基于MATLAB的Boost电路仿真

合集下载

基于MATLAB的升压-降压式变换器的建模与仿真

基于MATLAB的升压-降压式变换器的建模与仿真

基于MATLAB 的升压-降压式变换器的建模与仿真一、摘要本文在对升压-降压(Boost-Buck )式变换器电路理论分析的基础上,建立了基于Simulink 的升压-降压式变换器的仿真模型,运用IGBT 对升压-降压进行控制,并对工作情况进行仿真分析与研究。

通过仿真分析也验证了本文所建模型的正确性。

二、设计意义直流斩波就是将直流电压变换成固定的或可调的直流电压,也称DC/DC 变换。

使用直流斩波技术,不仅可以实现调压的功能,而且还可以达到改善网侧谐波和提高功率因数的目的。

升压-降压式变换电路即升降压斩波电路,主要应用于已具有直流电源需要调节直流电压的场合。

三、设计原理升压-降压式变换器电路图如下图1-1所示。

设电路中电感L 值很大,电容C 值也很大,使电感电流L i 和电容电压0u 基本为恒值。

图1-1 电路原理设计原理是:当可控开关V 出于通态时,电源经V 向电感L 供电使其贮存能量,此时电流为1i ,方向如图1-1中所示。

同时,电容C 维持输出电压基本恒定并向负载R 供电。

此后,使V 关断,电感L 中贮存的能量向负载释放,电流为2i ,方向如图1-1中所示。

可见,负载电压极性为上负下正,与电源电压极性相反,因此该电路也称作反极性斩波电路。

稳定时,一个周期T 内电感L 两端电压L u 对时间的积分为零,当V 处于通态期间时,L u =E ;而当V 处于端态期间时,L u =-0u 。

于是,E on t =off t U 0,所以输出电压为U=offon t t E=βαE 其中β=1-α,若改变导通比α,则输出电压既可以比电源电压高,也可以比电源电压低。

当0<α<0.5时为降压,当0.5<α<1时为升压,如此可以实现升压-降压的变换,该电路称作升降压斩波电路即升降压变换器。

图1-2中给出了电源电流1i 和负载电流2i 的波形,设两者的平均值分别为1I 和2I , 当电流脉动足够小时,有21I I =off on t t 。

最新BOOST电路设计及matlab仿真资料

最新BOOST电路设计及matlab仿真资料

Boost升压电路及MATLAB仿真一、设计要求1.输入电压(VIN):300V(+-20%)2.输出电压(VO):410V3.输出功率(PO):10kw4.电压纹波:≤1%5.开关频率设置为10KHz输入电压在240—360V范围变化时,稳态输出能够保持在410V。

根据设计要求表明需要设计一个升压电路即Boost电路。

Boost电路又称为升压型电路,是一种开关直流升压电路,它可以是输出电压比输入电压高。

其工作过程包括电路启动时的瞬态工作过程和电路稳定后的稳态工作过程。

同时,也需设计一个闭环控制电路,当输入电压变化时,能准确的跟踪电压变化,改变PWM 电压占空比,以稳定输出电压。

二、主电路设计图1主电路2.1 Boost电路的工作原理Boost升压电路电感的作用:是将电能和磁场能相互转换的能量转换器件,当IGBT开关管闭合后,电感将电能转换为磁场能储存起来,当IGBT断开后电感将储存的磁场能转换为电场能,且这个能量在和输入电源电压叠加后通过二极管和电容的滤波后得到平滑的直流电压提供给负载,由于这个电压是输入电源电压和电感的磁场能转换为电能的叠加后形成的,所以输出电压高于输入电压,既升压过程的完成。

Boost升压电路的二极管主要起隔离作用,即在IGBT开关管闭合时,肖特基二极管的正极电压比负极的电压低,此时二极管反向截止,使此电感的储能过程不影响输出端电容对负载的正常供电;因在IGBT管断开时,两种叠加后的能量通过二极向负载供电,此时二极管正向导通,要求其正向压降越小越好,尽量使更多的能量供给到负载端。

闭合开关会引起通过电感的电流增加。

打开开关会促使电流通过二极管流向输出电容因储存来自电感的电流,多个开关周期以后输出电容的电压升高,结果输出电压高于输入电压。

接下来分两部分对Boost电路作具体介绍即充电过程和放电过程。

充电过程在充电过程中,开关闭合(开关管导通),等效电路如图二,开关(三极管)处用导线代替。

基于MatlabSimulink的BOOST电路仿真

基于MatlabSimulink的BOOST电路仿真

基于Matlab/Simulink的BOOST电路仿真姓名:weitor学号:**********班级:07自动化2班时间:2010年12月5日1引言BOOST 电路又称为升压型电路, 是一种直流- 直流变换电路, 其电路结构如图1 所示。

此电路在开关电源领域内占有非常重要的地位, 长期以来广泛的应用于各种电源设备的设计中。

对它工作过程的理解掌握关系到对整个开关电源领域各种电路工作过程的理解, 然而现有的书本上仅仅给出电路在理想情况下稳态工作过程的分析, 而没有提及电路从启动到稳定之间暂态的工作过程, 不利于读者理解电路的整个工作过程和升压原理。

采用matlab仿真分析方法, 可直观、详细的描述BOOST 电路由启动到达稳态的工作过程, 并对其中各种现象进行细致深入的分析, 便于我们真正掌握BOOST 电路的工作特性。

2电路组成线路由开关S、电感L、电容C组成,如图1所示,完成把电压Vs 升压到Vo的功能。

图1BOOST 电路的结构3电路的工作状态BOOST 电路的工作模式分为电感电流连续工作模式和电感电流断续工作模式。

其中电流连续模式的电路工作状态如图2 (a) 和图2 (b) 所示, 电流断续模式的电路工作状态如图2 (a)、(b)、(c) 所示, 两种工作模式的前两个工作状态相同, 电流断续型模式比电流连续型模式多出一个电感电流为零的工作状态。

(1)充电过程在充电过程中,开关闭合(三极管导通),等效电路如图2 (a),开关(三极管)处用导线代替。

这时,输入电压流过电感。

二极管防止电容对地放电。

由于输入是直流电,所以电感上的电流以一定的比率线性增加,这个比率跟电感大小有关。

随着电感电流增加,电感里储存了一些能量。

(2)放电过程如图2 (b),这是当开关断开(三极管截止)时的等效电路。

当开关断开(三极管截止)时,由于电感的电流保持特性,流经电感的电流不会马上变为0,而是缓慢的由充电完毕时的值变为0。

基于MATLAB的Boost型功率因数校正电路的仿真分析

基于MATLAB的Boost型功率因数校正电路的仿真分析

基于MATLAB的Boost型功率因数校正电路的仿真分析作者:孟利明王秀莲来源:《数字技术与应用》2009年第11期[摘要]本文在传统Boost型转换器的基础上,采用ZVT软开关技术对其改进,并使用MATLAB软件建立了仿真模型进行仿真分析。

[关键词]软开关 Boost型转换器功率因数校正[中图分类号]TN913[文献标识码]A[文章编号]1007-9416(2009)11-0047-021 引言为了满足输入电流谐波满足要求减小对电网的污染,现今的开关电源都采用功率因数校正技术(PFC)。

常见的功率因数校正转换器主电路的拓扑结构有:降压式(Buck)、升压式(Boost)、降/升压式(Buck-Boost)、反激式(Flyback)等,其中因Boost变换器具有效率高、电路简单、成本低等优点而等到广泛的应用[1]。

但传统的Boost变换器采用的是硬开关PFC技术,使得开关损耗大、开关电流应力大和二极管开关噪音大。

为弥补硬开关变换器的不足,人们不断探讨新型的Boost软开关变换器,如零电压过渡(ZVT-Boost)软开关变换器和零电流过渡(ZCT-Boost)软开关变换器。

由于零过渡软开关具有主开关为ZCS或ZVS、续流二极管为ZVS或ZCS、主开关和续流二极管的电流和电压应力小及在宽范围电源电压和负载电流内均可满足ZVS和ZCS条件,它们代表了目前软开关变换技术的最新发展[2]。

本文针对一种ZVT-Boost变换器,采用MATLAB/SIMULINK仿真软件建立其仿真模型,并根据仿真图形对其电流电压进行了详细的分析。

2 ZVT-Boost型变换器的设计2.1 ZVT-Boost型变换器拓扑电路图 1 是ZVT-Boost变换器的拓扑电路。

有图可知,除在主开关加有谐振电容Cs外,在传统的Boost变换器拓扑结构的基础上还多了有 Cb、Cr、Lr、D1、D2、D5和辅助开关S2组成的谐振电路。

2.2 变换器工作过程假设交流电源侧电感足够大,Lin >> Lr,开关频率远远高于输入正弦波频率,则在一个开关周期内交流电源相当于一个直流电源[3]。

完整word版,BOOST电路设计及matlab仿真

完整word版,BOOST电路设计及matlab仿真

Boost升压电路及MATLAB仿真一、设计要求1.输入电压(VIN):12V2.输出电压(VO):18V3.输出电流(IN):5A4.电压纹波:0.1V5.开关频率设置为50KHz需设计一个闭环控制电路,输入电压在10—14V或负载电流在2—5A范围变化时,稳态输出能够保持在18V 。

根据设计要求很显然是要设计一个升压电路即Boost电路。

Boost电路又称为升压型电路,是一种开关直流升压电路,它可以是输出电压比输入电压高。

其工作过程包括电路启动时的瞬态工作过程和电路稳定后的稳态工作过程。

二、主电路设计图1主电路2.1 Boost电路的工作原理Boost升压电路电感的作用:是将电能和磁场能相互转换的能量转换器件,当MOS开关管闭合后,电感将电能转换为磁场能储存起来,当MOS断开后电感将储存的磁场能转换为电场能,且这个能量在和输入电源电压叠加后通过二极管和电容的滤波后得到平滑的直流电压提供给负载,由于这个电压是输入电源电压和电感的磁场能转换为电能的叠加后形成的,所以输出电压高于输入电压,既升压过程的完成。

Boost升压电路的肖特基二极管主要起隔离作用,即在MOS开关管闭合时,肖特基二极管的正极电压比负极的电压低,此时二极管反向截止,使此电感的储能过程不影响输出端电容对负载的正常供电;因在MOS管断开时,两种叠加后的能量通过二极向负载供电,此时二极管正向导通,要求其正向压降越小越好,尽量使更多的能量供给到负载端。

闭合开关会引起通过电感的电流增加。

打开开关会促使电流通过二极管流向输出电容因储存来自电感的电流,多个开关周期以后输出电容的电压升高,结果输出电压高于输入电压。

接下来分两部分对Boost电路作具体介绍即充电过程和放电过程。

充电过程在充电过程中,开关闭合(三极管导通),等效电路如图二,开关(三极管)处用导线代替。

这时,输入电压流过电感。

二极管防止电容对地放电。

由于输入是直流电,所以电感上的电流以一定的比率线性增加,这个比率跟电感大小有关。

电力电子课程实践_基于matelab仿真平台的Boost升压电路验证探究

电力电子课程实践_基于matelab仿真平台的Boost升压电路验证探究

师学院物理与电气工程学院《电力电子技术》课程实践基于matelab仿真平台的Boost升压电路验证探究指导老师:永超姓名:衍翀班级:电气一班学号:111102022基于matelab仿真平台的Boost电路验证探究引言斩波器的工作方式有三种:一是脉宽调制方式,保持周期T不变,改变开关导通时间on T。

二是频率调制方式,保持on T不变,改变周期T。

三是混合型,on T和T都可调,使占空比改变。

直流斩波电路作为将直流电变成另一种固定电压或可调电压的直流直流变换器 ,在直流传动系统、充电蓄电电路、开关电源、电力电子变换装置及各种用电设备中得到普通的应用。

直流斩波技术已被广泛用于开关电源及直流电动机驱动中,使其控制获得加速平稳、快速响应、节约电能的效果。

全控型电力电子器件IGBT在牵引电传动电能传输与变换、有源滤波等领域得到了广泛的应用。

一、方案介绍主电路的功能是对输入的200V的直流电压进行升压。

它主要由全控型器件IGBT及电感、电容器件组成。

控制电路部分则是对全控型器件IGBT的通断进行控制,来获得不同的占空比,实现不同占空比下电压的抬升。

二、Boost电路工作原理假设L值、C值很大。

当V导通时(图1中s拨向a),E向L充电,充电电流恒为I1,同时C 的电压向负载供电,因C 值很大,输出电压为恒值,记为o U 。

设V 通的时间为ton ,此阶段L 上积蓄的能量为EI1ton 。

当V 断开时(图1s 拨向b ),E 和L 共同向C 充电并向负载R 供电。

设V 断的时间为toff ,则此期间电感L 释放能量为:off1ot E)I-(U稳态时,一个周期T 中L 积蓄能量与释放能量相等,则有:经过化简,可以得到输出电压的值:因为周期T 大于toff ,则输出电压高于电源电压,故称升压斩波电路。

也称之为boost 变换器。

三、仿真步骤1.启动MATLAB ,进入SIMULINK 后新建一个仿真模型的新文件。

BOOST电路设计和matlab仿真

BOOST电路设计和matlab仿真

Boost升压电路及MATLAB仿真一、设计要求1.输入电压(VIN):12V2.输出电压(VO):18V3.输出电流(IN):5A4.电压纹波:0.1V5.开关频率设置为50KHz需设计一个闭环控制电路,输入电压在10—14V或负载电流在2—5A范围变化时,稳态输出能够保持在18V 。

根据设计要求很显然是要设计一个升压电路即Boost电路。

Boost电路又称为升压型电路,是一种开关直流升压电路,它可以是输出电压比输入电压高。

其工作过程包括电路启动时的瞬态工作过程和电路稳定后的稳态工作过程。

二、主电路设计图1主电路2.1 Boost电路的工作原理Boost升压电路电感的作用:是将电能和磁场能相互转换的能量转换器件,当MOS开关管闭合后,电感将电能转换为磁场能储存起来,当MOS断开后电感将储存的磁场能转换为电场能,且这个能量在和输入电源电压叠加后通过二极管和电容的滤波后得到平滑的直流电压提供给负载,由于这个电压是输入电源电压和电感的磁场能转换为电能的叠加后形成的,所以输出电压高于输入电压,既升压过程的完成。

Boost升压电路的肖特基二极管主要起隔离作用,即在MOS开关管闭合时,肖特基二极管的正极电压比负极的电压低,此时二极管反向截止,使此电感的储能过程不影响输出端电容对负载的正常供电;因在MOS管断开时,两种叠加后的能量通过二极向负载供电,此时二极管正向导通,要求其正向压降越小越好,尽量使更多的能量供给到负载端。

闭合开关会引起通过电感的电流增加。

打开开关会促使电流通过二极管流向输出电容因储存来自电感的电流,多个开关周期以后输出电容的电压升高,结果输出电压高于输入电压。

接下来分两部分对Boost电路作具体介绍即充电过程和放电过程。

充电过程在充电过程中,开关闭合(三极管导通),等效电路如图二,开关(三极管)处用导线代替。

这时,输入电压流过电感。

二极管防止电容对地放电。

由于输入是直流电,所以电感上的电流以一定的比率线性增加,这个比率跟电感大小有关。

BOOST电路设计及matlab仿真

BOOST电路设计及matlab仿真

Boost升压电路及MATLAB仿真一、设计要求1.输入电压(VIN):12V2.输出电压(VO):18V3.输出电流(IN):5A4.电压纹波:0.1V5.开关频率设置为50KHz需设计一个闭环控制电路,输入电压在10—14V或负载电流在2—5A范围变化时,稳态输出能够保持在18V 。

根据设计要求很显然是要设计一个升压电路即Boost电路。

Boost电路又称为升压型电路,是一种开关直流升压电路,它可以是输出电压比输入电压高。

其工作过程包括电路启动时的瞬态工作过程和电路稳定后的稳态工作过程。

二、主电路设计图1主电路2.1 Boost电路的工作原理Boost升压电路电感的作用:是将电能和磁场能相互转换的能量转换器件,当MOS开关管闭合后,电感将电能转换为磁场能储存起来,当MOS断开后电感将储存的磁场能转换为电场能,且这个能量在和输入电源电压叠加后通过二极管和电容的滤波后得到平滑的直流电压提供给负载,由于这个电压是输入电源电压和电感的磁场能转换为电能的叠加后形成的,所以输出电压高于输入电压,既升压过程的完成。

Boost升压电路的肖特基二极管主要起隔离作用,即在MOS开关管闭合时,肖特基二极管的正极电压比负极的电压低,此时二极管反向截止,使此电感的储能过程不影响输出端电容对负载的正常供电;因在MOS管断开时,两种叠加后的能量通过二极向负载供电,此时二极管正向导通,要求其正向压降越小越好,尽量使更多的能量供给到负载端。

闭合开关会引起通过电感的电流增加。

打开开关会促使电流通过二极管流向输出电容因储存来自电感的电流,多个开关周期以后输出电容的电压升高,结果输出电压高于输入电压。

接下来分两部分对Boost电路作具体介绍即充电过程和放电过程。

充电过程在充电过程中,开关闭合(三极管导通),等效电路如图二,开关(三极管)处用导线代替。

这时,输入电压流过电感。

二极管防止电容对地放电。

由于输入是直流电,所以电感上的电流以一定的比率线性增加,这个比率跟电感大小有关。

基于MATLAB的升压-降压式变换器的仿真

基于MATLAB的升压-降压式变换器的仿真

基于MATLAB的升压-降压式变换器的仿真自动0703 祁婕一、摘要(150-250字)直流斩波电路(DC Chopper)的功能是将直流电变为另一固定电压或可调电压的直流电,也称为直接直流—直流变换器( DC/DC Converter)。

直流斩波电路的种类很多,包括6种基本斩波电路:降压斩波电路,升压斩波电路,升降压斩波电路,Cuk斩波电路,Sepic斩波电路,Zeta斩波电路,前两种是最基本电路。

应用Matlab的可视化仿真工具Simulink建立了电路的仿真模型,在此基础上对升降压斩波Boost—Buck电路进行了较详细的仿真分析。

本文先分析了降压斩波电路,升压斩波电路,升降压斩波电路的工作原理,又用Matlab 对升压-降压变换器进行了仿真建模,最后对仿真结果进行了分析总结。

二、设计目的和意义通过本次设计,希望达到以下目的:1、理解直流斩波电路中:降压斩波电路、升压斩波电路、升降压斩波电路的工作原理,熟悉其原理图及工作时的波形图,掌握着两种电路的输入输出关系、电路解析方法、工作特点,并在理解的基础上会对直流斩波电路进行分析计算,加深对直流斩波电路的掌握及应用。

2、掌握应用Matlab的可视化仿真工具Simulink建立电路的仿真模型的方法,在此基础上对升降压斩波Boost—Buck电路进行详细的仿真分析,以提高设计建模的能力及加强对Matlab/Simulink软件的熟练程度。

3、认真分析总结仿真结果,将仿真波形与常规分析方法得到的结果进行比较,总结结论,体会Matlab软件在电力电子技术学习和研究中的应用价值。

三、设计原理1、降压斩波电路(Buck Chopper)工作原理(1)t=0时刻驱动V导通,电源E向负载供电,负载电压uo=E,负载电流io按指数曲线上升。

(2)t=t1时控制V关断,二极管VD续流,负载电压uo近似为零,负载电流呈指数曲线下降。

通常串接较大电感L使负载电流连续且脉动小。

基于MATLAB buck-boost电路仿真

基于MATLAB buck-boost电路仿真

基于Matlab/Simulink Buck-Boost 电路仿真1. Buck-Boost 电路原理Buck-Boost 电路可以输出电压Vo 高于或低于输入电压Vin 的直流斩波电路(图1)。

电感Lf 位于电路中间,输出电压Vo 与输入电压Vin 极性相反,二极管与Buck 和Boost 电路不同,反向串接。

图1 Buck-Boost 电路当开关Q 在0时导通,电路等效于图2。

电源电压Vin 加在电感Lf 两端,电感电流呈线性增长,二极管D 反向截止,负载电流由电容提供。

t0时电流达到最大值,这时关断Q ,电路等效于图3,电感Lf 接入负载端,在0~t0储能转化为负载供电功率,并给电容Cf 充电,电感电流开始下降,下降到t1时达到最小值,这时再开通开关Q ,到达下个开关周期。

图 2开关Q 导通图 3 开关Q 关断如此往复,即可实现电感能量向电容的传递,并实现电压变换。

开通时间t0与周期t1的比值为占空比D 。

由能量守恒可得:)1(D V D V O in -=,输出电压)1(D DV V in o -=,可知调节D 的值可以改变输出电压Vo 的值。

2. 模型构建过程根据Buck-Boost 电路原理,在MATLAB (Simulink )中建立仿真模型(如图4),输入端直接接入直流恒压源(DC Voltage Source ),开关器件Q 选择IGBT (参数默认),由脉冲触发器(Pulse Generator )控制,理想电感、电容和电阻各一个,电力二极管一个(Diode 参数默认),以及用于观察波形的示波器(scope )和信号接口(Voltage Measurement 和Current Measurement )。

Powergui 模块,特别注意其Simulation type 的设置;添加4个display 对输出电压、电流、电感电压和电流的平均值进行测量,方便电路的分析检验。

别忘输入端负极接地。

BOOST电路设计及matlab仿真

BOOST电路设计及matlab仿真

Boost升压电路及MATLAB仿真一、设计要求1.输入电压(VIN):12V2.输出电压(VO):18V3.输出电流(IN):5A4.电压纹波:0.1V5.开关频率设置为50KHz需设计一个闭环控制电路,输入电压在10—14V或负载电流在2—5A范围变化时,稳态输出能够保持在18V 。

根据设计要求很显然是要设计一个升压电路即Boost电路。

Boost电路又称为升压型电路,是一种开关直流升压电路,它可以是输出电压比输入电压高。

其工作过程包括电路启动时的瞬态工作过程和电路稳定后的稳态工作过程。

二、主电路设计图1主电路2.1 Boost电路的工作原理Boost升压电路电感的作用:是将电能和磁场能相互转换的能量转换器件,当MOS开关管闭合后,电感将电能转换为磁场能储存起来,当MOS断开后电感将储存的磁场能转换为电场能,且这个能量在和输入电源电压叠加后通过二极管和电容的滤波后得到平滑的直流电压提供给负载,由于这个电压是输入电源电压和电感的磁场能转换为电能的叠加后形成的,所以输出电压高于输入电压,既升压过程的完成。

Boost升压电路的肖特基二极管主要起隔离作用,即在MOS开关管闭合时,肖特基二极管的正极电压比负极的电压低,此时二极管反向截止,使此电感的储能过程不影响输出端电容对负载的正常供电;因在MOS管断开时,两种叠加后的能量通过二极向负载供电,此时二极管正向导通,要求其正向压降越小越好,尽量使更多的能量供给到负载端。

闭合开关会引起通过电感的电流增加。

打开开关会促使电流通过二极管流向输出电容因储存来自电感的电流,多个开关周期以后输出电容的电压升高,结果输出电压高于输入电压。

接下来分两部分对Boost电路作具体介绍即充电过程和放电过程。

充电过程在充电过程中,开关闭合(三极管导通),等效电路如图二,开关(三极管)处用导线代替。

这时,输入电压流过电感。

二极管防止电容对地放电。

由于输入是直流电,所以电感上的电流以一定的比率线性增加,这个比率跟电感大小有关。

Boost电路设计与仿真

Boost电路设计与仿真

2012下学期电力电子电路设计与仿真Boost电路设计与仿真一、设计要求:设计Boost电路,使其输入电压为40V。

输出电压为150V±3V,输出功率150w,选取输出电阻150Ω。

二、设计目的:1、通过对Boost 电路的设计,掌握Boost电路的工作原理,综运用所学知识,进行Boost电路和系统设计的能力。

2、根据给定指标,设计BOOST电路参数。

3、利用MATLAB仿真软件,做出MATLAB模型图及其MATLAB示波器的波形。

三、设计方案和电路图:(1)BOOST电路图:图(1)Boost电路原理图Boost基本工作原理:假设电路中电感L 值很大,电容C 值也很大。

当开关管处于通态时,电源E 向电感L 充电,充电电流基本恒定为i L ,同时C 上的电压向负载R 供电,因为C 也很大,基本保持输出电压为恒值U 0.设开关管通态时间为t on ,此阶段L 积蓄能量为 E i L t on 。

当开关管处于断态时E 和L 共同向C 充电,并向负载R 提供能量。

设开关管处于断态时间为t off ,则这期间电感L 释放能量为(U 0-E )i L t off .一周期T 中,电感L 积蓄的能量和释放的能量相等,即 E i L t on =(U 0-E )i L t off 化简得: U 0=T/ t off E(2)参数计算 (a )占空比计算U 0=T/ t off E……………………………………………………………………………○1 U 0=150U ,E=60U ………………………………………………………………………○2 由○1,○2有D=60% (b )电感参数计算电感的选取应满足公式L=)221(D D ITU S-……………………………………○3 其中L 为电感值,U 0为输出电压,I 0为输出电流,由输出功率150w ,输出电压150v ,可得输出电流A I 10=,T S 为开关管工作周期,开关频率越高,电感器的值就可以越小,体积就可以越小,但开关频率高了会加重开关管的负担,这理选开关频率为100kHzV V Di (min)0(max)min1-==0.58=TS105-L=7758.01(58.0*1*2*150)1025=--μH实际电路中L=1.5*L=116μH 这里选取150μH(c )电容参数计算电容的选取应满足公式VI T D os C ∆=0max…………………………………………○4 式中V 0∆为纹波电压62.01556011maxminmax=-=-=VV Do iC=11**62.0105-=6μF电容取得大滤波效果越好,这里取C=10μf(d )开关管的选择输入端电流Ii有公式IV I V ii**=所以输入电流为2.5A ,开关管导通和关断时的尖峰电流应大于此值,开关管导通时的允许电流应为此值的两倍,即≥Ip5A ,开关管的耐压值应为输出电压和二级管电压之和即150.7v ,开关管关断时漏源极电压为此值的两倍即300v 。

boost电路MATLAB仿真设计

boost电路MATLAB仿真设计

科技大学高新学院电力电子技术课程设计报告题目 BOOST电路的设计和仿真专业班级自动化0902 学号 0901030229 姓名宿亚指导教师周燕2012 年 7 月 11 日BOOST电路的设计与仿真摘要Boost升压电路是一种直流一直流变换电路,即是一种开关直流升压电路,它可以是输出电压比输入电压高。

可以分为充电过程和放电过程。

在充电过程中,IGBT导通,IGBT处用导线代替。

这时,输入电压流过电感。

二极管防止电容对地放电。

由于输入是直流电,所以电感上的电流以一定的比率线性增加,这个比率跟电感大小有关。

随着电感电流增加,电感里储存了一些能量。

在放电过程中,当IGBT截止时,由于电感的电流保持特性,流经电感的电流不会马上变为0,而是缓慢的由充电完毕时的值变为0。

而原来的电路已断开,于是电感只能通过新电路放电,即电感开始给电容充电,电容两端电压升高,此时电压已经高于输入电压了。

设计由MATLAB软件对电路进行仿真得出各种模型图和波形。

【关键字】升压电路 Matlab IGBT一、设计要求:设计Boost 电路,使其输入电压为40v 。

输出电压为60v —120v 。

二、设计目的:1、通过对Boost 电路的设计,掌握Boost 电路的工作原理,综运用所学知识,进行Boost 电路和系统设计的能力。

2、根据给定指标,设计BOOST 电路参数。

3、利用MATLAB 仿真软件,做出MATLAB 模型图及其MATLAB 示波器的波形。

三、设计方案和电路图:(1)BOOST 电路图:图(1)Boost 电路原理图Boost 基本工作原理:假设电路中电感L 值很大,电容C 值也很大。

当V 处于通态时,电源E 向电感L 充电,充电电流基本恒定为i L ,同时C 上的电压向负载R 供电,因为C 也很大,基本保持输出电压为恒值U 0.设V 通态时间为t on ,此阶段L 积蓄能量为 Ei L ton。

当V处于断态时E和L共同向C充电,并向负载R提供能量。

电力电子课程实践——基于matelab仿真平台的Boost升压电路验证探究

电力电子课程实践——基于matelab仿真平台的Boost升压电路验证探究

物理与电气工程学院《电力电子技术》课程实践基于matelab仿真平台的Boost升压电路验证探究指导老师:陈永超姓名:韩衍翀班级:电气一班学号:2基于matelab仿真平台的Boost电路验证探究引言斩波器的工作方式有三种:一是脉宽调制方式,保持周期T不变,改变开关导通时间on T。

二是频率调制方式,保持on T不变,改变周期T。

三是混合型,on T和T都可调,使占空比改变。

直流斩波电路作为将直流电变成另一种固定电压或可调电压的直流直流变换器 ,在直流传动系统、充电蓄电电路、开关电源、电力电子变换装置及各种用电设备中得到普通的应用。

直流斩波技术已被广泛用于开关电源及直流电动机驱动中,使其控制获得加速平稳、快速响应、节约电能的效果。

全控型电力电子器件IGBT在牵引电传动电能传输与变换、有源滤波等领域得到了广泛的应用。

一、方案介绍主电路的功能是对输入的200V的直流电压进行升压。

它主要由全控型器件IGBT及电感、电容器件组成。

控制电路部分则是对全控型器件IGBT的通断进行控制,来获得不同的占空比,实现不同占空比下电压的抬升。

二、Boost电路工作原理假设L值、C值很大。

当V导通时(图1中s拨向a),E向L充电,充电电流恒为I1,同时C的电压向负载供电,因C值很大,输出电压为恒值,记为o U。

设V通的时间为ton,此阶段L上积蓄的能量为EI1ton。

当V断开时(图1s拨向b),E和L共同向C充电并向负载R 供电。

设V 断的时间为toff ,则此期间电感L 释放能量为:off 1o t E)I -(U 稳态时,一个周期T 中L 积蓄能量与释放能量相等,则有: 经过化简,可以得到输出电压的值: 因为周期T 大于toff ,则输出电压高于电源电压,故称升压斩波电路。

也称之为boost 变换器。

三、仿真步骤1.启动MATLAB ,进入SIMULINK 后新建一个仿真模型的新文件。

在这里可以任意添加电路元器件模块。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

知识就堤力量—
基于Matlab 的Boost
电路仿真
姓名:
学号: 班级:
知识就堤力量
1、前言
由于DC/DC开关电源具有高效率,高功率密度和高可靠性等优点,越来越广泛地应用于通信、计算机、工业设备和家用电器等领域。

在近几十年里,开关电源技术得到了长足的发展。

在很多场合下,需要从低压电源变换到高压电源,Boost变换器是最基本,也是最常用的一种变换器。

在电力电子系统的研究中,仿真研究由于其高效、高精度及高的经济性与可靠性而得到大量应用。

近二十年来,仿真已逐渐成为电力电子技术研究的有力工具。

Matlab语言的强大仿真功能和方便性受到广大使用者的广泛爱好。

本文对Boost变换器电路进行简单的介绍,采用Matlab来完成建模和仿真。

2、Boost电路的工作状态
Boost变换器的电路结构如下图所示:
iT. n
Boost电路的结构
⑻开关状态1 (S闭合)(b)开关状态2 (S关断)
3、Matlab 仿真分析
Matlab 是一种功能强大的仿真软件,它可以进行各种各样的模拟电路和数 字电路仿真,并给出波形输出和数据输出,无论对哪种器件和哪种电路进行仿真, 均可以得到精确的仿真结果。

采用 Matlab 仿真分析方法,可直观、详细的描述 Boost 电路由启动到达稳态的工作过程,并对其中各种现象进行细致深入的分 析,便于我们真正掌握Boost 电路的工作特性。

仿真图如下所示:
电路工作原理:
在电路中IGBT 导通时,电流由E 经升压电感L 和V 形成回路,电感L 储能; 当IGBT 关断时,电感产生的反电动势和直流电源电压方向相同互相叠加,从而 在负载侧得到高于电源的电压,二极管的作用是阻断 IGBT 导通是,电容的放电 回路。

调节开关器件V
的通断周期,可以调整负载侧输出电流和电压的大小。

4-
Vo |t\a «E MeJsnuramQ Stfi»RLC Ewnch HR ltd g e Sours I ll
c —— ScQpe
(c)开关状态3 (电感电流为零)
Scoptl
V
Current Measurement
Diode
KDT Cm rue nt Measuremehti C T
古 * 知识就堤力量
其负载侧输出电压的平均值为:
t off 上式中T 为开关周期,•…为导通时间,总说-为关断时间
在模型仿真中的参数设置:
(1) 设置电源电压为200V ,电阻的阻值为5Q 。

(2) 脉冲发生器脉冲周期T=0.2ms 脉冲宽度为50%。

(3) IGBT 和二极管的参数可以保持默认值。

(4) 初选L 的值为0.1ms , C 的值为100^ F
启动仿真:
设置仿真时间为0.03s ,算法采用ode15s 。

所对应的开关管电压的波形、
极管电流的波形、输出电压的波形、开关管电流的波形仿真图如下所示:
国鬥ppp 抽13圜0 I III 删 E L m m [Ip
E E f-1 卩卩 电路相应信号仿真波形
t on t off
T t off
知识就堤力量……
电路相应信号放大仿真波形
观察图易见,电感电流在5ms左右趋于稳定,电路进入稳态
知识就堤力量★……
通过改变电感的值可更清楚的观察电感电流的波形,如图所示:
4、结论
以上的仿真过程分析,可以得到以下结论:直流变换电路主要以全控型电力电子器件作为开关器件,通过控制主电路的接通与关断,将恒定的直流斩成断续的方波,经滤波后变为电压可调的直流输出电压。

利用Simulink对升压斩波电路的仿真结果进行了分析,与采用常规电路分析方法所得到的输出电压波形进行比较,进一步验证了仿真结果的正确性。

由此可见,应用Matlab的动态系统仿真工具Simulink进行直流变换器的仿真,能够较好模拟实际电路的各种电气量。

Love is not a maybe thing. You know whe n you love some one.。

相关文档
最新文档