高中三角函数辅导讲解

合集下载

高三理科数学培优专题——三角函数

高三理科数学培优专题——三角函数

三角函数专题一、方法总结:1.三角函数恒等变形的基本策略。

(1)注意隐含条件的应用:1=cos 2x +sin 2x 。

(2)角的配凑。

α=(α+β)-β,β=2βα+-2βα-等。

(3)升幂与降幂:主要用2倍角的余弦公式。

(4)化弦(切)法,用正弦定理或余弦定理。

(5)引入辅助角。

asinθ+bcosθ=22b a +sin (θ+ϕ),这里辅助角ϕ所在象限由a 、b 的符号确定,ϕ角的值由tan ϕ=ab确定。

2.解答三角高考题的策略。

(1)发现差异:观察角、函数运算间的差异,即进行所谓的“差异分析”。

(2)寻找联系:运用相关公式,找出差异之间的内在联系。

(3)合理转化:选择恰当的公式,促使差异的转化。

二、例题集锦: 考点一:三角函数的概念1.(2011年东城区示范校考试15)设A 是单位圆和x 轴正半轴的交点,Q P 、是单位圆上的两点,O 是坐标原点,6π=∠AOP ,[)παα,0,∈=∠AOQ .(1)若34(,)55Q ,求⎪⎭⎫⎝⎛-6cos πα的值; (2)设函数()f OP OQ α=⋅,求()αf 的值域.考点二:三角函数的图象和性质2.(2014年课标I ,7)在函数①cos 2y x =,②cos y x =,③cos(2)6y x π=+,④tan 24y x π⎛⎫=- ⎪⎝⎭中,最小正周期为π的所有函数为 ( )A.①②③B. ②③④C. ②④D. ①③3.(2012年课标全国,9)已知0ω>,函数()sin()4f x x πω=+在(,)2ππ上单调递减,则ω的取值范围是( ) A.15[,]24 B.13[,]24C.10,2⎛⎤ ⎥⎝⎦D.()0,24.(2011年课标全国,11)设函数()sin()cos()(0,)2f x x x πωϕωϕωϕ=+++><的最小正周期为π,且()()f x f x -=,则( )A. ()f x 在0,2π⎛⎫ ⎪⎝⎭单调递减B. ()f x 在3,44ππ⎛⎫⎪⎝⎭单调递减 C. ()f x 在0,2π⎛⎫ ⎪⎝⎭单调递增 D. ()f x 在3,44ππ⎛⎫⎪⎝⎭单调递增5.将函数()()sin 22f x x πϕϕ⎛⎫=+<⎪⎝⎭的图象向左平移6π个单位长度后,所得函数()g x 的图象关于原点对称,则函数()f x 在0,2π⎡⎤⎢⎥⎣⎦的最小值为 A .12- B .12C. D6.(2011年东城区期末15)函数()sin()(0,0,||)2f x A x A ωφωφπ=+>><部分图象如图所示.(Ⅰ)求()f x 的最小正周期及解析式;(Ⅱ)设()()cos 2g x f x x =-,求函数()g x 在区间[0,]2x π∈上的最大值和最小值.考点三、四、五:同角三角函数的关系、 诱导公式、三角恒等变换7.已知函数2()2sin cos 2cos f x x x x ωωω=-(0x ω∈>R ,),相邻两条对称轴之间的距离等于2π. (Ⅰ)求()4f π的值; (Ⅱ)当02x π⎡⎤∈⎢⎥⎣⎦,时,求函数)(x f 的最大值和最小值及相应的x 值.8.已知向量(cos ,sin ),a x x =向量(cos ,sin ),()b x x f x a b =-=⋅ (1)求函数()()sin 2g x f x x =+的最小正周期和对称轴方程; (2)若x 是第一象限角且'3()2()f x f x =-,求tan()4x π+的值.考点六:解三角形9.ABC ∆中,角,,A B C成等差数列是sin sin )cos C A A B =+成立的 ( ) A .充分不必要条件 B .必要不充分条件C .充要条件D .既不充分也不必要条件10.已知函数()cos f x x =,,,a b c 分别为ABC ∆的内角,,A B C 所对的边,且22233a b c +-4ab =,则下列不等式一定成立的是A .()()sin cos f A fB ≤ B .()()sin cos f A f B ≥C .()()sin sin f A f B ≥D .()()cos cos f A f B ≤ 11.(2014年课标I ,16)已知,,a b c 分别为ABC ∆三个内角,,A B C 的对边,2a =,且(2)(sin sin )()sin b A B c b C +-=-,则ABC ∆面积的最大值为 .12.(2014年河南焦作联考)在ABC ∆中,已知sin sin cos sin sin cos sin sin cos A B C A C B B C A =+,若,,a b c 分别是角,,A B C 所对的边,则2abc 的最大值为 . 13.(2015河北秦皇岛一模,17,12分)在ABC ∆中,角A B C ,,所对的边分别为,,a b c ,满足()222.AB AC a b c ⋅=-+(1)求角A 的大小; (2)求24sin()23C B π--的最大值,并求取得最大值时角,B C 的大小.14.(2009全国II , 17,10分) 设ABC ∆的内角A B C ,,的对边分别为,,a b c ,3cos()cos 2A CB +=-,2b ac =.求B ∠的大小.14.(2015课标II ,17,12分)△ABC 中,D 是BC 上的点,AD 平分BAC ∠,ABD ∆的面积是ADC ∆面积的2倍. (1)求sin sin BC∠∠;(2)若1,AD DC ==,求BD 和AC 的长.15、(2011东城一模15)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c 分,且满足2cos cos c b Ba A-=. (Ⅰ)求角A 的大小;(Ⅱ)若a =ABC 面积的最大值.例题集锦答案:1.(2011年东城区示范校考试理15)如图,设A 是单位圆和x 轴正半轴的交点,Q P 、是 单位圆上的两点,O 是坐标原点,6π=∠AOP ,[)παα,0,∈=∠AOQ .(1)若34(,)55Q ,求⎪⎭⎫⎝⎛-6cos πα的值;(2)设函数()f OP OQ α=⋅,求()αf 的值域. ★★单位圆中的三角函数定义解:(Ⅰ)由已知可得54sin ,53cos ==αα……………2分6sin sin 6cos cos 6cos παπαπα+=⎪⎭⎫⎝⎛-∴………3分1043321542353+=⨯+⨯=…………4分(Ⅱ)()f OP OQ α=⋅ ()cos ,sin cos ,sin 66ππαα⎛⎫=⋅ ⎪⎝⎭………6分ααsin 21cos 23+=………………7分 sin 3πα⎛⎫=+⎪⎝⎭………………8分 [0,)απ∈ 4[,)333πππα∴+∈………9分 sin 123πα⎛⎫<+≤ ⎪⎝⎭…………12分()αf ∴的值域是⎛⎤⎥ ⎝⎦………………………………13分2.(2011年西城期末理15)已知函数2()22sin f x x x =-.(Ⅰ)若点(1,P在角α的终边上,求()f α的值; (Ⅱ)若[,]63x ππ∈-,求()f x 的值域.★★三角函数一般定义解:(Ⅰ)因为点(1,P 在角α的终边上,所以sin 2α=-,1cos 2α=,………………2分 所以22()22sin cos 2sin f αααααα=-=-………………4分21(2(32=⨯-⨯=-.………………5分 (Ⅱ)2()22sin f x x x =-cos 21x x =+- ………………6分2sin(2)16x π=+-, ………………8分因为[,]63x ππ∈-,所以65626πππ≤+≤-x , ………………10分所以1sin(2)126x π-≤+≤, ………………11分所以()f x 的值域是[2,1]-. ………………13分 3.(2011年东城区期末理15)函数()sin()(0,0,||)2f x A x A ωφωφπ=+>><部分图象如图所示.(Ⅰ)求()f x 的最小正周期及解析式;(Ⅱ)设()()cos 2g x f x x =-,求函数()g x 在区间[0,]2x π∈上的最大值和最小值. 解:(Ⅰ)由图可得1A =,22362T πππ=-=, 所以T =π. ……2分 所以2ω=.当6x π=时,()1f x =,可得 sin(2)16ϕπ⋅+=, 因为||2ϕπ<,所以6ϕπ=. ……5分所以()f x 的解析式为()sin(2)6f x x π=+. ………6分 (Ⅱ)()()cos 2sin(2)cos 26g x f x x x x π=-=+-sin 2cos cos 2sin cos 266x x x ππ=+- 12cos 22x x =- sin(2)6x π=-. ……10分 因为02x π≤≤,所以52666x πππ-≤-≤. 当262x ππ-=,即3x π=时,()g x 有最大值,最大值为1; 当266x ππ-=-,即0x =时,()g x 有最小值,最小值为12-.……13分4.(2010年海淀期中文16)已知函数x x x f 2cos )62sin()(+-=π.(1)若1)(=θf ,求θθcos sin ⋅的值;(2)求函数)(x f 的单调增区间.(3)求函数的对称轴方程和对称中心 解:(1)22cos 16sin2cos 6cos2sin )(xx x x f ++-=ππ...3分(只写对一个公式给2分) 212sin 23+=x ....5分 由1)(=θf ,可得332sin =θ ......7分所以θθθ2sin 21cos sin =⋅ ......8分 63= .......9分 (2)当Z k k x k ∈+≤≤+-,22222ππππ,换元法 ..11即Z k k k x ∈++-∈],4,4[ππππ时,)(x f 单调递增.所以,函数)(x f 的单调增区间是Z k k k ∈++-],4,4[ππππ... 13分5.(2011年丰台区期末理15)已知函数2()2sin cos 2cos f x x x x ωωω=- (0x ω∈>R ,),相邻两条对称轴之间的距离等于2π.(Ⅰ)求()4f π的值;(Ⅱ)当 02x π⎡⎤∈⎢⎥⎣⎦,时,求函数)(x f 的最大值和最小值及相应的x 值.解:(Ⅰ)()sin 2cos 212sin(2)14f x x x x π=--=--ωωω. ω意义 ……4分因为22T π=,所以 T =π,1ω=. ……6分 所以 ()2sin(2)14f x x π=--.所以 ()04f π= ………7分(Ⅱ)()2sin(2)14f x x π=--当 0,2x π⎡⎤∈⎢⎥⎣⎦时, 32444x πππ-≤-≤, 无范围讨论扣分所以 当242x ππ-=,即8x 3π=时,max ()21f x =-, …10分 当244x ππ-=-,即0x =时,min ()2f x =-. ………13分6、(2011朝阳二模理15)已知函数2()2sin sin()2sin 12f x x x x π=⋅+-+ ()x ∈R .(Ⅰ)求函数()f x 的最小正周期及函数()f x 的单调递增区间;(Ⅱ)若02()23x f =,0ππ(, )44x ∈-,求0cos 2x 的值. 解: 2()2sin cos 2sin 1=⋅-+f x x x x ……………………………………1分 sin 2cos2=+x x ……………………………………2分π2sin(2)4x =+. 和差角公式逆用 ………………3分 (Ⅰ)函数()f x 的最小正周期2ππ2T ==. ……………………………………5分 令πππ2π22π242k x k -++≤≤()k ∈Z , ……………………………………6分所以3ππ2π22π44k x k -+≤≤. 即3ππππ88k x k -+≤≤.所以,函数()f x 的单调递增区间为3ππ[π, π]88k k -+ ()k ∈Z . ……………8分(Ⅱ)解法一:由已知得0002()sin cos 23x f x x =+=,…………………9分 两边平方,得021sin 29x += 同角关系式 所以 07sin 29x =-…………11分 因为0ππ(, )44x ∈-,所以0π2(, )22x π∈-.所以20742cos 21()99x =--=. ……………………………………13分 解法二:因为0ππ(, )44x ∈-,所以0ππ(0, )42x +∈. …………………………9分 又因为000ππ2()2)2)22443x x f x =⋅+=+=,得 0π1sin()43x +=. ……………………………………10分 所以20π12cos()1()433x +=-=. ……………………………………11分 所以,00000πππcos 2sin(2)sin[2()]2sin()cos()2444x x x x x π=+=+=++ 122422339=⋅⋅=. 诱导公式的运用7、(2011东城二模理15)(本小题共13分)已知π72sin()4A +=,ππ(,)42A ∈.(Ⅰ)求cos A的值;(Ⅱ)求函数5()cos2sin sin2f x x A x=+的值域.解:(Ⅰ)因为ππ42A<<,且πsin()4A+=,πcos()410A+=-.ππππcos()cos sin()sin4444A A+++31021025=-+=.所以3cos5A=.………6分(Ⅱ)由(Ⅰ)可得4sin5A=.212sin2sinx x=-+2132(sin)22x=--+,x∈R.因为sin[1,1]x∈-,所以,当1sin2x=时,()f x取最大值32;当sin1x=-时,()f x取最小值3-.所以函数()f x的值域为3[3,]2-.8.(2011年朝阳期末理15)已知△ABC中,2sin cos sin cos cos sinA B C B C B=+.(Ⅰ)求角B的大小;(Ⅱ)设向量(cos,cos2)A A=m,12(, 1)5=-n,求当⋅m n取最小值时,)4tan(π-A值.解:和差角公式逆用所以2sin cos sin()sin()sinA B B C A A=+=π-=. ………3分因为0A,所以sin0A.所以1cos2B=. ………5分3Bπ=. …………7分(Ⅱ)因为12cos cos25A A⋅=-+m n,…………………8分所以2212343cos2cos12(cos)5525A A A⋅=-+-=--m n. …10分所以当3cos5A=时,⋅m n取得最小值.A),于是tan同角关系或三角函数定义……12分所以tan11tan()4tan17AAAπ--==+. ……………13分9.(2011年石景山期末理15)已知函数23cossinsin3)(2-+=xxxxf()Rx∈.(Ⅰ)求)4(πf的值;(Ⅱ)若)2,0(π∈x,求)(xf的最大值;(Ⅲ)在ABC∆中,若BA<,21)()(==BfAf,求ABBC的值.解:(Ⅰ)234cos4sin4sin3)4(2-+=ππππf21=.4分(Ⅱ)2)2cos1(3)(xxf-=+232sin21-xxx2cos232sin21-=)32sin(π-=x.…6分2π<<x,32323πππ<-<-∴x.∴当232xππ-=时,即125π=x时,)(xf的最大值为1.…8分(Ⅲ) )32sin()(π-=xxf,若x是三角形的内角,则π<<x令21)(=xf,得解得4π=x或127π=x.……10分由已知,BA,是△ABC的内角,BA<且21)()(==BfAf,∴4π=A,127π=B,∴6π=--π=BAC.…11分又由正弦定理,得221226sin4sinsinsin==ππ==CAABBC.……13分10、(2011东城一模理15)(本小题共13分)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c 分,且满足2cos cos c b Ba A-=. (Ⅰ)求角A 的大小;(Ⅱ)若a =ABC 面积的最大值.解:(Ⅰ)因为2cos cos c b Ba A-=, 所以(2)cos cos c b A a B -⋅=⋅由正弦定理,得(2sin sin )cos sin cos C B A A B -⋅=⋅.边化角 整理得2sin cos sin cos sin cos C A B A A B ⋅-⋅=⋅. 所以2sin cos sin()sin C A A B C ⋅=+=. 在△ABC所以1cos 2A =,3A π∠=.(Ⅱ)由余弦定理2221cos 22b c a A bc +-==,a = 所以2220220b c bc bc +-=≥- 均值定理在三角中的应用所以20bc ≤,当且仅当b c =时取“=” . 取等条件别忘所以三角形的面积1sin 2S bc A =≤. 所以三角形面积的最大值为. ……………………13分 11、(2011丰台一模理15). 在△ABC 中,a ,b ,c 分别为内角A ,B ,C 的对边,且b 2+c 2-a 2=bc .(Ⅰ)求角A 的大小;(Ⅱ)设函数2cos 2cos 2sin 3)(2x x x x f +=,当)(B f 取最大值23时,判断△ABC的形状.解:(Ⅰ)在△ABC 中,因为b 2+c 2-a 2=bc可得cos A =12.(余弦定理或公式必须有一个,否则扣1分) ……3分 ∵, (或写成A 是三角形内角) ……………………4分 ∴3A π=.……………………5分 (Ⅱ)2cos2cos 2sin 3)(2x x x x f +=11cos 222x x =++ …7分 1sin()62x π=++, ……9分∵3A π=∴2(0,)3B π∈(没讨论,扣1分)…10分 ∴当62B ππ+=,即3B π=时,()f B 有最大值是23. …11分又∵3A π=, ∴3C π= ∴△ABC 为等边三角形. ……13分12、(2011海淀一模理15). (本小题共13分)在ABC ∆中,内角A 、B 、C 所对的边分别为,,a b c ,已知1tan 2B =,1tan 3C =,且1c =. (Ⅰ)求tan A ; (Ⅱ)求ABC ∆的面积. 解:(I )因为1tan 2B =,1tan 3C =,tan tan tan()1tan tan B CB C B C ++=-, …………………1分 代入得到,1123tan()111123B C ++==-⨯ . …………………3分 因为180A B C =-- , …………………4分(B - 角关系 ………5分 (II )因为0180A <<,由(I )结论可得:135A =. …………………7分 因为11tan tan 023B C =>=>,所以090C B <<< . …………8分 所以sin B=sin C =. …………9分 由sin sin a cA C=得a = …………………11分 所以ABC ∆的面积为:11sin 22ac B =. ………………13分 13、(2011石景山一模理15).在ABC ∆中,角A ,B ,C 所对应的边分别为a ,b ,c ,且274sin cos222A B C +-=. (Ⅰ)求角C 的大小;(Ⅱ)求sin sin A B +的最大值.解:(Ⅰ)∵ A 、B 、C 为三角形的内角,∴ π=++C B A .∵ 三角形中角的大小关系 ∴…………2分 ∴ 27)1cos 2(2cos 142=--+⋅C C .即 021cos 2cos 22=+-C C . ……4分∴ 21cos =C . 又∵ π<<C 0 , ∴ 3π=C . …7分(Ⅱ)由(Ⅰ)得 32π=+B A .∴ A A A sin 32cos cos 32sinsin ⋅-⋅+=ππ)6sin(3cos 23sin 23π+=+=A A A .…10分 ∵ 320π<<A ,∴ 6566πππ<+<A . ∴ 当26ππ=+A ,即 3π=A 时,B A sin sin +取得最大值为3.…………13分。

高中数学《三角函数》详解+公式+精题(附讲解)

高中数学《三角函数》详解+公式+精题(附讲解)

高中数学《三角函数》详解+公式+精题(附讲解)引言三角函数是中学数学的基本重要容之一,三角函数的定义及性质有许多独特的表现,是高考中对基础知识和基本技能进行考查的一个容。

其考查容包括:三角函数的定义、图象和性质,同角三角函数的基本关系、诱导公式、两角和与差的正弦、余弦、正切。

两倍角的正弦、余弦、正切。

、正弦定理、余弦定理,解斜三角形、反正弦、反余弦、反正切函数。

要求掌握三角函数的定义,图象和性质,同角三角函数的基本关系,诱导公式,会用“五点法”作正余弦函数及的简图;掌握基本三角变换公式进行求值、化简、证明。

了解反三角函数的概念,会由已知三角函数值求角并能用反三角函数符号表示。

由于新教材删去了半角公式,和差化积,积化和差公式等容,近年的高考基本上围绕三角函数的图象和三角函数的性质,以及简单的三角变换来进行考查,目的是考查考生对三角函数基础知识、基本技能、基本运算能力掌握情况。

2.近年来高考对三角部分的考查多集中在三角函数的图象和性质,重视对三角函数基础知识和技能的考查。

每年有 2 — 3 道选择题或填空题,或 1 — 2 道选择、填空题和 1 道解答题。

总的分值为 15 分左右,占全卷总分的约 10 左右。

( 1 )关于三角函数的图象立足于正弦余弦的图象,重点是函数的图象与 y=sinx 的图象关系。

根据图象求函数的表达式,以及三角函数图象的对称性。

如 2000 年第( 5 )题、( 17 )题的第二问。

( 2 )求值题这类问题在选择题、填空题、解答题中出现较多,主要是考查三角的恒等变换。

如 2002 年( 15 )题。

( 3 )关于三角函数的定义域、值域和最值问题( 4 )关于三角函数的性质(包括奇偶性、单调性、周期性)。

一般要先对已知的函数式变形,化为一角一函数处理。

如 2001 年( 7 )题。

( 5 )关于反三角函数, 2000 — 2002 年已连续三年不出现。

( 6 )三角与其他知识的结合(如 1999 年第 18 题复数与三角结合)今后有关三角函数仍将以选择题、填空题和解答题三种题型出现,难度不会太大,会控制在中等偏易的程度;三角函数如果在解答题出现的话,应放在前两题的位置,放在第一题的可能性最大,难度不会太大。

高中三角函数讲义_概述及解释说明

高中三角函数讲义_概述及解释说明

高中三角函数讲义概述及解释说明1. 引言1.1 概述在高中数学课程中,三角函数是一个重要的内容。

它是研究角度和三角形等几何图形性质的基础工具,并且在实际生活中有广泛的应用。

掌握三角函数的定义、性质以及其在解决实际问题中的应用是每位高中生数学学习的必备知识。

1.2 文章结构本文将围绕高中三角函数展开讲述。

首先,我们将介绍高中三角函数的基本概念,包括角度和弧度的概念以及正弦、余弦和正切的定义。

然后,我们将探讨三角函数之间的关系与公式推导,包括同一角度不同三角函数之间的关系与变化规律,倍角、半角以及相关角公式推导与应用,以及其他三角函数如割、减等的公式与性质说明。

接下来,我们将着重介绍高中三角函数在解决实际问题中的应用,例如测量和测绘领域、机械工程和建筑设计领域,以及物理学和天文学领域。

最后,在结论部分,我们将对主要内容进行总结与回顾,并提出对高中三角函数学习的建议以及进一步研究方向的展望。

1.3 目的本文的目的是为高中生提供一份全面且易懂的三角函数讲义,帮助他们掌握高中三角函数相关知识,并能够将其应用于实际问题解决中。

通过本文的学习,读者将能够理解三角函数在几何图形、物理和工程等领域的重要性,并从中获得启示,拓宽自己在数学领域的思维方式和解决问题的能力。

2. 高中三角函数的基本概念:2.1 角度和弧度的概念:在高中数学中,我们常常用角度来表示一个角的大小。

角度是以度(°)为单位来衡量的,一个圆共有360°。

但在三角函数的研究中,也经常使用弧度来表示角的大小。

弧度是单位圆上与它所对应的弧长相等的一段弧所对应的长度,常用符号“rad”表示。

一周对应的弧长为2π,即一个圆心角为360°或2π弧度。

2.2 正弦、余弦和正切的定义:在三角函数中,最基本的三个函数是正弦(sin)、余弦(cos)和正切(tan)。

这些函数可以通过单位圆上点的坐标来定义。

正弦函数(sin):给定一个角θ,在单位圆上以θ作为终边所对应点(x, y)的y坐标即为该角θ的正弦值。

高中数学:三角函数

高中数学:三角函数

高中数学:三角函数三角函数是高中数学中重要的一个章节,也是很多同学感觉比较困难的部分之一。

它是研究角和角的函数关系的一门数学分支。

在高中数学中,我们主要学习正弦函数、余弦函数、正切函数、余切函数、正割函数、余割函数,以及它们之间的性质和基本解析式。

一、正弦函数1. 正弦函数的概念在直角三角形中,对于角A(不等于90°),其对边与斜边的比值称为正弦,即sinA = 对边/斜边。

在坐标系中,以一单位长度的线段在y轴上向上方向旋转,端点所在直线与x轴正半轴正向的夹角的正弦值为y,即y=sinα。

2. 正弦函数的性质(1)定义域:D={α | α∈R}。

(2)值域:[-1, 1]。

(3)奇偶性:正弦函数是奇函数,即sin(-α)=-sinα。

(4)周期性:正弦函数的周期为2π,即sin(α+2π)=sinα。

(5)单调性:在[0, π]上,正弦函数单调递增,在[π, 2π]上单调递减。

3. 正弦函数的图像练习题:1. 求sin 120°和sin (-45°)的值。

2. 若α∈[0, 2π],求证:sin(π-α)=sinα。

3. 若cosα=4/5,α∈[0, π/2],求sinα的值。

4. 已知sinα=-1/5,α∈[π/2, π],求cosα的值。

5. 求证:sin(π/2-α)=cosα。

参考答案:1. sin 120°=sin(120°-360°)=sin(-240°)=-sin240°=-√3/2;sin(-45°)=-sin45°=-1/√2。

2. sin(π-α)=sinπcosα-cosπsinα=-sinα。

3. sinα=3/5。

4. cosα=-√24/5。

5. sin(π/2-α)=cosα。

二、余弦函数1. 余弦函数的概念在直角三角形中,对于角A(不等于90°),其邻边与斜边的比值称为余弦,即cosA = 邻边/斜边。

高中数学三角函数讲解

高中数学三角函数讲解

高中数学三角函数讲解三角函数是数学中非常重要的一部分,它与几何图形的关系密不可分,也是其他数学分支(如物理、工程等)中经常出现的基本工具。

在高中数学中,三角函数的学习和应用占据了重要的位置,理解三角函数的概念和性质对学习和掌握数学知识是至关重要的。

本文将对高中数学中常见的三角函数进行详尽的讲解,帮助读者深入理解三角函数的本质和应用。

1. 正弦函数正弦函数是三角函数中最基本的函数之一。

它的定义域是一切实数,值域是[-1, 1]。

在直角三角形中,正弦函数可以表示为一个直角边与斜边的比值。

其表示方法为sinθ(θ为角度),也可以用sinx(x为弧度)表示。

正弦函数具有周期性,周期是2π(或360°),且存在对称性。

图像上来看,正弦函数在[0, π/2]上递增,在[π/2, π]上递减,在[π, 3π/2]上再次递增,在[3π/2, 2π]上再次递减。

2. 余弦函数余弦函数是另一个基本的三角函数,它也在直角三角形中有重要的应用。

余弦函数的定义域是一切实数,值域也是[-1, 1]。

余弦函数表示的是直角三角形的两个边之比,其表示形式为cosθ(θ为角度)或cosx (x为弧度)。

与正弦函数类似,余弦函数也是周期性的,周期也是2π(或360°)。

余弦函数的图像可以看作是正弦函数图像向右平移π/2(或90°),即余弦函数在[0, π/2]上递减,在[π/2, π]上递增,在[π, 3π/2]上再次递减,在[3π/2, 2π]上再次递增。

3. 正切函数正切函数是三角函数中的另一个重要概念。

它的定义域和值域是一切实数(除去一些特殊点),不同于正弦函数和余弦函数的有界性。

正切函数表示的是直角三角形中斜边和一个直角边的比值。

正切函数可以表示为tanθ(θ为角度)或tanx(x为弧度)。

正切函数的周期是π(或180°),而且具有奇对称性,即tan(θ) = -tan(θ + π),图像上看正切函数在[-π/2, π/2]上递增。

高中数学必修三角函数知识点归纳总结经典

高中数学必修三角函数知识点归纳总结经典

高中数学必修三角函数知识点归纳总结经典一、正弦函数、余弦函数、正切函数的定义1. 正弦函数:在单位圆上,对于任意角度θ,都存在一个点P(x,y),其中x=cosθ,y=sinθ。

则y=sinθ称为角θ的正弦函数。

2. 余弦函数:在单位圆上,对于任意角度θ,都存在一个点P(x,y),其中x=cosθ,y=sinθ。

则x=cosθ称为角θ的余弦函数。

3. 正切函数:在单位圆上,对于任意角度θ,都存在一个点P(x,y),其中x=cosθ,y=sinθ。

则y/x=tanθ称为角θ的正切函数。

二、基本性质1.周期性:正弦函数、余弦函数、正切函数的周期都是2π。

2.奇偶性:正弦函数是奇函数,余弦函数是偶函数,正切函数是奇函数。

3.值域:正弦函数和余弦函数的值域为[-1,1],正切函数的值域为R。

三、基本公式1. 正弦函数的基本公式:sin(θ±α) = sinθcosα ±cosθsinα2. 余弦函数的基本公式:cos(θ±α) = cosθcosα ∓ sinθsinα3. 正切函数的基本公式:tan(θ±α) =(tanθ±tanα)/(1∓tanθtanα)四、三角函数的图像与性质1.正弦函数图像的性质:周期为2π,在(0,0)处取得最小值-1,在(π/2,1)、(3π/2,-1)处取得最大值1,是一个奇函数。

2.余弦函数图像的性质:周期为2π,在(0,1)处取得最大值1,在(π,-1)处取得最小值-1,是一个偶函数。

3.正切函数图像的性质:周期为π,在(0,0)处取得最小值-∞,在(π/2,∞)处取得最大值∞,是一个奇函数。

五、三角函数的性质1.三角函数的和差化积公式:sin(A±B) = sinAcosB ± cosAsinBcos(A±B) = cosAcosB ∓ sinAsinBtan(A±B) = (tanA±tanB)/(1∓tanAtanB)2.三角函数的倍角公式:sin2θ = 2sinθcosθcos2θ = cos^2θ - sin^2θtan2θ = (2tanθ)/(1-tan^2θ)3.三角函数的半角公式:sin(θ/2) = √[(1-cosθ)/2]cos(θ/2) = √[(1+cosθ)/2]tan(θ/2) = sinθ/(1+cosθ)4.三角函数的积化和差公式:sinA·sinB = (1/2)[cos(A-B)-cos(A+B)]cosA·cosB = (1/2)[cos(A-B)+cos(A+B)]sinA·cosB = (1/2)[sin(A-B)+sin(A+B)]六、三角函数的应用1.解三角形:利用正弦定理、余弦定理和正弦函数、余弦函数的性质,可以解决三角形的边长和角度。

高中数学三角函数解题技巧和思路的总结

高中数学三角函数解题技巧和思路的总结

高中数学三角函数解题技巧和思路的总结高中数学中,三角函数是一个重要的概念和工具,掌握好三角函数的解题技巧和思路对于解决数学问题至关重要。

下面是我对高中数学三角函数解题技巧和思路的总结:1. 理解三角函数的定义:三角函数包括正弦函数、余弦函数和正切函数。

了解它们的定义和性质是解题的基础。

特别要注意解题中的角度单位,是弧度还是角度。

2. 熟悉三角函数的基本性质:正弦函数和余弦函数的值域都在[-1,1]之间,而正切函数的值域是整个实数集。

可以利用这些性质来限制方程的解域和范围。

3. 找到角度的周期性:三角函数都具有周期性,在一定的区间内值循环重复。

对于周期函数,可以通过一些性质和等式进行化简,简化计算和分析过程。

4. 角度的换算和关系:在解题过程中,角度的换算很重要,能够灵活地在弧度制和角度制之间切换。

要注意角度之间的关系,如补角、余角、同角等。

5. 利用三角函数的图像分析问题:根据三角函数的图像,可以直观地分析问题,找到关键点、关系和规律。

根据正弦函数的图像可以判断极值点和交点的位置等。

6. 运用三角恒等式和简化公式:三角恒等式是解题中常用的工具,可以将复杂的三角函数化简为简单的形式。

掌握常见的三角恒等式和简化公式,能够提高解题效率。

7. 利用三角函数的性质求导和积分:三角函数的导数和积分公式是高中数学的重点,能够通过求导和积分来解决一些与三角函数相关的问题。

熟练掌握导数和积分的运算规则,并注意应用定积分中的边界条件和积分上下限。

8. 与其他数学知识的结合:三角函数与其他数学知识有很多联系,如与向量、数列、解析几何等的关系。

在解题过程中,要善于将三角函数与其他数学概念相结合,推导出更多的解题思路和方法。

9. 多做题,多总结:解题是数学学习的重要环节,通过多做题目,不断总结解题思路和方法,才能提高解题能力和技巧。

可以选择一些经典的三角函数题目进行练习和归纳。

要掌握好高中数学三角函数的解题技巧和思路,需要对三角函数的定义和性质有深入的理解,熟悉角度的换算和关系,善于利用图像分析问题,灵活运用三角恒等式和简化公式,结合其他数学知识进行思考和推导,通过多做题目不断总结经验。

三角函数的图象、性质及应用(高中数学知识点讲解)

三角函数的图象、性质及应用(高中数学知识点讲解)

(5)不能认为y=tan
x在定义域上为增函数,应在区间
kπ-
π 2
,kπ
+
π 2
(k∈Z)内
为增函数.
知能拓展
考法一 关于三角函数图象的问题
例1 (1)(2018广东茂名化州二模,9)已知函数f(x)=Asin(ωx+φ)(A>0,ω>0,0<
φ<π)的部分图象如图所示,且f(α)=1,α∈
求φ及ω,从而
得到f(x)的解析式,由f(α)=1求α,进而得cos

+
5π 6
.
A = 5,
(2)①根据已知表格中的数据可得方程组
π 3
ω
+
φ
=
π 2
,
解之可得函数f(x)的
5π 6
ω
+
φ
=
3π 2
,
解析式,进而可补全表格.
②由①并结合函数图象平移可得,g(x)=5sin
2
x
+
2θ -
π 3
-2x
实质上是y=tan
x与y=
π 3
-2x的复合,应
按复合函数单调性求解.
方法总结 三角函数的单调性问题的常见类型及解题策略
1.已知三角函数解析式求单调区间
(1)求函数的单调区间应遵循简单化原则,将解析式进行化简,并注意复合
函数单调性规律“同增异减”.
(2)求形如y=Asin(ωx+φ)或y=Acos(ωx+φ)(其中ω>0)的单调区间时,要视“ωx
2π ω
=4×
7π 12
-
π 3
=π,得ω=2,故f(x)=3sin(2x+φ),将

高中三角函数解题技巧

高中三角函数解题技巧

高中三角函数解题技巧
一、了解基本概念
在解题过程中,首先需要了解三角函数的基本概念,包括正弦、余弦、正切等。

熟悉三角函数的定义和性质,能够帮助我们理解和
解决相关的问题。

二、掌握基本公式
掌握三角函数的基本公式对于解题非常重要。

例如,正弦函数
的基本公式是sinθ = 对边/斜边,余弦函数的基本公式是cosθ = 邻
边/斜边。

熟练运用这些公式,可以更快速地求解三角函数的值。

三、利用特殊关系
在解题过程中,有时可以利用三角函数的特殊关系简化问题。

例如,利用正弦函数和余弦函数的关系sin(π/2-θ)= cosθ,可以将一
个三角函数转换为另一个三角函数,从而简化计算过程。

四、利用三角函数的周期性
三角函数具有周期性,即在一定范围内的值是重复的。

例如,
正弦函数和余弦函数的周期都是2π。

利用这一特性,我们可以根
据给定角度的范围,将角度转化为对应周期内的角度,便于计算和
比较。

五、解三角方程
解三角方程是高中三角函数解题的重要内容。

通过对方程两边
进行一系列变换和化简,可得到与角度相关的等式。

掌握解三角方
程的一般方法和技巧,能够解答各种类型的问题。

六、练和总结
要掌握三角函数解题技巧,需要进行大量的练。

通过多做题目,积累经验,总结规律,逐步提高解题能力。

总结:
通过了解基本概念、掌握基本公式、利用特殊关系和周期性、
解三角方程以及进行练习和总结,我们能够提高在高中数学中解决
三角函数相关问题的能力。

希望这些技巧能对你有所帮助!。

(完整版)高中三角函数知识点总结

(完整版)高中三角函数知识点总结

(完整版)高中三角函数知识点总结高中三角函数知识点总结1. 基本三角函数概念- 三角函数是以单位圆为基础的函数,包括正弦函数、余弦函数和正切函数。

- 正弦函数(sin):在直角三角形中,对于一个锐角,其对边与斜边的比值称为正弦值。

即:sinA = 对边/斜边。

- 余弦函数(cos):在直角三角形中,对于一个锐角,其邻边与斜边的比值称为余弦值。

即:cosA = 邻边/斜边。

- 正切函数(tan):在直角三角形中,对于一个锐角,其对边与邻边的比值称为正切值。

即:tanA = 对边/邻边。

2. 基本三角函数性质和公式- 三角函数的周期性:正弦函数和余弦函数的周期都是2π;正切函数的周期是π.- 三角函数的奇偶性:正弦函数是奇函数,余弦函数是偶函数,正切函数是奇函数。

- 三角函数的同角关系:sinA/cosA = tanA。

- 三角函数的和差化积公式和积化和差公式:具体公式可根据需要进行查阅。

3. 三角函数图像和性质- 正弦函数图像:在0到2π的区间内,正弦函数的图像为一条周期性的波浪线,最高点为1,最低点为-1,对应于最大值和最小值,0点对应于零值。

- 余弦函数图像:在0到2π的区间内,余弦函数的图像为一条周期性的波浪线,最高点为1,最低点为-1,对应于最大值和最小值,0点对应于最大值。

- 正切函数图像:在0到π的区间内,正切函数的图像无法在x=π/2和3π/2时定义,其他点对应的图像为一条连续的射线。

4. 三角函数的应用- 三角函数广泛应用于科学和工程领域中的周期性现象的描述和计算,例如电流的正弦波,声波的波动等。

- 在几何学中,三角函数也应用于测量角度和距离等问题的解决。

以上为高中三角函数的基本知识点总结,更详细的内容和公式可以参考相关教材或资料。

高中三角函数讲解

高中三角函数讲解

高中三角函数讲解一、引言三角函数是高中数学中的重要概念,它是解析几何和三角学的基础,也是高等数学和物理学等学科的重要工具。

在高中阶段,学生需要全面、深入地掌握三角函数的概念、性质和应用。

本文将从基本概念、性质和常用公式、图像与性质、扩展应用四个方面,对高中三角函数进行全面讲解。

二、基本概念三角函数包括正弦函数、余弦函数和正切函数。

正弦函数记作sin,余弦函数记作cos,正切函数记作tan。

这三个函数都可以表示为一个角的比值。

1. 正弦函数正弦函数sin θ表示一个角θ的对边与斜边的比值。

在单位圆中,角θ对应于圆周上的一个点,该点的纵坐标即为sin θ的值。

2. 余弦函数余弦函数cos θ表示一个角θ的邻边与斜边的比值。

在单位圆中,角θ对应于圆周上的一个点,该点的横坐标即为cos θ的值。

3. 正切函数正切函数tan θ表示一个角θ的对边与邻边的比值。

在单位圆中,角θ对应于圆周上的一个点,该点的纵坐标除以横坐标的值即为tan θ的值。

三、性质和常用公式三角函数具有许多重要的性质和常用的公式,掌握这些性质和公式可以帮助我们简化计算和解决问题。

1. 基本关系式正弦函数、余弦函数和正切函数之间存在一些基本的关系式,例如sin^2 θ + cos^2 θ = 1,tan θ = sin θ / cos θ等。

2. 周期性正弦函数和余弦函数都是周期函数,它们的周期均为2π。

即对于任意实数x,有sin(x + 2π) = sin x和cos(x + 2π) = cos x成立。

3. 奇偶性正弦函数是奇函数,即sin(-x) = -sin x。

余弦函数是偶函数,即cos(-x) = cos x。

而正切函数既不是奇函数也不是偶函数,即tan(-x)不等于tan x。

4. 三角函数的和差公式三角函数的和差公式可以将两个角的三角函数表示为一个角的三角函数,例如sin(x ± y) = sin x cos y ± cos x sin y等。

高中数学三角函数讲解

高中数学三角函数讲解

高中数学三角函数讲解三角函数是数学中的重要内容之一,它们在几何、物理、工程等领域都有广泛的应用。

在高中数学课程中,三角函数也是一个重点内容,学好三角函数对于深入学习高等数学和物理都至关重要。

三角函数的基本概念三角函数包括正弦函数、余弦函数、正切函数等。

这些函数是以单位圆上的点为依据定义的。

在单位圆上,以坐标轴正方向作为基准,假设某点P的坐标为(x,y),那么P与单位圆上的原点O之间的连线与坐标轴的夹角为θ,这时我们就可以定义出正弦、余弦和正切分别为y、x、y/x。

这就是三角函数的最基础定义。

三角函数的基本性质三角函数有许多重要的性质,比如正弦函数的取值范围在[-1,1]之间,余弦函数的取值范围也在[-1,1]之间,而正切函数的定义域为全体实数。

另外,三角函数还具有周期性,具体来说,正弦函数和余弦函数的周期为2π,而正切函数的周期是π。

三角函数的图像三角函数的图像也是我们需要了解的重要内容。

正弦函数的图像是一段连续的波浪线,它在[-π/2,π/2]区间上是单调递增的,在其他区间上也具有规律性。

余弦函数的图像在[0,π]区间是单调递减的,而在[π,2π]区间则是单调递增的。

正切函数的图像则是由一组间隔为π的无穷多条直线所组成的。

三角函数的应用三角函数在实际问题中也有许多应用。

比如在力学中,三角函数可以帮助我们分析力的大小和方向;在光学中,三角函数可以帮助我们计算光的经过介质时的偏折角等。

总之,三角函数在现实生活中有着广泛的应用。

综上所述,高中数学中的三角函数是一个重要的知识点,掌握好三角函数的基本概念、性质、图像和应用对于提高数学水平和应用能力都有着积极的意义。

希望同学们在学习数学过程中能够认真对待三角函数这一部分,努力掌握其中的要点,从而为将来更深入的学习打下坚实的基础。

高一数学必修一三角函数知识点

高一数学必修一三角函数知识点

高一数学必修一中的三角函数知识点是高中数学学习的基础,也是考试中经常考查的重点内容。

下面就介绍一下三角函数的相关知识点。

一、正弦、余弦、正切的定义。

正弦函数和余弦函数分别是把一个角的弧度分解成其正弦和余弦,其定义分别为:角度θ对应的正弦值为sinθ,余弦值为cosθ;正切函数则是把一个角度θ分解成它的正切值,其定义为:角度θ对应的正切值为tanθ。

二、三角函数的基本关系。

三角函数之间有若干基本关系,例如:sin2θ+cos2θ=1,sinθ/cosθ=tanθ,cotθ=1/tanθ等,并且还有各种变形关系,例如,sin2θ=2sinxcosx,cos2θ=cos2x-sin2x等,都是必须掌握的。

三、求反三角函数的方法。

求反三角函数是指求出正弦函数、余弦函数和正切函数的倒数函数,也就是求出θ的值。

要求反三角函数,可以采用两种方法:一是根据定义求解,即把函数式代入公式,求出θ;二是使用三角函数表,根据三角函数表查找对应的值。

四、求解三角形的边长和角度。

三角函数还可以用来求解三角形的边长和角度,例如求已知两边长及其夹角求第三边的长度,可以利用余弦定理:a^2=b^2+c^2-2bc·cosA;求已知两边长及其夹角求第三个角度,可以利用余弦定理:cosA=(a^2-b^2-c^2)/2bc,两种情况都要用到三角函数。

五、三角函数的图形。

三角函数的图形可以用极坐标系和直角坐标系表示,极坐标系可以用点(r,θ)表示,其中r是极坐标系中的点到原点的距离,θ是极坐标系中的点到横轴的夹角;直角坐标系也可以用点(x,y)表示,其中x是点在x轴的横坐标,y是点在y轴的纵坐标。

以上就是高一数学必修一中三角函数的基本知识点,希望以上介绍能够帮助大家更好的学习和理解三角函数的相关知识点,掌握它们的应用,取得好的成绩。

高中数学竞赛辅导讲义 第六章 三角函数【讲义】

高中数学竞赛辅导讲义 第六章  三角函数【讲义】

÷ö 0 ø
=
2.
若α+β< p ,则 x<0,由 0<α< p -β< p 得 cosα>cos( p -β)=sinβ>0,
2
2
2
2
所以 cosa >1。又 0<sinα<sin( p -β)=cosβ,所以 cos b >1,
sin b
2
sin a
所以
ççèæ
cosa sin b
÷÷øö x
+
,
0)均为其对称
中心,值域为[-1,1]。这里 k∈Z.
定理 4 余弦函数的性质,根据图象可得 y=cosx(x∈R)的性质。单调
区间:在区间[2kπ, 2kπ+π]上单调递减,在区间[2kπ-π, 2kπ]上单调递增。
最小正周期为 2π。奇偶性:偶函数。对称性:直线 x=kπ 均为其对称
轴,点 çæ kp
2
çæ è
a 2
÷ö ø
tana =
2
tançæ è
a 2
÷ö ø
.
1
-
tan
2
çæ è
a 2
÷ö ø
定理 11 辅助角公式:如果 a, b 是实数且 a2+b2 ¹ 0,则取始边在 x 轴 正半轴,终边经过点(a, b)的一个角为β,则 sinβ= b ,cosβ
a2 + b2
= a ,对任意的角α.
第六章 三角函数
一、基础知识
定义 1 角,一条射线绕着它的端点旋转得到的图形叫做角。若旋转 方向为逆时针方向,则角为正角,若旋转方向为顺时针方向,则角为 负角,若不旋转则为零角。角的大小是任意的。

高中数学中的三角函数解题技巧

高中数学中的三角函数解题技巧

高中数学中的三角函数解题技巧在高中数学学习中,三角函数是一个重要的概念,它在解决各种几何和代数问题中起到了关键的作用。

在本文中,我们将介绍一些高中数学中常见的三角函数解题技巧。

一、角度与弧度的转换在解决三角函数问题时,角度与弧度之间的转换是必不可少的。

通常情况下,我们使用角度度量来表示角度,但是在计算三角函数的值时,通常使用弧度度量。

角度与弧度的转换关系可以通过以下公式得到:弧度 = 角度× (π / 180)角度 = 弧度× (180 / π)当我们给出角度时,可以通过将该角度与公式相乘得到对应的弧度值,进而计算三角函数的值。

同样地,已知弧度时也可以按照公式相除得到对应的角度值。

二、特殊角的三角函数值在解决三角函数问题时,我们常常会遇到一些特殊角,这些特殊角的三角函数值是已知的,可以直接使用而无需通过计算得到。

比如,在单位圆上,我们可以通过简单的几何推导得到以下特殊角的三角函数值:- 0度、90度、180度和270度的正弦值、余弦值和正切值分别为0、1、-1和无穷大;- 30度、45度和60度的正弦值、余弦值和正切值分别为1/2、√2/2、√3/2和√3等。

掌握这些特殊角的三角函数值能够大大简化解题过程,提高解题效率。

三、和差角公式的应用和差角公式是解决三角函数问题中常用的技巧之一。

它能够将一些复杂的三角函数表达式转化为简单的形式,从而便于计算。

正弦函数的和差角公式为:sin(A ± B) = sinAcosB ± cosAsinB余弦函数的和差角公式为:cos(A ± B) = cosAcosB ∓ sinAsinB正切函数的和差角公式为:tan(A ± B) = (tanA ± tanB) / (1 ∓ tanAtanB)利用和差角公式,我们可以将一个角度为A的三角函数表达式转化为一个或两个角度小于A的简单形式,然后再计算其三角函数的值。

高中数学专题系列 三角函数讲义

高中数学专题系列  三角函数讲义

§1.1.1、任意角1、 正角、负角、零角、象限角的概念.2、 与角α终边相同的角的集合:{}Z k k ∈+=,2παββ.§1.1.2、弧度制1、 把长度等于半径长的弧所对的圆心角叫做1弧度的角.2、 rl =α. 3、弧长公式:R R n l απ==180. 4、扇形面积公式:lR R n S 213602==π. §1.2.1、任意角的三角函数1、 设α是一个任意角,它的终边与单位圆交于点()y x P ,,那么:xyx y ===αααtan ,cos ,sin 2、 设点(),A x y为角α终边上任意一点,那么:(设r =sin y r α=,cos x r α=,tan yxα=,cot x y α=3、 αsin ,αcos ,αtan 在四个象限的符号和三角函数线的画法.正弦线:MP; 余弦线:OM; 正切线:AT5、 特殊角0°,30°45°,60°,90°,180°,270等的三角函数值.§1.2.21、 平方关系:1cos sin 22=+αα 2、 商数关系:αααcos sin tan =. 3、 倒数关系:tan cot 1αα=§1.3、三角函数的诱导公式(概括为Z k ∈)§1.4.1、正弦、余弦函数的图象和性质1、记住正弦、余弦函数图象:2、能够对照图象讲出正弦、余弦函数的相关性质:定义域、值域、最大最小值、对称轴、对称中心、奇偶性、单调性、周期性.3、会用五点法作图.sin y x =在[0,2]x π∈上的五个关键点为: 30010-12022ππππ(,)(,,)(,,)(,,)(,,).y=tanx3π2ππ2-3π2-π-π2oyxy=cotx 3π2ππ22π-π-π2o yx图表归纳:正弦、余弦、正切函数的图像及其性质x y sin =x y cos =x y tan =图象定义域 RR},2|{Z k k x x ∈+≠ππ值域[-1,1][-1,1]R最值max min 2,122,12x k k Z y x k k Z y ππππ=+∈==-∈=-时,时,max min 2,12,1x k k Z y x k k Z y πππ=∈==+∈=-时,时,无周期性 π2=T π2=Tπ=T奇偶性 奇偶奇单调性Z k ∈ 在[2,2]22k k ππππ-+上单调递增在3[2,2]22k k ππππ++上单调递减 在[2,2]k k πππ-上单调递增在[2,2]k k πππ+上单调递减在(,)22k k ππππ-+上单调递增 对称性 Z k ∈对称轴方程:2x k ππ=+对称中心(,0)k π对称轴方程:x k π= 对称中心(,0)2k ππ+无对称轴 对称中心,0)(2k π§1.4.3、正切函数的图象与性质1、记住正切函数的图象2、记住余切函数的图象:3、能够对照图象讲出正切函数的相关性质:定义域、值域、对称中心、奇偶性、单调性、周期性.§1.5、函数()ϕω+=x A y sin 的图象 1、对于函数:()()sin 0,0y A x B A ωφω=++>>有:振幅A ,周期2T πω=,初相ϕ,相位ϕω+x ,频率πω21==Tf .2、能够讲出函数x y sin =的图象与()sin y A x B ωϕ=++的图象之间的平移伸缩变换关系.3、三角函数的周期,对称轴和对称中心函数sin()y x ωϕ=+,x ∈R 及函数cos()y x ωϕ=+,x ∈R(A,ω,ϕ为常数,且A ≠0)的周期2||T πω=;函数tan()y x ωϕ=+,,2x k k Z ππ≠+∈(A,ω,ϕ为常数,且A ≠0)的周期||T πω=. 对于sin()y A x ωϕ=+和cos()y A x ωϕ=+来说,对称中心与零点相联系,对称轴与最值点联系. 求函数sin()y A x ωϕ=+图像的对称轴与对称中心,只需令()2x k k Z πωϕπ+=+∈与()x k k Z ωϕπ+=∈解出x 即可.余弦函数可与正弦函数类比可得.4、由图像确定三角函数的解析式 利用图像特征:max min 2A =,max min2y y B +=. ω要根据周期来求,ϕ要用图像的关键点来求.§1.6、三角函数模型的简单应用 (要求熟悉课本例题.)§3.1.1、两角差的余弦公式§3.1.2、两角和与差的正弦、余弦、正切公式 1、()βαβαβαsin cos cos sin sin +=+ 2、()βαβαβαsin cos cos sin sin -=- 3、()βαβαβαsin sin cos cos cos -=+ 4、()βαβαβαsin sin cos cos cos +=- 5、()tan tan 1tan tan tan αβαβαβ+-+=.6、()tan tan 1tan tan tan αβαβαβ-+-=.§3.1.3、二倍角的正弦、余弦、正切公式1、αααcos sin 22sin =,2、ααα22sin cos 2cos -=变形: 12sin cos sin 2ααα=. 1cos 22-=α α2sin 21-=.升幂公式:221cos 22cos 1cos 22sin αααα⎧+=⎪⎨-=⎪⎩ 降幂公式:221cos (1cos 2)21sin (1cos 2)2αααα=+=-⎧⎪⎨⎪⎩3、ααα2tan 1tan 22tan -=. 4、sin 21cos 2tan 1cos 2sin 2ααααα-==+ §3.2、简单的三角恒等变换1、 注意正切化弦、平方降次.2、辅助角公式)sin(cos sin 22ϕ++=+=x b a x b x a y (其中辅助角ϕ所在象限由点(,)a b 的象限决定,tan b aϕ=).解三角形1、正弦定理:R CcB A 2sin sin sin ===. (其中R 为ABC ∆外接圆的半径) 2sin ,2sin ,2sin ;a R A b R B c R C ⇔===sin ,sin ,sin ;222a b c A B C R R R⇔=== ::sin :sin :sin .a b c A B C ⇔=用途:⑴已知三角形两角和任一边,求其它元素;⑵已知三角形两边和其中一边的对角,求其它元素。

高中数学课件三角函数ppt课件完整版

高中数学课件三角函数ppt课件完整版

高中数学课件三角函数ppt课件完整版目录•三角函数基本概念与性质•三角函数诱导公式与恒等式•三角函数的加减乘除运算•三角函数在解三角形中的应用•三角函数在数列和概率统计中的应用•总结回顾与拓展延伸PART01三角函数基本概念与性质三角函数的定义及性质三角函数的定义正弦、余弦、正切等函数在直角三角形中的定义及在各象限的性质。

特殊角的三角函数值0°、30°、45°、60°、90°等特殊角度下各三角函数的值。

诱导公式利用周期性、奇偶性等性质推导出的三角函数诱导公式。

正弦、余弦函数的图像及其特点,如振幅、周期、相位等。

三角函数图像周期性图像变换正弦、余弦函数的周期性及其性质,如最小正周期等。

通过平移、伸缩等变换得到其他三角函数的图像。

030201三角函数图像与周期性正弦、余弦函数的值域为[-1,1],正切函数的值域为R 。

值域在各象限内,正弦、余弦函数的单调性及其变化规律。

单调性利用三角函数的性质求最值,如振幅、周期等参数对最值的影响。

最值问题三角函数值域和单调性PART02三角函数诱导公式与恒等式诱导公式及其应用诱导公式的基本形式01通过角度的加减、倍角、半角等关系,将任意角的三角函数值转化为基本角度(如0°、30°、45°、60°、90°)的三角函数值。

诱导公式的推导02利用三角函数的周期性、对称性、奇偶性等性质,通过逻辑推理和数学归纳法等方法推导出诱导公式。

诱导公式的应用03在解三角函数的方程、求三角函数的值、证明三角恒等式等方面有广泛应用。

例如,利用诱导公式可以简化计算过程,提高解题效率。

恒等式及其证明方法恒等式的基本形式两个解析式之间的一种等价关系,即对于某个变量或一组变量的取值范围内,无论这些变量取何值,等式都成立。

恒等式的证明方法通常采用代数法、几何法或三角法等方法进行证明。

其中,代数法是通过代数运算和变换来证明恒等式;几何法是通过几何图形的性质和关系来证明恒等式;三角法是通过三角函数的性质和关系来证明恒等式。

三角函数讲解高中

三角函数讲解高中

三角函数讲解高中三角函数是高中数学中比较重要的内容之一,而且也是难度比较大的部分。

本篇文章将以分步骤的形式,讲解高中三角函数的内容。

一、三角计算相关概念三角函数是基于三角形而形成的,因此,我们首先要了解三角形的相关概念。

三角形通常有三个角和三个边。

在三角形中,我们通常把其中一个内角记作θ(读作“西塔”),θ的大小以度数或弧度为单位表示。

此外,我们还要了解三角形中的三个特殊角度——30度、45度和60度。

这些角度在三角计算中经常使用。

二、正弦、余弦和正切在三角函数中,有三个最重要的函数——正弦、余弦和正切。

对于一个给定的角θ,我们可以计算出它的正弦、余弦和正切值。

这些值被定义为:$$\sin \theta=\frac{opposite}{hypotenuse}$$$$\cos\theta=\frac{adjacent}{hypotenuse}$$$$\tan\theta=\frac{opposite}{adjacent}$$其中,opposite表示θ角度对面的边长,adjacent表示θ角度相邻的直角边的长度,hypotenuse表示斜边的长度。

三、三角函数的常用关系式正弦、余弦和正切的关系式在三角计算中非常重要。

这些关系式可以帮助我们计算角度的值,或者使用已知的值计算三角函数。

以下是一些常用的三角函数关系式:$$\cos \theta =\sin \left( \frac{\pi}{2}-\theta\right)$$$$\sin\theta =\cos \left( \frac{\pi}{2}-\theta \right)$$ $$\tan \theta =\frac{\sin \theta}{\cos \theta}$$$$\cot \theta =\frac{\cos \theta}{\sin \theta}$$这些关系式不仅在求解三角函数中非常有用,在解决三角形问题中也非常重要。

四、三角函数的图像在图形上,三角函数的图像是非常有规律性的。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
三角函数
1、L弧长= R=S扇= LR= R2 =
2、诱导公试3、两角和差公式4、二倍角公式5、辅助角公式
2、函数y= k的图象及性质:( )振幅A,周期T= ,频率f= ,相位 ,初相
练习题
1 若点P在 的终边上,且OP=2,则点P的坐标()
A. B. C. D.
2 下列函数中,最小正周期为 的是()
A. B. C. D.
9 化简 等于()
A. B. C. D.
10 若 在()
A.第一、二象限B.第一、三象限C.第一、四象限D.第二、四象限
11 函数 ()
A.周期为 的奇函数B.周期为 的偶函数C.周期为 的奇函数D.周期为小值,则 ()
A. B. C. D.
A. B. C. D.
3 已知 ()
A. B. C. D.
4 若 是三角形的内角,且 ,则 等于()
A. B. 或 C. D. 或
5 下列函数中,最小值为-1的是()
A. B. C. D.
6设 的值是()
A. B. C. D.
7 的值是()
A. B. C. D.
8 将函数 的图象向左平移 个单位,得到 的图象,则 等于( )
13 化简 得()
A.0B.1C. D.
14 = ()
A. B. C. D.
15 已知
16 已知
17 函数
18 的形状为
19 已知角 的终边过点 的值为
20 求函数 的值域
相关文档
最新文档