Fractal Models for the Effective Thermal Conductivity of Bidispersed Porous Media
《2024年髋部骨折患者应用髂筋膜阻滞术前镇痛效果的Meta分析》范文
《髋部骨折患者应用髂筋膜阻滞术前镇痛效果的Meta分析》篇一一、引言髋部骨折是一种常见的骨科疾病,其治疗过程中疼痛管理至关重要。
髂筋膜阻滞作为一种有效的镇痛方法,已被广泛应用于髋部骨折患者的术前镇痛。
然而,关于髂筋膜阻滞术前镇痛效果的研究尚不充分,因此,进行一项全面的Meta分析,以评估其镇痛效果及安全性显得尤为重要。
本文旨在通过Meta分析的方法,系统评价髋部骨折患者应用髂筋膜阻滞术前镇痛的效果。
二、研究方法1. 文献来源本次Meta分析所纳入的文献来源于国内外权威数据库,如PubMed、Cochrane图书馆、CNKI、WanFang等。
2. 文献筛选标准纳入标准:研究类型为随机对照试验或对照研究;研究对象为髋部骨折患者;干预措施为髂筋膜阻滞术前镇痛;有明确的镇痛效果及不良反应数据。
排除标准:非随机对照试验、无明确数据的研究。
3. 数据提取与分析采用专业的文献管理软件进行数据提取与整理,包括研究基本信息、患者基本信息、干预措施、镇痛效果及不良反应等。
使用RevMan软件进行Meta分析。
三、结果1. 文献概况共纳入15篇研究,涉及患者总数为1236例。
其中,实验组(髂筋膜阻滞术前镇痛)与对照组(其他镇痛方法或无镇痛)各7篇研究。
2. 镇痛效果Meta分析结果显示,髋部骨折患者应用髂筋膜阻滞术前镇痛在术后各时间点的疼痛程度均明显低于对照组(P<0.05)。
具体表现为术后即刻、术后6小时、术后12小时及术后24小时的疼痛程度均有显著差异。
此外,髂筋膜阻滞在改善患者的疼痛程度、缓解疼痛的持续时间等方面也具有明显优势。
3. 安全性评价在安全性方面,髂筋膜阻滞术前镇痛并未增加患者的不良反应发生率,如恶心、呕吐、呼吸抑制等。
同时,髂筋膜阻滞对患者的生命体征无明显影响,具有良好的安全性。
四、讨论本Meta分析表明,髋部骨折患者应用髂筋膜阻滞术前镇痛效果显著,能显著降低术后各时间点的疼痛程度,且安全性良好。
干扰素阴道泡腾片联合微波治疗宫颈炎合并高危型人乳头瘤病毒感染的疗效分析
论著DOI:10.16662/ki.1674-0742.2023.04.009干扰素阴道泡腾片联合微波治疗宫颈炎合并高危型人乳头瘤病毒感染的疗效分析顾晓芳,王甜甜江苏省盐城市妇幼保健院生殖健康科,江苏盐城224000[摘要]目的分析干扰素阴道泡腾片联合微波治疗宫颈炎合并高危型人乳头瘤病毒感染的疗效。
方法选取2020年1月—2021年1月江苏省盐城市妇幼保健院生殖健康科的60例宫颈炎合并高危型人乳头瘤病毒感染患者为研究对象,按治疗方法分为两组,以接受微波治疗的30例为对照组,并以联合干扰素阴道泡腾片治疗的30例为观察组,连续治疗3个月,8~12月后观察疗效及预后,对比治疗前后炎性因子水平、免疫功能和症状改善情况。
结果观察组的出血停止、阴道排液、创口恢复时间均显著短于对照组,差异有统计学意义(t= 12.983、41.196、6.788,P<0.05);两组炎性因子水平治疗后均下降,且观察组的炎性因子水平低于对照组,差异有统计学意义(P<0.05);观察组治疗后的免疫功能指标优于对照组,差异有统计学意义(P<0.05);观察组HPV转阴率(96.67%)及总有效率(93.33%)高于对照组、复发率(3.33%)及不良反应率(6.67%)低于对照组,差异有统计学意义(χ2=4.706、5.455、7.680、6.667,P<0.05)。
结论以干扰素阴道泡腾片联合微波治疗可以促使宫颈炎合并高危型人乳头瘤病毒感染者症状迅速改善,其抑制炎症反应、病毒清除更为彻底、提高免疫功能,整体疗效更为显著,后期少见复发及不良反应。
[关键词]干扰素阴道泡腾片;微波;宫颈炎;高危型人乳头瘤病毒感染[中图分类号]R711.32 [文献标识码]A [文章编号]1674-0742(2023)02(a)-0009-05Efficacy Analysis of Interferon Vaginal Effervescent Tablets Combined with Microwave in the Treatment of Cervicitis Complicated with High-risk Human Papillomavirus InfectionGU Xiaofang, WANG TiantianDepartment of Reproductive Health, Yancheng Maternal and Child Health Hospital, Yancheng, Jiangsu Province, 224000 China[Abstract] Objective To analyze the efficacy of interferon vaginal effervescent tablets combined with microwave therapy in the treatment of cervicitis complicated with high-risk human papillomavirus infection. Method A study was conducted on 60 patients with cervicitis complicated with high-risk human papillomavirus infection from the De⁃partment of Reproductive Health, Yancheng Maternal and Child Health Hospital in Jiangsu Province from January 2020 to January 2021. They were divided into two groups by the treatment method, with 30 patients receiving micro⁃wave treatment as the control group and 30 patients receiving combined interferon vaginal effervescent tablets as the observation group. The treatment lasted for 3 months, and the efficacy and prognosis were observed after 8-12 months, Compared the levels of inflammatory factors and immune function before and after treatment, and observed the im⁃provement of symptoms. Results The observation group showed significantly shorter bleeding cessation, vaginal dis⁃charge, and wound recovery times compared to the control group, the difference was statistically significant (t=12.983,[作者简介] 顾晓芳(1966-),女,本科,副主任医师,研究方向为妇女保健学方面。
基于跨理论模型(TTM)指导的康复护理干预在急性阑尾炎患者术后的应用效果
基于跨理论模型 (TTM)指导的康复护理干预在急性阑尾炎患者术后的应用效果【摘要】目的:研究对术后急性阑尾炎患者应用基于跨理论模型指导的康复护理干预的效果。
方法:选取2019年2月-2020年2月于我院接受急性阑尾炎手术的88例患者,所有患者均采用腹腔镜阑尾切除术,采用随机方式将患分为对照组(44例,采用常规护理干预)与观察组(44例,采用基于跨理论模型指导的康复护理干预),比较分析两组患者康复指标以及并发症发生状况。
结果:观察组下床活动时间、住院时间、肛门排气时间以及排便时间均显著短于对照组(P<0.05)。
观察组并发症发生率9.09%,显著低于对照组并发症发生率27.27%(P<0.05)。
结论:对术后急性阑尾炎患者应用基于跨理论模型指导的康复护理干预效果明显,可有效提高患者恢复速度,降低并发症发生几率,值得推广。
【关键词】跨理论模型;急性阑尾炎;康复护理干预;在普外科中,急性阑尾炎较为常见,具备发病快、疼痛剧烈等特征,严重影响患者生活质量。
目前临床上主要采用腹腔镜手术的治疗方式,此种方式具备术后易恢复、创伤小等优势。
但术后恢复期间,若缺乏有效的护理干预,易使患者引发并发症,影响患者的恢复效果[1]。
据部分研究表明,有效的护理干预可提升患者恢复速度。
跨理论模型对患者需求的满足以及行为变化过程更为关注,对患者健康行为养成起到积极作用,可提升护理服务质量。
本次研究对术后急性阑尾炎患者应用基于跨理论模型指导的康复护理干预的效果做对比分析。
1资料与方法1.1一般资料选取2019年2月-2020年2月于我院接受急性阑尾炎手术的88例患者,所有患者均采用腹腔镜阑尾切除术,采用随机方式将患分为对照组与观察组。
对照组男24例,女20例,年龄22-57岁,平均年龄(39.34±6.63)岁。
观察组男23例,女21例,年龄23-56岁,平均年龄(39.75±5.93)岁。
两组一般资料基本相同,不具备统计学意义(P>0.05)。
美国威莎显微消融
美国威莎显微消融术一、技术概述美国威莎显微消融术集微创整形手术、“三镜四维”技术、消融COS技术三大国际前沿技术于一体。
首先,利用国际微创整形技术,按照腋下皮纹走向,仅在腋下褶皱处,切3毫米的创口。
其次,采用“三镜四维”技术(0-2100倍成像自由缩放),对人体腋下组织进行定向探测,准确定位分离每一个病变大汗腺。
最后通过独创消融COS 技术,深入直达病变大汗腺组织层,将腋下异常大汗腺完全消融稀释后,将其稀释后排出体外,并不伤害其他正常组织。
手术中无任何痛苦,整个手术仅需15-30分钟,术后不留疤痕,自然美观,真正做到快速彻底、无痛无痕祛除狐臭。
二、三大技术相结合美国威莎显微消融术,是一种超微创手术,集结微创整形手术、“三镜四维”技术、消融COS技术三大国际前沿技术于一体。
其根据腋臭的发病原理以及传统技术的治疗难点,结合亚洲人人体结构研制而成,能够深入直达病变大汗腺组织层,迅速使病变细胞失去活性,全面彻底破坏大汗腺,从而达到15-30分钟彻底清除臭汗腺的作用。
微创整形技术 3毫米间的艺术传统的祛除腋臭手术切口大,愈合慢,需要住院,瘢痕明显,往往会在腋下留下一条明显的疤痕,甚至会影响肩部的活动。
而美国威莎技术利用的国际前沿微创整形手术,按照皮层“黄金分割”比例切2-3mm大小的微小创口,手术时间短,不影响肢体功能。
自由缩放技术 2100倍精确定位美国威莎技术特有的0-2100倍成像自由缩放技术,突破传统狐臭手术盲目切除造成的切除不彻底和损伤正常组织两大弊端。
该技术能对腋下组织进行定向探测,并可达到2100倍精确定位,可准确读取腋下大汗腺的分布和数量,能精确定位每一个病变大汗腺,不损伤其它正常组织。
消融COS技术 15-30分钟彻底根除狐臭独创消融COS技术,深入直达病变大汗腺组织层,将腋下异常大汗腺完全消融稀释后,将其稀释后排出体外,并不伤害其他正常组织。
手术中无任何痛苦,整个手术仅需15分钟,术后不留疤痕,自然美观,真正做到快速彻底、无痛无痕祛除狐臭。
简化麦吉尔疼痛评估表(SF-MPQ)的修改
简化麦吉尔疼痛评估表(SF-MPQ)的修改
背景
麦吉尔疼痛评估表(SF-MPQ)是一种常用于评估疼痛严重程度
和性质的工具。
然而,该评估表的使用可能存在一些问题,如长度
较长和较复杂的描述。
为了简化评估过程并提高评估表的易用性,
进行一些修改是必要的。
目标
本文档旨在提出简化麦吉尔疼痛评估表(SF-MPQ)的修改方案,以使其更易于理解和应用。
修改方案
以下是对麦吉尔疼痛评估表(SF-MPQ)的修改建议:
1. 缩减表格长度:减少描述疼痛的条目数量,只保留最具代表
性的项目。
这有助于减少填写时间和阅读负担。
2. 简化描述语言:使用简明扼要的语言描述疼痛的性质和严重
程度。
避免使用复杂的词汇和术语,确保评估结果易于理解。
3. 提供具体参考:针对不同类型的疼痛,提供具体的参考标准和示例,以便受评者更好地理解和选择适用项目。
4. 增加自评项:为了提高评估表的实用性,可以增加一些自评项,让受评者自行判断自身疼痛的性质和严重程度。
实施和评估
对于修改后的麦吉尔疼痛评估表(SF-MPQ),进行实施前可以进行小规模的试用,以评估其易用性和有效性。
根据试用结果,进行必要的调整和改进。
结论
通过对麦吉尔疼痛评估表(SF-MPQ)的修改,我们可以简化该评估工具,使其更易于使用和理解。
在实施前进行试用和评估,可以确保修改后的评估表的可行性和有效性。
神经外科5本杂志目录 英文-中文 2022年10月
神外杂志英-中文目录(2022年10月) Neurosurgery1.Assessment of Spinal Metastases Surgery Risk Stratification Tools in BreastCancer by Molecular Subtype按照分子亚型评估乳腺癌脊柱转移手术风险分层工具2.Microsurgery versus Microsurgery With Preoperative Embolization for BrainArteriovenous Malformation Treatment: A Systematic Review and Meta-analysis 显微手术与显微手术联合术前栓塞治疗脑动静脉畸形的系统评价和荟萃分析mentary: Silk Vista Baby for the Treatment of Complex Posterior InferiorCerebellar Artery Aneurysms点评: Silk Vista Baby用于治疗复杂的小脑下后动脉动脉瘤4.Targeted Public Health Training for Neurosurgeons: An Essential Task for thePrioritization of Neurosurgery in the Evolving Global Health Landscape针对神经外科医生的有针对性的公共卫生培训:在不断变化的全球卫生格局中确定神经外科手术优先顺序的一项重要任务5.Chronic Encapsulated Expanding Hematomas After Stereotactic Radiosurgery forIntracranial Arteriovenous Malformations: An International Multicenter Case Series立体定向放射外科治疗颅内动静脉畸形后的慢性包裹性扩张血肿:国际多中心病例系列6.Trends in Reimbursement and Approach Selection for Lumbar Arthrodesis腰椎融合术的费用报销和入路选择趋势7.Diffusion Basis Spectrum Imaging Provides Insights Into Cervical SpondyloticMyelopathy Pathology扩散基础频谱成像提供了脊髓型颈椎病病理学的见解8.Association Between Neighborhood-Level Socioeconomic Disadvantage andPatient-Reported Outcomes in Lumbar Spine Surgery邻域水平的社会经济劣势与腰椎手术患者报告结果之间的关系mentary: Prognostic Models for Traumatic Brain Injury Have GoodDiscrimination But Poor Overall Model Performance for Predicting Mortality and Unfavorable Outcomes评论:创伤性脑损伤的预后模型在预测death率和不良结局方面具有良好的区分性,但总体模型性能较差mentary: Serum Levels of Myo-inositol Predicts Clinical Outcome 1 YearAfter Aneurysmal Subarachnoid Hemorrhage评论:血清肌醇水平预测动脉瘤性蛛网膜下腔出血1年后的临床结局mentary: Laser Interstitial Thermal Therapy for First-Line Treatment ofSurgically Accessible Recurrent Glioblastoma: Outcomes Compared With a Surgical Cohort评论:激光间质热疗用于手术可及复发性胶质母细胞瘤的一线治疗:与手术队列的结果比较12.Functional Reorganization of the Mesial Frontal Premotor Cortex in Patients WithSupplementary Motor Area Seizures辅助性运动区癫痫患者中额内侧运动前皮质的功能重组13.Concurrent Administration of Immune Checkpoint Inhibitors and StereotacticRadiosurgery Is Well-Tolerated in Patients With Melanoma Brain Metastases: An International Multicenter Study of 203 Patients免疫检查点抑制剂联合立体定向放射外科治疗对黑色素瘤脑转移患者的耐受性良好:一项针对203例患者的国际多中心研究14.Prognosis of Rotational Angiography-Based Stereotactic Radiosurgery for DuralArteriovenous Fistulas: A Retrospective Analysis基于旋转血管造影术的立体定向放射外科治疗硬脑膜动静脉瘘的预后:回顾性分析15.Letter: Development and Internal Validation of the ARISE Prediction Models forRebleeding After Aneurysmal Subarachnoid Hemorrhage信件:动脉瘤性蛛网膜下腔出血后再出血的ARISE预测模型的开发和内部验证16.Development of Risk Stratification Predictive Models for Cervical DeformitySurgery颈椎畸形手术风险分层预测模型的建立17.First-Pass Effect Predicts Clinical Outcome and Infarct Growth AfterThrombectomy for Distal Medium Vessel Occlusions首过效应预测远端中血管闭塞血栓切除术后的临床结局和梗死生长mentary: Risk for Hemorrhage the First 2 Years After Gamma Knife Surgeryfor Arteriovenous Malformations: An Update评论:动静脉畸形伽玛刀手术后前2年出血风险:更新19.A Systematic Review of Neuropsychological Outcomes After Treatment ofIntracranial Aneurysms颅内动脉瘤治疗后神经心理结局的系统评价20.Does a Screening Trial for Spinal Cord Stimulation in Patients With Chronic Painof Neuropathic Origin Have Clinical Utility (TRIAL-STIM)? 36-Month Results From a Randomized Controlled Trial神经性慢性疼痛患者脊髓刺激筛选试验是否具有临床实用性(TRIAL-STIM)?一项随机对照试验的36个月结果21.Letter: Transcriptomic Profiling Revealed Lnc-GOLGA6A-1 as a NovelPrognostic Biomarker of Meningioma Recurrence信件:转录组分析显示Lnc-GOLGA6A-1是脑膜瘤复发的一种新的预后生物标志物mentary: The Impact of Frailty on Traumatic Brain Injury Outcomes: AnAnalysis of 691 821 Nationwide Cases评论:虚弱对创伤性脑损伤结局的影响:全国691821例病例分析23.Optimal Cost-Effective Screening Strategy for Unruptured Intracranial Aneurysmsin Female Smokers女性吸烟者中未破裂颅内动脉瘤的最佳成本效益筛查策略24.Letter: Pressure to Publish—A Precarious Precedent Among Medical Students信件:出版压力——医学研究者中一个不稳定的先例25.Letter: Protocol for a Multicenter, Prospective, Observational Pilot Study on theImplementation of Resource-Stratified Algorithms for the Treatment of SevereTraumatic Brain Injury Across Four Treatment Phases: Prehospital, Emergency Department, Neurosurgery, and Intensive Care Unit信件:一项跨四个治疗阶段(院前、急诊科、神经外科和重症监护室)实施资源分层算法的多中心、前瞻性、观察性试点研究的协议26.Risk for Hemorrhage the First 2 Years After Gamma Knife Surgery forArteriovenous Malformations: An Update动静脉畸形伽玛刀手术后前2年出血风险:更新Journal of Neurosurgery27.Association of homotopic areas in the right hemisphere with language deficits inthe short term after tumor resection肿瘤切除术后短期内右半球同话题区与语言缺陷的关系28.Association of preoperative glucose concentration with mortality in patientsundergoing craniotomy for brain tumor脑肿瘤开颅手术患者术前血糖浓度与death率的关系29.Deep brain stimulation for movement disorders after stroke: a systematic review ofthe literature脑深部电刺激治疗脑卒中后运动障碍的系统评价30.Effectiveness of immune checkpoint inhibitors in combination with stereotacticradiosurgery for patients with brain metastases from renal cell carcinoma: inverse probability of treatment weighting using propensity scores免疫检查点抑制剂联合立体定向放射外科治疗肾细胞癌脑转移患者的有效性:使用倾向评分进行治疗加权的反向概率31.Endovascular treatment of brain arteriovenous malformations: clinical outcomesof patients included in the registry of a pragmatic randomized trial脑动静脉畸形的血管内治疗:纳入实用随机试验登记处的患者的临床结果32.Feasibility of bevacizumab-IRDye800CW as a tracer for fluorescence-guidedmeningioma surgery贝伐单抗- IRDye800CW作为荧光导向脑膜瘤手术示踪剂的可行性33.Precuneal gliomas promote behaviorally relevant remodeling of the functionalconnectome前神经胶质瘤促进功能性连接体的行为相关重塑34.Pursuing perfect 2D and 3D photography in neuroanatomy: a new paradigm forstaying up to date with digital technology在神经解剖学中追求完美的2D和三维摄影:跟上数字技术的新范式35.Recurrent insular low-grade gliomas: factors guiding the decision to reoperate复发性岛叶低级别胶质瘤:决定再次手术的指导因素36.Relationship between phenotypic features in Loeys-Dietz syndrome and thepresence of intracranial aneurysmsLoeys-Dietz综合征的表型特征与颅内动脉瘤存在的关系37.Continued underrepresentation of historically excluded groups in the neurosurgerypipeline: an analysis of racial and ethnic trends across stages of medical training from 2012 to 2020神经外科管道中历史上被排除群体的代表性持续不足:2012年至2020年不同医学培训阶段的种族和族裔趋势分析38.Management strategies in clival and craniovertebral junction chordomas: a 29-yearexperience斜坡和颅椎交界脊索瘤的治疗策略:29年经验39.A national stratification of the global macroeconomic burden of central nervoussystem cancer中枢神经系统癌症全球宏观经济负担的国家分层40.Phase II trial of icotinib in adult patients with neurofibromatosis type 2 andprogressive vestibular schwannoma在患有2型神经纤维瘤病和进行性前庭神经鞘瘤的成人患者中进行的盐酸埃克替尼II期试验41.Predicting leptomeningeal disease spread after resection of brain metastases usingmachine learning用机器学习预测脑转移瘤切除术后软脑膜疾病的扩散42.Short- and long-term outcomes of moyamoya patients post-revascularization烟雾病患者血运重建后的短期和长期结局43.Alteration of default mode network: association with executive dysfunction infrontal glioma patients默认模式网络的改变:与额叶胶质瘤患者执行功能障碍的相关性44.Correlation between tumor volume and serum prolactin and its effect on surgicaloutcomes in a cohort of 219 prolactinoma patients219例泌乳素瘤患者的肿瘤体积与血清催乳素的相关性及其对手术结果的影响45.Is intracranial electroencephalography mandatory for MRI-negative neocorticalepilepsy surgery?对于MRI阴性的新皮质癫痫手术,是否必须进行颅内脑电图检查?46.Neurosurgeons as complete stroke doctors: the time is now神经外科医生作为完全中风的医生:时间是现在47.Seizure outcome after resection of insular glioma: a systematic review, meta-analysis, and institutional experience岛叶胶质瘤切除术后癫痫发作结局:一项系统综述、荟萃分析和机构经验48.Surgery for glioblastomas in the elderly: an Association des Neuro-oncologuesd’Expression Française (ANOCEF) trial老年人成胶质细胞瘤的手术治疗:法国神经肿瘤学与表达协会(ANOCEF)试验49.Surgical instruments and catheter damage during ventriculoperitoneal shuntassembly脑室腹腔分流术装配过程中的手术器械和导管损坏50.Cost-effectiveness analysis on small (< 5 mm) unruptured intracranial aneurysmfollow-up strategies较小(< 5 mm)未破裂颅内动脉瘤随访策略的成本-效果分析51.Evaluating syntactic comprehension during awake intraoperative corticalstimulation mapping清醒术中皮质刺激标测时句法理解能力的评估52.Factors associated with radiation toxicity and long-term tumor control more than10 years after Gamma Knife surgery for non–skull base, nonperioptic benignsupratentorial meningiomas非颅底、非周期性良性幕上脑膜瘤伽玛刀术后10年以上与放射毒性和长期肿瘤控制相关的因素53.Multidisciplinary management of patients with non–small cell lung cancer withleptomeningeal metastasis in the tyrosine kinase inhibitor era酪氨酸激酶抑制剂时代有软脑膜转移的非小细胞肺癌患者的多学科管理54.Predicting the growth of middle cerebral artery bifurcation aneurysms usingdifferences in the bifurcation angle and inflow coefficient利用分叉角和流入系数的差异预测大脑中动脉分叉动脉瘤的生长55.Predictors of surgical site infection in glioblastoma patients undergoing craniotomyfor tumor resection胶质母细胞瘤患者行开颅手术切除肿瘤时手术部位感染的预测因素56.Stereotactic radiosurgery for orbital cavernous hemangiomas立体定向放射外科治疗眼眶海绵状血管瘤57.Surgical management of large cerebellopontine angle meningiomas: long-termresults of a less aggressive resection strategy大型桥小脑角脑膜瘤的手术治疗:较小侵袭性切除策略的长期结果Journal of Neurosurgery: Case Lessons58.5-ALA fluorescence–guided resection of a recurrent anaplastic pleomorphicxanthoastrocytoma: illustrative case5-ALA荧光引导下切除复发性间变性多形性黄色星形细胞瘤:说明性病例59.Flossing technique for endovascular repair of a penetrating cerebrovascular injury:illustrative case牙线技术用于血管内修复穿透性脑血管损伤:例证性病例60.Nerve transfers in a patient with asymmetrical neurological deficit followingtraumatic cervical spinal cord injury: simultaneous bilateral restoration of pinch grip and elbow extension. Illustrative case创伤性颈脊髓损伤后不对称神经功能缺损患者的神经转移:同时双侧恢复捏手和肘关节伸展。
开启片剂完整性的窗户(中英文对照)
开启片剂完整性的窗户日本东芝公司,剑桥大学摘要:由日本东芝公司和剑桥大学合作成立的公司向《医药技术》解释了FDA支持的技术如何在不损坏片剂的情况下测定其完整性。
太赫脉冲成像的一个应用是检查肠溶制剂的完整性,以确保它们在到达肠溶之前不会溶解。
关键词:片剂完整性,太赫脉冲成像。
能够检测片剂的结构完整性和化学成分而无需将它们打碎的一种技术,已经通过了概念验证阶段,正在进行法规申请。
由英国私募Teraview公司研发并且以太赫光(介于无线电波和光波之间)为基础。
该成像技术为配方研发和质量控制中的湿溶出试验提供了一个更好的选择。
该技术还可以缩短新产品的研发时间,并且根据厂商的情况,随时间推移甚至可能发展成为一个用于制药生产线的实时片剂检测系统。
TPI技术通过发射太赫射线绘制出片剂和涂层厚度的三维差异图谱,在有结构或化学变化时太赫射线被反射回。
反射脉冲的时间延迟累加成该片剂的三维图像。
该系统使用太赫发射极,采用一个机器臂捡起片剂并且使其通过太赫光束,用一个扫描仪收集反射光并且建成三维图像(见图)。
技术研发太赫技术发源于二十世纪九十年代中期13本东芝公司位于英国的东芝欧洲研究中心,该中心与剑桥大学的物理学系有着密切的联系。
日本东芝公司当时正在研究新一代的半导体,研究的副产品是发现了这些半导体实际上是太赫光非常好的发射源和检测器。
二十世纪九十年代后期,日本东芝公司授权研究小组寻求该技术可能的应用,包括成像和化学传感光谱学,并与葛兰素史克和辉瑞以及其它公司建立了关系,以探讨其在制药业的应用。
虽然早期的结果表明该技术有前景,但日本东芝公司却不愿深入研究下去,原因是此应用与日本东芝公司在消费电子行业的任何业务兴趣都没有交叉。
这一决定的结果是研究中心的首席执行官DonArnone和剑桥桥大学物理学系的教授Michael Pepper先生于2001年成立了Teraview公司一作为研究中心的子公司。
TPI imaga 2000是第一个商品化太赫成像系统,该系统经优化用于成品片剂及其核心完整性和性能的无破坏检测。
浙江大学研究人员综述:干细胞衍生的外泌体用于治疗年龄相关的肌肉骨骼疾病
浙江大学研究人员综述:干细胞衍生的外泌体用于治疗年龄相关的肌肉骨骼疾病外泌体学习班终于来啦,详情猛戳上图年龄相关的肌肉骨骼疾病一直被主流的生物制药研究人员所忽视。
而事实上干细胞赋予肌肉骨骼系统固有的治愈能力,其中外泌体通过介导细胞之间的相互作用从而增强这种治愈再生能力。
目前的审查集中在干细胞(干细胞)衍生的外来体作为治疗肌肉骨骼疾病的再生疗法。
来自浙江大学爱丁堡大学联合学院欧阳宏伟课题组的研究人员发表综述,对干细胞衍生的外泌体作为治疗年龄相关的肌肉骨骼疾病的再生疗法的可行性进行了描述。
内容主要涉及外泌体介导的RNA转移的机制、如何在体外和体内证明这些机制影响靶细胞中的信号转导途径、用于干细胞培养以及外泌体的分离和表征的标准化流程以及GMP 兼容的干细胞衍生外泌体大规模生产等。
该综述发表于Biomaterials 杂志上(IF=10.273)。
年龄相关的肌肉骨骼疾病(Age-related musculoskeletal disorders,MSD)的特征是肌肉力量丧失、骨骼脆弱性增加、软骨弹性丧失、韧带弹性降低和脂肪重新分布。
传统药物在初级治疗中效果较好,但长期使用可能会产生其他不良影响。
例如,睾丸激素治疗与年龄有关的肌肉减少症会增加罹患心血管疾病和前列腺癌的风险,而用于治疗骨质疏松症的双膦酸盐则会增加颌骨坏死的发生率。
此外,目前的骨关节炎(osteoarthritis,OA)治疗(如对乙酰氨基酚和可的松注射液)不足以阻止关节损伤。
值得注意的是,传统药物也无法恢复受损的骨骼肌肉系统的正常结构和功能。
干细胞(Stem cells,SCs)治疗可能是一种有前途的替代方法。
在过去的十年中,干细胞技术在几乎所有领域都取得了巨大进步。
这其中包括有效的生物制造技术,范围涵盖了优化的制药级培养技术以及全自动、封闭和集成的生物反应器技术。
我们还已经实现在控制微环境方面的巨大进步,可将干细胞分化为具有精确身份和细胞功能的所需细胞类型。
《全身PETCT临床应用探索》随笔
《全身PETCT临床应用探索》阅读札记目录一、内容描述 (3)1.1 PETCT技术简介 (3)1.1.1 PETCT的定义 (5)1.1.2 PETCT的工作原理 (6)1.1.3 PETCT的优势与局限性 (7)1.2 全身PETCT在临床上的重要性 (9)1.2.1 肿瘤的早期诊断与分期 (10)1.2.2 疾病进展与疗效评估 (11)1.2.3 分子影像学研究的新方向 (12)二、全身PETCT临床应用概述 (13)2.1 肺部疾病 (15)2.1.1 肺癌的早期诊断与分期 (16)2.1.2 肺部感染的诊断与监测 (17)2.1.3 肺栓塞的诊断与治疗评估 (19)2.2 肝脏疾病 (20)2.2.1 肝癌的早期诊断与分期 (21)2.2.2 肝硬化与肝癌的疗效评估 (22)2.2.3 肝脏疾病的分子影像学研究 (22)2.3 胰腺疾病 (24)2.3.1 胰腺癌的早期诊断与分期 (25)2.3.2 糖尿病的早期诊断与疗效评估 (25)2.3.3 胰腺炎的诊断与监测 (26)2.4 骨骼系统疾病 (28)2.4.1 骨折的诊断与愈合监测 (29)2.4.2 骨肿瘤的早期诊断与分期 (30)2.4.3 骨质疏松的诊断与治疗评估 (31)三、全身PETCT在特定疾病中的应用案例 (32)四、全身PETCT技术的挑战与未来展望 (33)4.1 技术挑战 (35)4.1.1 图像质量与分辨率的提升 (36)4.1.2 计算机图像重建与处理的优化 (37)4.1.3 安全性与可靠性的保障 (38)4.2 临床应用展望 (40)4.2.1 个性化医疗的需求与挑战 (41)4.2.2 多模态影像融合技术的发展 (43)4.2.3 人工智能在PETCT诊断中的应用前景 (44)五、结论 (45)5.1 全身PETCT在临床上的重要地位 (46)5.2 对未来发展的展望与期许 (48)一、内容描述《全身PETCT临床应用探索》是一本关于全身PETCT技术的专业书籍,旨在全面介绍PETCT技术的基本原理、临床应用、影像学表现、诊断方法以及治疗策略等方面的内容。
可穿戴柔性上肢外骨骼的研究进展与展望
可穿戴柔性上肢外骨骼的研究进展与展望目录一、内容概要 (2)1.1 研究背景 (2)1.2 外骨骼的定义与发展历程 (4)1.3 可穿戴柔性上肢外骨骼的研究意义 (5)二、可穿戴柔性上肢外骨骼的技术原理 (6)2.1 柔性材料的选择与应用 (8)2.2 传感器技术与信号处理 (9)2.3 控制系统与算法设计 (10)2.4 结构设计与优化 (11)三、可穿戴柔性上肢外骨骼的系统集成 (12)3.1 硬件系统的集成 (14)3.2 软件系统的开发 (15)3.3 系统的测试与评估 (16)四、可穿戴柔性上肢外骨骼的应用领域 (18)4.1 医疗康复 (19)4.2 工业制造 (20)4.3 军事领域 (21)4.4 娱乐与休闲 (23)五、研究进展与案例分析 (24)5.1 国内外研究现状对比 (25)5.2 典型的可穿戴柔性上肢外骨骼项目分析 (27)5.3 技术创新与突破 (29)六、面临的挑战与未来发展方向 (30)6.1 技术难题与解决方案 (32)6.2 行业发展趋势 (33)6.3 政策支持与产业合作 (34)七、结论与展望 (36)7.1 研究成果总结 (37)7.2 对未来研究的建议 (38)7.3 对产业应用的展望 (39)一、内容概要随着科技的飞速发展,可穿戴柔性上肢外骨骼作为人机交互领域的新兴技术,正逐渐受到广泛关注。
本文旨在综述近年来可穿戴柔性上肢外骨骼的研究进展,并对其未来发展趋势进行展望。
在研究进展方面,本文首先介绍了可穿戴柔性上肢外骨骼的基本概念和工作原理。
重点分析了其在康复治疗、助力机械、航空航天等领域的应用案例及优势。
通过对比不同类型的柔性材料、驱动方式和控制策略,展示了当前研究的多样性和创新性。
在展望部分,本文提出了可穿戴柔性上肢外骨骼的未来发展方向和挑战。
包括进一步提高设备的舒适性、减轻重量以降低能耗、增强智能化水平以实现更精确的控制等。
探讨了如何解决目前面临的成本高昂、技术成熟度不足等问题,以推动该技术的商业化进程。
达格列净在2_型糖尿病合并慢性肾脏病中的应用效果
达格列净在2型糖尿病合并慢性肾脏病中的应用效果戴彧君① 曹芳① 吉惠① 佘艳军① 【摘要】 目的:探讨达格列净在2型糖尿病合并慢性肾脏病中的治疗效果。
方法:选取2021年1月—2022年1月云南省滇南中心医院收治的106例2型糖尿病合并慢性肾脏病患者,使用随机数字表法将其分为观察组(n=53)及对照组(n=53)。
对照组接受氯沙坦治疗,观察组在对照组基础上加用达格列净。
对比两组治疗总有效率、肾功能指标、血糖水平及血管内皮功能指标。
结果:观察组的治疗总有效率(94.34%)高于对照组(81.13%)(P<0.05)。
治疗前,两组的血尿素氮(BUN)、血清肌酐(Scr)、尿白蛋白排泄率(UAER)、肾小球滤过率(GFR)及肌酐清除率(Ccr)水平比较,差异均无统计学意义(P>0.05);治疗后,两组的BUN、Scr及24 h UAER较治疗前均降低,且观察组均低于对照组(P<0.05);GFR及Ccr较治疗前均升高,且观察组均高于对照组(P<0.05)。
治疗前,两组的空腹血糖(FPG)、餐后2 h血糖(2 h PG)、糖化血红蛋白(HbA1c)、血管紧张素Ⅱ(AngⅡ)、血管内皮生长因子(VEGF)、内皮素-1(ET-1)水平相比,差异均无统计学意义(P>0.05);治疗后,两组的上述指标较治疗前均降低,且观察组均低于对照组(P<0.05)。
结论:达格列净联合氯沙坦可显著改善2型糖尿病合并慢性肾脏病患者的肾功能、降低血糖水平,优化血管内皮功能,效果显著。
【关键词】 2型糖尿病合并慢性肾脏病 氯沙坦 达格列净 肾功能 Application Effect of Dapagflozin in Type 2 Diabetes Mellitus Complicated with Chronic KidneyDisease/DAI Yujun, CAO Fang, JI Hui, SHE Yanjun. //Medical Innovation of China, 2023, 20(33): 025-029 [Abstract] Objective: To investigate the therapeutic effect of Dapagflozin in type 2 diabetes mellituscomplicated with chronic kidney disease. Method: A total of one hundred and six patients with type 2 diabetesmellitus complicated with chronic kidney disease admitted to Southern Central Hospital of Yunnan Province fromJanuary 2021 to January 2022 were selected, and divided into observation group (n=53) and control group (n=53)using the random number table method. The control group was treated with Losartan, and the observation groupwas treated with Dapagflozin on the basis of the control group. The total effective rate of treatment, renal functionindicators , blood glucose level and vascular endothelial function indicators of the two groups were compared.Result: The total effective rate of treatment in the observation group (94.34%) was higher than that in the controlgroup (81.13%) (P<0.05). Before treatment, the levels of blood urea nitrogen (BUN), serum creatinine (Scr), urinaryalbumin excretion rate (UAER), glomerular filtration rate (GFR) and creatinine clearance rate (Ccr) were notsignificantly different between the two groups (P>0.05); after treatment, BUN, Scr and 24 h UAER in both groupswere decreased compared with those before treatment, and those in the observation group were lower than those inthe control group (P<0.05), the GFR and Ccr were both increased compared with those before treatment, and thosein the observation group were higher than those in the control group (P<0.05). Before treatment, the levels of fastingplasma glucose (FPG), 2 h postprandial blood glucose (2 h PG), glycosylated haemoglobin (HbA1c), angiotensinⅡ(AngⅡ), vascular endothelial growth factor (VEGF) and endothelin-1 (ET-1) were not significantly differentbetween the two groups (P>0.05); after treatment, all above indicators in both groups were reduced compared withthose before treatment, and those in the observation group were lower than those in the control group (P<0.05).Conclusion: Dapagflozin combined with losartan can significantly improve renal function, reduce blood glucoselevels and optimize vascular endothelial function in patients with type 2 diabetes mellitus complicated with chronickidney disease, with significant effects.①云南省滇南中心医院(云南省红河州第一人民医院) 云南 蒙自 661100通信作者:佘艳军- 25 - 糖尿病是临床常见的慢性疾病,其中2型糖尿病是其主要类型。
当前七大非手术医学美容技术热点
当前七大非手术医学美容技术热点创伤更小、康复时间更短,但疗效不减—这是消费者和医生对美容技术发展的共同诉求,同时也是当前医学美容产品创新的大势所向。
点阵激光烧蚀(fractional ablative)相比传统激光剥脱治疗,点阵激光换肤(fractional resurfacing)技术的最大优势在于康复时间短。
据美国激光医学与外科学会(ASLMS)主席Brian Biesman M.D.介绍,目前的点阵式激光所采用的光源主要有CO2和铒激光两类。
Dr. Biesman将点阵激光作用方式则分为“点阵剥脱式(fractional ablative)”和“点阵凝结式(fractional coagulative)”两类,他认为:“点阵烧蚀性激光设备对较严重的光损伤和痤疮疤痕有显著疗效,而且比传统凝结式设备所需治疗次数少,但康复时间稍长。
”Reliant公司(被Thermage公司收购后,更名为Thermage)是点阵式激光市场的最著名厂商之一,也可以说是点阵式美容激光技术的创先者,其Fraxel re:pair系统是点阵剥脱性激光设备的代表作之一。
美国面部整形与重建外科学会(AAFPRS)主席Vito C. Quatela, M.D.则认为,点阵烧蚀激光才是真正有效的点阵激光技术,其兴起很可能终结效果平平的传统点阵换肤技术。
非侵入性身体塑形尽管最新的非侵入式身体塑形(noninvasive body contouring)技术目前还未获得FDA 认证,但前景光明。
据Dr. Biesman介绍,Zeltiq Aesthetics公司的专利技术Cryolipolysis(采用精准控制冷却方式去除脂肪)是目前领先的非侵入式塑身技术之一,该技术曾在2008年ASLMS年会上展示。
关于另一项非侵入式塑身技术—高强度聚焦超声(high-intensity focused ultrasound, HIFU),Dr. Biesman介绍说:“这是一种经皮渗透式消脂和溶脂技术,目前有几家公司正在开发这项技术,其中一家领先公司是最近刚被Medicis公司收购的Liposonix。
热玛吉治疗优势
高频高能的能量传导一 次治疗相比其他仪器的 七、八次效果。实现肤 质改善、面部提拉、眼 部提拉等效果。
独家使用框格药贴纸,精确定位 发射治疗均衡波长能量,防止遗 漏、能量不均等情况,激活全脸 每个角落的生长因子,让胶原蛋 白同步被激发,焕发肌肤全方位 的青春活力。
不需要手术或者注射, 是一种非侵入性的光能 治疗,无创高效,抚平 肌肤,雕塑脸部条线, 效果可媲美手术拉皮。
热玛吉治疗优势
5Leabharlann 67配备冷却系统,镇定肌肤。当射频热 能递减到最低点的同时可以感受到温 度给皮肤带来的能量注入,又能感受 到肌肤表面有沁凉感觉。既能促使其 立即性收缩,逐渐拉紧皮肤,又能防 护皮肤表层,不损伤皮肤。
长效紧致,效果保持高达5年以上: 一次治疗,既可以让皮肤深层胶原蛋 白持续生长期高达一年,半年内是最 高峰的生长期,生长能力被大量激发, 效果持久,最高可达5年以上。
随做随走,不影响工作:治疗时间 短,大概40分钟即可完成治疗,且 治疗无需恢复期。做完即走,不影 响生活、工作,是国际最高端权威 的抗衰老系统。
3 Part Two 结语
结语
年轻是每个人的梦想,特别是 随着岁月的流逝,这样的愿望 也会越来越强烈。这样的时候, 热玛吉和热拉提就是很好的选 择,有需求的也一定要到正规 的医院、让经验丰富的医生为 你提供治疗。否则因操作不当 导致烫伤、留疤就得不偿失!
塑美极&热玛吉
治疗优势
余铁江
2020.6.6
1
Part One
热玛吉概述
Thermage就是大家经常听到的 热玛吉,也叫塑美极。
热玛吉是什么东西?
Thermage就是大家经常听到的热玛吉,也叫塑美极。是现在皮肤紧致提拉的当红小生。是全 球唯一一项能够通过一次治疗即达到显著提拉、紧肤、除皱效果,并可达到持续数年延缓衰老 重返青春的神奇效果美容术。热玛吉与热拉提协同作战,可以让铁粉真的达到“冻龄”的效果。
2024年外科手术新技术英文版
2024年外科手术新技术英文版Title: New Surgical Technologies in 2024In the year 2024, advancements in the field of surgery have brought about a wave of new technologies that are revolutionizing the way operations are performed. These cutting-edge tools and techniques are enhancing precision, reducing recovery times, and improving patient outcomes.One of the most significant developments in 2024 is the introduction of robotic-assisted surgery. Robots equipped with advanced sensors and cameras are now able to assist surgeons in performing procedures with unparalleled accuracy. This technology allows for smaller incisions, reduced blood loss, and faster healing times.Another breakthrough in surgical technology is the use of 3D printing for creating personalized implants and prosthetics. Surgeons can now design and fabricate custom-made implants that perfectly fit each patient's unique anatomy. This innovation has greatly improved thesuccess rates of surgeries and has led to better long-term outcomes for patients.Furthermore, the integration of virtual reality (VR) and augmented reality (AR) into surgical procedures has provided surgeons with real-time, 3D visualization of the patient's anatomy. This technology allows for more precise navigation during complex surgeries, leading to fewer complications and improved patient safety.In addition, the development of smart surgical instruments embedded with sensors and artificial intelligence (AI) capabilities has enabled surgeons to monitor vital signs and receive real-time feedback during procedures. These smart tools help surgeons make informed decisions and adjust their techniques for optimal results.Overall, the new surgical technologies introduced in 2024 have transformed the landscape of modern medicine. Surgeons now have access to tools and techniques that were once considered science fiction, allowing them to provide safer, more effective treatments for their patients.。
《2024年髋部骨折患者应用髂筋膜阻滞术前镇痛效果的Meta分析》范文
《髋部骨折患者应用髂筋膜阻滞术前镇痛效果的Meta分析》篇一一、引言髋部骨折是一种常见的骨科疾病,患者常伴随着剧烈的疼痛,对生活质量产生严重影响。
近年来,髂筋膜阻滞作为一种新型的镇痛方法,被广泛应用于髋部骨折患者的术前镇痛。
然而,关于其镇痛效果的研究尚存在争议。
因此,本文通过Meta分析的方法,对髋部骨折患者应用髂筋膜阻滞术前镇痛效果进行综合评价,以期为临床实践提供参考依据。
二、方法1. 文献检索本研究通过计算机检索PubMed、Cochrane图书馆、CNKI等数据库,收集关于髋部骨折患者应用髂筋膜阻滞术前镇痛效果的文献。
检索时间范围为建库至2023年。
2. 文献筛选与纳入标准纳入标准包括:髋部骨折患者;采用髂筋膜阻滞作为术前镇痛方法;具有对照组(非髂筋膜阻滞组);研究设计为随机对照试验或前瞻性研究。
排除标准为非英文或中文文献、重复发表的文献、非髋部骨折患者等。
3. 数据提取与质量评估从纳入的文献中提取患者基本信息、研究设计、干预措施、镇痛效果等相关数据。
采用Cochrane协作网风险偏倚评估工具对纳入研究的质量进行评估。
4. Meta分析方法采用RevMan 5.3软件进行Meta分析。
对各研究结果进行异质性检验,若异质性较大,则采用随机效应模型;若异质性较小,则采用固定效应模型。
对髂筋膜阻滞术前镇痛效果进行合并效应量分析,并计算95%置信区间(CI)。
三、结果1. 文献检索与筛选经过计算机检索和人工筛选,共纳入12篇文献,涉及960例髋部骨折患者。
其中,6篇为随机对照试验,6篇为前瞻性研究。
2. 纳入研究的基本信息与质量评估纳入研究的基本信息详见下表(略)。
经Cochrane协作网风险偏倚评估工具评估,大部分研究质量较高,偏倚风险较低。
3. Meta分析结果髂筋膜阻滞术前镇痛效果显著优于非髂筋膜阻滞组(OR=3.46,95%CI:2.58-4.64)。
各研究间异质性较小,采用固定效应模型进行分析。
md asa面部评估5大模块要点
md asa面部评估5大模块要点1. 面部皮肤评估面部皮肤评估是ASA(美容外科麻醉学会)中的一个重要模块,用于评估患者的面部皮肤状况。
以下是面部皮肤评估的要点:•观察患者的面部皮肤颜色,应该是均匀的、健康的肤色。
注意是否有任何异常颜色或斑点。
•检查患者的面部皮肤质地,应该是光滑柔软的。
注意是否有任何粗糙、干燥或油腻的感觉。
•注意患者是否有任何面部皮肤问题,如痘痘、黑头、粉刺等。
这些问题可能需要在手术前进行治疗。
•检查患者是否有任何面部皱纹或松弛。
这些问题可能需要进行整形手术来改善。
2. 面部骨骼结构评估面部骨骼结构评估是ASA中另一个重要模块,用于评估患者的面部骨骼结构情况。
以下是面部骨骼结构评估的要点:•检查患者的面部轮廓线,应该是对称的。
注意是否有任何不对称或突出的地方。
•注意患者的下颌骨和上颌骨的发育情况。
这些骨骼结构的不正常发育可能需要进行矫正手术。
•检查患者的牙齿排列情况,应该是整齐且对称的。
注意是否有任何牙齿缺失或错位。
3. 面部软组织评估面部软组织评估是ASA中另一个重要模块,用于评估患者面部软组织情况。
以下是面部软组织评估的要点:•观察患者面部软组织的厚度和弹性。
注意是否有任何厚度不均匀或松弛现象。
•检查患者面部脂肪分布情况。
注意是否有任何凸起或凹陷区域。
•注意患者面部肌肉张力,应该是适当紧张而不过紧或过松。
•检查患者面部软组织对手指压力的反应。
应该有适当的弹性和回弹性。
4. 面部血管和神经评估面部血管和神经评估是ASA中的另一个重要模块,用于评估患者面部血管和神经情况。
以下是面部血管和神经评估的要点:•检查患者面部血管的通畅性。
注意是否有任何明显可见的血管扩张或狭窄。
•注意患者面部神经的功能。
可以通过观察患者表情和感觉反应来评估。
•检查患者面部有无麻木或刺痛感。
这可能是面部神经受损的迹象。
5. 面部特殊结构评估面部特殊结构评估是ASA中最后一个重要模块,用于评估患者面部特殊结构情况。
ansys高斯热源施加
!平板对接开v型坡口多道焊成型(温度场) !采用guass表面热源finish/clear,nostart/filname,1.11thermal_analysis/title,3D_weld_thermal_analysis/units,si!定义国际制单位/prep7!**************************************************!定义焊接尺寸及焊接参数!**************************************************!******************************************构件尺寸len=100e-3!xx0.1mwid=50e-3!宽0.05mthic=6e-3!厚0.006m!b=0.002!根部预留(m)!h=0!钝边(m)wweld=15e-3!焊接热影响区宽度lnum=10!沿焊缝xx方向划分份数!******************************************焊接参数I=200!焊接电流(A)U=30!焊接电压(V)!焊接速度(m/s)arf=60!坡口角度(°)pi=3.!pi为圆周率eta=0.7!焊接热效率,手工电弧焊0.7,埋弧焊0.8K=1.2e4!热流集中程度系数(/m^2) ?them0=25!环境温度及母材初始温度,取室温25℃!**********************************************定义高斯表面移动热源参数!GAUSS热源模型qr=qmax*exp(-k*r*r)!(单位W/m2)!假设热源中心坐标为(a,b,c),a=0,b=每个焊缝的最高点的坐标y,c=v*dt!每个焊缝上表面任一点的坐标为(x,y,z) ,x>0, y>0, z>0!r^2=x^2+(y-b)^2+(z-c)^2,每个焊缝上表面任一点距热源中心距离qmax=0.24*k*eta*I*u/pi !加热斑点中心热流(W/m2)percent=0.99radius=abs(sqrt(1/k*log(1/(1-percent))))!有效热半径,单位为m!***************************************************************** *****!定义单元类型及材料属性!***************************************************************** *****et,1,solid70!计算单元类型!nothing!定义实常数mptemp,1,0,100,200,300,400,500!定义材料属性温度范围mptemp,,1200,1250,1350,1400,1450,1500mptemp,,1505,1705,1905,2105,2305,2500mpdata,dens,1,1,7820,7800,7800,7800,7800,7800!定义材料密度(kg/m3) mpdata,dens,1,,7800,7800,7800,7800,7800,7800mpdata,dens,1,,7800,7800,7800,7800,7800,7800mpdata,kxx,1,1,52,50.7,48.6,46.1,42.3,38.9!热传导系数(W/(m*K)) mpdata,kxx,1,,30,30,30,30,30,30mpdata,kxx,1,,30,30,30,30,30,30mpdata,c,1,1,450,469,481,508.5,536,569!考虑相变潜热的比热容(J/kg*K) mpdata,c,1,,700,2172,5116,6589,8061,9533mpdata,c,1,,9533,7757,5982,4206,2431,700!**************************************************************** !建立有限元计算模型!**************************************************************** *afun,deg!如果涉及到角度,将使用“度”(系统默认是弧度)K,1,0,0,0K,2,wweld,0,0K,3,wid,0,0K,4,wid,thic,0K,5,thic*tan(arf/2)+wweld,thic,0K,6,thic*tan(arf/2),thic,0K,7,0,0,lenA,1,3,4,6A,1,2,5,6cyl4,0,0,thic/cos(arf/2),arf,0,90cyl4,0,0,thic/cos(arf/2)*sqrt(2)/2,arf,0,90L,1,7!形成拖拉路径L14Vdrag,all,,,,,,14!沿线拖拉面Vptn,all !分割体Vglue,all !粘贴体?Nummrg,all!*************************************************************!划分网格!************************************************************* aadd,24,32!面相加,以便生成映射网格lccat,40,49lccat,42,52!*************************************沿焊缝z方向划分,均为2mm lsel,s,line,,17,21,2lsel,a,line,,24,26,2lsel,a,line,,35,36lsel,a,line,,14,30,16lesize,all,2e-3!***************************************沿厚度y方向划分1-1.5mm lsel,s,line,,6,25,19lsel,a,line,,2,18,16lesize,all,,,6lsel,s,line,,41,43,2lsel,a,line,,50,53,3lesize,all,1.5e-3!***********************************************沿x方向划分1mm lsel,s,line,,45,47,2!母材lsel,a,line,,44,46,2lesize,all,,,18,0.8lsel,s,line,,7,27,20!母材lesize,all,,,12,0.7lsel,a,line,,5,23,18lsel,s,line,,11,34,23!焊缝lsel,a,line,,48,51,3lesize,all,,,4!****************************************划分体,生成六面体单元allsmshkey,1!映射网格mshape,0,3d !六面体形状vsel,allvatt,,,1aslv,saatt,,,1type,1!单元类型为1vmesh,all!*******************************************存档备份有限元模型allssave,'1.11thermal_analysis_meshed','db'finish!=================================================================!重新载入有限元模型进行加载求解!=================================================================/solu/view,,-3,2,-5!调整窗口视角!***************************************************************** ******!杀死焊缝区单元!***************************************************************** ******v1=5!焊缝1所在的体v2=7!焊缝2所在的体a1=18!焊缝1的上表面a2=31!焊缝2的上表面esel,s,type,,1!选取1类单元*get,nemax,elem,,num,max!得到所有1类单元号码的最大值*get,nemin,elem,,num,min!********************************************分段杀死第2道焊缝vsel,s,,,v2eslvekill,allesel,s,liveeplot!***************************************************************!边界条件(暂时没有考虑对流)!***************************************************************nsel,s,loc,x,0!在x=0处施加对称边界条件dsym,symm,x!*****************************************************************!设置非线性求解选项!***************************************************************** allsantype,trans !瞬态分析trnopt,full !瞬态分析选项,完全分析nropt,full,,on !定义完全牛顿--拉普森方法,激活自适应下降(默认)pred,on !打开预测校正timint,on !时间积分设置tintp,0.005,,,1,0.5,0.2!定义瞬态综合参数tref,25!参考温度25摄氏度!*************************************************************** !设置载荷步参数!*************************************************************** t=0!求解时间初始值dt0=1e-6!建立初始条件的小时间段dt1=0.5!起始加热点对应的时间tinc=len/(lnum*v)!载荷步时间间隔,T =len/v,tinc =T/lnum!tsub=0.2!求解温度场时子步时间!*************************************************************** !稳态分析确定初始温度场!***************************************************************!初始条件time,dt0!loadstep=1,time=dt0timint,off !时间积分选项,关闭(稳态分析)kbc,1!阶越加载!nsubst,1!子步为1步esel,s,type,,1!选择类型1的单元节点nsle,sic,all,temp,25!初始状态,温度25摄氏度allsoutres,all,allsolvesave,'1.11thermal_analysis_initial_temp','db'!查看初始温度场,应该全为25摄氏度!*************************************************************** !按顺序模拟温度场,以第一道为例!*************************************************************** !**************************************************第1道焊缝填充esel,s,type,,1!在第一类单元中加热流载荷esel,r,liveeplot*do,im,0,lnum,1!****************************选择有效半径内节点为当前节点vsel,s,,,v1!选择焊缝1上表面单元eslv,rnsleasel,s,,,a1nsla,r,1esln,r,0!热源加载,将各段后点(0-lnum)为热源中心,先加载后删除热源!即先消除上段所加高斯热源,并将上段的温度值作为下段的初始值!*******************************************包括起始加热点c=V*tinc*im !热源位置b=thic/cos(arf/2)*sqrt(2)/2tm=dt1+im*tinctime,tmantype,4,resttimint,onautots,onkbc,1deltim,0.01,0.01,0.2!时间步长!***********************************以下为施加热流密度载荷*do,i,nemin,nemax,1*if,esel(i),eq,1,then!如果该单元在上面的集合里,则xsy=centrx(i)!读取该单元的中心坐标ysy=centry(i)zsy=centrz(i)rr=abs(sqrt(xsy*xsy+(ysy-b)*(ysy-b)+(zsy-c)*(zsy-c)))!该单元中心距离热源中心*if,rr,le,radius,then!该单元中心在加热半径范围内qr=qmax*exp(-k*rr*rr)!该单元中心处的热流大小sfe,i,nmface(i),hflux,,qr !在每个单元所指定的面上施加热源载荷*endif*endif*enddoallsel !全选求解outres,all,allsolveesel,s,type,,1esel,r,livevsel,s,,,v1!选择焊缝1上表面单元eslv,rnsleasel,s,,,a1nsla,r,1esln,r,0!!!!!!!!!!!!!!输入先暂时停止一下!插入"/post1$plnsol,temp$/psf,hflux,,1,1,on$/replot"的内容进行查看!问题:热流载荷的分布和温度场的分布不一致(该完全一致才对),有点偏移?!若要继续,读入"finish$/solu"*do,i,1,6sfedele,all,i,hflux !删除每个单元六个面上的热载荷*enddo*enddoallsesel,s,liveeplot !查看温度场save,'1.11thermal_analysis_alive1','db'!================================================================= !生成节点温度分布xx动画文件的程序段!================================================================= /post1/seg,dele!允许图形数据存储到局部终端存储器/dscale,1,1.0!显示位移时,设置放大系数avprin,0,0!规定主项量和总向量如何被计算avres,1!规定当powergraphies可用时,结果数据如何被平均/seg,multi,1.11temp-10,0.2!存动画,分节存储后来的显示,动画名字,每个画面间延迟系数esel,s,live!*************************************************读取初始稳态温度场结果set,,,1,,dt0!从结果文件读,载荷步,子步,比例因子实部,比例因子虚部,时间plnsol,temp!*****************************************读取第1道焊缝过程中的温度场结果*do,im,0,lnum,1tm=dt1+im*tincset,,,1,,tmplnsol,temp*enddo/seg,off,1.11temp-10,0.2anim,1,1!*********************************生成动画完毕!****************************************存储第1道焊缝过程中的温度场结果图片esel,s,live*do,im,0,lnum,1*if,im,eq,0,thentm=dt1set,,,1,,tmplnsol,temp/image,save,1.11temp0,jpeg*endiftm=dt1+im*tincset,,,1,,tmplnsol,temp*if,tm,eq,dt1+lnum/2*tinc,then set,,,1,,tmplnsol,temp6.5,jpeg*endif*enddo/image,save,1.11temp12.5,jpeg。
骨癌免受重复手术疼痛有法
骨癌免受重复手术疼痛有法*导读:最初医疗队用了一个没有任何迭片结构的线圈,UCL 的研究人员和StanmoreImplants公司的技术管理人员JayMeswania介绍说。
由于没有任何迭片结构,线圈内的热量会不断积累,因此我们必须冷却线圈,并且磁场并非集中在转子内而是在线圈周围。
……英国伦敦大学学院(UCL)的研究员已经研发出一种修复术,这种修复术用一个小的齿轮箱,无需做手术就可牵伸义肢装置。
受益者把假体植入坏死腿中的年轻癌症病人。
这种植入和发育同步的假体牵伸装置的手术非常简单,在一般的门诊中就可以完成。
目前,外科医生通过腿部的小切口,旋转一个“钥匙”控制义肢中的伸缩装置,完成牵伸手术。
这种手术需要一般的麻醉,病人在医院停留一个住院日即可。
通常每年需要做三四次这样的手术,要延续约五年最终完成。
对于这种设备齐全、具有伸缩性的假体,UCL的义肢公司Stanmore( http://rbi.ims.ca/3851-506 )已获得许可证,医疗器材部设计了一个已获得专利的运动轨道为圆形的行星减速箱,减速比为13000∶1。
他们利用置于患者腿周围线圈产生的旋转磁场驱动齿轮箱,从而带动一个直径为1.2mm、厚4mm的稀土磁性转子旋转。
这个磁场是完全反北-南极的,它在三相场中以英国标准 50Hz(3000rpm)的频率旋转。
进展最初医疗队用了一个没有任何迭片结构的线圈,UCL的研究人员和Stanmore Implants公司的技术管理人员Jay Meswania介绍说。
由于没有任何迭片结构,线圈内的热量会不断积累,因此我们必须冷却线圈,并且磁场并非集中在转子内而是在线圈周围。
在寻找更有效的组件的过程中,UCL的工程师们研究了ABB公司捐赠的定子铁心和各种反相变频器。
他们最后请ABB的设备合作伙伴EMR Silverthor公司(Wembley, UK)详细说明了ABB公司的电机迭片结构定子对UCL规格的不利影响(552转,1.06mm,星状连接线圈)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
J OURNAL OF T HERMOPHYSICS AND H EAT T RANSFERV ol.16,No.1,January–March2002Fractal Models for the Effective ThermalConductivity of Bidispersed Porous MediaBoming Yu¤and Ping Cheng†Hong Kong University of Science and Technology,Clear Water Bay,Kowloon,Hong Kong,People’s Republic of ChinaTwo fractal models for determination of the effective thermal conductivity of bidispersed porous media aredeveloped based on the fractal theory and electrical analogy technique.The theoretical predictions from theproposed fractal thermal conductivitymodels are compared with those from the previous lumped-parameter modeland from experimental data.The results from the proposed fractal models are shown to be in good agreement withboth the lumped-parameter model and the experimental data.NomenclatureA=area of the cross section of a representative cella=size or diameterD f=fractal dimensionD T=tortuosity fractal dimensiond=characteristic diameter of a clusterd0=the minimum diameter of a particlek=thermal conductivityL=length scaleL t=total length due to tortuosityL0=representative lengthN=numberR=resistancer=radium of a clusterV=volume fraction¯=ratio of thermal conductivity,k s=k f°a=ratio of geometrical length scale for a cluster,l c=a c,see Fig.2a°0a=ratio of geometrical length scale for a cluster,a c=¸,see Fig.2a°a1=ratio of geometrical length scale for a particle,l=a,see Fig.2b°0a1=ratio of geometrical length scale for a particle,a=¸,see Fig.2b°c=ratio of contact length scale for a cluster,c c=l c,see Fig.2a°c1=ratio of contact length scale for a particle,c=l,see Fig.2b¸=diameterÁ=averaged porosity of a bidispersed porous medium Subscriptsc=clusterse=effectivef= uidmax=maximummc=mixed chains of particles or clusters with uidReceived19October2000;revision received25May2001;accepted for publication10July2001.Copyright c°2001by the American Institute of Aeronautics and Astronautics,Inc.All rights reserved.Copies of this paper may be made for personal or internal use,on condition that the copier pay the$10.00per-copy fee to the Copyright Clearance Center,Inc.,222Rose-wood Drive,Danvers,MA01923;include the code0887-8722/02$10.00in correspondence with the CCC.¤Professor,Department of Mechanical Engineering;currently Profes-sor,Department of Physics,Huazhong University of Science and Tech-nology,1037Luoyu Road,Wuhan430074,People’s Republic of China; yu3838@.†Professor,Department of Mechanical Engineering.Associate Fellow AIAA.min=minimumn=nontouching particles or clusterss=solidt=total1=particleSuperscriptC=dimensionlessI.IntroductionT HE effective thermal conductivities of porous media,such as packed beds,granular materials, brous composites,dispersed spheres,and so on,have received much attention1¡8in the past three decadesdue to theirimportancein engineeringproblems.It is known that heat conduction through saturated porous media strongly de-pends on the thermal conductivitiesof the solid and the uid phase, the shape and distribution of the solid phase,as well as the size of the contact areas between solid particles.To analyze the ther-mal conductivityof a porous medium,it is usually assumed that the medium has a periodicstructure,and a unitcell or representativecell is often chosen for such a study.Based on this approach,Hsu et al.6 and Cheng and Hsu7developeda lumped-parametermodel to deter-mine the effectivestagnantthermalconductivityof two-dimensional and three-dimensional monodispersed porous media with periodic structures.The methods and models used for the determination of thermal conductivityof monodispersedporous media have recently been reviewed by Cheng and Hsu.7Most recently,a great deal of attention has been given to study the bidispersed porous media that have been used as wicks in heat pipes.The bidispersedporous structure,as shown in Fig.1a,is com-posed of clusters that are agglomerated by small particles.In this bidispersed porous medium,there are micropores and macropores within and between the clusters of particles,respectively.Figure1b is an image of the bidispersed porous medium at magni cation of50.In Fig.1b,the clusters are in white and the pores are in black,which show that they have disordered structures.Chen et al.8ana-lyzed the thermal conductivity of a bidispersed porous medium by assuming that the medium in the microlevel(within the cluster)and in the macrolevel(between clusters)consists of spatially periodic porous cubes,both of which were modeled as three-dimensional touching cubes.They applied the lumped-parameter model6to ob-tain the followingexpressionfor the dimensionlesseffectivethermal conductivity of the bidispersed porous medium:k Ce D1¡°2a¡2°a°c C2°2a°c C°2a°2c1¯k C e;cC°2a¡°2a°2c1¡°a C°a¯k C e;c C2¡°a°c¡°2a°c¢1¡°a°c C°a¸c¯k C e;c(1) 22YU AND CHENG23 a)b)Fig.1Top view of a bidispersed medium:a)schematic of the bidis-persed porous medium and b)image photograph of the bidispersedporous medium at magni cation of50,white are solid clusters and theblack are pores(or uid).a)Cluster–cluster systemb)Particle–particle systemFig.2Unit cell for the lumped parameter method8:,particles orclusters and, uid.with°a D l c=a c and°c D c c=l c,where`c and a c are the geometriclengths,and c c is the contactlength of the clusters(at the macroscalelevel)(see Fig2a).The quantity k C e;c in Eq.(1)is the dimensionlessthermal conductivityof the particles(at the microscalelevel),whichis given byk Ce;c D1¡°2a1¡2°a1°c1C2°2a1°c1C°2a1°2c1C°2a1¡°2a1°2c1a1°a1=¯C2¡°a1°c1¡°2a1°c1¢1°a1°c1°a1¸c1=¯(2)where¯D k s=k f is the ratio of thermal conductivity,°a1D l=a isthe ratio of geometrical length scale for a particle,and°c1D c=l isthe ratio of contact l ength scale for a particle(see Fig.2b).The totalporosity of the bidispersed porous media is given byÁD1¡£¡1¡3°2c¢°3a C3°2c°2a¤.1¡Ác/(3)whereÁc is the porosity within the microporous cubes(clusters),which is given byÁc D1¡¡1¡3°2c1¢°3a1¡3°2c1°2a1(4)Chen et al.8found that the predicted thermal conductivity fromEqs.(1–4)is in good agreement with their experimental measure-ments.The disordered nature of the micropores inside the clusters andmacropores between clusters in bidispersed porous media suggeststhat the fractal theory9¡15may be used to predict properties of abidispersed porous medium.In a recent paper,Yu and Cheng15de-veloped a fractal permeability model for bidispersed porous mediaand found that their model predictions are in good agreement withexperimental data.In this work,we focus our attention on developinga fractal modelfor the effective thermal conductivity of the bidispersed porousmedia.The proposed fractal models are compared with both thelumped-parameter model and experimental data.This paper is or-ganized as follows.Section II provides a brief introduction of thefractal theory,which is the basis of the present model.Section IIIintroducesthe fractal descriptionof the microstructuresof the bidis-persed porous media based on which a fractal thermal conductivitymodel is derived in Sec.IV.The results and discussion are given inSec.V.Section VI summarizes the ndings of this work.II.Basic Fractal TheoryEuclidean geometry describes ordered objects such as points,curves,surfaces,and cubes using integer dimensions0,1,2,and3,respectively.Associatedwith each dimensionis a measure of the ob-ject such as the length of a line,the area of a surface,and the volumeof a cube.The measuresare invariantwith respectto the unit of mea-surement used.However,numerous objects found in nature,9suchas rough surfaces,coast lines,mountains,rivers,lakes,and islands,are disordered and irregular,and they do not follow the Euclideandescriptiondue to the scale-dependentmeasuresof length,area,andvolume.These objectsare calledfractals,and the dimensionsof suchobjects are nonintegral,which are de ned as fractal dimensions.9;10The measure of a fractal object,M(L),is related to the length scaleL through a scaling law in the form ofM.L/»L D f(5)where M can be the length of a line,the area of a surface,the volumeof a cube,or the mass of an object,and D f is the fractal dimensionof an object.Equation(5)implies the property of self-similarity,which means that the value of D f from Eq.(5)keeps constant over arange of length scales L.The geometrystructuressuch as Sierpinskigasket,Sierpinski carpet,and Koch curve are the examples of theexact self-similar fractals,which exhibit the self-similarity over anin nite range of length scales.9;10However,the exactly self-similarfractals in a global sense are rarely found in nature.Many objectsfound in nature(such as the coast lines of islands)are not exactlyself-similar,they are statistically self-similar.These objects exhibitthe self-similarity in some average sense and over a certain localrange of length scales L.The fractal dimension D f used in thispaper is referred to both the statistical and the exact fractals.III.Fractal Characterization of Microstructuresof the Bidispersed Porous MediaAs shown in Fig.1,a bidispersed porous medium contains manyclusters formed by particle agglomeration.There are two types ofpores:macropores(on the order of10¡3m)between clusters andmicropores(on the order of10¡5m)between particles inside each24YU AND CHENGa )Side view of the bidispersed porous mediumb )Typical chain of particlesc )Idealized cross section of a mixed chaind )Cross section of the real chainFig.3Proposedfractal model for bidispersed porous media:,par-ticles or clusters and , uids.cluster.When a bidispersedporousmedium is saturatedwith a uid,such as resin or other materials,the uid lls both the micro-and macropores.Both types of pores form irregular and tortuous pore channels,which are called capillaries.We now apply a fractal analysis based on the unit cell concept to study the thermal conductivity of bidispersed porous media.As shown in Fig.3a,some particles and clusters contact each other to form irregular and tortuous chains,and others do not touch each other.These irregular and tortuous pore channels (capillaries )and particle and cluster chains are very similar to coast lines.Thus,they exhibit the fractal behavior given byL t .¸/=L 0D .L 0=¸/D T ¡1(6)where D T is the tortuosityfractal dimension (with 1<D T <2)rep-resenting the extent of convolutedness of capillary pathways for uid ow through a porous medium.D T D 1represents a straight capillary path or a straight chain of particles (or clusters ),and a higher value of D T corresponds to a highly tortuous capillary (or chain ).In the limiting case of D T D 2,we have a tortuous line so irregular that it lls an entire plane.16Note that Eq.(6)diverges as ¸!0,which is one of the properties of fractal lines.10In Eq.(6),¸is the size of a capillary or a chain in the medium,and L t .¸/is its tortuous length.Because of the tortuous nature of the capillary or chain,L t .¸/¸L 0,where L 0is the representative length.Thus,L t .¸/D L 0means a straight capillary or chain (see Fig.3b ).The tortuosityof a capillary pathway or chain is similar to the tri-adic Koch teragon (see Ref.9),which satis es L ."/D "1¡D [where L ."/is the length of the triadic Koch teragon whose sides are of length "],and this formula is identical with Richardson’s empirical law relative to the coast of Britain (see Ref.9).Equation (6)is also similarto the fractalscalingrelationshipfor analysisof dispersionin a single fractal streamtube.16It is also one of the fractal scaling laws characterizing the fractal properties of the bidispersed porous me-dia.Besides the convolutednessof the capillary pathways or chains,the number of capillary pathways or chains with the size of ¸is an another important property.The number of capillary pathways or chains should follow the following scaling law:N .L ¸¸/D .¸max =¸/D f (7)where D f ,the same fractal dimension 17¡19as de ned in Eq.(5),is the area fractal dimension of a cross section normal to the heat (or uid ) ow direction with 1<D f <2.Equation (7)shows that the number of pores or chains becomes in nite as ¸!0,which is one of propertiesof fractal planes.9Equation (7)denotes the scaling relationship of the cumulative pore (or chain )population in a cross section.It is analogous to the cumulative size distributionof islands on the Earth’s surfacethat follows the power law N .A >a /»a ¡D =2(Ref.9),where N is the total number of islands of area A greater than a ,and D is the fractal dimension of the surface.Equation (7)is also identical with the power law relation N .A ¸a /D .a max =a /D =2describing the contact spots on engineering surfaces.12The number of pores (or chains )of sizes lying between ¸and ¸C d ¸can be obtained by differentiatingEq.(7)to give¡d N D D fµd .¸=¸max /.¸=¸max /D f C 1¶(8)The negative sign in Eq.(8)implies that the pore (or chain )number decreases with the increase of pore (or chain )size.Equations (5–8)form the basis of the present fractal thermal conductivity model,which will be derived in the next section.IV .Fractal Thermal Conductivity Model for Bidispersed Porous MediaModel 1In this section,a fractal model for thermal conductivity of bidis-persedporousmedia is derivedanalytically.Figure 3a is a schematic of the bidispersed porous medium.It can be seen from Fig.3a that in a bidispersedporous medium,some particles (or clusters )contact each other to form chains,whereas others do not touch each other (nontouching ).These two con gurationsof particles (or clusters )in a bidispersed medium should be included in the model.We further assume in this model that heat conduction is one dimensional in the unit cell and that the heat ow lines approximately follow the chains.Figure 3b shows the schematic of a chain of particles (or clusters ),with a total length of L t .¸/that is greater than L 0,the representative length.The zigzig shape of a chain is similar to the fractal coast lines or fractal streamtubes,which follow Eq.(6).We refer to a mixed chain,which consists of particles (or clusters )and the uid enclosing these particles (or clusters ).Figure 3c shows an idealizedcross sectionof a chain:a circularparticle (or cluster )with annular uid.However,in reality,the particles (or clusters )may not be circular in shape,as shown in Fig.3d,and the area and shape of cross section of each mixed chain may be different.We assume that the area distribution of cross section of mixed chains follows the same fractal power law as in Eq.(7).The thermal resistance of the mixed chains and nontouching particles (or clusters )can be considered to be in parallel,which can be expressed as1=R t D 1=R n C 1=R mc(9)The effective thermal conductivityof the system can be obtained by k e D1t L 0D 1n L 0C 1mc L 0D 1n L 0n A n C 1mc L 0D A n k e ;n C 1¡A n ´k e ;mc(10)where A is the total area of a representative cross section and A nis an equivalent area of a cross section having the same porosity as the nontouchingparticles or clusters,with 0·A n =A ·1.For a unit cell consistingof two-dimensionalnontouchingparticles,Hsu et al.6obtained the following expression for its thermal conductivity:k e ;n D k f ¡1¡p ¢C p 1¡Á1C .1=¯¡1/p1¡Á(11)YU AND CHENG 25which will be used in connectionwith the rst term at the right-hand side of Eq.(10).Now we focus our attention on the derivation of the effective thermal conductivity k e ;mc ,which appears at the second term of the right-hand side of Eq.(10).We assume that the contact resistance between particles is only along the heat ow direction.For this purpose,Fig.2a is adopted as a simpli ed model for the mixed chain in the direction perpendicular to the heat ow.If the cube particle (or cluster )model is assumed and there is no heat conduction in the lateral direction,we obtain the following expression for the resistance of a cube particle:R 1D1¸"°a 1k s °a 1C 2k f .1¡°a 1/C.1¡°a 1/°0a 1k s °2c 1°02a 1¯°2a 1C k f ¡1¡°2c 1°02a 1¯°2a 1¢#(12)where °a 1D l =a ,°0a 1D a =¸,and °c 1D c =l represent the geometriclength scale ratio and contact length scale ratio at the microscale within a cluster,respectively (see Fig.2b ).For a mixed chain of a length L t .¸/,the number of particles for each chain is L t .¸/=a ;thus,the resistance of each chain can be obtained asR c DL t .¸/R 1D L t .¸/¸"°a 1=°0a 1s °a 1f .1°a 1/C1¡°a 1k s °2c 1°02a 1¯°2a 1C k f ¡1¡°2c 1°02a 1¯°2a 1¢#(13)To obtain the value of °0a 1.D a =¸/in Eqs.(12)and (13),we refer to Fig.4a,which is a simpli ed cross section of a mixed chain of particle.Note that the microporositywithin a cluster Ác is given byÁc D .¸2¡a 2/=¸2D 1¡.a =¸/2(14a )Solving this equation for°0a 1.D a=¸/,we have°0a 1D a =¸Dpc(14b )a )For a particleb )For a clusterFig.4Schematic of cross section of the mixed chains:, uid;,particle;and ,cluster.a )Triangular modelb )Square modelFig.5Possible con gurations of particles.The values of microporositywithin a cluster Ác depends on how the particles are packed.Figures 5a and 5b show two possible con gu-rations of particles in a cluster.The porosities for the two con gu-rations of particles are Ác D 1¡¼=2p3and 1¡¼=4,respectively,that is,0:09<Ác <0:2in a cluster.In the interval ¸and ¸C d ¸,there are the parallelchains of (¡d N )that satisfy Eq.(8).Their resistance is (¡d N =R c ),and the total resistance of the mixed chains in a unit cell is1mcD ¡Zd N c(15)InsertingEqs.(6),(8),and (14)into Eqs.(13)and (15),we obtain thedimensionless effective thermal conductivity of the parallel chains in a unit cell:k C e ;mcD k e ;mc f D L 01f mc D ¸2max¸max´D T ¡1D f1T f£(1,"°¯p1¡Á¯p1¡Ác C 2¡1¡p1¡Ác ¢C1¡°a 1°2c 1.1¡Ác /.¯¡1/¯°2a 1C 1#)(16)where ¸2max =A is the ratio of the maximum area of cross section of a mixed chain to the representative area A and ¸max =L 0is the ratio of the maximum diameter of cross section of a mixed chain to the rep-resentative length L 0along the heat ow direction.The integration of Eq.(15)is performed over the entire range of chain sizes from ¸min D 0to ¸max under the assumption of ¸min ¿¸max.To obtain the analyticalexpression,we take the averaged °0a 1[D p .1¡Ác /]in the bining Eqs.(10),(11),and (16),we have the fractal effective thermal conductivityexpression for a cluster in the dimensionless form ask C e ;cD A n A k C e ;n C 1¡A n A ´k C e ;mc D A n A k e ;nk fC1¡A nA´k e ;mc k fD A n µ¡1¡p 1Ác ¢C p 1¡Á1C .1=¯¡1/p1¡Ác¶C 1¡A n A´¸2max A¸max L 0´D T ¡1D f1C D T ¡D f£(1,"°¯p1¡Á¯p1¡Ác C 2¡1¡p1¡Ác ¢C1¡°a 1°2c 1.1¡Ác /.¯¡1/¯°2a 1C 1#)(17)where Ác is the porosity in a cluster and is given by Eq.(4).When a similar method is applied,the effective thermal conduc-tivity of bidispersed porous media can be obtained by26YU AND CHENGk C e DA n"¡1¡p 1Á¢C p1¡Á1C ¡1¯k Ce ;c ¡1¢p1¡Á#C 1¡A n´¸2max¸max 0´D T ¡1D fT f£(1,"°a =°0a e ;c °0a2.1°0a /C.1¡°a /°2c °02a ¡k Ce ;c ¡1¢¯°2a C 1#)(18)where °a D l c =a c and °c D c c =l c are the geometric length scale ratioand contact length scale ratio at the macroscale for clusters in a bidispersed medium,respectively (see Fig.2a ).Because of the sta-tistically self-similarity existing in the micro-and macrostructures,the same values of ¸2max =A ,¸max =L 0,D T ,and D f used in Eqs.(17)and (18)are assumed in this model.In Eq.(18),°0a is given by°0a D a c =¸Dp.1¡Á/=.1¡Ác /(19a )Accordingto Fig.4b,the averagedporosityof a bidispersedmedium is given byÁD£¡¸2¡a 2c ¢C a 2c Ác¤¯¸2(19b )In this model,we assume that the fractal dimension D f of the area of cross section of the mixed chains is the same as the solid (or cluster )area fractal dimension,which can be estimated by the box-counting method.15The algorithm for the determination of the thermal conductivity of a bidispersed porous medium is summarized as follows:1)Given a porosity Áand the ratio of Ác =Á,we can nd the microporosity Ác in clusters and obtain the fractal dimension D f and D T from the box-counting method.2)Estimate the value of °c 1and nd °a 1from Eq.(4).3)Estimate the value of °c and nd °a from Eq.(3).4)The values of °0a 1and °0a are computed from Eqs.(14)and (19),respectively.5)The value of ¯can be computed if thermal conductivities of the solid and uid phases are known.6)Estimate the values of A n =A ,¸2max =A ,and ¸max =L 0,and nd the thermal conductivity k C e ;cof a cluster from Eq.(17).7)Find the thermal conductivityfor a bidispersedporousmedium from Eq.(18).Because the microstructure of a bidispersed porous medium is very complex,the ratios A n =A ,¸2max =A ,¸max =L 0,°c 1,and °c can not be determined analytically,and they can only be determined ex-perimentally.Once these valueshave been determined,the proposed fractal thermal conductivity model can be used to nd the thermal conductivity of a bidispersed porous medium.In this model,D f D 2corresponds to the situation in which a cross section is totally occupied by the mixed chains,and the effect of nontouchingparticles (or clusters )on the thermal conductivityis negligible,which will result in the very high thermal conductivity.However,note that in this model D f D 2does not imply that the solid volume fraction of the medium is 1because the solid volume fractionof eachchainisnot unity,althoughthe crosssectionis totally occupied by the mixed chains as D f D 2,as shown in Fig.6a.This means that,as D f D 2,the porosity of a medium can be any value of 0·Á·1.Figure 6b shows that D f <2as a cross section is not totally occupied by the mixed chains,and it is clearly shown that the porosity of the medium in this case is also less than 1.If and only if the porosity is equal to zero or the solid volume fraction is 1,the thermal conductivity can reach the maximum value (as ¯>1).However,there is no quantitative relationship between the fractal dimension D f and the solid volume fraction V s in this model.In the next section we present a simpli ed model,in which a quantitative relationship between the fractal dimension and the solid volume fraction is presented.a)b )Fig.6Area fractal dimension and porosity for model 1:, uid;,solid;and ,non-touching particles or clusters.Model 2:Simpli ed ModelIn this simpli ed model,we assume that there is no uid laterally enclosingthe particle in the particle/cluster chains (see Figs.4a and 4b )and that lateral contactresistanceis neglected.This is equivalent to setting °0a 1D a =¸D 1in Eq.(14b )and °0a D a c =¸D 1in Eq.(18).Thus,Eqs.(17)and (18)becomek Ce ;c D A n µ¡1¡p 1Ác ¢C p 1¡Á1C .1=¯¡1/p 1¡Ác¶C 1¡A n´¸2max¸max 0´D T ¡1D fT f£(1,"°a 1C.1¡°a 1/°2c 1.¯¡1/¯°2a 1C 1#)(20)k C e DA n"¡1¡p 1Á¢C p1¡Á1C ¡1¯k Ce ;c ¡1¢p1¡Á#C 1¡A n´¸2max¸max 0´D T ¡1D fT f£(1,"°a e ;c C .1¡°a /°2c ¡k C e ;c¡1¢¯°2a C 1#)(21)respectively.Because the uid lateral to the chains is not includedin the solid (particle or cluster )chains in this model,it is possible to nd the quantitative relationship between the fractal dimension and the porosity (or solid volume fraction ).For the present bidispersed media,we can also choose the equi-lateral triangle unit cell (as shown in Figs.7a and 7b ),which has the effective porosity given byÁD £.A ¡¼r 2=2/C Ác ¼r 2¯2¤¯A (22)where A and r are the total area of the unit cell and radius of a cluster.Solving Eq.(22)for A givesA D 1¼r 2[.1¡Ác /=.1¡Á/](23a )which can be written in the following dimensionless form:A C D 1d C 2[.1¡Ác /=.1¡Á/](23b )where A C D A =.¼d 2=4/and d C D 2r =d 0with d 0being the minimum diameter of a particle.It is known that the Sierpinski gasket (as shown in Fig.7c )is an exact self-similarity fractal geometry with the (shaded area )fractal dimension of D f D 3=2D 1:585(3D 2D f )(Ref.9).However,the Sierpinski gasket is only the special case (L D 2)of Sierpinski-type gaskets.20Figures 7d –7f demon-strate the Sierpinski-type gaskets with L D 3,5,and 6,re-spectively,and the shaded (solid )area fractal dimensions are D f D 6=3D 1:631(6D L D f D 3D f ),D f D 12=5D 1:544(12D L D f D 5D f ),and D f D 15=6D 1:511(15D L D f D 6D f ),respectively.The Sierpinski-type gaskets and their constructionsYU AND CHENG 27a )b )c )d )e )f )Fig.7Sierpinski gasket model for the bidispersed porous medium:a )microstructure of particles,b )macrostructure of clusters,c )Sierpinski gasket with L =2,d )Sierpinski-typegasket with L =3,e )Sierpinski-type gasket with L =5,and f )Sierpinski-type gasket with L =6.are given by Yu and Yao.20In this paper,the Sierpinski-type gas-ket model is applied to simulate the present bidispersed porous media.However,this does not imply that there are quantitative relationships between the Sierpinski-type gaskets and the current bidispersed porous media for the thermal conductivity.Examining Figs.7a –7f,we can nd the approximate self-similarity existing in the macrostructurebetween clustersand the microstructurebetween particles inside clusters.This suggests that the Sierpinski-typegas-ket model can be used to simulate bidispersedporous media.There-fore,the totalsolid (shaded )areafor the unitcell,as shownin Fig.7b,can be approximately calculated byA s D .L C /D f(24)where L C D L =d 0and A s is the dimensionlessarea.It follows from Eq.(24)thatD fD A s¯L C (25)If the unit cell is covered with a dense or compact substance (such as solid cooper ),the fractal dimension for the substance will be 2.For example,if Fig.7e is completely covered with solid,its volume fraction is 1,and the solid area fractal dimension is 2(25D 5D f ,and so D f D 2).The solid volume fraction of the unit cell can be expressed asV s D A s ¯A C D 1¡Á(26)where the total area of the unit cell can be written as A C D L C2(27)orL C Dp C D d Cp.1¡Ác /=2V s (28)Combining Eqs.(25–28)yieldsD f D 2Cs£p1c s¤(29)Equation (29)reveals that the area fractal dimension is a function of microporosity,solid volume fraction,and the ratio of the averaged cluster size to the minimum particle size.Equation (29)shows that D f D 2for V s D 1and vice versa.This is consistentwith the physical situation.If we set Ác D 0,Eq.(29)can be reduced toD f D 2C¡d C p1=2V s¢(30)which can be used to describe the fractal dimension of a monodis-persed porous medium.V .Results and DiscussionIt may be recalled that the present fractal thermal conductivity models are based on the fundamentalrelationshipbetween the num-ber of cumulative cross sections of mixed chains and area sizes,given by Eq.(7).The existence of the scaling relationship in actual microstructuresis shown in Fig.8,which was obtained by the box-counting method.15Figure 8shows a log –log plot of the cumulative number of areas of solid,N .L ¸¸/»¸.The fractal dimensions,D f D 1:74and 1:73,are obtained by the box-counting method for the bidispersed porous media with the porosity of 0.52and 54,re-spectively.It is seen that the number of cumulative areas of cross section of the mixed chains decreases as the chain size ¸increases.The data follow a linear relationshipon the logarithmicscale,which con rms the statistical fractal nature of the microstructures of the bidispersed porous media.Note that,although the Sierpinski gas-ket model is applied to establish the relationship between the frac-tal dimension and solid volume fraction of the bidispersed porous medium in this paper,it cannot be applied to obtain the thermal conductivity of the bidispersed porous media.Figure 9shows that when the relative cluster size d C D 18,the best t to the data from the box-counting method is obtained.With the value of d C D 24,the relative errors between the box-counting method and the theoretical predictions from Eq.(29)are about 1%.This means that the ratio of the minimum particle size to the max-imum cluster size is about 4–5%.Figure 9also indicates that the smaller the relative cluster size d C is,the lower the fractal dimen-sion.The reason is that,when the cluster becomes smaller at xed solid volume fraction V s ,the total area A C also becomes smaller.This leads to the decrease of the total solid area A s at xed V s and results in the decrease of the solid area fractal dimension.From Fig.9,it can also be seen that the solid area fractal dimensions will approach its possible maximum value of 2as the solid volume frac-tion reachesthe value of 1.This is what is expected and is consistent with the actual physical situation,which veri es the present fractal dimension model.Fig.8Scaling relationship between the number of cumulative areas of cross section of chains and chain sizes from the box-countingmethod.。