Metal-insulator transition in spatially-correlated random magnetic field system

合集下载

化学修饰抑制有机半导体晶格动力学中的非谐波效应

化学修饰抑制有机半导体晶格动力学中的非谐波效应

化学修饰抑制有机半导体晶格动力学中的非谐波效应首先,它是关于抽象的。

有机半导体的晶格动力学在决定其电子和机械性能方面起着重要的作用。

控制这些宏观性质的常用技术是化学修饰分子结构。

已知这些修饰会改变分子的填充,但它们对晶格动力学的影响还没有被研究过。

我们的研究结合了温度相关的偏振取向(PO)低频拉曼测量与第一性原理计算和单晶x射线衍射测量。

我们发现化学修饰确实可以抑制晶格动力学中振动非谐性的特定表达。

然后是对本次实验的简要介绍。

一般来说,对于任何材料,这种方法都不能通过定义来解释重要的物理现象,如热膨胀、声子频率的温度依赖性、声子寿命、相变和热导率。

在本研究中,我们研究了分子结构和结构动力学随温度的演化之间的关系。

所以在这项研究中,研究人员调查了分子结构和结构动力学随温度的演变之间的关系。

我们的方法结合了太赫兹(即低频)范围内的温度依赖性、偏振定向(PO)拉曼散射、第一性原理模拟和单晶x射线衍射(SC-XRD)来研究[1]苯并噻吩[3,2 - b]苯并噻吩(BTBT)半导体晶体及其衍生物的结构动力学(表1)。

我们了解到不同的化学修饰可以抑制振动非谐性的特异性表达,而且还可以改变晶体的非谐性表达类型。

我们首先描述了BTBT作为母体分子的结构动力学随温度的变化。

然后,我们描述了其衍生物的结构动力学与BTBT的比较。

最后,我们讨论了QHA对不同非谐波表达式的有效性,并给出了近似的设计规则。

我们了解到,不同的化学修饰可以抑制振动非谐性的特定表达,但也可以改变晶体中非谐性表达的类型。

在下面,我们首先描述了BTBT 作为母体分子的结构动力学随温度的演变。

接下来是结果。

我们通过温度相关的SC-XRD测量,提取了所有五种晶体的热膨胀系数。

表1给出了每个晶体在室温稳定相的单轴(αx)和体积(β)热膨胀系数。

正如预期的那样,与无机固体(β ~ 10-6-10-5 K-1)相比,我们获得的热膨胀系数相对较大(β ~ 10-4 K-1),(50)证实了它们的软和非谐波性质。

“金属纳米结构的模板剥离新方法”带来革命性突破

“金属纳米结构的模板剥离新方法”带来革命性突破

对 称两种 形态 嫁接在 …起 ,这种结合 方式在 其他 材料领 域也 P MMA旋涂 在硅 、石 墨等 基片上 ,利用 E BL制 备出带有所 有 推广价值 。 设 计结构 的 P MMA模板 ;再镀 一层 厚度 大于 P MMA厚度 的
研 究 人 员 表 示 , 目 前 ,大 部 分 M OF 使 用 石 油 化 工 材 料 金属 层 , 金属层 粘到另 外一 块硅 片上;从 P s 将 MMA上揭下 金 制 作 而 成 , 既 昂 贵 又 耗 时 。 而 新 研 发 材 料 的 主 要 成 分 是 纯 天 属层 并将剩 余 的 PMMA清洗 掉 ,就得 到所需 的金属 纳米结 然 的 玉 米 淀 粉 分 子 , 制 造 简 单 , 而 且 环 保 可 再 生 。 该 材 料 吃 构 。利 用 此 方 法 制 备 的 银 纳 米 结 构 的 表 面 粗 糙 度 达 到 0 5 ~ .5
面等离激 元(u f c ls n p lrtn ,S P 的深入 研 喷雾 干燥 等多套 先进 设备 及技 术 专利 。据悉 , 公司通 过校 s ra e p a mo oa io s P ) 该 究 ,人 们发现利用对 S P的操控 可 以实现 亚波长光 子学器件 企合作 , 用特殊工 艺制备 的高纯纳 米氧化铝 粉体 , P 采 晶粒尺寸 和 集成 ,有 望带来新 一代信息 技术微 型化和光 子集 成 的革 命 2 0至 3 米 , 经 任 何 物 理 化 学 处 理 便 可 形 成 稳 定 、均 一 的 0纳 不
利用这种 方法可 以获得低 的传输损 耗和高 的反 射率 , 并可 以
贵州纳 米导 电氧化锌 中试 通过鉴 定
获得非常小 的 S P纳 米腔模体积 和总体积 ,可望在很 多领域 P

磁性金纳米杂化物将帮助抗击癌症

磁性金纳米杂化物将帮助抗击癌症

磁性金纳米杂化物将帮助抗击癌症NUST MISIS的科学家团队以及来自俄罗斯和德国的同事对磁铁矿-金纳米杂化物进行了详细研究。

将来,此类纳米颗粒可帮忙进行肿瘤诊断,即肿瘤疾病的诊断和后续治疗。

这项研究的结果已经颁发在《材料化学杂志》B上。

“磁共振成像是早期检测癌症的最有效方法之一。

为了提高准确性,可以将具有磁性的特殊造影剂注入患者体内,通过特殊选择的参数,该试剂将'强调“恶性细胞”,NUST MISIS 生物医学纳米材料实验室负责人Maxim Abakumov说。

然而,除了诊断之外,磁性材料有望用于治疗肿瘤疾病。

在高温下,磁性纳米粒子会加热并破坏癌细胞的外壳。

”来自NUST MISIS的团队多年来一直在开发基于磁铁矿(Fe3O4)的用于诊断学的磁性纳米颗粒(诊断和治疗的结合)。

比来,基础研究的下一阶段已经完成。

科学家与莫斯科罗蒙诺索夫国立大学,俄罗斯化学技术大学门捷列夫大学,俄罗斯国立医科大学和杜伊斯堡-埃森大学(德国)的同事一起研究了杂磁铁矿-金纳米颗粒的形成。

众所周知,这种贵金属已为人体所接受。

它的作用是确保二聚体(复杂结构)的生物相容性。

科学家们通过在合成过程中从反应混合物中提取液体样品,研究了磁铁矿-金纳米杂化物的形核,生长和刻面。

为此,使用了X射线相分析,透射电子显微镜和磁磁法。

“我们在磁铁矿形成过程中不雅察到了两个连续的过程。

首先,球形的磁铁矿纳米颗粒在高达220°C的温度下在金晶种表面上生长。

其次,在沸腾时,氧化铁纳米颗粒逐渐变成八面体在恒定的纳米颗粒体积下,温度从240°C升至280°C”,杜伊斯堡埃森大学研究参与者和副教授Ulf Widwald说道。

这是用磁铁矿制备方法对二聚体纳米颗粒的性能进行的最详细的分析。

科学家注意到,他们获得的数据使他们能够控制纳米颗粒的大小和形状,因为它们具有控制化学反应参数的能力。

将来,这将有助于扩大治疗性纳米颗粒的生产规模。

中空海胆状金纳米粒子的制备与性能研究

中空海胆状金纳米粒子的制备与性能研究

中空海胆状金纳米粒子的制备与性能研究金纳米粒子具有独特的光学和催化性质,所以在很多领域存在着广泛的应用前景。

其中分枝状或者称之为海胆状结构的金纳米粒子,由于其表面足够粗糙,所以显示出更为重要的研究意义。

极高的比表面积赋予了它们卓越的性能,从而在催化、表面等离子体共振、表面增强拉曼散射、电子设备以及生物医药等方向获得重视。

另一方面,中空的金属纳米粒子也在催化、载药、光学成像和纳米反应器等方面存在潜在的应用。

在本实验中,我们首先利用银纳米粒子与氯金酸发生置换反应,然后再加入抗坏血酸使其生成既具有海胆状形貌又具有中空结构的金纳米粒子,期望其将两种结构的优点融于一身。

银纳米粒子作为引导生成空心结构的模板,还为过量的氯金酸被抗坏血酸还原后所生成的金纳米粒子提供粗糙的表面和生长中心。

这种具有独特结构的金纳米粒子,显示出优良的光学特性以及在催化应用方面的极大优势。

基于以上的策略,我们选择硝酸银作为辅助添加剂也可以引导生成海胆状的金纳米中空粒子。

硝酸银大大促进了反应的过程,同时反应得到的金原子向内扩散,逐渐溶解的银离子向外扩散,二者的相对扩散速率影响着金纳米粒子的最终形貌。

如果在加入抗坏血酸以前,硝酸银与氯金酸的反应时间过长,会导致生成的金纳米粒子均为实心的。

两个反应体系中所得到的金纳米粒子,均通过硼氢化钠还原对硝基酚和葡萄糖催化氧化两个反应来检测其催化活性。

最后,期望这种实验方法可以进一步拓展,从而制备出具有同样结构的其他金属纳米粒子,并使它们在光学、催化和生物医学等方面获得进一步的应用。

基于碳纳米管修饰金电极的多巴胺电化学传感器

基于碳纳米管修饰金电极的多巴胺电化学传感器

3 . C o H e g e o f C h e mi s t r y a n d Mo l e c u l e S c i e n c e , Wu h a n U n i v e si r t y , Wu h a n 4 3 0 0 7 2 , C h i n a )
郑 冬云 ,刘晓 军 ,朱珊 莹 ,曹汇敏 ,陈亚光 , 胡胜 水
( ( 1 . 中 南 民 族大 学 生 物 医学 工 程 学 院 。 湖北 武汉 4 3 0 0 7 4 ;
2 . 中南民族大学 脑认知国家民委重点实验室 , 湖北 武汉 4 3 0 0 7 4 :
3 . 武汉 大学 化 学 与 分 子 科 学 学 院 , 湖北 武汉 4 3 0 0 7 2 )
MW NT s — AC B w a t e r d i s p e r s i o n o n g o l d e l e c t r o d e s u r f a c e a n d d i r e d u n d e r a n i n f r a r e d l a mp .Vo h a mme t i r c
2 . Ke y La b o r a t o r y o f Br a i n a n d Co g n i t i v e S t a t e Et h n i c Af fa i s r Co mmi s s i o n, Wu h a n 4 3 0 0 7 4, Ch i n a ;
中图分类号 :O6 5 7 . 1 文献标识码 :A 文章编号 :1 0 0 0 - - 9 7 8 7 ( 2 0 1 3 ) 1 1 - 0 0 8 6 - 0 3
El e c t r o c he l l e mi c a l s e ns o r o t DA J _ , A b a s e d 0 n g o l d e l e c t r o d e mo d i ie f d wi t h CNTs _ l 。 S

金属材料表面纳米化研究与进展

金属材料表面纳米化研究与进展

表面技术第53卷第4期金属材料表面纳米化研究与进展杨庆,徐文文,周伟,刘璐华,赖朝彬*(江西理工大学 材料冶金化学学部,江西 赣州 341000)摘要:大多数金属材料的失效都是从其表面开始的,进而影响整个材料的整体性能。

研究表明,在金属材料表面制备纳米晶,实现表面纳米化,可以提升材料的表面性能,延长其使用寿命。

金属材料表面纳米化是指利用反复剧烈塑性变形让表层粗晶粒逐步得到细化,材料中形成晶粒沿厚度方向呈梯度变化的纳米结构层,分别为表面无织构纳米晶层、亚微米细晶层、粗晶变形层和基体层,这种独特的梯度纳米结构对金属材料表面性能的大幅度提升效果显著。

根据国内外表面纳米化的研究成果,首先对表面涂层或沉积、表面自纳米化以及混合纳米化3种金属表面纳米化方法进行了简要概述,阐述了各自优缺点,总结了表面自纳米化技术的优势,在此基础上重点分析了位错和孪晶在金属材料表面自纳米化过程中所起的关键作用,提出了金属材料表面自纳米化机制与材料结构、层错能大小有着密不可分的联系,对金属材料表面自纳米化机制的研究现状进行了归纳;阐明了表面纳米化技术在金属材料性能提升上的巨大优势,主要包括对硬度、强度、腐蚀、耐磨、疲劳等性能的改善。

最后总结了现有表面强化工艺需要克服的关键技术,对未来的研究工作进行了展望,并提出将表面纳米化技术与电镀、气相沉积、粘涂、喷涂、化学热处理等现有的一些表面处理技术相结合,取代高成本的制造技术,制备出价格低廉、性能更加优异的复相表层。

关键词:金属材料;表面纳米化;梯度纳米结构;纳米化机理;表面性能中图分类号:TG178 文献标志码:A 文章编号:1001-3660(2024)04-0020-14DOI:10.16490/ki.issn.1001-3660.2024.04.002Research and Progress on Surface Nanocrystallizationof Metallic MaterialsYANG Qing, XU Wenwen, ZHOU Wei, LIU Luhua, LAI Chaobin*(Department of Materials Metallurgy and Chemistry, Jiangxi University ofTechnology, Jiangxi Ganzhou 341000, China)ABSTRACT: It is well known that the failure of most metallic materials starts from their surfaces, which in turn affects the overall performance of the whole material. Numerous studies have shown that the preparation of nanocrystals on the surface of metallic materials, i.e., surface nanosizing, can enhance the surface properties of materials and extend their service life. Surface nanosizing of metallic materials makes use of repeated violent plastic deformation to make the surface coarse grains gradually收稿日期:2023-02-23;修订日期:2023-06-29Received:2023-02-23;Revised:2023-06-29基金项目:国家自然科学基金项目(52174316,51974139);国家重点研发计划项目(2022YFC2905200,2022YFC2905205);江西省自然科学基金项目(20212ACB204008)Fund:National Natural Science Foundation of China(52174316, 51974139); National Key Research and Development Program of China (2022YFC2905200, 2022YFC2905205); Natural Science Foundation of Jiangxi Province (20212ACB204008)引文格式:杨庆, 徐文文, 周伟, 等. 金属材料表面纳米化研究与进展[J]. 表面技术, 2024, 53(4): 20-33.YANG Qing, XU Wenwen, ZHOU Wei, et al. Research and Progress on Surface Nanocrystallization of Metallic Materials[J]. Surface Technology, 2024, 53(4): 20-33.*通信作者(Corresponding author)第53卷第4期杨庆,等:金属材料表面纳米化研究与进展·21·refine to the nanometer level, forming nanostructured layers with gradient changes of grains along the thickness direction, including surface non-woven nanocrystalline layer, submicron fine crystal layer, coarse crystal deformation layer and matrix layer, and this unique gradient nanostructure is effective for the significant improvement of surface properties of metallic materials. The process technology and related applications of nanocrystalline layers on the surface of metallic materials in China and abroad are introduced, and the research progress of high-performance gradient nanostructured materials is discussed.Starting from the classification of the preparation process of gradient nanostructured materials and combining with the research results of surface nanosizing in China and abroad, a brief overview of three methods of metal surface nanosizing, namely, surface coating or deposition, surface self-nanosizing and hybrid nanosizing, was given, the advantages and disadvantages of each were discussed and the advantages of surface self-nanosizing technology were summarized. On the basis of this, the key role of dislocations and twins in the process of surface self-nanitrification of metallic materials was analyzed, and the mechanism of surface self-nanitrification of metallic materials was inextricably linked to the material structure and the size of layer dislocation energy, and the current research status of the mechanism of surface self-nanitrification of metallic materials was summarized. Finally, the key technologies required to be overcome in the existing surface strengthening process were summarized, and future research work was prospected. It was proposed to combine surface nanosizing technology with some existing surface treatment technologies such as electroplating, vapor deposition, tack coating, spraying, chemical heat treatment, etc., to replace the high-cost manufacturing technologies and prepare inexpensive complex-phase surface layers with more excellent performance.Techniques for the preparation of gradient nanostructured materials include surface coating or deposition, surface self-nanosizing, and hybrid surface nanosizing. Surface coating or deposition technology has the advantages of precise control of grain size and chemical composition, and relatively mature process optimization, etc. However, because the coating or deposition technology adds a cover layer on the material surface, the overall size of the material increases slightly, and there is a certain boundary between the coating and the material, and there will be defects in the specific input of production applications.In addition, the thickness of the gradient layer prepared by this technology is related to the deposition rate, which takes several hours to prepare a sample. The surface self-nanitrification technique, which generates intense plastic deformation on the surface of metal materials, has the advantages of simple operation, low cost and wide application, low investment in equipment and easy realization of unique advantages. The nanocrystalline layer prepared on the surface of metal materials with the surface self-nanitrification technique has a dense structure and no chemical composition difference from the substrate, and no surface defects such as pitting and pores, but the thickness of the gradient layers and nanolayers prepared by this technique as well as the surface quality of the material vary greatly depending on the process. Hybrid surface nanosizing is a combination of the first two techniques, in which a nanocrystalline layer is firstly prepared on the surface of a metallic material by surface nanosizing technology, and then a compound with a different composition from the base layer is formed on its surface by means of chemical treatment.To realize the modern industrial application of this new surface strengthening technology, it is still necessary to clarify the strengthening mechanism and formation kinetics of surface nanosizing technology as well as the effect of process parameters, microstructure, structure and properties on the nanosizing behavior of the material. For different nanosizing technologies, the precise numerical models for nanosizing technologies need to be established and improved, and the surface self-nanosizing equipment suitable for industrial scale production needs to be developed. In the future, surface nanosizing technology will be combined with some existing surface treatment technologies (e.g. electroplating, vapor deposition, adhesion coating, spraying, chemical heat treatment, etc.) to prepare a complex phase surface layer with more excellent performance, which is expected to achieve a greater comprehensive performance improvement of the surface layer of metal materials.KEY WORDS: metal material; surface nanocrystallization; gradient nanostructures; nanocrystallization mechanism; surface properties金属材料在基建工程、航空航天中扮演着重要角色,随着当今科学技术的高速发展,传统金属材料的局限性日趋明显,开发一种综合性能优异的金属材料迫在眉睫。

纳米金属颗粒物原位催化 英文

纳米金属颗粒物原位催化 英文

纳米金属颗粒物原位催化英文In-situ Catalysis of Nanometal Particles.Nanometal particles, with their unique physicochemical properties, have emerged as promising catalysts in various chemical reactions. The concept of in-situ catalysis, which involves the utilization of these nanoparticles directly at the reaction site, offers significant advantages such as improved activity, selectivity, and efficiency. In this article, we delve into the principles, applications, and challenges associated with in-situ catalysis using nanometal particles.Principles of In-situ Catalysis.In-situ catalysis refers to the use of catalysts that are generated or activated directly within the reaction mixture, rather than being added as preformed entities. In the context of nanometal particles, this approach allowsfor a more intimate interaction between the catalyst andthe reactants, leading to enhanced catalytic activity. The small size of these nanoparticles ensures a high surface-to-volume ratio, which in turn results in a greater numberof active sites available for catalysis.The catalytic activity of nanometal particles isfurther enhanced by their unique electronic and structural properties. The quantum size effects observed in nanoparticles lead to changes in their electronic structure, which can significantly alter their catalytic behavior. Additionally, the high surface energy of nanoparticles promotes their stability and prevents sintering, even at elevated temperatures, maintaining their catalytic activity over extended periods.Applications of In-situ Catalysis.The applications of in-situ catalysis using nanometal particles are diverse and span across various fields of chemistry and engineering. Some of the key applications include:1. Organic Synthesis: Nanometal particles, especially those of platinum, palladium, and gold, have found widespread use in organic synthesis reactions such as hydrogenation, carbon-carbon bond formation, and oxidation reactions. Their use in in-situ catalysis allows for more efficient and selective transformations.2. Fuel Cells: Nanometal particles, particularly those of platinum and palladium, are key components in the electrodes of fuel cells. Their in-situ catalysis promotes the efficient oxidation of fuels such as hydrogen, leading to improved fuel cell performance.3. Photocatalysis: The combination of nanometal particles with photocatalysts such as titanium dioxide offers a powerful tool for solar-driven reactions. The in-situ generation of reactive species at the interface of these materials enhances photocatalytic activity and selectivity.Challenges and Future Directions.While the potential of in-situ catalysis using nanometal particles is immense, there are several challenges that need to be addressed. One of the key challenges is the stability of these nanoparticles under reaction conditions. The aggregation and sintering of nanoparticles can lead to a decrease in their catalytic activity. To address this, strategies such as stabilization by ligands or supports, and the use of bimetallic or core-shell structures have been explored.Another challenge lies in the scale-up of these processes for industrial applications. While laboratory-scale experiments often demonstrate promising results, translating these findings to large-scale operations can be challenging due to factors such as mass transport limitations and heat management.Future research in in-situ catalysis with nanometal particles could focus on developing more robust and stable catalyst systems. The exploration of new nanomaterials with enhanced catalytic properties, as well as the optimization of reaction conditions and reactor designs, are likely tobe key areas of interest. Additionally, the integration ofin-situ catalysis with other technologies such as microfluidics and nanoreactors could lead to more efficient and sustainable catalytic processes.In conclusion, the field of in-situ catalysis using nanometal particles offers significant potential for enhancing the efficiency and selectivity of chemical reactions. While there are still challenges to be addressed, the ongoing research in this area is likely to lead to transformative advancements in catalysis and beyond.。

从金属布线到波长转换膜 日本大学的创新产品

从金属布线到波长转换膜 日本大学的创新产品

从金属布线到波长转换膜,日本大学开发多项新技术2013/09/24新型纳米墨水示意图(图:冈山大学)在2013年8月29~30日于东京有明国际会展中心举行的展会“创新日本2013”上,由日本的大学开发、前景看好的新技术纷纷亮相。

这些基于全新想法的新技术展示非常引人注目。

其中也有不少技术可立刻实用化。

其中之一是日本冈山大学跨领域融合尖端研究中心特聘助教金原正幸开发的银(Ag)纳米油墨和金(Au)纳米油墨(图1)。

即使完全省去涂布后的烧结工艺,也能够实现接近金属点块的低电阻值。

图1:利用常温的印刷工艺也能实现跟金属块相近的导电性日本冈山大学的金原等开发的金/银纳米油墨(a)、NI MS采用这种油墨印刷的约1mm见方的TFT(b)、金属块与印刷后油墨的电阻率的比较(c)。

(摄影:(a)为日本冈山大学)过去,涂布金属纳米油墨后,电阻非常大,要烧结之后才能作为布线使用。

但是,在树脂基板上无法提高烧结温度。

此次之所以能够解决这一课题,是因为为了保持稳定和防止凝聚,涂布金属纳米颗粒的材料采用了具有导电性的酞菁。

金原指出:“酞菁共有金属和电子,整体就像纯粹的金属一样导电”。

日本物质材料研究机构(NIMS)已在电极的形成中使用这种纳米油墨制造出了4层构造的TFT。

NIMS指出“其出色的特性足够作为TFT使用”。

利用蚀刻形成纳米线不使用纳米油墨且能廉价制造由金属纳米线构成的透明导电膜的制造工艺也在展会上亮相(图2)。

该制造工艺是由日本东京工业大学研究生院理工学研究科有机高分子物质专业特聘副教授坂尻浩一开发的。

展示的产品采用了铝(Al)。

坂尻指出:“Al蒸镀的树脂基板是市售品,10cm见方大约10日元。

如果使用该制造工艺量产透明导电膜,成本可比10cm见方1000日元左右的使用Ag纳米油墨的产品大幅降低”。

大幅提高太阳能电池的效率日本大阪大学产业科学研究所第二研究部门教授小林光的研究室开发出了大幅降低结晶硅型太阳能电池表面光反射率的技术(图3)。

基于金纳米粒子局域表面等离子体共振吸收检测卡托普利

基于金纳米粒子局域表面等离子体共振吸收检测卡托普利

基于金纳米粒子局域表面等离子体共振吸收检测卡托普利X许 丹(西南大学化学化工学院,重庆 400715) 摘 要:柠檬酸根稳定的金胶在一定盐浓度下由于盐的电荷屏蔽效应而发生聚集。

加入一定浓度的卡托普利后,由于卡托普利分子中含有巯基和羧基,其分子中的巯基可以通过Au -S 键连在金纳米粒子表面,同时,在pH9.91的条件下,其分子中的羧基去质子化形成-COO -,导致金胶表面负电荷增多,纳米粒子之间的静电排斥力增大,金胶的聚集得到了抑制。

基于金胶由聚集到分散的现象,利用紫外-可见吸收光谱进行表征,建立了定量检测卡托普利含量的方法。

该方法的线性范围为0.04~1.2L M ,检出限为20nM 。

将此方法用于合成样的检测,回收率在86.3%~108.2%之间。

关键词:金纳米粒子;卡托普利;表面等离子体共振吸收 中图分类号:T Q460.7 文献标识码:A 文章编号:1006—7981(2012)03—0006—03 卡托普利(1-[(2S )-2-甲基-3-巯基-1-氧化丙基]-L -脯氨酸,Cap,结构如下图所示)是一种人工合成的血管紧张素转换酶抑制剂,目前广泛应用于治疗高血压及心力衰竭等疾病。

目前,定量测定卡托普利的分析方法有高效液相色谱法[1]、氧化还原滴定法[2]及化学发光法[3]等。

这些方法虽然灵敏度较高,但存在一些缺点如仪器设备昂贵、操作繁琐等。

因此,建立简便、快速、灵敏度高的检测卡托普利的方法仍然具有十分重要的意义。

图1 实验原理图近年来,金纳米粒子由于其独特的表面等离子体共振吸收性质被广泛用于色度传感。

13nm 柠檬酸根包被的金胶呈现酒红色,一旦发生聚集则呈现紫色或蓝色[4]。

这种颜色的改变很容易用肉眼捕获,不需要复杂的仪器。

金胶在一定浓度的NaCl 溶液中发生聚集,在本研究中,我们发现当体系中同时存在卡托普利后,金胶的聚集能得到抑制,基于此现象,建立了一种金胶由聚集到分散的状态来高灵敏检测卡托普利的新方法。

新型金属硫化物二维半导体材料性质探明

新型金属硫化物二维半导体材料性质探明

新型金属硫化物二维半导体材料性质探明
佚名
【期刊名称】《分析测试学报》
【年(卷),期】2014(33)4
【摘要】中国科学院半导体研究所超晶格国家重点实验室博士后杨圣雪、博士生
李燕,在研究员李京波、中科院院士李树深和夏建白等人的指导下,取得二维GaS超薄半导体基础研究的新进展,探明了新型超薄金属硫化物二维半导体材料
性质。

相关成果发表在英国皇家化学会主办的《纳米尺度》上,并被选为热点论文。

【总页数】1页(P448-448)
【关键词】中国科学院半导体研究所;金属硫化物;材料性质;二维;国家重点实验室;
中科院院士;基础研究;纳米尺度
【正文语种】中文
【中图分类】O614
【相关文献】
1.二维半导体过渡金属硫化物的逻辑集成器件 [J], 李卫胜;周健;王瀚宸;汪树贤;于
志浩;黎松林;施毅;王欣然
2.二维过渡金属硫化物硫化铼材料的表面增强拉曼散射效应 [J],
3.二维过渡金属硫化物二次谐波:材料表征、信号调控及增强 [J], 曾周晓松;王笑;
潘安练
4.中科院探明新型金属硫化物二维半导体材料性质 [J], 无
5.二维过渡金属硫化物热电材料的研究进展 [J], 柏祖志;郭勇;刘聪聪
因版权原因,仅展示原文概要,查看原文内容请购买。

钛酸铅纳米线的铁电相变研究

钛酸铅纳米线的铁电相变研究

摘要
采 用 水 热 法 合 成 钙 钛 矿 结 构 钛 酸 铅 ( b i ̄ 纳 米 线 . 热 温 度 对 产 物 的 形 貌 有 较 大 的 影 响 , P T( ) 1  ̄2 m. 温 R ma b O 纳 0 0n 变 a n光谱 研 究 表 明 , 着 温 度 的升 高 , 于 6 0c 随 位 0 m 以上 声 子 的 振动频率变化不大 , 而位 于低 频 的振 动 峰发 生 了 红移 或 消 失 ;B O 纳 米 线 在 23℃ 发 生 正 交一 四 方 的 结 构 P Ti。 8 转 变 , 在 4 5℃ 附 近 对 应 于 P Ti。 米 线 的 四方 一 立 方 转 变 . 而 3 b O 纳 关键词 钛酸铅 ; 米线 ; 纳 四方 性 ; 电相 变 铁 TB 4 3 文献标志码 A
第 3 卷笫 1 3 期
21 年 3 01 月
湖北大学学报( 自然 科 学 版 )
J u n l fH u e Unv r i ( tr l ce c ) o r a o b i ie st Na u a in e y S
Vo . 3 No 13 .1
M a ..2O1 r l
中 图分 类 号
钙 钛矿 结构 铁 电体 ( 式为 AB 。 是一 类非 常重 要 的铁 电体 , 酸 铅 ( b O。 是一 种 典 型 的钙钛 通 O) 钛 P Ti ) 矿型结 构铁 电材 料 , 有居 里温 度高 、 向 比率 大 、 电耦 合 系数 高 、 电常数 小 等特 点 , 为 电子 元 器 具 轴 机 介 作 件 材料 的基本 组元 , b Os 以提 高器件 的居 里温 度 , 一种 应用 十分 广泛 的铁 电压 电材料 口 . P Ti 可 是 ] 自上个 世 纪 以来 , b O 材 料 在 理 论 和 实 验 上 分 别 进 行 了广 泛 的 研 究 , 利 用 X 射 线 衍 射 、 电 温 谱 和 P Ti 。 如 介 Ra n散射技 术研 究 P T O。 ma b i 的相变 行为 l ; _ 采用 S l e、 属有机 化学 气相 沉积 ( 2 o— l金 g MOC VD) r’ 、, 反应 磁控 溅射 等方 法制备 取 向和外 延 的 P Ti 。 膜 , 究其 介 电 、 电和压 电特 性 l ; 用 L n a b O 薄 研 铁 _ 利 6 a d u理论 、 Abiio统计 力 学 以及第 一 性 原理 等研 究 P T O。 米颗 粒 和薄 膜 的铁 电相 变 、 t ni bi 纳 晶格 动力学 和 压 电特 性 , 探讨 了 P Ti 薄膜 中铁 电性起 源 等 基 础性 问题 [ . 并 b Os 9 此外 , 。 有关 P Ti 。 薄 膜 中的 畴结 构 、 b O 超 铁

Metal-Insulator Transition (Scaling Theory)

Metal-Insulator Transition (Scaling Theory)

j (r)j = exp(jr ? r j= )
0
(1)
The parameter is called the localization length. It appears that the character of localization is strongly dependent on dimensionality. It can be rigorously shown that in 1D all states are already localized in the arbitrary weak disorder. The existence of extended states in 2D is the question that is not completely resolved at present. The picture is more transparent in the 3D case. De nitely in the limit of strong disorder all states are localized. But what happens in case of the intermediate disorder? Anderson considered the simple model Hamiltonian for the impurity band with one orbital 1]: X X (2) H = nay an + V ay am n n Here n are the single site energies that are assigned at random, and V is the hopping matrix element between nearest-neighbour sites. This model allows us to understand how the localization-delocalization transition can occur 4]. Let's assume that the site energies are distributed uniformly over interval W . When W = 0, we have that all sites have the same energy that corresponds to the ordered crystal and unscattered Bloch states. But when V = 0, there is no connection between sites and consequently there is no transport at all. This means that in the limit V = 0 all states are localized. From the other side when W is rather large and 2

金属有机沉积法制备SrTiO3薄膜

金属有机沉积法制备SrTiO3薄膜
t e b s s t r g t e i 1 0 mi rt e S Ti h et i e i m S 2 n f h r O e i x a g o h u d rAr一4 H,am o p ee a d a 9 0 ℃ .Th n n i o pt i r wt n e a 1 % t sh r n t 5 e
L UO n - i Qig we ,RAN qa IF n - u IYig n n ,HONG o gc o A—in ,L e gh a ,L n - a S n -h l一,F AN a -u Zh n g o
( . Sh o o Maeis&Meaug Notes r iesy h n agl0 1 1 colf t a rl tlry, r aenUnvrt,S eyn 1 89,Chn ; l h t i ia 2 Istt o p yiae g ema,Km aku iesyo t h oo , yn ag DP KORE ntue f h s l ni e g i Che nvrt fe nlg P og n , R i c n i c y y A)
Ab ta t E i xa S T 0 ti l r rp rdb tlogncd p s in ( OD ) meh da u rl e o sr c : pt il r i a hn fmsweepe ae ymea ra i e oio i t M to sb 雎 a rfr y
层 . 以 乙 酸 锶 、钛 酸 丁 酯 为 前 驱 物 配 制 了 s 离 子 浓 度 为 0 1 5t l L 的 STO r .2 o ・ o ri 前 驱 溶 液Hale Waihona Puke . 研 究 了 90o 5 C下
不同烧结时间 ( 0 2 、10mi)对在 双轴 织构的 N —W (0 )金属基带 上沉积 S O外 延薄膜 晶体取 向 9 、10 5 n i 20 T 和微 观形貌的影响.结果表 明 ,在 9 0o 5 C氲氢混合气 氛 ( r 4 A 一 %H )下适宜 于 S O薄膜外延生长 的最佳烧 T 结 时间为 10mn T 2 i;S O缓冲层薄膜表面平整致 密 ,无裂纹和T N ,具有 良好取 向 ,可作为 Y aC L B uO 一涂层

高迁移率金属氧化物半导体薄膜晶体管的研究进展

高迁移率金属氧化物半导体薄膜晶体管的研究进展

第 39 卷第 4 期2024 年 4 月Vol.39 No.4Apr. 2024液晶与显示Chinese Journal of Liquid Crystals and Displays高迁移率金属氧化物半导体薄膜晶体管的研究进展李强,葛春桥*,陈露,钟威平,梁齐莹,柳春锡,丁金铎(中山智隆新材料科技有限公司,广东中山 528459)摘要:基于金属氧化物半导体(MOS)的薄膜晶体管(TFT)由于较高的场效应迁移率(μFE)、极低的关断漏电流和大面积电性均匀等特点,已成为助推平板显示或柔性显示产业发展的一项关键技术。

经过30余年的研究,非晶铟镓锌氧化物(a-IGZO)率先替代非晶硅(a-Si)在TFT中得到推广应用。

然而,为了同时满足显示产业对更高生产效益、更佳显示性能(如高分辨率、高刷新率等)和更低功耗等多元升级要求,需要迁移率更高的MOS TFTs技术。

本文从固体物理学的角度,系统综述了MOS TFTs通过多元MOS材料实现高迁移率特性的研究进展,并讨论了迁移率与器件稳定性之间的关系。

最后,总结展望了MOS TFTs的现状和发展趋势。

关键词:金属氧化物半导体;薄膜晶体管;场效应迁移率;偏压稳定性中图分类号:TN321+.5 文献标识码:A doi:10.37188/CJLCD.2024-0032Research progress of high mobility metal oxide semiconductorthin film transistorsLI Qiang,GE Chunqiao*,CHEN Lu,ZHONG Weiping,LIANG Qiying,LIU Chunxi,DING Jinduo (Zhongshan Zhilong New Material Technology Co. Ltd., Zhongshan 528459, China)Abstract:Thin-film transistor (TFT)based on metal oxide semiconductor (MOS)has become a key technology to boost the development of the flat panel display or flexible display industry due to their high field-effect mobility (μFE), extremely low cut-off leakage current and good large-area electrical uniformity. After more than 30 years of research,amorphous indium gallium zinc oxide (a-IGZO)is the first to be popularized in TFT by replacing the amorphous silicon (a-Si). However, in order to simultaneously meet the multiple upgrade requirements of the display industry for higher productivity,better display performance (such as high resolution, high refresh rate,etc.) and lower power consumption, MOS TFTs technology with higher mobility is required.From the perspective of solid-state physics,this paper reviews the research progress of MOS TFTs to achieve high mobility characteristics through multi-component MOS materials, and discusses the relationship between mobility and device stability. Finally, the status quo and development trend of MOS TFTs are summarized and prospected.文章编号:1007-2780(2024)04-0447-19收稿日期:2024-01-23;修订日期:2024-02-14.基金项目:中山市科技计划(No.LJ2021006,No.CXTD2022005,No.2022A1009)Supported by Zhongshan Science and Technology Development Plan(No.LJ2021006,No.CXTD2022005,No.2022A1009)*通信联系人,E-mail:gechunqiao@zhilong.pro第 39 卷液晶与显示Key words: metal oxide semiconductor; thin-film transistor; field-effect mobility; bias stability1 引言在各类消费电子和工业设备显示中,薄膜晶体管(TFT)驱动背板是保障显示屏幕稳定运行的核心部件。

超氧化物歧化酶在纳米金/L-半胱氨酸修饰金电极上的电化学行为

超氧化物歧化酶在纳米金/L-半胱氨酸修饰金电极上的电化学行为
t d h we n ee t c e c s o s . o d l e eai nwa u d l t e n t er d ci n p a u r n f OD— od r e s o d a l cr h mi a r p n e t H2 o o le o O2 A g o i a r l t sf n ew e e u t e k c re t nr o o r h o oS g l n n p r ce L c s ie mo i e od ee t d n e c n e t t n o 02n r n e o 。 xl 一2 O O a o a t l/ - y t n d f d g l lcr e a d t o c n r i f i e i o h ao H2 i a g f O O’ 1 . xl —mo / w t o ea L L, i c r l- h t n c e f in f } 9 6 T i me h d wa p l d t h n y i a d d t r n t n o . i o f ce t - . 9 . hs o i o( t o sa p i o t e a a ss n ee mi a i fH2 e l o O2
e c ohmi lm e ac c ocp ( I ) n yl ot me y c .tdsoe dS D clehbt eo asa "o t l t c e c p dnes t soy ES adcc cvl m t ( v) I i vr O a x i dxp k t bu er ai e p r i a r c e l ir e a
0 1 V n - . 5 n te mo ie lcrd . e rd cin D a urn a iert h c n ig rt 1 te rn e o . 4 — . 5 a d0 0 V o h df d ee t eTh e u t e k c r tW l a o te sa nn ae i h a g f0 0 i o o e s n 1

多通道碳阴极活化过一硫酸盐降解水中有机物的性能

多通道碳阴极活化过一硫酸盐降解水中有机物的性能

大连理工大学硕士学位论文摘要活化的过硫酸盐氧化,作为一种新兴的高级氧化技术,是一种矿化难降解有毒污染物的有效方法。

在众多的活化方法中,过硫酸盐通过接受电子完成的电化学活化,具有容易操控和环境友好的特点,被认为是一种有前景的活化技术。

但在电化学活化的过程中,由于静电斥力阻碍了过硫酸盐阴离子和阴极之间的接触,导致过硫酸盐低的分解率和随后低的自由基的产生量,从而使污染物的降解效果变差。

针对此问题,本文使用天然木材衍生的碳化木(CW)制备了具有多通道的流通式阴极(FTC),通过将过一硫酸盐(PMS)阴离子限制在阴极的微通道中,能够显著地强化其与阴极的碰撞与接触,提高电化学活化的效率并增强对污染物的降解。

主要的研究成果如下:(1)通过天然松木的一步碳化制备并组装了具有丰富的介孔,良好的导电性,较高的机械强度,大量有序的微通道以及对PMS有良好的电催化活性的FTC。

以苯酚为目标污染物,探究了不同的反应条件(PMS浓度、电流密度和停留时间)对FTC电活化PMS降解苯酚性能的影响。

结果表明,在苯酚进水浓度为20 mg/L, 进水TOC=18 mg/L,进水PMS浓度为6.51 mM,背景Na2SO4为0.05 M,电流密度为2.75 mA/cm2,进水pH 2.87,停留时间10 min以及常温的条件下,通过FTC电活化PMS,PMS的分解率达到了71.9%。

苯酚和TOC的去除率分别达到了97.9%和39.6%。

EPR实验结果表明,在FTC电活化PMS的过程中,产生了大量的·OH和SO4•-。

同时,自由基淬灭实验也表明,·OH和SO4•-均参与了对苯酚的降解,且·OH对降解的贡献更大。

此外,五次循环实验的结果证明了本研究组装的FTC具有很好的稳定性。

(2)通过封闭CW的微通道,获得了流过式阴极(FBC)。

在相同的优化条件下,详细对比了在FTC中和FBC上的PMS的分解、自由基的产量以及电活化PMS降解三种酚类有机物(苯酚、双酚A和4-氯苯酚)的性能。

用镀镍钛丝制作形状记忆元件

用镀镍钛丝制作形状记忆元件
试料 中除有 N i 和. r i 以外 ,还 有 T i N i — B 1 9 ( T i N i 合金
可 制作 构造 简 单 的 驱 动 元 件 。这 种 驱 动 元 件 的单 位 体积做功远 比 P Z T等 其 它材 料 的驱 动元 件 大 ,但 是
制 造 这种材 料 必 须 经过 复杂 的塑 性 加 工 和热 处 理 的 组 合 工艺 ,是 该 材 料 的 缺 点 之 一 。 日本 富 士菲 尔 特 工业 公 司和 全泽 工 业 大 学 的研 究 人 员 采 用 镀 镍 的纯 钛 丝 ,制 成 三维 形 状 元 件 后 进 行 扩 散 热 处 理 ,得 到 新 开 发 的元件 ,并评 价 了该 元件 的性 能 。 这种 三 维形 状 T i N i 合 金 元 件 的制 造 方 法 是 :在 直径 1 0 0 t x m 的纯 钛丝 表 面镀 镍 ( 镀层厚度 1 2 I x m) , 然 后缠 绕在 陶 瓷 卷筒 上 加 工 成 圆筒 形 状 ,再 在 真 空
然而 ,当裂纹 穿 过 外 面 的 反 应 层 ,就 为元 素 提 供 一 个 了限制性 的扩 散 通 道 ,从 而促 进 有 害元 素 向 内层
渗入 。
黄朝 文译 自(  ̄ J o u na r l o f Ma t e i r a l s P r o c e s s i n g T e c h n o l o g y }
经 过锻 造后 ,试 样 孔双 锥 体 试 样 显 微 组 织 中 的 初 生
O / 相 在9 5 0℃ 、较 高 的应变 速 率 ( 0 . 0 1 、0 . 1 、1 s ) 时发 生 破 碎 ,这 与 有 限 元 模 拟 结 果 具 有 很 好 的 一
用 镀 镍 钛 丝 制作 形 状 记忆 元 件

具有增大的提取效率的再发光半导体构造[发明专利]

具有增大的提取效率的再发光半导体构造[发明专利]

专利名称:具有增大的提取效率的再发光半导体构造
专利类型:发明专利
发明人:杨朝晖,易亚沙,凯瑟琳·A·莱瑟达勒,迈克尔·A·哈斯,特里·L·史密斯
申请号:CN201080030323.5
申请日:20100430
公开号:CN102460741A
公开日:
20120516
专利内容由知识产权出版社提供
摘要:本发明整体涉及固态半导体光源以及相关的器件、系统、和方法。

半导体层叠堆(310)形成再发光半导体构造(RSC)。

叠堆(310)包括将第一波长的光转换成第二波长的光的有源区(316),有源区(316)包括至少一个势阱。

叠堆(310)还包括从叠堆的外表面延伸到有源区的无源区(318)。

凹陷(326)形成于叠堆(310)中,且凹陷(326)从外表面延伸到无源区(318)内。

平均凹陷深度为无源区的厚度的至少50%。

作为另外一种选择,平均凹陷深度为最近势阱距离的至少50%。

本发明还公开了凹陷(326)的其他可供选择的特征。

凹陷(326)可在平面图中具有至少40%的堆积密度。

凹陷(326)的投影表面积的相当大一部分还可与倾斜表面相关。

申请人:3M创新有限公司
地址:美国明尼苏达州
国籍:US
代理机构:中原信达知识产权代理有限责任公司
更多信息请下载全文后查看。

评《金属纳米结构表面等离子体共振的调控和利用》

评《金属纳米结构表面等离子体共振的调控和利用》

写一篇评《金属纳米结构表面等离子体共振的调控和利用》的
报告,600字
《金属纳米结构表面等离子体共振的调控和利用》是一篇分析金属纳米结构表面等离子体共振(SPR)调控和利用的文章。

文章介绍了关于金属纳米结构表面等离子体共振(SPR)技术的最新进展,并详细介绍了关于调控和利用SPR的方法。

研究的内容包括SPR的基本原理、表面扩散效应、环境参数对SPR响应的影响、众多应用,以及关于SPR的利用。

该研究首先探讨了SPR的基本原理,并介绍了如何调控SPR 的具体步骤。

基本原理提到,在金属纳米结构表面上存在着等离子体共振(SPR)这种特殊的物理现象,能够将光能量转换为电能量或者将电能量转换为光能量。

随后,文章介绍了表面扩散效应,研究了环境参数如pH、温度、电场等的变化对SPR的影响,最后讨论了SPR的多种应用,包括生物成分的检测、感光材料制备以及太阳能电池等。

本文通过详细介绍了SPR的基本原理,对SPR进行了全面的研究,深入挖掘了SPR的调控和应用,为我们扩大了SPR的应用范围和理解。

此外,通过阐述SPR的技术及其在高精度传感器、生物成分检测、感光材料制备和太阳能电池等领域的应用,可以看出SPR具有很强的应用前景。

未来,SPR技术将为研究人员提供更多的机会来探索令人着迷的科学物理现象以及更多的应用领域。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

a r X i v :c o n d -m a t /9901019v 1 [c o n d -m a t .d i s -n n ] 4 J a n 1999Metal-insulator transition in spatially-correlated random magnetic field systemD.N.Sheng,Z.Y.WengTexas Center for Superconductivity,University of Houston,Houston,TX 77204-5506We reexamine the problem of delocalization of two-dimensional electrons in the presence of random magnetic field.By introducing spatial correlations among random fluxes,a well-defined metal-insulator transition characterized by a two-branch scaling of conductance has been demonstrated numerically.Critical conductance is found non-universal with a value around e 2/h .Interest-ing connections of this system with the recently observed B =0two-dimensional metallic phase (Kravchenko et al.,Phys.Rev.B 50,8039(1994))are also discussed.71.30.+h,73.20.Fz,73.20.JcWhether two-dimensional (2D)electrons can become delocalized in the presence of random magnetic field (RMF)is still controversial.This is a very important issue related to many interesting systems,like half-filled quantum Hall effect (QHE)[1,2],gauge-field descrip-tion [3]of high-T c superconductor and so on.By us-ing the standard transfer-matrix method [4],a number of numerical calculations [5–7]have been performed for a non-interacting 2D electron system subject to spatially-uncorrelated RMF.The results indicate that electrons are always localized near the band edge,while there is a dra-matic enhancement of localization length as one moves towards the band center.However,the interpretation of the latter is rather conflicting,ranging from that all states are still localized [5,7]with an extremely large lo-calization length close to the band center to the exis-tence of a critical region [6]with divergent localization length.Even if a critical region characterized by wave-functions with fractional dimensionality [8]could exist here,a metallic phase seems being ruled out by those nu-merical calculations since a two-branch scaling as a hall-mark for metal-insulator transition (MIT)has never been found.Analytically,while the study based on a pertur-bative nonlinear sigma model approach pointed [9]to the localization of all states,the existence of extended states was shown [10]possible in the presence of a long-range logarithmic interaction of the topological density (due to fluctuating Hall conductance [11]),which is supported by direct numerical calculations [12,13]of topological Chern number for the case of spatially-uncorrelated RMF with reduced field strength.In contrast to spatially-uncorrelated RMF,however,magnetic flux fluctuations in realistic systems [1–3]may be much more smooth with finite-range spatial correla-tions.Such a smoothness can significantly reduce the random scattering effects while still retain the delocal-ization effect [10–13]introduced by magnetic fluxes.In this paper,we demonstrate numerically for the first time the existence of MIT which is characterized by a two-branch scaling of conductance in the presence of spatially-correlated RMF.The critical conductance itself is non-universal,with its value around e 2/h which gen-erally increases as the Fermi energy shifts towards the band center.With much reduced error bar,the present numerical algorithm is also applied to an uncorrelated (white noise limit)RMF case and the results unambigu-ously show that all states are localized without a critical region at strong strength of RMF.Possible connections of the present RMF system to the zero-magnetic-field (B=0)2D metal [14]are also discussed at the end of the paper.We consider a tight-binding lattice model of noninter-acting electrons under RMF.The Hamiltonian is defined as follows:H =−<ij>e ia ij c +i c j + iw i c +i c i(1)Here c +i is a fermionic creation operator,and <ij >refers to two nearest neighboring sites.w i is an uncorre-lated random potential (white noise limit)with strength |w i |≤W .A magnetic flux per plaquette is given as φ(k )= 2a ij ,where the summation runs over four links around a plaquette labeled by k.We are interested in the case where φ(k )at different k’s is correlated which can be generated in the following way:φ(k )=h 0bar is significantly reduced in our results(about1.5%). In most of earlier numerical calculations,finite-size local-ization length has been computed where the statistical fluctuation is usually quite big(especially near the band center)as compared to a direct calculation of thefinite-size longitudinal conductance in the present algorithm. As a test,we havefirst re-studied the case in which thefluxφ(k)is randomly distributed between−πtoπwithout spatial correlations–the situation investigated previously[5–7]as mentioned at the beginning of the pa-per.Wefind that G xx monotonically decreases with the sample size L at all strengths of the on-site disorders: from W=0to W=4,and is extrapolated to zero at large sample-size limit as shown in Fig.1at afixed Fermi energy E f=−1.In the insert of Fig.1,G xx is shown as a function of the disorder strength W at different sam-ple sizes:L=24,80,and200,which shows that even at W=0the conductance monotonically decreases with the increase of L,indicating that the dominant role of the randomflux here is similar to the random potential in causing localization of electrons.The one-parameter scaling of G xx can be obtained by choosing a scaling vari-ableξat each random potential W.As plotted in Fig. 2,all data can be then collapsed onto a single curve of L/ξ,in whichξis given in the insert of Fig.2.Clearly ξis alwaysfinite although it becomes extremely large at weak disorder limit.This is consistent with the conclu-sion[5,7]that electrons are all localized and excludes the possibility of a critical region[6]as the error bar in our calculation is much less than the variation of the con-ductance itself.Notice that in weak-disorder limitξmay no longer be interpreted as localization length[7]which characterizes an exponential decay of conductance with sample size at strong localized region.Now let us focus on RMF with smooth spatial corre-lations as defined in(2).With the correlation length λf=5.0(the lattice constant as the unit)andflux strength h0=1,G xx as a function of disorder strength W is computed at a given Fermi energy E f=−1as shown in Fig.3.Curves at different sample sizes(L=16–200)all cross at afixed-point W=W c,which is independent of lattice size L within the statistical error bars.It is qual-itatively different from the behavior of G xx in spatially-uncorrelated RMF case discussed above.At W>W c, G xx continuously decreases with the increase of the sam-ple size,which can be extrapolated to zero at large L limit,corresponding to insulating phase.On the other hand,at W<W c,G xx monotonically increases with lat-tice sizes like a typical metallic behavior.The insert of Fig.3shows the critical conductance G c(corresponding to W=W c)at different Fermi energies and h0’s.The data of G xx in Fig.3can be collapsed onto a two-branch curve as a function of scaling variable L/ξas shown in Fig.4for W>W c and W<W c,respectively.The insert of Fig.4shows the scaling variableξvs.W which diverges at the critical point W c.In the metallic phaseat W<W c,G xx can be approximatelyfitted by the fol-lowing form:G xx=G s−c0∗exp(−L/ξ0).Here G s is the saturated conductance at L→∞,which is non-universal and depends on the disorder strength W as well as the correlation lengthλf of randomfluxes.The introduction of spatial correlations in random fluxes is crucial for such a metal-insulator transition.We also found a well-defined MIT at an even shorter cor-relation length:λf=2.0.But the largerλf is,the stronger the metallic behavior becomes with a larger saturated conductance.The previously discussed RMF in white noise limit may only belong to a very special case in which the localization effect of strong random-ness offluxes overwrites the delocalization effect of the samefluxes.We would like to point out that even in such an uncorrelated randomflux case,the delocaliza-tion may be still enhanced if one reduces the strength of RMF.Earlier topological Chern number calculations[12] clearly indicates a delocalization transition as the max-imum strength ofφ(k)is reduced to aroundπ/2.We have computed the conductance in this case using the present method at much larger sample sizes and indeed found a slight increase of the conductance with sample size at W<W c,which is opposite to strong random flux limit where conductance always decreases with the increase of sample size(Fig.1),although a two-branch scaling curves here is not as clear-cut as in the spatially-correlated RMF case shown in Fig.4.As mentioned above,the critical conductance G c varies from0.5e2/h to around2e2/h as the Fermi energy shifts from the band edge towards band center(the insert of Fig.3).It is interesting to note that G c obtained here is in the same range as the experimental data found in recent B=02D MIT system[14].In the following, we would like to point out a possible deeper connection between the two systems.In a recent experiment[16]in p-type GaAs/AlGaAs heterostructure,the evolution of delocalized states was studied continuously from the QHE regime at strong magneticfield to zerofield limit where the B=0MIT is recovered.The authors found that the critical den-sity of the lowest extended level in QHE regimeflattens out,instead offloating up towards infinity,as magnetic field is reduced and can be extrapolated to the critical density of B=0MIT in such a material.Similar result has been also observed in Si-MOSFET samples[17,18].Atfirst sight,it is tempting to think that the lowest ex-tended level of QHE somehow survives at B=0,but physically it does not make much sense because QHE ex-tended states carry quantized Hall conductance known as Chern number whereas at B=0the total Hall con-ductance must be zero without time-reversal symmetry-breaking.In fact,experiments indicated[17]that be-fore B vanishes,extended levels of the QHE may al-ready merge with a different kind of extended level(called QHE/Insulator boundary in Ref,[17])which carries an 2opposite sign of Hall conductance.Theoretically,it has been previously found[19]that QHE extended states in-deed can be mixed with some boundary extended level moving down from high-energy side at strong disorder or weak magneticfield limit which carries negative Chern number in a lattice model.When those extended states with different signs of Chern numbers mix together at weak magneticfield limit,there could be two conse-quences:one is that no states will eventually carry non-zero Chern number due to the cancellation such that all of them become localized.This is what happens in non-interacting system[19];The second possibility is that individual states may still carry nonzero Chern numbers and form a delocalized region even though the average Hall conductance still vanishes at B=0.Such a system is then physically related to the RMF system where the delocalization mechanism is also due to thefluctuating Hall conductance[10–13].Below we give a heuristic ar-gument how a strong Coulomb interaction may lead to such a realization.At strong Coulomb interaction with r s≫1(here r s is the ratio of the strength of the Coulomb interaction over the Fermi energy[14]),the2D electron state is very close to a Wigner glass phase where the low-lying spin degrees of freedom may be described by an effective spin Hamiltonian H s given in Ref.[20].The low-lying charge degrees of freedom may be regarded as“defects”which can hop on the“lattice”governed by a generalized t−J like model[20,21].Based on many studies on the t−J model in high-T c problem,especially the gauge-field de-scription[3],charge carriers moving on a magnetic spin background can generally acquirefictitiousfluxes.Such kind offluxes usually can be treated as random mag-neticfields with somefinite-range spatial correlations. According to the numerical results presented above,such a system indeed can have a MIT at B=0.Of course, further model study is needed in order to fully explore this connection which is beyond the scope of the present paper.In conclusion,we have numerically demonstrated the existence of a metal-insulator transition characterized by a two-branch scaling for2D electrons in the presence of spatially-correlated random magneticfields.In contrast to usual three-dimensional metal where the conductance scales to infinity,this2D metal has a saturated non-universal conductance.The range of the critical con-ductance is very similar to that found in B=02D metal-insulator transition.We briefly discussed a possi-ble connection between a2D interacting electron system at r s≫1and the spatially-correlated random-magnetic-field problem based on both experimental and theoretical considerations.Acknowledgments-The authors would like to thank C.S.Ting,X.G.Wen,and especially S.V.Kravchenko for stimulating and helpful discussions.The present work is supported by Texas ARP grant No.3652707,a grant from Robert Welch foundation,and by the State of Texas through the Texas Center for Superconductivity at Uni-versity ofHouston.Fig. 2.The data of G xx at different L’s and W’s all collapse onto a scaling curve as a function of L/ξ.The insert:ξversus W.Fig.3G xx versus W at different sample sizes(L= 16(•),24,32,48,64,80,120,200).W c is the critical dis-order.Fermi energy is chosen at E f=−1.The insert: critical conductance G c as a function of Fermi energy E f. Fig. 4.Two branch-scaling curve of G xx as a single function of L/ξfor different L’s and W’s.The insert:ξversus W.40.1120406080100120140160180200Fig. 1LG x x0.0010.010.11101e-060.00010.011Fig. 2L /ξ101010105370123WξG x x12Fig. 3WG x x0.010.11100.00010.011100Fig. 4L /ξW c↑11010426101234WξG x x。

相关文档
最新文档