内,第Ⅱ卷可在各题后直接作答,共150分,考试时间120分钟.题目要求的)1.设数列{a n }的通项公式a n =f (n )是一个函数,则它的定义域是( )A .非负整数B .N *的子集 C .N * D .N *或{1,2,3,…,n }2.在数列{a n }中,a 1=3,且对于任意大于1的正整数n ,点(a n ,a n -1)在直线x -y -6=0上,则a 3-a 5+a 7的值为( )A .27B .6C .81D .93.设S n 是公差不为0的等差数列{a n }的前n 项和,且S 1,S 2,S 4成等比数列,则a 2a 1等于( )A .1B .2C .3D .44.记数列{a n }的前n 项和为S n ,且S n =2n (n -1),则该数列是( )A .公比为2的等比数列B .公比为12的等比数列C .公差为2的等差数列D .公差为4的等差数列5.据科学计算,运载“神七”的“长征”二号系列火箭在点火后第一秒钟通过的路程为2 km ,以后每秒钟通过的路程增加2 km ,在到达离地面240 km 的高度时,火箭与飞船分离,则这一过程需要的时间是( )A .10秒钟B .13秒钟C .15秒钟D .20秒钟6.数列{a n }的前n 项和S n =3n-c ,则“c =1”是“数列{a n }为等比数列”的( )A .充分非必要条件B .必要非充分条件C .充分必要条件D .既不充分又不必要条件7.设等差数列{a n }的公差d 不为0,a 1=9d .若a k 是a 1与a 2k 的等比中项,则k =( )A .2B .4C .6D .88.在数列{a n }中,a 1=-2,a n +1=1+a n1-a n,则a 2 010=( )A .-2B .-13C .-12D .39.在函数y =f (x )的图象上有点列{x n ,y n },若数列{x n }是等差数列,数列{y n }是等比数列,则函数y =f (x )的解析式可能为( )A .f (x )=2x +1B .f (x )=4x 2C .f (x )=log 3xD .f (x )=⎝⎛⎭⎫34x10.若数列{a n }的通项公式为a n =1+22n -7(n ∈N *),{a n }的最大项为第x 项,最小项为第y 项,则x+y 的值为( )A .5B .6C .7D .811.在等差数列{a n }中,a 11a 10<-1,若它的前n 项和S n 有最大值,则下列各数中是S n 的最小正数的是( )A .S 17B .S 18C .S 19D .S 2012.已知等比数列{a n }的各项均为不等于1的正数,数列{b n }满足b n =lg a n ,b 3=18,b 6=12,则数列{b n }前n 项和的最大值等于( )A .126B .130C .132D .13413.设等比数列{a n }的前n 项和为S n .若a 1=1,S 6=4S 3,则a 4=________. 14.设数列{a n }的通项为a n =2n -7(n ∈N *),则|a 1|+|a 2|+…+|a 15|=________.15.若数列{a n }满足1a n +1-1a n=d (n ∈N *,d 为常数),则称数列{a n }为“调和数列”.已知数列{1x n }为“调和数列”,且x 1+x 2+…+x 20=200,则x 3x 18的最大值是________.16.已知S n 是公差为d 的等差数列{a n }的前n 项和,且S 6>S 7>S 5,则下列四个命题:①d <0;②S 11>0;③S 12<0;④S 13>0中真命题的序号为________.三、解答题(本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤) 17.(本小题满分10分)已知等差数列{a n }中,a 2=9,a 5=21. (1)求{a n }的通项公式;(2)令b n =2a n ,求数列{b n }的前n 项和S n .18.(本小题满分12分)已知数列{a n },a n ∈N *,前n 项和S n =18(a a +2)2.(1)求证:{a n }是等差数列;(2)若b n =12a n -30,求数列{b n }的前n 项和的最小值.19.(本小题满分12分)某市2008年11月份曾发生流感,据统计,11月1日该市流感病毒新感染者有20人,此后,每天的新感染者平均比前一天的新感染者增加50人,由于该市医疗部门采取措施,使该种病毒的传播得到控制,从某天起,每天的新感染者平均比前一天的新感染者减少30人,到11月30日为止,该市在这30日内该病毒新感染者共有8 670人,问11月几日,该市新感染此病毒的人数最多?并求这一天的新感染人数.20.(本小题满分12分)在平面直角坐标系中,已知三个点列{A n }、{B n }、{C n },其中A n (n ,a n )、B n (n ,b n )、C n (n -1,0)满足:向量A n A n +1与共线,且点列{B n }在方向向量为(1,6)的直线上,a 1=a ,b 1=-a .(1)试用a 与n 表示a n (n ≥2);(2)若a 6与a 7两项中至少有一项是a n 的最小值,试求a 的取值范围. 21.(本小题满分12分)已知数列{a n },a 1=1,a n =λa n -1+λ-2(n ≥2).(1)当λ为何值时,数列{a n }可以构成公差不为零的等差数列?并求其通项公式;(2)若λ=3,令b n =a n +12,求数列{b n }的前n 项和S n .22.(本小题满分12分)已知单调递增的等比数列{a n }满足:a 2+a 3+a 4=28,且a 3+2是a 2,a 4的等差中项.(1)求数列{a n }的通项公式;(2)若b n =a n log 12a n ,S n =b 1+b 2+b 3+…+b n ,对任意正整数n ,S n +(n +m )a n +1<0恒成立,试求m 的取值范围.答案: 一、选择题 1.D2.A 由题意得a n -a n -1-6=0,即a n -a n -1=6,得数列{a n }是等差数列,且首项a 1=3,公差d =6,而a 3-a 5+a 7=a 7-2d =a 5=a 1+4d =3+4×6=27.3.C 由S 1,S 2,S 4成等比数列, ∴(2a 1+d )2=a 1(4a 1+6d ). ∵d ≠0,∴d =2a 1. ∴a 2a 1=a 1+d a 1=3a 1a 1=3. 4.D 由条件可得n ≥2时,a n =S n -S n -1=2n (n -1)-2(n -1)(n -2)=4(n -1), 当n =1时,a 1=S 1=0, 代入适合,故a n =4(n -1),故数列{a n }表示公差为4的等差数列.5.C 设每一秒钟通过的路程依次为a 1,a 2,a 3,…,a n ,则数列{a n }是首项a 1=2,公差d =2的等差数列,由求和公式有na 1+n (n -1)d2=240,即2n +n (n -1)=240, 解得n =15,故选C.6.C 数列{a n }的前n 项和S n =3n -c ,且c =1,则a n =2×3n -1(n ≥1),从而可知c =1是数列{a n }为等比数列的充要条件,故选C 项.7.B 因为a k 是a 1与a 2k 的等比中项,则a 2k =a 1a 2k ,[9d +(k -1)d ]2=9d ·[9d +(2k -1)d ], 又d ≠0,则k 2-2k -8=0,k =4或k =-2(舍去). 8.B 由条件可得:a 1=-2,a 2=-13,a 3=12,a 4=3,a 5=-2,…,即{a n }是以4为周期的周期数列,所以a 2 010=a 2=-13,故选B.9.D 结合选项,对于函数f (x )=⎝⎛⎭⎫34x 上的点列{x n ,y n },有y n =⎝⎛⎭⎫34x n .由于{x n }是等差数列,所以x n +1-x n =d ,因此y n +1y n=⎝⎛⎭⎫34x n +1⎝⎛⎭⎫34x n =⎝⎛⎭⎫34xn +1-x n=⎝⎛⎭⎫34d ,这是一个与n 无关的常数,故{y n }是等比数列. 10.C 由函数f (n )=1+22n -7(n ∈N *)的单调性知,a 1>a 2>a 3,且a 4>a 5>a 6>…>0,又a 1=35,a 2=13,a 3=-1,a 4=3,故a 3为最小项,a 4为最大项,x +y 的值为7. 11.C ∵等差数列{a n }的前n 项和S n 有最大值,∴a 1>0,且d <0,由a 11a 10<-1得a 10>0,a 11<-a 10,即a 10+a 11<0,∴S 20=10(a 1+a 20)<0, S 19=19a 10>0,又由题意知当n ≥11时, a n <0,∴n ≥11时,S n 递减,故S 19是最小的正数. 12.C 由题意可知, lg a 3=b 3,lg a 6=b 6.又∵b 3=18,b 6=12,则a 1q 2=1018,a 1q 5=1012,∴q 3=10-6.即q =10-2,∴a 1=1022. 又∵{a n }为正项等比数列, ∴{b n }为等差数列, 且d =-2,b 1=22.故b n =22+(n -1)×(-2)=-2n +24.∴S n =22n +n (n -1)2×(-2)=-n 2+23n =-⎝⎛⎭⎫n -2322+5294.又∵n ∈N *,故n =11或12时,(S n )max =132. 二、填空题 13.【解析】 设等比数列的公比为q ,则由S 6=4S 3知q ≠1,∴S 6=1-q 61-q =4(1-q 3)1-q .∴q 3=3.∴a 1q 3=3. 【答案】 3 14.【解析】 |a 1|+|a 2|+…+|a 15|=5+3+1+1+3+5+…+23=153. 【答案】 15315.【解析】 因为数列{1x n}为“调和数列”,所以x n +1-x n =d (n ∈N *,d 为常数),即数列{x n }为等差数列,由x 1+x 2+…+x 20=200得20(x 1+x 20)2=20(x 3+x 18)2=200,即x 3+x 18=20,易知x 3、x 18都为正数时,x 3x 18取得最大值,所以x 3x 18≤(x 3+x 182)2=100,即x 3x 18的最大值为100.【答案】 100 16.【解析】 解答本题要灵活应用等差数列性质.由已知条件⎩⎪⎨⎪⎧S 6>S 7⇒S 6>S 6+a 7⇒a 7<0S 7>S 5⇒S 5+a 6+a 7>S 5⇒a 6+a 7>0,S 6>S 5⇒S 5+a 6>S 5⇒a 6>0即a 6>0,a 7<0,a 6+a 7>0, 因此d <0,①正确; S 11=11a 6>0②正确;S 12=12(a 1+a 12)2=12(a 6+a 7)2>0,故③错误;S 13=12(a 1+a 13)2=12a 7<0,故④错误,故真命题的序号是①②. 【答案】 ①② 三、解答题 17.【解析】 (1)设数列{a n }的公差为d ,由题意得 ⎩⎪⎨⎪⎧a +d =9a 1+4d =21, 解得a 1=5,d =4,∴{a n }的通项公式为a n =4n +1. (2)由a n =4n +1得b n =24n +1,∴{b n }是首项为b 1=25,公比q =24的等比数列.∴S n =25(24n -1)24-1=32×(24n -1)15.18.【解析】 (1)证明:∵a n +1 =S n +1-S n =18(a n +1+2)2-18(a n +2)2, ∴8a n +1=(a n +1+2)2-(a n +2)2,∴(a n +1-2)2-(a n +2)2=0,(a n +1+a n )(a n +1-a n -4)=0. ∵a n ∈N *,∴a n +1+a n ≠0, ∴a n +1-a n -4=0.即a n +1-a n =4,∴数列{a n }是等差数列.(2)由(1)知a 1=S 1=18(a 1+2),解得a 1=2.∴a n =4n -2,b n =12a n -30=2n -31,由⎩⎪⎨⎪⎧2n -31≤02(n +1)-31≥0得 292≤n <312.∵n ∈N *,∴n =15, ∴{a n }前15项为负值,以后各项均 为正值. ∴S 5最小.又b 1=-29,∴S 15=15(-29+2×15-31)2=-22519.【解析】 设第n 天新感染人数最多,则从第n +1天起该市医疗部门采取措施,于是,前n 天流感病毒新感染者的人数,构成一个首项为20,公差为50的等差数列,其前n 项和S n =20n +n (n -1)2×50=25n 2-5n (1≤n <30,n ∈N ),而后30-n 天的流感病毒新感染者的人数,构成一个首项为20+(n -1)×50-30=50n -60,公差为-30,项数为30-n 的等差数列,其前30-n 项的和T 30-n =(30-n )(50n -60)+(30-n )(29-n )2×(-30)=-65n 2+2 445n -14 850,依题设构建方程有,S n +T 30-n =8 670,∴25n 2-5n+(-65n 2+2 445n -14 850)=8 670,化简得n 2-61n +588=0,∴n =12或n =49(舍去),第12天的新感染人数为20+(12-1)·50=570人.故11月12日,该市新感染此病毒的人数最多,新感染人数为570人.20.【解析】 (1)A n A n +1 =(1,a n +1-a n ), =(-1,-b n ).因为向量A n A n +1与向量共线, 则a n +1-a n -b n =1-1,即a n +1-a n =b n .又{B n }在方向向量为(1,6)的直线上, 有b n +1-b n n +1-n=6, 即b n +1-b n =6.所以b n =-a +6(n -1),a n =a 1+(a 2-a 1)+(a 3-a 2)+…+(a n -a n -1) =a 1+b 1+b 2+…+b n -1=a +3(n -1)(n -2)-a (n -1) =3n 2-(9+a )n +6+2a (n ≥2).(2)二次函数f (x )=3x 2-(9+a )x +6+2a 的图象是开口向上,对称轴为x =a +96拋物线.又∵在a 6与a 7两项中至少有一项是a n 的最小值,故对称轴x =a +96在⎝⎛⎭⎫112,152内,即112<a +96<152, ∴24<a <36. 21.【解析】 (1)a 2=λa 1+λ-2=2λ-2, a 3=λa 2+λ-2=2λ2-2λ+λ-2=2λ2-λ-2, ∵a 1+a 3=2a 2,∴1+2λ2-λ-2=2(2λ-2), 得2λ2-5λ+3=0,解得λ=1或λ=32.当λ=32时,a 2=2×32-2=1,a 1=a 2,故λ=32不合题意舍去;当λ=1时,代入a n =λa n -1+λ-2可得a n -a n -1=-1, ∴数列{a n }构成首项为a 1=1,公差为-1的等差数列, ∴a n =-n +2.(2)由λ=3可得,a n =3a n -1+3-2,即a n =3a n -1+1.∴a n +12=3a n -1+32,∴a n +12=3⎝⎛⎭⎫a n -1+12,即b n =3b n -1(n ≥2),又b 1=a 1+12=32,∴数列{b n }构成首项为b 1=32,公比为3的等比数列,∴b n =32×3n -1=3n2,∴S n =32(1-3n )1-3=34(3n -1). 22.【解析】 (1)设等比数列{a n }的首项为a 1,公比为q . 依题意,有2(a 3+2)=a 2+a 4, 代入a 2+a 3+a 4=28, 得a 3=8.∴a 2+a 4=20.∴⎩⎪⎨⎪⎧a 1q +a 1q 3=20,a 3=a 1q 2=8, 解之得⎩⎨⎧q =2a 1=2,或⎩⎪⎨⎪⎧q =12,a 1=32.又{a n }单调递增,∴q =2,a 1=2,∴a n =2n ,(2)b n =2n ·log 122n =-n ·2n ,∴-S n =1×2+2×22+3×23+…+n ×2n ①-2S n =1×22+2×23+…+(n -1)2n +n ·2n +1②①-②得,S n =2+22+23+…+2n -n ·2n +1 =2(1-2n )1-2-n ·2n +1=2n +1-2-n ·2n +1由S n +(n +m )a n +1<0,即2n +1-2-n ·2n +1+n ·2n +1+m ·2n +1<0对任意正整数n 恒成立,∴m ·2n +1<2-2n +1. 对任意正整数n ,m <12n -1恒成立.∵12n -1>-1,∴m ≤-1. 即m 的取值范围是(-∞,-1].。

安徽省2019届高三数学理一轮复习典型题专项训练:数列(附答案)

安徽省2019届高三数学理一轮复习典型题专项训练:数列(附答案)

安徽省2019届高三数学一轮复习典型题专项训练数列一、选择、填空题1、(2018全国I 卷高考题)记n S 为等差数列{}n a 的前n 项和.若3243S S S =+,12a =,则3a =( ) A .12-B .10-C .10D .122、(2017全国I 卷高考题)记n S 为等差数列{}n a 的前n 项和,若4562448a a S +==,,则{}n a 的公差为() A .1B .2C .4D .83、(滁州市2018届高三上学期期末)已知等差数列{}n a 的前n 项和为n S ,若63a =,812S =,则{}n a 的公差为( )A .1-B .1 C.2 D .34、(滁州市2018届高三上学期期末)若在各项都为正数的等比数列{}n a 中,12a =,393a a =,则2018a = .5、(合肥市2018届高三第三次(5月)教学质量检测)若正项等比数列{}n a 满足()2*12n n n a a n N +=∈,则65a a -的值是A.2B.162-C.2D.1626、(合肥市2018届高三第三次(5月)教学质量检测)设等差数列{}n a 的公差为d ,前n 项的和为n S ,若数列{}n S n +也是公差为d 的等差数列,则=n a .7、(合肥市2018届高三第一次教学质量检测)已知等差数{}n a ,若2510,1a a ==,则{}n a 的前7项的和是( )A .112B .51C .28D .188、(合肥市2018届高三第一次教学质量检测)已知数列{}n a 的前n 项和为n S ,若323n n S a n =-,则2018a =( )A .201821- B .201836- C .20181722⎛⎫- ⎪⎝⎭D .201811033⎛⎫-⎪⎝⎭9、(合肥一中等六校教育研究会2018届高三第二次联考)已知是等差数列的前n 项和,且对,下列说法不正确的是( )A 、B 、C 、成等差数列;D 、数列是等差数列;10、(合肥一中等六校教育研究会2018届高三第一次联考)已知等比数列{}n a 满足12a =,23564a a a =,则3a 的值为( )A .1B .2C .14D .1211、(马鞍山市2018届高三第二次教学质量监测)等比数列{}n a 的前n 项和为213n n S r -=+,则r 的值为( )A .13B .13- C. 19D .19-12、(马鞍山市2018届高三第二次教学质量监测)已知数列{}n a 满足对13n ≤≤时,n a n =,且对*n N ∀∈,有312n n n n a a a a ++++=+,则数列{}n n a ⋅的前50项的和为( )A .2448B .2525 C. 2533 D .2652 13、(皖南八校高三2018届高三第三次联考)删去正整数数列1,2,3, 中的所有完全平方数,得到一个新数列,这个数列的第2018项是( ) A .2062 B .2063 C .2064 D .2065参考答案:一、选择、填空题1、B2、C3、B4、201825、D6、1n a =-或1524n a n =- 7、C 8、A 9、B 10、A11、B 12、B 13、B二、解答题1、已知数列{}n a 满足12211,4,44n n n a a a a a ++===-. (1)求证:1{2}n n a a +-是等比数列; (2)求{}n a 的通项公式.2、若数列{}n a 的前n 项和为n S ,首项10a >且22n n n S a a =+()n N *∈.(1)求数列{}n a 的通项公式; (2)若0()n a n N *>∈,令1(+2)n n n b a a =,求数列{}n b 的前n 项和n T .3、(A10联盟(合肥八中、屯溪一中等)2018届高三最后一卷 )已知等比数列{}n a 的前n 项和为n S ,若639S S =,2536a a +=,数列{}n b 满足2log n n n b a a =. (Ⅰ)求数列{}n a 的通项公式; (Ⅱ)求数列{}n b 的前n 项和n T .4、(安庆市2018届高三模拟考试(二模))已知公差不为0的等差数列}{n a 的首项21=a ,且1,1,1421+++a a a 成等比数列.(1)求数列}{n a 的通项公式; (2)设11+=n n n a a b ,*N n ∈,n S 是数列}{n b 的前n 项和,求使193<n S 成立的最大的正整数n .5、(蚌埠市2018届高三第二次教学质量检查)设数列{}n a 的前n 项乘积为n T ,对任意正整数n 都有1n n T a =-(I )求证:数列11n a ⎧⎫⎨⎬-⎩⎭是等差数列;(II )求证:21T 22+T +223n T +6、(合肥一中等六校教育研究会2018届高三第一次联考)已知正项数列{}n a 的前n 项和为n S ,满足212()(*)2n n S a n =+∈N . (1)求数列{}n a 的通项公式; (2)设数列1221n n n n n a a b a a +++=,求数列{}n b 前n 项和n T 的值.7、(黄山市2018届高三一模检测)已知数列{}n a 是等差数列,数列{}n b 是公比大于零的等比数列,且211==b a , 833==b a . (1)求数列{}n a 和{}n b 的通项公式;(2)记n n b c a =,求数列{}n c 的前n 项和n S .8、(江淮十校2018届高三第三次(4月)联考 )已知数列{}n a 的前n 项的和23122n T n n =+,且*213log 0()n n a b n N ++=∈.(1)求数列{}n b 的通项公式;(2)若数列{}n c 满足n n n c a b =,求数列{}n c 的前n 项的和n S .9、(江南十校2018届高三3月综合素质检测)等差数列{}n a 的首项*1a N ∈,公差11,35d ⎛⎫∈-- ⎪⎝⎭,前n 项和n S 满足512S S =. (1)求数列{}n a 的通项公式; (2)若94n n b a =-,数列21n n b b +⎧⎫⎨⎬⎩⎭的前n 项和为n T ,求证12n T <.10、(江南十校2018届高三冲刺联考(二模))数列{}n a 满足12322322n nn a a a na ++++⋅⋅⋅+=-. (1)求数列{}n a 的通项公式; (2)设1(1)(1)nn n n a b a a +=+⋅+,求{}n b 的前n 项和n T .11、(马鞍山市2018届高三第三次教学质量监测)已知数列{}n a 是递减等比数列,24a =,且2a ,32a ,43a +成等差数列. (1)求数列{}n a 的通项公式; (2)若2116log ()n n nb a a =,求数列{}n b 的前n 项和为n S .12、(皖南八校高三2018届高三第三次联考)已知各项均为正数的数列{}n a 的前n 项和为n S ,且2,,n n a S 成等差数列。

2019-2020年高考数学一轮复习 质量检测(三)数列、不等式、推理与证明 文

2019-2020年高考数学一轮复习 质量检测(三)数列、不等式、推理与证明 文

2019-2020年高考数学一轮复习 质量检测(三)数列、不等式、推理与证明 文一、选择题(本大题共10小题,每小题5分,共50分,在给出的四个选项中,只有一项是符合题目要求的)1.(xx·江西南昌高三调研)集合A ={x ||x |≤4,x ∈R },B ={x |(x +5)(x -a )≤0},则“A ⊆B ”是“a >4”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解析:A =[-4,4],若A ⊆B ,则B =[-5,a ]且a ≥4,∴A ⊆B ⇒/ a >4,a >4⇒A ⊆B ,故选B.答案:B2.(xx·江门佛山两市高三质检)已知数列{a n }是等差数列,若a 3+a 11=24,a 4=3,则数列{a n }的公差等于( )A .1B .3C .5D .6解析:由a 3+a 11=2a 7=24,得a 7=12,由a 7-a 4=3d =9,得d =3. 答案:B3.如果a <b <0,那么下列不等式成立的是( ) A.1a <1bB .ab <b 2C .-ab <-a 2D .-1a <-1b解析:∵a <b <0,∴-a >-b >0,∴-1a <-1b ,故选D.答案:D4.若正数a ,b 满足ab =a +b +3,则ab 的取值范围是( ) A .(9,+∞) B .[9,+∞) C .[3,+∞)D .(3,+∞)解析:由a ,b ∈(0,+∞)及基本不等式得a +b ≥2ab ,则ab =a +b +3≥2ab +3,整理得ab -2ab -3≥0,即(ab -3)(ab +1)≥0,得ab ≥3,故ab ≥9.故选B.答案:B5.(xx·河南开封高三第一次模拟)已知数列{a n }为等比数列,S n 是它的前n 项和,若a 2·a 3=2a 1,且a 4与2a 7的等差中项为54,则S 5=( )A .35B .33C .31D .29解析:设等比数列{a n }的公比为q ,依题意得2a 1=a 2·a 3=a 1·a 4≠0,故a 4=2.又a 4+2a 7=52,所以a 7=14,所以q 3=a 7a 4=18,q =12,所以a 1=a 4q 3=16,S 5=a 11-q 51-q =31,选C.答案:C6.(xx·温州十校联考)当变量x ,y 满足约束条件⎩⎪⎨⎪⎧y ≥x ,x +3y ≤4,x ≥m 时,z =x -3y 的最大值为8,则实数m 的值是( )A .-4B .-3C .-2D .-1解析:画出可行域,如图所示,目标函数z =x -3y 变形为y =x 3-z3,当直线过点C 时,z 取到最大值,又C (m ,m ),所以8=m -3m ,解得m =-4. 答案:A7.(xx·兰州高三诊断)设等比数列{a n }的前n 项和为S n ,若S 8S 4=3,则S 12S 8=( )A .2 B.73 C.83D .3解析:∵q ≠1,∴S 8S 4=1-q 81-q 4=1+q 4=3,q 4=2,S 12S 8=1-q 121-q 8=73,选B.答案:B8.(xx·重庆卷)若log 4(3a +4b )=log 2ab ,则a +b 的最小值是( ) A .6+2 3 B .7+23 C .6+4 3D .7+43解析:因为log 4(3a +4b )=log 2ab ,所以log 4(3a +4b )=log 4(ab ),即3a +4b =ab ,且⎩⎪⎨⎪⎧3a +4b >0,ab >0,即a >0,b >0,所以4a +3b =1(a >0,b >0),a +b =(a +b )(4a +3b )=7+4b a +3a b ≥7+24b a ·3a b =7+43,当且仅当4b a =3ab时取等号,选择D.9.(xx·合肥质检)已知数列{a n }满足a 1=1,a n +1·a n =2n (n ∈N *),则S 2 012=( ) A .22 012-1 B .3×21 006-3 C .3×21 006-1D .3×21 005-2解析:由题设可得a 1=1,a 2=2,a n =2a n -2,奇数项是公比为2,首项是1的等比数列,偶数项是公比为2,首项也是2的等比数列,所以S 2 012=1×21 006-12-1+2×21 006-12-1=3×21 006-3.答案:B 10.(xx·郑州高三联考)如图,一单位正方体形积木,平放于桌面上,并且在其上方位置若干个小正方体形积木摆成塔形,其中上面正方体中下底面的四个顶点是下面相邻正方体中上底面各边的中点,如果所有正方体暴露在外面部分的面积之和超过8.8,则正方体的个数至少是( )A .6B .7C .8D .10解析:由题意第一个正方体露在外面的面积为4.5,第二个为2.25,第三个为1.125,……,可知此构成首项为4.5,公比q =12的等比数列,所以S n =4.5⎝⎛⎭⎫1-12n 1-12>8.8,化简得12n <145,易得n 的最小值为6,故选A.二、填空题(本大题共4小题,每小题5分,共20分.将答案填在题中的横线上) 11.(xx·沈阳质检)已知单调递增的等比数列{a n }满足a 2+a 3+a 4=28,且a 3+2是a 2,a 4的等差中项,则数列{a n }的通项公式为________.解析:由题意得a 2+a 4=2(a 3+2),又a 2+a 3+a 4=28,得a 3=8,设等比数列{a n }的公比为q ,可得8q+8+8q =28,解得q =2,而a 1=2,所以a n =2n .答案:a n =2n12.(xx·山东临沂二模)对于大于或等于2的自然数n 的二次方幂有如下分解方式:22=1+3,32=1+3+5,42=1+3+5+7,…,根据上述分解规律,对任意自然数n ,当n ≥2时,有n 2=__________.解析:等式的右边依次为n 个奇数和,所以由归纳推理得,当n ≥2时,有n 2=1+3+…+(2n -1).答案:1+3+…+(2n -1)13.(xx·北京海淀期末)若实数x ,y 满足 ⎩⎪⎨⎪⎧x +y -4≤0,x -y -2≤0,2x +y -5>0,则z =x +2y 的最大值为________.解析:根据不等式组画出可行域,如图所示为三角形,目标函数z =x +2y ,所以y =-12x +z 2.要使目标函数取得最大值,即直线的截距最大,观察图象可知,当直线过点A 时取得截距最大.由⎩⎪⎨⎪⎧x +y -4=0,2x +y -5=0解得点A (1,3),所以z max =1+2×3=7.14.已知正项等比数列{a n}满足log2a1+log2a2+…+log2a2 009=2 009,则log2(a1+a 2 009)的最小值为__________.解析:本题可先由对数的运算性质得到a 1a 2a 3…a 2 009=22 009,又由等比数列的性质得a 1a 2009=a 2a 2 008=…=a 21 005,故由上式可得a 2 0091 005=22 009,∴a 1 005=2,∴a 1a 2 009=4,而后再由基本不等式可确定所求式子的最小值.∴log 2(a 1+a 2 009)≥log 22a 1a 2 009=2. 答案:2三、解答题(本大题共4小题,共50分.解答应写出文字说明,证明过程或演算步骤) 15.(12分)(xx·江西卷)已知数列{a n }的前n 项和S n =3n 2-n2,n ∈N *.(1)求数列{a n }的通项公式;(2)证明:对任意的n >1,都存在m ∈N *,使得a 1,a n ,a m 成等比数列. 解:(1)由S n =3n 2-n2,得a 1=S 1=1,当n ≥2时,a n =S n -S n -1=3n -2, 所以数列{a n }的通项公式为:a n =3n -2.(2)要使得a 1,a n ,a m 成等比数列,只需要a 2n =a 1·a m , 即(3n -2)2=1·(3m -2),即m =3n 2-4n +2,而此时m ∈N *,且m >n . 所以对任意的n >1,都存在m ∈N *,使得a 1,a n ,a m 成等比数列.16.(12分)某书商为提高某套丛书的销量,准备举办一场展销会.据市场调查,当每套丛书售价定为x 元时,销售量可达到(15-0.1x )万套.现出版社为配合该书商的活动,决定进行价格改革,将每套丛书的供货价格分成固定价格和浮动价格两部分,其中固定价格为30元,浮动价格(单位:元)与销售量(单位:万套)成反比,比例系数为10.假设不计其他成本,即销售每套丛书的利润=售价-供货价格,问:(1)每套丛书定价为100元时,书商能获得的总利润是多少万元? (2)每套丛书定价为多少元时,单套丛书的利润最大?解:(1)每套丛书定价为100元时,销售量为15-0.1×100=5(万套),此时每套供货价格为30+105=32(元),故书商所获得的总利润为5×(100-32)=340(万元). (2)每套丛书售价定为x 元时,由⎩⎪⎨⎪⎧1.5-0.1x >0,x >0得0<x <150. 依题意,单套丛书利润P =x -⎝⎛⎭⎫30+1015-0.1x=x -100150-x-30,∴P =-⎣⎡⎦⎤150-x +100150-x +120,∵0<x <150,∴150-x >0, 由(150-x )+100150-x ≥2150-x ·100150-x=2×10=20,当且仅当150-x =100150-x ,即x =140时等号成立,此时P max =-20+120=100.答:(1)当每套丛书售价定为100元时,书商能获得总利润为340万元; (2)每套丛书售价定为140元时,单套丛书的利润取得最大值100元.17.(13分)(xx·宁夏银川月考)数列{a n }各项均为正数,其前n 项和为S n ,且满足2a n S n-a 2n =1.(1)求证:数列{S 2n }为等差数列,并求数列{a n }的通项公式; (2)设b n =24S 4n -1,求数列{b n }的前n 项和T n .解:(1)∵2a n S n -a 2n =1,∴当n ≥2时,2(S n -S n -1)S n -(S n -S n -1)2=1, 整理得,S 2n -S 2n -1=1(n ≥2),又S 21=1,∴数列{S 2n }为首项和公差都是1的等差数列. ∴S 2n =n ,又S n >0,∴S n =n∴n ≥2时,a n =S n -S n -1=n -n -1,又a 1=S 1=1适合此式, ∴数列{a n }的通项公式为a n =n -n -1.(2)∵b n =24S 4n -1=22n -12n +1=12n -1-12n +1,∴T n =11×3+13×5+…+12n -12n +1=1-13+13-15+…+12n -1-12n +1=1-12n +1=2n 2n +1.18.(13分)(xx·浙江省重点中学摸底)已知数列{a n }满足a 1=1,且a n =2a n -1+2n (n ≥2且n ∈N *).(1)求数列{a n }的通项公式; (2)求数列{a n }的前n 项之和为S n . 解:(1)∵a n =2a n -1+2n (n ≥2,且n ∈N *), ∴a n 2n =a n -12n -1+1,即a n 2n -a n -12n -1=1(n ≥2,且n ∈N *), 所以,数列⎩⎨⎧⎭⎬⎫a n 2n 是等差数列,公差d =1,首项12,于是a n 2n =12+(n -1)d =12+(n -1)·1=n -12,∴a n =⎝⎛⎭⎫n -12·2n.(2)∵S n =12·21+32·22+52·23+…+⎝⎛⎭⎫n -12·2n , ∴2S n =12·22+32·23+52·24+…+⎝⎛⎭⎫n -12·2n +1. 以上两式相减得-S n =1+22+23+…+2n -⎝⎛⎭⎫n -12·2n +1 =2+22+23+…+2n -⎝⎛⎭⎫n -12·2n +1-1 =21-2n 1-2-⎝⎛⎭⎫n -12·2n +1-1=(3-2n )·2n -3, ∴S n =(2n -3)·2n +3..。

2019版高考数学理全国一轮复习规范答题强化练三数列 含解析 精品

2019版高考数学理全国一轮复习规范答题强化练三数列 含解析 精品

温馨提示:此套题为Word版,请按住Ctrl,滑动鼠标滚轴,调节合适的观看比例,答案解析附后。

关闭Word文档返回原板块。

规范答题强化练(三)数列(45分钟48分)1.(12分)已知正项等比数列{a n}满足a1,2a2,a3+6成等差数列,且错误!未找到引用源。

=9a1a5.(1)求数列{a n}的通项公式.(2)设b n=错误!未找到引用源。

·a n,求数列{b n}的前n项和T n.【解析】(1)设正项等比数列{a n}的公比为q(q>0),由错误!未找到引用源。

= 9a1 a5 = 9错误!未找到引用源。

,(2分)故q2 = 错误!未找到引用源。

= 9,(3分)解得q=±3,因为q>0,所以q=3.又因为a1, 2a2, a3+6成等差数列,所以a1+(a3+6)-4a2=0,解得a1=3,(4分)所以数列{a n}的通项公式为a n=3n .(6分)(2)依题意得b n=(2n+1)·3n,则T n=3·31+5·32+7·33+…+(2n+1)·3n,①(7分)3T n=3·32+5·33+7·34+…+(2n-1)·3n+(2n+1)·3n+1,②由②-①得2T n=(2n+1)·3n+1-2·(32+33+…+3n)-32=(2n+1)·3n+1-2·错误!未找到引用源。

-32=2n·3n+1,(10分)所以数列{b n}的前n项和T n=n·3n+1.(12分)2.(12分)已知数列{a n}满足a1=1,a n+1=2a n+3,n∈N*(1)求证:数列{a n+3}是等比数列.(2)求数列{na n}的前n项和S n.【解析】(1)错误!未找到引用源。

=错误!未找到引用源。

=2,(n∈N*),因此数列{a n+3}是等比数列,且公比为2. (4分)(2)由(1)及题设可知,数列{a n+3}是首项为4,公比为2的等比数列,因此a n+3=4×2n-1=2n+1,于是a n=2n+1-3;所以n·a n=n·2n+1-3n.(6分)设b n=n·2n+1,c n=-3n,并设它们的前n项和分别为T n,R n.则T n=1×22+2×23+3×24+…+n·2n+1,①(8分)所以2T n=1×23+2×24+…+(n-1)·2n+1+n·2n+2②②-①得T n=-22-23-24-…-2n+1+n·2n+2=n·2n+2-4·错误!未找到引用源。

2019届高考数学人教B理一轮复习讲义:第六章 数列 第3

2019届高考数学人教B理一轮复习讲义:第六章 数列 第3

第3节 等比数列及其前n 项和最新考纲 1.理解等比数列的概念,掌握等比数列的通项公式与前n 项和公式;2.能在具体的问题情境中识别数列的等比关系,并能用有关知识解决相应的问题;3.了解等比数列与指数函数的关系.知 识 梳 理1.等比数列的概念(1)如果一个数列从第2项起,每一项与它的前一项的比都等于同一个非零常数,那么这个数列叫做等比数列.数学语言表达式:a na n -1=q (n ≥2,q 为非零常数).(2)如果三个数x ,G ,y 组成等比数列,则G 叫做x 和y 的等比中项. 2. 等比数列的通项公式及前n 项和公式(1)若等比数列{a n }的首项为a 1,公比是q ,则其通项公式为a n =a 1q n -1; 通项公式的推广:a n =a m q n -m .(2)等比数列的前n 项和公式:当q =1时,S n =na 1;当q ≠1时,S n =a 1(1-q n )1-q =a 1-a n q 1-q .3.等比数列的性质已知{a n }是等比数列,S n 是数列{a n }的前n 项和.(1)若k +l =m +n (k ,l ,m ,n ∈N +),则有a k ·a l =a m ·a n . (2)相隔等距离的项组成的数列仍是等比数列,即a k , a k +m ,a k +2m ,…仍是等比数列,公比为q m .(3)当q ≠-1,或q =-1且n 为奇数时,S n ,S 2n -S n ,S 3n -S 2n ,…仍成等比数列,其公比为q n .[常用结论与微点提醒]1.若数列{a n }为等比数列,则数列{c ·a n }(c ≠0),{|a n |},{a 2n },⎩⎨⎧⎭⎬⎫1an 也是等比数列. 2.由a n +1=qa n ,q ≠0,并不能立即断言{a n }为等比数列,还要验证a 1≠0.3.在运用等比数列的前n 项和公式时,必须注意对q =1与q ≠1分类讨论,防止因忽略q =1这一特殊情形而导致解题失误.诊 断 自 测1.思考辨析(在括号内打“√”或“×”)(1)等比数列公比q 是一个常数,它可以是任意实数.( ) (2)三个数a ,b ,c 成等比数列的充要条件是b 2=ac .( )(3)数列{a n }的通项公式是a n =a n,则其前n 项和为S n =a (1-a n)1-a.( )(4)数列{a n }为等比数列,则S 4,S 8-S 4,S 12-S 8成等比数列.( ) 解析 (1)在等比数列中,q ≠0.(2)若a =0,b =0,c =0满足b 2=ac ,但a ,b ,c 不成等比数列. (3)当a =1时,S n =na .(4)若a 1=1,q =-1,则S 4=0,S 8-S 4=0,S 12-S 8=0,不成等比数列. 答案 (1)× (2)× (3)× (4)×2.(教材习题改编)已知{a n }是等比数列,a 2=2,a 5=14,则公比q 等于( ) A.-12B.-2C.2D.12解析 由题意知q 3=a 5a 2=18,即q =12. 答案 D3.(2018·湖北省七市联考)公比不为1的等比数列{a n }满足a 5a 6+a 4a 7=18,若a 1a m =9,则m 的值为( ) A.8B.9C.10D.11解析 由题意得,2a 5a 6=18,a 5a 6=9,∴a 1a m =a 5a 6=9, ∴m =10. 答案 C4.(2015·全国Ⅰ卷)在数列{a n }中,a 1=2,a n +1=2a n ,S n 为{a n }的前n 项和.若S n =126,则n =________.解析 由a n +1=2a n ,知数列{a n }是以a 1=2为首项,公比q =2的等比数列,由S n =2(1-2n )1-2=126,解得n =6.答案 65.(2017·北京卷)若等差数列{a n }和等比数列{b n }满足a 1=b 1=-1,a 4=b 4=8,则a 2b 2=________.解析 {a n }为等差数列,a 1=-1,a 4=8=a 1+3d =-1+3d ,∴d =3,∴a 2=a 1+d =-1+3=2.{b n }为等比数列,b 1=-1,b 4=8=b 1·q 3=-q 3,∴q =-2, ∴b 2=b 1·q =2,则a 2b 2=22=1.答案 1考点一 等比数列基本量的运算【例1】 (1)(2017·全国Ⅲ卷)设等比数列{a n }满足a 1+a 2=-1,a 1-a 3=-3,则a 4=________.(2)(2017·江苏卷)等比数列{a n }的各项均为实数,其前n 项和为S n ,已知S 3=74,S 6=634,则a 8=________.解析 (1)由{a n }为等比数列,设公比为q . 由⎩⎨⎧a 1+a 2=-1,a 1-a 3=-3,得⎩⎨⎧a 1+a 1q =-1,①a 1-a 1q 2=-3,② 显然q ≠1,a 1≠0,②①得1-q =3,即q =-2,代入①式可得a 1=1, 所以a 4=a 1q 3=1×(-2)3=-8.(2)设数列{a n }首项为a 1,公比为q (q ≠1), 则⎩⎪⎨⎪⎧S 3=a 1(1-q 3)1-q =74,S 6=a 1(1-q 6)1-q =634,解得⎩⎪⎨⎪⎧a 1=14,q =2, 所以a 8=a 1q 7=14×27=32. 答案 (1)-8 (2)32规律方法 1.等比数列基本量的运算是等比数列中的一类基本问题,等比数列中有五个量a 1,n ,q ,a n ,S n ,一般可以“知三求二”,通过列方程(组)便可迎刃而解.2.等比数列的前n 项和公式涉及对公比q 的分类讨论,当q =1时,{a n }的前n 项和S n =na 1;当q ≠1时,{a n }的前n 项和S n =a 1(1-q n )1-q =a 1-a n q1-q.【训练1】 (1)(2018·烟台调研)设公比为q (q >0)的等比数列{a n }的前n 项和为S n ,若S 2=3a 2+2,S 4=3a 4+2,则a 1=( ) A.-2 B.-1 C.12D.23(2)(2016·全国Ⅰ卷)设等比数列满足a 1+a 3=10,a 2+a 4=5,则a 1a 2…a n 的最大值为________.解析 (1)由S 2=3a 2+2,S 4=3a 4+2得a 3+a 4=3a 4-3a 2,即q +q 2=3q 2-3,解得q =-1(舍)或q =32,将q =32代入S 2=3a 2+2,得a 1+32a 1=3×32a 1+2,解得a 1=-1,故选B.(2)设等比数列{a n }的公比为q ,∴⎩⎨⎧a 1+a 3=10,a 2+a 4=5⇒⎩⎨⎧a 1+a 1q 2=10,a 1q +a 1q 3=5,解得⎩⎪⎨⎪⎧a 1=8,q =12, ∴a 1a 2…a n =a n 1q 1+2+…+(n -1)=2-n 22+7n2.记t =-n 22+7n 2=-12(n 2-7n ),结合n ∈N +,可知n =3或4时,t 有最大值6.又y =2t 为增函数.所以a 1a 2…a n 的最大值为64. 答案 (1)B (2)64考点二 等比数列的性质及应用【例2】 (1)(教材习题原题)等比数列{a n }的各项均为正数,且a 5a 6+a 4a 7=18,则log 3a 1+log 3a 2+…+log 3a 10=( ) A.12B.10C.8D.2+log 35(2)(2018·云南11校调研)已知数列{a n }是等比数列,S n 为其前n 项和,若a 1+a 2+a 3=4,a 4+a 5+a 6=8,则S 12=( ) A.40B.60C.32D.50解析 (1)由等比数列的性质知a 5a 6=a 4a 7,又a 5a 6+a 4a 7=18,所以a 5a 6=9,则原式=log 3(a 1a 2…a 10)=log 3(a 5a 6)5=10.(2)数列S 3,S 6-S 3,S 9-S 6,S 12-S 9是等比数列,即数列4,8,S 9-S 6,S 12-S 9是首项为4,公比为2的等比数列,则S 9-S 6=a 7+a 8+a 9=16,S 12-S 9=a 10+a 11+a 12=32,因此S 12=4+8+16+32=60. 答案 (1)B (2)B规律方法 1.在解决等比数列的有关问题时,要注意挖掘隐含条件,利用性质,特别是性质“若m +n =p +q ,则a m ·a n =a p ·a q ”,可以减少运算量,提高解题速度.2.在应用相应性质解题时,要注意性质成立的前提条件,有时需要进行适当变形.此外,解题时注意设而不求思想的运用.【训练2】 (1)(2018·西安八校联考)已知数列{a n }是等比数列,数列{b n }是等差数列,若a 1·a 6·a 11=-33,b 1+b 6+b 11=7π,则tan b 3+b 91-a 4·a 8的值是( )A.- 3B.-1C.-33D. 3(2)(一题多解)设等比数列{a n }的前n 项和为S n ,若S 6S 3=3,则S 9S 6=________. 解析 (1)依题意得,a 36=(-3)3,a 6=-3,3b 6=7π,b 6=7π3,b 3+b 91-a 4·a 8=2b 61-a 26=-7π3,故tan b 3+b 91-a 4·a 8=tan ⎝⎛⎭⎪⎫-7π3=-tan π3=- 3. (2)法一 由等比数列的性质S 3,S 6-S 3,S 9-S 6仍成等比数列,由已知得S 6=3S 3, ∴S 6-S 3S 3=S 9-S 6S 6-S 3,即S 9-S 6=4S 3,S 9=7S 3,∴S 9S 6=73.法二 因为{a n }为等比数列,由S 6S 3=3,设S 6=3a ,S 3=a ,所以S 3,S 6-S 3,S 9-S 6为等比数列,即a ,2a ,S 9-S 6成等比数列,所以S 9-S 6=4a ,解得S 9=7a ,所以S 9S 6=7a 3a =73.答案 (1)A (2)73考点三 等比数列的判定与证明【例3】 (2016·全国Ⅲ卷)已知数列{a n }的前n 项和S n =1+λa n ,其中λ≠0. (1)证明{a n }是等比数列,并求其通项公式; (2)若S 5=3132,求λ.(1)证明 由题意得a 1=S 1=1+λa 1,故λ≠1,a 1=11-λ,a 1≠0.由S n =1+λa n ,S n +1=1+λa n +1, 得a n +1=λa n +1-λa n , 即a n +1(λ-1)=λa n ,由a 1≠0,λ≠0得a n ≠0,所以a n +1a n =λλ-1.因此{a n }是首项为11-λ,公比为λλ-1的等比数列,于是a n =11-λ⎝ ⎛⎭⎪⎫λλ-1n -1. (2)解 由(1)得S n =1-⎝⎛⎭⎪⎫λλ-1n. 由S 5=3132,得1-⎝⎛⎭⎪⎫λλ-15=3132,即⎝ ⎛⎭⎪⎫λλ-15=132. 解得λ=-1.规律方法 证明一个数列为等比数列常用定义法与等比中项法,其他方法只用于选择题、填空题中的判定;若证明某数列不是等比数列,则只要证明存在连续三项不成等比数列即可.【训练3】 (2017·安徽江南十校联考)已知S n 是数列{a n }的前n 项和,且满足S n -2a n =n -4.(1)证明:{S n -n +2}为等比数列; (2)求数列{S n }的前n 项和T n . (1)证明 因为a n =S n -S n -1(n ≥2), 所以S n -2(S n -S n -1)=n -4(n ≥2), 则S n =2S n -1-n +4(n ≥2),所以S n -n +2=2[S n -1-(n -1)+2](n ≥2), 又由题意知a 1-2a 1=-3, 所以a 1=3,则S 1-1+2=4,所以{S n -n +2}是首项为4,公比为2等比数列. (2)解 由(1)知S n -n +2=2n +1, 所以S n =2n +1+n -2,于是T n =(22+23+…+2n +1)+(1+2+…+n )-2n =4(1-2n )1-2+n (n +1)2-2n =2n +3+n 2-3n -82.基础巩固题组 (建议用时:40分钟)一、选择题1.已知{a n },{b n }都是等比数列,那么( ) A.{a n +b n },{a n ·b n }都一定是等比数列B.{a n +b n }一定是等比数列,但{a n ·b n }不一定是等比数列C.{a n +b n }不一定是等比数列,但{a n ·b n }一定是等比数列D.{a n +b n },{a n ·b n }都不一定是等比数列 解析 两个等比数列的积仍是一个等比数列. 答案 C2.(2018·青岛模拟)在单调递减的等比数列{a n }中,若a 3=1,a 2+a 4=52,则a 1=( ) A.2B.4C. 2D.2 2解析 在等比数列{a n }中,a 2a 4=a 23=1,又a 2+a 4=52,数列{a n }为递减数列,所以a 2=2,a 4=12,所以q 2=a 4a 2=14,所以q =12,a 1=a 2q =4.答案 B3.(2017·全国Ⅱ卷)我国古代数学名著《算法统宗》中有如下问题:“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”意思是:一座7层塔共挂了381盏灯,且相邻两层中的下一层灯数是上一层灯数的2倍,则塔的顶层共有灯( ) A.1盏B.3盏C.5盏D.9盏解析 设塔的顶层的灯数为a 1,七层塔的总灯数为S 7,公比为q ,则依题意S 7=381,公比q =2.∴a 1(1-27)1-2=381,解得a 1=3.答案 B4.设等比数列{a n }中,前n 项和为S n ,已知S 3=8,S 6=7,则a 7+a 8+a 9等于( ) A.18B.-18C.578D.558解析 因为a 7+a 8+a 9=S 9-S 6,且公比不等于-1,在等比数列中,S 3,S 6-S 3,S 9-S 6也成等比数列,即8,-1,S 9-S 6成等比数列,则8(S 9-S 6)=(-1)2,S 9-S 6=18,即a 7+a 8+a 9=18. 答案 A5.(2018·昆明诊断)在等比数列{a n }中,若a 3,a 7是方程x 2+4x +2=0的两根,则a 5的值是( ) A.-2B.- 2C.± 2D. 2解析 根据根与系数之间的关系得a 3+a 7=-4, a 3a 7=2,由a 3+a 7=-4<0,a 3a 7>0, 所以a 3<0,a 7<0,即a 5<0, 由a 3a 7=a 25,得a 5=-a 3a 7=- 2. 答案 B 二、填空题6.(2018·河南百校联盟联考改编)若等比数列{a n }的前n 项和为S n ,a 5=40,且S 6+3a 7=S 8,则a 2等于________.解析 由S 6+3a 7=S 8,得2a 7=a 8,则公比q 为2,所以a 2=a 523=4023=5. 答案 57.已知数列{a n }的前n 项和为S n ,且满足a n +S n =1(n ∈N +),则通项a n =________. 解析 ∵a n +S n =1,①∴a 1=12,a n -1+S n -1=1(n ≥2),②由①-②,得a n -a n -1+a n =0,即a n a n -1=12(n ≥2),∴数列{a n }是首项为12,公比为12的等比数列, 则a n =12×⎝ ⎛⎭⎪⎫12n -1=12n .答案 12n8.(2018·成都诊断)已知数列{a n }中,a 1=2,且a 2n +1a n =4(a n +1-a n )(n ∈N +),则其前9项的和S 9=________.解析 由a 2n +1a n=4(a n +1-a n )得,a 2n +1-4a n +1a n +4a 2n =0,∴(a n +1-2a n )2=0,a n +1a n =2,∴数列{a n }是首项a 1=2,公比为2的等比数列,∴S 9=2(1-29)1-2=1 022.答案 1 022 三、解答题9.(2017·全国Ⅰ卷)记S n 为等比数列{a n }的前n 项和.已知S 2=2,S 3=-6. (1)求{a n }的通项公式;(2)求S n ,并判断S n +1,S n ,S n +2是否成等差数列. 解 (1)设{a n }的公比为q ,由题设可得 ⎩⎨⎧a 1(1+q )=2,a 1(1+q +q 2)=-6,解得⎩⎨⎧q =-2,a 1=-2. 故{a n }的通项公式为a n =(-2)n .(2)由(1)得S n =a 1(1-q n )1-q =-2[1-(-2)n ]1-(-2)=23[(-2)n -1],则S n +1=23[(-2)n +1-1],S n +2=23[(-2)n +2-1],所以S n +1+S n +2=23[(-2)n +1-1]+23[(-2)n +2-1]=23[2(-2)n -2]=43[(-2)n -1]=2S n ,∴S n +1,S n ,S n +2成等差数列.10.(2018·惠州调研)已知数列{a n }中,点(a n ,a n +1)在直线y =x +2上,且首项a 1=1.(1)求数列{a n }的通项公式;(2)数列{a n }的前n 项和为S n ,等比数列{b n }中,b 1=a 1,b 2=a 2,数列{b n }的前n 项和为T n ,请写出适合条件T n ≤S n 的所有n 的值. 解 (1)根据已知a 1=1,a n +1=a n +2, 即a n +1-a n =2=d ,所以数列{a n }是一个等差数列,a n =a 1+(n -1)d =2n -1. (2)数列{a n }的前n 项和S n =n 2.等比数列{b n }中,b 1=a 1=1,b 2=a 2=3, 所以q =3,b n =3n -1.数列{b n }的前n 项和T n =1-3n 1-3=3n -12.T n ≤S n 即3n -12≤n 2,又n ∈N +,所以n =1或2.能力提升题组 (建议用时:20分钟)11.数列{a n }中,已知对任意n ∈N +,a 1+a 2+a 3+…+a n =3n -1,则a 21+a 22+a 23+…+a 2n 等于( ) A.(3n -1)2 B.12(9n -1) C.9n -1D.14(3n -1)解析 ∵a 1+a 2+…+a n =3n -1,n ∈N +,n ≥2时,a 1+a 2+…+a n -1=3n -1-1, ∴当n ≥2时,a n =3n -3n -1=2·3n -1, 又n =1时,a 1=2适合上式,∴a n =2·3n -1, 故数列{a 2n }是首项为4,公比为9的等比数列. 因此a 21+a 22+…+a 2n =4(1-9n)1-9=12(9n-1).答案 B12.(2018·东北三省三校联考)各项均为正数的数列{a n }和{b n }满足:a n ,b n ,a n +1成等差数列,b n ,a n +1,b n +1成等比数列,且a 1=1,a 2=3,则数列{a n }的通项公式为________.解析 由题意知2b n =a n +a n +1,a 2n +1=b n ·b n +1,∴a n +1=b n b n +1,当n ≥2时,2b n =b n -1b n +b n b n +1,∵b n >0,∴2b n =b n -1+b n +1,∴{b n }成等差数列,由a 1=1,a 2=3,得b 1=2,b 2=92,∴b 1=2,b 2=322,∴公差d =22,∴b n =n +122,∴b n =(n +1)22, ∴a n =b n -1b n =n (n +1)2. 答案 a n =n (n +1)213.(2017·合肥模拟)设{a n }是公比为q 的等比数列.(1)推导{a n }的前n 项和公式;(2)设q ≠1,证明数列{a n +1}不是等比数列. 解 (1)设{a n }的前n 项和为S n ,当q =1时,S n =a 1+a 1+…+a 1=na 1;当q ≠1时,S n =a 1+a 1q +a 1q 2+…+a 1q n -1,① qS n =a 1q +a 1q 2+…+a 1q n, ②①-②得,(1-q )S n =a 1-a 1q n ,∴S n =a 1(1-q n)1-q ,∴S n =⎩⎨⎧na 1,q =1,a 1(1-q n )1-q ,q ≠1. (2)假设{a n +1}是等比数列,则对任意的k ∈N +, (a k +1+1)2=(a k +1)(a k +2+1),a 2k +1+2a k +1+1=a k a k +2+a k +a k +2+1,a 21q 2k +2a 1q k =a 1qk -1·a 1q k +1+a 1q k -1+a 1q k +1, ∵a 1≠0,∴2q k =q k -1+q k +1.∵q≠0,∴q2-2q+1=0,∴q=1,这与已知矛盾. 故数列{a n+1}不是等比数列.。

2019届高考数学人教A版理科第一轮复习滚动测试卷三 含

2019届高考数学人教A版理科第一轮复习滚动测试卷三 含

滚动测试卷三(第一~七章)(时间:120分钟满分:150分)一、选择题(本大题共12小题,每小题5分,共60分)1.已知集合M={x|x2-4x+3<0},集合N={x|lg(3-x)>0},则M∩N=()A.{x|2<x<3}B.{x|1<x<3}C.{x|1<x<2}D.⌀2.若复数(1-i)(2+b i)是纯虚数,则实数b=()A.-2B.-1C.1D.23.设命题p:∀x>0,ln x>lg x,命题q:∃x>0,=1-x2,则下列命题为真命题的是()A.p∧qB.(p)∧(q)C.p∧(q)D.(p)∧q4.已知{a n}是等比数列,且a5+a7=d x,则a6(a4+2a6+a8)的值为()A.16π2B.4π2C.2π2D.π25.曲线y=x3-2x+4在点(1,3)处的切线的倾斜角为()A.30°B.45°C.60°D.120°6.(2017河北邯郸二模)已知向量a=(m,2),b=(2,-1),且a⊥b,则等于()A.-B.1C.2D.7.函数f(x)=-log2(x+2)在区间[-1,1]上的最大值为()A.2B.3C.6D.98.已知等差数列{a n}的前n项和为S n,若2a6=a8+6,则S7等于()A.49B.42C.35D.249.已知实数a,b满足2a=3,3b=2,则函数f(x)=a x+x-b的零点所在的区间是()A.(-2,-1)B.(-1,0)C.(0,1)D.(1,2)10.已知函数f(x)=2sin (2x+φ)的图象过点(0,),则函数f(x)的图象的一个对称中心是()A. B.C. D.11.已知x,y满足且目标函数z=2x+y的最大值是最小值的8倍,则实数a的值是()A.1B.C.D.12.如图,半径为2的☉O切直线MN于点P,射线PK从PN出发绕点P逆时针方向旋转到PM,在旋转过程中,PK交☉O于点Q,设∠POQ=x,弓形PTQ的面积为S=f(x),则f(x)的图象大致是()二、填空题(本大题共4小题,每小题5分,共20分)13.已知a>0,b>0,ab=8,则当a的值为时,log2a·log2(2b)取得最大值.14.已知函数f(x)=且f(a)=-3,则f(5-a)=.15.已知向量a,b,c满足|a|=|b|=|c|≠0,a+b=c,则向量a与向量c的夹角是.16.已知函数f(x)=-x3+ax2-4在x=2处取得极值,若m,n∈[-1,1],则f(m)+f'(n)的最小值是.三、解答题(本大题共6小题,共70分)17.(10分)在△ABC中,角A,B,C的对边分别为a,b,c,且满足2b sin=a+c.(1)求角B的大小;(2)若点M为BC中点,且AM=AC,求sin ∠BAC.18.(12分)(2017天津,理18)已知{a n}为等差数列,前n项和为S n(n∈N*),{b n}是首项为2的等比数列,且公比大于0,b2+b3=12,b3=a4-2a1,S11=11b4.(1)求{a n}和{b n}的通项公式;(2)求数列{a2n b2n-1}的前n项和(n∈N*).19.(12分)在锐角三角形ABC中,角A,B,C所对的边分别为a,b,c,已知a=b cos C+c sin B. (1)若a=2,b=,求c;(2)若sin-2sin2=0,求A.20.(12分)已知数列{a n}满足(a n+1-1)(a n-1)=3(a n-a n+1),a1=2,令b n=.(1)求数列{b n}的通项公式;(2)求数列{b n·3n}的前n项和S n.21.(12分)为稳定房价,某地政府决定建造一批保障房供给社会.计划用1 600万元购得一块土地,在该土地上建造10幢楼房的住宅小区,每幢楼的楼层数相同,且每层建筑面积均为1 000 m2,每平方米的建筑费用与楼层有关,第x层楼房每平方米的建筑费用为(kx+800)元(其中k为常数).经测算,若每幢楼为5层,则该小区每平方米的平均综合费用为1 270元.注:每平方米平均综合费用=.(1)求k的值;(2)问要使该小区楼房每平方米的平均综合费用最低,应将这10幢楼房建成多少层?此时每平方米的平均综合费用为多少元?22.(12分)已知函数f(x)=e x(ax+b)-x2-4x,曲线y=f(x)在点(0,f(0))处的切线方程为y=4x+4.(1)求a,b的值;(2)讨论f(x)的单调性,并求f(x)的极大值.答案:1.C解析由x2-4x+3<0,可得(x-1)(x-3)<0,即1<x<3,故M={x|1<x<3};由lg(3-x)>0=lg 1,可知3-x>1,即x<2,故N={x|x<2};因此,M∩N={x|1<x<2},故选C.2.A解析∵(1-i)(2+b i)=(b+2)+(b-2)i是纯虚数,∴解得b=-2.故选A.3.D解析当x=1时,ln x=lg x=0.故命题p是假命题.画出y=与y=1-x2的图象(图略),可知在x∈(0,+∞)上两个图象有交点,故命题q是真命题.因此(p)∧q是真命题.故选D.4.B解析∵d x表示以原点为圆心,以2为半径的圆的面积的二分之一,∴d x=π×4=2π,∴a5+a7=2π.∵{a n}是等比数列,∴a6(a4+2a6+a8)=a6a4+2+a6a8=+2a5a7+=(a5+a7)2=4π2.故选B.5.B解析由y'=3x2-2,得y'|x=1=1,即曲线在点(1,3)处的切线斜率为1,故切线的倾斜角为45°.6.B解析∵a=(m,2),b=(2,-1),且a⊥b,∴a·b=2m-2=0,解得m=1,∴a=(1,2),2a-b=(0,5),|2a-b|=5.又a+b=(3,1),a·(a+b)=1×3+2×1=5,∴=1.7.B解析因为y=在R上单调递减,y=log2(x+2)在[-1,1]上单调递增,所以f(x)在[-1,1]上单调递减,所以f(x)在[-1,1]上的最大值为f(-1)=3.8.B解析设等差数列{a n}的公差为d.∵2a6=a8+6,∴2(a1+5d)=a1+7d+6,即a1+3d=6,即a4=6.又a1+a7=2a4,∴S7==7a4=7×6=42.故选B.9.B解析∵实数a,b满足2a=3,3b=2,∴a=log23>1,0<b=log32<1.∴函数f(x)=a x+x-b=(log23)x+x-log32在R上单调递增,且其图象是连续的.∵f(0)=1-log32>0,f(-1)=log32-1-log32=-1<0,∴f(x)=a x+x-b的零点所在的区间为(-1,0),故选B.10.B解析由题意,得=2sin φ.又|φ|<,故φ=.因此f(x)=2sin.所以f(x)的图象的对称中心的横坐标满足2x+=kπ,k∈Z,即x=-,k∈Z.所以结合选项可知f(x)的图象的一个对称中心是.故选B.11.D解析画出不等式组所表示的平面区域及直线2x+y=0,如图,平移该直线,当平移后的直线经过该平面区域内的点(1,1)时,相应直线在y轴上的截距最大,此时z=2x+y取得最大值3;当平移后的直线经过该平面区域内的点(a,a)时,相应直线在y轴上的截距最小,此时z=2x+y取得最小值3a;于是有8×3a=3,解得a=,故选D.12.D解析由题意可知弓形PTQ的面积f(x)=π22-22sin x=2x-2sin x.因为f'(x)=2-2cos x>0在(0,2π)上恒成立,所以f(x)在(0,2π)上为增函数.令g(x)=2-2cos x.由g'(x)=2sin x≥0在x∈(0,π]上恒成立,可知函数f(x)在(0,π]上为凹函数;由g'(x)=2sin x≤0在x∈[π,2π)上恒成立,故函数f(x)在[π,2π)上为凸函数.故选D. 13.4解析由题意,知log2a·log2(2b)≤==4,当且仅当log2a=log2(2b),即a=2b时等号成立.又因为ab=8,且a>0,所以a=4.14.-解析当a≤1时,f(a)=2a-2=-3,即2a=-1,不符合题意,舍去;当a>1时,f(a)=-log2(a+1)=-3,解得a=7.故f(5-a)=f(-2)=2-2-2=-.15.解析设向量a与c的夹角为θ,|a|=m≠0,则|b|=|c|=m.由a+b=c,得b=c-a,两边平方得b2=3c2-2a·c+a2,即m2=3m2-2m2cos θ+m2,整理得cos θ=.又0≤θ≤π,故θ=,即向量a与c的夹角为.16.-13解析求导得f'(x)=-3x2+2ax.由f(x)在x=2处取得极值知f'(2)=0,即-3×4+2a×2=0,故a=3.由此可得f(x)=-x3+3x2-4,f'(x)=-3x2+6x.由此可得f(x)在(-1,0)内单调递减,在(0,1)内单调递增,故对m∈[-1,1]时,f(m)min=f(0)=-4.又f'(x)=-3x2+6x的图象开口向下,且对称轴为x=1,∴对n∈[-1,1]时,f'(n)min=f'(-1)=-9.于是,f(m)+f'(n)的最小值为-13.17.解(1)∵2b sin=a+c,∴2sin B=sin A+sin C,即sin B sin C+sin B cos C=sin A+sin C=sin B cos C+cos B sin C+sin C,∴sin B sin C=cos B sin C+sin C,∴sin B=cos B+1,∴2sin=1,∴B=.(2)(方法一)取CM的中点D,连接AD,则AD⊥CM.设CD=x,则BD=3x.由(1)知B=,则AD=3x,故AC=2x.由正弦定理知,,得sin ∠BAC=.(方法二)由(1)知B=,又M为BC中点,故BM=MC=.在△ABM与△ABC中,由余弦定理分别得:AM2=+c2-2··c·cos B=+c2-,AC2=a2+c2-2ac·cos B=a2+c2-ac,又AM=AC,故+c2-=a2+c2-ac,即c=,则b= a.由正弦定理知,,得sin ∠BAC=.18.解(1)设等差数列{a n}的公差为d,等比数列{b n}的公比为q.由已知b2+b3=12,得b1(q+q2)=12,而b1=2,所以q2+q-6=0.又因为q>0,解得q=2.所以,b n=2n.由b3=a4-2a1,可得3d-a1=8.①由S11=11b4,可得a1+5d=16, ②联立①②,解得a1=1,d=3,由此可得a n=3n-2.所以,数列{a n}的通项公式为a n=3n-2,数列{b n}的通项公式为b n=2n.(2)设数列{a2n b2n-1}的前n项和为T n,由a2n=6n-2,b2n-1=2×4n-1,有a2n b2n-1=(3n-1)×4n,故T n=2×4+5×42+8×43+…+(3n-1)×4n,4T n=2×42+5×43+8×44+…+(3n-4)×4n+(3n-1)×4n+1,上述两式相减,得-3T n=2×4+3×42+3×43+…+3×4n-(3n-1)×4n+1=-4-(3n-1)×4n+1=-(3n-2)×4n+1-8.得T n=×4n+1+.所以,数列{a2n b2n-1}的前n项和为×4n+1+.19.解(1)∵a=b cos C+c sin B,∴sin A=sin B cos C+sin C sin B,∴cos B sin C=sin C sin B,∴tan B=,∴B=.∵b2=a2+c2-2ac cos B,∴c2-2c-3=0,∴c=3.(2)∵B=,∴sin-2sin2=sin-1+cos=sin+cos-1=sin-cos-1=2sin-1=0,又<A<,∴A=.20.解(1)∵(a n+1-1)(a n-1)=3(a n-a n+1),∴(a n+1-1)(a n-1)=3[(a n-1)-(a n+1-1)],∴,即b n+1-b n=.又b1==1,∴b n=n+.(2)∵b n·3n=(n+2)·3n-1,∴S n=3×30+4×3+5×32+…+(n+2)·3n-1, ①3S n=3×31+4×32+5×33+…+(n+2)·3n.②∴①-②得-2S n=3+3+32+…+3n-1-(n+2)·3n =·3n.∴S n =·3n -.21.解(1)如果每幢楼为5层,那么所有建筑面积为(10×1 000×5)m2,则所有建筑费用为[(k+800)+(2k+800)+(3k+800)+(4k+800)+(5k+800)]×1 000×10,因此 1 270={16 000 000+[(k+800)+(2k+800)+(3k+800)+(4k+800)+(5k+800)]×1 000×10}÷(10×1 000×5),解得k=50.(2)设小区每幢为n(n∈N*)层,每平方米平均综合费用为f(n),由题设可知f(n)={16 000 000+[(50+800)+(100+800)+…+(50n+800)]×1 000×10}÷(10×1 000×n)=+25n+825≥2+825=1 225,当且仅当=25n,即n=8时,等号成立.故该小区每幢建8层时,每平方米平均综合费用最低,此时每平方米平均综合费用为1 225元.22.解(1)由题意可知,f'(x)=e x(ax+a+b)-2x-4.由已知,得f(0)=4,f'(0)=4.故b=4,a+b=8.从而a=4,b=4.(2)由(1)知,f(x)=4e x(x+1)-x2-4x,f'(x)=4e x(x+2)-2x-4=4(x+2)·.令f'(x)=0,得x=-ln 2或x=-2.从而当x∈(-∞,-2)∪(-ln 2,+∞)时,f'(x)>0;当x∈(-2,-ln 2)时,f'(x)<0.故f(x)在(-∞,-2),(-ln 2,+∞)内单调递增,在(-2,-ln 2)内单调递减.当x=-2时,函数f(x)取得极大值,极大值为f(-2)=4(1-e-2).。

(全国通用版)2019版高考数学一轮复习 规范答题强化练(三)高考大题——数列 文

(全国通用版)2019版高考数学一轮复习 规范答题强化练(三)高考大题——数列 文

规范答题强化练(三)数列(45分钟48分)1。

(12分)已知等差数列{a n}的前n项和为S n,等比数列{b n}的前n项和为T n,a1=-1,b1=1,a2+b2=2.(1)若a3+b3=5,求{b n}的通项公式.(2)若T3=21,求S3.【解析】(1)设{a n}的公差为d,{b n}的公比为q,则a n=—1+(n—1)d,b n=q n-1。

由a2+b2=2得d+q=3。

①(2分)由a3+b3=5得2d+q2=6,②联立①和②解得(舍去), (4分)因此数列{b n}的通项公式b n=2n—1。

(6分)(2)由b1=1,T3=21得q2+q—20=0.解得q=-5或q=4. (8分)当q=—5时,由①得d=8,则S3=21。

(10分)当q=4时,由①得d=-1,则S3=—6。

(12分)2。

(12分)数列是公差为d的等差数列,S n为其前n项和,a1,a2,a5成等比数列。

(1)证明S1,S3,S9成等比数列。

(2)设a1=1,求a2+a4+a8+…+的值。

【解析】(1)由题意有=a1·a5, (2分)即=a1·,解得d=2a1, (4分)又S1=a1,S3=3a1+3d=9a1,S9=9a1+36d=81a1,即=S1·S9,又因为S1,S3,S9均不为零,所以S1,S3,S9成等比数列。

(6分)(2)a1=1,由(1)可知d=2,所以a n=2n—1,所以=2·2n—1,(8分)原式=a2+++…+=(2·2-1)+(2·22—1)+(2·23-1)+…+(2·2n-1)=2(2+22+23+…+2n)—n=2n+2—n-4。

(12分)3.(12分)已知S n为公差不为零的等差数列{a n}的前n项和,S5=15,且a2,a4,a8成等比数列.(1)求数列{a n}的通项公式.(2)若b n=求数列{b n}的前n项和T n.【解析】(1)设等差数列的公差为d,由题意,得(2分),解得或(4分)因为d≠0,所以所以{a n}的通项公式为a n=n. (6分)(2)由条件,得b n=(8分)当n≤6时,T n=b1+b2+…+b n=1+2+…+n=。

2019届高考理科数学一轮复习精品学案:第32讲数列的综合问题(含解析)

2019届高考理科数学一轮复习精品学案:第32讲数列的综合问题(含解析)

第32讲数列的综合问题考试说明 1.能在具体的问题情境中识别数列的等差关系或等比关系,并能用有关知识解决相应的问题.认识数列的函数特性,能结合方程、不等式、解析几何等知识解决一些数列问题.2.能依据现实的生活背景,提炼相关的数量关系,将现实问题转化为数学问题,构造等差、等比数列模型,并加以解决.考情分析考点考查方向考例考查热度等差数列、等比数列的综合问题运用等差、等比数列的有关定义和公式求通项、前n项和及参数等2017全国卷Ⅲ9,2017全国卷Ⅰ12★★☆数列的实际应用运用数列的有关知识解决实际问题2017全国卷Ⅰ12 ★☆☆数列的交汇性问题数列与不等式、函数结合的问题★★☆真题再现■ [2017-2013]课标全国真题再现1.[2017·全国卷Ⅲ]等差数列{a n}的首项为1,公差不为0.若a2,a3,a6成等比数列,则{a n}前6项的和为()A.-24B.-3C.3D.8[解析] A{a n}为等差数列,且a2,a3,a6成等比数列,则=a2·a6,即(a1+2d)2=(a1+d)(a1+5d).将a1=1代入上式并化简,得d2+2d=0,∵d≠0,∴d=-2,∴S6=6a1+d=1×6+×(-2)=-24.2.[2017·全国卷Ⅰ]几位大学生响应国家的创业号召,开发了一款应用软件.为激发大家学习数学的兴趣,他们推出了“解数学题获取软件激活码”的活动.这款软件的激活码为下面数学问题的答案:已知数列1,1,2,1,2,4,1,2,4,8,1,2,4,8,16,…,其中第一项是20,接下来的两项是20,21,再接下来的三项是20,21,22,依此类推.求满足如下条件的最小整数N:N>100且该数列的前N项和为2的整数幂.那么该款软件的激活码是()A.440B.330C.220D.110[解析] A把已知数列分组,第一组1项,第二组2项,第三组3项,依此类推,则前n组项数之和为,因为N>100,所以由>100,解得n≥14.当n=13时,=91,此时已知数列的前91项和S91=(21-1)+(22-1)+…+(213-1)=-13=214-15,第十四组的前4项之和为15,则该数列的前95项和为2的整数幂,但此时N=95,不合题意;当n=14时,=105,此时已知数列的前105项和S105=215-16,第十五组前k项之和不可能等于16,故不合题意.类推可知,分组后的数列的前n组的各项之和为=2n+1-(n+2),其第n+1组的前k项之和为2k-1,只要n+2=2k-1,n≥14,即可,故最小的k=5,此时n=29,故N=+5=440.3.[2016·全国卷Ⅰ]设等比数列{a n}满足a1+a3=10,a2+a4=5,则a1a2…a n的最大值为.[答案] 64[解析] 设该等比数列的公比为q,则q==,可得a1+a1=10,得a1=8,所以a n=8·n-1=n-4.所以a1a2…a n=-3-2-1+0+…+(n-4)=,易知当n=3或n=4时,(n2-7n)取得最小值-6,故a1a2…a n的最大值为-6=64.■ [2017-2016]其他省份类似高考真题1.[2016·浙江卷]如图,点列{A n},{B n}分别在某锐角的两边上,且|A n A n+1|=|A n+1A n+2|,A n≠A n+2,n∈n+1|=|B n+1B n+2|,B n≠B n+2,n∈N*.(P≠Q表示点P与Q不重合)若d n=|A n B n|,S n为△A n B n B n+1的面积,则N*,|B n B()A.{S n}是等差数列B.{}是等差数列C.{d n}是等差数列D.{}是等差数列[解析] A由题意得,A n是线段A n-1A n+1(n≥2)的中点,B n是线段B n-1B n+1(n≥2)的中点,且线段A n A n+1的长度都相等,线段B n B n+1的长度都相等.过点A n作高线h n.由A1作高线h2的垂线A1C1,由A2作高线h3的垂线A2C2,则h2-h1=|A1A2|·sin∠A2A1C1,h3-h2=|A2A3|·sin∠A3A2C2.而|A1A2|=|A2A3|,∠A2A1C1=∠A3A2C2,故h1,h2,h3成等差数列,故{S n}是等差数列.2.[2017·北京卷]若等差数列{a n}和等比数列{b n}满足a1=b1=-1,a4=b4=8,则= .[答案] 1[解析] 设{a n}的公差为d,{b n}的公比为q.由a4=a1+3d=-1+3d=8求得d=3,所以a2=a1+d=-1+3=2.由b4=b1q3=-q3=8求得q=-2,所以b2=b1q=-1×(-2)=2,所以=1.3.[2016·四川卷]已知数列{a n}的首项为1,S n为数列{a n}的前n项和,S n+1=qS n+1,其中q>0,n∈N*.(1)若2a2,a3,a2+2成等差数列,求数列{a n}的通项公式;(2)设双曲线x2-=1的离心率为e n,且e2=,证明:e1+e2+…+e n>.解:(1)由已知,S n+1=qS n+1,S n+2=qS n+1+1,两式相减得到a n+2=qa n+1,n≥1.又由S2=qS1+1得到a2=qa1,所以a n+1=qa n对所有n≥1都成立,所以数列{a n}是首项为1,公比为q的等比数列,从而a n=q n-1.由2a2,a3,a2+2成等差数列,可得2a3=3a2+2,即2q2=3q+2,则(2q+1)(q-2)=0,由已知,q>0,故q=2,所以a n=2n-1(n∈N*).(2)证明:由(1)可知,a n=q n-1,所以双曲线x2-=1的离心率e n==.由e2==,解得q=(负值舍去).因为1+q2(k-1)>q2(k-1),所以>q k-1(k∈N*).于是e1+e2+…+e n>1+q+…+q n-1=,故e1+e2+…+e n>.【课前双基巩固】对点演练1.1或2[解析] 设等比数列{a n}的公比为q,由题意,得3a2=2a1+a3,即3a1q=2a1+a1q2,即q2-3q+2=0,解得q=1或q=2.2.[解析] ∵f'(x)=(x m+ax)'=mx m-1+a=2x+1,∴m=2,a=1,∴f=x2+x,则=,从而数列(n∈N*)的前n项和S n=++…+=1-+-+…+-=1-=.3.4[解析] 设开始浓度为1,操作n(n∈N*)次后溶液的浓度是a n,则a1=,a n+1=,即=,所以数列{a n}是以为公比,为首项的等比数列.所以a n=(n∈N*).令a n<,得n≥4.4.20[解析] 因为a1+a7=8,所以a4=4,又数列{b n}是等比数列,且b5===,所以b2b8==5a4=20.5.11(1.15-1)a [解析] 每年的产值构成以a(1+10%)=1.1a为首项,1.1为公比的等比数列,所以从今年起到第5年的总产值S5==11(1.15-1)a.6.9[解析] 设这个凸多边形的内角度数所成的等差数列为{a n},则a n=120+5(n-1)=5n+115,由a n<180得n<13且n∈N*.由n边形内角和定理得(n-2)×180=n×120+×5,解得n=16或n=9,∵n<13,∴n=9.【课堂考点探究】例1[思路点拨] (1)首先根据条件求得数列的通项公式,然后代入a n与b n的关系式可求得b n的表达式,进而利用等差数列的定义进行证明;(2)首先由(1)的结论求得数列的通项公式,然后利用分组求和法求解.解:(1)证明:由已知得a n=·=.则b n=2lo-1=2n-1(n∈N*).则b1=2-1=1,b n+1-b n=2(n+1)-1-2n+1=2.所以数列{b n}是以1为首项,2为公差的等差数列.(2)由(1)知,b2n=4n-1,则数列{b2n}是以3为首项,4为公差的等差数列,则c n=a n+b2n=+4n-1.所以T n=++…++3+7+…+(4n-1)=+=2n2+n+-·(n∈N*).变式题解:(1)设数列的公比为q,由题意知,解得d=2或d=0(舍去),则a n=2n-1.b2=a2=3,b1=a1=1,则q=3,则b n=3n-1.(2)∵++…+=a n+1①,∴当n≥2时++…+=a n②,①-②得=a n+1-a n=2,∴cn=2b n=2·3n-1(n≥2,n∈N*),又易知c1=3,∴cn=则当n≥2时S n=c1+c2+c3+…+c n=3+2×(31+32+…+3n-1)=3n,∴S2017=32017.例2[思路点拨] (1)由题意知,从2016年到2013年每年存款的本息和构成一个等比数列,则可利用等比数列求和公式求解;(2)设甲、乙、丙、丁、戊五人所得依次为a1,a2,a3,a4,a5,则可列出关于基本量a1与公差d的方程组,解之即得.(1)D(2)C[解析] (1)2016年存款的本息和为m(1+q),2015年存款的本息和为m(1+q)2,2014年存款的本息和为m(1+q)3,2013年存款的本息和为m(1+q)4,则所有存款的本息和为m(1+q)+m(1+q)2+m(1+q)3+m(1+q)4==,故选D.(2)设甲、乙、丙、丁、戊五人所得依次为a1,a2,a3,a4,a5,其公差为d,则a1+a2=a3+a4+a5=,即解得则甲得到钱,故选C.例3[思路点拨] (1)首先根据题意确定在什么情况下S2017取得最小值,然后确定出各项的取值情况,即可求得S2017的最小值;(2)根据激活码的规律将数列的项分组,然后讨论n=13,14时是否满足题意,进而类推确定该款软件的激活码.(1)C(2)A[解析] (1)依题意,要使其前2017项的和S2017的值最小,只需每一项都取最小值即可.因为|a n+1|+|a n|=3,所以有-a3-a2=-a5-a4=…=-a2017-a2016=3,即a3+a2=a5+a4=…=a2017+a2016=-3,所以S2017的最小值为2+×(-3)=-3022,故选C.(2)把已知数列分组,第一组1项,第二组2项,第三组3项,依此类推,则前n组项数之和为,因为N>100,所以由>100,解得n≥14.当n=13时,=91,此时已知数列的前91项和S91=(21-1)+(22-1)+…+(213-1)=-13=214-15,第十四组的前4项之和为15,则该数列的前95项和为2的整数幂,但此时N=95,不合题意;当n=14时,=105,此时已知数列的前105项和S105=215-16,第十五组前k项之和不可能等于16,故不合题意.类推可知,分组后的数列的前n组的各项之和为=2n+1-(n+2),其第n+1组的前k项之和为2k-1,只要n+2=2k-1,n≥14,即可,故最小的k=5,此时n=29,故N=+5=440.变式题(1)D(2)B[解析] (1)当T=1时,显然不成立.当T=2时,由题设可得x1=1,x2=a,x3=|1-a|=1,所以a=0(舍去)或a=2,x4=|x3-x2|=1≠2,则T=2不满足题意.当T=3时,由题设可得x1=1,x2=a,x3=|1-a|,x4=|x3-x2|=||1-a|-a|=1,所以a=1或a=0(舍去),x5=|x4-x3|=1=a,满足题意.所以数列的前2016项和为2016÷3×(x1+x2+x3)=672×2=1344,故选D.(2)由题设可得a n a n+1a n+2=8,a n+1a n+2a n+3=8,两式相除得a n+3=a n,所以{a n}是一个周期为3的周期数列.又a n+2=,所以a3==4,所以a1+a2+a3=1+2+4=7.所以a1+a2+…+a12=4(a1+a2+a3)=4×7=28,故选B.例4[思路点拨] (1)首先由递推公式得x n+1=3(x n-1+1),即可证明{x n+1}是等比数列,然后可求得x n=3n-1;(2)首先通过确定的最值将已知条件转化为不等式t2-2mt>0对任意m∈[-1,1]恒成立,再根据一次函数的性质求解.解:(1)证明:由x n=3x n-1+2 (n≥2且n∈N*)得x n+1=3(x n-1+1)(n≥2且n∈N*),即=3(n≥2且n∈N*),又x1+1=3,∴数列{x n+1}是首项为3,公比为3的等比数列.∴xn+1=3n,∴xn=3n-1,n∈N*.(2)要使对任意的正整数n,当m∈[-1,1]时,不等式3t2-6mt+>恒成立,则必须使3t2-6mt+>==,即t2-2mt>0对任意m∈[-1,1]恒成立,∴解得t>2或t<-2,∴实数t的取值范围为(-∞,-2)∪(2,+∞).例5[思路点拨] 首先根据函数有唯一的不动点确定a的值,然后根据条件确定数列{a n}为等差数列,进而可求得a2017的值.2017[解析] 由题意可知=x,即x2+(1-a)x=0.由f=有唯一的不动点,得Δ=(1-a)2=0,即a=1,则f=.又=f,即=,所以a n+1=a n+1,则a n+1 -a n=1,所以数列{a n}是以1为首项,1为公差的等差数列,则a2017=1+(2017-1)×1=2017.强化演练1.C[解析] 由已知,得2a n=2a n-1+1,即a n-a n-1=,可知数列{a n}为等差数列,且公差为,又函数y=x2-2x+3的最小值为2,即a1=2,故S9=9×2+×=36.2.D[解析] 因为函数f=x a的图像过点(4,2),所以4a=2,解得a=,所以f=,所以a n===-,所以S2018=-1+-+-+…+-=-1,故选D.3.4[解析] 当n=1时,有=λa2,则a2=;当n=2时,有=λa3,则a3=1+.因为{a n}为等差数列,所以2+=,则λ=.设等差数列{a n}的公差为d,则a1=1,d=1,所以a n=n,b n=.利用错位相减法求得T n=-,则T n-=<,即2n2+3n<3n,经验证,当n≥4时该不等式成立,故k的最小值为4.4.解:(1)当n≥3时,可得(S n-4S n-1-2)-(S n-1-4S n-2-2)=0,则有a n=4a n-1.又因为a1=2,代入已知等式,可得a2=8,满足上式.所以数列是首项为2,公比为4的等比数列,故a n=2·4n-1=22n-1.(2)证明:由(1)得b n=log222n-1=2n-1,则T n=1+3+…+(2n-1)=n2.则=++…+≤ 1+++…+=1+1-+-+-=2-<2.【备选理由】例1为综合使用等差数列、等比数列的有关公式求通项、求和的问题;例2是以数列为载体的不等式证明问题,涉及递推数列、数列的通项公式与求和以及不等式恒成立等问题,综合性强,难度较大;例3是函数与数列、不等式相结合的问题.1[配合例1使用][2017·河南夏邑一高模拟]已知数列是等差数列,其前n项和为S n,数列是等比数列,且a1=b1=2,a4+b4=27,S4-b4=10.(1)求数列与的通项公式;(2)求T n=a1b1+a2b2+…+a n b n的值.解:(1)设等差数列的公差为d,等比数列的公比为q.由a1=b1=2,得a4=2+3d,b4=2q3,S4=8+6d,则由题意可得解得故a n=3n-1,b n=2n(n∈N*).(2)T n=2×2+5×22+8×23+…+(3n-1)×2n①,2T n=2×22+5×23+8×24+…+(3n-1)×2n+1②,①-②得-T n=2×2+3×22+3×23+…+3×2n-(3n-1)×2n+1,所以T n=8+(3n-4)×2n+1.2[配合例4使用] [2017·天津和平区四模]在数列中,a1=2,a2=4,a n+1+2a n-1=3a n(n≥2).(1)求证:数列{a n+1-a n}是等比数列;(2)求数列的通项公式;(3)设b n=a n-1,S n=++…+,若存在n∈N*,使得S n≥4m2-3m成立,求实数m的取值范围.解:(1)证明:∵an+1+2a n-1=3a n(n≥2),∴an+1-a n=2(a n-a n-1)(n≥2).∵a2-a1=2≠0,∴an-a n-1≠0(n≥2).∴=2(n≥2).∴数列{a n+1-a n}是首项为2,公比为2的等比数列.(2)由(1)知a n+1-a n=2n,当n≥2时,a n=a1+(a2-a1)+(a3-a2)+…+(a n-a n-1)=2+21+22+…+2n-1=2n,当n=1时,a1=2满足上式,∴数列的通项公式为a n=2n.(3)∵an=2n,b n=a n-1=2n-1,∴==-.∴Sn=-+-+…+-=-=1-.显然{S n}为递增数列,且当n→+∞时S n→1.因为存在n∈N*,使得S n≥4m2-3m成立,所以4m2-3m<1,解得-<m<1,所以m的取值范围为-,1.3[配合例4,5使用] [2017·武汉武昌区调研]设等差数列{a n}的前n项和为S n,已知a1=9,a2为整数,且S n≤S5.(1)求{a n}的通项公式;(2)设数列的前n项和为T n,求证:T n≤.解:(1)由a1=9,a2为整数可知,等差数列{a n}的公差d为整数,由S n≤S5,知a5≥0,a6≤0,于是9+4d≥0,9+5d≤0,则-≤d≤-.∵d为整数,∴d=-2.故数列{a n}的通项公式为a n=11-2n.(2)证明:由(1)得==-,∴Tn=-+-+…+-=-.令b n=,由函数f(x)=的图像关于点(4.5,0)对称及其单调性可知0<b1<b2<b3<b4,b5<b6<b7<…<0,∴bn≤b4=1.∴Tn≤1-=.。

高考数学一轮复习 考点31 数列的综合问题必刷题(含解析)

高考数学一轮复习 考点31 数列的综合问题必刷题(含解析)

考点 数列的综合问题1.(盐城市2019届高三年级第一学期期中模拟考试)已知数列满足:,.若成等差数列,,,则=__________.【答案】1 【解析】根据题意,数列{an }满足:a 1=3, (n ⩾2),则a 2=2a 1−3=2×3−3=3,a 3=2a 2−3=2×3+3=9, a 4=2a 3+3=2×9−3=15,其中a 1、a 3、a 4为等差数列的前3项, 又由{ak 1}是等差数列,且k 1=1,则有k 2=3,k 3=4, 则k 3−k 2=1.2.(江苏省南京师大附中2018届高三高考考前模拟考试)在数列{a n }中,若a 4=1,a 12=5,且任意连续三项的和都是15,则a 2018=______. 【答案】9 【解析】由题意可得a n +a n+1+a n+2=15,将n 换为a n+1+a n+2+a n+3=15,可得a n+3=a n ,可得数列{a n 是周期为3的数列.故,由a n +a n+1+a n+2=15,n 取1可得,故,故答案为9.3.(江苏省南京师范大学附属中学2017届高三高考模拟)设数列{}n a 的前n 项的和为n S ,且1142n n a -⎛⎫=+- ⎪⎝⎭,若对于任意的*n N ∈都有()143n x S n ≤-≤恒成立,则实数x 的取值范围是_________.【答案】[]2,3【解析】由题设可得11221244133212nn n S n n ⎛⎫-- ⎪⎛⎫⎝⎭=+=+-- ⎪⎛⎫⎝⎭-- ⎪⎝⎭,则2214332nn S n ⎛⎫-=-- ⎪⎝⎭,不等式()143n x S n ≤-≤可化为22113332n x ⎡⎤⎛⎫≤--≤⎢⎥ ⎪⎝⎭⎢⎥⎣⎦,即319122111122nnx ≤≤⎛⎫⎛⎫---- ⎪ ⎪⎝⎭⎝⎭,则问题转化为求12n⎛⎫- ⎪⎝⎭的最大值和最小值。

由于*n N ∈,所以12n⎛⎫- ⎪⎝⎭的最大值和最小值分别为14和12-,则 319111221142x ≤≤⎛⎫--- ⎪⎝⎭,即23x ≤≤,应填答案[]2,3。

2019届高三数学一轮复习题详解 (32)

2019届高三数学一轮复习题详解 (32)

第7讲 数列的综合应用作业1.在等比数列{a n }中,各项都是正数,且a 1,12a 3,2a 2成等差数列,则a 9+a 10a 7+a 8__. 2.设S n 是等比数列{a n }的前n 项和,S 3,S 9,S 6成等差数列,且a 2+a 5=2a m ,则m =________.3.已知等比数列{a n }的首项为2,公比为3,前n 项和为S n .若log 3⎣⎢⎡⎦⎥⎤12a n (S 4m +1)=9,则1n +4m 的最小值是________.4.在等差数列{a n }中,已知首项a 1>0,公差d >0.若a 1+a 2≤60,a 2+a 3≤100,则5a 1+a 5的最大值为________.5.设正项数列{a n }的前n 项和是S n ,若{a n }和{S n }都是等差数列,则S n +10a n的最小值是________.6.已知数列{a n }满足a 1=43,2-a n +1=12a n +6(n ∈N *),则∑n i =1 1a i =________. 7.已知数列{a n }是公差不为零的等差数列,其前n 项和为S n ,满足S 5-2a 2=25,且a 1,a 4,a 13恰为等比数列{b n }的前三项.(1)求数列{a n },{b n }的通项公式;(2)设T n 是数列⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫1a n a n +1的前n 项和,是否存在k ∈N *,使得等式1-2T k =1b k 成立?若存在,求出k 的值;若不存在,请说明理由.8.已知数列{a n },{b n }满足2S n =(a n +2)b n ,其中S n 是数列{a n }的前n 项和.(1)若数列{a n }是首项为23,公比为-13的等比数列,求数列{b n }的通项公式;(2)若b n =n ,a 2=3,求数列{a n }的通项公式;(3)在(2)的条件下,设c n =a n b n,求证:数列{c n }中的任意一项总可以表示成该数列其他两项之积.9.已知数列{a n }满足a 1=10,a n -10≤a n +1≤a n +10(n ∈N *).(1)若{a n }是等差数列,S n =a 1+a 2+…+a n ,且S n -10≤S n +1≤S n +10(n ∈N *),求公差d 的取值集合;(2)若a 1,a 2,…,a k 成等比数列,公比q 是大于1的整数,且a 1+a 2+…+a k >2017,求正整数k 的最小值;(3)若a 1,a 2,…,a k 成等差数列,且a 1+a 2+…+a k =100,求正整数k 的最小值及k 取最小值时公差d 的值.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

规范答题强化练(三)
数列
(45分钟48分)
1.(12分)已知正项等比数列{a n}满足a1,2a2,a3+6成等差数列,且错误!未找到引用源。

=9a1a5.
(1)求数列{a n}的通项公式.
(2)设b n=错误!未找到引用源。

·a n,求数列{b n}的前n项和T n.
【解析】(1)设正项等比数列{a n}的公比为q(q>0),由错误!未找到引用源。

= 9a1 a5 = 9错误!未找到引用源。

,(2分)
故q2 = 错误!未找到引用源。

= 9,(3分)
解得q=±3,因为q>0,所以q=3.
又因为a1, 2a2, a3+6成等差数列,所以a1+(a3+6)-4a2=0,
解得a1=3,(4分)
所以数列{a n}的通项公式为a n=3n .(6分)
(2)依题意得b n=(2n+1)·3n,则T n=3·31+5·32+7·33+…+(2n+1)·3n,
①(7分)
3T n=3·32+5·33+7·34+…+(2n-1)·3n+(2n+1)·3n+1,②
由②-①得2T n=(2n+1)·3n+1-2·(32+33+…+3n)-32=(2n+1)·3n+1-2·错误!未找到引用源。

-32=2n·3n+1,(10分)
所以数列{b n}的前n项和T n=n·3n+1.(12分)
2.(12分)已知数列{a n}满足a1=1,a n+1=2a n+3,n∈N*.
(1)求证:数列{a n+3}是等比数列.
(2)求数列{na n}的前n项和S n.
【解析】(1)错误!未找到引用源。

=错误!未找到引用源。

=2,(n∈N*),
因此数列{a n+3}是等比数列,且公比为2. (4分)
(2)由(1)及题设可知,数列{a n+3}是首项为4,公比为2的等比数列,因此a n+3=4×2n-1=2n+1,于是a n=2n+1-3;
所以n·a n=n·2n+1-3n.(6分)
设b n=n·2n+1,c n=-3n,并设它们的前n项和分别为T n,R n.
则T n=1×22+2×23+3×24+…+n·2n+1,①(8分)
所以2T n=1×23+2×24+…+(n-1)·2n+1+n·2n+2②
②-①得T n=-22-23-24-…-2n+1+n·2n+2=n·2n+2-4·错误!未找到引用源。

=(n-1)·2n+2+4,(10分)
又R n=错误!未找到引用源。

·n=-错误!未找到引用源。

n2-错误!未找到引用源。

n,故S n=T n+R n=(n-1)·2n+2-错误!未找到引用源。

n2-错误!未找到引用源。

n+4.(12分)
3.(12分)设数列{a n}的前n项和为S n,已知S n=2a n-1(n∈N*).
(1)求数列{a n}的通项公式.
(2)若对任意的n∈N*,不等式k(S n+1)≥2n-9恒成立,求实数k的取值范围.
【解析】 (1)令n=1,S1=2a1-1=a1,
解得a1=1.(2分)
由S n=2a n-1,
有S n-1=2a n-1-1, 两式相减得a n=2a n-2a n-1,化简得a n=2a n-1(n≥2),所以数列{a n}是以首项为1,公比为2 的等比数列,
所以数列{a n}的通项公式a n=2n-1.(4分)
(2)由k(S n+1)≥2n-9,整理得k≥错误!未找到引用源。

,令b n=错误!未找到引用源。

,则b n+1-b n=错误!未找到引用源。

-错误!未找到引用源。

=错误!未找到引用源。

, n=1,2,3,4,5时,b n+1-b n=错误!未找到引用源。

>0,
所以b1<b2<b3<b4<b5. n=6,7,8,…时,b n+1-b n=错误!未找到引用源。

<0,(8分)
即b6>b7>b8>….
因为b5=错误!未找到引用源。

<b6=错误!未找到引用源。

, 所以b n 的最大值是b6=错误!未找到引用源。

.所以实数k的取值范围是错误!未找到引用源。

.(12分)
4.(12分)数列{a n}的前n项和S n满足S n=2a n-a1,且a1,a3+1,a4成等差数列.
(1)求数列{a n}的通项公式.
(2)设b n=log2a1+log2a2+…+log2a n,求使(n-8)b n≥nk对任意n∈N*恒成立的实数k的取值范围.
【解析】 (1)由题意,S n=2a n-a1,则当n≥2时,S n-1=2a n-1-a1,两式相减得a n=2a n-1(n≥2),所以a2=2a1,a3=2a2=4a1,a4=2a3=8a1,又a1,a3+1,a4成等差数列,所以2(4a1+1)=a1+8a1,解得a1=2,(4分)
所以数列{a n}是以2为首项,2为公比的等比数列,所以a n=2n.(6分)
(2)b n=log2a1+log2a2+…+log2a n=1+2+3+…+n=错误!未找到引用源。

,由(n-8)b n≥nk对任意n∈N*恒成立,知错误!未找到引用源。

≥k对n ∈N*恒成立,(8分)
设c n=错误!未找到引用源。

(n-8)(n+1)=错误!未找到引用源。

(n2-7n-8),则当n=3或4时,c n取得最小值,为-10,所以k≤-10.(12分)。

相关文档
最新文档